
Citation: Domben, E.S.; Sharma, P.;

Mann, I. Using Deep Learning

Methods for Segmenting Polar

Mesospheric Summer Echoes. Remote

Sens. 2023, 15, 4291. https://doi.org/

10.3390/rs15174291

Academic Editor: Gabriel Vasile

Received: 9 June 2023

Revised: 12 August 2023

Accepted: 28 August 2023

Published: 31 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

Using Deep Learning Methods for Segmenting Polar
Mesospheric Summer Echoes
Erik Seip Domben 1, Puneet Sharma 1,* and Ingrid Mann 2

1 Department of Automation and Process Engineering (IAP), UiT The Arctic University of Norway,
9019 Tromsø, Norway

2 Department of Physics and Technology (IFT), UiT The Arctic University of Norway, 9019 Tromsø, Norway;
ingrid.b.mann@uit.no

* Correspondence: puneet.sharma@uit.no

Abstract: Polar mesospheric summer echoes (PMSE) are radar echoes that are observed in the
mesosphere during the arctic summer months in the polar regions. By studying PMSE, researchers can
gain insights into physical and chemical processes that occur in the upper atmosphere—specifically,
in the 80 to 90 km altitude range. In this paper, we employ fully convolutional networks such as
UNET and UNET++ for the purpose of segmenting PMSE from the EISCAT VHF dataset. First,
experiments are performed to find suitable weights and hyperparameters for UNET and UNET++.
Second, different loss functions are tested to find one suitable for our task. Third, as the number
of PMSE samples used is relatively small, this can lead to poor generalization. To address this,
image-level and object-level augmentation methods are employed. Fourth, we briefly explain our
findings by employing layerwise relevance propagation.

Keywords: polar mesospheric summer echoes; deep learning; segmentation

1. Introduction

Polar mesospheric summer echoes (PMSE) are radar echoes that are observed in the
mesosphere during the summer months above mid and high latitudes [1]. These echoes
are caused by the scattering of the radar signal off ionospheric structures that form in the
presence of small ice particles, atmospheric turbulence, and charge interactions in the 75
to 95 km altitude range—that is, in the mesosphere [2]. The formation of this ice is linked
to the temperature and water vapor concentration at these heights, and the formation of
PMSE is closely linked to the complex dynamics of the mesosphere, which are influenced
by a variety of factors.

By studying PMSE, researchers can gain insights into physical and chemical processes
that occur in the mesosphere, including the formation and dynamics of ice particles,
the composition of the mesospheric atmosphere, and the effects of solar radiation, solar
cycles, and other external factors on the mesosphere [3,4]. This information can be used
to improve our understanding of the atmosphere as a whole as well as to develop better
models for predicting and mitigating the effects of atmospheric changes due to climate
change. Observations with high-power, large-aperture radars like EISCAT [4,5] provide, in
addition to the PMSE signal information, data on the surrounding ionosphere observed
through incoherent scatter. EISCAT operates radar systems to study the Earth’s ionosphere
and upper atmosphere [6].

This study builds upon the work of [7,8], wherein the authors investigate the sepa-
rability of PMSE regions and background and ionospheric noise in EISCAT observations.
In [7], linear discriminant analysis is used to pre-select regions that might contain PMSE.
In [8], a random forest model is employed to segment PMSE to analyze PMSE shapes and
structures through different solar cycle periods. In this study, we investigate the use of

Remote Sens. 2023, 15, 4291. https://doi.org/10.3390/rs15174291 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15174291
https://doi.org/10.3390/rs15174291
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-5937-5382
https://orcid.org/0000-0002-2805-3265
https://doi.org/10.3390/rs15174291
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15174291?type=check_update&version=2

Remote Sens. 2023, 15, 4291 2 of 23

Fully Convolutional Networks (FNCs) for segmenting PMSE signals in data obtained with
the EISCAT VHF radar.

FCN has become a dominant machine learning approach for the semantic segmen-
tation of images and has shown good results in domains such as medical and satellite
imagery. As Deep Convolutional Networks (DCNs) excel at preserving spatial information
compared to many other machine learning methods, they are well-suited for learning
context and complex patterns in images.

To segment PMSE, two FCN architectures are used: UNet [9] and UNet++ [10]. To the
best of our knowledge, this is the first attempt to employ deep learning models for the
purposes of segmenting PMSE data.

The rest of the paper is organized as follows: first, we briefly discuss the theory
associated with UNET and UNET++ models, evaluation metrics, different loss functions
used in this paper, and different data augmentation methods used for our data. Second, we
briefly describe the process of obtaining the data, constructing samples for deep learning,
database splitting, and the procedure for data augmentation. Third, we outline models
and their hyperparameters. Fourth, we discuss the results associated with the different
experiments performed in this study. Fifth, we briefly discuss our results. Finally, we
outline conclusions based on our results.

2. Theory
2.1. UNet Architectures

In this section, we briefly discuss the two UNet architectures employed for PMSE seg-
mentation: UNET and UNET++.

The UNet architecture [9] is a deep learning model that was originally designed for
biomedical image segmentation. But it has since been used in many different areas, such
as satellite and natural imagery. The UNet architecture consists of two main parts: a
contracting path and an expansive path, which are referred to as the encoder and the
decoder, respectively.

The encoder reduces the dimensionality of the input data and is a method of extracting
important features. In the study by Ronneberger et al. [9], every contracting layer consists
of two 3 × 3 convolutional filters in sequence, followed by a rectified linear unit (ReLU)
and a 2 × 2 max pooling operation that downsamples the feature maps.

The decoder is used to generate an output sequence from the encoder output sequence.
This is achieved by upsampling the encoder output and then running it through the same
module layers as that of the encoder without the maxpool operation. The final output is
produced by a 1 × 1 convolutional layer followed by a final activation layer that produces
an output map wherein each pixel is given a probability score associated with belonging to
different classes.

Between each encoder and decoder layer in the UNet architecture, there is a skip
connection. Skip connections directly connect the input of a layer to the output of a
subsequent layer that is not necessarily adjacent, allowing direct propagation of information
between encoder and decoder layers. This helps preserve spatial information lost in up-
and downsampling operations and enhances feature reuse throughout the network [11].

UNet++ [10] is a further development of the original UNet [9] architecture. The en-
coder and decoder are similar in both models, but UNet++ has a re-designed skip pathway
that changes the connectivity between the encoder and the decoder, creating a nested UNet
structure. This new skip pathway structure has dense convolution blocks that bring the
semantic level of the encoder feature maps closer to that of decoder feature maps, enabling
a better flow of spatial information. The assumption is that the optimization problem is
simplified for the optimizer, as the feature maps between the encoder–decoder pathway
are more semantically similar [10].

Remote Sens. 2023, 15, 4291 3 of 23

2.2. Evaluation Metrics

In order to evaluate the performance of the semantic segmentation models, two metrics
are used: the Jaccard Index and the Dice–Sørensen Coefficient. In this section, the two
metrics are briefly explained.

