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In this paper, we investigate overdetermined systems of scalar PDEs on the plane with one com-
mon characteristic, whose general solution depends on one function of one variable. We describe
linearization of such systems and their integration via Laplace transformation, relating this to Lie’s
integration theorem and formal theory of PDEs.
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0. Introduction

Consider an overdetermined system E of partial differential equations, which we assume
formally integrable (i.e. all the compatibility conditions fulfill) and regular (this is a generic
condition micro-locally). We will restrict to systems with two independent and one depen-
dent variables (but the theory can be extended to other systems).

The characteristic variety CharC(E) of this system is an effective divisor on CP 1, i.e.
is a collection of points with positive multiplicities. Let ω = deg(CharC(E)) be the total
multiplicity. This number was called class of the system E by Sophus Lie [21].

In terminology of Ellie Cartan ω is the Cartan integer s1 (provided the Cartan character
is 1: s2 = 0). Cartan’s test [5] implies that the general solution u ∈ Sol(E) depends on ω

functions of 1 variable.
Note that ω can be described in a different way: Since the characteristic variety is

discrete, the symbol gk of E stabilizes: limk→∞ dim gk = ω (when the system becomes
involutive, see Appendix B for details).

The case ω = 0 corresponds to finite type systems and integration of E can be reduced
to a system of ODEs via the Frobenius theorem.

Another well-known class is ω = 2, especially scalar second order PDEs on the plane.
One of the classical approaches to such systems is the Laplace transformation.

In this paper, we show that Laplace transformations exist in the case ω = 1 as well (a
comment on the case of general ω will be made at the end of the paper).
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0.1. Main results

In his paper of 1895 [21]. Lie demonstrated that a compatible (=formally integrable) class
ω = 1 overdetermined system is integrable by reduction to ODEs. Modern proof and appli-
cations of this result will be discussed in [16].

In this paper we demonstrate that in certain cases this reduction is very precise, and
can be decomposed into a sequence of external transformations in jets that are analogs
of the classical Laplace transformation. These latter are the differential substitutions with
differential inverses. This provides a method for an effective (algorithmic) integration of
PDE systems of class ω = 1.

The transformations will be fully described in the linear case, and linearizable systems
will be characterized via a simple criterion. For non-linear systems we discuss some phe-
nomenology and examples.

Assume that the only characteristic for ω = 1 linear system is straightened X = ∂x (this
involves integration of a first-order non-autonomous non-linear scalar ODE).

Theorem 0.1. A linear system E of class ω = 1 with one characteristic X is integrable in
closed form and quadratures for generic E , or is reducible to class ω = 0 (ODEs) in singular
cases.

Thus a generic linear system of class ω = 1 has representation for the general solution via
a differential operator and mild nonlocality (quadrature) applied to an arbitrary function.
This is neither true for ω ≥ 2 (e.g. scalar second-order PDEs on the plane), nor for ω = 0
(e.g. linear second-order ODEs, equivalent to Riccati equation).

Remark 0.2. This distinguishes ω = 1 linear systems, but does not extend to nonlinear
ω = 1 class systems, which will be discussed in [16].

Internal geometry of linear/linearizable systems is quite simple: they correspond to
Goursat distributions with growth vector (2, 3, 4, . . .). On the other hand the external geom-
etry (which is governed by the pseudogroup of point triangular transformations) is rich and
is characterized by differential invariants ([4] contains an example of two systems which are
equivalent internally but not externally, they have type E2 +E3 in the notations of Sec. 2;
Cartan proved that this is not possible for 2E2). Some of these appear naturally in our
approach, and are the analogs of the classical Laplace invariants.

In this paper, we characterize class ω = 1 systems from the external viewpoint, and the
most important invariant will be the complexity κ of the system E . This is an integer-valued
non-negative quantity which always decreases under Laplace transformation. Some other
quantities characterizing the size of the solutions space Sol(E) are also relevant.

In the future work [16], we shall model reduction types, based on the normal forms
of rank two distributions. Cartan–Hilbert equation is a classical example of this general
construction for class ω = 1.

0.2. Background and outline

We will exploit the geometric theory of PDEs, namely jet-geometry and Spencer formal
theory [24]. The reader is invited to consult [18] or a short exposition in Appendix B.

Also the geometry of distributions will be occasionally used in a minor part of the text.
The structure of the paper is as follows.
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In Sec. 1, we present a study of class ω = 1 linear systems with low-complexity. We intro-
duce the pseudogroup of frame/coordinate changes and calculate some relative invariants.
Then we define generalized Laplace transformations on phenomenological level as differ-
ential substitutions, which simplify the system (and have differential inverses modulo the
equation).

This latter condition means that the Laplace transformations decrease the complexity —
the notion that is introduced in Sec. 2. There we also describe the totality (zoo) of all systems
of class ω = 1 and discuss properties of the complexity.

The generalized Laplace transformations are rigorously defined in Sec. 3. Then we prove
the main results about existence, uniqueness and effectiveness of Laplace transformations
for the linear case.

Section 4 discusses some features of the non-linear situation. Here new ideas are required:
integrable extensions, non-Moutard form of solutions etc. Some of these will be discussed
in forthcoming paper [16], so we restrict to several examples.

In Sec. 5, we present a short historical overview and give a brief discussion of possibilities
and difficulties of generalizations of the theory for systems of class ω > 1.

The appendices supplement some of the background material.

1. Linear Systems on Plane with One Simple Characteristic

Consider a compatible PDE system E of class ω = 1, meaning there is only one characteris-
tica of multiplicity 1 (it can be taken X = ∂x for linear and some quasi-linear systems, but
not for a fully non-linear E).

The simplest situation is one first-order PDE, which is classically known to be solvable
via the method of characteristics. In general E is generated by r PDEs of possibly different
orders and we list only generators (disregard prolongations) of the system. The number
of these generators can be determined invariantly via the Spencer δ-cohomology groups:
r = dimH∗,1(E).

Starting from some jet-level we have for the symbol dim gk = 1. This imposes restriction
on the form of the system and we shall investigate them successively according to com-
plicacy, which includes the number r, orders of the PDEs and orders of the compatibility
conditions.

Spencer cohomology have dimensions h0 = dimH∗,0 = 1, h1 = dimH∗,1 = r and from
vanishing of the Euler characteristicb we find h2 = dimH∗,2 = h1 − h0 = r − 1. This is the
number of compatibility conditions our system E satisfies.

In this section, we consider only linear PDEs in one (scalar) unknown u = u(x, y), in
which case the characteristic is a vector field on the base M = R

2. We will denote it by X
and its complement by Y .

We take the freedom of considering X,Y to be first-order differential operators, rather
than vector fields (and still call it frame), and the symbol of X is the characteristic.

The maximal transformation group G of this nonholonomic frame is

X �→ κX + a, Y �→ ςY + bX + c.

aThe characteristic covectors are defined as in the formal theory of PDEs [18, 24], see Appendix B. For
2-dimensional base they dualize to characteristic vectors (defined up to non-zero multiple).
bThis holds for all systems, reducible to ODEs (in our case ω = 0, 1).
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We can always arrange [X,Y ] = 0 and in doing soc we get functional dimension of the
pseudogroup over the algebra A = C∞(M) equal to two.

We however relax the requirement to ord[X,Y ] = 0 (this is achieved by a choice of κ, ς)
and the pseudogroup with this condition has functional dimension dimA(G) = 3.

Generators of the pseudogroup G are the following transformations

X �→ X + a, Y �→ Y (basic gauge)

X �→ eλX, Y �→ Y + bX + c (auxiliary gauge)

X �→ κX, Y �→ ςY (auxiliary gauge)

with a, b, c ∈ C∞(M) arbitrary and λ, κ, ς ∈ C∞(M) satisfy [Y + bX, λ] = [X, b], [X, ς] =
[Y, κ] = 0, i.e. λ, κ, ς are functions of one argument (we write [X, b] instead of X(b) as X is
a first-order differential operator and similarly in other cases).

Remark 1.1. Using bigger pseudogroup G instead of point transformations is harder from
the viewpoint of differential invariants, but is more convenient from factorization viewpoint
that is our main goal now.

Note that alternatively we could use the pseudogroup G′: X �→ X + a, Y �→ Y + bX + c

(which satisfies the condition [X,Y ] = 0 mod X + order 0) with functional dimension
dimA(G′) = 3, achieving the same results.

