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Abstract
Accurate forest monitoring is crucial as forests are major global carbon sinks.
Additionally, accurate prediction of forest parameters, such as forest biomass
and stem volume (sv), has economic importance. Therefore, the development
of regression models for forest parameter retrieval is essential.

Existing forest parameter estimation methods use regression models that estab-
lish pixel-wise relationships between ground reference data and corresponding
pixels in remote sensing (rs) images. However, these models often overlook
spatial contextual relationships among neighbouring pixels, limiting the po-
tential for improved forest monitoring. The emergence of deep convolutional
neural networks (cnns) provides opportunities for enhanced forest parameter
retrieval through their convolutional filters that allow for contextual modelling.
However, utilising deep CNNs for regression presents its challenges. One signif-
icant challenge is that the training of CNNs typically requires continuous data
layers for both predictor and response variables. While RS data is continuous,
the ground reference data is sparse and scattered across large areas due to the
challenges and costs associated with in situ data collection.

This thesis tackles challenges related to using CNNs for regression by intro-
ducing novel deep learning-based solutions across diverse forest types and
parameters. To address the sparsity of available reference data, RS-derived pre-
diction maps can be used as auxiliary data to train the CNN-based regression
models. This is addressed through two different approaches.

Although these prediction maps offer greater spatial coverage than the origi-
nal ground reference data, they do not ensure spatially continuous prediction
target data. This work proposes a novel methodology that enables CNN-based
regression models to handle this diversity. Efficient CNN architectures for the
regression task are developed by investigating relevant learning objectives, in-
cluding a new frequency-aware one. To enable large-scale and cost-effective
regression modelling of forests, this thesis suggests utilising C-band synthetic
aperture radar (sar) data as regressor input. Results demonstrate the substan-
tial potential of C-band SAR-based convolutional regression models for forest
parameter retrieval.





Acknowledgements
Upon completion of this Ph.D. project, I take amoment to reflect on the scientific
and personal growth I have experienced over the past few years. This journey
would not have been possible without the support, discussions, and knowledge
imparted by numerous individuals. For those, I would like to express my sincere
gratitude.

First and foremost, I would like to extend my deepest thanks to my supervisor
Professor Stian N. Anfinsen. Your guidance, support, and our discussions have
been invaluable. Allow me to be personal: without your optimism and your
belief in this Ph.D. project, I would probably not have completed it. However, I
am glad to say that I did! Stian, through the years, I have also learned that a
Ph.D. project is not only a scientific journey, but also a personal one. Although
I am a person of words, meaning that I rather write too much than too little, I
struggle to find the words to describe how grateful I am to have embarked on
this personal journey with your presence on the sideline. Thank you!

I also want to thank my co-supervisor Professor Robert Jenssen for your excel-
lent lectures in Pattern Recognition, which during my master’s opened my eyes
to machine learning. Thank you for fruitful discussions and valuable feedback
during my Ph.D. project.

To Associate Professor Michael Kampffmeyer, thank you for your valuable input
and for sharing your knowledge. You really possess the ability to find the needle
in a haystack! Many thanks to Associate Professor Benjamin Ricaud and Dr.
Ahcene Boubekki for valuable input and beneficial discussions.

I would also express my gratitude to Professor Erik Næsset and Professor Terje
Gobakken for sharing their domain knowledge in forestry and for ALS data.
Special thanks for your assistance in enabling access to the forest and ALS data
used through this project.

Without access to ground reference measurements of forest parameters or ALS-
derived predictions maps, this Ph.D. project would not have been possible. I
gratefully acknowledge the Norwegian University of Life Sciences, the Tanzania



iv acknowledgements

Forest Services Agency, Professor Eliakimu Zahabu and co-workers at Sokoine
University of Agriculture, Viken Skog and the Swedish University of Agricultural
Sciences for participation in field work and provision of in situ measurements,
ALS-derived AGB and SV products. Special thanks to Dr. Lennart Noordermeer
for providing access to the ALS-derived stem volume products, Professor Håkan
Olsson for providing ALS data acquired by SLU and to Mr. Svein Dypsund at
Viken Skog for providing in situ measurements in Norway.

To the members of Team Satellite: Jørgen and Luigi, what would this project
be without you? Without peach pits throwing and discussions about MacBook?
We did not make it to Hawaii, but we continue to orbit!

To Jonas and Thomas, thank you for the fruitful discussions that lead to the
Fourier Odyssey.

Special thanks to everyone in the UiT Machine Learning group for the discus-
sions, support, ideas and the enjoyable moments we have shared. It has been
a pleasure to spend these years with you. I will never forget the experience of
sharing a box of fermented herring, on a cold, snowy day in the fall. You are
amazing!

I would like to thank my committee members for taking the time to read my
thesis and attending the defence.

At this crossroads, which finishing this thesis marks, I am very much looking
forward to bringing my scientific and personal experiences with me into the
future. I would like to express some final words of thanks.

To KSAT Kongsberg Satellite Services, thank you for supporting me in complet-
ing this Ph.D. project. I look forward to the exciting projects that lie ahead for
us and Team Object Detection!

Tomy friends, thank you for your support throughout these years. I look forward
to spending more time with you skiing, hiking, sharing more books, knitting,
talking, and to bring my sewing machine with me on new adventures! Last,
but not least, to my family and to Lars-Eirik, thank you for being with me
throughout these years, thank you for the unwavering support and patience. I
could not have done this without you, thank you!

Sara Maria Björk Tromsø, June 2023



Contents
Abstract i

Acknowledgements iii

List of Figures ix

List of Tables xi

List of Abbreviations xiii

1 Introduction 1
1.1 Key challenges . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Key objectives . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Key solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Brief summary of included papers . . . . . . . . . . . . . . . 8
1.5 Additional work . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Reading guide . . . . . . . . . . . . . . . . . . . . . . . . . 10

I Methodology and context 13

2 Remote sensing background 15
2.1 Temporal and spatial resolution . . . . . . . . . . . . . . . . 16
2.2 SAR characteristics . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Scattering . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Polarisation . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Wavelength and penetration depth . . . . . . . . . . 19
2.2.4 Moisture and other factors . . . . . . . . . . . . . . 20
2.2.5 Saturation . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 LiDAR: a conceptual overview . . . . . . . . . . . . . . . . . 20

3 Traditional methods for forest parameter prediction 23
3.1 Ground reference data . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Field inventory campaigns . . . . . . . . . . . . . . . 25

v



vi contents

3.2 Allometric equations . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Remote sensing-assisted methods for forest parameter predic-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Sequential and nonsequential modelling . . . . . . . 27
3.3.2 Approaches to forest parameter prediction . . . . . . 28

3.4 Study areas and datasets . . . . . . . . . . . . . . . . . . . 30
3.4.1 The Tanzanian datasets . . . . . . . . . . . . . . . . 30
3.4.2 The Norwegian datasets . . . . . . . . . . . . . . . . 31
3.4.3 Comments of the plot shape and size . . . . . . . . . 32

4 Machine learning basics 35
4.1 Terminology and Notation . . . . . . . . . . . . . . . . . . . 36
4.2 Machine learning tasks . . . . . . . . . . . . . . . . . . . . 36
4.3 Machine learning paradigms . . . . . . . . . . . . . . . . . 38
4.4 The machine learning approach . . . . . . . . . . . . . . . . 38

5 Deep learning basics 41
5.1 Multilayer perceptrons . . . . . . . . . . . . . . . . . . . . . 42
5.2 Convolutional neural networks . . . . . . . . . . . . . . . . 45

5.2.1 Dataset augmentation . . . . . . . . . . . . . . . . . 47
5.3 CNN architectures . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.1 Traditional autoencoders . . . . . . . . . . . . . . . 47
5.3.2 ResNet . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.3 U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Deep learning regression models for forestry 51
6.1 Generative models . . . . . . . . . . . . . . . . . . . . . . . 52

6.1.1 Generative adversarial networks . . . . . . . . . . . 52
6.1.2 Image-to-image translation . . . . . . . . . . . . . . 53
6.1.3 Training a cGAN for image-to-image translation . . . 53
6.1.4 Variational autoencoders . . . . . . . . . . . . . . . 54

6.2 Pixel- and frequency-aware convolutional regression models 55
6.3 Deep learning approaches to forest parameter retrieval . . . 57

6.3.1 Pseudo-labels for semi-supervised learning . . . . . . 59
6.3.2 Regression models with imputed pseudo-targets . . . 59

II Summary of research and concluding remarks 61

7 Summary of research 63
7.1 Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . 63
7.1.2 Contributions by the author . . . . . . . . . . . . . . 65

7.2 Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



contents vii

7.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . 66
7.2.2 Contributions by the author . . . . . . . . . . . . . . 67

7.3 Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3.2 Contributions by the author . . . . . . . . . . . . . . 70

8 Concluding remarks 71
8.1 Limitations and outlook . . . . . . . . . . . . . . . . . . . . 72

8.1.1 Future directions . . . . . . . . . . . . . . . . . . . 74

III Included papers 77

9 Paper I 79

10 Paper II 109

11 Paper III 115

Bibliography 133





List of Figures
1.1 Illustration of an AOI in the district of Liwale, Tanzania, with

associated ALS strips and field plots. . . . . . . . . . . . . . 4
1.2 Disjoint ALS-derived SV prediction maps from Nordre Land. 5
1.3 Overview of the topics that the various papers address. . . . 8

2.1 The electromagnetic spectrum. . . . . . . . . . . . . . . . . 16
2.2 Different scattering types for SAR data. . . . . . . . . . . . . 18
2.3 Penetration depth related to the wavelength. . . . . . . . . . 20
2.4 Principle of an ALS imaging system. . . . . . . . . . . . . . 21

3.1 Difference between a traditional nonsequential and a sequen-
tial regression modelling. . . . . . . . . . . . . . . . . . . . 27

3.2 The location of the Tanzanian datasets. . . . . . . . . . . . . 30
3.3 The location of the three Norwegian regions. . . . . . . . . . 32
3.4 Illustration of the ALS-derived SV prediction dataset from the

northern parts of Nordre Land. . . . . . . . . . . . . . . . . 33

4.1 Illustration of supervised machine learning. . . . . . . . . . 37
4.2 5-fold CV. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Illustration of the relationship between AI, ML and DL. . . . 42
5.2 Illustration of simple MLP. . . . . . . . . . . . . . . . . . . . 43
5.3 Illustration of simple CNN architecture. . . . . . . . . . . . . 46
5.4 Illustration of a traditional AE. . . . . . . . . . . . . . . . . 47
5.5 Overview of two common up-sampling techniques. . . . . . 49
5.6 The architectures of ResNet-34 and a U-Net. . . . . . . . . . 50

6.1 Illustration of a cGAN. . . . . . . . . . . . . . . . . . . . . . 53
6.2 Sample of the discontinuous ALS-derived SV prediction map. 60

7.1 Illustration of the methodology in Paper I. . . . . . . . . . . 65
7.2 Illustration of some results from Paper II. . . . . . . . . . . . 67
7.3 Illustration of the methodology in Paper III. . . . . . . . . . 69

ix





List of Tables
2.1 The most commonly employed microwave bands. . . . . . . 19

xi



xii l ist of tables



List of Abbreviations
AE Autoencoder

AGB Aboveground Biomass

AI Artificial Intelligence

ALS Airborne Laser Scanning

AOI Area of Interest

AzI Azimuthal Integral

BGB Belowground Biomass

BN Batch Normalisation

cGAN Conditional Generative Adversarial Network

CNN Convolutional Neural Network

CV Cross validation

DEM Digital Elevation Model

DL Deep Learning

GAN Generative Adversarial Network

I2I Image-to-Image

IPCC Intergovernmental Panel on Climate Change

LiDAR Light Detection and Raging

xiii



xiv l ist of abbreviat ions

lr Learning Rate

MAE Mean Absolute Error

ML Machine Learning

MLP Multilayer perceptron

MSE Mean Squared Error

NFI National Forest Inventory

NN Neural Network

RAR Real Aperture Radar

ReLU Rectified Linear Unit

ResNet Residual Network

RMSE Root Mean Squared Error

Rose-L Radar Observing System for Europe in L-band

RS Remote Sensing

SAR Synthetic Aperture Radar

SGD Stochastic Gradient Decent

SV Stem Volume

tanh Hyperbolic tangent

VAE Variational Autoencoder

XAI Explainable Artificial Intelligence



1
Introduction
Since the first aerial photographs were taken in 1909 [1, 2], there has been
a tremendous increase in new RS missions for earth observation, including
unmanned aerial vehicles, airborne and spaceborne sensors. These have further
led to various surveillance and monitoring applications that rely heavily on
RS images. The forestry sector, in particular, extensively utilises RS sensors
due to their ability to efficiently map vast land areas and remote regions. The
applications of RS in forestry encompass diverse areas, including but not limited
to change detection, wildfire mapping, storm damage monitoring and forest
parameter retrieval [2–6].

Due to climate change, accurate monitoring of aboveground forest biomass
(agb) becomes essential. Forests can, for example, store more carbon than
the atmosphere, making them one of the largest global carbon sinks [7, 8].
Furthermore, from an economic perspective, accurately measuring, monitoring,
and predicting AGB is essential to estimate factors like the availability of raw
materials and the potential for bioenergy [9, 10]. Considering that the forest
SV constitutes a significant proportion of the biomass of each tree, typically
ranging from 65% to 80% [11–13], both overall forest AGB and SV are two
essential forest parameters to monitor and predict.

For forest parameter retrieval, a small collection of ground reference data is
commonly associated with RS data through regression models [14–16]. The
purpose is to establish a relationship between measured RS backscatter and
biophysical forest parameters such as AGB or commercial SV. Traditional linear

1



2 chapter 1 introduction

statistical models, such as multiple linear regression, have conventionally been
adopted for this task. The evolution of machine learning methods in the last
decades has introduced new algorithms for forest parameter retrieval. Espe-
cially popular for this task are random forests, support vector machines for re-
gression, or fully connected neural networks (nns) [15,17]. These methods can
capture complex nonlinear relationships between individual points of ground
reference data and corresponding RS image pixels. However, a drawback of
machine learning-based methods is that these generally do not incorporate
spatial contextual relationships from neighbouring image pixels in the learning
process [17].

The field of computer vision and pattern recognition has undergone a signifi-
cant transformation in recent years, thanks to advancements in computational
power, the availability of large labelled image databases, and the emergence
of deep CNNs [18]. Unlike traditional machine learning methods, the power
of CNNs lies in their use of convolutional filters, which allow the image data
to be processed in blocks. This enables the model to incorporate the spatial
neighbourhood of each pixel in the learning process [3,4,18]. Thus, CNN-based
regression models offer great potential for exploiting and modelling the com-
plex relationships between RS data and forest parameters.

Training of CNNs typically requires the predictor and response variables to be
continuous data layers sampled on matching grids. However, this requirement
poses a challenge in the context of forest remote sensing. While RS data are
continuous, the available ground reference data for forests is limited to a sparse
set of spatially scattered measurements due to the challenges and costs associ-
ated with in situ data collection [15, 19]. Consequently, it becomes difficult to
effectively utilise regression models that rely on convolutional filters when the
ground reference data is spatially discrete and cannot be easily aligned with
the input data.

The focus of this thesis is to develop methodologies for advancing forest pa-
rameter retrieval through the use of deep convolutional regression models.
Challenges related to this objective are briefly outlined in the following section
and further addressed in the included papers of this thesis.

1.1 Key challenges

The main objective of this thesis is to address three key challenges associated
with the application of deep learning methods in the retrieval of forest parame-
ters: (1) the lack of reference data to use as prediction targets, (2) the diversity
in spatial coverage of RS-derived prediction maps, and (3) the applicability of



1.1 key challenges 3

forest regression models. These challenges will be explained and addressed
in the following. Detailed discussion on these challenges will be presented in
Chapter 3 and Chapter 6.

Lack of reference data to use as prediction targets: Central to the devel-
opment of accurate regression models for forestry is the need for a sufficient
amount of regressor (input) and regressand (target) data. By utilising RS data
as input to the model, one ensures that the availability of regressor data is not
a limiting factor during model training. However, in forestry, the collection of
ground reference data for parameters such as AGB poses limitations due to
the labour-intensive, time-consuming, and expensive nature of field inventory
campaigns [4, 15]. Consequently, the target data comprising ground reference
measurements are sparse. This sparsity has a dual aspect, referring to both the
limited number of collected samples and the spatially scattered distribution of
ground reference measurements within the area of interest (aoi).

In traditional statistical or machine learning-based regression models, having
limited access to prediction targets is typically not an issue, as these models
commonly establish a direct relationship at the pixel level. However, as previ-
ously mentioned, training of CNNs requires continuous data layers for both
predictor and response variables. Consequently, the absence of continuous dis-
tributed ground reference measurements poses a significant challenge to the
employment of CNN-based models for forest parameter retrieval [4].

Diversity in spatial coverage of RS-derived prediction maps: In this work,
RS-derived prediction maps are used as auxiliary data to remedy the sparsity of
the available reference data. For instance, due to the strong correlation between
airborne laser scanning (als) data and e.g. forest height, thereby also to AGB
and SV [2,20], ALS-derived prediction maps can serve as a reliable alternative
or complement to a sparse set of ground reference data1. Consequently, by
training regression models to relate RS data to e.g. ALS-derived forest products,
one obtains a denser dataset of prediction targets and facilitates CNN-based
regression models.

The acquisition cost of ALS data is high [7,21,22], which means that economic
considerations often limit the feasibility of obtaining wall-to-wall coverage
of ALS data in large regions. One particular example is the study of Ene et
al. [22] in the Liwale district of Tanzania,where full-coverage ALSmapping was
economically infeasible for a study related to the national field inventory (nfi)
campaign. Instead, ALS data were acquired as 32 strips, each with a swath
width of 1350 m and a spatial separation of 5 km, as shown in Figure 1.1. The
swath of the ALS instrument determined the width of the data stripes, and the

1. This is further discussed in Section 3.3.1 and Section 6.3.2.
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Figure 1.1: Left: Illustration of the AOI in the administrative district of Liwale, Tan-
zania. Right: Distribution of the 32 parallel strips, from which ALS data
were acquired, and the associated field plots, where ground reference data
were acquired. Image retrieved from [22].

gaps were as narrow as the data budget could allow, given that stripes of data
should be captured across the entire district of Liwale to ensure representative
coverage of the forest [22]. Without extrapolating, the resulting ALS-derived
AGB prediction maps will only cover the same 32 strips of the AOI.

Another example is the work by Noordermeer et al. [23], who developed re-
gression models for SV in managed Norwegian boreal forests using ground
reference and ALS data. After model fitting, the generation of ALS-derived SV
prediction maps was limited to areas where the forest height exceeded 8-9
meters. As further discussed in Section 3.4.2, the height constraint resulted in
spatially disjoint ALS-derived SV prediction maps, as shown in Figure 1.2. Thus,
although RS-derived prediction maps offer greater spatial coverage than the
original ground reference data, and can be used as a complementary source of
training data, they do not ensure spatially continuous prediction target data.
Instead, these products introduce challenges related to partly continuous target
data, which must be considered before utilising this data to train CNN-based
regression models in forestry.

Applicability of forest regression models: RS-based regression models pro-
vide significant advantages to the forestry sector by enabling the measurement,
monitoring, and prediction of forest parameters, including AGB, on a large
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Figure 1.2: A small section of the disjoint ALS-derived SV prediction maps. The dataset
is retrieved from the northern parts of Nordre Land.

scale [7, 15,21]. However, for these models to be of practical use in operational
settings, they must provide accurate predictions. While the convolutional filters
in the CNN offer the potential to capture spatial contextual relationships within
the data, the model’s performance is influenced by several factors, including
the suitability of the input and target data and choosing a suitable learning
objective. In the context of this thesis, the CNN model has to learn from images
outside the natural image domain, such as RS images. While RS image data
hold much higher frequencies than natural images [24], the learning process
may be challenging, as studies have shown that NNs have a bias against learn-
ing the high-frequency content of images [25, 26]. Thus, choosing a suitable
learning objective implies that CNN-based regression models have to capture
the full dynamic range of RS image data to perform accurately in terms of
mean absolute error (mae) or root mean squared error (rmse), which are the
relevant metrics for the regression task.

The suitability of the input and target data is both related to the informativeness
of the data, and whether the data meet region-specific or application-specific
constraints. While ALS-based regression models are known to be more accurate
than models that use radar or optical data [21,27], the associated acquisition
cost can restrict its usefulness [19]. In initiatives like the REDD+ program2, the
economic aspect becomes even more crucial, favouring the use of freely avail-
able data. Furthermore, the input data should be regularly updated over the
AOI to ensure the model’s operational usefulness and provide accurate predic-
tions. In certain cases, such as tropical and Arctic regions, it is advantageous if
RS data can be acquired regardless of the weather or lighting conditions.

2. The official name of the REDD+ program is "Reducing emissions from deforestation and
forest degradation, plus the sustainable management of forests, and the conservation and
enhancement of forest carbon stocks".
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1.2 Key objectives

To address the aforementioned challenges, this thesis proposes novel method-
ologies for deep convolutional regression modelling for forest parameter re-
trieval. The key objectives of this thesis are summarised as follows:

1. Develop methodologies that facilitate the utilisation of CNN-based regres-
sion models in forestry by incorporating spatially continuous or partially
continuous sensor-derived forest products.

2. Develop methodology that enables CNN-based regression models to learn
effectively from a sparse set of ground reference data.

3. Propose a novel loss function to mitigate the spectral bias of CNNs, to
improve their learning and generation of the high-frequency content in
images.

The contributions of this thesis lie in achieving these key objectives, either
alone or in conjunction with one another. These objectives have implications in
various ways. For instance, the third objective focuses on enhancing CNN-based
regression models to effectively learn from image data, particularly RS data,
which is known for its high-frequency information content.

Moreover, the contributions of this thesis extend beyond the forestry sector.
The techniques and methodologies developed can be applied to convolutional
regression of biophysical parameters in diverse fields since the challenge with
limited and spatially scattered ground reference data also exists outside the
forestry sector. The subsequent sections elaborate on how the three papers
address the key objectives.

1.3 Key solutions

This thesis explores the potential for combining convolutional deep learning
methodologies with RS data to advance present methods for forest parameter
retrieval. The three papers included in the thesis address the outlined key
objectives in different ways.

The first key objective is addressed in Paper I, which focuses on AGB prediction
and proposes to utilise sequential modelling to bypass the limited amount of
reference data, which are referred to in the following as the true prediction tar-
gets. Specifically, Paper I develops the second regression model in the sequence
that utilises a wall-to-wall map of ALS-derived AGB predictions as a surrogate
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for the true prediction targets, and spatially extensive RS data as regressor
data. This is possible because, unlike, for example [22], the AOI studied in
Paper I is restricted to a smaller region in the Liwale district of Tanzania for
which wall-to-wall coverage of ALS data is available. The smaller AOI ensures
that the surrogate prediction target is spatially continuous and enables the
use of convolutional regression models based on the conditional generative
adversarial network (cgan). The models are trained to learn the relationship
between regressor data from the Sentinel-1 sensor and the wall-to-wall maps
of ALS-derived AGB predictions.

Paper III frames its proposed algorithm as a semi-supervised deep learning
approach to train deep convolutional regression models on either continuous
or partially continuous ALS-derived prediction maps, which are referred to
as pseudo-targets. By imputing the pseudo-targets into the sparse set of true
prediction targets, i.e. the ground reference data, Paper III address both key
objective 1 and 2. The proposed semi-supervised imputation strategy enables
the use of convolutional regression models for forest parameter retrieval.

The third key challenge is addressed in different ways in the three papers. In
Paper II, a novel frequency-aware loss function is proposed. The frequency-
aware loss function is complementary to other loss functions, implying that
regression models can be trained to focus on learning both the high-frequency
content of the image and other characteristics important for the regression task.
While Paper II only evaluates the loss function on images from the natural image
domain, the frequency-aware loss function was further evaluated in Paper III
on RS images.

Both Papers I and III leverage openly accessible data from the Sentinel-1 sensor
as regressor data. The Sentinel-1 sensor is an active C-band SAR sensor that
offers dependable acquisition modes and schedules, making it a reliable choice
as it can acquire data both at night and under cloudy conditions. As a result,
SAR data obtained from the Sentinel-1 sensors facilitate large-scale and cost-
effective regression modelling of forests. Moreover, once the regression models
are optimised, recently collected Sentinel-1 data can be utilised to provide
up-to-date predictions for AGB or SV.

As shown in [3], deep convolutional regression in vegetation applications, such
as forestry, is limited in research. This is probably due to challenges related
to using deep convolutional regression models in applications when data is
sparse and spatially scattered [4]. By training convolutional regression models
on ALS-derived forest parameter prediction maps, this thesis contributes to
bridging the gap between the sparse and spatially scattered ground reference
data and the use of convolutional regression models.
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Figure 1.3: Overview of the topics that the various papers address, the Roman numbers
refers to each of the papers included in this thesis, i.e. Papers I, II and
III. The Arabic numeral refers to the paper listed under Section 1.5. The
colours on the boxes refer to themes within forestry or within applications
explored in this thesis.

1.4 Brief summary of included papers

This section presents a list of the papers included in this thesis, along with
a brief summary of each paper. An extended summary of the listed papers
included in the thesis can be found in Sections 7.1, 7.2 and 7.3. Section 1.5 lists
additional academic work published during this Ph.D. project.

Figure 1.3 provides an overview of the topics covered in this thesis,where Papers
I, II and III are referenced through their Roman number. The reference to Paper
1 in Figure 1.3 refers to the work listed under Section 1.5. The green coloured
boxes in Figure 1.3 signify themes associated with forestry, while grey-coloured
boxes represent various thematic applications explored in this thesis.

I. Sara Björk, Stian Normann Anfinsen,ErikNæsset,Terje Gobakken, and Eli-
akimu Zahabu. "On the Potential of Sequential and Nonsequential
Regression Models for Sentinel-1-Based Biomass Prediction in Tan-
zanian Miombo Forests", in IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 15, pp. 4612-4639, 2022.

II. Sara Björk, Jonas N. Myhre, and Thomas Haugland Johansen. "Simpler
is Better: Spectral Regularization and Up-sampling Techniques for
Variational Autoencoders", in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 3778-3782, 2022.

III. Sara Björk, Stian N. Anfinsen,Michael Kampffmeyer,Erik Næsset, Terje Gob-
akken, and Lennart Noordermeer. "Forest Parameter Prediction by Mul-
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tiobjective Deep Learning of Regression Models TrainedWith Pseudo-
Target Imputation", submitted to IEEE Transactions on Geoscience and
Remote Sensing, 2023.

Paper I: This paper uses a sequential regression modelling approach to ex-
plore the potential of utilising CNN-based regression models for forest AGB
prediction. In the sequence, the first regression model has linked in situ AGB
data to ALS data and produced the ALS-derived AGB prediction map. Paper
I focuses on developing methods for the second regression model in the se-
quence. It proposes training cGANs in a supervised setting to translate false
colour image patches of Sentinel-1 backscatter into synthetic ALS-derived AGB
prediction patches that closely resemble true ALS-derived AGB prediction maps.
This approach enables the regression model to exploit the spatial context of
the regressor and regressand data during the learning process. The proposed
cGAN-based regression models are evaluated against parametric sequential
and nonsequential Sentinel-1-based regression models, also proposed in Paper
I. Additionally, all the models proposed in the paper are compared with other
nonsequential sensor-based regression models previously developed for the
AOI [28]. The empirical results demonstrate the potential of utilising C-band
Sentinel-1 data for forest monitoring. Furthermore, the contextual cGAN-based
regression models seem to capture the dynamic range and local variability of
AGB.

Paper II: Proposes a novel frequency-aware objective function that can be
incorporated with standard objective functions, such as pixel-aware or adver-
sarial losses, in the learning of deep generative models. The purpose of the
frequency-aware objective function is to enforce the model to also focus on
achieving agreement of the overall spectral content of the data. The impact
of the proposed objective function was evaluated by training generative vari-
ational autoencoder (vae) [29] networks on benchmark datasets of natural
images. Empirical results demonstrate that generative VAE models trained with
the proposed objective function achieve results equal to, or better than, the
current state-of-the-art in frequency-aware losses for generative models.

Paper III: This paper extends the research proposed in Paper I and Paper II.
Specifically, Paper III proposes a novel methodology that leverages the available
ALS-derived prediction maps and the limited amount of available ground ref-
erence measurements of AGB or SV to improve the performance of CNN-based
regression models for forest parameter prediction. This is achieved by treating
the ALS-derived maps as pseudo-targets and the ground reference measure-
ments as true predictive targets. The methodology employs a semi-supervised
imputation strategy where the sparse dataset of true targets is imputed with
pseudo-targets, which provides a partially continuous target dataset. Note that
the models are trained in a supervised fashion, as in Paper I. By utilising forest
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masks, CNN-based regression models for forest parameter retrieval are enabled,
as the CNN models are trained only in areas where ALS-derived predictions are
available. Paper III further proposes to incorporate different learning objectives
in the optimisation process, and especially the new frequency-aware objective
function proposed in Paper II to improve learning from RS data that are charac-
terised by high-frequency information content. Empirical results demonstrate
that models developed with the proposed pseudo-target imputation strategy
achieve state-of-the-art performance that surpasses traditional ALS-based re-
gression models. Results are consistent for experiments on AGB prediction
in Tanzania and SV prediction in Norway, which shows the robustness of the
proposed methodology.

1.5 Additional work

1. Sara Björk, Stian Normann Anfinsen,ErikNæsset,Terje Gobakken, and Eli-
akimu Zahabu. "Generation of Lidar-Predicted Forest Biomass Maps
from Radar Backscatter with Conditional Generative Adversarial Net-
works", in IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), 2020.

1.6 Reading guide

The remainder of this thesis is organised into three parts, I) Methodology and
context, II) Summary of research and concluding remarks, and III) Included pa-
pers.

The first part, Methodology and context comprises five chapters organised as
follows: Chapter 2 provides an overview of the remote sensing background,
emphasising the SAR sensor and SAR data. ALS data for forest applications
are briefly described here, as this thesis relies on using ALS-derived forest
parameter prediction maps. Chapter 3 offers a brief introduction to traditional
methods for forest parameter prediction, including methods for retrieval of
ground reference data, focusing on AGB prediction. This chapter also introduces
the study areas and the datasets relevant to Papers I and III, including the
ALS-derived forest parameter prediction maps. Chapter 4 provides the basic
machine learning concepts, while Chapter 5 covers the fundamental aspects
of deep learning, with an emphasis of CNNs. Chapter 6 combines the basic
concepts of Chapter 4 and Chapter 5 and introduces concepts for utilising
deep learning regression models for forestry, including the semi-supervised
imputation strategy with pseudo-targets.
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The second part, Summary of research and concluding remarks, consist of four
chapters, where Chapter 7-9 provides a brief overview of the three included
papers, their scientific contributions and the author’s main contributions to the
works. Additionally, Chapter 8 includes some concluding remarks and discusses
the limitations and potential future work in the field of deep convolutional
regression modelling for forestry.