2.2.1. Jaccard Index

The Jaccard index [12], also known as the Intersection over Union (IoU) or the Jaccard
similarity coefficient, is a similarity measure between two sets denoted as A and B and is
calculated as follows

J(A, B) =
| A ∩ B |
| A ∪ B | , (1)

where ∩ represents the intersection and ∪ represents the union. For binary data, it can be
rewritten as

J =
TP

TP + FP + FN
(2)

where TP is True Positive, FP is False Positive, and FN is False Negative. The Jaccard index
does not include the True Negative (TN) samples in the equation: i.e., it does not prioritize
correctly classified background regions and focuses mainly on the foreground regions.
The range of the Jaccard index is [0, 1], where a value of 0 indicates no overlap and a value
of 1 corresponds to perfect overlap between the sets.

2.2.2. Dice–Sørensen Coefficient

The Dice–Sørensen coefficient (DSC) [13], commonly known as Dice coefficient or F1
score, is a measure of similarity between two sets A and B. It is a commonly used measure
of segmentation accuracy. The DSC is calculated as follows

DSC(A, B) =
2 | A ∩ B |
| A | + | B | (3)

where | A ∩ B | is the number of pixels in the intersection of A and B, and | A | and | B |
are the number of pixels in A and B, respectively. The DSC range is [0, 1], with 1 indicating
perfect overlap and 0 indicating no overlap between the two regions.

For binary data, it can be rewritten as

2TP
2TP + FP + FN

(4)

The DSC is very similar to the Jaccard index: they are positively correlated but are
different in the sense that the DSC gives more weight to the intersection, which is useful in
cases where false negatives should be avoided.

2.3. Loss Function

A loss function is a measure of error between the prediction output and the ground
truth. A loss function returns a scalar value that can vary depending on the function
employed. Different error values result from the different ways that the functions penalized
bad or reward good predictions [14,15]. The choice of loss function usually depends on the
nature of the data and can be a significant factor when it comes to the model’s ability to
learn quickly and accurately.

2.3.1. Binary Cross Entropy

Binary Cross Entropy (BCE) is a binary version of Cross Entropy [16]. Cross Entropy is
commonly used in classification and segmentation models and is a measure of the difference

Remote Sens. 2023, 15, 4291 4 of 23

between probability distributions Y and Ŷ, where Y denotes the network prediction and Ŷ
denotes the ground truth. The binary cross entropy is calculated as follows

LBCE(Y, Ŷ) = −(Ylog(Ŷ)) + (1−Y)log(1− Ŷ) (5)

2.3.2. Dice Loss

Dice loss [17] is a loss function that is based on the Dice–Sørensen Coefficient and is
defined as LDice = 1− DSC. Note that for dice loss to be differentiable the normalized
logits predictions are used rather than the thresholded predictions that are used with DSC.
Taking the normalized logits prediction denoted as Y and the ground truth denoted as Ŷ
the loss is calculated as,

LDice(Y, Ŷ) = 1− 2 | Y ∩ Ŷ |
| Y | + | Ŷ |

(6)

2.3.3. Focal Loss

Focal Loss [18] is a variant of Binary Cross Entropy that prioritizes harder samples by
down-weighing the easy samples. This is particularly helpful in cases where there is a class
or category imbalance. Focal Loss can be calculated from cross entropy as

CE(Y, Ŷ) =

{
−log(Y), if Ŷ = 1
−log(1−Y), otherwise

(7)

where Y ∈ [0, 1] is the model’s estimated probability and Ŷ ∈ [0, 1] is the ground truth.
Focal Loss defines the estimated probability of a class as Yt:

Yt =

{
Y, i f Ŷ = 1
1−Y, otherwise

(8)

As such, cross-entropy can be rewritten as

CE(Y, Ŷ) = CE(Yt) = −log(Yt)

In Focal Loss, a modulating factor (1−Yt)γ is added to the cross entropy. This factor
down-weights the easy samples such that the hard samples are given more weight. For
γ = 0, the Focal Loss is equal to the cross entropy. In addition to the modulating factor,
the authors of [18] use a weighting factor αt ∈ [0, 1]. The weighting factor can either be
treated as a hyperparameter that is tuned or can be set inversely proportional to the class
frequency. The final Focal Loss is calculated as

LFocal = −αt(1−Yt)
γlog(Yt) (9)

2.3.4. Boundary Loss

The idea behind boundary losses is to penalize the model for incorrect predictions
along the boundaries between the prediction and the ground truth.

Boundary loss is inspired by curve evaluation methods [19], which require a measure
for evaluating boundary changes. Here, a non-symmetric L2 distance on the space shapes
is used that gives a measure of the change between the boundaries ∂G and ∂S: i.e., the
change between the ground truth and segmentation output boundary, which is defined as

Dist(∂G, ∂Sθ) =
∫

∂G
‖ y∂S(p)− p ‖2 dp (10)

where ‖ · ‖ denotes the L2 norm, p ∈ Ω is a point on the boundary ∂G, and y∂S(p) denotes
the corresponding point on boundary ∂S perpendicular to ∂G at point p. For details, please
see Figure 1.

Remote Sens. 2023, 15, 4291 5 of 23

Figure 1. Differential (left) and integral (right) approach for measuring boundary change [20].

By using the integral approach, the need for local differential computation for the
contour points is avoided and instead represents boundary changes as a regional integral
as follows

Dist(∂G, ∂S) ≈ 2
∫

∆S
DG(q)dq (11)

where ∆S denotes the region between the two contours. DG : Ω −→ R+ denotes
the distance map with respect to the boundary ∂G. The distance DG(q) for any point
q ∈ Ω is calculated by taking the closest contour point z∂G(q) = p on the boundary
∂G(p) such that DG(q) =‖ q − z∂G(q) ‖. For further information, please see the study
by Kervadec et al. [20].

In Figure 1, an illustration of the differential and integral approaches is shown.
The final boundary loss that approximates the boundary distance Dist(∂G, ∂Sθ) is

defined as
LB(θ) =

∫
Ω

φG(q)sθ(q)dq (12)

where φG : Ω −→ R denotes the level set function of the boundary ∂G where for a point
q ∈ G, φG(q) = −DG(q), and φG(q) = DG(q) otherwise. The term sθ(q) denotes the
softmax probability outputs.

2.3.5. Dice–BCE Loss

A type of combination loss used with the study by Zhou et al. [10] is the combination
between Dice loss and Binary Cross Entropy. This combination loss is described as

LDice+BCE(Y, Ŷ) =
1
N

N

∑
i=1

(1
2
·Yi · logŶi +

2 ·Yi · Ŷi

Yi · Ŷi

)
(13)

where N is the batch size and Yi and Ŷi are the predicted probabilities and the ground truth,
respectively.