Notice that the basic gauge transformations form a normal subgroup H, the auxiliary
form a subgroup K and we get H · K = G. We will be using the following easy result:

Proposition 1.2. Let G = H · K be a decomposition of a group into the product of two
subgroups the first of which is normal. Consider an action of G on a space M (manifold
in finite-dimensional case) and suppose there exists a global H-transversal subspace L ⊂M

invariant with respect to K of dimension complimentary to the dimension of H-orbits. Then
the space of invariant functions C∞(L)K pulled back to M via H-action coincides with the
space of G-invariants:

C∞(M)G � C∞(L)K.

Now we consider low complexity linear systems of ω = 1 type to illustrate the general
picture that we will sum up later.

1.1. Two equations of the second-order: 2E2

Consider the case of two PDEs (r = 2) on the plane M . As the common characteristic isd

X, the equations have symbols X2 and YX (it will be more convenient to write this order
for calculations later on). Thus our system E is{

X2u+ a1Xu + b1Yu + c1u = 0,

YXu + a2Xu + b2Yu + c2u = 0.

cWith this, the pseudogroup is equivalent to the linear-triangular pseudogroup x �→ χ(x, y), y �→ γ(y),
u �→ ϑ(x, y)u provided the characteristic is ∂x.
dWe write just X instead of more appropriate symb(X).
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This system has one compatibility condition since h2 = 1. It implies b1 = 0. By the
basic gauge (absorbing functions into X) we transform the system to have b2 = 0. Then
compatibility implies c1 = 0.

Namely we have X �→ X̃ = X + b2, and for the transformed 2E2 we have b̃2 = c̃1 = 0
and

c̃2 = c2 − a2b2 − [Y, b2]

(compare with the classical Laplace invariants, see Appendix A). This c̃2 is a relative dif-
ferential invariant with respect to auxiliary gauge, and so is a relative invariant of the
pseudogroup G action (here and in what follows we use Proposition 1.2).

Two sub-cases are possible (we are omitting tildes from now on).

Υa
22 : c2 �= 0. Then differential substitutione v = Xu leads us to one first-order equation

(essentially parametrized ODE):

(X + a1)v = 0. (1.1)

The second PDE in E yields the inversion formula u = −c−1
2 (Y + a2)v. Note that in this

case the inversion is differential.
The equation [Xc−1

2 (Y + a2) + 1]v = 0 comes from composition of the substitution and
the inversion, but it is a differential corollary of (1.1) due to compatibility of E .

Υb
22 : c2 = 0. Then differential substitution v = Xu leads us to the Frobenius system:

(X + a1)v = 0, (Y + a2)v = 0, (1.2)

which is compatible (due to compatibility of E) and has 1-dimensional vector space of
smooth solutions.

However inversion in this case is integral u = X−1v (note however that this is a
parametrized ODE) providing one unknown function for the general solution u via essen-
tially one solution of (1.2).

1.2. Two equations of the second and third-orders: E2 + E3

In this case (r = 2) a common characteristic condition leads us to two cases. Since we
consider first the lower order PDEs, prolong them, add new equations and so on, the general
position case will be such that the lower order symbols are in general position. The first of
the cases below is of general position, the second as we shall see has degeneracy.

Υ1
23 : The symbols of the PDEs are YX and X3. Thus the system E has the form:{

YXu + c1Xu + d1Yu + e1u = 0,

X3u+ a2X
2u+ b2Y

2u+ c2Xu + d2Yu + e2u = 0.

The compatibility condition yields b2 = d2 = 0 and with the basic gauge we get d1 = 0.
Then compatibility leads to e2 = 0.

eSuch substitutions, simplifying E , will be called Laplace transformations.
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After this transformation the new coefficient e1 (which is

ẽ1 = e1 − c1d1 − [Y, d1]

via the old coefficients and we remove tilde; such precise formulae will be omitted in the
future cases) is a relative invariant with respect to auxiliary gauges (here the pseudogroup
G is smaller as the symbol of E fixes directions of both X and Y thus reducing some of
auxiliary gauges), and consequently with respect to G.

The following sub-cases occur:

Υ1a
23 : e1 �= 0. The substitution Xu = v has differential inverse from the first equation:

u = −e−1
1 (Y + c1)v.

The second PDE of E leads to a second-order PDE for v with symbol X2. Inserting the
inversion into the substitution we get another PDE with symbol YX . The obtained system
2E2 is: {(

X2 + a2X + c2
)
v = 0,(

Xe−1
1 (Y + c1) + 1

)
v = 0.

Υ1b
23 : e1 = 0. Then the substitution v = Xu yields two PDEs, one of the first and the

other of the second-order, but this system is of Frobenius type (and compatible):

(Y + c1)v = 0, (X2 + a2X + c2)v = 0.

The inversion is however integral: u = X−1v.

Υ2
23 : The symbols of the PDEs are X2 and Y 2X. Thus the system E has the form:{

X2u+ c1Xu + d1Yu + e1u = 0,

Y 2Xu + a2YXu + b2Y
2u+ c2Xu + d2Yu + e2u = 0.

Compatibility condition yields d1 = 0 and with the basic gauge we obtain b2 = 0. Then the
compatibility leads to e1 = 0.

The new coefficient d2 is a relative differential invariant and e2 is a relative invariant
provided d2 = 0. The following are the sub-cases:

Υ2a
23 : d2 �= 0. The substitution v = Xu to the first PDE yields the first-order equation

(X + c1)v = 0. (1.3)

But the inversion is given by the solution of the compatible Frobenius system formed by
the substitution and the second PDE:

Xu = v, (Y + d−1
2 e2)u = −d−1

2 (Y 2 + a2Y + c2)v.

Let us remark that integration of this system adds not only one constant, but also one
derivative to the arbitrary function of one variable coming from the general solution
of (1.3).

Υ2b
23 : d2 = 0, e2 �= 0. Here v = Xu has the differential inversion u = −e−1

2 (Y 2 + a2Y +
c2)v. First order PDE (1.3) remains as the transformed equation with this substitution.
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It seems that insertion of the inversion to the substitution leads to a third-order PDE
with the symbol Y 2X, but it is a differential corollary of (1.3) due to compatibility of E .
Thus we get only one first-order PDE.

Υ2c
23 : d2 = 0, e2 = 0. Here substitution v = Xu leads to the Frobenius system of the

first and second-order equations:

(X + c1)v = 0, (Y 2 + a2Y + c2)v = 0.

The inversion operator u = X−1v is integral.

1.3. Three equations of the third-order: 3E3

In this case (r = 3), E has one single characteristic X if and only if its form is:

X3u+ a1X

2u+ b1YXu + c1Y
2u+ d1Xu + e1Yu + f1u = 0,

YX 2u+ a2X
2u+ b2YXu + c2Y

2u+ d2Xu + e2Yu + f2u = 0

Y 2Xu + a3X
2u+ b3YXu + c3Y

2u+ d3Xu + e3Yu + f3u = 0.

,

Compatibility implies c1 = c2 = 0 and the basic gauge yields c3 = 0. With this the
compatibility gives: e1 = e2 = 0.

The new coefficients e3, b1, f1 are relative differential invariants (under auxiliary gauge
and so under G), as well as f2(upon f1 = 0), f3(upon f1 = f2 = 0) (which are conditional
invariants).

Compatibility ties them so: f1 = b1e3, f2 = b2e3 + [X, e3]. The following are the cases:

Υa
333 : e3 �= 0, b1 �= 0 ⇔ f1 �= 0. The fact that b1 �= 0 implies that the first two equations

are not compatiblef in itself, and that their compatibility condition implies the third PDE
of E . Thus we can discard the latter.

Substitution v = Xu can be inverted from the first PDE: u = −f−1
1 (X2 +

a1X + b1Y + d1)v.
A linear combination of the second and the first PDEs from E yields a second-order

equation on v. Another equation is of the third-order and is obtained by inserting the
inversion into the substitution. Thus we get a system on v of type E2 + E3 (Υ1

23):{
((YX + a2X + b2Y + d2) − f−1

1 f2(X2 + a1X + b1Y + d1))v = 0,

(Xf −1
1 (X2 + a1X + b1Y + d1) + 1)v = 0.

The symbols of these equations after an auxiliary gauge are YX ,X3 and the system is
compatible.

Υb
333 : e3 �= 0, f1 = 0 ⇒ b1 = 0. Suppose first f2 �= 0.

Substitution v = Xu can be inverted from the second PDE: u = −L[v], where L =
f−1
2 (YX + a2X + b2Y + d2).

fThe term “compatible” means “formally integrable” [18], and is more restrictive than (formally) “solvable”,
see Appendix B.
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Then the first PDE of E and insertion of the inversion to the third PDE yield the
compatible system on v of type E2 +E3 (Υ2

23):{
(X2 + a1X + b1Y + d1)v = 0,

((e3Y + f3)L− (Y 2 + a3X + b3Y + d3))v = 0.