Lastly, the section Included papers includes the three research papers that form
the basis of this work.





Part I

Methodology and context
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2
Remote sensing
background

Within earth observation, the term remote sensing was introduced in 1960-1970
and refers to the acquisition of information about objects in the atmosphere,
on the Earth’s land or water surfaces without being in physical contact with
it [1, 2]. The work presented in this thesis focuses on using data acquired
from active remote sensing systems as these can acquire data regardless of
the weather and lightning conditions [15, 30]. Unlike passive systems, which
rely on naturally occurring energy sources, active systems themselves transmit
signals that interact with the Earth. The active sensors then detect and measure
reflected backscatter from the ground to acquire information about the objects
of interest [1,6]. Among the most widely used active remote sensing systems
are microwave (radar) instruments and light detection and ranging (lidar)
instruments.

Much of the groundwork and development of radar instruments occurred dur-
ing World War II, which led to the development of the first real aperture radar
(rar) and SAR during the 1950s. NASA’s first SAR sensor, which provided
public-domain data, was launched in 1978 [6]. While SAR sensors transmit
microwaves, the LiDAR sensor, developed in 1960, instead transmits laser light,
often using wavelengths in the visible or near-infrared parts of the electromag-
netic spectrum, see Figure 2.1 [1, 6]. An overview of state-of-the-art remote
sensing platforms and sensors, including SAR and Lidar sensors, can be found

15
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Figure 2.1: The electromagnetic spectrum sectioned by frequency or wavelength. Im-
age retrieved from [1].

in the survey [31].

This thesis, and especially Paper I and III, focuses on using spaceborne SAR
data from the Sentinel-1 sensor and remote sensing-derived products from
ALS systems for forest parameter prediction. Thus, this chapter commences by
establishing the definitions of temporal and spatial resolution in Section 2.1,
followed by Section 2.2, which briefly introduces the most important concepts
and characteristics of spaceborne SAR data, which can be used to train para-
metric and nonparametric regression models for forest parameter prediction.
Interested readers are directed to [1, 6] for a more comprehensive technical
background on SAR and SAR data. The chapter concludes with Section 2.3,
where we offer conceptual insight into using ALS data for forest parameter
prediction. We refer interested readers to [16] for a comprehensive overview
of ALS for forestry applications.

2.1 Temporal and spatial resolution

Within remote sensing, the term resolution is characterised into many types,
where we focus on the temporal resolution and spatial resolution and refer
to [1,2] for additional definitions.

Spaceborne SAR sensors map the Earth’s surface in a predefined temporal
scanning pattern. Based on the satellite’s revisit period, this results in frequent
revisits of the same point on Earth. Depending on the satellite, the revisit time
may vary between days up to severalweeks [15]. Thus, the temporal resolution
reflects the revisiting time, where a fine temporal resolution implies a short
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revisit time, while a course temporal resolution reflects a long revisit time [2].
The temporal resolution is not the most important aspect for forest AGB or
SV prediction as, except for shedding leaves, changes in AGB or SV are not
expected to occur rapidly during a season. However, the temporal resolution
can be important to secure data coverage in dry seasons, when the radar cross-
section has a larger dynamic range [1, 15,30]. This makes it more sensitive to
changes in forest parameters and better suited for prediction tasks, including
regression. LiDAR systems, such as the ALS, are not operating following a
predefined temporal scanning pattern compared to SAR satellites. Instead,
they are explicitly employed during so-called flight campaigns for mapping
the forest of a specific region. Thus, the term temporal resolution is commonly
not employed for ALS systems. Alternatively, the term "multi-temporal ALS
datasets" can describe ALS datasets collected at different times [16].

On the other hand, the spatial resolution relates to the minimum distance
between two points on the surface that allows the two points to be separated in
a remote sensing image. A sensor with high spatial resolution reflects a sensor
that can discriminate between spatially close objects on the ground. The spatial
resolution should not be confused with the pixel size, which for SAR is the
measured pixel spacing in azimuthal or range direction after processing of the
remote sensing data [15].

2.2 SAR characteristics

Spaceborne SAR sensors are active instruments that enable all-day and all-
weather operational capabilities, implying that they can be utilised for regular
mapping of regions that are affected by heavy cloud coverage, extended dark
winter and persistent rain periods [15]. Consequently, SAR data are especially
popular in systems that monitor, measure and predict forest parameters in
regions that experience several yearly rain periods, such as Tanzania.

Compared to optical data acquired from standard digital cameras, SAR data
is complex to process and requires domain knowledge about how microwave
energy interacts with objects in the terrain. For example, SAR imagery has a
grainy salt-and-pepper appearance known as speckle. The multiplicative speckle
phenomenon is an inherent property of narrow-banded coherent imaging sys-
tems such as SAR,which result in a coherent addition of many scattering echoes
from separate, but adjacent scatterers within a resolution cell [1,2,6,15]. Thus,
speckle noise is unavoidable, but its effects in SAR imagery can be reduced
through different filtering techniques, see [2, 15].
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Figure 2.2: Different scattering types for SAR data. Image adapted from [15].

2.2.1 Scattering

The current operational SAR sensors operate at a single frequency band within
the microwave region of the electromagnetic spectrum. Conceptually, SAR op-
erates by transmitting long-wavelength microwave energy and measuring the
amount of microwave energy backscattered from the terrain [6]. Physical rela-
tionships between the backscattered signal and objects present in the terrain
can be developed based on knowledge of the surface and terrain being mapped,
such as whether buildings or forests cover it. Figure 2.2 depicts the main scat-
tering types for SAR data, which depicts how much of the incoming signal is
reflected back to the sensor. For example, the amount of direct and isotropic
scattering depends, among other things, on the smoothness or roughness of
the surface. A surface’s roughness is itself relative to and dependent on the
wavelength (frequency) at which the radar operates.

The signal is directly reflected back to the sensor in surface (direct) scattering.
This direct reflection can be part of diffuse or isotropic scattering, where large
parts of the incoming signal are scattered away from the sensor [1,2]. Double-
bounce scattering implies that the orientation of different objects, such as the
vertical structure of e.g. the tree stem (or a building) and the horizontal ground,
deflects the incoming signal back to the SAR sensor. In contrast, volume scatter-
ing implies that the signal bounces multiple times within the vegetation before
a proportion of the signal is reflected to the sensor. Depending on the forest
type and the signal frequency, double-bounce, volume, and surface scattering
are among the most common scattering types in forests [15,32].

2.2.2 Polarisation

Scattering properties and the scattered signal’s strength depend on many fac-
tors, such as the polarisation of the transmitted and received electromagnetic
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Table 2.1: The most commonly employed microwave bands [6, 15].

Frequency band X C L P
Frequency [GHz] 12.5-8.0 8.0-4.0 2.0-1.0 1.0-0.3
Wavelength 𝜆 [cm] 2.4-3.8 3.9-7.5 15.0-30.0 30.0-100

wave. Another factor is the dielectric properties of the medium, which in turn
is affected by moisture1 and material properties [1].

Most SAR sensors transmit either horizontally (H) or vertically (V) polarised
microwave pulses and, depending on the radar system, receive either horizon-
tally or vertically polarised energy scattered from the ground or both polari-
sations (dual-pol). Most single-polarisation (single-pol) SAR systems transmit
and record like-polarised signals (e.g. HH or VV). However, there exists a few
single-pol SAR systems that are able to measure the cross-polarised signal
(e.g. HV or VH). Dual-pol SAR sensors transmit one polarisation and record
the like-polarised and cross-polarised signals (e.g. HH and HV). Quadrature-
polarimetric SAR sensors are the most refined system, which transmits and
receive both polarisation [15].

2.2.3 Wavelength and penetration depth

Table 2.1 outlines the frequency range and corresponding wavelength of the
most widely used frequency bands operated by SAR. There are currently no
operating spaceborne P-band SAR sensors, which limits their use for large-scale
national-level forest mapping. The first planned spaceborne P-band mission to
provide global measurements of vegetation and forest biomass is the BIOMASS
satellite, which is scheduled for a launch in 2024 [15]. It will be particularly
important for biomass estimation in high and dense forests, such as rainforests,
which require low frequency to penetrate the whole forest volume.

As shown in Figure 2.3, the penetration depth of the microwave signal into
forests depends on the signal’s wavelength. Furthermore, scattering occurs
when the particles are on the same scale as the radar wavelength, causing the
X-band radar to mainly interact with the upper layer of the canopy, through
surface and volume scattering, and C-band with the crown volume. On the
other hand, both L- and P-band radar can penetrate deeper into the forest
[15,32].

1. See Section 2.2.4.
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Figure 2.3: Differences in penetration depth, which is related to the wavelength. Il-
lustration from [15].

2.2.4 Moisture and other factors

Other factors also impact the penetration depth and strength of backscattered
signals besides those mentioned earlier. For instance, the angle at which the
sensor views the terrain, the terrain’s topography and environmental conditions,
such as soil moisture and vegetation phenology or moisture or moisture in
genera [1,8, 15, 33]. While geometric distortions caused by topography effects
can be mitigated through proper geocoding of the SAR data [1,2], the moisture
effects in tropical regions can be limited by choosing SAR imagery outside
the periodic rain periods or data from a SAR sensor that operates with longer
wavelengths [30].

2.2.5 Saturation

Radar backscatter correlates with biomass, indicating that biomass increases
with the magnitude of the backscatter signal. However, the correlation tends
to saturate at a level, implying that a further biomass increase generally can-
not be inferred from the SAR data. The saturation level is dependent on the
wavelength of the radar, with longer wavelengths (such as L-band and P-band
SAR) typically having higher saturation levels [8,21,32,34]. Therefore, these
longer wavelength SAR data are often preferred for developing SAR-based AGB
regression models.

2.3 LiDAR: a conceptual overview

Since the papers included in this thesis solely focus on utilising ALS-derived
prediction maps of either AGB or SV, they do not directly address the ALS
data itself. Therefore, this overview aims to provide a condensed conceptual
understanding of ALS data and to highlight the difference between SAR and
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Figure 2.4: Principle of an ALS imaging system, showing both the whole reflected
waveform and discrete returns as the red circles. Image adapted from [15].

ALS remote sensing of forests. It is important to note that activities related to
performing ALS flight campaigns, processing ALS data, and deriving ALS-based
forest parameter prediction models are outside the scope of this thesis.

Similarly to the SAR, LiDAR is also an active remote sensing sensor, however
commonly operating in the visible or near-infrared part of the electromagnetic
spectrum when utilised for vegetation purposes [20]. For ALS systems, the Li-
DAR instrument is mounted on airborne platforms. It operates by transmitting
laser pulses to target objects on the ground and by measuring the round-trip
time for a pulse from the sensor and the target. As each laser pulse interacts
with different components of the canopy, vegetation, stem and ground surface,
the reflected light pulse creates a waveform of returned energy, shown in Fig-
ure 2.4, with different peaks representing the different components. Some ALS
sensors record and digitalise the whole waveform, known as full-waveform ALS,
while others, known as discrete return ALS, only record the time and the re-
flected pulse energy of one to five echoes for each transmitted pulse [2, 16,20].
These discrete echoes are shown as the red circles in Figure 2.4.

By knowing the returning pulse’s position, direction and angle, the distance
to the target can be measured [20,35]. Therefore, echoes from repetitive ALS
pulses provide an elevation profile underneath the platform. By having access
to a digital elevationmodel (dem) representing the terrain surface ground, tree
heights can be inferred directly from the ALS data by subtracting the ground
elevation from the dataset [2, 20]. ALS data, therefore, provides an accurate
and direct measure of the tree height which, by use of allometric equations2,
can be related to AGB.

2. See Section 3.2.





3
Traditional methods for
forest parameter
prediction
Forests play a crucial role in mitigating climate change through their ability to
absorb and store carbon dioxide in the vegetation biomass, which is a larger
global storage of carbon than the atmosphere [7,8,36]. Furthermore, sustain-
able forest management and estimation of available raw materials or the poten-
tial for bioenergy are additional crucial factors that require accurate mapping
and monitoring of forests and forest biomass [9, 10, 15, 37–39]. The primary
difficulty in monitoring AGB is to obtain field measurements in various parts
of the world due to various factors, such as geographical remoteness, lack of
capacity, data scarcity and armed conflicts. Thus, the most cost-effective tech-
nology to overcome this challenge is the combination of remote sensing and
ground measurements for AGB monitoring to obtain current information on
forest coverage and carbon stocks at various scales [7,14,15,21,36,39,40].

This chapter provides an overview of forest monitoring, conventional methods
of forest parameter prediction and the motivation behind the deep learning
methods proposed in Paper I and Paper III, which focus on using deep convolu-
tional regression models for forest parameter prediction. We start this chapter
by briefly introducing general concepts related to field data and field inventory
campaigns in Section 3.1. Section 3.2 generally introduces allometric equations,

23
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while Section 3.3 describes standard conventional remote sensing methods for
forest parameter prediction and more advanced methods based on machine
learning and deep learning. Lastly, Section 3.4 presents the study areas and
data studied in Paper I and Paper III, which includes the ground reference
datasets, the ALS-derived forest prediction maps, the Sentinel-1 data and chal-
lenges related to the use of these datasets to train deep convolutional regression
models.

For simplicity, Sections 3.1, 3.2 and 3.3 concentrate on methodologies for obtain-
ing AGB ground reference data and performing AGB prediction. Nevertheless,
the methodologies for obtaining ground reference data or predicting other
forest parameters, such as SV, are similar to those presented.

3.1 Ground reference data

Living forest biomass is classified into two classes; AGB, which includes stems,
stumps, branches, bark, seeds, and foliage, and below-ground biomass (bgb),
which includes all living roots with a diameter larger than 2mm in diameter [8,
9,21,39]. In this thesis, only AGB is considered, and the terms biomass and AGB
will be used interchangeably to refer to living forest above-ground biomass. As
the forest stem volume, SV, accounts for the highest proportion of the biomass
in a tree, approximately 65-80 % [11–13], AGB monitoring commonly focuses
on either estimating the total amount of AGB or SV [12, 23, 28, 38]. While
Paper I solely focuses on developing methodologies for AGB prediction, Paper
III addresses both AGB and SV prediction.

Ground reference field data is essential to support any remote sensing appli-
cation that aims to monitor and map forest parameters locally, regionally or
nationally. In situ AGB data are acquired through NFI campaigns or representa-
tive case studies of forests using either destructive or nondestructive sampling [8].
The destructive method estimates available biomass from the weight of dried
plants and trees. In contrast, the nondestructive method implies that tree pa-
rameters such as tree height and stem diameter are measured for predefined
small sites, so-called sample plots. These measurements are later related to
AGB or SV using allometric equations that are determined through statistical
regression methods [8,21, 39]. These equations have typically been developed
for a specific forest stand, or AOI [8]. Although destructive sampling is the
most accurate for small regions, it is typically avoided due to its high cost and
the time-consuming process, resulting in the nondestructive sampling tech-
nique being the most commonly used method for obtaining ground reference
data.
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3.1.1 Field inventory campaigns

Although fieldwork was not conducted as part of this thesis, this section points
out some important aspects of field work practices to provide a basic under-
standing of the methods described in Section 3.3 and the data presented in
Section 3.4. The interested reader can consult [15] for a summary of guidelines
for field plot or sampling design or references to suitable documentation on
choices related to field inventory sampling.

Field inventories are conducted at the local, regional or national level to obtain
representative data for a specific application. Various decisions must be made
before carrying out a field inventory campaign, such as deciding on the num-
ber of plots and plot shape. The number of plots should be large enough to
decrease the estimated parameter’s uncertainty below some targeted level and
to account for local variations in an AOI [2, 15]. At the same time, they should
not be too numerous as this implies a labour-intensive, time-demanding and
costly field inventory campaign [15]. As a result, the cost assessment and error
estimate of the intended field inventory are commonly employed as constraints
to determine the most cost-effective design [19].

The sample plot shape is usually circular, rectangular or squared. Small circular
plots are popular as they are less time-demanding to implement since there
is no need to mark corners. In contrast, large circular plots are known to be
more difficult to define on the ground, while rectangular plots are a better
choice if the sample plots should be associated with remote sensing data. For
LiDAR-biomass models are, for example, square plots recommended for most
forest types [15]. With some exceptions, [19,28], rectangular plots have been
used in tropical forests, while circular plots have commonly been used in boreal
and temperate forests [19].

The field plot’s size and orientation depend on the application and the topogra-
phy, but should be large enough to ensure that the forest is correctly represented
within them. In SAR-assisted studies, depending on the pixel size, a plot size
> 0.25ha (2500m2) or > 1ha (10000m2) is recommended [15].

Campbell and Wynne [2] categorise the minimum of information that has to
be obtained from each field plot into the following three categories, attributes,
location and time. The attribute category includes descriptions of the ground
condition at the place, such as identification of tree species, soil moisture con-
tent, and size of the trees. For all tree diameters above a threshold, metrics,
such as the tree height and crown size, are sampled. The location category
includes, for example, elevation information and location reference from a GPS
to correctly link the attributes to image data. Lastly, the measurements must
also be described in terms of date and time [2, 15].
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3.2 Allometric equations

Allometric equations are used to relate forest inventory data into estimates
of AGB where, in decreasing order, stem diameter, wood specific gravity, total
height, and forest type are the most important predictors of AGB for a tree [41].
Based on field measurements of the stem diameter 𝐷 (cm), total tree height 𝐻
(m) and wood specific gravity 𝜌 (gcm−3), Chave et al. [42] used the following
log-log model

𝑙𝑛(𝐴𝐺𝐵) = 𝛼 + 𝛽𝑙𝑛(𝜌 × 𝐷2 × 𝐻 ) + 𝜖, (3.1)

to relate field measurements to AGB, where 𝛼 and 𝛽 are model coefficients
and 𝜖 is an error term. Sometimes, allometric equations that only depend on
measured trunk diameter are preferred. See for example [41, 42] for some
examples. However, allometric equations, independent of the tree height are
deemed less accurate, implying that these equations typically are developed for
a specific area and forest type [8,42]. Similar to Eq. (3.1), ALS-based allometric
equations exist to convert ALS measurements of forest tree height into AGB,
these may also be site-dependent [15].

3.3 Remote sensing-assisted methods for forest
parameter prediction

Although allometric equations are the most accurate method for inferring AGB
from a small set of field measurements, this approach is not practical for large-
scale mapping or monitoring of biomass. Instead, LiDAR and radar remote
sensing techniques are recognised as better alternatives [15]. Typically, remote
sensing data are used to fit parametric or nonparametric models to the small set
of ground reference data. Following model fitting and based on the temporal
resolution of the sensor, the model can be used to create frequently updated
AGB prediction maps over the AOI during inference.

Since tree height can be inferred directly from ALS measurements, ALS-based
AGB models are significantly more accurate than corresponding models de-
veloped using SAR data [15]. However, ALS data is associated with a high
acquisition cost, especially for mapping large areas, implying that regular ac-
quisition of ALS data is limited [21,27]. In contrast, spaceborne SAR can provide
frequently updated data with extensive spatial coverage. Nevertheless, there
are many limitations to using SAR data for AGB estimation, such as the known
saturation of the backscatter signal at frequency-dependent levels of AGB, and
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Figure 3.1: Illustration of the difference between a traditional nonsequential and a
sequential regression model. Here, 𝑥 denote data from a SAR sensor, 𝑦
denote ALS data and 𝑧 denote AGB ground reference data. Regression
models are represented by f, g and h,where f is a regressionmodel between
𝑦 data and 𝑧 data. The regression model between 𝑥 data and 𝑧 data is
denoted h, while g is a regression model between 𝑥 data and ALS-derived
AGB predictions denoted �̂�𝑦 . Additionally, �̂�𝑥 denote SAR-derived AGB
predictions from a traditional non-sequential regression model. In the
sequential setting on the right hand side, �̂�𝑦 |𝑥 denote the outcome from
the second part of the two subsequent regression models, i.e. a generated
synthetic ALS-derived AGB predictions retrieved from 𝑥 data (SAR). Image
retrieved from [17].

the variation of the SAR backscatter signal with the moisture of the soil and
vegetation [1,15,32]. The latter effects can be limited by using a temporal stack
of SAR images over the AOI. This results in a regression model that can be fitted
on AGB data from field inventories, using features extracted from the multitem-
poral SAR data as regressors. Numerous studies have investigated the potential
of using ALS or SAR data, or a combination of both, for developing models to
map andmonitor AGB at various scales accurately [7,16,21,23,28,32,34].

3.3.1 Sequential and nonsequential modelling

In this thesis, we refer to a modelling approach that establishes a direct rela-
tionship between a limited set of ground reference data and remote sensing
data from sensors like SAR or ALS as nonsequential. We also refer to this as a
one-stage regression model in this context. This approach is depicted in the
left side of Figure 3.1, where 𝑥 denotes data from a SAR sensor, 𝑦 denotes ALS
data, and 𝑧 denotes in situ AGB ground reference data. In the model fitting
stage, the two regression functions h and f aim to approximate the respective
relationships between the dependent variable 𝑧 and the predictor 𝑥 , and be-
tween 𝑧 and the predictor 𝑦. After model fitting, h and f can, in the prediction
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phase, be used to create SAR-derived AGB predictions, �̂�𝑥 , or ALS-derived AGB
predictions, �̂�𝑦 .

The ability to infer tree heights directly from ALS data implies that ALS data is
highly suitable for accurate up-scaling of measurements from forest inventories
to regional and global scales. Consequently, ALS data can be effectively utilised
to calibrate and enhance the precision of SAR-based AGB models [7, 15,21]. In
this thesis, we refer to this approach as sequential modelling, which implies
that two regression models are used in a chain to obtain more training data
for AGB prediction [17]. We also refer to this as a two-stage regression model.
The two stages are depicted in the right-hand side of Figure 3.1. In the first
stage, a regression model 𝑓 is trained to establish the relationship between
in situ AGB data, denoted 𝑧, and data derived from a single RS data source,
such as ALS 𝑦, which exhibits a strong correlation with 𝑧 but possesses limited
geographical coverage. Following the model fitting process, 𝑓 can be employed
to generate an accurate ALS-derived AGB prediction map, with each prediction
denoted as �̂�𝑦 . The prediction map is then utilised in the second regression
model, 𝑔, as a surrogate for ground reference data to regress on data from an
additional RS sensor with a larger spatial extent, denoted with 𝑥 . The adoption
of the sequential modelling approach in Paper I facilitates the utilisation of
deep learning-based regression models. This is because the prediction map 𝒁𝑦
is wall-to-wall1, meaning that it is spatially continuous and can be divided into
image patches to be used as training data for a CNN.

3.3.2 Approaches to forest parameter prediction

To this date, traditional parametric statistical regression models are popular
choices for AGB estimation and prediction2 using a nonsequential or sequen-
tial modelling approach [17,43]. Among these, variations of traditional linear
regression are most common, i.e. simple linear regression, multiple linear re-
gression and step-wise multiple regression, see e.g., [30, 44–52]. While the
traditional statistical regression models have their merits, they often face chal-
lenges in handling complex and high-dimensional data, and modelling nonlin-
ear relationships between the regressand and the regressor. As a result, non-
parametric regression models such as machine learning-based3 models have

1. Note that 𝒁𝑦 denotes a 𝑁 ×𝑀 prediction map, while �̂�𝑦 denotes single predictions, i.e.
�̂�𝑦 ∈ 𝒁𝑦 . See Section 4.1 for the notation used in this thesis.

2. We are aware that the terms estimation and prediction are sometimes used interchangeably
and that their usage is subject to discussion. In this thesis, we consistently use the term
prediction instead of estimation as we consider our approach as model-based inference.
According to our knowledge, this is in line with the usage in statistical inference in forestry.

3. See Chapter 4 for an introduction to machine learning and the major differences between
traditional statistical regression models and machine learning-based models.
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introduced many alternatives to conventional regression models. For exam-
ple, nonparametric models are more suitable in large-scale geospatial regres-
sion [15]. Within machine learning-based models utilised for nonsequential
and sequential modelling, random forests, support vector machines and fully
connected NNs, such as the multilayer perception (mlp), are the most popular
choices see e.g., [15, 17,46–48,53–67].

Both conventional statistical regression models and the machine learning meth-
ods, mentioned above for AGB prediction, have traditionally operated on an
individual pixel level. Thus, these models are limited to establishing relation-
ships between single observations of ground reference measurements and cor-
responding pixels from the RS data source, without considering the spatial con-
text of neighbouring pixels within the RS dataset. Additionally, the extraction of
meaningful features, known as feature engineering, from the RS data requires
domain knowledge [68]. This process involves identifying and utilising domain-
specific attributes from the data to train powerful regression models that can
effectively relate RS data to ground reference measurements [3].

Deep learning-based approaches: Deep learning approaches, and particu-
larly CNNs⁴ [18, 69], offer the capability to incorporate information from a
spatial neighbourhood surrounding individual pixels through the utilisation of
convolutional filters. As a result, the prediction of each pixel is influenced by re-
gressors derived from the spatial neighbourhood around it [3,17]. In contrast to
conventional statistical models and machine learning methods, the CNN itself
is able to learn from the data and extract relevant features, while also learning
the relationship between the regressors and the regressand, which may be the
main asset of deep learning-based regression models [3,4].

While many studies have shown the potential of deep learning and especially
CNNs in applications related to the utilisation of RS data for vegetation ap-
plications, only a minority of the studies reviewed in [3, 4] focus on forest
data and regression tasks. In fact, most existing studies focus on classifica-
tion and applications related to agriculture [3], which probably is due to the
labour-intensive, time-consuming, and costly nature of conducting forest field
inventory campaigns [4,15], which are required to obtain the continuous target
data required for training of such contextual regression models. As a result, to
fully utilise deep learning and the potential of CNNs for regression modelling
of forest parameters, the sparse set of target data has to be utilised cleverly
and combined with additional data sources. In Papers I and III, we propose
utilising ALS-derived prediction maps to address this challenge.

4. See Chapter 5 for an introduction to deep learning and CNNs.
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Figure 3.2: Left: The location of the Tanzanian datasets, a section of the Sentinel-1A
scene covering the AOI and ground reference data shown as red L-shaped
forms in the Sentinel-1A scene. Image retrieved from [17]. Right: A part
of the ALS-derived AGB prediction map in green and one circular field
plot shown in pink.

3.4 Study areas and datasets

In this thesis, two distinct collections of datasets are employed to predict forest
parameters. The first collection consists of AGB ground reference data gath-
ered from a dry tropical forest in Tanzania and corresponding ALS-derived
AGB prediction maps. This dataset is utilised in both Paper I and Paper III. The
second collection comprises SV ground reference data obtained from three
managed boreal forests in Norway, accompanied by ALS-derived SV prediction
maps from the same three regions. The collection of SV data is explicitly used
in Paper III. A brief description of each dataset is provided in the subsequent
sections. We refer to [28] for the original source of the datasets from Tanza-
nia, while [23] can be consulted for the original source of the datasets from
the Norwegian regions. In addition, RS data from the C-band SAR Sentinel-1
sensor are utilised for both Paper I and Paper III as Sentinel-1 data are freely
available. Furthermore, the Sentinel-1 sensor can acquire data both at night
and in cloudy conditions, it offers short revisit time and good coverage for the
areas of interest.

3.4.1 The Tanzanian datasets

The field work was performed in January-February 2014 within a rectangular
region of size 11.25×32.50 km (WGS 84/UTM zone 36S) located in the Liwale
district in the southeast of Tanzania (9◦52’-9◦58’S, 38◦19’-38◦36’E). Ground
reference data were collected from 88 circular field plots, each with an area
of size 707 m2. The field plots were distributed as L-shaped clusters of 11 plots
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each within the AOI in Tanzania, as shown on the left side of Figure 3.2. We
refer to [22,28,70] for a description of how data from the field work were used
to develop large-scale AGB models.

The ALS data used to derive the wall-to-wall map of ALS-derived AGB pre-
dictions was acquired in March 2014. See [28] for details on the ALS flight
campaign, ALS data processing, and the match-up of ALS data with ground
reference AGB data from the field plots. The wall-to-wall map is represented as
raster data with square pixels of size 707 m2. A small part of the ALS wall-to-
wall map is shown as green square pixels in the right part of Figure 3.2 together
with the outline of one field plot in pink. By sampling the SAR data to the same
pixel spacing, and applying the same map projection as the ALS-derived AGB
prediction map, the SAR data and AGB prediction map can be used to train
deep convolutional regression models.

3.4.2 The Norwegian datasets

The Norwegian datasets encompass data from three regions in the southeast
of Norway, shown in the left part of Figure 3.3, and referred to as Nordre Land
(A), Tyristrand (B) and Hole (C). The field inventory campaign took place
during the summer and fall of 2017, where field measurements were obtained
from circular field plots with an area of 250 m2. For further details on the
sampling design, related data properties and how SV was predicted from the
field measurements, see [23]. Out of all field plots, SV ground reference data
from 264 plots were included in Paper III. Among these, 136 plots were located
within the Nordre Land region, while 77 and 51 plots were distributed within
the Tyristrand and Hole regions, respectively.

The ALS flight campaigns for all three regions took place in 2016. For further
details on how the ALS data were processed, the formulation of the prediction
models and the match-up of ALS-derived predictions with SV ground reference
data to create SV prediction maps over the three regions, we refer to Noor-
dermeer et al. [23]. Compared to the Tanzanian ALS-derived prediction maps,
the SV prediction maps were limited to forest areas where the forest height
exceeded 8-9 meters, resulting in ALS-derived prediction maps consisting of
spatially disjoint polygons. A small part of the spatially disjoint prediction maps
in Nordre Land can be seen as the purple lattice in the right part of Figure 3.3,
together with the outline of two different field plots in pink. The disjoint poly-
gons are seen in Figure 3.4, where the brown areas indicate where SV predic-
tions are available, whereas the background (other colours) is retrieved from
OpenStreetMap [71].

To utilise the spatially disjoint datasets of ALS-derived SV prediction maps
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Figure 3.3: Left: The location of the three regions in Norway: Nordre Land (A), Tyris-
trand (B) and Hole (B). Right: A part of the ALS-derived SV prediction
map for Nordre Land in purple with the outline of two field plots shown
in pink.

as target data for training deep convolutional regression models, we refer to
Paper III, see Section 11 for a comprehensive description of the required pro-
cessing steps. In summary, the processing steps aim to rasterise the spatially
disjoint datasets to align them with the pixel grid of the SAR predictor data.
Consequently, the resulting SV prediction maps will contain areas with one SV
prediction for each pixel and regions with no available data. Further details
on how the deep convolutional regression models were adapted to handle this
specific type of data can be found in Section 6.3.2.