2.3.6. Dice–Boundary Loss

Another type of combination loss is the Dice–Boundary Loss, which combines Dice
Loss and the Boundary Loss [20]. Boundary loss is suggested as a method for mitigating
issues related to regional losses (such as Dice Loss) in cases of highly unbalanced segmen-
tation. As most regional losses penalize all points within a region equally regardless of the
distance from the boundary, it can be difficult for regional losses to fit the predictions to the
ground truth regions, particularly for small regions. As such, the boundary loss combined
with the regional loss can alleviate this potential problem. The combination of dice loss
and boundary loss is formulated as

LDice + LB. (14)

Remote Sens. 2023, 15, 4291 6 of 23

In the study by Kervadec et al. [20], three strategies on the weighting of the regional
and the boundary loss are proposed by defining the parameter denoted as α. The first
strategy, called constant, involves setting the parameter to a constant α = n, where the total
loss is given as

LDice + αLB. (15)

The second approach, called increase, involves setting α > 0 to a low value and
increasing it every i iterations. In this approach, the regional loss remains constant, while
the contribution of the boundary loss increases with every iteration.

The third strategy, called rebalance, is defined as

(1− α)LDice + αLB, (16)

where for a low value of α > 0, the regional loss is given more importance at the be-
ginning and less with every iteration, while the boundary loss is prioritized more with
every iteration.

2.4. Data Augmentation

Data augmentation is a common technique used during the training of deep learn-
ing models and aims to increase model generalization (avoid over-fitting) and increase
performance on unseen data samples [21,22].

In this study, two categories of image augmentation are employed: image-level and
object-level augmentation.

Image-Level Augmentation

Augmentation at the image-level is the most common and easiest implemented form
of augmentation [23]. With image-level augmentation, the transform is applied to the
whole image and can involve transforms such as flipping, cropping, blurring, contrast
adjustment, resizing, cropping, and more. In this study, we used: horizontal flip, vertical
flip, and contrast adjustment for image-level augmentation.

2.5. Object-Level Augmentation

With object-level augmentation, the transforms are applied to the objects that are
present in the image. This is a more complex task than the image-level augmentation
and requires that the individual target objects be separated from the background and the
regions of the image where the objects were removed from to be filled in to avoid artifacts.
In this study, an object-level augmentation method called ObjectAug [22] is employed.

ObjectAug [22] is an augmentation method that works at the object-level to generate
new samples. The method is defined by the four modules: image parsing, object augmenta-
tion, background inpainting, and assemble. Image parsing separates the objects from the
rest of the image using the ground truth label, leaving the image with holed-out areas. Then
in parallel, the holed-out areas in the image are inpainted, and various data augmentation
techniques are performed on individual objects. And last, the objects are placed back in the
inpainted image.

3. Data

In this study, we use a dataset from the EISCAT VHF (Very High Frequency, 224 MHz)
radar located near Tromsø in Norway. The data include observations of polar mesospheric
summer echoes (PMSE) and ionospheric incoherent scatter signals detected during the
Arctic summer months in the altitudes of 80 to 90 km [1]. For recent investigation of PMSE
with EISCAT observations, we refer the reader to other works [4,5]. The data set used and
the data extraction are described in a study by Jozwicki et al. [8].

Each sample in the dataset is a grayscale image containing measured backscatter
power. Each image in the dataset is from one observation that typically lasts from a few to
several hours with an altitude from 70 to 95 km. The resolution is 0.30 to 0.45 km for the

Remote Sens. 2023, 15, 4291 7 of 23

altitude and approximately one minute for the time component [8]. The dataset consists of
18 labeled samples of various sizes, where each sample is a grayscale image. The grayscale
images are represented as heatmaps, similar to the study by Jozwicki et al. [8]. In the top
image in Figure 2, one of the samples in the dataset is shown, wherein a pixel value refers
to the equivalent electron density from the standard GUISDAP analysis [24] and wherein
the maximum and minimum values are given in red and blue, respectively. From this, we
get 18 data samples containing PMSE associated with 18 different days.

Figure 2. Example of a PMSE image with the ground truth labels [8]. The altitude range is [75, 95] km
and the time duration is from 09:00 to 12:00 UTC. The color scale in the image represents equivalent
electron density. The labels are divided into Unlabeled (represented by dark blue), PMSE (represented
by cyan), Ionospheric Background (yellow), and Background Noise (red). For more details, please see
the study by Jozwicki et al. [8].

The original dataset has three different classes: namely, PMSE, background noise,
and ionospheric background [8] (see the bottom image in Figure 2). For more informa-
tion on labeling of image data, please see the study by Jozwicki et al. [8]. In this paper,
to simplify the process of segmenting PMSE, we merge the classes, ionospheric background,
and background noise with unlabeled classes into one, which is called ’background’. This
makes the segmentation process binary. It does, however, create a significant class imbal-
ance between the foreground (PMSE) and the background pixels, with a global ratio of
approximately 1:9 between the PMSE and the background, respectively. But it varies a lot
between samples and is as low as 1:138 for the sample with the highest class imbalance.

3.1. Constructing Samples from Data

To make the samples compatible with a batch learning scheme and to be used for
training a deep learning model, each sample is divided into square patches that are zero-
padded on each side to make a sample of size 64 by 64 pixels. The samples in the dataset
have four different altitude resolutions: 22, 48, 58, and 60. The samples with a height of
22 pixels are first resized to 44 by 44 pixels using nearest neighbor interpolation and then
zero-padded to 64 by 64 pixels. The intention behind scaling up the samples with the
smallest altitude resolution is to make them similar to the shape of the other samples, as all
samples are in the 75 to 95 km altitude range. In the end, the dataset has 180 image samples
extracted from 18 different days of PMSE data.

The dataset is split into training, validation, and test sets and is stratified with the
ratio 60%/20%/20%, respectively. The training samples are additionally split such that

Remote Sens. 2023, 15, 4291 8 of 23

they overlap by 30%. The data samples are normalized into a float value in the range [0, 1];
after that, the training dataset is normalized to zero mean and unit variance.

3.2. Data Augmentation Procedure

In order to diversify the original dataset (180 images), the ObjectAug [22] method
is employed. We employ inpainting DNN by [25] to fill the removed areas of the image.
To avoid any bias between the training of the segmentation models and the inpainting
model, the dataset is flipped such that the segmentation training set acts as the validation
set and the test for the inpainting model and vice versa for the segmentation test and
validation set.

The masks used to train the inpainting model are generated by creating k rectangular
patches—denoted as Mk

p ∈ {0, 1}W×H—of random widths W in the range [1, 20] and
heights H in the range [1, 10]. The height and width interval is chosen based on the fact that
the majority of the PMSE signal occurrences have a higher width than height. The number
of rectangular patches n is chosen to avoid removing large image regions. This is in line
with the study by Liu et al. [25] that implies that inpainting large regions is difficult and
may lead to bad results. The number of rectangular patches in a mask is set to a value k
that is based on the size of the PMSE sample as follows

k =
W × H

200
(17)

where the denominator is found based on visual inspection. By changing the number of
patches as a function of image size, we avoid removing regions that are too big or too small.