Υc
333 : e3 �= 0, f1 = 0, b1 = 0, f2 = 0. The substitution v = Xu turns the first two PDEs

of E into 2E2:

(X2 + a1X + d1)v = 0, (YX + a2X + b2Y + d2)v = 0,

with the inversion found from the compatible system of Frobenius type:

Xu = v, (Y + e−1
3 f3)u = −e−1

3 (Y 2 + a3X + b3Y + d3)v.

Υd
333 : e3 = 0, implying f1 = f2 = 0. Further exploration of compatibility implies

b1f3 = 0. Assume first f3 �= 0 ⇒ b1 = 0.
Then the third PDE of E implies inverse u = −f−1

3 (Y 2 + a3X + b3Y + d3)v for the
substitution v = Xu. The first two PDEs of E yield the same 2E2 as in Υc

333.

Υe
333 : e3 = 0, f1 = f2 = f3 = 0. Then substitution v = Xu leads to the Frobenius

system {
(X2 + a1X + b1Y + d1)v = 0,

(YX + a2X + b2Y + d2)v = 0, (Y 2 + a3X + b3Y + d3)v = 0.

with the integral inverse u = X−1v.

1.4. Two equations of the third-order : 2E3

This case (r = 2) is a bit more complicated since the compatibility conditions are given by
operators of the second-order. The characteristic will again be denoted by X. Thus the two
symbols have the form X ·Q1,X ·Q2, where Qi are linearly independent quadrics on T ∗M ,
i.e. elements of S2TM .

Denote by Π2 = 〈Q1, Q2〉 the plane in S2TM . Let q ∈ S2T ∗M be a non-zero element
of Ann(Π2) and ωY ∈ T ∗M a non-zero element of Ann(X). The quadric q on TM is not a
square, since otherwise Q1 and Q2 would have a common factor, which would be another
characteristic.

Depending on the position of q regarding the cone of degenerate quadrics and the line
ω2
Y we obtain the following three different possibilities (classification over C is by one case

smaller) with ωX being a covector, complementary to ωY :

q = ω2
X ∓ ω2

Y or q = ωXωY .

The corresponding normal forms for the plane Π2 generate the normal forms of the symbol
of E . They fix the direction of Y , and the auxiliary group becomes smaller (reduction of G
similar to the case Υ1

23).
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Υ1
33 : The symbols of the two equations are (X2 ± Y 2)X,YX 2. The equation has the

form

{
Y X2u+ a1X

2u+ b1YXu + c1Y
2u+ d1Xu + e1Yu + f1u = 0,

(X2 ± Y 2)Xu + a2X
2u+ b2YXu + c2Y

2u+ d2Xu + e2Yu + f2u = 0.

Compatibility implies that c1 = 0. The basic gauge yields c2 = 0 and then compatibility
gives e1 = 0.

Then the new functions e2, b1, f1 are relative invariants and the compatibility ties them
as f1 = b1e2; f2 is a conditional invariant on e2 = 0.

Υ1a
33 : f1 �= 0 ⇒ e2 �= 0. Substituting Xu = v we get the differential inversion u = −L1[v],

L1 = f−1
1 (YX + a1X + b1Y + d1), which being inserted into the second PDE of E and

the substitution gives two differential equations, with the notation L2 = X2 ± Y 2 +
a2X + b2Y + d2:

{
((e2Y + f1)L1 + L2)v = 0,

(XL1 + 1) v = 0.
(1.4)

This system is however not compatible. Indeed, we obtained it with the help of inversion
from the system Xu = v, (e2Y + f2)u = −L2[v].

Writing the compatibility condition for this system, i.e. multiplying from the left by
(Y + ρ1) and by (−X + ρ2), respectively and adding, we obtain an equation of the type
θ · u = L3[v], where L3 = XL2 + · · · and θ �= 0 because the compatibility conditions for
E are given via differential operators of the second (not by first) order.

Combining the latter equation with the PDE u = −L1[v] we get a third-order differential
equation on v with the symbol (X2±Y 2)X, which is the compatibility condition for system
(1.4). Finally taking linear combinations of the derived PDEs we obtain the system of type
3E3 on v with the symbols X3,YX 2, Y 2X, which is now compatible due to compatibility
of E .

Υ1b
33 : f1 = 0, e2 �= 0. Then substitution Xu = v together with (e2Y + f2)u = −L2[v]

has Frobenius type and its compatibility condition gives a third-order PDE on v. Another
PDE on v is given by the first PDE of E and it is has second-order. This pair E2 + E3 on
v has symbols YX ,X3 (Υ1

23) and is compatible. The inversion is however Frobenius.

Υ1c
33 : f1 = 0, e2 = 0, f2 �= 0. Then we can get differential inversion from the second PDE

of E u = −f−1
2 L2[v]. The first PDE of E becomes the second-order PDE (YX +a2X+b2Y +

d2)v = 0, while substitution of the inversion into Xu = v yields (Xf −1
2 L2 +1)(v) = 0, which

modulo the previous PDE is a third-order equation with symbol X3. This is a compatible
system of type E2 + E3 (Υ2

23).

Υ1d
33 : f1 = 0, e2 = f2 = 0. The substitution v = Xu reduces the system to a pair of

compatible second-order PDEs with symbols X2 ± Y 2,YX . Hence the system is of finite
(Frobenius) type and the substitution has integral inverse.
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Υ2
33 : The symbols of the two equations are X3, Y 2X and so the system has the form{

X3 u+ a1X
2u+ b1YXu + c1Y

2u+ d1Xu + e1Yu + f1u = 0,

Y 2Xu + a2X
2u+ b2YXu + c2Y

2u+ d2Xu + e2Yu + f2u = 0.

By compatibility c1 = 0, basic gauge gives c2 = 0, then compatibility implies e1 = 0.
Then the new functions e2, b1, f1 are relative invariants and the compatibility ties them

as f1 = b1e2; f2 is a conditional invariant on e2 = 0.
Let L1 = X2 + a1X + b1Y + d1, L2 = Y 2 + a2X + b2Y + d2.

Υ2a
33 : f1 �= 0. The inversion is differential u = −f−1

1 L1[v] (from first PDE of E). Insertion
of this into the second PDE of E and into substitution v = Xu, together with addition of
compatibility conditions to the last two leads to a compatible system 3E3 with symbols
X3,YX 2, Y 2X.

Υ2b
33 : f1 = 0, e2 �= 0. The first PDE on v is L1[v] = 0. The inversion can be found from

the system

Xu = v, (Y + e−1
2 f2)u = −e−1

2 L2v. (1.5)

The compatibility of this system has the form (Xe−1
2 L2 + · · · )v = ku.

In the case k = 0 we get the third-order PDE on v with symbol Y 2X, so the reduced
system is E2 + E3 (Υ2

23). The inversion is a Frobenius system.
If k �= 0, then the inversion is differential u = k−1(Xe−1

2 L2 + · · · )v. Substituting this
into the second PDE of (1.5) yields an equation of fourth-order with symbol Y 3X. Thus
the reduction is of type E2 + E4.

Υ2c
33 : f1 = e2 = 0, f2 �= 0. The inversion is differential u = −f−1

2 L2[v]. The first PDE
on v is L1[v] = 0 and the second is obtained by insertion of the inversion into substitution
Xu = v. The symbols of the obtained equations are X2, Y 2X. They are compatible and
have type E2 + E3 (Υ2

23).

Υ2d
33 : f1 = 0, e2 = 0, f2 = 0. The reduction is a Frobenius system of the second order

L1[v] = 0, L2[v] = 0 and the inversion is integral u = X−1v.

1.5. Examples of calculations

Let us illustrate integration of linear ω = 1 systems for some representative types discussed
above.

Example 1. The following compatible system has type 3E3 (Υa
333).

uxxx =
3x+ 6
x2

uxx +
6y
x3
uxy +

2x− 12
x3

ux − 18
x3
u,

uxxy = −4x2 + 6x+ 18
3xy

uxx − 6
x2
uxy +

8x2 − 6x+ 36
3x2y

ux +
18
x2y

u,

uxyy =
2x3 + 9x2 + 45x + 54

9y2
uxx +

−5x2 + 12x+ 18
3xy

uxy

+
−16x3 + 9x2 − 36x− 108

9xy2
ux +

3
y
uy +

4x2 − 9x− 18
xy2

u.
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It reduces by differential substitutions to the one first-order PDE ux = 0 as follows
3E3 → E2 + E3 → 2E2 → E1. The branch is generic, i.e. in each type we have a generic
case.