3.4.3 Comments of the plot shape and size

Compared to [15], the size of the field plots in the Tanzanian and Norwegian
regions are smaller than generally recommended. However, the plot size is
unlikely to pose a challenge for the Norwegian regions, as the field data were
obtained from trees of commercially managed monodominant boreal forests
with a minimum forest height of 8-9 meters [23]. This indicates that the forest
structure and type within a field plot are similar to the surrounding area. On
the other hand, the small plot size may present challenges for the Tanzanian
dataset due to the species variability and sparse distribution of large trees in
this kind of Tanzanian forest, known as dry miombo woodland [19]. As a result,
large trees can be located near the plot periphery of a sample plot, implying that
most of the stem is outside the field plot, while the crown is within the field plot
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Figure 3.4: A small section of the ALS-derived SV prediction dataset from the northern
parts of Nordre Land, where SV predictions are made in the brown areas.

(or vice versa). This can potentially impact the recorded ALS echoes [28] and
how a regression model associates ground reference data to RS data. As deep
convolutional regression models exploit the spatial relationship in the RS data,
employing this type of regression model may be more beneficial compared to
traditional statistical regression models and machine learning models that only
infer relationships on the pixel level.

Moreover, the circular shape of the field plots in the Tanzanian and Norwegian
regions is suboptimal for studies like Paper I and Paper III, where the ground
reference data are associated with RS data, represented with rasters of square
pixels. The challenge is depicted in the right part of Figure 3.2 and similarly in
Figure 3.3, showing that ground reference plots (pink) intersect with three to
four different pixels from the raster data of ALS-derived predictions. Since the
Sentinel-1 data were processed to align with the wall-to-wall map and share
the same map projection, each ground reference plot will also overlap with
multiple Sentinel-1 pixels. Consequently, to obtain AGB or SV predictions for
each field plot using the proposed regression models, it is necessary to compute
the area-weighted mean AGB and SV by considering the neighbouring pixels
that intersect with the field plot. Compared to using a rectangular field plot
shape, the circular plot shape may introduce inaccuracies in the reported results
of Papers I and III. However, it should be noted that decisions about the plot
shape were beyond the scope of the thesis.





4
Machine learning basics
Although there are similarities between conventional statistical methods and
machine learning techniques, they differ in various ways. Statistical learning
has roots in mathematics and statistics and has been used for centuries, if
not longer. In contrast, machine learning, which emerged from computer sci-
ence [72], is a relatively recent field that builds on statistical principles [72,73].
Both statistical and machine learning methods aim to learn patterns or rela-
tionships from data by estimating functions. However, statistical models tend
to be simpler than machine learning models, and statistical learning empha-
sises providing confidence intervals to these functions. In contrast, machine
learning models can contain from a few to millions of parameters optimised in
the iterative learning process, and their algorithms seldom focus on providing
confidence intervals. Furthermore, machine learning involves models and algo-
rithms capable of intelligently learning relationships from data without being
explicitly told about them [18]. As a result, machine learning algorithms are
today used almost everywhere for e.g. data analysis, feature extraction, data
transformation, classification and regression purposes [74].

This chapter briefly overviews the key concepts of machine learning, Section 4.1
introduces the notation used throughout this, followed by the task of machine
learning in Section 4.2 and prevalent training paradigms in Section 4.3. Lastly,
Section 4.4 briefly describes howmachine learning algorithms can be optimised
using training, test and validation datasets.

35
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4.1 Terminology and Notation

In statistical learning, when we predict 𝒚 from 𝒙, 𝒙 is typically called inde-
pendent variables or predictors, and 𝒚 is referred to as response or dependent
variables. In contrast, in machine learning, 𝒙 is referred to as features or input
data,while𝒚 commonly are known as output data, labels, or the prediction target.
The term "label" is commonly used in classification tasks, while the other two
terms are used interchangeably for classification and regression purposes. In
this thesis, we adopt the notation and terminology from machine learning and
refer to [18] and especially to [73,75] for differences in terminology between
these two fields.

This thesis uses 𝑥, 𝑥𝑖, 𝑦 or 𝑦𝑖 to refer to single one-dimensional data points,
where the subscript 𝑖 indicates a specific one-dimensional data point. Bold lower
case letters denote𝐷-dimensional vectors, such as 𝒙𝑖 = [𝑥𝑖,1, 𝑥𝑖,2, ...𝑥𝑖,𝑑 ..., 𝑥𝑖,𝐷]𝑇 .
𝑿 and 𝒀 generally represents 𝑁 ×𝑀 × 𝐷 images, i.e. tensors consisting of ob-
servations or pixels 𝑥𝑖, 𝑗,𝑑 and 𝑥𝑖, 𝑗,𝑑 , with 𝑖 = 1, ..., 𝑁 , 𝑗 = 1, ..., 𝑀 , 𝑑 = 1, ..., 𝐷.
For square images, 𝑁 = 𝑀 denotes the spatial dimensions. As with lower case
letters, 𝑿 denotes data from the input domain. In contrast 𝒀 denotes data
from the output domain where each 𝑦𝑖, 𝑗,𝑑 , in the regression setting, represents
a prediction target associated with 𝑥𝑖, 𝑗,𝑑 .

Each dimension 𝑑 of 𝒙𝑖 or 𝒙𝑖, 𝑗 represents a so-called feature that characterises
the input data. These features can correspond to various remote sensing mea-
surements. For instance, if the input data comprises of dual-polarisation Sentinel-
1 sensor data, then 𝒙𝑖, 𝑗 would be two-dimensional and include backscatter mea-
surements from the VH and HH polarisations. Different data points, 𝒙𝑖, 𝑗 , then
represent different geographical positions in the acquired Sentinel-1 scene. To
simplify the notation, 𝑥𝑖, 𝑗,𝑑 is sometimes referred to as 𝒙𝑖, 𝑗 or just 𝒙 when dis-
cussing general multidimensional data points. The same simplified notation is
also applied for 𝑦𝑖, 𝑗,𝑑 .

4.2 Machine learning tasks

Machine learning algorithms aim to learn the relationship between the input
data 𝒙 ∈ 𝒳 and corresponding output data 𝒚 ∈ 𝒴 in a given training dataset
𝒟𝑡𝑟 = (𝒙,𝒚). Here,𝒳 and𝒴 represent the input and target domain, respectively.
In a simple classification setting,𝒙 could represent image data of animals, while
𝑦𝑖 ∈ 𝒚 represents animal classes such as "cat" or "cow". The algorithm aims to
find a function 𝑓 : 𝒳 → 𝒴 that approximates the relationship between the two
domains properly and that can generalise well to new, unseen samples from a
test dataset. This learning process involves an iterative process aiming to find
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the optimal model parameters 𝜽 ∗ that minimise a loss function ℒ, such that
the prediction of 𝑓 (𝒙;𝜽 ) is as close as possible to the true prediction target 𝑦.
Generally, the loss function quantifies how close a prediction 𝑓 (𝒙) is to 𝑦 [18].
The mapping function, 𝑓 , is in the literature interchangeably referred to as the
learning function, as a generalmachine learning algorithm or amachine learning
model [18]. We will use these terms interchangeably in this thesis.

Figure 4.1: The iterative machine learning process in the supervised setting. By com-
paring the machine learning algorithm’s beliefs for the relationship be-
tween input and output data to available target data, the model is updated
through its model parameters, 𝜽 . The process repeats iteratively until con-
vergence, which ultimately implies 𝒚 ≈ 𝒚. No target data is available in
the learning process in the unsupervised setting. Moreover, an alternative
loss function must be formulated.

A simplified illustration of the machine learning process can be found in Fig-
ure 4.1. In short, the loss function computes the difference between predicted
targets, i.e.𝒚, and true prediction targets𝒚, and gives feedback to 𝑓 . The model
parameters are updated according to the size of the computed loss and their
contribution. This learning process alternates between providing 𝒚 and updat-
ing model parameters continuously until some convergence criteria are met,
such as a stable loss below a threshold value. Depending on whether the re-
sponse variable is discrete or continuous, the prediction is either categorical
or continuous, the latter representing regression. For the purposes of this the-
sis, we focus solely on regression and do not cover methods for categorical
prediction, which, for example, relates to classification problems and segmen-
tation tasks [72,73,75]. Readers interested in categorical prediction can refer
to statistical textbooks, such as [75,76], for an overview.
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4.3 Machine learning paradigms

The iterative process described so far and illustrated in Figure 4.1 is defined
as supervised learning problem and implies that both input and target data
are available during training, i.e. 𝒟𝑡𝑟 = {(𝒙𝑖, 𝑦𝑖) |𝑖 = 1, ..., 𝑁𝑡𝑟 } [72,74]. While
supervised learning is the optimal approach when target data is available, this
is not always the case. For instance, when developing regression models for the
forestry domain, large amounts of data are often available from the input do-
main, but only a limited amount of labelled ground reference target data. This
is often due to the extensive resources required to collect ground reference data
from field plots, which can be limited by seasonal, geographical, economical
and labour constraints.

Unsupervised learning is another machine learning paradigm in which the algo-
rithm is trained on unlabelled input data only, i.e. 𝒟𝑢 = {𝒙𝑖 |𝑖 = 1, ..., 𝑁} .
The unsupervised learning process is still iterative, as shown in the super-
vised process shown in Figure 4.1, however, it uses different algorithms that
do not require labelled target data. Typically, unsupervised learning involves
clustering techniques, which group similar data points together. This thesis
does not cover unsupervised learning; readers interested in this topic can refer
to [18,72,74].

The third common approach is semi-supervised learning. As described in [18,74],
the dataset consists of both labelled data, denoted 𝒟𝑙 = {(𝒙𝑖, 𝑦𝑖) |𝑖 = 1, ..., 𝑁𝑙 },
and unlabelled data, denoted 𝒟𝑢 = {𝒙𝑖 |𝑖 = 𝑁𝑙 + 1, ..., 𝑁𝑙 + 𝑁𝑢} typically with
𝑁𝑙 << 𝑁𝑢 . The total number of data points is denoted 𝑁𝑙 + 𝑁𝑢 = 𝑁 . In semi-
supervised learning, the small number of labelled target data can assist the
unsupervised learning process towards faster convergence and better model
performance.

4.4 The machine learning approach

After deciding upon 𝑓 , the learning process is generally performed by first
dividing the available data into training, test and potentially also a validation
dataset, i.e.𝒟𝑡𝑟 ,𝒟𝑡𝑒 and𝒟𝑣𝑎𝑙 . Each dataset consists of a finite set of data points
from 𝒳 and possibly also from 𝒴, i.e. 𝒟 = {(𝒙𝑖, 𝑦𝑖) |𝑖 = 1, ..., 𝑁 , 𝑑 = 1, ..., 𝐷}.
As previously described, the machine learning algorithm is trained to find the
optimal model parameters from 𝒟𝑡𝑟 , which enables 𝑓 to generalise well to
new unseen data points in the test dataset 𝒟𝑡𝑒 . Viewing linear regression from
a machine learning perspective, the model parameters are referred to as the
weights, 𝒘, and the bias, 𝑏. Linear regression for a feature vector 𝒙𝑖 , can thus
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Figure 4.2: 5-fold CV. a) The available data is initially divided into a training and
a test set. The test set is held outside during CV. b) The training set is
divided into 𝑘 = 5 different sets, that rotationally are used for training
and validation sets. The model is iteratively trained on the 𝑘 − 1 training
sets and evaluated on the remaining 𝑘-th validation set.

be formalised as:

𝑦𝑖 = 𝒘𝑇𝒙𝑖 + 𝑏 = 𝑤1𝑥𝑖,1 +𝑤2𝑥𝑖,2 + · · · +𝑤𝐷𝑥𝑖,𝐷 + 𝑏 (4.1)

Cross-validation (cv) is a widely used evaluation technique for more complex
machine learning problems, which may involve setting a vast number of model
parameters along with deciding upon model architecture and hyperparameters
[18, 77]. In this thesis, we refer to hyperparameters as parameters that, in
contrast to model parameters, are set before the model is trained [18]. These
can, for example, include learning rate, model architecture, the number of
hidden layers or the number of neurons in a MLP. See Chapter 5 for descriptions
of these terms.

Hold-out Validation, Leave-one-out CV and k-fold CV are three common types
of CV techniques, where the latter is the most common [18,74,77]. Figure 4.2
illustrates k-fold cross validation with 𝑘 = 5. Firstly, the available dataset is
divided into a separate train and test dataset, i.e. 𝒟𝑡𝑟 and 𝒟𝑡𝑒 . 𝒟𝑡𝑟 is then
divided into 𝑘 nonoverlapping subsets. For each trial, 𝑘 − 1 of the subsets are
combined into a new CV training dataset fold, 𝒟𝐶𝑉𝑡𝑟 , while the remaining k-
th set is used as the validation dataset 𝒟𝐶𝑉𝑣𝑎𝑙 . By training 𝑘 models on each
𝒟𝐶𝑉𝑡𝑟 fold,𝒟𝐶𝑉𝑣𝑎𝑙 can be used to compute a validation error using, for example,
the RMSE. By averaging this error over all folds, the performance of different
models or the impact of different hyperparameters can be compared. Eventually,
after deciding on the optimal hyperparameters, the model is trained on the
complete set of training data and evaluated on 𝒟𝑡𝑒 .
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Deep learning basics
This chapter briefly introduces the basic deep learning (dl) theory that is
the fundamentals of Papers I, II and III. Firstly, Section 5.1 focuses on giving
an overview of the MLP, which holds the foundations of more advanced DL
methods. Section 5.2 transitions from discussing the MLP, and introduces the
foundational principles of the CNN, which serve as an example of a DL architec-
ture specifically designed to process image data effectively [18,69]. Lastly, Sec-
tion 5.3 briefly introduces some common CNN-based DL architectures, which
form the basis of the architectures used in Papers I, II and III.

Artificial intelligence (ai) refers to everything that relates to incorporating
human intelligence into computer systems, that aims to learn, solve or perform
tasks that generally require human intelligence [78, 79]. Machine learning
(ml) is together with DL subfields of AI, where DL also is a subfield of ML
[18,68,80]. Figure 5.1 illustrates the relation between AI, ML and DL, as well
as the main differences between ML and DL: While conventional ML, like DL,
focuses on detecting and extrapolating patterns from data in the learning
process, ML techniques are limited by the need for domain expertise to extract
representative features from the data, from which the learning system could
learn. By stacking different processing layers into one model, DL models are, on
the other hand, able to intelligently learn feature representations directly from
the data in an end-to-end fashion [68]. Here, end-to-end learning refers to a
NN that performs feature extraction and prediction simultaneously. Since all
network layers are differentiable, they are also optimised simultaneously [81].
The stack of processing layers in the DL model can be thought of as a stack of

41
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Figure 5.1: A diagram showing the relationship between AI,ML and DL, and the differ-
ence between ML and DL. While ML models necessitate a distinct feature
extraction phase before they can be trained, DL training incorporates fea-
ture extraction as an integral part of the process.

successive and different data transformations that enable the model to learn
different levels of information from the raw input data. In each iteration of the
learning process, data is propagated layer-wise through the network, which
forces the learned feature representation to be updated and refined by each
iteration. The specific parts of the learning process of a DL network, as well
as different CNNs covered by Papers I, II and III, will be described further
in the coming sections. For clarity purposes, we will focus the discussion of
this chapter on DL in the setting of supervised learning and regression. The
main references for this chapter are [18,72,74]. When no other references are
explicitly cited, we kindly refer to these works for more details.

5.1 Multilayer perceptrons

Multilayer perceptrons, also known as fully connected NNs or deep feedforward
networks, are the basis for deep learning architectures. They are constructed by
stacking layers ofmathematical functions sequentially to successively transform
the input data into the desired representation of the output data. Each layer
of the MLP consists of a number of units, commonly referred to as neurons or
nodes, where the mathematical mapping of the data occurs.
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Figure 5.2: A simplified illustration of a MLP with a single output, where network
neurons are symbolised with filled circles.

An illustration of a MLP is shown in Figure 5.2, where the filled circles represent
the neurons, and each column of neurons represents a layer in the MLP. The
layers between the input and output layers are referred to as hidden layers,
where the total number of layers represents the depth of the network. Since all
neurons in neighbouring layers of the MLP are fully connected, the number of
parameters that must be optimised increases sharply with the number of neu-
rons per layer and the depth of the network. Consequently, MLPs are typically
only a few layers deep in contrast to e.g. CNNs.

Mathematically, the learning of a MLP can be described as approximating the
function 𝑓 : 𝒳 → 𝒴 that defines the desired mapping 𝑦 = 𝑓 (𝒙;𝜽 ) and by
learning the optimal model parameters 𝜽 ∗ that best approximate 𝑓 . A mapping
is performed within each node by first computing the linear combination be-
tween the input to the node, and the set of weights and a bias term, followed
by a nonlinear activation function, i.e.

𝑓
(𝑙 )
𝑗

(𝒙;𝜽 ) = 𝑓 (𝑙 )
𝑗

(𝒙;𝑾, 𝒃) = 𝑎 (𝑙 )
𝑗

(
𝑓
(𝑙−1)
𝑗

(𝒙;𝑾 , 𝒃)𝑇𝑾 (𝑙 ) + 𝒃 (𝑙 ) ), (5.1)

for 𝑙 = 1, ..., 𝐿, where 𝐿 denotes the total number of layers in the MLP,𝑾 (𝑙 ) de-
notes the set ofweights,𝒃 (𝑙 ) the bias terms, both at layer 𝑙 ,while 𝑓 (𝑙−1)

𝑗
(𝒙;𝑾 , 𝒃)

denotes the output of the 𝑗 th node from the previous layer. Thus, the output
after 𝐿th transformations can be represented as

𝑓 (𝒙;𝜽 ) = 𝑓 (𝐿)
𝑗

(𝑓 (𝐿−1)
𝑗

(· · · (𝑓 (1)
𝑗

(𝒙;𝜽 )))).
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Activation function: The activation function accounts for the nonlinearity in
the MLP transformation of the input data. One of the most common activation
functions for deep networks is the rectified linear unit (relu) [82]

𝑎𝑅𝑒𝐿𝑈 (𝑥) =𝑚𝑎𝑥 (0, 𝑥), (5.2)

i.e. the element-wise maximum between 0 and the input to the activation
function, here represented as 𝑥 . By definition, a network having the ReLU as
the final activation function will never output negative values. Therefore, both
Paper I and Paper III employed it to ensure that the deep regression models
never provide negative predictions for the nonnegative forest parameters con-
sidered.

Model optimisation and loss function: Generally, the optimisation algorithm
and the loss function determine the learning of the optimal𝜽 ∗. The loss function
determines how well the outcome from the MLP, 𝒚 = 𝑓 (𝒙;𝜽 ), corresponds to
the desired output, 𝒚, and should be chosen based on the learning task. For
regression purposes, the ℒ1 loss

ℒ1 =
𝑁∑︁
𝑖=1

| |𝒚𝑖 − 𝑓 (𝒙𝑖 ;𝜽 ) | | =
𝑁∑︁
𝑖=1

| |𝒚𝑖 −𝒚𝑖 | |, (5.3)

or the ℒ2 loss

ℒ2 =
𝑁∑︁
𝑖=1

| |𝒚𝑖 − 𝑓 (𝒙𝑖 ;𝜽 ) | |2 =
𝑁∑︁
𝑖=1

| |𝒚𝑖 −𝒚𝑖 | |2, (5.4)

are two popular choices, where | | · | | denotes the absolute value and | | · | |2
denotes the squared Euclidean norm. To compute the loss, a mini-batch com-
prising of 𝑘 samples is typically chosen from the entire training dataset. The
mini-batch is denoted as (𝒙𝑙 ,𝒚𝑙 ) |𝑙 = 1, ..., 𝑘, with 𝑘 being significantly smaller
than the total number of training samples 𝑁 . The total cost is then determined
by computing the average loss over this mini-batch

𝐽 (𝜽 ) = 1
𝑘

𝑘∑︁
𝑙=1

ℒ(𝒚, 𝑓 (𝒙;𝜽 )). (5.5)

The chosen optimisation algorithm decides how the model parameters should
be updated to reduce 𝐽 (𝜽 ) to optimise 𝜽 . For MLP, the optimisation is com-
monly conducted through iterative backpropagation and some gradient-based
learning algorithms such as the stochastic gradient descent (sgd), or the more
sophisticated ADAM optimiser [83]. Regardless of the optimisation algorithm, it
comes with a set of hyperparameters, such as the learning rate (lr), that must
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be defined correctly to improve the optimisation process in terms of speed
and performance. See [18, 72, 74] for more details on the backpropagation
algorithm, gradient-based learning and common hyperparameters for different
optimisation algorithms.

5.2 Convolutional neural networks

While building on the principles of MLP, CNNs are specially designed to effi-
ciently process grid-like data, such as 2-D or 3-D image data, through mathe-
matical operations called convolutions. The response from a 3-D discrete con-
volution between an input image 𝑿 ∈ R𝐻×𝑊 ×𝐶 and a convolutional filter
𝑲 ∈ Rℎ×𝑤×𝑐 with ℎ << 𝐻,𝑤 <<𝑊 and 𝑐 << 𝐶 is defined by

𝒁 = (𝑿 ★ 𝑲 ) (𝑖, 𝑗, 𝑑) =
𝑠∑︁

𝑙=−𝑠

𝑡∑︁
𝑚=−𝑡

𝑢∑︁
𝑛=−𝑢

𝑋𝑖−𝑙, 𝑗−𝑚,𝑑−𝑛𝐾𝑖, 𝑗,𝑘 , (5.6)

with 𝑖 = 1, ..., 𝐻 −ℎ+1, 𝑗 = 1, ...,𝑊 −𝑤 +1 and 𝑑 = 1, ...,𝐶−𝑐+1 together with
𝑠 = ℎ−1

2 , 𝑡 = 𝑤−1
2 and 𝑢 = 𝑐−1

2 . Here, 𝐻 and ℎ represent the image and kernel
window height,𝑊 and 𝑤 the image and kernel window width, 𝐶 and 𝑐 the
number of channels in the image or the kernel window, while★ represents the
convolution operation. By sliding the filter 𝑲 across the input image 𝑿 using
a predefined stride, which is typically a constant value set to one or two, the
output, 𝒁 , known as a feature map, is obtained. Multiple convolutional filters
are usually learned simultaneously in each stage of the network, resulting in a
stack of feature maps, as illustrated in Figure 5.3.

CNNs are designed to utilise spatial relationships in data through convolutional
filters, also known as kernels, in their convolutional layers. This approach en-
ables CNNs to effectively process grid-like data, such as images, and extract
useful features that may be subsequently used for the prediction task. In con-
trast, MLPs process 2-D or 3-D images by considering each pixel individually or
vectorising pixels before processing them. Therefore, they do not leverage the
spatial context that describes e.g. the presence of corners or edges. The recep-
tive field is the neighbourhood in the input image that influences the features
of a given pixel in a subsequent layer, shown as blue regions in Figure 5.3. The
receptive field grows from layer to layer according to the kernel size of the con-
volutional filters, meaning that an increasing amount of contextual information
is considered as the processing reaches deeper layers. As a result, CNNs are
contextual models. Thus, contrary to MLPs, the use of convolutional layers in
CNN-based regression models enables the models to learn spatial contextual
relations.
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Figure 5.3: A simplified example of a CNN architecture. Input images are processed
by convolutional layers using kernels to generate feature maps. The con-
volutional layers commonly include pooling, normalisation and activation
(e.g. ReLU) layers.

The initial components of the CNN architecture are depicted in Figure 5.3. To
simplify the diagram, the individual processing layers are not shown individ-
ually, but are included within each convolutional layer in the diagram. We
will in the following briefly introduce some of the most commonly used layers
included in most CNN architectures.

Activation and normalisation layers: Like MLPs, CNNs also use a nonlinear
activation function to process the outputs of the convolutional operation. One
popular choice is the ReLU activation function, as research has shown that
deep CNNs with ReLU activation can train faster than those with hyperbolic
tangent (tanh) activation [69]. Moreover, normalisation layers are frequently
utilised before or after the activation layer to improve model performance and
stability during training. Batch normalisation (bn) [84] is one of the most
common normalisation techniques, in which the output from the convolutional
filters or the activation layer is normalised by using the training mini-batch
statistics. Other common normalisation techniques are layer normalisation [85]
or instance normalisation [86].

Pooling layer: The pooling operation in the CNN replaces the output of a layer
at a certain location with a summary of statistics of nearby pixels. Compared to
the normalisation layers, the pooling operation reduces the spatial dimension
and makes the feature representation invariant to small translations in the
input. The most common pooling operation is themax pooling operation, which
replaces the values in an 𝑛×𝑛 neighbourhood with its maximum value. Like the
convolutional operation, the pooling filter is applied across the entire feature
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Figure 5.4: A simplified illustration of a traditional autoencoder. The AE utilises the
encoder part of the network to map an input 𝒙 to the code space, shown
as the bottleneck in the figure. The decoder aims to reconstruct 𝒙 from
the latent representation of it, i.e. 𝒛.

map.

5.2.1 Dataset augmentation

Dataset augmentation is a common regularisation technique for both classifi-
cation and regression purposes, applied to improve model generalisation on
new unseen data and increase the training dataset’s size. Different augmen-
tation techniques exist, with image rotation and flipping being two common
approaches. Image rotation implies that the position of the image data in an
image patch is rotated by increments of e.g. [0, 90, 180, 270] degrees, while
flipping implies that image data is horizontally or vertically flipped around the
image centre.

5.3 CNN architectures

5.3.1 Traditional autoencoders

An autoencoder (ae) is a NN, that consist of two sequential mapping functions,
known as the encoder-decoder pair (𝑓 , 𝑔). Mathematically, the AE aims to
optimise

𝑓 : 𝒳 → 𝒵 (5.7)
𝑔 : 𝒵 → 𝒳 , (5.8)
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where the input domain data is represented by 𝒳 , and the code space or latent
space data is represented by 𝒵. Generally, the optimisation is performed by
minimising a loss function, such as the mean squared error (mse), computed
between the input and the reconstruction, i.e. ℒ(𝒙, 𝑔(𝑓 (𝒙;𝜽 ))) = ℒ(𝒙, 𝒓),
where 𝒓 ≈ 𝒙 represents the reconstruction of 𝒙.

Merely training the AE to learn two identity mappings, i.e. 𝒙 = 𝑓 (𝒙;𝜽 ) =

𝑔(𝑓 (𝒙;𝜽 )), for the training dataset is not sufficient for the AE to acquire sig-
nificant features of the input data. Consequently, the AE would not generalise
well on new, unseen test data. To overcome this limitation, many AEs con-
strain the latent representation 𝒛 to have a smaller dimension than the input
𝒙 [18], resulting in an AE network with a bottleneck, as shown in Figure 5.4.
Thus, the encoder network aims to compress input data 𝒙 to high-level feature
representations, denoted by the latent representation 𝒛. Following the com-
pression phase, the decoder network is trained to up-sample 𝒛 to achieve the
reconstructed version of 𝒙. AEs have traditionally been utilised for dimensional
reduction or feature learning tasks for e.g. image, sound or video data.

Up-sampling techniques: The encoder down-sampling process generally in-
volves variations of the convolutional layers discussed in Section 5.2. Different
methods exist for the up-sampling process performed by the decoder network,
where the two most common methods are up-convolution by interpolation and
transposed convolution [87]. Figure 5.5 depicts the up-sampling of a 2 × 2 low-
resolution image to a 5 × 5 output image (green) through up-convolution by
interpolation (left) and transposed convolution (right).

Both up-sampling methods involve two stages; In up-sampling by interpola-
tion, the image resolution is firstly increased through the nearest neighbour
or bilinear interpolation. In up-sampling through transposed convolution, the
image resolution is first increased by inserting zero-value pixels between the
image’s original pixel values. Secondly, the interpolated or zero-imputed image
is convolved with a standard convolutional filter to achieve the final output
image [87,88].

5.3.2 ResNet

Residual networks (resnets) [89] are a popular family of CNN architectures,
which employ skip connections, also referred to as short-cut connections, to over-
come issues with vanishing gradients. These ease the training of very deep
CNN networks. The popular ResNet-34 architecture is depicted in the upper
part of Figure 5.6 without the output layer. It consists of 34 convolutional layers
distributed among the input layer, four convolutional blocks (denoted by "Layer
X") and the fully-connected output layer. By removing the fully-connected out-
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Figure 5.5: Overview of two common up-sampling techniques. Above: a 2 × 2 low-
resolution image, Left: up-convolution by interpolation and Rigth: trans-
posed convolution. The figure is a modified version of a similar one pre-
sented in [87].

put layer, responsible for mapping the input image to a class prediction, the
ResNet-34 architecture can serve as the encoder network in an AE. The solid
and dashed lines in the upper part of Figure 5.6 represent the short-cut con-
nections of the ResNet, i.e. the input of a coloured residual block is added to
the output of the residual block. At the beginning of Layers 2, 3 and 4, the di-
mensions of the feature maps are increased. In contrast, the spatial dimension
of the filters decreases. Thus, to perform the short-cut connection, the input to
the block is firstly convolved with a 1 × 1 filter using a stride of 2 to achieve
the same spatial dimension reduction. This is shown as the dashed short-cut
connections in the figure.

5.3.3 U-Net

The U-Net [90], initially invented for semantic segmentation tasks, uses a sym-
metric u-shaped encoder-decoder structure. A flattened horizontal represen-
tation of a U-Net is shown in the lower part of Figure 5.6. Different versions
are employed for the encoder network, with the previously introduced ResNet
being one example. Compared to the ResNet, the U-Net uses skip-connections
between symmetric encoder-decoder blocks, illustrated with blue arrows in the
figure. This enables the network to learn to reconstruct and unravel data struc-
tures from both low-level feature maps from the encoder and high-level feature
maps from the decoder. In contrast to the ResNet, the combination of feature
maps through the U-Net skip-connections is performed through concatenation.
By replacing the segmentation head, originally employed by the U-Net to map
the input image to a segmentation map, with a ReLU activation layer, the U-Net
can be employed for regression purposes, and nonnegative output predictions
will be ensured.
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(a)

(b)

Figure 5.6: (a) ResNet-34 network without the fully-connected output layer. Grey
boxes are residual blocks, "3 × 3 conv 64, \2" is a 3 × 3 convolutional
layer yielding a feature map of 64 filters and halved spatial dimension,
Activation is e.g. a ReLU function and Normalisation is e.g. a BN layer. (b)
An encoder-decoder U-Net. Orange blocks represent convolutional layers
(e.g. residual blocks), while blue arrows are U-Net skip-connections.