The rectangular patches are randomly placed in the PMSE mask such that the rectan-
gular patches and PMSE mask do not overlap. This facilitates the model to avoid learning
the PMSE signal. The different patches are then assembled into one mask. For each of the
18 PMSE samples, 50 different inpainting masks are generated.

For the training of the inpainting DNN, a UNet architecture is used with the same
depth as the UNet model [9] and uses ResNet50 [26] trained on ImageNet [27] as the
backbone. The same loss from [25] is used with the Adam optimizer algorithm with a
learning rate of 0.0005. The model is trained for 10,000 iterations with a mini-batch size
of 32.

For ObjectAug’s image parsing module [22], the PMSE regions defined by the ground
truth are extracted from the image. We define a PMSE region as an individual region if
there is more than one background pixel separating the boundaries of the regions. This
small distance between regions is selected because the number of PMSE regions decreases
drastically if the distance is set higher.

For the Object Augmentation module, resizing and location shifts are applied as the
augmentation methods, with each having a probability of p = 0.5 of being invoked.

For the resizing augmentation, the scaling of the PMSE region is based on a random
number denoted as n ∈ [−3, 3], where the n corresponds to the number of pixels by which
the object is scaled down or scaled up. The reason that the objects are only scaled up or
down by a few pixels is to avoid PMSE regions either becoming too big—i.e., the PMSE
stretches into regions of other PMSE—or outside the 80 to 90 km altitude range of PMSE.

For the location shift augmentation, the PMSE region is shifted horizontally and/or
vertically. The number of pixel points by which the objects are shifted is randomly selected
in the range [−3, 3] for both the horizontal and vertical shifts. The shifting range is limited
to only a few pixels to avoid PMSE regions overlapping or being shifted outside of the 80
to 90 km altitude range.

After augmenting the individual PMSE regions, they are placed back into the image in
the Assemble module [22]. Object augmentation [22] is a computationally heavy process.
Therefore, to speed up training, the object augmented data used during training are pre-
computed. This generates 900 new image samples. In addition to the 900 new samples, we
include 180 samples of the original dataset such that 20 percent of the total samples are not

Remote Sens. 2023, 15, 4291 9 of 23

augmented. This is because the inpainted images create a different background around
the PMSE, and by adding the un-augmented samples, the data will also contain natural
boundaries between the foreground, i.e., PMSE, and the background.

4. Model Hyperparameters

In the experiments, two different UNet architectures, i.e., UNET and UNET++, are
used. Given that our task is binary, sigmoid activation is used to produce the final output.
The number of initial feature maps is set to 32 or 64, and the architectures are represented
as UNet32 or UNet64.

Both randomly initiated weights and pre-trained weights are used during the exper-
iments. In the latter case, the pre-trained weights are only used in the encoder layers.
The remaining layers are initiated using Kaiming He [28] initialization. In the randomly
initiated case, all layers are initiated using Kaiming He initialization.

For all experiments, the Adam optimizer algorithm [29] is employed with β1 = 0.9
and β2 = 0.999, which is suggested as a good starting point in the Adam paper [29].
To avoid overfitting, an early stopping mechanism is used, similar to that of Algorithm 7.1
in [30], where the best parameters, denoted with θ∗, are selected based on the validation
error. Depending on if the data are augmented, the patience p is set to a different value.
For the models using no augmentation, p = 10, and for the models using augmentation,
p = 20. For the latter case, the patience is set higher because the validation error is more
irregular during training. The models are evaluated every 10 iterations using a mini-batch
size of eight randomly selected samples and run until the early stopping criteria are met.
The models are trained on an Nvidia RTX3070 (notebook) GPU with 8 GB of VRAM.

5. Results

In this section, we briefly discuss the different experiments and the associated results.

5.1. Initial Experiment

Initially, a set of experiments is conducted using UNet [9] and UNet++ [10] using the
original dataset. Based on the two architectures, we test eight models, applying different
variations as follows:

1. Randomly initiated weights with 32 and 64 initial feature maps.
2. Pretrained weight initiation of the encoder layers. For the models with 32 initial

feature maps, a pretrained UNet model found at (Note: https://pytorch.org/hub/
mateuszbuda_brain-segmentation-pytorch_unet, accessed on 14 August 2023) is used.
For the models with 64 initial feature maps, a VGG16 [31] model pretrained on
ImageNet [27] is used as the backbone.

A random hyperparameter search is run for the experiments with random learning
rates and weight decays in the range [0.01, 0.0001]. For details, please see Table 1, where the
learning rates and weight decays for the different models and different hyperparameters are
shown. The selection of parameters is done based on the highest Dice–Sørensen coefficient
score where the loss is reasonably stable and where the difference between the training and
validation score is not high.

For each model or model with a selected hyperparameter, the training, validation,
and testing data are randomly selected. This step is repeated five times, and to calculate the
performance, we use the mean and standard deviations of the scores from five repetitions
of the same experiment. The quantitative results from the initial experiment (in Table 2)
show the IoU and DSC scores on the test and validation datasets.

The best results are underlined. The results indicate that there are minor differences
between the performance of the different models and between models with different hyper-
parameters. However, the best-performing model—i.e., UNet++64 with randomly initiated
weights—has relatively better performance compared to the other models considered.
From Table 2, we can observe that for the same model architectures and sizes—i.e., the

https://pytorch.org/hub/mateuszbuda_brain-segmentation-pytorch_unet
https://pytorch.org/hub/mateuszbuda_brain-segmentation-pytorch_unet

Remote Sens. 2023, 15, 4291 10 of 23

number of initial feature maps—the model that uses pre-trained weight in the encoder
layers performs worse than the randomly initiated model.

Table 1. Learning rate and weight decay values used during training of the different models listed in
Table 2. The values selected are based on the hyperparameter search.

Model–Initiation
Hyperparameters

Learning Rate Weight Decay

UNet32–RandomInit 0.008 0.005
UNet32–Pretrained 0.003 0.007
UNet64–RandomInit 0.006 0.005
UNet64–Pretrained 0.003 0.007
UNet++32–RandomInit 0.005 0.005
UNet++32–Pretrained 0.003 0.006
UNet++64–RandomInit 0.002 0.006
UNet++64–Pretrained 0.001 0.008

UNet32 denotes 32 initial feature maps and UNet64 denotes 64 initial feature maps in the first convolutional layer.

Table 2. Quantitative performance of different UNet architectures with 32 or 64 initial feature maps.
IoUs and DSCs are reported for the test and validation sets. The best-performing model is underlined.