We call the above arrows (generalized) Laplace transformations. They all have differen-
tial inverses. The composition of inversion formulae gives the solution:

u = 9y3f ′′′(y) + 27xy2f ′′(y) + 36x2yf ′(y) + 16x3f(y).

Example 2. Another compatible 3E3 of type Υa
333 is

uxxx =
3x− 2y
x2

uxx +
2y
x2
uxy − 6

x2
ux − 6y

x3
uy +

6
x3
u,

uxxy =
4x− 2y
x2

uxx +
2x2 + 2xy

x3
uxy − 6

x2
ux − 6y

x3
uy +

6
x3
u,

uxyy =
4x− 2y
x2

uxx +
2x2 + 2xy

x3
uxy +

3
x
uyy − 6

x2
ux − 6y

x3
uy +

6
x3
u.

Now the route of Laplace transformations is 3E3 → E2+E3 → 2E2 and it is not generic,
as E2 + E3 has type Υ2

23, and 2E2 has type Υb
22, so this reduces to a Frobenius system of

the first-order and the inverse is integral. The composition of inversion formulae gives the
solution:

u = x3f ′′(y) − 6x2f ′(y) + 6xf(y) + Cy.

Example 3. Finally consider a system of type E2 + E3, which has inverse Laplace trans-
formation of the Frobenius (ω = 0) type.

uxx = 0, uxyy =
x

y
uxy − 1

y
uy.

Laplace transformation v = ux reduces this to the equation vx = 0, but the inverse is given
by the compatible system {

ux = v,

uy = xvy − yvyy.

General solution to equation E1 on v together with integration of the Frobenius system
yield

u = (x+ 1)ϕ(y) − yϕ′(y) + C.

Remark 1.3. In Examples 2 and 3 we displayed the “happy” cases when the quadratures
are expressed in the closed form. Generally the solution of a Frobenius system cannot even
be reduced to the quadratures.

2. Classification of Types of ω = 1 Systems

In this section we split the totality of ω = 1 systems into classes, and discuss transformations
between them. Most results of this section are general and apply equally well to non-linear
ω = 1 systems.
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2.1. Zoo for ω = 1

Let us compose a table, where we put compatible systems E of class ω = 1, and organize
its columns by the maximal order kmax and its rows by the number of equations r = h1 =
dimH∗,1(E).

We introduce the following rule for the choice of generators of E .
Consider the orders of the system: kmin = k1 ≤ · · · ≤ kr = kmax, and denote the

multiplicities by mi = {#j : kj = i} = dimH i−1,1(E). Thus E is given by mk1 equations
Fk1,1, . . . , Fk1,m1 of order k1, . . . ,mkr equations Fkr ,1, . . . , Fkr ,mr of order kr.

We shall write E symbolically as
∑r

i=1Eki
=

∑
miEi, and call the latter the type of E

(implicit: ω = 1 common characteristic and compatibility). The following table shows types
for systems of order kmax ≤ 5.

kmax−−−−→
↓ h1

1 2 3 4 5

1 E1

2 2E2
E2 + E3

2E3

E2 + E4

E3 + E4

2E4

E2 + E5

E3 + E5

E4 + E5

2E5

3 3E3

2E3 + E4

E3 + 2E4

3E4

2E3 + E5

E3 +E4 + E5

2E4 + E5

E3 + 2E5

E4 + 2E5

3E5

4 4E4

3E4 + E5

2E4 + 2E5

E4 + 3E5

4E5

5 5E5

The general (infinite) table is upper-triangular and the first row consists of one element
only.

The generalized Laplace transformations are arrows between the species in this table,
which are directed toward the top-left corner. Here are sample routes for successive Laplace
transformations:

· · · → E2 + E6 → E2 + E5 → E2 + E4 → E2 + E3 → 2E2 → E1
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and more complicated:

· · · → 2E4 → 2E4 + E5 → 3E4 → 4E4 → E3 + 2E4 →
→ 2E3 + E4 → 3E3 → E2 + E3 → E2 → E1.

We will discuss the arrows in more details in Sec. 2.4.

2.2. Complexity

The type notations introduced above suppress a lot of information about E (branching into
sub-cases), like its symbol class, the order of compatibility conditions etc. We shall introduce
an important integer, as a combination of these data, characterizing the complexity of a
compatible system E of class ω = 1.

Let gi be the symbols of E (see Appendix B for details). Starting from some jet-level
the dimensions of these subspaces stabilize: dim gi = 1 for i� 1.

Definition 2.1. Complexity of E is the number κ =
∑∞

i=0(dim gi − 1).

The following inequality holds for class ω = 1 compatible systems: r = h1 ≤ kmin ≤ kmax.

Proposition 2.2. We have: κ ≤ ∑r
i=1(ki − i) + (k1 − r) · (kr − r). Equality is attained for

the “boundary” cases: r = 2 and r = kmin (⇒ r = kmax).

Proof. We start with the case r = k1. Then letting kr+1 = ∞ we get:

dim gi − 1 =

{
i, i < k1

(k1 − j), kj ≤ i < kj+1

and so the complexity equals

κ =
k1(k1 − 1)

2
+

r−1∑
j=1

(kj+1 − kj)(k1 − j) =
r∑
1

kj − r(r + 1)
2

,

as required.
For r < k1, κ achieves the maximum value if the system

∑s
i=1Eki

has one characteristic
X only on the last step s = r, and has more before this; otherwise dim gi decreases more
rapidly. In other words reducing the symbolic system by X, the system becomes of finite
type only at the highest possible order.

Thus the maximal growth of dim gi is achieved for

dim gi − 1 =



i, i < k1

(k1 − j), kj ≤ i < kj+1 (j < r)

(k1 − r − j), i = kr + j (0 ≤ j ≤ k1 − r)

and then the direct check yields the desired value of κ.
Alternatively dimension of symbols does not change if we assume that the system E

at order kmax = kr has more than one characteristic X, but we add equations of orders
k′r+t = kr + t, 1 ≤ t ≤ k1 − r, so that only at the last step a unique characteristic is left.
Thus we can use calculation with r = k1 since (k′i − i) = kr − r for r < i ≤ k1.
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Finally if r = 2, then the reduced by X symbolic system is of complete intersection
type and the equality follows from calculation of the dimension of the solutions space
as in [17].

Thus complexity κ is bounded via the orders of the system. On the other hand the
amount of types grows super-polynomially with κ.

2.3. How many system types have the same complexity κ?

Let us list all systems of low complexity κ =
∑

(dim gi − 1) ≤ 6.

κ = 0. This is possible only for E1.
κ = 1. Obviously the type 2E2.
κ = 2. Only one decomposition (no intermediate zeros are possible) 2 = 1 + 1. E2 + E3.
κ = 3. Two decompositions 3 = 1 + 1 + 1 = 1 + 2, we get respectively the types E2 + E4

and 3E3.
κ = 4. Two decompositions 4 = 1+1+1+1 = 1+2+1, but the latter splits: E2 +E5, 2E3

and 2E3 +E4 (two cases distinguish by no common characteristic and one common
characteristic for 2E3).

κ = 5. Three decompositions 5 = 1+1+1+1+1 = 1+2+1+1 = 1+2+2. Corresponding
types are: E2 +E6, 2E3 + E5, E3 + 2E4.

κ = 6. Here we have four decompositions 6 = 1 + 1 + 1 + 1 + 1 + 1 = 1 + 2 + 1 + 1 + 1 =
1 + 2 + 2 + 1 = 1 + 2 + 3, the third splits: E2 + E7, 2E3 + E6, E3 + E4, E3 +
E4 + E5, 4E4.

Denote by R(n) the number of ω = 1 different types
∑
miEi having complexity κ = n.

We have the following values for this function:

n 1 2 3 4 5 6 7 8 9 10 . . . asymptotics
R(n) 1 1 2 3 3 5 6 9 11 13 . . . exp(π

√
λn)

One can prove (via a relation with the number-theoretic partition functions) that the
quantity λ defined by

√
λ = 1

π · lim logR(n)/
√
n satisfies 1

3 ≤ λ < 2
3 .