6
Deep learning regression
models for forestry

Despite the considerable progress made by DL in processing complex and high-
dimensional data across diverse fields and applications, its utilisation for remote
sensing approaches in forestry is still in the early stages, although some work
has emerged [3,4, 17]. A recent review by Kattenborn et al. [3] examines the
use of CNN in remote sensing of vegetation, including studies within agricul-
ture, conservation and forestry. It finds that about 91% of the reviewed studies
focus on classification tasks, and that only a minority of all studies reviewed
addressed research questions specific to forestry, such as forest biomass predic-
tion. Despite the potential in utilising CNN as contextual regression models,
research on and applications of deep convolutional regression models for for-
est parameter retrieval remain limited. Hamedianfar et al. [4] emphasise the
challenge of acquiring massive amounts of target data, such as ground refer-
ence measurements representing AGB or SV, as these require labour-intensive,
time-consuming, and costly field inventory campaigns [4, 15]. This challenge
poses a critical factor that has limited the development of robust DL models for
forest parameter retrieval. This thesis aims to address some of the obstacles en-
countered, including the limited availability of ground reference data and the
lack of CNN architectures designed specifically for the prediction of biophysical
or geophysical parameters from RS image data. To this end, it proposes novel
methodologies for deep convolutional regression models for large-scale and
low-cost forest parameter retrieval.

51
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Building upon the foundational knowledge of DL provided in Chapter 5, this
chapter provides an overview of DL methods and theories included in the three
papers that form the core of this thesis. Section 6.1 provides the theoretical back-
ground of some popular convolutional generative models and relates generative
modelling to image-to-image (i2i) translation. We focus on how these architec-
tures can be used in the regression setting, particularly emphasising the deep
generative CNN regression models employed in Papers I, II and III. Section 6.2
describes how pixel- or frequency-aware convolutional regression models can
be trained using concepts from I2I. This section also discusses the theoretical
background of frequency-aware training and provides the frequency-aware ob-
jective function proposed in Paper II. Finally, Section 6.3 further describes how
deep convolutional regression models are employed by the deep convolutional
regression models proposed in Papers I and III.

6.1 Generative models

Generative models are extensively employed in deep learning for cross-modal
translation of image data from one distribution to another, using a learned
data distribution to generate new data points with desired characteristics [18,
91]. Although the group of generative models includes numerous types and
architectures, we limit the following background theory of generative models to
those used in Papers I, II and III: the generative adversarial network (gan) [92],
the cGAN and the VAE.For comprehensive overviews of generative models and
other popular architectures, we refer to [18,72,91].

6.1.1 Generative adversarial networks

In 2014, Goodfellow et al. introduced the GAN, which has since become one
of the most widely used generative models [92]. Its most basic form consists
of a generator (G) and a discriminator (D) network. The primary objective
of G is to learn the optimal mapping from a random noise vector to a target
image that can fool D. On the other hand, the discriminator network aims to
correctly distinguish between image samples generated from G and samples
of the true target image. The iterative process of adversarial training involves
optimising two conflicting objective functions for G and D, which should result
in simultaneous improvement of both networks, eventually leading to model
convergence. A popular extension of the basic GAN is the cGAN, which distin-
guishes itself from the GAN by conditioning the mapping of G on images from
the input domain instead of a noise vector. Hence, the generator performs a
mapping G : 𝑿 → 𝒀 that can be utilised for regression purposes. Similarly,
the D network is extended to learn to distinguish between a real pair of input
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(a) G training and model update. (b) D training and model update.

Figure 6.1: Illustration of a cGAN with its two model components, the generator net-
work (G) and the discriminator network (D). G is trained to translate
image patches from the input domain into realistic-looking image patches
that resemble data from the target domain. D is trained to detect the dif-
ference between a real pair of input and target image patches, (𝑿 , 𝒀 ), and
a false pair, (𝑿 ,G(𝑿 )).

and target images, (𝑿 , 𝒀 ) and a false pair, (𝑿 ,G(𝑿 )), where G(𝑿 ) refers to
images generated by G. The whole training process of G and D of the cGAN is
illustrated in Figure 6.1.

6.1.2 Image-to-image translation

Generative models are today used in many image analysis tasks, such as face
generation [93,94], cross-modal image translation, style transfer and image-to-
image translation [95–97]. One of the earliest and possibly also most famous
methods for I2I translation is the Pix2Pix model designed by Isola et al. [95],
which utilises a cGANs to translate images from one domain or representation
to another, e.g translation of greyscale images to corresponding RGB images
or converting sketches into paintings.

6.1.3 Training a cGAN for image-to-image translation

To train a cGAN for I2I translation, different suggestions for the G network
exist. The Pix2Pix model provides two options: a U-Net with a tanh activation
function in the output, or an encoder-decoder network with ResNet blocks
in the bottleneck and a tanh output activation function. Similarly, different
variations of the D network are proposed by adjusting the patch size 𝑁 of the
discriminator’s receptive fields, ranging from a 1 × 1 PixelGAN to an 𝑁 × 𝑁
PatchGAN [95]. The D network applies convolutional processing to the pair
of input image patches to produce multiple classification responses, which are
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then averaged to determine whether the processed pair of image patches is a
real or false pair.

Training objectives:
Adversarial training of G and D in the most basic cGAN setting results in the
following Vanilla GAN (VGAN) min-max objective function [95]:

min
G

max
D

ℒ𝑉𝐺𝐴𝑁 (D,G) = E𝑿 ,𝒀 [log D(𝑿 , 𝒀 )]

+E𝑿 [log(1 − D(𝑿 ,G(𝑿 )))],
(6.1)

where 𝑿 represents an image patch from the input domain, 𝒀 is an image
patch from the target domain and G(𝑿 ) is a generated image patch. However,
many variations to the original Vanilla GAN objective function exist, such as
the Wasserstein GAN with gradient penalty (WGAN-GP), which was proposed
for increased training stabilisation and high-quality image generation [98], or
the Least Squares GAN (LSGAN) [99], which in the conditional setting utilises
the following objective functions

min
D

ℒ𝐿𝑆𝐺𝐴𝑁 (D) =
1
2E𝑿 ,𝒀 [(D(𝑿 , 𝒀 ) − 𝑏)

2]+
1
2E𝑿 [(D(𝑿 ,G(𝑿 )) − 𝑎)2]

min
G

ℒ𝐿𝑆𝐺𝐴𝑁 (G) =
1
2E𝑿 [(D(𝑿 ,G(𝑿 )) − 𝑐)2],

(6.2)

where 𝑐 denotes a value that G tricks D to believe for false data, while 𝑎 and 𝑏
are the labels used by the discriminator for false and real data [99].

6.1.4 Variational autoencoders

Another generative model family is the VAEs that, similarly to the AE, utilise a
coupled encoder-decoder network to generate data. However, the differences
between the simple AE and the VAE are many. The AE is a deterministic model
that aims to obtain the optimal reconstruction of the input data and is, by defini-
tion, not a generative model [18]. The VAE, on the other hand, is a probabilistic
Bayesian generative model, implying that samples of the data distribution could
be generated through its marginal likelihood 𝑝𝜃 (𝒙) =

∫
𝑝𝜃 (𝒛)𝑝𝜃 (𝒙 |𝒛)𝑑𝒛. How-

ever, as in the usual Bayesian setup, the marginal likelihood or the correspond-
ing true posterior distribution 𝑝𝜃 (𝒙 |𝒛) is intractable to compute directly.

The workaround to enable the generation of data from the VAEmodel is to train
an encoder model, 𝑞𝜙 (𝒛 |𝒙), also referred to as the recognition model, to map in-
put data 𝒙 to a low-dimensional latent representations of the data 𝒛. Thus, given
samples from the distribution of 𝒛, the probabilistic decoder model, 𝑝𝜃 (𝒙 |𝒛),
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can be utilised to generate a distribution over possible values of 𝒙 [18, 29].
Letting 𝜙 represent the parameters of the encoder network and 𝜃 the parame-
ters of the decoder network, the optimisation problem boils down to achieving
𝑞𝜙 (𝒛 |𝒙) ≈ 𝑝𝜃 (𝒛 |𝒙), where 𝑞𝜙 (·) and 𝑝𝜃 (·) can be parameterised using deep
NNs or CNNs [100]. Using the reparametrisation trick [29], assuming that the
prior 𝒛 ∼ 𝒩 (000, 𝑰 ) and that 𝑞𝜃 (𝒛 |𝒙) ∼ 𝒩 (𝝁, 𝚺) the VAE can be trained by max-
imising the variational lower bound ℒ(𝜃, 𝜙; 𝒙) associated with 𝒙, formulated
as

ℒ(𝜃, 𝜙; 𝒙) = E𝒛∼𝑞𝜙 (𝒛 |𝒙 )𝑙𝑜𝑔(𝑝𝜃 (𝒙 |𝒛)) − 𝐷𝐾𝐿 (𝑞𝜙 (𝒛 |𝒙) | |𝑝𝜃 (𝒛)), (6.3)

where the Kullback Leibler divergence 𝐷𝐾𝐿 (·) enforce the approximate poste-
rior distribution 𝑞𝜙 (𝒛 |𝒙) and the model prior 𝑝𝜃 (𝒛) to approach each other [18].
For full derivations, see [29, 100].

6.2 Pixel- and frequency-aware convolutional
regression models

By exploiting concepts from I2I translation, simpler nonadversarial convolu-
tional models for regression can be defined. That is, we can train a chosen DL
architecture to translate images from one image domain to another without
using a GAN-type loss. An example of such an architecture is the U-Net, which
was initially designed for image segmentation tasks [90]. When determining
the appropriate deep learning architecture, the convolutional regression model
is optimised by selecting suitable loss functions and using output activation
layers relevant to the regression task. In image segmentation, the softmax acti-
vation function is commonly used [90,101]. Alternatively, for other tasks, it can
be omitted [102] or replaced with e.g. the ReLU activation function to predict
targets that are nonnegative and unbounded from above as we propose for
Paper III, see Section 11.

In contrast to adversarial training, which aims to improve the perceptual qual-
ity of images, pixel-wise training minimises some pixel-wise error measure
between the prediction 𝑦𝑖, 𝑗 and the corresponding target 𝑦𝑖, 𝑗 for all pixels (𝑖, 𝑗)
in the image. Thus, in some applications, a pixel-wise regression U-Net might
be better suited to provide prediction maps with high accuracy measured in
terms of a low RMSE orMAE. This could imply optimising the pixel-wise regres-
sion model on the ℒ1(see Eq. (5.3)) or ℒ2 (see Eq. (5.4)) loss functions, which
are closely connected with RMSE or MAE. In Paper III, the definition of [102] is
adopted: A U-Net trained to translate RS image patches into forest prediction
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maps through optimisation of a pixel-wise objective function is referred to as
a pixel-wise regression U-Net.

In other applications, pixel-wise losses, however, are known to lead to model-
generated images with blurry appearance [103,104]. This implies that the train-
ing paradigm and loss functions should be selected wisely. Recent research on
convolutional generative models has indicated that challenges related to blur-
riness and lack of details in CNN-generated images could be due to issues
referred to as Fourier spectrum discrepancy, spectral inconsistency, frequency bias
or spectral bias [24–26,87,88, 105–107]. These terms are used interchangeably
in the literature and refer to the difficulty that CNNs face in learning to gener-
ate high-frequency image components, such as structures, edges and textures,
leading to blurry and less detailed images. One suggested reason for this be-
haviour is that NNs prioritise learning low-frequency image data components
first, with the consequence that higher frequencies are learnt later or to a very
small extent in the optimisation process [26]. To address this challenge, re-
searchers have proposed to use frequency-aware spectral losses in combination
with common pixel-aware or GAN losses to force the model to preserve the
frequency content of the image data during training [87, 106, 107].

In 2020, Durall et al. [87] proposed to add a frequency-aware loss to the GAN’s
generator loss, ℒ𝐺 , to force the G network to also focus on the spectral agree-
ment during training. Thus, the updated G loss can be formulated as

ℒ𝐺𝑡𝑜𝑡𝑎𝑙
= ℒ𝐺 + 𝜆ℒ𝐴𝑧𝐼 , (6.4)

where 𝜆 is a hyperparameter that weights the influence of their spectral loss
ℒ𝐴𝑧𝐼 , where (azi) represents the azimuthal integral, i.e. a 1-D representation
of the Fourier power spectrum. Their spectral loss ℒ𝐴𝑧𝐼 is given by

ℒ𝐴𝑧𝐼 =
1

𝑁 /2 − 1

𝑁 /2−1∑︁
𝑖=0

𝐴𝑧𝐼 (𝒚𝑖) · log𝐴𝑧𝐼 (𝒚𝑖)

+ (1 −𝐴𝑧𝐼 (𝒚𝑖)) · log(1 −𝐴𝑧𝐼 (𝒚𝑖)) ,
(6.5)

where 𝑁 represents the image size, 𝒚𝑖 is an image pixel from the potentially
multidimensional target image, 𝒚𝑖 is the corresponding predicted image pixel.
Mathematically, ℒ𝐴𝑧𝐼 , is computed through azimuthal integration over the ra-
dial frequencies, 𝜙 , that are present in the 2-D Fourier transform ℱ (𝐼 ) of an
input image 𝐼 with size 𝑁 × 𝑁 , i.e.

𝐴𝑧𝐼 (𝜔𝑘 ) =
∫ 2𝜋

0
| |ℱ (𝐼 ) (𝜔𝑘 × cos (𝜙), 𝜔𝑘 × sin (𝜙)) | |2𝑑𝜙, (6.6)

for 𝑘 = 0, ..., 𝑁 /2.1. See [87] for details on the loss and results for models
trained with Eq. (6.4).
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Another spectral-aware loss was proposed by Czolbe et al. [107], who suggest
to improve the training of VAEs with a loss function based on a modified version
of Watson’s perceptual model of the human visual system [108]. While Wat-
sons’s original model computes the loss between true and generated images as
a weighted distance in the frequency space and using the discrete cosine trans-
form, [107] suggests to replace the discrete cosine transform with the discrete
Fourier transform. This results in a loss that can be applied to colour images
and to achieve improved robustness to translational shifts [107]. See [108] for
details of the original formulation of the loss and [107] for its justification and
formulation.

However, simpler and better-performing frequency-aware losses exist, with the
FFT-loss proposed in [106] as one example. The FFT-loss, denoted ℒ𝐹𝐹𝑇 , is
defined as

ℒ𝐹𝐹𝑇 =
1
𝑘

∑︁ (
𝑖𝑚𝑎𝑔[ℱ (𝒀 )] − 𝑖𝑚𝑎𝑔[ℱ (𝒀 )]

)2 +
1
𝑘

∑︁ (
𝑟𝑒𝑎𝑙 [ℱ (𝒀 )] − 𝑟𝑒𝑎𝑙 [ℱ (𝒀 )]

)2
,

(6.7)

where ℱ denotes the discrete Fourier transform computed for either target
images 𝒀 or predicted images 𝒀 retreieved from a mini-batch of 𝑘 images. In
practice, this is naturally done with the fast Fourier transform (FFT), hence
the name of the loss function. As seen from the definition, ℒ𝐹𝐹𝑇 uses the
MSE to enforce alignment of the real and imaginary parts of the target and
predicted image patches in the frequency domain. As it is complementary to
existing losses [106], it can, for example, replace ℒ𝐴𝐼 in Eq. (6.4) when training
frequency-aware generative CNN models.

6.3 Deep learning approaches to forest
parameter retrieval

The forest sector is one domain where access to labelled target data is very
limited. This scarcity is evident in Tanzania, where only 88 field plots are
available for the entire AOI, but also in the three Norwegian regions, where a
total of 264 field plots exist. Withoutmodifications of the target data, the limited
target dataset hinders the application of deep CNNs as regression models, since
CNNs require spatially continuous training datasets, comprising both input
and target data. Papers I and III circumvent the issue of scarcity target data
by exploiting accessible large-scale prediction maps acquired from ALS-based
forest mapping campaigns. This transforms the problem issue from one where
conventional statistical or pixel-based ML regression models are employed as
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the first option, into a DL setting where contextual CNNs can be applied to learn
effective regression models between Sentinel-1 data and the forest prediction
maps.

However, the use of prediction maps acquired from ALS-based forest mapping
campaigns does not ensure that these are continuous wall-to-wall maps, which
is required to train contextual CNN-based regression models. Both datasets
acquired by commercial forest owners and datasets retrieved through NFI cam-
paign can be noncontiguous. As described in Section 1.1, full-coverage ALS
mapping of the entire Liwale district of Tanzania was economically infeasible
during the original NFI campaign [22]. Utilising this dataset as prediction tar-
gets instead of the sparse ground reference dataset would have resulted in
noncontinuous ALS-derived AGB prediction maps that resemble the ALS strips
shown in Figure 1.1. As introduced in Section 3.4.1, the Tanzanian ALS data
used in this thesis are indeed continuous. However, this dataset was recorded
at a later time, after additional funding for wall-to-wall mapping of a smaller,
limited area was secured. See [28] for a description of this mapping campaign.
The shifted focus to the smaller AOI in the Liwale district of Tanzania enables
the use of CNN-based regression models without further modifications, see
Papers I and III.

For the Norwegian ALS dataset used in Paper III, it is not the data acquisi-
tion cost that limits the spatial coverage, but the censoring of data that is not
relevant to the task of the project: to build regression models for the commer-
cial part of the forest. In this case, it makes sense to stratify the forest, since
more accurate regression models can be obtained within homogeneous areas.
This resulted in the spatially disjoint ALS-derived SV predictions presented in
Section 3.4.2.

The examples from the campaign in support of the Tanzanian NFI and from the
mapping of commercial forests in Norway show that noncontiguous prediction
maps with spatially disjoint segments occur for various reasons. To leverage
these noncontiguous datasets for forest parameter retrieval, it is relevant to
study how CNN-based regression models can handle them. Utilising noncontin-
uous datasets as prediction targets implies increased computational complexity,
as specialised processing is required if this data shall be applied as prediction
targets when training a CNN. Paper III suggests using forest masks in the train-
ing for the Norwegian regions to confine the loss computation. As a result, the
CNN models are only being actively trained in areas where ALS-derived SV
predictions are available, whereas convolution operations are not disturbed or
complicated. Moreover, compared to Paper I, Paper III proposes combining the
small set of ground reference target data and the much denser ALS-derived
SV predictions to improve model performance by drawing inspiration from a
subfield of semi-supervised learning.
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6.3.1 Pseudo-labels for semi-supervised learning

As described in Section 4.3, semi-supervised learning is a training paradigm that
allows us to combine an amount of unlabelled data, which is often extensive,
with a set of labelled data that is normally sparse. One example of how the
small number of labelled target data can be utilised to boost model performance
would be to train the algorithm in a supervised fashion using both labelled and
unlabelled data simultaneously. Lee et al. proposed in 2013 to utilise semi-
supervised learning with pseudo-labels to improve on tasks such as image
classification [109]. The learning process is performed in two phases. Initially,
the model is pretrained on the sparse set of labelled data, before it is used
to predict labels on the unlabelled data to generate so-called pseudo-labels.
Pseudo-labels with a high prediction confidence are combined with true target
labels to augment the labelled set in the subsequent model fine-tuning. In the
fine-tuning phase, the model is iteratively retrained, gradually introducingmore
and more pseudo-labels according to the confidence in the predictions, which
can e.g. be measured in terms of distances to class prototypes. This process
allows the model to learn simultaneously from true target labels and pseudo-
labels, improving its performance. Since then, more recent works have built
on the idea of utilising pseudo-labels in a semi-supervised fashion for image
classification [110], to train multiple models simultaneously [111] or in cluster-
based learning [112]. Common for semi-supervised learning with pseudo-labels
is that "new" pseudo-labels iteratively are produced and added to the set of
labelled data to improve model performance [109–112].

6.3.2 Regression models with imputed pseudo-targets

In Paper III, we distinguish between the ground reference target data and the
ALS-derived SV predictions by defining the former as the true target dataset
and the latter as the pseudo-target dataset. Due to the known high correlation
between ALS echoes and forest height, the ALS-derived prediction maps are
deemed to exhibit a high correlation with AGB and SV. Consequently, unlike the
conventional approach of semi-supervised learning with pseudo-labels, we do
not employ an iterative process to enhance the quality of these pseudo-targets.
This is because we assume the ALS-derived prediction maps to possess a high
degree of prediction confidence, but also because it is not trivial how the confi-
dence in prediction targets can be computed in the regression setting.

Moreover, in Paper III, we train the deep convolutional regression models simul-
taneously on the true predictive targets and the pseudo-targets by imputing
the pseudo-targets into the dataset with true targets. Practically, as the number
of true targets is notably fewer than the extensive set of pseudo-targets for
both Tanzania and the Norwegian regions, this is done by inserting the true
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(a) (b) (c) (d)

Figure 6.2: (a) The discontinuous ALS-derived SV prediction map, where the colour
bar indicates the amount of SV. (b) The pseudo-target mask. (c) The
ground reference target mask. (d) The ground reference dataset, imputed
with pseudo-targets. target mask. All images are from the AOI in Tyris-
trand. The size of the pixels representing true targets has been magnified
for illustrative purposes.

targets into the pseudo-target prediction maps. To enforce the deep convolu-
tional regression models to learn from regions where both pseudo-targets and
true targets are available, models are trained with two binary masks. The first
is a pseudo-target mask, which for the discontinuous Norwegian datasets holds
the position of each pseudo-target. In contrast, for the Tanzanian wall-to-wall
map of ALS-derived predictions, the pseudo-target mask only contains ones as
the datasets of pseudo-targets cover the whole AOI. The second mask, referred
to as the ground reference mask, holds the positions of each target. Figure 6.2
shows the original ALS-derived SV dataset for the AOI in Tyristrand, the two
masks and the target dataset imputed with pseudo-targets.
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Summary of research
7.1 Paper I

Sara Björk, Stian Normann Anfinsen, Erik Næsset, Terje Gobakken, and Eli-
akimu Zahabu. "On the Potential of Sequential and Nonsequential Regres-
sionModels for Sentinel-1-Based Biomass Prediction in TanzanianMiombo
Forests", in IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 15, pp. 4612-4639, 2022.

7.1.1 Summary

The majority of current methods used for forest biomass prediction, such as
traditional statistical and machine learning regression methods, typically oper-
ate on a pixel-by-pixel basis. These methods establish a relationship between a
limited number of individual points representing estimated ground reference
AGB, and corresponding RS image pixels. The main reason for this is the need
for a sufficient amount of ground reference data needed to train deep CNN-
based regression models, which through their convolutional filters can exploit
contextual spatial information from neighbouring pixels for each prediction.
Consequently, the utilisation of DL-based methodologies for applications in
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forestry is limited. As a result, most RS-based AGB regression models do not
use the spatial contextual information from neighbouring pixels during the
learning process.

In this paper, we propose methodologies to train DL-based AGB prediction mod-
els by employing sequential regression modelling1, where the first regression
stage has linked in situ AGB data to ALS data and produced the ALS-derived
AGB prediction map. Formally, we in this paper focus on developing methods
for the second regression model in the sequence of two. We propose to train
regression models on regressor data from the Sentinel-1 sensor and utilise ALS-
derived AGB prediction maps as a surrogate for ground reference data. This
dramatically increases the amount of available training data and enables deep
CNN-based models to be utilised.

We propose to train cGANs in a supervised setting to translate false colour
image patches of Sentinel-1 backscatter into realistic-looking synthetic ALS-
derived AGB prediction patches. Figure 7.1 illustrates the proposed method,
where the generator network G is responsible for learning relationships be-
tween Sentinel-1 data and data from ALS-derived AGB predictions. Simultane-
ously, the discriminator network D is trained to distinguish between a "real"
combination of image data patches from Sentinel-1 and the actual ALS-derived
AGB prediction map to a "fake" combination of image data from Sentinel-1
and a generated ALS-derived AGB prediction patch. The cGAN components,
the G network and the D network, are trained with the traditional minimax
optimisation procedure for GANs. Following the training phase, the production
of realistic-looking synthetic ALS-derived AGB prediction patches from corre-
sponding false colour Sentinel-1 data can be achieved by utilising the trained
G network in the prediction phase.

In addition to the sequential cGAN-based AGB regression models, two para-
metric regression models were also implemented in this paper, both utilising
Sentinel-1 backscatter data as regressor data. The first model is trained in a non-
sequential setting, directly associating Sentinel-1 data with ground reference
data of AGB through the regression model. In contrast, the second paramet-
ric model is trained using the sequential approach, similar to the sequential
cGAN-based AGB regression models. These serve as references to quantify the
impact of DL-based models compared to traditional parametric models.

All regression models proposed in this work were evaluated against each other,
and additional traditional nonsequential regression models that were devel-
oped for AGB prediction in the same AOI in Tanzania, see [28]. The empirical
results indicate the benefit of including deep CNN-based regression models

1. See Section 3.3.1 for details.
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Figure 7.1: Illustration over the proposed cGAN-based sequential modelling approach
proposed in Paper I.

for AGB prediction. Although Sentinel-1 data are considered inferior for forest
monitoring, empirical results demonstrate the potential of utilising Sentinel-1
data for AGB prediction in Tanzania.

7.1.2 Contributions by the author

• The approach was conceived by me and Prof. Stian N. Anfinsen.

• I was responsible for processing the Sentinel-1 data. I further processed
the AGB ground reference data and the ALS-derived AGB prediction maps
so that they could be used to train and evaluate the proposed models.

• I made all implementations and conducted all experiments.

• The discussion and analysis were conducted in collaboration with domain
experts Prof. Erik Næsset, Prof. Terje Gobakken and Prof. Håkan Olsson.

• I wrote the original draft of the manuscript. The manuscript was further
edited in collaboration with Prof. Stian N. Anfinsen, Prof. Erik Næsset
and Prof. Terje Gobakken.
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7.2 Paper II

Sara Björk, Jonas N. Myhre, and Thomas Haugland Johansen. "Simpler is Bet-
ter: Spectral Regularization and Up-sampling Techniques for Variational
Autoencoders", in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 3778-3782, 2022.

7.2.1 Summary

Many CNN-generated images suffer from varying degrees of blurriness and
lack of details, such as sharp transitions from an object to the background. One
theory that explains the shortcoming of CNN-based generative models is that
these networks tend to prioritise the learning of low-frequency components of
image data initially, leading to a bias against learning high-frequency image
content such as edges and textures [25,26], see discussion in Section 6.2.

In this paper, we propose a novel frequency-aware objective function to address
the shortcomings related to the quality of images generated by convolutional
generative models. The frequency-aware objective function denotedℒ𝐹𝐹𝑇 , com-
putes the 2-D Fourier transform of the target and generated image patches and
uses the MSE to enforce alignment between these, see Eq. (6.7). As ℒ𝐹𝐹𝑇 is
complementary to other objective functions, including it in the training of gen-
erative models forces the model to also focus on achieving agreement of the
overall spectral content of the data.

The impact of the ℒ𝐹𝐹𝑇 objective function was evaluated by training a gen-
erative VAE with a traditional spatial objective function (Vanilla VAE) and
comparing it to a VAE that included the ℒ𝐹𝐹𝑇 to the spatial objective function.
The performance of the ℒ𝐹𝐹𝑇 objective function was also evaluated against
two other recently proposed frequency-aware losses [87, 107], see Section 6.2.
All experiments were performed on public benchmark datasets such as the
CelebA dataset [113]. Empirical results demonstrate that generative VAE mod-
els trained with the ℒ𝐹𝐹𝑇 achieve results equal to or better than the current
state-of-the-art in frequency-aware losses for generative models. Figure 7.2
illustrates the impact of the ℒ𝐹𝐹𝑇 objective function, where the top row shows
images in the spatial domain while the bottom row shows the corresponding
Fourier power spectrum of each image. Column (a) shows the target image
(top) and its corresponding Fourier power spectrum, the corresponding images
reconstructed by use of a Vanilla VAE in column (b) and by use of a VAE with
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(a) (b) (c)

Figure 7.2: Column (a): real image; (b): the image reconstructed with a Vanilla VAE;
and (c): the image reconstructed from a VAE optimised by including ℒ𝐹𝐹𝑇 .

the ℒ𝐹𝐹𝑇 objective function in (c). Comparing (b) to (c), discrepancies in the
highest frequencies of the 2D Fourier spectrum can be seen in (b). Further-
more, when comparing image (b) to image (a) and image (c) to image (a), it
is apparent that the Vanilla VAE suffers from a greater lack of details in the
spatial representation of the image.

7.2.2 Contributions by the author

• The approach was conceived by me and the co-authors.

• I made most of the implementations and conducted all experiments.

• The discussion and analysis were conducted in collaboration with the
co-authors, Prof. Stian N. Anfinsen and Prof. Robert Jenssen.

• I wrote the original draft of the manuscript. The manuscript was further
edited in collaboration with the co-authors.
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7.3 Paper III

Sara Björk, Stian N. Anfinsen, Michael Kampffmeyer, Erik Næsset, Terje Gob-
akken, and Lennart Noordermeer. "Forest Parameter Prediction by Multiob-
jective Deep Learning of Regression Models Trained With Pseudo-Target
Imputation", submitted to IEEE Transactions on Geoscience and Remote Sensing,
2023.

7.3.1 Summary

This paper follows up on the work in Paper I and Paper II by improving the
performance of CNN-based regression models for forest parameter prediction.
Specifically, this paper proposes a novel methodology that leverages both the
limited amount of available ground reference measurements of AGB or SV, and
the available ALS-derived prediction maps in the SAR-based prediction. Ad-
ditionally, taking inspiration from Paper II and the literature on single image
super-resolution, see e.g [103, 104], this paper proposes a multiobjective train-
ing approach. This approach utilises composite loss functions with varying
objectives to train deep CNN-based regression models.

In this paper, we depart from the sequential modelling strategy of Paper I by
incorporating the ground reference dataset, interchangeably referred to as true
targets, in the training of CNN-based regression models. This is possible by
getting inspiration from the related deep learning paradigm, semi-supervised
learning with pseudo-labels, see Section 6.3.1 and Section 6.3.2. Thus, for this
paper, we propose to train models that benefit from both true targets and ALS-
derived prediction maps to improve the CNNmodel’s performance in prediction
of forest parameters. The latter dataset is in Paper III referred to as pseudo-
targets.

Compared to Paper I, this paper focuses on training CNN-based regression mod-
els for AGB prediction in Tanzanian miombo woodlands and for SV prediction
in three managed boreal forests in Norway. We follow the training procedure
of [104] and divide the training into pretraining and fine-tuning stages. As
detailed in Section 5.3.3 and Section 6.2, the CNN-based regression models
employ the U-Net architecture, trained to map image patches of Sentinel-1 data
into AGB or SV predictions of true targets and pseudo-targets. Two baseline
CNN models were trained during pretraining: an ℒ1-based regression U-Net
and a cGAN-based generative U-Net. Subsequently, these baseline models are
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Figure 7.3: The overall workflow, shown for the Tyristrand dataset proposed in Paper
III. The workflow includes dataset generation, model training and infer-
ence to create prediction maps. Prediction targets, shown as white circles
in the figure, have been magnified for illustrative purposes.

further trained using additional loss functions in the fine-tuning stage. Pre-
training a model on the ℒ1 objective function reduces reconstruction errors
in terms of MSE, while adversarial pretraining focuses on enhancing the per-
ceptual quality of the generated images [104], which is not important for the
forest parameter regression task. Figure 7.3 shows the proposed workflow for
Paper III, including dataset generation, model training and inference.