Model–Weight Initiation
Test Validation

IoU DSC IoU DSC

UNet32–RandomInit 0.654 ± 0.006 0.791 ± 0.005 0.710 ± 0.007 0.830 ± 0.005
UNet32–Pretrained 0.634 ± 0.010 0.776 ± 0.007 0.699 ± 0.008 0.823 ± 0.006
UNet64–RandomInit 0.649 ± 0.005 0.787 ± 0.003 0.713 ± 0.011 0.832 ± 0.008
UNet64–Pretrained 0.645 ± 0.005 0.784 ± 0.004 0.702 ± 0.005 0.825 ± 0.003
UNet++32–RandomInit 0.654 ± 0.012 0.790 ± 0.008 0.713 ± 0.005 0.833 ± 0.003
UNet++32–Pretrained 0.632 ± 0.027 0.774 ± 0.021 0.692 ± 0.030 0.817 ± 0.021
UNet++64–RandomInit 0.666 ± 0.010 0.799 ± 0.007 0.727 ± 0.008 0.842 ± 0.005
UNet++64–Pretrained 0.649 ± 0.006 0.787 ± 0.004 0.719 ± 0.008 0.837 ± 0.005

UNet32 and UNet64 denote 32 and 64 initial feature maps, respectively, in the first convolutional layer.

To better visualize where the models perform well and where they struggle, a few
selected samples from the test set are included in Figures 3 and 4, which show samples
or cases that are easy and difficult, respectively. Here, the easy samples are defined as
the cases for which the predicted regions are closer to the ground truth, and difficult
samples are defined as the cases for which the predictions are different from those of the
ground truth. In each of the figures, the first column represents the image, the second
column shows the ground truth, and the next four columns show the predictions from
the four models: UNet64—Pretrained, UNet64—RandomInit, UNet++64—RandomInit, and
UNet++64—Pretrained, respectively.

From the easier samples in Figure 3, it seems that all models used in the experiments
segment the PMSE regions accurately and that the predictions are quite similar between
the different models.

Remote Sens. 2023, 15, 4291 11 of 23

Figure 3. Easy samples : Qualitative comparison between UNet64–RandomInit, UNet64–Pretrained,
and UNet++64–RandomInit showing some of the test samples for which the predicted regions are
closer to the ground truth. The images and their ground truth labels are shown in the first and second
columns, respectively.

Remote Sens. 2023, 15, 4291 12 of 23

Figure 4. Difficult Samples: Qualitative comparison between UNet64–RandomInit, UNet64–
Pretrained, and UNet++64–RandomInit showing some of the test samples for which the predicted
regions are different than the ground truth. The images and their ground truth labels are shown in
the first and second columns, respectively.

Now we examine the more-challenging data samples in Figure 4. For instance, the first-
row image has an empty foreground: i.e., there is no PMSE, but the models predict PMSE.
Upon inspection of the PMSE predictions, we observe that the small regions predicted as
PMSE have slightly higher values than those in their neighborhoods. A similar trend is
observed with other images in rows 2, 3, and 4, where the models predict larger regions of
PMSE as compared to the ground truth.

In order to see if there is any significant difference between the pretrained models
with respect to important features in the input images, relevance maps are generated using
the LRP method from the study by Montavon et al. [32].

In Figure 5, we can see the input images, their ground truth maps, and relevance maps
for the different models with different pretrained weights. There is visually little difference
between the models with pretrained weights from the different source domains. Rather,
the difference in relevance can be linked to the type of model architecture used.

Remote Sens. 2023, 15, 4291 13 of 23

Figure 5. The figure shows the explained relevance produced using four different models using
pretrained weights in the encoder. UNet32/UNet++32 use pretrained weights from the medical image
domain, and UNet64/UNet++64 use pretrained weights from the image domain. In the first and
second columns, the images and ground truth are shown, respectively. The values of the relevance
maps are centered around 0.5 (black), which indicates no relevance. Full relevance is given a value of
1 (white), while inverse relevance is assigned a value of 0 (cyan).

Remote Sens. 2023, 15, 4291 14 of 23

5.2. Using Different Loss Functions

Building on the results from the initial experiment, we investigate the impact of
different loss functions on performance. For these experiments, the randomly initiated
UNet++64 model that had the best performance in the initial experiment in Section 5.1)
is used as a baseline. For comparison, the same model is trained with the four other loss
functions; Binary Cross Entropy (BCE), Focal Loss, Dice–BCE Loss, and Dice–Boundary
Loss, denoted as LBCE, LFocal , LDice + LBCE and LDice + LB, respectively.

For LFocal and LDice + LB, parameters are specified as follows:

• LFocal : γ = 2.0 is set equal to that of thr original paper [18], while α = 0.8 is chosen
such that it is approximately inversely proportional to the foreground frequency.

• LDice + LB: the increase and rebalance schedule strategies [20] for setting α are used:

– Increase: For the increase schedule, α = 0.01 initially, and it is increased by 0.01
every five iterations, where α = max(α, 1).

– Rebalance: For the Rebalance, α = 0.005 initially and follows a schedule based on
the number of iterations as follows

α =


α + 0.005, if iter < 100
α + 0.01, if 100 ≤ iter < 300
α + 0.02, otherwise

(18)

This is a slightly different scheduling of α than that of the original rebalance strat-
egy [20] and is considered necessary as the model struggles when α is increased
too quickly in the start.

When α is dynamically changed during training, a problem can arise where the loss
might increase even though the IoU and DSC are improving, thus triggering the stopping
criterion prematurely. Because the two losses are measures of different objectives and at
the same time are weighted dynamically, the total loss might not follow the typical loss
learning curve. As such, the IoU metric is used instead of loss as the stopping criterion.

The quantitative results shown in Table 3 indicate that LDice + LBCe has the best
performance, but it is only slightly better than the loss of LDice loss. The distribution-based
losses such as (LBCe and LFocal) do not reach the same performance as the regional loss
(LDice), but, as noted, the combination of LDice and LBCE gives an increase in performance.
When it comes to the combination of LDice +LB and the two different scheduling strategies
of α, the Increase strategy has the best performance.

Table 3. Quantitative performance of a randomly initiated UNet++64 architecture using different loss
functions. IoU and DSC are reported for the test and validation sets. The best-performing model
is underlined.

Loss Function (L)
Test Validation

IoU DSC IoU DSC

LDice 0.666 ± 0.010 0.799 ± 0.007 0.727 ± 0.008 0.842 ± 0.005
LBCE 0.656 ± 0.006 0.792 ± 0.004 0.714 ± 0.003 0.833 ± 0.002
LFocal 0.647 ± 0.003 0.786 ± 0.002 0.695 ± 0.002 0.820 ± 0.001
LDice + LBCE 0.667 ± 0.005 0.800 ± 0.003 0.731 ± 0.004 0.844 ± 0.003
LDice + LB–Increase 0.662 ± 0.013 0.797 ± 0.010 0.722 ± 0.011 0.838 ± 0.007
LDice + LB–Rebalance 0.650 ± 0.011 0.788 ± 0.008 0.703 ± 0.012 0.825 ± 0.008
Ldice + LB is denoted with either the Increase or Rebalance schedule.