2.4. Classification of transformations: Phenomenology

Let us summarize our results of Secs. 1.1–1.4. Given a compatible linear system E of class
ω = 1 we have constructed via generalized Laplace transformation L : u �→ Xu a new
compatible system Ẽ . We have observed that only three different situations were possible:

(1) The transformed system Ẽ is of class ω = 1 and the inverse L−1 is a differential operator.
(2) The transformed system Ẽ is of class ω = 1, but the inverse operator L−1 is obtained

by solving a finite type system.
(3) The transformed system Ẽ is of class ω = 0, but the inverse operator L−1 is integral.

Note that situation (1) is generic. Finding the inverse in situation (2) is equivalent to
solving a system of ODEs, while in situation (3) it is given by a parametrized ODE, so that
the general solution depends on one unknown function.
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We claim that this is the general pattern, namely we have

Theorem 2.3. For compatible linear systems of class ω = 1 the generalized Laplace
transformations can branch into three situations (1)–(3) above. The first occasion is
generic.

This will be demonstrated in the next section by showing that Laplace transformations
decrease the complexity.

We take by definition all systems of class ω = 0 to be of lower complexity than the
systems of class ω = 1. Thus situation (3), when we leave the table ω = 1 satisfies the
claim.

Iteration of Laplace transformations leads either to a system of class ω = 0 or to one
equation E1 of class ω = 1. Both are reduced to the solution of ODEs in accordance with
Sophus Lie’s theorem [21].

But for the linear ω = 1 case and generic E we obtained an algorithm for finding the
solutions involving differentiations and quadratures only (for non-generic E solutions of
ODEs can occur).

3. Laplace Transformations for Linear Systems

Now after lots of examples we give a rigorous definition and proof.

3.1. Generalized Laplace transformations

Consider a system E = {F [u] = 0} of class ω = 1 on the unknown u = u(x, y) generated
by a vector linear differential operator F = (F1, . . . , Fr). We can choose generators of E
in such a way that the maximal degree of Y in symb(Fk) strictly increases with k (this is
independent of basic/auxiliary gauges).

Then there exists precisely one change X �→ X + a, a ∈ C∞(M) such that in the
decomposition Fk =

∑
αkj iY

jXi the number max{j : ∃k αkj 0 �= 0} is minimal (maximal j
corresponds to the minimal k). This fixes the basic gauge, but leaves an auxiliary gauge
freedom.

Definition 3.1. With X fixed as above the generalized Laplace transformation is the
substitution

u �→ v = Xu.

Let I(E) = [F1, . . . , Fr] be the differential ideal of E .
In order to define the transformed PDE system Ẽ let us consider an idealg J =

{∑i>0 βijY
jXi ∈ I(E)}, which factorizes J = J ′ ·X for J ′ = {∑i>0 βijY

jXi−1}. Let
G = (G1, . . . , Gl) be a vector generator of J ′. Then we define Ẽ = {G[v] = 0}.

Inverse Laplace transformation is defined as a scalar (but a priori not necessarily dif-
ferential) operator L such that L ·X = 1 mod I(E).

Proposition 3.2. Inverse operator is unique modulo I(Ẽ).

gJ is surely a left differential ideal, but if we restrict Y by [X, Y ] = 0, it will be also a right differential
ideal.
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Proof. Let L1 and L2 be two inversions for the operator X, i.e.

1− L1X, 1 − L2X ∈ I(E) ⇒ (L1 − L2)X ∈ I(E).

This means that (L1 − L2) ∈ J ′ or equivalently (L1 − L2) ∈ I(Ẽ).

Next let us consider the existence part.

Theorem 3.3. For a generic system E the generalized Laplace transformation v = Xu has
a differential inverse operator u = L[v].

Proof. Let us prolong E to the place, where it becomes involutive. This is the jet-level k
such that dim gk = 1. Discard all equations of order lower than k. Then we have r = k

compatible PDEs of order k (type kEk), so that κ = (k−1)k
2 .

The symbols of these equations are Xk,YX k−1, Y 2Xk−2, . . . , Y k−1X. Compatibility
forces the first (k− 1) equations to be free of Y k−1 terms. When the basic gauge is applied,
the last PDE has the same property and then the compatibility implies that the first (k−1)
equations contain no Y k−2 terms.

This is symbolically shown in the following Young diagram (for 4E4), where we omit all
terms in equations Fj of E except Y i:

︸ ︷︷ ︸
k−1




k

It corresponds to the linear system of k equations and (k − 1) unknowns Y k−2u, . . . ,Yu, u.
Generically coefficients are such that the rank is maximal. Then we can exclude
Y k−2u, . . . ,Yu and get an expression u = L[v], where L is a differential operator of
ord ≤ k − 1.

More refined Young diagrams based on the type of symbol of E can be drawn and then
an inverse L with the minimal possible order (order of the inverse) can be chosen.

For non-generic systems the Laplace transformation can have inverse, which is either a
compatible Frobenius system or a parametrized ODE. Define order of the inverse in these
cases to be 0 or −1, respectively.

3.2. Proof of the main result

Theorem 0.1 follows from

Theorem 3.4. Under generalized Laplace transformation the complexity strictly decreases.
Generically it decreases only by 1 : κ �→ κ − 1.

Proof. By re-scaling the unknown function u �→ σ ·u we can achieve X = ∂x, and we adopt
this convention in the proof.



December 15, 2011 14:51 WSPC/1402-9251 259-JNMP S1402925111001805

Laplace Transformation of Lie Class ω = 1 Systems 599

Let us interpret complexity κ via Cauchy data, namely a general solution of E depends
on one function of one variable, its q derivatives and on (κ−q) constants. This follows from
Cartan-Kähler theorem, and generically q = κ. Moreover these are linear superpositions

u = αqf
(q) + · · · + α1f

′ + α0f + c1φ1 + · · · + cκ−qφκ−q,

where αi = αi(x, y), φj = φj(x, y) are some fixed functions, f = f(y) is an arbitrary
function and ck are arbitrary constants.

It is easy to check that αq depends only on y (this was the reason for the basic gauge
as it is equivalent to u �→ u/αq), so that the transformation v = ux reduces κ (only by one
if (αq−1)x �= 0 and (φi)x �= 0).

Generically only transformations (1) from Sec. 2.4 are used and so the general solution
is obtained from the composition of inverse Laplace operators u = A[f ], where f is an
arbitrary function of one argument and A a linear differential operator of order κ.

Transformations (2) with L solving Frobenius system of order one and transformations
(3) from Sec. 2.4 with reduced system of order one and class ω = 0 (both cases belong to a
generic stratum of the space of singular E) are equally good for Theorem 0.1, because linear
finite type scalar systems of order one are solvable in quadratures.

On the other hand, finite type systems of higher order are usually non-integrable in
quadratures (and a theorem of Lie about solvable symmetry groups indicates when such
integration is possible).

For example, if the reduced system Ẽ (or the system for inverse L) has type E1 + E2

and class ω = 0: {
X2u+ a1Xu + b1u = 0,

Yu + a2Xu + b2u = 0,

then it is generically non-solvable in quadratures. Indeed the first PDE is equivalent to a
Riccati equation via a substitution u = exp

∫
z dx.

Finally note that the algorithm for the Laplace transformation from Sec. 3.1 together
with the first part of the proof of Theorem 3.4 imply that we can perform Laplace trans-
formations so long the reduction has type ω = 1. Theorem 2.3 follows.

3.3. The role of relative invariants

The relative invariants found in the cases of Secs. 1.1–1.4 play the same fundamental role
as the Laplace invariants, and they govern the branching into sub-cases of the types of E ,
determining kind (1), (2) or (3) of the Laplace transformation.

On the other hand we know that these kinds specify the form of the general solution,
namely the amount (κ−q) of constants ck it contains. These constants are the first integrals
of the system E and so can be detected by the internal geometry.

Thus the generalized Laplace invariants of ω = 1 type systems are the obstructions to
existence of the first integrals.

There can be one such differential invariant (as in the case Υ1
23) or several (as in the

case Υ1
33), and there can also occur conditional invariants of various depth (that are defined

only on the stratum given by vanishing of the previous invariants, as in the case Υ2
23).
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In our approach we first applied Laplace transformations to achieve decrease of the
number q of the involved derivatives, and then had to find a (κ − q)-parametric solution of
ω = 0 type system.

But equally well we could first restrict to the level leaf of the first integrals (freezing all
the constants) and then solve a generic ω = 1 type system.

4. Towards Nonlinear Theory

4.1. Linearization theorem

From the internal viewpoint the system E ⊂ Jk(R2), k = kmax, is a submanifold endowed
with the induced distribution CE = C ∩TE , where C is the canonical Cartan distribution on
the space of jets.