Experiments were conducted on the Tanzanian AGB dataset and the three
Norwegian SV datasets, where models were trained and evaluated against the
performance of ALS-derived prediction models previously developed for the
same regions in [23,28]. The results demonstrate that models developed with
the proposed pseudo-target imputation strategy achieve state-of-the-art per-
formance that surpasses traditional ALS-based regression models. Since the
results are consistent for experiments on AGB prediction in Tanzania and SV
prediction in Norway, we have shown the robustness of our method for different
forest types and the prediction of different forest parameters. Moreover, our re-
sults improve on Paper I and further demonstrate the usefulness of CNN-based
regression models that utilises freely available C-band Sentinel-1 data.
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7.3.2 Contributions by the author

• The approach was conceived by me and Prof. Stian N. Anfinsen. Assoc.
Prof. Michael Kampffmeyer provided valuable insight into the domain of
semi-supervised learning with pseudo-labels.

• I was responsible for processing the Sentinel-1 data for Tanzania. Addi-
tionally, I further processed the AGB and SV ground reference data and
the ALS-derived AGB and SV prediction maps so that they could be used
to train and evaluate the proposed models.

• I made all implementations and conducted all experiments.

• The discussion and analysis were conducted in collaboration with do-
main experts Prof. Erik Næsset, Prof. Terje Gobakken and Dr. Lennart
Noordermeer.

• I wrote the original draft of the manuscript. The manuscript was further
edited in collaboration with the co-authors.
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Concluding remarks
The aim of this thesis was to develop methodologies for advancing forest pa-
rameter retrieval through the use of deep convolutional regression models. In
particular, we focused on addressing the following three key challenges that
limit the use of CNN-based regression models in forestry: (1) the lack of refer-
ence data to use as prediction targets, (2) the diversity in spatial coverage of
RS-based prediction maps, and (3) the applicability of forest regression mod-
els.

Through the work of this thesis, we have demonstrated that ALS-derived forest
prediction maps can serve as a substitute or complement for limited sets of
ground reference target data in forest parameter retrieval tasks. In the first
scenario, we proposed a two-stage sequential modelling approach for large-
scale forest parameter retrieval. In this approach, the second model establishes
a relationship between RS data and ALS-derived AGB prediction maps. We
developed two types of models for the subsequent stage: a traditional para-
metric regression model and a convolutional cGAN-based regression model.
Both models utilised an accurate wall-to-wall map of ALS-derived AGB predic-
tions as a surrogate for the true prediction targets, and extensive spatial SAR
data as regressor data. By employing this sequential modelling approach, we
demonstrated how contextual forest regression models can be created without
relying on true prediction targets. This contribution is valuable because ob-
taining ground reference measurements of forest parameters, such as AGB, is
often challenging. Moreover, forest ground reference measurements are rarely
openly available within forestry.
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In the second scenario, we improved the accuracy of deep convolutional re-
gression models by proposing a novel semi-supervised imputation strategy for
forest parameter retrieval. In this strategy, we proposed to use ALS-derived for-
est prediction maps as pseudo-targets. These pseudo-targets were imputed into
the sparse dataset that contains the true prediction targets, allowing the contex-
tual CNN-based regression model to leverage both datasets during the learning
process. As a result, both scenarios address the first key challenge.

To specifically address the second key challenge, we proposed a method for
training deep convolutional regression models that effectively utilise either
continuous or partially continuous wall-to-wall maps of ALS-derived forest pa-
rameter predictions by employing forest masks. By applying forest masks, the
CNN models’ loss computation and active training are confined to areas where
ALS-derived prediction maps and true prediction targets are available. Com-
bined with the semi-supervised imputation strategy for regression, this contri-
bution can significantly advance the application of deep convolutional regres-
sion models in forest parameter retrieval. Moreover, it reduces the requirement
for complete wall-to-wall prediction maps, thereby enabling the application of
CNN-based regression models in forestry.

We addressed the third key challenge in two ways. Firstly, to enhance the
performance of CNN models, we proposed a frequency-aware objective func-
tion that complements other commonly used objective functions. This new
objective function enforces CNN models to learn both the low-frequency and
high-frequency components of image data in generative or I2I translation tasks.
As RS image data contain higher frequencies compared to natural images [24],
the frequency-aware objective function facilitates better learning from datasets
beyond the natural image domain. Secondly, we demonstrated the potential
of using C-band SAR data from the Sentinel-1 sensors as input data to enable
large-scale and low-cost regression modelling of forests. Despite the general
perception of Sentinel-1 data being inferior for forest mapping, primarily due to
its limited penetration capabilities in forested areas, we showed that Sentinel-
1-based models are a viable alternative for forest parameter retrieval.

8.1 Limitations and outlook

We acknowledge that each research paper has both strengths and limitations. In
this section, we discuss the limitations of the papers included in this thesis and
suggest potential directions for future research related to deep convolutional
regression modelling for forest parameter retrieval.

A general limitation of both Papers I and III is that these rely on the ground
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referencemeasurements of AGB or SV obtained from circular field plots. As both
the Sentinel-1 image data and the convolutional regression models proposed
in this thesis are represented with, or operate on square pixels, uncertainties
arise during model training and evaluation. This is because each circular field
plot intersects with multiple square pixels in the RS dataset, leading to inferred
uncertainties. One possibility for new inventory campaigns would be to collect
ground reference measurements from square field plots, as recommended for
many LiDAR-biomass models [15]. However, it is important to note that the
field plots used in typical field inventory campaigns often need to be specifically
designed to serve as reference data for RS-assisted regression models [19,28].
As a result, there is a possibility that smaller circular field plots may still be
employed due to their practical efficiency [15]. Moreover, the use of square
plots does not guarantee a perfect match between the RS data and the field
plots in terms of matching grids. This implies that even with the use of square
grids, uncertainties may arise when the RS datais resampled to match the grid
of the square pixels.

Paper I The methodology proposed in Paper I relies on having access to wall-to-
wall maps of ALS-derived prediction maps. However, practical constraints, such
as economic limitations or site-specific factors [19,22,23], often prevent con-
tinuous large-scale ALS mapping of forests. As a result, access to ALS-derived
prediction maps for forest parameters is commonly limited. Consequently, the
methodology proposed in Paper I primarily applies to smaller sites. Addition-
ally, the regression models proposed in this study were trained without incor-
porating ground reference measurements of AGB. This omission may partially
explain why the proposed cGAN-based models achieved lower prediction ac-
curacy than a conventional ALS-based regression model. While the proposed
cGAN-based regression models were evaluated in terms ofMAE and RMSE, they
were optimised through adversarial training that aims to achieve a high percep-
tual quality. We hypothesise that the performance of convolutional regression
models for forest parameter retrieval could improve by including additional
learning objectives that aim to achieve high accuracy in terms of MAE and
RMSE, or that also focus on inferring more information from the image data.
The latter would, for example, imply that the learning objective enforces the
model to regress on both low-frequency and high-frequency content in the
image, with high-frequency components representing features like edges or
corners in the scene.

Paper II The objective function proposed for Paper II demonstrates that in-
corporating frequency-aware training enhances the performance of generative
models. However, the evaluation of the proposed frequency-aware objective
function was limited to generative VAEs using benchmark data from the nat-
ural image domain. To truly assess the potential impact of the contribution
presented in Paper II, it is necessary to conduct further evaluations of the pro-
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posed objective function across other CNN-based models and other real-world
datasets. This evaluation could encompass images from outside the natural
image domain, such as RS or medical image data.

Paper III This paper addresses the limitations outlined for Papers I and II,
leading to the development of CNN-based regression models with improved
accuracy. Specifically, for the Tanzanian dataset, these models surpass the per-
formance of a conventional ALS-based regression model previously developed
for the same region. Moreover, Paper III demonstrates the versatility of the
methodology by successfully handling various forest types and parameters. De-
spite this, a major drawback of Paper III is the lack of uncertainty estimates for
provided AGB or SV predictions. The report on Good Practice Guidance for Land
Use, Land-Use Change and Forestry from 2003 [114] and the guidelines from
Intergovernmental Panel on Climate Change (ipcc) from 2006 [115], specifi-
cally highlight the need for identifying and reporting uncertainties from e.g.
AGB estimation from both ground and RS data. Thus, if the aim is to estimate
the carbon budget, providing prediction maps for forest parameters is just an
intermediate step. While AGB estimates can be retrieved by aggregating indi-
vidual pixel values from the constructed pixel maps, estimating the uncertainty
from DL algorithms and CNN-based regression models is not trivial [17].

8.1.1 Future directions

In this section, we provide our thoughts on some potential research directions
for developing DL-based regression models in forestry using remote sensing
data.

The first promising research field would be to meet the requirements of IPCC
and provide uncertainty estimates for estimated forest parameters. In [116],
Abdar et al. reviews possible uncertainty quantification methods and their chal-
lenges in deep learning, these and the work on uncertainty quantification in
forestry by Leonhardt et al. [117] could serve as a natural starting points to ex-
tend the work of Paper III. Another related research field, referred to as explain-
able artificial intelligence (xai) [118,119], focuses on providing explanations on,
for example, why a particular prediction was made. Thus, incorporating XAI
into the work of Paper III could, for example, provide the model prediction with
examples of which features in the dataset that have the greatest importance
for accurate forest parameter predictions.

Another promising area of research is transfer learning. As stated in this thesis:
retrieving ALS data in large regions is costly. Therefore, it is worth exploring the
potential of transfer learning,which refers to utilising amodel developed for one
region for accurate forest parameter prediction across different regions. How-
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ever, for transfer learning to benefit forestry, it is crucial to provide uncertainties
and explanations for the model’s predictions. Once again, XAI techniques can
play a vital role in providing these.

While the proposed methods provide promising results in utilising data from
the freely available C-band Sentinel-1 sensor for forest parameter retrieval, both
L and P-band microwaves are known to penetrate deeper into the forest [15,32],
and thereby providing more sensitivity to forest parameters such as AGB and
SV. In the coming years, two new spaceborne SAR missions are planned: the
P-band SAR BIOMASS mission, with a scheduled launch in 2024, and the Radar
Observing System for Europe in L-band (rose-l) mission, which is scheduled
for launch in 20281. Both missions are planned to provide global monitoring
of, among other things, forest and biomass. Thus, training deep convolutional
regression models that utilise RS data from any of these two missions has the
potential for improved model performance, especially in dense tropical forests
and other forests with high levels of AGB.

Finally, this thesis did not investigate the potential of sensor fusion beyond
the combination of SAR data as regressors and ALS-derived prediction maps
as pseudo-targets. Sensor fusion could for instance be used to train models
that utilise data from several RS sensors as regressors. Another interesting
prospect is to train models directly on the ALS data, assuming they are available,
instead of using prediction maps resulting from regression models trained on
these ALS data. While C-band radar mainly interacts with the crown volume,
L- and P-band interact with larger parts of the trees, like large branches and
trunks [15]. Thus, by combining data from different SAR sensors, DL-based
regression models could potentially learn better features and characteristics
from the RS data and thereby achieve higher accuracy in forest parameter
retrieval.

1. See https://www.eoportal.org/satellite-missions/rose-l#space-and-hardware-components
for specifications,
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Abstract—This study derives regression models for aboveground
biomass (AGB) estimation in miombo woodlands of Tanzania that
utilize the high availability and low cost of Sentinel-1 data. The lim-
ited forest canopy penetration of C-band SAR sensors along with
the sparseness of available ground truth restricts their usefulness
in traditional AGB regression models. Therefore, we propose to
use AGB predictions based on airborne laser scanning (ALS) data
as a surrogate response variable for SAR data. This dramatically
increases the available training data and opens for flexible regres-
sion models that capture fine-scale AGB dynamics. This becomes a
sequential modeling approach, where the first regression stage has
linked in situ data to ALS data and produced the AGB prediction
map; we perform the subsequent stage, where this map is related
to Sentinel-1 data. We develop a traditional, parametric regression
model and alternative nonparametric models for this stage. The
latter uses a conditional generative adversarial network (cGAN)
to translate Sentinel-1 images into ALS-based AGB prediction
maps. The convolution filters in the neural networks make them
contextual. We compare the sequential models to traditional, nonse-
quential regression models, all trained on limited AGB ground ref-
erence data. Results show that our newly proposed nonsequential
Sentinel-1-based regression model performs better quantitatively
than the sequential models, but achieves less sensitivity to fine-scale
AGB dynamics. The contextual cGAN-based sequential models
best reproduce the distribution of ALS-based AGB predictions.
They also reach a lower RMSE against in situ AGB data than
the parametric sequential model, indicating a potential for further
development.
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I. INTRODUCTION

A S A consequence of climate change, there is an increasing
need for accurate carbon accounting systems for mea-

suring, reporting, and verification (MRV) on a national level.
Through the REDD+ program (officially named “Reducing
emissions from deforestation and forest degradation and the
role of conservation, sustainable management of forests, and
enhancement of forest carbon stocks in developing countries”),
developing countries are motivated to implement such an MRV
system to monitor the potential reduction of carbon emissions
from tropical forests [1]. The documentation of reduced defor-
estation on a national level could potentially result in a financial
reward being released through the program for the countries
associated with the REDD+ program [2].

Forests are well known for being one of the major carbon
sinks and need to be properly and accurately monitored by the
MRV system. This can be achieved by accurately estimating
the amount of forest aboveground biomass (AGB), as AGB
is a primary variable related to the carbon cycle [3], [4]. To
calibrate the MRV system, AGB data over the area of interest
(AOI) is needed. It can be collected either through destructive or
nondestructive in situ sampling. The former implies harvesting,
drying, and weighing the plants to estimate the biomass. The
latter does not involve harvesting trees but measuring parameters
such as tree height and stem diameter. Measured parameters
from the nondestructive sampling can be used to predict AGB
by allometric models developed for the AOI [4]. Unfortunately,
AGB in situ measurements of both above categories are costly
and time-demanding to collect manually. As a consequence,
most research instead focuses on establishing a relationship
between a small amount of AGB field data and remote sensing
(RS) data using different sensors [2], [5]–[19].

Among different platforms and sensor types, airborne laser
scanning (ALS) systems are shown to provide AGB models that
are significantly more accurate than models developed using
radar or passive optical data [20], [21]. The reason is probably
that ALS can provide accurate data describing canopy cover
density and canopy height, which is highly correlated with forest
AGB [3], [21]. This result was also confirmed in [22], where the
ALS-based regression model achieved the highest accuracy of
AGB estimates in the miombo woodlands of Tanzania. However,
airborne data are associated with high acquisition cost, which
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limits the use of ALS data in national MVR systems that require
regular acquisitions to keep forest inventories up to date [3],
[21].

One of the advantages of employing spaceborne SAR sensors
to AGB estimation is that it provides data with extensive spatial
coverage that can be acquired with high temporal frequency.
SAR data can thus yield frequently updated AGB predictions
over large areas. Another advantage is the SAR sensor’s ability
to penetrate clouds, which makes it effective to monitor regions
with a significant amount of cloud coverage. Unfortunately,
the use of SAR data for AGB estimation is limited by the
saturation level, the property that SAR intensity does not in-
crease with AGB beyond a certain AGB level. This property
is dependent on the specific wavelength used by the SAR
sensor and implies, in general, that AGB at middle-to-high
level cannot be distinguished in the SAR intensity data [3],
[23]–[25]. Additionally, SAR data are strongly dependent on
the environmental conditions on the ground, where a change
in moisture conditions impacts the measured backscatter [23].
The former is a well-known limitation of SAR data that may
restrict its use in MRV systems of high precision, and the latter
might be circumvented by the use of SAR data acquired at, e.g.,
dry seasons [24]. The different challenges of SAR and ALS
have fostered studies on their combined use for forest AGB
estimation. Several of these studies were reviewed in [3] and
[21], which conclude that the combination of SAR and ALS may
improve AGB estimation, especially when SAR data are used to
upscale and extend accurate ALS measurements of forest height
to obtain accurate AGB predictions over large areas [3].

Well-known regression models from statistics have tradition-
ally been used to directly relate a small set of ground reference
data of AGB to RS data from a single sensor. A popular choice
among the conventional regression models is a variation of
traditional linear regression: Multiple linear regression and step-
wise multiple regression; see, e.g., [11], [14], [15], [17], [19],
[26], [27]. The evolution of machine learning (ML) methods
has introduced many alternative methods for AGB estimation,
with random forests, artificial neural networks (ANNs), and
support vector machines for regression as some of the most
prominent, see, e.g., [9], [10], [12], [14]–[18], [28]–[31]. Like
the traditional statistical regression models, these ML-based
models also directly relate ground reference data of AGB to
RS data from a single sensor. Due to the limited amount of
ground reference AGB data, both traditional statistical regres-
sion models and ML-based models are restricted to relate single
observations of the ground reference AGB data to single pixels
from the RS data source. Thus, the spatial contextual information
from neighboring pixels in the RS data source are generally not
incorporated in the learning of the regression model. This is
likely to inhibit the learning of the AGB dynamics and fine scale
variability. The emerging field of deep learning (DL) methods
has further opened many new possibilities in the analysis of
RS images. Deep neural networks (DNNs) have, among other
things, increased the ability to perform accurate regression be-
tween different image modalities acquired from different sensors
at possibly different times. The combination of multimodal RS
images, such as, e.g., SAR and ALS, has been shown to improve

AGB estimation results through regression models of increased
complexity. Although the different RS images cover the same
scene, their pixel measurements represent different domains,
like, for example, ALS-derived measurements of heights or
SAR-based backscatter intensity data. Transfer learning (TL),
domain adaptation (DA) [32]–[34], and image translation [35]
are some theoretical frameworks of recent popularity that can be
used to handle such challenging and complex problem settings.
Also, a challenging regression problem arises when data from
different multimodal RS sensors are combined to upscale the
extent of an accurate sensor-based AGB prediction map. In
the context of such a data fusion task, sequential approaches
with two subsequent regression models become relevant as an
alternative to the simpler strategy with a single-stage regression
model.

In this article, we refer to sequential modeling as the process
where two regression models are used in a chain to achieve
more training data for AGB prediction. Sequential modeling
can also be used to upscale the spatial extent of an initial AGB
prediction map. In the first stage, one regression model relates
ground reference AGB data to a single RS data source with high
information content about the target variable, but with limited
geographical coverage. The outcome of the first model is an
accurate sensor-based AGB prediction map, which is used in
the second regression model as a surrogate for ground reference
data to regress on data from an additional RS sensor with
larger spatial extent. Both traditional regression models, such
as simple and multiple linear regression (see, e.g., [36]–[38]),
and ML-based models, such as random forest and support vector
regression (e.g., [39]–[42]), have previously been applied in a
sequential modeling fashion for AGB estimation. In this work,
we differentiate between sequential modeling and the traditional
approach with a single-stage regression model by referring to the
latter as a nonsequential modeling approach.

Both sequential and nonsequential regression models for
AGB estimation have traditionally operated on an individual
pixel level. That is, the prediction at a pixel location is based on
regressors exclusively from the same location, without any use
of spatial context of neighboring pixels. However, a key feature
of DNNs, that partly explains their success in many prediction
and regression problems, is their use of convolutional filters.
This implies that the prediction of any single pixel is based
on regressors from a spatial neighborhood that surrounds it. It
also means that the prediction is done by processing blocks of
pixels, with image layers of regressor variables in input and a
corresponding layer for the response variable in output. This
mapping of predictor images to a response variable image is
equivalent to the operation known as image translation in DL.
Isola et al. [35] define image translation as follows: Given
sufficient training data, image-to-image translation is defined
as the problem of translating one possible representation of a
scene into another. Within DL, the family of generative models
is known to enable cross-modal image translation by translating
data from one known distribution to another target distribution.
Among the generative models are the generative adversarial
networks (GANs) [43] particularly popular; see, e.g., [35], [44]–
[50]. GANs are trained to capture the data distribution of a target
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domain in a minimax optimization procedure. After training, the
generator network, G, can be used to map a random noise vector
to a target output image. This idea was later extended to the
conditional generative adversarial network (cGAN) architecture
[51]. In the cGAN setting, the learnt mapping to the target
output image distribution is conditioned on the distribution of an
input image [35]. Considering the enormous potential of GANs,
we wish to address AGB prediction from a DL perspective.
However, as a DNN, the cGAN model requires a substantial
amount of training data for cross-modal image translation.
Therefore, it cannot learn to directly translate between a small
set of AGB ground reference data and spatially continuously
RS data. Thus, we propose to tackle the regression problem
through sequential modeling by applying the cGAN architecture
in the second regression model in the sequence. This approach is
only possible as we propose to use an AGB prediction map as a
surrogate for ground reference data, which makes a large amount
of spatially continuous target data available to the regression
model. The cGAN’s convolutional filters open for the use of
spatial contextual information in the predictions. Based on the
discussion above, the definition of the research problem in this
article is described as follows.

A. Problem Definition

As a developing country and associated with the REDD+
program, Tanzania has the potential to achieve a financial ben-
efit by implementing an MRV system to monitor their forests.
Therefore, the primary aim of this work is to develop forest AGB
prediction models that could be implemented in an MRV system
for Tanzania. For an AGB prediction model to be of practical
use in the MRV system of Tanzania, the model should be able
to provide frequently updated AGB predictions with extensive
spatial coverage, of a high accuracy, and at a low cost. This puts
some constraints on the data used.

1) We need to rely on RS data, as large-scale in situ sampling
will be infeasible.

2) We cannot afford performing frequent ALS campaigns to
frequently update a low-cost MRV system.

3) Due to its location, Tanzania experiences rain periods,
which constrains the use of passive sensors, as they are
not able to penetrate clouds.

The second constraint further limits the use of RS data from
sensors that are neither freely available, nor easily accessible.
Based on the constraints of this project, we have decided to
utilize the Sentinel-1 sensor, as it provides us with freely avail-
able and frequently updated data with extensive spatial coverage.
However, a simple SAR-based AGB prediction model may limit
the precision of the MRV system and consequently the advantage
of implementing the system for operational forest monitoring.

Both [3] and [52] advocate the potentials of combining ALS
and SAR for large-scale AGB mapping with improved accuracy.
Encouraged by this, we restrict the focus of this work to an
AOI in the Liwale district in southeast Tanzania. Here, we have
access to a small amount of ground reference vector data and
continuous raster of ALS data, which has previously been used
in combination with four other RS datasets: optical RapidEye

and Landsat imagery, interferometric TanDEM-X radar imagery
(X-band SAR), and ALOS-PALSAR (hereby PALSAR) radar
imagery (L-band SAR), to develop five different traditional
nonsequential regression models; see [22]. The ALS-based pre-
diction model of Næsset et al. [22] was further used to create a
wall-to-wall map of ALS-based forest AGB predictions. Their
ground reference dataset and the wall-to-wall map of ALS-based
forest AGB predictions were provided to us for this work, and
will be used together with Sentinel-1 data to develop low-cost
AGB prediction models for the AOI. However, since we aim
to contribute with AGB prediction models that can be applied
not only in the AOI, but also in extended areas, we put further
restrictions on the focus of this work.

1) To develop AGB prediction models of high accuracy and
with potentially extensive spatial coverage, we wish to
investigate if a sequential modeling approach is better than
a traditional nonsequential regression model.

2) By utilizing the wall-to-wall ALS-based AGB prediction
map as a surrogate for AGB ground reference data, we are
able to implement the second part of the sequential model
with a DDN. Thus, in the case of sequential modeling, we
additionally investigate the possible benefits of applying a
DL-based model instead of a traditional regression model.

Our approach to sequential modeling is to coregister and
resample the SAR intensity image data to the same spatial
resolution as the available wall-to-wall map of ALS-based AGB
predictions, produced with the classical nonsequential regres-
sion model presented in [22]. Motivated by the achievements of
image-to-image translation, we propose to utilize a cGAN model
for the second model in the sequence. We train the cGAN model
to synthesize ALS-based AGB maps from false color SAR inten-
sity images. As far as we know, this is the first time contextual
DNNs, in the form of cGAN models, have been utilized in a
sequential modeling strategy to upscale a limited amount of
ground reference data and simulate AGB predictions. We see any
modification of the ALS-based regression model as outside the
scope of this work. Fig. 1 shows the overall view of the proposed
cGAN-based sequential approach used to generate synthetic
ALS-based AGB predictions from false color Sentinel-1 im-
age patches. We validate the proposed cGAN-based sequential
model against two noncontextual Sentinel-1-based regression
models, also proposed for this work: a nonsequential model
and a traditional sequential model. The nonsequential regression
model relates single pixels of Sentinel-1 data to the small set of
AGB ground reference data. For the noncontextual sequential
regression model, we trained the second model in the sequence to
relate ALS-based AGB predictions to single pixels of Sentinel-1
data. For both noncontextual models, we use the state-of-the-art
regression model in the AOI, i.e., a multiple linear regression
model with square root transformation of the response variable.
This is the same regression model as used by Næsset et al. [22].

B. Contribution

To summarize, the contributions of this article are as follows.
1) We extend the work in [22] by developing a similar type

of regression model based on Sentinel-1 data.
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Fig. 1. Flowchart over the proposed cGAN-based sequential modeling ap-
proach. The generator network is trained to translate false color Sentinel-1
backscatter patches (consisting of the VV and VH band and their difference, i.e.,
VV-VH) into realistic-looking synthetic ALS-based AGB prediction patches.
The discriminator network is trained to distinguish between a “real” combination
of the input patch from Sentinel-1 and the actual AGB prediction patch to a “fake”
combination of the input patch from Sentinel-1 and the synthetic AGB prediction
patch. The cGAN components, the G network and the D network, are trained in
a minimax optimization procedure. After training, the G network can generate
realistic-looking synthetic ALS-based AGB prediction patches in an AOI from
corresponding false color Sentinel-1 data in the AOI (see prediction phase).
Both the individual bands of the false color SAR patch and the ALS-based AGB
patches only consist of one channel but are here represented in colors to ease
the interpretation.

2) We propose to model forest AGB by a novel sequential
modeling approach, in which the second model relates
SAR data to ALS-based AGB predictions. We propose
two different regression models for the second stage of
regression.

a) One traditional regression model, similar to 1);
b) one DL-based regression model based on image-to-image

translation with a cGAN [35].
3) Since the application of cGANs as AGB regression mod-

els is uncommon, we provide a comprehensive study on
different hyperparameters, objective functions, and G and
D networks.

4) We empirically evaluate the three proposed AGB predic-
tion models against previous results presented in [22] and
against each other.

5) We demonstrate the potential of using Sentinel-1 data for
AGB predictions and show that our C-band-based models
perform better than some of the previously developed
models for the AOI.

While we argue for the benefit of using Sentinel-1-based
models to extend the spatial coverage of the AGB predictions,
the scope for this study is to develop models for the AOI. We
therefore see the construction of AGB prediction maps over an
extended area as outside the scope of this work.

The remainder of this article is organized as follows. In
Section II, we introduce our proposed sequential modeling ap-
proach for forest AGB prediction. Section III presents published
research in related areas within nonsequential and sequential
regression models for AGB prediction through sensor fusion,
and related research on image translation through GANs. Sec-
tion IV presents the datasets, and formally define the proposed
nonsequential and sequential regression models. Results are
presented and analyzed in Section V, while we discuss our
work in Section VI. Finally, Section VII concludes this article.
Additional experiments and methodological contributions are
collected in the Appendix.

II. BACKGROUND

In this section, we introduce the proposed sequential modeling
approach for forest AGB prediction in both general terms and
with a particular emphasize on employing a cGAN for the
second part of the sequential model. We continue with a general
introduction to the concepts of the cGAN model and how it
can be utilized for image-to-image translation in our sequential
modeling approach.

A. Non-sequential modeling

As previously introduced, colocated ALS data (y) and AGB
ground reference data (z) consisting of 88 field plots were
in Næsset et al. [22] used to fit a traditional nonsequential
regression model f : y �→ z. The specific regression model from
[22], denoted f, uses a square root transformation of the response
variable and was trained using ordinary least squares (OLS)
regression with stepwise forward selection of the variables. It
was used to map spatially continuous ALS measurements into
what we refer to as a ALS-based AGB prediction map by

ẑy = f(y)

where ẑy denotes each individual ALS-based AGB prediction.
The regression coefficients are published in [22] and the re-
sulting prediction map has been made available to us by the
authors. The traditional nonsequential approach is illustrated on
the left-hand side of Fig. 2, where a single regression model is
trained to relate some remotely sensed predictor, such as SAR
backscatter intensity (denoted x) or ALS data (y), to a colocated
set of sparse AGB ground reference data (z). Here, ẑx refers to
SAR-based AGB predictions obtained with the traditional non-
sequential regression model. The ALS-based biomass prediction
map, ẑy , is of relatively high accuracy compared to maps made
from other RS data sources in the same work [22].

B. Sequential modeling

In the modeling strategy with two sequential regression mod-
els, we keep the regression model from [22], i.e., f , as the first
model in the sequence. We then propose the second regression
model in the sequence to relate SAR backscatter intensity data,
x, to wall-to-wall maps of ALS-based forest AGB predictions,
ẑy . We thereby utilize ẑy as a dense surrogate for z. This gives
rise to the second regression model, g : x �→ ẑy , which in the
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Fig. 2. Illustration of the difference between a traditional nonsequential regression model and the proposed sequential regression models. We let x denote data
from a SAR sensor, y denote ALS data, and z denote AGB ground reference data. Regression models are represented by f, g, and h, where f is a regression model
between y data and z, h is a regression model between x data and z, while g is a regression model between x data and ALS-based AGB predictions denoted̂ zy .
Additionally,̂ zx denote SAR-based AGB predictions from a traditional nonsequential regression model. In the sequential setting,̂ zy|x denote the outcome from
the second part of the two subsequent regression models, i.e., a generated synthetic ALS-based AGB predictions retrieved from x data.

prediction phase can be used to map SAR images, unseen by the
model, to generate synthetic ALS-based AGB maps by

ẑy|x = g(x)

where ẑy|x denotes each individual generated synthetic ALS-
based AGB prediction. Thus, the two regression models f and
g link SAR intensity data to AGB ground reference data in a
sequential process. The main benefit of the sequential modeling
approach is that the model g can be trained with a large amount
of spatially continuous data instead of the few ground reference
field plots. Consequently, our sequential modeling approach
additionally facilitates for the full exploitation of convolutional
DL models for AGB regression as they require access to spatially
continuous data. Our proposed sequential modeling approach
is shown on the right-hand side of Fig. 2. It should be noted
that the described sequential approach is lacking in one respect:
The SAR-based prediction, ẑy|x, is regressed against a surrogate
regression target ẑy, which, despite its relatively high accuracy,
must necessarily contain some uncertainty. Therefore, the se-
quential modeling could be followed by a calibration step step
where the mean of g is calibrated against the original ground
reference data, z. This is discussed in footnote 3.