A visualization of the predictions made by the models trained with the different loss
functions is shown in Figures 6 and 7 for the easy and difficult samples, respectively.

Remote Sens. 2023, 15, 4291 15 of 23

Figure 6. Easy Samples: Qualitative comparison between the different loss functions LDice,
LBCE, LDice + LBCE, and LDice + LB (Increase or Rebalance scheduling) using a randomly initiated
UNet++64 architecture. The images and their ground truth labels are shown in the first and second
columns, respectively.

For both the easy and difficult samples, it can be seen that there are differences between
the segmented regions depending on the loss function used. Looking at the single loss
functions (LDice, LBCE, and LFocal), the model trained with LDice seems to segment larger
regions than that of the distributions basedLBCE andLFocal , which have narrower predicted
regions. The two models that use combination losses (LDice + LBCE and LDice + LB) have
quite similar segmented regions and still predict PMSE regions where no PMSE is present
(please see Figure 7, first row).

Remote Sens. 2023, 15, 4291 16 of 23

Figure 7. Difficult Samples: Qualitative comparison between the different loss functions LDice,
LBCE, LDice + LBCE, and LDice + LB (Increase or Rebalance scheduling) using a randomly initiated
UNet++64 architecture. The images and their ground truth labels are shown in the first and second
columns, respectively.

5.3. Using Image-Level and Object-Level Augmentations

Following the results from the previous section, the UNet++64 model with randomly
initiated weights and LDice + LBCE loss is used as a baseline for these experiments.

To see the effect that simple image-level augmentation can have on performance, five
experiments are conducted. Image augmentation techniques such as horizontal flip, vertical
flip, and contrast adjustment and their combinations are used in the experiments. A proba-
bility of p = 0.5 of invoking the augmentation method is used. For the contrast adjustment
method, the adjustment factor C is randomly chosen from the interval C ∈ [0.8, 1.2].

The results are shown in Table 4 and indicate that applying all the augmentation
techniques individually increases performance compared to the baseline, i.e., no augmen-
tation. When all the individual augmentation techniques are combined, the increase in
performance is only slightly better than that of the baseline. In the last row of Table 4,
it can be observed that for the test dataset when using both horizontal flip and contrast
adjustment augmentation, there is improvement in performance as compared to individual
image augmentation methods.

Remote Sens. 2023, 15, 4291 17 of 23

Table 4. Quantitative performance using different image-level augmentations separately and com-
bined. IoUs and DSCs are reported for the test and validation sets. The best-performing model
is underlined.

Model–Augmentation
Test Validation

IoU DSC IoU DSC

Baseline 0.667 ± 0.005 0.800 ± 0.003 0.731 ± 0.004 0.844 ± 0.003

Horizontal Flip 0.682 ± 0.010 0.811 ± 0.007 0.742 ± 0.008 0.851 ± 0.005
Vertical Flip 0.672 ± 0.006 0.804 ± 0.004 0.739 ± 0.009 0.849 ± 0.006
Contrast Adjust 0.683 ± 0.005 0.811 ± 0.003 0.742 ± 0.002 0.851 ± 0.001
All Combined 0.669 ± 0.007 0.801 ± 0.005 0.741 ± 0.008 0.851 ± 0.006

Horizontal and Contrast Adjust 0.694 ± 0.008 0.819 ± 0.006 0.735 ± 0.004 0.847 ± 0.003

After image-level augmentation experiments, two more experiments are performed
using the object-level augmentation method known as ObjectAug [22]. In the first exper-
iment, we use the object-level [22] method alone, and in the second, we use object-level
and image-level augmentation together. Here, for image-level augmentation, we use both
horizontal flip and contrast adjustment augmentation based on results from the previous
section. The results are shown in Table 5. Here, the baseline model is the same as in Table 4
using no augmentation. Our results indicate that the two models trained on the augmented
dataset show improvements compared to the baseline. Between the two models trained
using the ObjectAug method, it is clear that additional image-level augmentation improves
the performance. However, the performance is only slightly improved compared to only
using image-level augmentation.

Table 5. Quantitative performance of using no augmentation and image-level, object-level, and both
image-level and object-level augmentation. IoUs and DSCs are reported for the test and validation sets.
The best-performing model is underlined.

UNet++64–RandomInit
Test Validation

IoU DSC IoU DSC

No Aug 0.667 ± 0.005 0.800 ± 0.003 0.731± 0.004 0.844± 0.003

Image-Aug 0.694 ± 0.008 0.819 ± 0.006 0.735± 0.004 0.847± 0.003

ObjAug 0.678 ± 0.009 0.808 ± 0.007 0.719± 0.007 0.836± 0.005

ObjAug and Image-Aug 0.701 ± 0.010 0.824 ± 0.007 0.730± 0.003 0.843± 0.002

The model predictions can be seen in Figures 8 and 9 showing the easy and difficult
samples, respectively. In Columns 1 and 2 in the figures, the images and ground truths are
supplied. Columns 3 to 6 show the predictions from the models that were trained and are
shown in Table 5.

The results in Table 5 imply that when using object-level augmentation, the perfor-
mance is worse than when using only the image-level horizontal and contrast adjustment
augmentation. However, when applying the same image-level augmentation with object-
level augmentation, the performance is improved slightly. Although the increase in perfor-
mance is low, it can be seen in the qualitative results in Figure 8 and 9 that the model that
uses object-level augmentation predicts regions in a different way, as it is aware of potential
PMSE regions; this is further discussed in Section 6).

Remote Sens. 2023, 15, 4291 18 of 23

Figure 8. Easy Samples: Qualitative comparison between using different types of augmentation using
a UNet++64 model with randomly initiated weights. In the first and second columns, the images and
ground truth, respectively, are shown. The rest of the columns show the predictions associated with
different augmentation methods.

Remote Sens. 2023, 15, 4291 19 of 23

Figure 9. Difficult Samples: Qualitative comparison between using different types of augmentation
using a UNet++64 model with randomly initiated weights. In the first and second columns, the images
and ground truth, respectively, are shown. The rest of the columns show the predictions associated
with different augmentation methods.

6. Discussion

Label inconsistency is a problem for supervised deep learning models that may lead
to inaccurate and unreliable results. The labeling of data is strongly influenced by human
factors. Data labeled at different times and by different persons can be a contributing factor
to label inconsistency. In this study, the data is labeled by one expert using different labeling
tools at different times. This is something that can lead to noisy labels. To address this,
further validation studies are needed with multiple experts in the loop.