We assume E involutive, otherwise we need to prolong it to the jet level k such that
dim gk = 1. Then the distribution CE has rank 3 – it is generated by the vector fields Dx, Dy

(restricted total derivatives) and the vertical field (kernel of the projection TE → TJ k−1).
The first of these fields (or its combination with the third field) is a lift of our charac-

teristic X and it coincides with the Cauchy characteristic X̂ for this rank 3 distribution.
Denote the (local) quotient manifold by Ē = E/X̂ and the quotient rank 2 distribution by
Π = CE/X̂ .

Let Π∞ be the bracket-closure of the (generally non-holonomic) distribution Π. We
assume it is regular. The next claim is obvious.

Proposition 4.1. The amount of constants in the general solution of E equals q =
codim(Π∞), which also coincides with the codimension of the bracket-closure of CE in E.

A regular distribution ∆1 = Π generates the following: the weak derived flag ∆i via the
commutator of sections Γ(∆i+1) = [Γ(∆1),Γ(∆i)] and the strong derived flag via Γ(∇i+1) =
[Γ(∇i),Γ(∇i)], ∇1 = ∆1. The sequences of their ranks are called the weak and strong growth
vectors, respectively.

Goursat distribution is the canonical rank 2 Cartan distribution of the jet-space Jk(R)
(we exclude singularities). If the distribution is not totally-nonholonomic, we can restrict
to the leaves of the foliation of its bracket-closure. Distribution will be called Goursat–
Frobenius if it is Goursat in all leaves, i.e. locally the distribution C × 0 on JkR × Rm.

Theorem 4.2. An involutive ω = 1 type system is internally (micro-locally) linearizable if
and only if the corresponding rank 2 (regular) distribution Π is Goursat–Frobenius.

Proof. It is straightforward to check that both weak and strong flags grow in dimension by
one, so they are Goursat–Frobenius. The opposite direction is given by Cartan–von Weber
theorem, which states that a rank 2 distribution has locally Goursat normal form if and
only if both weak and strong growth vectors are (2, 3, 4, 5, . . .).

As for external linearization, the responsible differential invariants are known only in
some partial cases. The classical case of the second-order scalar ODE is due to Lie and
Liouville [20]. For higher order scalar ODEs the contact trivialization result is known [7],
and for 3rd and 4th order ODEs the linearization is done ([13, 25] and the references
therein), but to our knowledge no general linearization criterion is known (even for ω = 0
type).
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For ω = 1 systems we expect our generalized Laplace invariants (which exist also in the
non-linear situation) to play an important role in this classification problem.

Corollary 4.3. If a PDE system E of ω = 1 type is effectively linearizable, then E possesses
a closed form of the general solution.

Here “effectively” stays for algorithmic computability of the linearization transforma-
tion. This means the following. A Goursat distribution can be transformed to the nor-
mal form by rectifying some vector fields. In the presence of symmetry algebra with nice
(e.g. solvable) Lie structure this solution to ODEs can be made effective (for instance in
quadratures).

4.2. Examples of nonlinear Laplace transformations

1. Consider the Liouville equation together with one of its Laplace integrals

uxx =
1
2
u2
x, uxy = eu. (4.1)

This quasi-linear system is compatible of class ω = 1, and it possesses no intermediate
integral. Laplace transformation here is the same as in the linear case v = ux.

The first PDE of (4.1) gives the transformed equation E1:

vx =
1
2
v2.

The second equation of (4.1) yields the inversion: u = log vy.
The solution v = −2/(x+ ψ(y)) to E1 provides the solution to (4.1) via inversion:

u = log
2ψ′(y)

(x+ ψ(y))2
.

Notice that (4.1) is not linearizable by an external transformation of Moutard type (pre-
serving x, y), but substitution w = −2u−1

x −x+2xeuu−2
x makes an internal diffeomorphism

of this system with the linear 2E2

wxx = 0, wxy = (wy − wx)/x. (4.2)

However according to Cartan [4] a Lie–Backlund type theorem holds in this case, so
that every internal transformation is induced by a contact transformation. We can modify
our external transformation to the following contact equivalence between (4.1) and (4.2):

x �→ ux
2eu

, y �→ y, u �→ w = −x− 1
ux
, ux �→ wx =

2eu

u2
x

, uy �→ wy =
uy
ux
.

In fact, one can show that (4.2) is the normal form for linearizable 2E2 without intermediate
integrals (in the latter case we get uxx = uxy = 0).

Remark 4.4. The standard Bäcklund transformation that linearizes the Liouville equation
maps (4.1) into non-linear system vxx = 1

2v
2
x, vxy = 0.
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2. Consider another quasi-linear system

uxx = −2
ux
x+ y

, uxy = 2
√
uxuy

x+ y
. (4.3)

for which the second equation is also Darboux integrable.
Substitution uy = Q2 transforms (4.3) into

Qxx = − 2Qx
x+ y

, Qxy = − Qx
x+ y

+
Q

(x+ y)2
. (4.4)

This is a linear 2E2 and it has Laplace transform v = Qx to

E1 : vx = − 2v
x+ y

with the inverse Q = (x + y)2vy + (x + y)v. But the lift (4.4) to (4.3) is given by the
(compatible) Frobenius system

ux = (x+ y)2Q2
x, uy = Q2.

Another nonlinear Laplace transform is given by the following differential substitution
with differential inverse:

u = w − xwx − w2
x

x+ y
� w = u+ (x+ y)ux + x(x+ y)

√
ux.

This transforms (4.3) into another quasi-linear system 2E2

wxx = 0, w2
xy + xwxy − wy = 0.

This readily yields the general solution u = φ(y) − ψ(y)2

x+y , φ′(y) = ψ′(y)2 of (4.3), and
consequently its closed (non-Moutard) form solution:

x = s, y = σ′′(t), u = t2σ′′(t) − 2tσ′(t) + 2σ(t) − (tσ′′(t) − σ′(t))2

s+ σ′′(t)
.

3. Consider fully non-linear system of type 2E2

3uxx u3
yy = −1, uxy = −1/uyy, (4.5)

where the first equation belongs to the Goursat’s examples of Darboux integrable
systems [10].

This case is more complicated and the nonlinear Laplace transformation is given by
λ = u2

xy (notice it is of the second-order). The result of the transformation has type E1 and



December 15, 2011 14:51 WSPC/1402-9251 259-JNMP S1402925111001805

Laplace Transformation of Lie Class ω = 1 Systems 603

is the equation of gas dynamics

λx = λλy.

The inverse is however not differential, but is given by the Frobenius system (compatible
3E2 of class ω = 0):

uxx =
1
3
λ3/2, uxy = λ1/2, uyy = −λ−1/2,

and thus (4.5) is solvable by quadratures. Notice that the choice of λ corresponds to the
characteristic of (4.5).

4.3. Examples of nonlinear Laplace invariants

Consider

E :

{
F (x, y, u, ux, uy, uxx, uxy, uyy) = 0,

G(x, y, u, ux, uy, uxx, uxy, uyy) = 0.

Linearization of this system has the form

�E :

{
X2 U + a1XU + b1Y U + c1U = 0,

YXU + a2XU + b2Y U + c2U = 0.

Compatibility implies b1 = 0. Notice that this does not follow directly from the arguments
for the linear case, because the bracket of linearizations differs from the linearization of the
bracket [15]. However we can use the following straightforward statement:

Proposition 4.5. For nonlinear operator F ∈ diff and an operator L in total derivatives
we have: �L·F − L · �F = 0 mod 〈DσF 〉.

Now the system {F = G = 0} for the operators of the above form is compatible if and
only if there does not exist operators in total derivatives (C-differential operators) L1, L2

such that �L1·F+L2·G ∈ 〈1,X, Y, Y 2〉, which, by the above proposition, implies L1 · �F +L2 ·
�G ∈ 〈1,X, Y, Y 2〉 on the equation E(∞). And this would imply b1 = 0 and in the case b2 = 0
also c1 = 0 for the linearized system �E .

The gauge X̄ = X + b2 transforms the system �E to{
X̄2 U + ā1X̄U + c̄1U = 0,

Y X̄U + ā2X̄U + c̄2U = 0,

where ā1 = a1 − 2b1, c̄1 = c1 − a1b2 − X̄(b2) = 0 (due to compatibility), ā2 = a2 and
c̄2 = c2 − a2b2 − Y (b2) (notice similarity of the expressions for c̄1, c̄2 with the classical
Laplace invariants, see Appendix A).