We propose two different versions for model g: A traditional
sequential model and a DL-based sequential model. In the
traditional sequential regression setting, we let g take the same
form as f, i.e., a multiple linear regression model with square
root transformation of the response variable. In the DL-based
sequential regression setting, we instead use a cGAN model as
the second regression model. The latter is only possible due to
the sequential modeling approach, which allows g to be trained
on the wall-to-wall map of ALS-based AGB predictions. As
the cGAN model utilizes convolutional filtering to exploit the
contextual information between neighboring pixels, it carries the
potential to capture more information and possibly make better
predictions of forest AGB compared to a noncontextual sequen-
tial regression model. We let ẑy|x denote generated synthetic
ALS-based AGB predictions from the noncontextual sequential

model, while ẑy|x denote generated synthetic ALS-based AGB
predictions from the contextual sequential model. The bold font
therefore specifies that both the input and the output of g is an
image patch (i.e., a subimage from the AOI) and not a single
pixel value. For the remaining of this work, we use plain font
for variables representing single pixels while a notation in bold
font represents a set of pixels.

C. Conditional Generative Adversarial Networks

Cross-modal image translation based on GANs has drawn
considerable attention since the architecture was proposed in
2014 [43]. Image translation is achieved through a generative
model, referred to as the generatorG, that is trained to capture the
data distribution of the target domain. Simultaneously, a discrim-
inative model, referred to as the discriminator D, is trained to
distinguish between image samples generated by G and images
from the actual target domain. The GAN components G and D
are trained in a minimax optimization procedure, where they
are adapted alternatingly while seeking to optimize conflicting
performance criteria. The convergence of both benefits from
the battle with the adversary as long as the alternating adaption
is appropriately balanced. After training, G can be utilized
separately to generate data from the specific distribution.

In the standard GAN setting, the generative model G learns
a mapping from a random noise vector to a target output im-
age, while the discriminative model D is trained to distinguish
between the generated output image and the corresponding
target output image. The whole process, with respect to AGB
estimation, is illustrated in Fig. 1 and the upper part of Fig. 3.
Here, β denotes a random noise vector, the target output image,
i.e., ALS-based AGB predictions, is represented by ẑy , while
the generated synthetic output image is represented by z̃y . Thus,
z̃y represent an approximation to ẑy , generated from random
noise.

In the cGAN setting, the learned mapping to the target output
image is conditioned on the distribution of an input image.
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Fig. 3. Illustration of a GAN (upper) and cGAN (lower) model. G and D
denote the generator and discriminator networks. x represents images of SAR
backscatter intensity from the input domain X . ALS-based AGB predictions
in both models are denoted aŝ zy . The subscript y indicates that the AGB
predictions are retrieved from a model trained on ALS data. Generated synthetic
ALS-based AGB predictions retrieved fromX domain using a cGAN are denoted
ẑy|x .̃ zy represents generated synthetic ALS-based AGB predictions retrieved
from random noise, and β in a GAN.

Consequently, the discriminative model, D, instead learns to
distinguish between a real pair or false pair of images. The
training process of a cGAN, with respect to AGB estimation,
is shown in the lower part of Fig. 3. When we let the second part
of the sequential model, i.e., g, be represented by a cGAN model,
we condition the regression model on a patch of SAR backscatter
intensity data, x. By the condition on SAR data, the generated
synthetic output image of ALS-based AGB predictions is now
denoted ẑy|x. In the cGAN setting, the aim ofD is to distinguish
between {x, ẑy} and {x, ẑy|x}.

III. RELATED WORK

This section frames our work within related research literature
on sensor fusion with a particular emphasis on fusion between
ALS and radar, traditional nonsequential regression modeling,
sequential regression modeling, and image translation through
GANs.

A. Traditional Nonsequential Regression by Sensor Fusion

In this context, we refer to traditional nonsequential regression
as the conventional process of relating ground reference data of
AGB directly to RS data through a single regression model. This
process is illustrated on the left-hand side of Fig. 2. Research on
traditional regression models that map SAR backscatter to forest
AGB has gained considerable research attention over the years.
Two seminal and much-cited works from the year 1992 are the
publications of Dobson et al. [53] and Le Toan et al. [54], which
both investigate the dependence between forest AGB and SAR
intensity data acquired with different frequencies. Since then, a
natural research progression has been to investigate traditional
nonsequential regression models by utilizing sensor fusion, i.e.,
fusion of different RS data sources. Some popular models within
traditional regression methods are linear regression, multiple
linear regression and stepwise multiple regression [11], [14],

[15], [17], [19], [26], [27] for fusion of different radar data
sources [27], fusion of radar and optical data [11], [17], [19],
[30], or fusion of ALS and optical data [14], [26].

Since [53] and [54] published their classical statistical ap-
proaches, the possibilities of using ML and DL models for forest
AGB retrieval through sensor fusion have also been investigated
widely. Within these fields have fusion of radar and optical data
attracted considerable attention [9], [12], [15], [17], [28]–[30],
but also fusion of ALS with a multitude of data sources [14], [16],
[18], [31] and fusion of different radar data sources [10]. Among
the different ML and DL algorithms, random forest-based algo-
rithms are some of the most popular for AGB estimation, see
for example [9], [10], [12], [14], [15], [17], [18], [28]–[30], in
addition to ANNs (in particular multilayer perceptrons) [12],
[16], [18], [28]–[31] and support vector machines for regression
[14], [16], [18], [28]–[30]. Research on pure DL methods applied
to sensor fusion within traditional nonsequential regression for
AGB estimation is still limited. This can probably be explained
by the sparsity of ground reference data, which makes it chal-
lenging to train DL models. However, one example is found
in the work by Zhang et al. [14], where ALS data and optical
Landsat 8 imagery are integrated to achieve both structural and
spectral information predictors for forest AGB estimation. The
DL-based model they consider is a stacked sparse autoencoder
(SSAE) network, which consists of several sparse autoencoder
networks (SAE), each consisting of an encoder and a decoder
network. After training each individual SAE, they remove all
decoder networks to establish an SSAE by stacking the remain-
ing encoder networks layer-wise. The final SSAE regression
network is obtained by adding an unspecified regression model
to the end of the SSAE model. While not explicitly mentioned in
[14], their SSAE model is a noncontextual model that operates
on a single pixel level as it learns to relate RS predictor variables
to single AGB measurements, retrieved from a total of 236
field plots. The SSAE network obtains the best performance
in comparison with four other traditional regression models and
ML models evaluated in [14].

B. Data Fusion With Sequential Regression Models

In this section, we review related research that, like us, ap-
plies a modeling strategy with sequential regression models.
Characteristic for this review is that it does not focus on the
choice of estimation technique. We instead emphasize research
on forest AGB estimation through data fusion of different types
of RS data sources, which all employs a chain of two models.
Common for the research we identified is that the second model
exploits predictions from the first model as a dependent variable
in the second modeling stage; see right-hand side of Fig. 2. We
found that research on AGB estimation applying this particular
modeling strategy has been a topic in several studies from year
2008 [55] until today; see, for example, [23], [36]–[42], [56]–
[65]. While reviewing earlier research that applies two sequential
regression models in their modeling strategy, we noted a variety
of terms describing the same concept in the literature. While
we choose to refer to this as a sequential regression approach,
we additionally found the following use of terminology for
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similar, but not necessary identical approaches: two-step mod-
eling strategy [40], [57], [65], two-stage regression [41], [62],
two-stage up-scaling method [23], [42], two-phase estimator
[59], two-phase (or three-phase) sampling design [56], [61],
hybrid and hierarchical model-based inference [60], [64], and
three-phase design [36]. Additionally, [37]–[39], [55], [58], [63]
also apply a modeling approach with two sequential regression
models without labeling it by any particular term. Most of the
previous research that we identified focuses on relating ground
reference data to ALS, and then relates ALS-derived AGB
estimates to spaceborne LiDAR data [36], [55], [56], [58], [59],
[61] or a combination of different sensors [23], [38], [42], [60],
[63]–[65]. Some others relate the ALS-derived AGB estimates
to a single sensor, such as Sentinel-2 [39], [41], Landsat [40],
[62], GEDI Lidar [65], PALSAR, [57], or SRTM X-band radar
[37].

In previous research that adopts a modeling strategy with two
sequential regression models, we found traditional regression
models to be most common [36]–[38], [55]–[57], [59]–[61],
[64], [65], such as, e.g., [38], which focuses on multiple linear
regression for upscaling biomass estimates to large areas in the
tropical forest of Indonesia. Although Englhart et al. [38] in-
cluded neither ML nor DL, their overall idea has similarities with
our modeling strategy. Their work starts by relating collected
AGB sample plots to colocated ALS measurements, resulting
in a regression model used to predict AGB on the whole ALS
dataset. In the final stage, their second regression model relates
X- and/or L-band SAR data to ALS-based AGB estimates to
extend the AGB estimates to the spatial coverage of the SAR
data.

Different ML models have also been applied for AGB esti-
mation that involves data fusion and sequential modeling. As
for traditional regression, we find that random forest is one
of the most commonly used ML methods, see, e.g., [39]–[42],
[63], while, e.g., [23], [63] can be consulted for some additional
examples of ML-based methods. In the intersection between
traditional regression models and ML models, we also find
[58], which applies three different kriging methods [66]: co-
kriging, regression kriging, and regression co-kriging, to extend
ALS-derived biomass transects to wall-to-wall AGB maps by
including L- and C-band data.

Among research that applies a modeling strategy with two
sequential regression models, we notice an absence of research
using DL models for the regression task. Only one study was
identified [63], which similarly to [14] employs an SSAE for the
regression task.1 While [63], like us, uses a sequential modeling
approach to establish a relationship between ALS-derived forest
biomass predictions and satellite predictors from, e.g., Sentinel-
1 data, there are some distinct differences. Although Shao et al.
consider some contextual predictor variables, their SSAE model
is a noncontextual model that only considers single pixels in the
training and prediction phase. A novelty of this work is that the
cGAN model lets us exploit the contextual information between
neighboring pixels through its convolutional filters. Second, [63]
adds a nonspecified regression model to the end of the trained

1See Section III-A and [14] for a discussion on the SSAE.

SSAE network to perform AGB predictions, as does [14]. In our
case, the cGAN model is in itself the regression model and there
is no need for additional models to accomplish AGB predictions.
Thus, by letting one of our proposed sequential models employ
a cGAN model, we contribute with new insight on how DL and
RS data can be combined for AGB prediction.

C. Image Translation With Generative Adversarial Networks

Image-to-image translation is the task of translating a rep-
resentation of the imaged scene into another. Examples of this
process can, for example, be to translate from a grayscale repre-
sentation into an RGB image or translating an aerial photo into a
map view of the same area [35]. In such a translation process, the
G network is commonly conditioned on the first representation,
i.e., the input signal or distribution, to achieve better translation.
This makes the cGAN and the Pix2pix architecture [35], as one
specific example, better suited for this task than a generator
network conditioned on noise, as the traditional GAN [67].
In this work, we choose to condition the G network on SAR
measurements of the backscatter coefficient in the same area,
from which we wish to generate ALS-based biomass prediction
maps.

Research on RS data simulation through image translation
can be found in, e.g., [48], [50], [67]. Li et al. [50] focus
on change detection (CD) and propose a GAN-based deep
translation network for translation between SAR and optical
images. By translating images from both sensors into a com-
mon feature domain, image characteristics from both images
become comparable and can aid the network in the CD task.
Ao et al. [67] proposed a framework for translation between
different SAR sensors. By conditioning their dialectical GAN
on urban input images from the low-resolution (LR) Sentinel-1
sensor, they enable generation of corresponding high-resolution
TerraSAR-X images. The dialectical GAN uses a modification
of the Pix2pix cGAN proposed in [35] and combines concepts
of both the cGAN and traditional neural networks. Bao et al.
[48] consider three nonconditional GAN networks to simulate
SAR data of vehicles from random noise. While [50] focuses
on translating between instruments with different physical mea-
surement principles, does neither of [48], [50] focus on using
image translation through GANs for regression purposes as we
intend to.

In general, most of today’s research on semisupervised learn-
ing through GANs focuses on solving a classification task;
see e.g., [49], which propose the DLR-GAN architecture to
perform LR image classification. To improve classification on
this challenging task, they propose to let the G network learn to
recover the LR components and the high-frequency components
of the LR image. Only a very very few studies were identified that
apply their architecture to regression tasks [68]. Within the GAN
literature, Rezagholizadeh and Haidar [68] presented one of the
first models aimed at regression, named the Reg-GAN. They use
two different networks, where one learns data generation while
the other predicts continuous labels. It is applied in a computer
vision task for self-driving vehicles, where the GAN generates
images of a road segment and a regression network predicts the
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matching steering angle. Olmschenk et al. [69] later proposed
the feature contrasting loss function and outperformed [68]
on the same semisupervised GAN regression task. Additional
examples were also shown in [69] on the combined task of face
generation and age prediction as well as on crowd counting. The
proposed work in our article differs from earlier related research
[68], [69], as we do not perform any additional regression on the
image content of the generated synthetic patches. This is possible
due to the nature of our proposed modeling strategy with two
sequential regression models, which results in a cGAN-based
model that is able to make predictions in new unseen areas
through the image translation.

IV. MATERIAL AND METHODOLOGY

The related work presented in Section III positions our work
with respect to published research in related areas. Based on
this literature survey, and previous published research on AGB
estimation in the AOI, we make the following methodological
contributions.

1) By proposing our Sentinel-1-based nonsequential AGB
regression model, we extend the work of Næsset et al.
[22].

2) The two proposed sequential models extend previous work
on sensor fusion in the AOI. Furthermore, by introducing
the DL-based sequential model, this work also contributes
with novel insight on the possibilities for AGB prediction
by using DL models for sensor fusion. These DDNs have
convolutional layers that extract contextual spatial infor-
mation, which has been exploited both in other types of re-
gression problems [70] and also for AGB prediction [71],
but not in a sequential regression approach to upscaling
and information enhancement.

3) The proposed method applies image translation to truly
heterogeneous images and domains in a regression con-
text. Similar image translation has previously been done
for general purposes [72] and within image analysis tasks
like change detection [73], but is new in the biomass
estimation and regression setting.

We accomplish the mentioned novelties in 2) and 3) for
the DL-based sequential model by using a modification of the
Pix2Pix image translation architecture [35] to generate synthetic
yet realistic ALS-based AGB predicted maps with SAR intensity
data as input. We refer to the Appendix, i.e., Section A1, for a
list over these modifications and their motivation.

We will in the following describe the datasets used in this
article, the preprocessing steps applied to the data, and give an
overview of the different models we consider.

A. Study Area and Dataset Description

1) Study Area: The AOI is a rectangular area with size
11.25× 32.50 km (WGS 84/UTM zone 36S), located in the
Liwale district in southeast Tanzania (9◦52′–9◦58’S, 38◦19′–
38◦36′E). Fig. 4 shows the relative location of the AOI in
Tanzania. The Liwale district experiences two rain periods each
year: A shorter period from late November to January and a
longer period from March to May. Liwale’s main dry season

Fig. 4. Location of a subset of the Sentinel-1 scene, as well as the location of
the ground reference plots (in red) in the country of Tanzania.

occurs between July and October. The miombo woodlands of
the Liwale districts is characterized by a large diversity of tree
species, with Brachystegia sp., Julbernadia sp., and Pterocarpus
angolensis being the most dominant ones [2], [7], [22].

2) Field Data: The field data used in this work, from now on
referred to as AGB ground reference data or z, were collected
within 88 field plots during January–February 2014 [22]. These
field plots were distributed in groups of eight in each of the 11
L-shaped clusters, shown with red dots in the Sentinel-1 scene
in Fig. 4. The sample plots are circular, each of size 707m2, i.e.,
they have a radius of 15 m. We refer to [74] for a thorough work
on the national level sampling design for Tanzania, and to, e.g.,
[2], [7], [22] for reference work on, e.g., the use of field data in
the AOI for large-scale AGB estimation. Measured AGB in the
AOI ranged from 0 to 213.4 Mgha−1 [22].

3) ALS-Based AGB Data: The ALS data were acquired in
2014; see [7], [22] for details of this process. Næsset et al. [22]
trained a regression model on the ALS data to make ALS-based
AGB predictions on a grid with square pixels of size 707 m2.
Their model, referred to as f , is the first regression model in
our proposed modeling strategy with two sequential regression
models. The output from the ALS-based regression model in
[22], i.e., ALS-based AGB predictions, ẑy , was made available
for this work. These ALS-based AGB predictions will serve as
a surrogate for the AGB ground reference data in the second
regression model g, when SAR data is used with either a tradi-
tional regression model or a cGAN model for image translation
to upscale the ALS-based AGB predictions. See right-hand side
of Fig. 2 for an illustration of the sequential modeling strategy
with notation.

4) SAR Data: Our SAR data consists of a C-band SAR scene
obtained from the Sentinel-1sensor, which provides data in two
bands, i.e., the VV and VH polarization. This sensor was chosen
since an AGB model trained on data from this sensor meets
most of the needs listed in Section I-A; the data is frequently
updated, it has extensive spatial coverage, and is freely available.
For this article, we choose a Sentinel-1scene acquired on 15
September 2015, as it fulfils three additional criteria: 1) It covers
our AOI, 2) it is closest in time to acquisition of the ALS data,
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and 3) it was acquired during one of the area’s two yearly
dry seasons. The latter implies that the scene achieves optimal
sensitivity to dynamic AGB levels. We initially aimed to create
a multitemporal stack of Sentinel-1scenes, but as only one scene
meets all the three additional criteria, we had to settle for this
single scene. The SAR data are obtained in a high-resolution
Level-1 ground range detected (GRD) format, with a pixel size
of 10 m. It was downloaded from Copernicus Sentinel Scientific
Data Hub.2 Fig. 4 visualizes the scene and indicates its relative
location in Tanzania.

B. SAR Data Processing and Preparation of Datasets

To process the Sentinel-1 GRD product, we used the ESA
SNAP toolbox [75] and followed the workflow suggested in
[76] with some modifications. The final processing workflow is
summarized as follows:

1) apply orbit file;
2) thermal noise correction;
3) border noise removal;
4) calibration;
5) range Doppler terrain correction (bilinear interpolation);
6) (conversion to dB).
We also experimented with speckle filtering, using a refined

Lee filter [77] with the SNAP default window size of 7× 7 as
an optional additional processing step between step 4) and step
5). However, since models trained on speckle filtered Sentinel-1
data experience higher variations in AGB predictions than mod-
els trained without speckle filtered Sentinel-1 data, we decided to
omit speckle filtering in the processing workflow. See Section
A2 in the Appendix for details. Step 6) was only applied to
the cGAN-based sequential regression model. We provide an
investigation of the impact that Sentinel-1 data on dB scale or
linear scale have on AGB predictions for cGAN-based models
in the Appendix, see Section A5. During step 6) for the data
used in the cGAN-based regression model or after step 5) for
the two other models, we also applied the same map projection
as in [22], i.e., WGS 84/UTM zone 36S, to make sure that the
Sentinel-1 dataset and the ALS-based AGB prediction dataset
are aligned.

After performing the above processing steps, our Sentinel-1
dataset was further processed in QGIS [78]. In QGIS, we first
reprojected the Sentinel-1 dataset to the same projection that
the ALS-based AGB grid pixel dataset used in [22]. Then, cubic
convolution resampling was applied to resample the pixel size of
the Sentinel-1 dataset from its original pixel spacing of 10 m×10
m to the same pixel size as the grid pixels of the ALS-based AGB
predictions, i.e., 26.6 m × 26.6 m. As a final step, a subset of
the entire Sentinel-1 scene corresponding to the extension of the
ALS-based AGB data was extracted.

For the image-to-image translation task, i.e., the cGAN-based
model g, a false-color image was created from the processed
Sentinel-1 dataset. This was done since the chosen cGAN
architecture, Pix2Pix, requires three-channel RGB images or
grayscale images as input. The false-color image was created as

2See [Online]. Available: https://scihub.copernicus.eu/dhus/#/home

Fig. 5. Top row: ALS-based AGB predictions from [22]. Bottom row: False-
color image of the Sentinel-1 dataset.

follows: red = VV, green = VH, and blue = VV-VH. The ALS-
based AGB prediction dataset was kept as a grayscale image as
each grid pixel in the dataset only consists of one feature, i.e., an
AGB prediction. Fig. 5 shows the ALS-based AGB prediction
dataset and the corresponding false-color Sentinel-1 scene after
performing all processing steps with the ESA SNAP toolbox
and QGIS. For illustrative purposes, we choose to show the
ALS-based AGB prediction dataset of Fig. 5 in pseudo-colors,
where dark blue pixels indicate biomass closer to 0 Mgha−1

while green through yellow to red pixels indicate increasing
biomass content (Mgha−1).

C. Traditional Sentinel-1A-Based AGB Regression Models

In [22], several models were explored to construct traditional
nonsequential regression models for AGB relating different
remotely sensed datasets and the 88 field plots. They settled
for a model with square root transformation of the response
variable for ALS, RapidEye, Landsat, and PALSAR, since this
model performed equally well as more complex models and
since it always predicts values> 0. Inspired by their findings, we
develop a similar baseline nonsequential regression model for
AGB between Sentinel-1 and the same 88 field plots according
to

E
[√

AGB
]
= α0 +ΣJ

j=1αjxj (1)

where α0 is the intercept, i.e., a constant, αj are regression
coefficients, and xj are explanatory variables. We followed the
procedure in [22] and performed OLSs regression with stepwise
forward selection of the variables. Our inclusion criteria focus
on variables being significant at 5% level using an F-test. For
the Sentinel-1 product, VH and VV backscatter coefficients on a
linear scale plus square and square root transformations of these
variables were subject to the stepwise selection. We follow the
procedure from [22] and correct for bias when transforming our
model to arithmetic scale in accordance with [79]

ÂGB =
(
α̂0 +ΣJ

j=1α̂jxj

)2
+MSE (2)

where MSE is the mean square error computed from the fitted
model on square root form, i.e., from 1.
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TABLE I
SYMBOLS AND NOTATION INTRODUCED IN SECTION I-A AND USED

THROUGHOUT THE ARTICLE FOR THE DIFFERENT DATASETS, IN

NONSEQUENTIAL MODELING, SEQUENTIAL MODELING, THE GAN, AND THE

CGAN MODEL

Notation in plain font indicates variables represented by single pixels, while notation
in bold font indicates variables represented by image patches consisting of a pixel
neighborhood.

D. cGAN-Based AGB Regression Models

This section formally introduces some popular choices of
objective functions, the generator network, and the discrimi-
nator network of a cGAN, with a special focus on the Pix2Pix
architecture [35]. We also relate the cGAN framework to model
g in our sequential modeling strategy by using the same notation
that was introduced in Section I-A. See Table I for a summary
of the notation, and Figs. 2 and 3 for illustrations of how the
different entities of Table I are used in the sequential modeling
approach or in the cGAN network.

In our application, the input domain consists of image patches
from the Sentinel-1 scene, and the output domain of correspond-
ing image patches from the ALS-based AGB wall-to-wall map.
Thus, conditioned on images from the input domain, x ∈ X ,
the generator network G of the cGAN aims to capture the
data distribution of the output domain ẑy ∈ Z , by generating
corresponding synthetic image samples ẑy|x ∈ Z . Image pairs
are then presented to the discriminator network D of the cGAN,
which aims to distinguish if it is presented with a real pair of
images, {x, ẑy}, or a fake pair, {x, ẑy|x}. The whole training
process of a cGAN is illustrated in the lower part of Fig. 3. As
G aims to fool D, its ultimate goal is to obtain ẑy|x ≈ ẑy ≈ z,
where ẑy|x, ẑy, z ∈ Z . In other words, at the position of each
single AGB ground reference measurement, the generated syn-
thetic ALS-based AGB predictions should resemble both z and
the ALS-based AGB predictions well on a pixel basis. During
adaption of the cGAN, both G and D are trained simultaneously
to outperform each other, resulting in the following minimax
objective function [43]:

min
G

max
D

V (D,G) = Ex,ẑy
[logD(x, ẑy)]

+ Ex[log(1−D(x, G(x))]. (3)

A cGAN network trained with the objective function in 3 is
referred to as a Vanilla GAN. The least squares generative adver-
sarial network (LSGAN) was proposed to overcome issues with
stability during training of the Vanilla GAN [80]. Its objective
functions in a conditional setting are

min
D

VLSGAN(D) =
1

2
Ex,ẑy

[
(D(x, ẑy)− b)2

]

+
1

2
Ex

[
(D(x, G(x))− a)2

]

min
G

VLSGAN(G) =
1

2
Ex

[
(D(x, G(x))− c)2

]
(4)

where a and b are labels for fake and real data, while c denotes a
value that G tricks D to believe for fake data [80]. Introduced in
[81] for further stabilization of training and high-quality image
generation, we also consider the Wasserstein GAN with gradient
penalty (WGAN-GP). It considers real data, simulated data, and
a combination of these in its objective function, which in the
conditional setting has the following form [81]:

min
G

max
D

V (D,G) = Ex[D(x, G(x))]

− Ex,ẑy
[D(x, ẑy)] + λEẑ

[
(||∇ẑD(ẑ)||2 − 1)2

]
(5)

with

ẑ = εẑy + (1− ε)G(x) . (6)

ẑy in 3, 4, and 5 denotes a real ALS-based AGB image patch
from the Z domain while G(x) = ẑy|x represents a generated
synthetic image patch.

1) Generator Network: Three different G networks were
tested, all based on the ResNet model [82]: ResNet-4, ResNet-5,
and ResNet-6. ResNet-6 is a part of the original Pix2Pix ar-
chitecture [35] and consists of two encoder blocks followed
by six residual blocks and two decoder blocks. ResNet-4 and
ResNet-5 consist of the same number of encoder–decoder blocks
as ResNet-6, but only 4 and 5 residual blocks, respectively. The
two smaller networks were proposed as we work with small
image patches of 64× 64 pixels; see Section V-B2.

2) Discriminator Network: Isola et al. [35] evaluate different
variations of the neural network discriminator architecture by
varying the patch size N of the discriminator receptive fields
from a 1× 1 PixelGAN to anN ×N PatchGAN. Since we work
with fairly small image patches in number of pixels, we decide
to settle for the following three discriminator networks:� a 1× 1 PixelGAN;� a 16× 16 PatchGAN;� a 34× 34 PatchGAN.

The two PatchGAN networks were designed by adjusting the
depth of the GAN discriminator to obtain a receptive field of
16× 16 or 34× 34, respectively. In a PixelGAN, the discrimi-
nator tries to classify each 1× 1 pixel in the image patch as real
or fake, while for the two PatchGAN networks, the discriminator
tries to classify each N ×N patch of pixels in the image patch
as real or fake. The discriminator network is applied across an
image patch in a convolutional matter during the discriminator
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TABLE II
PEARSON CORRELATION COEFFICIENT, R, RMSE, LEAVE-ONE-OUT CROSS-VALIDATION RMSE (LOOCV RMSE), AND MEAN ABSOLUTE ERROR (MAE)

COMPUTED BETWEEN GROUND REFERENCE PLOTS OF AGB, z, AND AREA-WEIGHTED MEANS OF PREDICTED AGB FROM EITHER THE FIVE NONSEQUENTIAL

REGRESSION MODELS [22] OR OUR SENTINEL-1-BASED NONSEQUENTIAL REGRESSION MODEL

All units are in Mgha−1.
aIndication of which remote -sensed data source that were used in [22] to train traditional their non-s equential regression models.
bThe traditional non-sequential regression model developed between Sentinel-1 and AGB reference data.
cSee [22] for reference to specific models and computed LOOCV RMSE.
.

phase to produce several classification responses. Eventually, all
responses are averaged to provide the discriminator output with a
real or false decision. Thus, for each image patch pair,{x, ẑy} or
{x, ẑy|x}, D outputs a binary prediction, based on D’s belief of
the input pair. Optimally, we wish D to predict a fake pair when
the image par consists of an image patch from x and another
from G(x), i.e., {x, ẑy|x}.

V. EXPERIMENTS AND RESULTS

In this section, the proposed Sentinel-1-based regression
models for AGB prediction are presented: The nonsequential
regression model, the baseline sequential regression model, and
the cGAN-based sequential regression model. The performance
of the proposed models is evaluated by comparing predicted
AGB to AGB ground reference data and the constructed AGB
prediction maps to each other, and the AGB prediction maps
of [22]. Qualitative and quantitative results are provided. We
keep the notation introduced in Table I and let z denote ground
reference AGB data, ẑx denotes AGB predictions from the
Sentinel-1-based nonsequential regression model, ẑy denotes
AGB predictions from the nonsequential ALS-based model [22],
and ẑy|x denotes either generated synthetic ALS-based AGB
predictions from the baseline sequential regression model or
single predictions from the cGAN-based sequential regression
model. In contrast, ẑy|x denotes a patch of predictions from
the cGAN-based sequential regression model. We refer to the
Sentinel-1-based nonsequential regression model as h, the ALS-
based nonsequential regression model from [22] as f , and either
of the sequential models, i.e., the baseline traditional sequen-
tial regression model or the cGAN-based sequential regression
model, as g.

A. A Traditional Nonsequential Regression Model for AGB

We extend the work of [22] by developing a traditional
nonsequential regression model, h, for the 88 field plots of
AGB ground reference data (z) according to (2). To do so,
we laid the circular field plots of z on top of the Sentinel-1
pixel grid. VH and VV backscatter values corresponding to z
were found by computing the area-weighted mean of Sentinel-1
pixels intersecting the field plots. Only one explanatory variable,

Fig. 6. Scatter plots between ground reference AGB, z, and model-predicted
AGB. Model-predicted AGB is retrieved from either (a) the ALS, (b) InSAR,
(c) RapidEye, (d) Landsat, (e) PALSAR, or (f) our proposed Sentinel-1-based
nonsequential regression model. The black lines are reference lines indicating
100% correlation between z and predictions. Units are in Mg ha−1

i.e., VV, was selected in the stepwise forward selection proce-
dure. The achieved model, h, for AGB per hectare, is listed
in Table II. Since the model was fitted on the whole ground
reference dataset z, we follow [22] and perform additional
quantitative model assessment analysis through leave-one-out
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Fig. 7. Aboveground biomass prediction maps (in Mgha−1). (a)–(e) Results of the traditional nonsequential regression models presented in [22]. The AGB
biomass map in (f) was constructed from the proposed nonsequential Sentinel-1-based AGB model in Table II. (a) ALS. (b) InSAR. (c) RapidEye. (d) Landsat.
(e) PALSAR. (f) Non-sequental Sentinel-1.

cross-validation (LOOCV) to compare the consistency of pre-
dicted AGB. We also compute the Pearson correlation coefficient
(R), root-mean-squared error (RMSE), and mean absolute error
(MAE) between model predicted AGB and z. These metrics are
collected in Table II together with computed R and RMSE from
the nonsequential regression model developed in [22]. Addition-
ally, we qualitatively assessed our model against those developed
in [22] by plotting model-predicted AGB against z in Fig. 6 and
by illustrating model-derived AGB wall-to-wall maps in Fig. 7.
Minor differences between the scatter plots in Fig. 6(a)–(e) and
data reported in Table II, compared to the corresponding figures
and table in [22], can be explained by differing pixel grids used
in the area-weighting of RS pixel values. Næsset et al. [22]
developed their traditional nonsequential regression models for
InSAR, RapidEye, Landsat, and PALSAR by using the original
pixel grid of the satellite data. When reporting metrics, they
further used each sensor’s original pixel grid to compute the
area-weighted average of pixel values within the coverage of
each field plot. After preprocessing the Sentinel-1 scene, both the
Sentinel-1 dataset and the ALS-based AGB predictions are on
the same grid with pixel size 707 m2, representing an area of 26.6
m× 26.6 m on the ground. In this work, we did not have access to
the original pixel grids of the ALS, InSAR, RapidEye, Landsat,
and PALSAR data. Therefore, we chose to use the grid with
pixel size 707 m2 for also these models whenever area-weighted
metrics were computed. The resulting differences to [22] must
therefore be endured.