Our results from Section 5.1 indicate that for the same model type—i.e., the same
number of initial parameters and architecture—using pretrained weights in the encoder
is shown to perform worse than randomly initiated weights. As the pretrained UNet32

and UNet++32 models use weights from the medical imagery domain, and the UNet64 and
UNet++64 models use weights from the natural image domain, this implies that different
source domains might not be directly applicable to our target domain of PMSE data.
From the experiments (described in Section 5.1), we observe that UNet++64 with randomly
initiated weights has relatively better performance than the rest of the models used in
these experiments.

The results from Section 5.2 indicate that the UNet++64 model with randomly initiated
weights for which LDice + LBCE is used as a loss function performs better compared to the
other loss functions used in this paper.

We find that using image-level augmentation improves the performance of the model.
These results are in line with other studies [21,22,31] that indicate the positive impact of

Remote Sens. 2023, 15, 4291 20 of 23

using image-level augmentation. It should be noted that the data used in this study are
different from those of real-world scenes or the medical domain. PMSE regions occur at
specific altitude ranges and in shapes that stretch longer horizontally than vertically in the
sample images. From Table 4, it can be seen that the vertical flipping of the image does show
an improvement in performance compared to using no augmentation. However, it can
also be seen from the figure that excluding vertical-flip augmentation from the combined
augmentation increases performance. This could possibly indicate that augmentation
that changes the PMSE regions in an unnatural way—i.e., rotating or flipping the image
such that PMSE and the background occur in places that are not possible—could lead to
worse performance.

The results from Section 5.3 imply that the combined effect of image-level and object-
level augmentation techniques is better for the overall performance of the proposed
UNet++64 model with randomly initiated weights and LDice + LBCE loss.

It should be noted that employing object-level augmentation for our data can change
the boundary between PMSE and the background. The inpainting of images impacts
how the model learns the boundary between the background and the PMSE. When the
images are inpainted, a slightly bigger region around the PMSE is removed to avoid
leftover pixels that might be unlabeled PMSE. However, as illustrated in Figure 10 where
augmentation is applied to the PMSE regions, the inpainted region around the PMSE can
be quite different from the original. The outcome is that the contrast between PMSE and
the inpainted background is often increased, which in turn can influence how the model
predicts PMSE regions.

Figure 10. Illustration of the different boundaries between foreground and PMSE that the inpainted
image creates compared to the original image.

To better see the difference between using augmentation versus no augmentation, LRP
is employed to visualize the features in the input image that are considered relevant for the
models. For the models trained using augmentation, it can be seen that the regions that
the models consider important are slightly different as compared to the models trained
without augmentation. For details, please see Figure 11. The relevance maps from the
models trained using augmentation seemingly give an overall lower relevance score as
compared to using no augmentation. This might indicate that the models that use no
augmentation during training are more biased towards certain areas of the input. This

Remote Sens. 2023, 15, 4291 21 of 23

might imply that the models that use augmentation (both image-level and object-level) can
perhaps generalize better to unseen cases. This is something that can be explored in future
studies when a sufficient amount of data can be obtained.

Figure 11. Relevance maps produced using four different models. All models use a randomly
initiated UNet++64 architecture. The type of augmentation and type of loss function used are shown
in the columns. ObjAug denotes object-level augmentation, ImAug denotes image-level augmentation,
and NoAug denotes that no augmentation was used. In the first and second columns, the images
and ground truth, respectively, are shown. The values of the relevance maps are centered around
0.5 (black), which indicates no relevance. Full relevance is given a value of 1 (white), while inverse
relevance is assigned a value of 0 (cyan).

Remote Sens. 2023, 15, 4291 22 of 23

We believe that our proposed model can be used for segmenting PMSE from EISCAT
VHF data across a much wider range of days from different years of the solar cycle. In the
near future, the model proposed in this paper can be used to extract PMSE samples from
a potentially large dataset of EISCAT observations. The results of the segmentation can
be useful for further in-depth analysis of PMSE and other phenomena pertaining to the
upper atmosphere.

7. Conclusions

In this paper, we investigate the possibility of employing fully convolutional networks
such as UNET and UNET++ for segmenting PMSE from EISCAT image data. For this,
first, we perform a number of experiments to find suitable weights and hyperparameters
for training the models: i.e., UNET and UNET++. Second, we perform experiments to
investigate different loss functions that can be employed for segmenting PMSE from image
data. Our results indicate that a UNet++64 model with randomly initiated weights and a
combined loss function (Dice and BCE) performs better as compared to the other models
and loss functions used in this paper. Third, as the number of PMSE samples is relatively
small, we test image-level and object-level augmentation techniques to improve the general-
izability of the segmentation model. Fourth, we briefly outline our findings by visualizing
relevance maps using layerwise relevance propagation. Our results imply that for our task,
the use of data augmentation during training can perhaps lead to better generalization.

Author Contributions: Conceptualization, P.S.; Methodology, E.S.D.; Software, E.S.D.; Investigation,
E.S.D., P.S. and I.M.; Writing—original draft, E.S.D. and P.S.; Writing—review & editing, P.S. and I.M.;
Visualization, E.S.D.; Supervision, P.S. and I.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was carried out within a project funded by Research Council of Norway, NFR
275503. The Norwegian participation in EISCAT and EISCAT3D is funded by Research Council
of Norway, through research infrastructure grant 245683. The EISCAT International Association is
supported by research organizations in Norway (NFR), Sweden (VR), Finland (SA), Japan (NIPR and
STEL), China (CRIPR), and the United Kingdom (NERC).

Data Availability Statement: EISCAT VHF and UHF data are available under http://www.eiscat.
se/madrigal/ (accessed on 28 August 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ecklund, W.L.; Balsley, B.B. Long-term observations of the Arctic mesosphere with the MST radar at Poker Flat, Alaska. J. Geophys.

Res. Space Phys. 1981, 86, 7775–7780. [CrossRef]
2. Rapp, M.; Lübken, F.J. Polar mesosphere summer echoes (PMSE): Review of observations and current understanding. Atmos.

Chem. Phys. 2004, 4, 2601–2633. [CrossRef]
3. Latteck, R.; Renkwitz, T.; Chau, J.L. Two decades of long-term observations of polar mesospheric echoes at 69°N. J. Atmos.

Sol.-Terr. Phys. 2021, 216, 105576. [CrossRef]
4. Gunnarsdottir, T.L.; Poggenpohl, A.; Mann, I.; Mahmoudian, A.; Dalin, P.; Haeggstroem, I.; Rietveld, M. Modulation of polar

mesospheric summer echoes (PMSEs) with high-frequency heating during low solar illumination. Ann. Geophys. 2023, 41, 93–114.
[CrossRef]

5. Mann, I.; Häggström, I.; Tjulin, A.; Rostami, S.; Anyairo, C.C.; Dalin, P. First wind shear observation in PMSE with the tristatic
EISCAT VHF radar. J. Geophys. Res. Space Phys. 2016, 121, 11271–11281. [CrossRef]

6. EISCAT Scientific Association. Available online: http://eiscat.se (accessed on 5 August 2023).
7. Jozwicki, D.; Sharma, P.; Mann, I. Investigation of Polar Mesospheric Summer Echoes Using Linear Discriminant Analysis.