This function c̄2 is a relative invariant with respect to gauge transformations. It will be
called nonlinear Laplace invariant of the problem. It vanishes precisely when there exists a
(higher) intermediate integral I for the system, i.e. a function I on jets with the vanishing
total differential d̂(I) = 0 due to the system E .
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In our case c̄2 = 0 implies existence of an integral I. Indeed, the substitution V = X̄U
reduces �E to the Frobenius system

(X̄ + ā1)V = 0, (Y + ā2)V = 0

with an intermediate integral Φ(x, y, V ) = c, which can be integrated to give the integral
φ(x, y,∇u) = c for the original system.

Example 1. The Liouville equation coupled with Dy-intermediate integral is a compatible
2E2 of class ω = 1:

uxx − 1
2
u2
x = 0, uxy − eu = 0.

Its linearization writes

X2U − uxXU = 0, YXU − euU = 0.

Already in this form b1 = b2 = c1 = 0 and so c2 = eu �= 0. Consequently this pair (and the
Liouville equation alone) has no intermediate integrals.

Example 2. Now consider such 2E2:

uxx = uxe
u, uxy = uye

u.

with linearization

X2U − euXU − uxe
uU = 0, YXU − euY U − uye

uU = 0.

In accordance with the above theory b1 = 0, but b2 = −eu �= 0 (starting from these
coefficients we can calculate by the above formula c̄2 = 0). So we make a change of frame
X̄ = X − eu and get the system

XX̄U = 0, Y X̄U = 0,

with an obvious intermediate integral X̄U = c. This linearization can be integrated to
obtain the first integral of the original 2E2: I = ux − eu.

Now let us turn to the case E2 + E3, for which the theory is similar.

Example 3. Consider the following linear ω = 1 system of type Υ2a
23

uxx = 0, uxyy − xuxy + uy = 0.

Laplace transformation v = ux maps this to E1 : vx = 0, and the inverse can be found from
the Frobenius system

ux = v, uy = xvy − vyy. (4.6)

Integration yields the intermediate integral: I = uxy − xux + u = c.

Remark 4.6. Existence of integral I here does not follow from vanishing of a relative
differential invariant: we have d2 �= 0 in the notations of Υ2a

23. But the symbol of this system
is degenerate, which means vanishing of certain relative algebraic invariant.
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Example 4. Now let us consider a nonlinear example:

uxx =
1
3
u3
yy, uxyy = uyyuyyy.

Its linearization is

D2
xU − u2

yyD2
yU = 0, DxD2

yU − uyyD3
yU − uyyyD2

yU = 0.

Let us introduce the operators X = Dx−uyyDy (characteristic) and Y = Dx+uyyDy. They
do not commute [X,Y ] = uyyy(Y −X). Notice also that X(uyy) = 0 and Y (uyy) = 2uyyuyyy
and using this we re-write the above linearized E2 + E3 system so:

XY U = 0, X3U = 0.

Notice that b2 = d2 = e2 = 0 in the notation of Υ1
23, but d1 = 0 only in this form and

d1 �= 0 in another representation of the first equation of the system:

YXU + uyyy(Yu − XU ) = 0.

But the coefficient e1 in this normal form is a relative differential invariant and it controls
existence of the integral. For the linearized equation it equals

1
uyy

X2U = c,

which can be re-written (modulo equation) as DxDyU − uyyD2
yU = c, and this can be

integrated to obtain the intermediate integral of the original problem:

I = uxy − 1
2
u2
yy.

We get the following ω = 1 system 2E2 that is compatible for any c

uxx =
1
3
u3
yy, uxy =

1
2
u2
yy + c.

5. Conclusion: Beyond ω = 1 and Other Generalizations

The theory of Laplace transformations developed for linear second-order PDEs (ω = 2) was
further modified to work in the non-linear situation by Darboux and Goursat.

In this paper we mainly concentrated on the general linear ω = 1 theory, leaving the
non-linear case for a separate publication. However even the linear theory sheds a light on
the obstructions for ω > 2. And indeed this latter case is poor compared to the theory of
ω = 2 type.

An important effort to generalize the classical (linear) Laplace theory to operators of
higher order was undertaken in [19]. In particular it was observed that the Laplace trans-
formation rule applied to one equation inevitably generates several equations, which was
the main obstruction for effective integration theory.

Another attempt was [22], where transformation theory was constructed for some par-
ticular class of equations, with a degenerate symbol. The reason for this is that starting
from third-order the scalar PDEs on the plane have invariants of the symbol, since the
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latter can be considered as a planar web. Generic webs have lots of independent differential
invariants, and they admit no symmetries.

For recent advances of the factorization part we refer to [26] and to vast range of papers
on differential Galois theory. But the transformation part has not seen much progress beside
the classical second-order case (we refer for the development of the Darboux theory to [1–3]).
The reason is that the Laplace transformation for ω > 2 inevitably increases the complexity
κ and this gives less chances of termination for the sequence of Laplace invariants.

Laplace theory, extended for systems of second order equations as the theory of multi-
dimensional conjugate nets in [6], was further developed in [8, 14]. This worked for general
ω but again for equations of very special type, namely semi-Hamiltonian and integrable.

Thus the general theory for ω ≥ 3 is still lacking, and below we briefly discuss these
cases and ω = 2. The case ω = 1 turns out, on the contrary, to be a perfect arena for
Laplace ideas.

5.1. Generalized Laplace transformations for ω = 2

The classical method of Laplace concerns E2, we recall it in Appendix A. The important
distinction of this case from ω = 1 is that we have a pair of Laplace transformations v = Xu
and w = Yu.

Consider the case 2E3. A system E of this type with generic symbol writes{
Y X2u+ a1X

2u+ b1YXu + c1Y
2u+ d1Xu + e1Yu + f1u = 0,

Y 2Xu + a2X
2u+ b2YXu + c2Y

2u+ d2Xu + e2Yu + f2u = 0.

Compatibility implies c1 = 0. We begin with Laplace transformation via characteristic X.
Then the basic gauge yields c2 = 0 and compatibility implies e1 = 0.

With these changes we let v = Xu to be the direct transformation and find the inverse
u = L1v from the first PDE of E , where L1 = −f−1

1 (YX + a1X + b1Y + d1) and we assume
f1 �= 0.

Inserting the inversion to the substitution gives the first transformed equation
(XL1 − 1)v = 0, and the second is obtained from the second PDE of E : (e2Y + f2)u = L2v,
where L2 = −(Y 2 + a2X + b2Y + d2), namely ((e2Y + f2)L1 − L2)v = 0. The transformed
system has symbols YX 2, Y 2X and the type 2E3 unless e2 = 0. In the latter case the
transformed equation is of type E2.

When f1 = 0, the compatibility gives e2 = 0. Provided f2 �= 0 we get inversion from the
second PDE of E , and the first PDE gives the transformed Ẽ = {(YX +a1X+b1Y +d1)v = 0}
of type E2.

In the case f1 = f2 = 0 the transformation v = Xu brings E to a system 2E2 of type
ω = 1 and the inverse u = X−1v is integral.

Situation with the second transformation w = Yx is similar.

Definition 5.1. Complexity of ω = 2 type system is defined by the formula

κ =
∞∑
i=0

(dim gi − 2) + 1 =
∞∑
i=2

(dim gi − 2).

The classical case E2 has κ = 0 and 2E3 corresponds to κ = 1.
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We can also study the cases of higher complexity E3 +E4 (κ = 2), E3 +E5, 3E4 (both
κ = 3) etc. forming the zoo of ω = 2 type. These cases are similar and following the
considered pattern we get such a conclusion.

Theorem 5.2. The generalized Laplace transform (any of two) for ω = 2 type generically
preserves the type and complexity. In singular cases it can decrease κ, but leave ω or it can
reduce the class to ω = 1.

Note that we cannot reach the systems of finite type ω = 0 in one step as our Laplace
transformations are always of order one (higher order generalizations are plausible).

The integration theory in the general case ω = 2 is thus characterized by dropping to
class ω = 1 type in a sequence of Laplace transformations to both ends. This would reduce
solution of E to ODEs.

If only one sequence of transformations (say v = Xu) terminates at ω = 1 class, this
gives semi-integrability, i.e. possibility to find many solutions (a family depending on one
function of one variable) but not all.

5.2. Generalized Laplace transformations for ω ≥ 3

For the class ω ≥ 3 we define the complexity by the formula

κ =
∞∑
i=0

(dim gi − ω) +
1
2
ω(ω − 1) =

∞∑
i=ω

(dim gi − ω).