We observe from Table II that only two of the previously
developed models in [22], i.e., the ALS-based (f ) and the
RapidEye-based models, experience lower RMSE and a higher
Pearson correlation coefficient with respect to z than our model
h. Surprisingly, the respective InSAR and PALSAR-based mod-
els perform worse than the proposed model h in terms of R and
RMSE. The InSAR-based AGB model, used in [22] and devel-
oped by [83], uses mean InSAR heights as the only explanatory
variable. As canopy heights are highly correlated with AGB [3],
[21], this model was expected to correlate better with z than
our model h. However, Næsset et al. [22] highlight the temporal
mismatch between the acquisition of the InSAR data (2012) and
the acquisition of the field work (2014) as a probable explanation
for the model’s low performance. In one case, for example,
they identified that a field plot recently had been harvested in
2014, while the InSAR data from 2012 identified biomass in
the same area [22]. In theory, we expect a model based on
the L-band ALOS PALSAR data to perform better than our
C-band based Sentinel-1 model, as C-band data is known to
saturate at a lower biomass level than L-band data [5], [53],
[54]. However, Table II shows that this is not the case. As the
PALSAR data used in [22] consist of a mosaic of yearly scenes,
the mosaic does not achieve optimal sensitivity to dynamic AGB
levels as scenes from wet and dry seasons are mixed. The low
dynamic range of the PALSAR-based and the Landsat-based
models is also shown in Fig. 6 and the wall-to-wall maps in
Fig. 7. Although most Sentinel-1 predictions on the ground
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reference AGB dataset are bounded between 25 and 75Mgha−1

[see Fig. 6(f)], the model as a whole is able to predict AGB
up to around 200 Mgha−1; see Fig. 7(f). The upper limit of
the ẑx-based predictions [Fig. 6(f)] can probably be explained
by the low saturation limit of C-band data. Nevertheless, our
upper limit of C-band-based AGB predictions is still remarkable,
compared to previous studies on biomass retrieval from C-band
data, e.g., Imhoff [84] who showed that C-band data saturates
around 20 Mgha−1 in the tropical forests of Hawaii. We wish
to highlight the fact that the proposed model h is not able to
predict biomass close to 0 Mgha−1[ see Figs. 6(f) and 7(f).
This is probably due to the square root transform in 1 and the
correction of bias in 2, the latter applied to achieve correct AGB
predictions on arithmetic form, i.e., back-transformation from
the

√
AGB domain. The InSAR-based model, on the other hand,

is able to predict AGB levels close to 0 Mgha−1 [see Table II
and Fig. 6(b)] and also achieves lower MAE than the proposed
model h.

B. Sequential Regression Models for AGB

This section presents the two alternatives for g, the second
model in the sequential modeling approach, i.e., the traditional
baseline sequential model and the cGAN-based model. Since
the regression model f achieves the highest correlation to z, see
[22], we train our two versions of g to use the ALS-based AGB
predictions (on pixel-wise form: ẑy , or patch-wise form: ẑy) as
a surrogate for z. Each AGB prediction, i.e., ẑy , represents a
square pixel of size 26.6 m × 26.6 m on the ground. Qualitative
and quantitative results from both models are presented and
discussed in Section V-B3.

1) Baseline Sequential Regression Model: The proposed
baseline sequential regression modeling strategy utilizes the tra-
ditional regression model in (2) for both stages in the sequence.
In Section V-A, the small size of the z dataset constrained us to
use all available data during both model fitting and evaluation.
Reusing all available data for both model fitting and evaluation is
not optimal, which also Table II shows, i.e., the RMSE computed
for model h is lower than the corresponding LOOCV RMSE.
In contrast to the situation in Section V-A, the sequential model
setting provides access to 516 906 AGB predictions to be used
as surrogate response variables. Thus, the dataset size enables
us to fit and evaluate model g on different parts of the dataset.

We adopt a dataset split of 20% validation data and 80% test
data. We use the validation data to select the models’s explana-
tory variables through stepwise forward selection. Contrary to
the nonsequential modelh, which only selects VV as a regressor,
all six explanatory variables are included in the baseline model
g by this method. The final baseline sequential regression model
is shown in Table IV. The test dataset was divided into k = 5
subsets for k-fold cross-validation (CV). The chosen test metric
is CV RMSE (CV-RMSE), which is reported in addition to the
Pearson correlation coefficient and the RMSE in Table IV. The
latter two metrics are computed on the entire dataset. All reported
metrics are computed between the surrogate, i.e., ẑy , and AGB
predictions achieved from the baseline sequential model, i.e.,
ẑy|x.

TABLE III
THREE OPTIMAL CGAN-BASED MODELS APPLIED FOR THE SECOND PART OF

THE SEQUENTIAL MODELING APPROACH

They were identified from experiments reported in the Appendix; see Sections A2
and A3. Vanilla GAN, LSGAN, and WGAN-GP refer to specific objective functions.
BN denotes batch normalization and BS denotes batch size.

2) cGAN-Based Sequential Regression Models: Finally, we
approach the sequential modeling strategy from a DL perspec-
tive by applying a cGAN for the second regression model, g.
The cGAN-based model utilizes convolutional filters in both
the G and the D network. Therefore, the image-to-image trans-
lation requires the data we condition on, and the output data,
to be represented by image patches instead of individual im-
age pixels. Image patches were created from the input data,
i.e., the processed Sentinel-1 image, and the output dataset of
516 906 ALS-based AGB predictions, i.e., ẑy , similarly and
simultaneously. For simplicity, we only describe the process
for the Sentinel-1 data. First, nonoverlapping image patches of
size 64× 64 pixels were extracted in a grid manner from the
Sentinel-1 scene in Fig. 5. Each patch corresponds to an area of
approximately 289.6 ha on the ground. These nonoverlapping
image patches were randomly divided into five disjoint sets for
five-fold CV. For each of the five folds, one of the disjoint sets
was considered the test set, while the remaining four folds were
combined into a training set. To increase the number of image
patches further, we extracted additional training patches in each
training set by allowing a 50% overlap between adjacent patches.
Finally, we applied data augmentation with flipping and rotation
to the training image patches. Since we do not allow overlap
between test and training image patches, it implies that the final
five training sets, after data augmentation, range between 2264
and 2424 patches. Each test set consists of 22 image patches
since no data augmentation was applied to the test sets.

By condition on Sentinel-1 image patches, we trained differ-
ent cGAN-based models to generate realistic-looking synthetic
ALS-based AGB prediction image patches, ẑy|x, of size64× 64
pixels. Optimal translation would imply ẑy|x = ẑy or at least
ẑy|x ≈ ẑy . All models were trained for 200 epochs with a
learning rate of 2× 10−4. We refer to Sections A2 and A3 in
the Appendix for an extensive evaluation of the impact that the
choice of hyperparameters, objective function, and/or discrimi-
nator network have on the performance of the different cGAN
models. For the remaining of this article, we only report results
for the three optimal cGAN-based models listed in Table III,
which were identified from the extensive evaluation. Despite the
selected objective function, these three models were trained with
identical generator architecture, discriminator architecture, and
hyperparameters. We therefore refer to them by their objective
function, i.e., as the Vanilla GAN, LSGAN, or WGAN-GP
model.

As the input and output to each of the optimal cGAN-based se-
quential models are of size 64× 64 pixels, we created synthetic
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TABLE IV
PEARSON CORRELATION COEFFICIENTS, R, RMSE, AND CV-RMSE COMPUTED BETWEEN ALS-PREDICTED AGB, ẑy , AND MODEL-PREDICTED AGB, ẑy|x,

ACHIEVED FROM OUR SEQUENTIAL MODELING APPROACH

All metrics are in units of Mgha−1.
aBaseline sequential model, see Sec. V-B1.
bcGAN-based sequential models, see Sec. V-B2.

ALS-based AGB prediction maps from the Sentinel-1 scene as
follows: The whole AOI was first partitioned into 64× 64 image
patches with 50% overlap. For each of the optimal models, these
patches were then fed into the trainedG network to generate syn-
thetic image patches with 50% overlap. The generated synthetic
image patches were then merged to construct a ẑy|x prediction
map. Due to the overlap between the generated synthetic image
patches, most pixels in this intermediate prediction map con-
stitute of a weighted average of pixels from neighboring image
patches. Therefore, as a last step to the final ẑy|x prediction map,
we apply mosaicking through linear image blending, using the
p-norm with a heuristic value of p = 5. Different norms were
also considered; however, we conclude that the specific choice
of the norm has little impact on the blended result.

After training, we evaluated the performance of the Vanilla
GAN, LSGAN, and WGAN-GP models against each other and
the baseline sequential regression model defined in Section V-
B1. We qualitatively and quantitatively compared ẑy|x generated
from the cGAN-based models against the 88 ground reference
AGB plots, z, and the surrogate wall-to-wall map of AGB
predictions, i.e., ẑy .

3) Sequential Model Evaluation: Here, we present results
and evaluate the two subsequent models, g, that were proposed
in Sections V-B1 and V-B2. Note that the performance assess-
ment in Table IV and Fig. 9 is performed with respect to the
ALS-predicted ẑy , which in the sequential modelling strategy
replaces ground reference z.

Computed metrics between ẑy|x and ẑy , i.e., the Pearson
correlation coefficient (R), RMSE, and CV-RMSE, for all four
sequential models are collected in Table IV. Results in Ta-
ble IV indicate that the baseline sequential model is preferred
to the three cGAN-based models as it experiences both a
smaller RMSE and CV-RMSE, and a higher R with respect
to ẑy . Among the cGAN-based models, the Vanilla GAN is
preferred as it achieves the highest correlation and the lowest
RMSE to ẑy . However, the Vanilla GAN model also experi-
ences the largest difference between RMSE and CV-RMSE,
implying that AGB predictions retrieved from this model are less
consistent.

Generated synthetic AGB prediction maps for the proposed
sequential models are shown in Fig. 8. The prediction map
from the baseline sequential model is shown in Fig. 8(b), while
Fig. 8(c)–(e) shows corresponding prediction maps constructed
from the cGAN-based models, i.e., the Vanilla GAN, LSGAN,
and WGAN-GP model. The ultimate goal of the sequential

model g is to achieve AGB prediction maps that resemble the ẑy
prediction map in Fig. 8(a). Although the computed metrics for
the baseline sequential regression model indicate that this model
is preferred to the cGAN-based models, it is unable to capture
the dynamic range of ALS-based AGB predictions; see Fig. 8(b).
The model’s inability to predict near-zero biomass is particularly
severe, which, similar to model model h, can be explained by
the square root transform and the bias correction applied. The
cGAN-based models are, however, able to predict zero biomass.
Their constructed biomass maps also exhibit a higher dynamic
range in levels of predicted biomass. All sequential AGB models
are generally underpredicting ẑy .

In Fig. 9, we visualize density plots between ẑy and predicted
AGB from the proposed sequential AGB regression models.
The white lines indicate a reference line for 100% correlation
between ẑy and ẑy|x. While the baseline model achieves better
RMSE and R, the Vanilla GAN model achieves the lowest
MAE. We note that all four sequential models struggle to predict
ẑy correctly at low AGB levels. They are generally biased
toward overpredicting at low ẑy . While the cGAN-based models
manage to predict zero biomass, the baseline model cannot.
Since the baseline model only predicts AGB over 100 Mgha−1

occasionally, it consequently underpredicts high ẑy . The density
plots of the three cGAN-based models indicate that they also
underpredict high levels of ẑy , but not to the same extent as the
baseline sequential model.

We also compute the pixel-wise difference between ẑy and
ẑy|x, i.e., ẑy − ẑy|x, for each proposed sequential models. The
pixel-wise differences are visualized in Fig. 10, where Fig. 10(b)
is the difference for the baseline model, Fig. 10(c) for the Vanilla
GAN model, Fig. 10(d) for the LSGAN model, and Fig. 10(e)
for the WGAN-GP model. By comparing the AGB difference
maps in Fig. 10 with the actual ẑy prediction maps in Fig. 8,
we again show that all sequential models underpredict AGB
in areas with high levels of ẑy [shown as pink or blue in (b)–
(e)]. We also highlight that at all sequential models overpredict
AGB areas with low levels of ẑy [shown as green in (b)–(e)].
The baseline sequential model’s inability to predict zero or low
levels of biomass can probably explain the larger extent of green
regions in Fig. 10(b), compared to Fig. 10(c)–(e).

For further comparison, we provide sequential modeling re-
sults for the few ground reference AGB measurement we have
available. We argue that achieving large-scale AGB maps that
reflect the dynamic range of ẑy is one desired goal, but more
important is the ability of the AGB predictions to match z values.



4626 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 8. Generated synthetic ALS-based AGB prediction maps (in Mgha−1) together with the surrogate for ground reference plots, i.e., the ALS-based AGB map
shown in (a) [this AGB map is the same as in Fig. 7(a)]. (b) A synthetic ALS-based AGB prediction map generated through the baseline sequential Sentinel-1-model
[see (2)]. (b)–(e) Generated synthetic ALS-based AGB prediction maps generated through our proposed sequential regression models using (c) Vanilla GAN,
(d) LSGAN, and (e) WGAN-GP.

Fig. 9. Density plots between constructed AGB maps and ALS-based AGB biomass predictions, ẑy , for (a) baseline sequential model, (b) Vanilla GAN, (c)
LSGAN, and (d) WGAN-GP models. Reported metrics are the RMSE, Pearson correlation coefficient (R), and the MAE between ẑy and the sequential model-based
AGB predictions. The white lines are reference lines indicating 100% correlation between ẑy and predictions.

Thus, we computed the correlation between AGB predictions
obtained with the proposed sequential modeling strategy and
the 88 ground reference plots, shown with red markers in Fig. 4.
Since the physical area of each ground reference plot could
intersect with several of the grids with pixel size 707 m2, we
calculated the area-weighted mean of grid pixels intersecting
with each separate ground reference plot. Fig. 11 shows scatter
plots of the correlation between z and model-predicted AGB,
retrieved from the sequential models, together with computed

metrics: i.e., RMSE, R, and MAE. Quantitative results derived
from Fig. 11 are also summarized in Table V together with
computed metrics for model f . Similar to the scatter plot for
model h, Fig. 11(a) also indicates that AGB predictions from
the baseline sequential model are bounded between 25 and 75
Mgha−1. Table V shows that neither of the proposed sequential
models achieves as high correlation or low RMSE and MAE with
respect to z that model f achieves. Nevertheless, it should be
noted that f [22] was fitted against the available z. The sequential
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Fig. 10. AGB difference maps (in Mgha−1). Pixel-wise difference between
the ALS-based AGB prediction map, shown in (a), and constructed AGB
prediction maps achieved form the four sequential models: baseline sequential
model (b), Vanilla GAN (c), LSGAN (d) and WGAN-GP (e).

TABLE V
COMPUTED PEARSON CORRELATION COEFFICIENTS (R), RMSE, AND MAE

BETWEEN AREA-WEIGHTED MEANS RETRIEVED FROM REGRESSION MODELS

AND GROUND REFERENCE PLOTS OF AGB (Mgha−1)

aThe non-sequential ALS-based regression model proposed in [22].
bThe baseline sequential regression model, proposed in Sec. V-B1.
cThe cGAN-based sequential regression models, proposed in Sec. V-B2.

TABLE VI
OVERALL RMSE AND RMSE COMPUTED FOR EACH QUARTILE, I.E.,

RMSE(Q0,1), RMSE (Q1,2), RMSE(Q2,3), AND RMSE (Q3,4) (LOWER IS

BETTER)

The RMSE metrics are computed between AGB prediction maps con-
structed in this work and the ALS-based AGB prediction map. All metrics
are in units of Mgha−1.

models, on the other hand, were optimized to achieve ẑy|x ≈ ẑy
as they were fitted against ẑy .3 While Table IV indicates that the
baseline sequential regression model predicts ẑy best, Table V
indicates that both the LSGAN model and the Vanilla GAN
model perform better than the baseline sequential model on
all three metrics. Additionally, all cGAN-based models obtain
lower MAE with respect to z than the baseline sequential model
achieves. Among them, the LSGAN model performs best in
predicting z. Additionally, all cGAN-based models obtain lower
MAE with respect to z than the baseline sequential model
achieves. Interestingly, by comparing Table II with Table V, we
identify the LSGAN model, in terms of R and RMSE, to perform
better in predicting z than the InSAR model. We therefore argue
that the LSGAN and the Vanilla GAN model should be the first
and second choice if one aims to achieve a model that reflects
the dynamic range of the true AGB best.

C. Nonsequential and Sequential Modeling

To broaden the discussion, evaluate the suitability of the
Sentinel-1 sensor as a data source for AGB regression models
and enable further comparison of the nonsequential and sequen-
tial modeling strategies, we provide three additional results:
Fig. 12 and Tables VI and VII.

In Fig. 12(d), we show histogram plots over predicted AGB
values derived from the ALS-based regression model f together
with AGB predictions from models proposed in this work: The
nonsequential Sentinel-1 model [Fig. 12(b)], the baseline se-
quential model [Fig. 12(c)], the Vanilla GAN model [Fig. 12(e)],
the LSGAN model [Fig. 12(f)], and the WGAN-GP model
[Fig. 12(g)]. We also show a histogram of measured ground
reference AGB, z, in Fig. 12(a) overlaid with a nonparametric
estimate of the underlying probability density function. Note
the similarities between the distributions of z and ẑy [22] in
Fig. 12(b). Besides not being able to predict low AGB values [see
Fig. 12(b) and (c)], both the nonsequential Sentinel-1 model and

3In Section A6 in the Appendix, we experiment with an additional calibration
step to further calibrate model g against z. Results indicate that post-calibration
of the output from g with either gamma or linear calibration increases the
accuracy and the correlation by a small amount. Nevertheless, the possible
improvement is modest and we omit this additional step as the nonsequential
Sentinel-1-based model still outperforms the post-calibrated sequential models
on computed RMSE, MAE and R.
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Fig. 11. Scatter plots between ground reference AGB, z, and model-predicted AGB. Model-predicted AGB values are retrieved from the (a) baseline sequential
regression model; see Section V-B1, or the proposed cGAN-based sequential models; (b) Vanilla GAN, (c) LSGAN, and (d) WGAN-GP. See Section V-B2 for
details on the cGAN-based methods. The black lines are reference lines indicating 100% correlation between z and predictions.

TABLE VII
PEARSON CORRELATION COEFFICIENT COMPUTED BETWEEN PIXEL-WISE

PREDICTIONS FOR PAIRS OF MAPS VISUALIZED IN FIG. 7 (UPPER TABLE) AND

FIG. 8

(Lower Table). Models referred to as ALS, InSAR, RapidEye, Landsat, and PAL-
SAR are retrieved from [22]. Remaining models are developed for this work.

the baseline sequential model predict some extreme AGB values
of 15 640Mgha−1 in Fig. 12(b) and 1751Mgha−1 in Fig. 12(b),
which neither of the cGAN-based models do. Instead, the max-
imum predicted AGB from the three cGAN-based AGB models
are rather close to the maximum measured AGB in the field plots,
i.e., 213.4 Mgha−1 [22]. Also, all cGAN-based models behave
more similar to z and f for middle-to-high levels of AGB; see
Fig. 12(e), (f), and (g) compared to Fig. 12(a) and (d). This
could indicate that the more complex cGAN-based models have
learned AGB dynamics of z and f better in middle-to-high levels
of AGB, than the simpler nonsequential and baseline sequential
model manages.

To emphasize where the proposed models are more or less
consistent with the ALS-based AGB prediction map, we evaluate
AGB predictions from the five models against ẑy|x in terms of
overall RMSE and RMSE computed for each quartile. Results
provided in Table VI clearly show that AGB predictions from
the nonsequential Sentinel-1 model deviate most from ẑy|x, both
overall and in each quartile. The baseline sequential model is
most similar to ẑy|x in the second and third quartile and achieves
the smallest RMSE among all five proposed models in the fourth
quartile. As expected from the histograms in Fig. 12 and the
constructed AGB prediction maps in Fig. 8, Table VI shows that
all cGAN-based models produce low RMSE in the first quarter

quartile, with the LSGAN model being better than the Vanilla
GAN model. Among the cGAN-based models, the Vanilla GAN
model only receives the smallest RMSE in the fourth quartile.
Once again, it is shown in Table VI that the WGAN-GP model
is the worst among the cGAN-based models.

Table VII shows the Pearson correlation coefficient computed
between pixel-wise AGB predictions for pairs of maps from
either Fig. 7 or 8. Correlations computed between AGB predic-
tions retrieved from the nonsequential models are listed in the
upper part of Table VII, while correlations computed between
AGB predictions from the sequential models and the surrogate
regression target, i.e., ẑy , are combined in the lower part of
the table. Previous results from [22] identified the ALS-based
AGB prediction map and the InSAR-based AGB map to have
the greatest correlation with each other (see Table VII), and
with z (see Table II). AGB predictions from the Landsat- and
PALSAR-based models achieved the smallest correlation with z;
see Table II. The proposed nonsequential modelh achieves by far
the lowest correlations with any of the other five nonsequential
AGB models; see Table VII. This is probably a consequence of
the Sentinel-1-based model’s inability to predict low biomass
levels. For example, the left part of the AOI (see Fig. 7), the
ALS-, InSAR-, and the RapidEye-based AGB models predict
AGB around 0 Mgha−1 in approximately the same areas,
while predicted AGB levels retrieved from the nonsequential
Sentinel-1-based model deviates highly in the same areas. Note
that all sequential models achieve a much higher correlation
with model f than what model h achieves. Logically, this could
be explained by the fact that all sequential models were fitted
against f . While the nonsequential Sentinel-1-based model h,
the InSAR model, and the ALS model f achieve the highest
correlations and lowest RMSE with respect to z, the surprisingly
low correlation between h and f is notable. It could imply that
model h is overconfident on the small set of z measurements.
Among the sequential models, Tables IV and VII show that
the proposed baseline model achieves the lowest RMSE and
highest correlation coefficient with respect to ẑy . Furthermore,
the cGAN-based model trained with the WGAN-GP objective
function achieves the smallest correlation with ẑy; see Table VII.
Overall, the correlations between the sequential models and the
ALS-based model f are all higher than the corresponding corre-
lation between AGB predictions from f and the PALSAR model,



BJÖRK et al.: POTENTIAL OF SEQUENTIAL AND NONSEQUENTIAL REGRESSION MODELS FOR SENTINEL-1-BASED BIOMASS PREDICTION 4629

Fig. 12. Histograms of AGB predictions from the proposed AGB models.
(b) Nonsequential Sentinel-1. (c) Baseline sequential. (e) Vanilla GAN.
(f) LSGAN. (g) WGAN-GP. A histogram over the collected ground reference
AGB is shown in (a), while (d) shows a histogram over ALS-based AGB
predictions. Reported metrics are the sample mean, µ, median, and maximum
and minimum predicted AGB (Mg ha−1).

and similar to the correlation between AGB predictions from f
and the Landsat model. In addition to the discovery that the
LSGAN model performs better than the nonsequential InSAR
model in predicting z, these results suggest that the cGAN-based
sequential modeling approach and the use of Sentinel-1 data for
AGB prediction are worth pursuing further.

VI. DISCUSSION

The focus of this work has been to develop nonsequential
and sequential regression models based on C-band SAR for
AGB prediction in Tanzania. One main advantage of utilizing
Sentinel-1 data as regressors is that it enables frequent and
affordable updates of an AGB map with extensive coverage. This
approach has a low cost compared to keeping the most accurate
prediction model from [22] up-to-date by repeated acquisition
of ALS data. Our results show that the proposed nonsequential
Sentinel-1-based modelh and the sequential LSGAN model best
provide AGB predictions close to measured ground reference
AGB, z. Only the ALS and the RapidEye-based model in [22]
perform better on this task. Noteworthy, in terms of R and RMSE,
both the model h and the sequential LSGAN model were iden-
tified to be more accurate than the InSAR-based nonsequential
model on the same task. Since the InSAR-based model provides
estimates of canopy height that are highly correlated with AGB
[3], [21], we expected it to be superior in predicting z. We
emphasize that we are training all our models using C-band
SAR intensity data, which have previously been shown to suffer
from much lower saturation levels than, e.g., the L-band ALOS
PALSAR sensor. As C-band data neither penetrates as deeply
into the forest volume as L-band data, nor can it compete with
the accuracy of AGB estimates produced from optical data [20],
[52]–[54], it has traditionally been considered an inferior infor-
mation source for AGB estimation. Thus, we have in this work
demonstrated the potential of using Sentinel-1 data for AGB
prediction and suggest further research on Sentinel-1-based
models for AGB retrieval.

Formally, the proposed models were assessed in terms of
their relative accuracy on AGB prediction with respect to model
f , [22], and available AGB in situ measurements. However,
whenever a certain methodology is implemented for operational
purposes in an MRV system, the ultimate goal is to produce
estimates of carbon stocks and changes. Among these, estimates
for the AGB pool are essential. Further, the Intergovernmental
Panel on Climate Change specifies that results should be reported
as inferences in the form of confidence intervals [85] (p. 1.10).
Thus, although the maps themselves can be useful, for example,
to identify critical areas of carbon loss, the prediction map is just
an intermediate product on the way to estimating the carbon bud-
get. AGB can easily be estimated from the prediction maps con-
structed by the current methods by aggregating individual pixel
values. Estimating the uncertainty of AGB estimates in the form
of variances or confidence intervals for nonparametric methods
such as ANNs, support vector machines, random forest regres-
sion, and other techniques is a current research issue. To provide
such estimates was beyond the scope of the current study. Recent
applications of, e.g., bootstrap resampling for random forest-
based prediction models demonstrate that such variance estima-
tors may easily be adopted for ANN models as well; see e.g.,
[86]. However, the computational burden will be substantial.

By approaching AGB prediction through sequential modeling
with ALS-based predictions as a surrogate for z, deep contextual
models could be utilized for the regression task. As far as
we know, this is the first time that contextual cGAN models
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have been used to simulate ALS-based AGB prediction maps
from Sentinel-1 data. A natural question is whether DL-based
approaches for AGB predictions are worth further investigation,
especially since they are more complex to train than traditional
statistical regression models. We would argue that more research
is needed in utilizing contextual DL models to retrieve biophys-
ical parameters from RS data. We have shown that the LSGAN
model performs well and reproduces dynamic AGB levels more
realistically than simpler noncontextual models. Despite this,
the cGAN-based models fall behind the traditional sequential
and nonsequential models on RMSE with respect to ground
reference data. The trade-off between perceptual quality and
reconstruction accuracy is known from the research field of
single image superresolution (SR), [87]–[91]. SR in RS data
has been studied in, e.g., [92]–[94]. For future work on AGB
prediction by DL regression, it appears relevant to incorporate
ideas from the field of SR and investigate additional architectures
and balancing of GAN losses against traditionalL1 andL2 losses
for reconstruction. The purpose would be to obtain a model that
focuses on the reconstruction loss, yet produces AGB prediction
maps that maintain local dynamics.

A. Error Discussion

The accuracy of the proposed models is influenced by many
factors, such as the radiometric accuracy of radar images, time
lag, and error propagation through the model sequence. The
latter was also pointed out in [38]. We refer to the time lag as
the time difference between collecting the field inventory data in
January–February 2014, the acquirement of ALS measurements
in 2014, and the acquisition of the Sentinel-1 scene in September
2015. Possible inaccuracies may propagate, first when the ALS
model upscales the field inventory data to a ẑy map, and, second,
when the sequential models are trained. Additional factors that
may affect the overall accuracy is resampling of the Sentinel-1
scene to the same grid as the ALS-based AGB prediction map
or the image blending process which is applied to construct the
full cGAN-based AGB prediction maps from a set of patches.
Despite this, the advantage of using a sequential modeling
approach on Sentinel-1 data is the ability to achieve biomass pre-
diction maps with high update frequency on a national level. Our
sequential approach also has potential use in biomass change
detection, where the relative change of biomass from one time
to another is of higher interest than the absolute AGB values.

As previously mentioned, z was collected within circular sam-
ple plots, the most common plot shape in boreal and temperate
forest sampling [74]. However, all remotely sensed datasets used
in [22] and this work are represented by square pixels. Therefore,
using circular field plots is suboptimal, as each model’s corre-
spondence to z needs to be computed by an area-weighted mean
of neighboring pixels. The sequential models are not directly
related to the circular plots, but through the ẑy , which was trained
against z. Nevertheless, when computing the correspondence
between the sequential model’s AGB predictions and z, the
above challenge arises when the area-weighted mean between
square pixels intersecting a circular pixel is computed. In the
end, this will influence the overall accuracy of the models. Note

that the sampling design in [74] was optimized for field-based
estimation of AGB given a limited budget for inventories, not for
upscaling supported by RS, in which case the species diversity
and spatial variability of AGB in the miombo woodlands imply
that larger sample plots should be used. We sustain [95], which
concludes that decisions regarding the sample plot size, and
thereby its shape, is one of many parameters that have to be
considered in future field-based surveys if one aims to enhance
estimation through the use of remotely sensed data.

VII. CONCLUSION

The focus of this work was to investigate the suitability of
Sentinel-1-based models for AGB prediction in an MRV system
for miombo forests in Tanzania. Previously, Næsset et al. [22]
developed traditional nonsequential regression models for AGB
in a Tanzanian AOI using either ALS, TanDEM-X InSAR,
RapidEye, Landsat, or PALSAR data with a limited amount of
ground reference AGB data. The ALS-based AGB predictions
achieved the highest accuracy, but the cost and infrequent update
of ALS data prevent this model from being of practical use in
an MRV system. Therefore, we turned to freely available and
easily accessible Sentinel-1 data for this work and developed
three different models for AGB prediction from this source: A
traditional nonsequential model, a baseline sequential model,
and a DL-based sequential model. We compared each model’s
accuracy on the AGB prediction task. Additionally, maps of
AGB predictions were compared and evaluated with respect to
their ability to recreate realistic biomass dynamics. The model
performances and most important results are summarized below.