Remote Sens. 2021, 13, 522. [CrossRef]
8. Jozwicki, D.; Sharma, P.; Mann, I.; Hoppe, U.P. Segmentation of PMSE Data Using Random Forests. Remote Sens. 2022, 14, 2976.

[CrossRef]
9. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the

Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab, N.,
Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241.

http://www.eiscat.se/madrigal/
http://www.eiscat.se/madrigal/
http://doi.org/10.1029/JA086iA09p07775
http://dx.doi.org/10.5194/acp-4-2601-2004
http://dx.doi.org/10.1016/j.jastp.2021.105576
http://dx.doi.org/10.5194/angeo-41-93-2023
http://dx.doi.org/10.1002/2016JA023080
http://eiscat.se
http://dx.doi.org/10.3390/rs13030522
http://dx.doi.org/10.3390/rs14132976

Remote Sens. 2023, 15, 4291 23 of 23

10. Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image
Segmentation. In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision
Support, Granada, Spain, 20 September 2018; Stoyanov, D., Taylor, Z., Carneiro, G., Syeda-Mahmood, T., Martel, A., Maier-Hein,
L., Tavares, J.M.R., Bradley, A., Papa, J.P., Belagiannis, V., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2018;
pp. 3–11.

11. Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015.

12. Wikipedia Contributors. Jaccard Index—Wikipedia, The Free Encyclopedia, 2023. Available online: https://en.wikipedia.org/
wiki/Jaccard_index (accessed on 11 March 2023).

13. Dice, L.R. Measures of the Amount of Ecologic Association Between Species. Ecology 1945, 26, 297–302. [CrossRef]
14. Janocha, K.; Czarnecki, W. On Loss Functions for Deep Neural Networks in Classification. Schedae Inform. 2017, 25. [CrossRef]
15. Jadon, S. A survey of loss functions for semantic segmentation. In Proceedings of the 2020 IEEE Conference on Computational

Intelligence in Bioinformatics and Computational Biology (CIBCB), Via del Mar, Chile, 27–29 October 2020. [CrossRef]
16. Yi-de, M.; Qing, L.; Zhi-bai, Q. Automated image segmentation using improved PCNN model based on cross-entropy. In

Proceedings of the 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, Hong Kong, China,
20–22 October 2004; pp. 743–746. [CrossRef]

17. Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Jorge Cardoso, M. Generalised Dice Overlap as a Deep Learning Loss Function
for Highly Unbalanced Segmentations. In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal
Learning for Clinical Decision Support, Quebec City, QC, Canada, 14 September 2017; Cardoso, M.J., Arbel, T., Carneiro, G.,
Syeda-Mahmood, T., Tavares, J.M.R., Moradi, M., Bradley, A., Greenspan, H., Papa, J.P., Madabhushi, A., et al., Eds.; Springer
International Publishing: Cham, Switzerland, 2017; pp. 240–248.

18. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007. [CrossRef]

19. Boykov, Y.; Kolmogorov, V.; Cremers, D.; Delong, A. An Integral Solution to Surface Evolution PDEs Via Geo-cuts. In Proceedings
of the Computer Vision—ECCV 2006, Graz, Austria, 7–13 May 2006; Springer: Berlin/Heidelberg, Germany, 2006; Lecture Notes
in Computer Science, pp. 409–422.

20. Kervadec, H.; Bouchtiba, J.; Desrosiers, C.; Granger, E.; Dolz, J.; Ayed, I.B. Boundary loss for highly unbalanced segmentation.
Med. Image Anal. 2021, 67, 101851. [CrossRef] [PubMed]

21. Ayan, E.; Ünver, H.M. Data augmentation importance for classification of skin lesions via deep learning. In Proceedings of
the 2018 Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting (EBBT), Istanbul, Turkey, 18–19 April 2018;
pp. 1–4. [CrossRef]

22. Zhang, J.; Zhang, Y.; Xu, X. ObjectAug: Object-level Data Augmentation for Semantic Image Segmentation. In Proceedings of the
2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–8. [CrossRef]

23. Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 1–48. [CrossRef]
24. Lehtinen, M.S.; Huuskonen, A. General incoherent scatter analysis and GUISDAP. J. Atmos. Terr. Phys. 1996, 58, 435–452.

[CrossRef]
25. Liu, G.; Reda, F.A.; Shih, K.J.; Wang, T.; Tao, A.; Catanzaro, B. Image Inpainting for Irregular Holes Using Partial Convolutions.

In Proceedings of the Computer Vision—ECCV 2018—15th European Conference, Munich, Germany, 8–14 September 2018;
Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 11215, pp. 89–105.
[CrossRef]

26. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

27. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the
2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [CrossRef]

28. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015;
Volume 1502. [CrossRef]

29. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the ICLR (Poster), San Diego, CA, USA, 7–9
May 2015.

30. Goodfellow, I.J.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
31. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd

International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015.
32. Montavon, G.; Binder, A.; Lapuschkin, S.; Samek, W.; Müller, K.R. Layer-Wise Relevance Propagation: An Overview; Springer: Cham,

Switzerland, 2019; pp. 193–209. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://en.wikipedia.org/wiki/Jaccard_index
https://en.wikipedia.org/wiki/Jaccard_index
http://dx.doi.org/10.2307/1932409
http://dx.doi.org/10.4467/20838476SI.16.004.6185
http://dx.doi.org/10.1109/cibcb48159.2020.9277638
http://dx.doi.org/10.1109/ISIMP.2004.1434171
http://dx.doi.org/10.1109/ICCV.2017.324
http://dx.doi.org/10.1016/j.media.2020.101851
http://www.ncbi.nlm.nih.gov/pubmed/33080507
http://dx.doi.org/10.1109/EBBT.2018.8391469
http://dx.doi.org/10.1109/IJCNN52387.2021.9534020
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1016/0021-9169(95)00047-X
http://dx.doi.org/10.1007/978-3-030-01252-6_6
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1007/978-3-030-28954-6_10

	Introduction
	Theory
	UNet Architectures
	Evaluation Metrics
	Jaccard Index
	Dice–Sørensen Coefficient

	Loss Function
	Binary Cross Entropy
	Dice Loss
	Focal Loss
	Boundary Loss
	Dice–BCE Loss
	Dice–Boundary Loss

	Data Augmentation
	Object-Level Augmentation

	Data
	Constructing Samples from Data
	Data Augmentation Procedure

	Model Hyperparameters
	Results
	Initial Experiment
	Using Different Loss Functions
	Using Image-Level and Object-Level Augmentations

	Discussion
	Conclusions
	References