The simplest ω = 3 case, corresponding to κ = 0, is of type E3:

ZYXu + aX2u+ bYXu + cY 2u+ dXu+ eYu + fu = 0.

Here Z is a linear combination of X and Y . If the web of characteristics is parallelizable,
we can assume Z = X + Y . Now there can be three Laplace transformations, with symbol
X, Y and Z, respectively.

Let us study the X-transformation. By the basic gauge we achieve c = 0. We assume
for simplicity that (the new coefficient) e �= 0.

Then the Laplace transformation v = Xu leads to Ψu = Lv, where Ψ = Y + f
e ,

L = ZY + · · · . This yields the equation (XL − Ψ)v = θ u, where θ = [X,Ψ] is a function.
Only in the singular case θ = 0 has the transformed equation type E3 again: then Ẽ is

(XL − Ψ)v = 0 with the same symbol ZYX .
In the general case θ �= 0 the above formula gives the differential inversion

u = θ−1(XL − Ψ)v and inserting this into the equation and the substitution we get the
following pair of PDEs:

(ZY X2 + · · · )v = 0, (ZY 2X + · · · )v = 0.

Thus the result of the transformation is a system Ẽ of type 2E4 (and class ω = 3). After
the next transformation we get equations with higher complexity κ, like 3E5 or E4 + E5

etc.

Theorem 5.3. For ω = 3 type system any (of three) generalized Laplace transformation
generically increases the complexity by one. Only in some singular cases it preserves the
type or decreases κ or reduces ω.
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For general ω the complexity increases by ≤ ω − 2 units with any generalized Laplace
transformation. Consequently the integration in closed form is a rare occasion for the class
ω ≥ 3.

Appendix A. The Method of Laplace

This method is well-known [6, 9, 10]. But for completeness, and to show parallel with what
is done for ω = 1 case, we give a short review.

The classical case concerns a hyperbolic equation E of the type E2 (which has class
ω = 2). Consider at first the linear case:

∆[u] = uxy + aux + buy + cu = 0,

where a, b, c are functions on M = R
2. We try to factorize

∆[u] = (Dy + a)(ux + bu) − k0u,

with k0 = by + ab− c the 0th level Laplace invariant.h If k0 = 0, we have an intermediate
integral v = ux + bu.

Otherwise the latter formula defines the Laplace transformation with differential inverse
u = 1

k0
(vy + av). Substitution of the inverse to the direct Laplace transformation gives the

equation

∆1[v] = (Dx + b)
(
vy + av

k0

)
− v = vxy + a1vx + b1vy + c1v = 0.

Since the equations are effectively equivalent, we search for factorization of this new
PDE. The obstruction for existence of intermediate integral is another relative invariant
k1 = (b1)y + a1b1 − c1.

If the sequence k0, k1, . . . stops at zero kn = 0, E is called Darboux semi-integrable.
In this case the equation E possesses an intermediate integral of order n, which together
with the original PDE forms a compatible pair E2 + En. Thus semi-integrability can be
interpreted as a reduction of ω = 2 equation to a system of class ω = 1, which is integrable
via ODEs.

The method of Laplace assumes that the sequence of invariants is finite in both sides,
where to the other side we add up invariantsi h0, h1, . . . obtained via X-factorization

∆[u] = (Dx + b)(ux + au) − h0u,

so that the corresponding Laplace transformation is v = ux + au with differential inverse
provided h0 = ax + ab− c �= 0 etc.

Remark. The sequence · · · h1, h0, k0, k1 · · · of relative invariants leads to a collection of
absolute invariants, but they do not form a basis that solves the equivalence problem; some
other invariants shall be added [11].

hIt belongs to a sequence of (fundamental) relative invariants with respect to linear point transformations
preserving the symbol of E .
iThe invariant hn can be also interpreted as an obstruction to find a compatible differential constraint for
the hyperbolic equation E = {∆[u] = 0}, which is a y-parametrized ODE of order n:

Pn
0 αiu

(i,0) = 0.
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In the non-linear case we cannot proceed with precise transformations, but can compute
the sequence of Laplace invariants anyway via linearizations of the corresponding operators
[2, 3].

Darboux integrability, i.e. vanishing of these generalized Laplace invariants to both
sides, again implies closed form of the general solution, as in the linear case. The above
interpretation of semi-integrability via reduction of the class from ω = 2 to ω = 1 is still
valid.

Appendix B. Spencer δ-Complex and Cohomology

These will be described only in the linear case and for the base M = R
2, see the general

description in [18].
In the case of scalar equations the symbols gk are the subspaces of the kernels πk,k−1 :

JkM → Jk−1M , which can be identified with SkT ∗, T = TxM being the (model) tangent
space.

The equation of the lower order Ek1 specifies the subbundle Ek1 ⊂ Jk1M with the
fiber gk1. The next symbols gk+1 equals the prolongations g(1)

k = (gk ⊗ T ∗) ∩ (Sk+1T ∗) for
k1 ≤ k < k2.

They correspond to the symbols of the prolonged equation Ek1 provided the compatibility
conditions of order ≤ k + 1 hold. At the jet-level k2 new equations are added, and we get
gk2 ⊂ g

(1)
k2−1 ⊂ Sk2T ∗ etc.

These symbols are united into the Spencer δ-complex

0 → gk+1 → gk ⊗ T ∗ δ−→ gk−1 ⊗ Λ2T ∗, (B.1)

where the first arrow is the inclusion and the morphism δ is the Spencer differential, i.e.
the symbolic exterior derivative (if we interpret gk ⊗ T ∗ as differential one-forms on T with
polynomial coefficients).

The cohomology group Hk,1(E) at the mid-term of (B.1) counts (i.e. dimHk,1 equals)
the amount of new equations in E at the jet-level k.

The cohomology Hk−1,2(E) at the last term of (B.1) is the most important — its elements
are the compatibility conditions.

If all the compatibility vanish, the system E is said to be formally integrable. This
is tantamount to the claim that the projections πk+1,k : Ek+1 → Ek are vector bundlesj

(regularity means constancy of ranks).
Formally integrable systems E are not necessarily involutive on the level k = kmax, but

they are such after some prolongations (for larger k). Since involutivity is equivalent to
vanishing of the Spencer cohomology [24] Hk,i = 0, this happens on the jet-level k where
dim gk stabilizes.

The growth of dim gk for large k is given by the Hilbert polynomial PE (k) = σ kd + · · · ,
where d is dimension of the characteristic variety CharC(E) ⊂ P

CT ∗ and σ is its degree [17].
For a scalar system E the (complex) characteristic variety CharC(E) is the intersection of

all characteristic varieties for individual equations Fi = 0 from E = {Fi = 0 : 1 ≤ i ≤ r} (for
each of them the characteristics are defined as loci of complexified characteristic polynomial

jContrary to this, solvability only means that E∞ → M is a (nontrivial) bundle.
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[23], namely of the Fourier transform of the symbol smbl(Fi)). Alternatively a covector
p ∈ CT ∗\{0} is characteristic if pk ∈ gC

k for all k ≤ kmax.
Notice that for linear systems the variety CharC(E) depends only on the point x of the

base M = R
2.

If E is determined or overdetermined, then CharC(E) consists of ω = σ points corre-
sponding to (complex) characteristics of E , i.e. d = 0 and we obtain that gk = ω for large k.

Acknowledgment

It is a pleasure to thank Nail Ibragimov for his translation of Sophus Lie paper [21] in
[12], which was a starting point for this paper. I am grateful to Valentin Lychagin for
many discussions on the initial stage of the project. The paper is strongly influenced by a
collaboration with Ian Anderson, to whom I am thankful. Hospitality of MLI (Stockholm)
in 2007, MFO (Oberwolfach) in 2008, Banach center (Warsaw) and Utah State University
in 2009, as well as IHES in 2010 is acknowledged.

References

[1] I. M. Anderson and M. Fels, Transformations of Darboux integrable systems, in Differen-
tial Equations: Geometry, Symmetries and Integrability, eds. B. Kruglikov, V. Lychagin and
E. Straume, The Abel Symposium 2008, Vol. 5 (Springer, 2009), pp. 21–48.

[2] I. M. Anderson and M. Juras, Generalized Laplace invariants and the method of Darboux,
Duke Math. J. 89(2) (1997) 351–375.

[3] I. M. Anderson and N. Kamran, The variational bicomplex for hyperbolic second-order scalar
partial differential equations in the plane, Duke Math. J. 87(2) (1997) 265–319.
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alités Scientifiques et Industriells, Vol. 994 (Hermann, Paris, 1945) (in French).
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