1) Nonsequential Sentinel-1 Model: This model was, as the
models in [22], trained against the limited ground reference
data. Its performance can, therefore, be directly compared to
the results in [22]. Among all models proposed for this work,
this model achieves the lowest RMSE and highest correlation
coefficient (R) against ground reference data. Although this
model cannot predict AGB levels between 0 and 20 Mgha−1, it
performs better than the InSAR-based model in terms of R and
RMSE. It is only beaten by the ALS-based and the RapidEye-
based models [22]. However, the nonsequential Sentinel-1
model achieves the highest RMSE in a pixel-by-pixel compari-
son with the ALS-predicted AGB map. Hence, we conclude that
it sacrifices a more realistic prediction of the dynamic range and
local variability of AGB values to meet the goal of producing a
low RMSE against ground reference data.

2) Sequential Models: These were developed to enable AGB
prediction on a larger scale through a modeling strategy with
two subsequent regression models. We propose to employ the
ALS-based model [22] as the first model. The second model
in the chain is trained to relate SAR backscatter images to
ALS-based AGB prediction maps, which are used as a surrogate
for ground reference data. The baseline sequential model applies
a traditional statistical regression model also in the second
stage. The alternative sequential model instead uses a DDN
for cross-modal image-to-image translation, i.e., the Pix2Pix
cGAN architecture [35] with some modifications warranted by
the application. This cGAN architecture generates synthesized
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ALS-based AGB predictions during model fitting by condition-
ing on SAR backscatter data. In contrast to the other models,
it uses contextual information from pixel neighborhoods in its
predictions. The baseline sequential model, followed by the
Vanilla GAN model, achieves the highest R and lowest RMSE
against the ALS-based AGB predictions. Conversely, the LS-
GAN model is the best among the sequential models at reproduc-
ing ground reference data, and is only beaten by the ALS-based
and RapidEye-based models from [22]. In this respect, the
LSGAN model achieves slightly higher RMSE and lower R
than the nonsequential Sentinel-1-based model. However, the
LSGAN model can predict AGB levels around 0 Mgha−1 and
also achieves higher correlation with the ALS-based predictions.
Thus, the contextual cGAN-based models seem to better capture
the dynamic range and local variability of AGB.

We have in this research demonstrated the potential of utiliz-
ing Sentinel-1 data for AGB prediction in Tanzania. Although
C-band Sentinel-1 data traditionally have been considered an
inferior information source for AGB estimation due to low
penetration of the canopy, our results show that Sentinel-1-based
models are a viable alternative for forest AGB retrieval, espe-
cially considering that the data are freely available.

APPENDIX

This appendix includes a specification of the modifications
done to the Pix2Pix architecture [35] to make it suitable for
generation of synthetic ALS-based AGB image patches in our
sequential modeling strategy. It also provides additional exper-
iments and results that were conducted for this work.

A. Modified Pix2Pix Architecture

The cGAN-based sequential model used for generation of
synthetic ALS-based AGB image patches, ẑy|x, is based on the
image-to-image translation framework Pix2Pix [35]. To meet
our needs, we modified it in the following ways.

1) We enable the use of calibrated pixel values read from
image files in GeoTIFF format. This is necessary since
we work with images with pixel values that carry informa-
tion about physical entities and represent either calibrated
σ0 values (backscatter coefficients) or AGB predictions
measured in Mgha−1.

2) We change the activation function in the output layer from
a hyperbolic tangent (tanh) function used in [35] to a rec-
tified linear unit (ReLU) activation function. In an earlier
phase of this work [96], we noticed that the tanh activation
function we used in the output layer generated AGB values
that overestimated the ALS-based AGB predictions from
[22], and particularly failed to predict AGB values close
to zero. An essential criterion for our cGAN regression
model is that it should be able to predict zero biomass to
correlate well with AGB ground reference data, z, in non-
vegetated areas. The overprediction observed in [96] can
be explained by the nature of the tanh activation function.
As the range of the tanh function is [0.0, 1.0], it implies
that all data introduced to the cGAN need to be normalized
to the same range. The tanh function must output exactly
zero to predict zero biomass, which only happens when the

Fig. 13. Boxplot comparison between models trained with different types ofD
on datasets produced with or without speckle filtering. Green triangles indicate
the mean value computed over the five folds, while orange horizontal lines
indicate the median.

action potential goes to−∞. This explains why prediction
with the tanh function seems to clip the AGB values at a
level higher than zero.

In conclusion, by substituting the tanh activation function with
a ReLU function in the output layer and allowing the regression
target to be calibrated AGB values in Mgha−1 units, instead of
being normalized to [0.0, 1.0], our modified Pix2Pix architecture
no longer overestimates AGB that should be close to zero.

B. Experiment 1: A Study of the Impact of Speckle Filtering
and Choice of Discriminator Network

A common preprocessing step for SAR products is speckle
filtering. Speckle filters reduce the effects of the inherent speckle
phenomenon on the product and smooths the pixel values. In
this experiment, we evaluate if speckle filtering of the Sentinel-
1product affects the accuracy and the quality of cGAN-generated
AGB predictions. To this end, we created two different datasets
from the Sentinel-1 GRD product: The first was produced by
following the SAR processing workflow defined in Section IV-B;
for the second dataset, we used the refined Lee filter [77] with
SNAP’s default window size of 7× 7 to apply speckle filtering
between steps 4) and 5) in the same workflow. We refer to them
as the Sentinel-1 dataset with and without speckle filtering. A
separate cGAN network was trained on each.

Additionally, we evaluated the three discriminator networks
D presented in Section IV-D2 against each other to assess
their effect on cGAN performance for data generation. For all
experiments in this section, we trained the cGAN for 200 epochs
using a ResNet-6 network, WGAN-GP objective function, batch
size (BS) of 2, layer normalization (LN) for D, and batch
normalization (BN) for G. These settings were determined by
the model validation results presented in [96].

Results: A boxplot of average RMSE, computed between ẑy
and ẑy|x for the different models trained with five-fold CV, is
shown in Fig. 13. Light blue bars indicate results obtained with
models trained on speckle filtered data, while dark blue bars
represent models trained on unfiltered data. Within a specific
color, the left, middle, and right-most bar represent models
trained with a PixelGAN, a 16× 16 PatchGAN, and a 34× 34



4632 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 14. Impact of normalization method, BN or IN, on model performance. Light blue bins and dark blue bins represent models trained with BS and IN,
respectively. Green triangles are mean values computed over the five folds, while orange vertical lines are medians. The two vertical black lines in each column
are arbitrary reference lines to easen visual comparison. Columns: Models trained with Vanilla GAN (left), LSGAN (middle), and WGAN-GP (right).

PatchGAN, respectively. Overall, Fig. 13 shows less spread and
tighter boxes for models trained on the dataset where speckle fil-
tering was omitted. Thus, during preprocessing of the Sentinel-1
product, speckle filtering should be skipped to achieve slightly
smaller RMSE between ẑy and ẑy|x. In general, Fig. 13 also
shows that the specific type of discriminator has little impact on
the average RMSE for the dataset without speckle filtering. As
the PixelGAN discriminator produces slightly less spread than
the two other discriminator networks, we applied it to all re-
maining experiments in this work and choose to omit speckle
filtering in the processing of the Sentinel-1 product.

C. Experiment 2: A Comparison of Model Architectures,
Normalization Methods, and Objective Functions

Here, we investigated if any combination of model archi-
tecture, normalization method, and cGAN objective function
improves the accuracy of ẑy|x with respect to ẑy . Based on the
results in Section A2, we kept the dataset fixed, i.e., we used
the Sentinel-1product processed without speckle filtering and
applied the 1× 1 PixelGAN discriminator for all models trained
in this section. Nine different cGAN generator architectures G
were trained by combining the three ResNet networks and the
three objective functions from Section IV. We also applied BN or
instance normalization (IN) for Vanilla GAN and LSGAN, while
for WGAN-GP, we applied LN for D and either BN or IN the
G network, as suggested in [81]. We additionally experimented
with a BS between 1 and 4. For each model, we applied 5-fold
CV, and trained it for 200 epochs. We evaluate the different
models on the 5-fold CV test sets by visualizing boxplots of
average RMSE computed between ẑy and ẑy|x.

Results: Fig. 14 visualizes models trained on the three differ-
ent objective functions in separate columns, i.e., Vanilla GAN in
the left column, LSGAN in the middle column, and WGAN-GP
in the right column. We show models trained with BN in light
blue color, while models trained with IN are shown in dark blue
color. For all three objective functions, models trained with BN
achieve a smaller average RMSE. Additionally, Fig. 14 shows
that most models trained with BN also experience a smaller
spread in average RMSE over the 5-fold CV dataset. Thus, we
conclude from Fig. 14 that applying BN is preferable to produce
ẑy|x predictions with smaller average RMSE.

In Fig. 15, we compare models trained with different ResNet
architectures and BS values to each other. In the left column,
the models are first sorted by objective function, then by as-
cending BS, and finally by ascending ResNet model order. The
grouping by BS is indicated with colors. In the middle column,
models are again first sorted by objective function, but then
by ascending ResNet model order (color-coded groups), and
finally by ascending BS. In the right column, models are first
sorted by ascending ResNet model order, then by ascending
BS (color-coded groups), and, finally, by objective function.
Overall, Fig. 15 shows that the choice of objective function has
little influence on the average RMSE, as the group of bins for
the different objective functions look very similar to each other.
Neither does the choice of ResNet model order have a significant
impact on the average RMSE, although the positions of the green
triangles in the left column of Fig. 15 indicate that ResNet-6 has
a slightly smaller mean value than ResNet-5 and ResNet-4. What
influences the average RMSE the most is the choice of BS. All
columns show that BS = 1 yields a smaller spread of average
RMSE, but also a higher mean value. Models trained on BS =
2, 3, or 4 achieve a similar spread of average RMSE for all three
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Fig. 15. Boxplot of average RMSE for models trained with all three objective functions, ResNet-4, 5, or 6, with BS varying between 1 and 4 and BN only. Green
triangles indicate the mean value computed over the five folds, while orange vertical lines indicate the median. The two vertical black lines are arbitrary chosen
reference lines to easen visual comparison. Left column: Grouped by BS in ascending order (top to bottom). Middle column: Grouped by ResNet in ascending order
(top to bottom) in addition to BS in ascending order (top to bottom). Right row: Grouped by objective functions together with similar hyperparameters, sorted by
ResNet and BS in ascending order (top to bottom).

objective functions, although the WGAN-GP shows slightly less
spread. To summarize, the choice of normalization method and
batch size has the largest impact on the RMSE, compared to
other hyperparameters and the objective functions for the G or
D networks. We recommend that BN should be chosen instead
of IN, and that BS = 1 should be avoided.

D. Image Patch Generation

In this experiment, we evaluated the correspondence between
generated image patches ẑy|x to ẑy . Table III lists the implemen-
tational choices for each cGAN variant used in this experiment;
these are based on the validation described above; see Sections
A2 and A3. Each cGAN variants were trained on a training set,
while the test sets were kept aside. After training, we allowed
the trained G network of each model to generate ẑy|x image
patches from Sentinel-1 image patches. These Sentinel-1 image
patches were from the test set, and had therefore not been seen
by the network during training. Since the test set also contains
the corresponding target, i.e., ẑy image patches, these were
used to evaluate the generator’s performance quantitatively and
qualitatively.

Results: For each of the models in Table III, we select test
patches, i.e., ẑy|x and corresponding ẑy , having the smallest
and greatest RMSE (Mgha−1) to investigate the worst and best
case scenarios. The RMSE is computed over all pixels within the
image test patch. Fig. 16 shows a qualitative comparison of the

TABLE VIII
LIST OF MINIMUM AND MAXIMUM RMSE FOR THE TEST IMAGE PATCHES

SHOWN IN FIG. 16

The listed models are from Section A4 and only differ from each other by the objective
functions.

identified test patch with the smallest and greatest RMSE for the
three models. The first row of Fig. 16 visualizes patches from
the input domain, i.e., Sentinel-1, the middle row from the target
domain, i.e., ẑy , and the third row from the generated domain,
i.e., ẑy|x. Columns with caption Min indicate an image patch
with the smallest RMSE for a specific model, while caption
Max instead indicates an image patch with the largest RMSE.
Columns (a) and (b) correspond to patches from the optimal
Vanilla GAN, (c) and (d) from the optimal LSGAN, while (e) and
(f) are from the optimal WGAN-GP. Quantitative comparisons
of RMSE for the patches in Fig. 16 are shown in Table VIII.

As the same patch was identified as the easiest to translate
by both the Vanilla GAN and the LSGAN models, these two
cGAN variants must have learned similar translation dynamics
between the input and output domains. See columns (a) and (c)
of Fig. 16. The results provided in Section V-B3 also point to
the same direction; overall, the Vanilla GAN and the LSGAN
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Fig. 16. First row: Sentinel-1 patches. Second row: Target image patches, i.e., ALS-based AGB predictions ẑy . Third row: Generated synthetic image patches,
i.e., ẑy|x. Columns (a) and (b): Vanilla GAN; (c) and (d): LSGAN; (e) and (f): WGAN-GP. Columns with caption Min and Max, respectively, refer to an image

patch within the test set that achieves minimum and maximum RMSE, computed over all 64× 64 pixels in the test patch (Mgha−1).

Fig. 17. Scatter plots between AGB ground reference data, z, and model-predicted AGB. Upper row: models trained with Sentinel-1 data on dB scale, i.e., (b) the
proposed Vanilla GAN, (c) LSGAN, and (d) WGAN-GP models. Lower row, same models as above, but trained with Sentinel-1 on linear scale. (a) Model-predicted
AGB values from the baseline sequential regression model given in (2) trained with Sentinel-1 data on linear scale. The black lines are reference lines indicating
100% correlation between z and AGB predictions. Units are in Mg ha−1.
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models perform more similar to each other and achieve higher
accuracy than the WGAN-GP model. Table VIII clearly shows
that the WGAN-GP model is the worse among the three, having
an RMSE which is almost twice as high as for the Vanilla GAN
or LSGAN. From Fig. 16, it can be noted that all three objective
functions seem to be approximately equally appropriate for
translating from X to ẑy|x ∈ Z when patches from the two
domains have similar appearance, but struggle when the X
and ẑy|x ∈ Z domains deviate from each other in appearance.
Visually, all three objective functions generate synthetic patches
which are somewhat more blurry than ẑy predictions. Blurriness
is a known weakness with generative models, such as GANs
[97], [98]. Several possible explanations to it exists; for example,
that blurriness can be related to the transposed convolution
upsampling method used in the second part of the G network.
These upsampling methods affect the model’s ability to correctly
reproduce the spectral distribution in images, or to generate new
images with sharp high-frequent components such as edges [98].

E. Comparison of Linear or dB-Scale SAR Input

In the Sentinel-1 processing workflow, we settled for, see
Section IV-B, conversion to dB scale was only applied if the
Sentinel-1 scene was used by the cGAN-based sequential mod-
els. The use of dB scale on the Sentinel-1 data for these models
was decided by the results of the experiments provided in this
section. We evaluated the impact of keeping the Sentinel-1 input
data on linear scale versus to transform it to a logarithmic
decibel (dB) scale. This was done by creating two versions
of the Sentinel-1 dataset, where conversion to dB was applied
to one of these. Except for this step, both Sentinel-1 datasets,
referred to as Sentinel-1 linear or Sentinel-1 dB, were identically
processed. For each of the optimal model implementations listed
in Table III, we trained one model on the Sentinel-1 linear
dataset and another on the Sentinel-1 dB dataset. This yielded
six different possibilities to generate ẑy|x, i.e., three different
linear cGAN-based models and three different dB cGAN-based
models. From each of these six models, we extracted ẑy|x
predictions corresponding to the position of each AGB ground
reference measurement z.

Results: We provide scatter plots of ẑy|x predictions and z in
Fig. 17, where Fig. 17(b)–(d) represents results from the cGAN
models trained on linear scale, while Fig. 17(e)–(g) represent
corresponding results from the cGAN models trained on dB
scale. For comparison with the baseline sequential Sentinel-1
model, we also show a corresponding scatter plot of it in
Fig. 17(a) [it is the same figure as in Fig. 11(a)]. We also provide
computed RMSE, R, and MAE in each scatter plot. Overall,
Fig. 17 shows that R decreases while both RMSE and MAE
increase if any of the cGAN models are trained on linear scale
as compared to dB scale. We conclude that the conversion of
calibrated σ0 values to dB scale, which increases the dynamic
range of the pixel values in the image, is advantageous for
achieving more accurate image-to-image translation through the
cGAN architecture.

F. Postcalibration of Sequential Models

Although the nonsequential Sentinel-1 model cannot predict
AGB between 0 and 20.3 Mgha−1, it still achieves a higher
correlation coefficient R and a lower RMSE/MAE with respect
to z than any of the proposed sequential models. One expla-
nation can be that the nonsequential model had access to the
ground reference data z during model fitting. By contrast, the
sequential models were only using ẑy during model fitting and
have therefore not been calibrated against z. In this experiment,
we investigated if the accuracy of the sequential regression
models could improve if we, after constructing the synthetic
AGB prediction maps, calibrated them against z. As the original
LSGAN model achieved the highest correlation with z, we focus
the experiments in this section on this model and the baseline
sequential Sentinel-1 model. Furthermore, for the LSGAN, we
considered both Sentinel-1 data on linear scale and dB scale.
Overall, we investigated five common calibration methods, i.e.,
linear, exponential, gamma, nth-root, and logarithmic calibra-
tion. Among these, we choose to show gamma and linear
calibration results, as we obtained the best results with these
methods.

Results: Fig. 18 shows results from the experiment with
postcalibration of ẑy|x, i.e., scatter plots between z and cali-
brated model-predicted AGB. To ease the comparison, we have
provided some reference images, which are retrieved from the
results presented in Section V, i.e., scatter plots for the ALS-
based model [Fig. 18(a)], the nonsequential Sentinel-1-based
model [Fig. 18(b)], LSGAN on dB scale Fig. 18(c)], LSGAN
on linear scale [Fig. 18(f)], and the baseline sequential Sentinel-1
model [Fig. 18(i)]. We show results for the calibrated LSGAN
model on dB scale using gamma calibration in Fig. 18(d) and
linear calibration in Fig. 18(e). Furthermore, we show results
for the calibrated LSGAN model on linear scale using gamma
calibration in Fig. 18(g) and linear calibration in Fig. 18(h).
Fig. 18(j) and (k) shows the results for the calibrated baseline
sequential Sentinel-1 model on linear scale using gamma cali-
bration [Fig. 18(j)] and linear calibration [Fig. 18(k)].

We note from the figure that the gamma and linearly calibrated
models yield slightly lower or lower RMSE/MAE for all models
included in the evaluation. For the LSGAN models, the gamma
calibration reduces R slightly, while the correlation coefficient is
unchanged for the linear calibration. For the baseline sequential
model, R is unchanged for both the gamma and the linear
calibration. Unfortunately, neither of the models achieve as high
R and low RMSE/MAE as the nonsequential Sentinel-1-based
model, nor the nonsequential ALS-based model. However, the
LSGAN models, with or without calibration, can still predict 0
AGB, while neither of the baseline sequential models, with or
without calibration, can produce such low AGB predictions. We
conclude from this experiment that postcalibrating sequential
AGB predictions against z can yield some modest improve-
ments to higher accuracy. However, as these possible modest
improvements come with the cost of applying an extra step to the
prediction process, we choose to omit it in the results provided
in Section V-B3.
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Fig. 18. Scatter plots between predicted AGB and ground reference AGB data, z. (a)–(c), (f), and (i) Reference images, corresponding to AGB predictions from
the ALS-based regression model, the nonsequential Sentinel-1 model, the LSGAN model trained with dataset on dB scale, the LSGAN model trained with dataset
on linear scale, and the baseline sequential Sentinel-1 model trained with dataset on linear scale. (d), (g), and (j) AGB predictions from respective model after
calibration with gamma transform. (e), (h), and (k) Corresponding results after calibration with a linear transform. The black lines are reference lines indicating
100% correlation between z and predictions. Units are in Mg ha−1.
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Norwegian National Forest Inventory, and has par-
ticipated in compiling reports of emissions and re-
movals of greenhouse gases from land use, land-use
change, and forestry in Norway. He has coordinated
and participated in a number of externally funded

projects—including international projects funded by, for example, NASA and
EU (FP6 and FP7), and has broad practical and research-based experience with
development of big data and information infrastructures for forest inventory,
planning, and decision support. He has authored or coauthored more than 190
peer-reviewed scientific articles related to forest inventory and planning in
international journals.





10
Paper II
Simpler is better: spectral regularization and
up-sampling techniques for variational
autoencoders

Sara Björk, Jonas N. Myhre, and Thomas Haugland Johansen

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 3778-3782, 2022

109



11
Paper III
Forest Parameter Prediction by Multiobjective
Deep Learning of Regression Models Trained With
Pseudo-Target Imputation

Sara Björk, Stian N. Anfinsen,Michael Kampffmeyer, Erik Næsset, Terje Gobakken,
and Lennart Noordermeer

Submitted to IEEE Transactions on Geoscience and Remote Sensing, 2023

115



1

Forest Parameter Prediction by Multiobjective Deep
Learning of Regression Models Trained With

Pseudo-Target Imputation
Sara Björk, Stian N. Anfinsen, Michael Kampffmeyer, Erik Næsset, Terje Gobakken, and Lennart Noordermeer

Abstract—In prediction of forest parameters with data from
remote sensing (RS), regression models have traditionally been
trained on a small sample of ground reference data. This paper
proposes to impute this sample of true prediction targets with
data from an existing RS-based prediction map that we consider
as pseudo-targets. This substantially increases the amount of
target training data and leverages the use of deep learning (DL)
for semi-supervised regression modelling. We use prediction maps
constructed from airborne laser scanning (ALS) data to provide
accurate pseudo-targets and free data from Sentinel-1’s C-band
synthetic aperture radar (SAR) as regressors. A modified U-
Net architecture is adapted with a selection of different training
objectives. We demonstrate that when a judicious combination
of loss functions is used, the semi-supervised imputation strategy
produces results that surpass traditional ALS-based regression
models, even though Sentinel-1 data are considered as inferior for
forest monitoring. These results are consistent for experiments on
above-ground biomass prediction in Tanzania and stem volume
prediction in Norway, representing a diversity in parameters and
forest types that emphasises the robustness of the approach.

Index Terms—Forest remote sensing, above-ground biomass
(AGB), stem volume, synthetic aperture radar (SAR), Sentinel-1,
airborne laser scanning (ALS), deep neural networks, regres-
sion modelling, U-Net, composite loss function, semi-supervised
learning, pseudo-targets, imputation.

I. INTRODUCTION

ACCURATE monitoring of forest above-ground biomass
(AGB) is essential to better understand the carbon cycle.

Vegetation biomass is, for example, a larger global storage of
carbon than the atmosphere [1], [2]. Additionally, to monitor,
measure and predict the amount of available AGB correctly is
important for economic aspects, e.g. to estimate available raw
materials or the potential for bioenergy [3], [4].

As the stem volume (SV) accounts for the highest pro-
portion of biomass in each tree, typically 65-80% [5]–[7],
AGB monitoring often focuses on the available SV. In other
applications, the total amount of available biomass is of
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interest, which comprises stems, stumps, branches, bark, seeds
and foliage [2], [3], [8]. Today, remote sensing (RS) data from
radar, optical or airborne laser scanning systems (ALS) are
commonly used together with a sparse sample of collected
ground reference forest measurements to develop prediction
models over larger areas and regions [9]–[11].

Satellite and airborne RS have become an important source
of information about these forest parameters and others.
Traditionally, AGB and SV prediction models use relatively
simple statistical regression algorithms, such as multiple linear
regression, or machine learning regression models like random
forests or multilayer perceptrons (MLPs) [12]. These models
are usually noncontextual, as they restrict the regressor infor-
mation to the pixel that is being predicted and do not combine
regressor and regressand information from neighbouring pix-
els, known as spatial context.

Remote sensing is commonly used to infer forest parameters
on spatial scales that are coarser than the pixel size, for in-
stance on stand level. Hence, there is no formal reason to avoid
the use of contextual information and one should select the
method that provides the highest accuracy on the desired scale.
This motivates the use of deep learning (DL) and convolutional
neural networks (CNNs), whose popularity hinges on their
efficient use of spatial context and the inference accuracy
obtained by these highly flexible function approximators. The
ability of CNNs to exploit spatial patterns was also pointed
out in a recent review [13] as an explanation as to why CNN
are particularly suitable for RS of vegetation.

A recent review [14] of DL methods applied to forestry
concludes that these are in an early phase, although some work
has emerged. We build our proposed method on Björk et al’s
sequential approach to forest biomass prediction [12], which
uses a conditional generative adversarial network (cGAN) to
generate AGB prediction maps by using synthetic aperture
radar (SAR) as regressors and AGB predictions from ALS
as the regressand. Their regression approach consists of two
models that operate in sequence to provide more target data for
training the model that regresses on SAR data. This implies
that the first regression model learns the mapping between
a small set of ground reference data and RS data from a
sensor known to provide a high correlation with the response
variable. ALS data are suitable for this purpose [8], [15],
but are expensive to acquire. Hence, the second model in the
sequence establishes a relationship between the ALS-derived
prediction map, as a surrogate for the ground reference data,
and RS data from a sensor that offers large data amounts at
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low cost, namely the Sentinel-1 SAR sensors.
This paper preserves some of the principal ideas from [12]:

The first is to train the regression model on an ALS-derived
prediction map of the target forest parameter to increase the
amount of training data. The motivation is that the small
amount of ground reference data used to train conventional
models limits their ability to capture the dynamics of the
response variable, as demonstrated in [12]. The second is to
carry forward the use of CNNs to leverage their exploitation of
contextual information, their flexibility as regression functions,
and their demonstrated performance in other applications.

At the same time, we make several new design choices to
improve on the previous approach and remedy its weaknesses:
Firstly, the sequential model is replaced by an approach
where ground reference data are imputed with data from
the ALS-derived prediction map. In practice, this is done by
inserting the sparse set of true targets into the dense map of
pseudo-targets. By letting these data sources together form
the prediction target, the SAR-based prediction model can be
trained simultaneously on ground reference data and the ALS-
derived prediction map in a problem setting that we frame
as semi-supervised learning; A second improvement is that
we replace or combine the generative adversarial network
(GAN) loss used in [12] with a pixel-wise error loss and a
frequency-aware spectral loss. This modification is motivated
by an emerging awareness that the GAN loss used by the
Pix2Pix [16] model employed in [12] may be well suited
to preserve perceptual quality and photo-realism, which is
required in many image-to-image translation tasks, but is less
appropriate for the regression task that we address.

This paper has a stronger technical and methodological
focus than [12] and emphasises the method’s ability to han-
dle different tasks and cases: It demonstrates the proposed
regression framework both on AGB prediction in dry tropical
forests in Tanzania and on SV prediction in boreal forests in
Norway, representing different parameters and very different
forest types. Another difference is that the ALS-derived SV
predictions used as pseudo-targets in the Norwegian dataset
cover spatially non-contiguous forest stands, and is not a
wall-to-wall prediction map. We have adapted the CNN-based
regression algorithm for use with such data by implementing
masked computation of the loss functions.

In summary, we make the following contributions:

1) We develop a method that enables us to train contextual
deep learning models to predict forest parameters from
C-band SAR data from the Sentinel-1 satellite.

2) We enable the CNN-based regression model to use target
data that consist of spatially disjoint polygons, thereby
showing that it can be trained on complex datasets that
arise in operational forest inventories.

3) By testing the method on AGB prediction in Tanzania
and SV prediction in Norway, we demonstrate that it can
handle different forest parameters and forest types.

4) We investigate an established consensus from the image
super-resolution (SR) field about the trade-off between
reconstruction accuracy and perceptual quality. For this
purpose, we perform an ablation study of composite cost

functions, including the GAN loss, a pixel-wise loss, and
a recently proposed frequency loss.

5) We demonstrate state-of-the-art prediction performance
on datasets from Tanzania and Norway. Notably, we show
that a deep learning model with C-band SAR data as input
supercedes a conventional ALS-based prediction model
after it has been trained on ground reference data imputed
with ALS-derived predictions of the forest parameters.

The remainder of this paper is organised as follows: Sec-
tion II reviews published research on related topics in deep
learning applied to forest parameter prediction and other topics
relevant to the proposed method. Section III presents the
datasets used in this work. Section IV details the proposed
approach and describes how we facilitate the imputation of
pseudo-targets for regression modelling, enabling the CNN
model to learn from continuous and discontinuous target data
using a variety of loss functions. Experimental results are
provided in Section V and discussed in Section VI. Finally,
Section VII concludes the paper.

II. RELATED WORK

Björk et al. showed in a precursor of this paper [12] that
the popular cGAN architecture Pix2pix [16] can be used in the
forestry sector to predict AGB from Sentinel-1 data by training
it on ALS-derived prediction maps. Their work inspired [17]
to also exploit ALS-derived AGB prediction maps and cGANs
to predict AGB from multispectral and radar imagery and to
quantify aleatoric and epistemic uncertainty. Despite apparent
similarities, the current paper distinguishes itself from both
[12] and [17] in many ways. The differences from [12]
are discussed in Section I when listing the contributions of
the paper. Just like [12], Leonhardt et al. [17] train their
regression network with adversarial learning through a cGAN
architecture, but pretrain the generator with a mean square
error (MSE) loss to find a proper initialisation. Notably, their
final goal is not point prediction in the MSE sense or according
to similar metrics, but to develop probabilistic methods for
AGB prediction that quantify uncertainty.

Another example of deep learning applied to AGB pre-
diction is Pascarella et al. [18], who show that a traditional
U-Net [19] trained with a pixel-wise error loss can be used
as a regression model to predict AGB from image patches
of optical Sentinel-2 data. Compared to [18], we focus on
utilising data from the Sentinel-1 radar sensor that, as opposed
to the optical Sentinel-2 sensor, can acquire data both at night
and under cloudy conditions and is therefore a more reliable
source of data.

Besides these examples, the literature on deep learning for
regression modelling of forest parameters is sparse. This is also
pointed out in the review of the use of CNNs in vegetation
RS conducted by Kattenborn et al. [13]. It found that only
9% of the studies surveyed focused on regression modelling
and only 8% were specifically related to forestry and forest
parameter retrieval, such as biomass prediction. A recently
published review by Hamedianfar et al. [14] attributes this
literature gap to the challenge of acquiring the large amounts
of target data needed to train accurate contextual CNN models



3

for forest. This has been a main motivation for using pseudo-
targets from existing prediction maps to train our SAR-based
prediction models. For further inspiration, we have had to look
to alternative topics in the literature.

Another image processing task that has inspired us to
consider alternative loss functions and combinations of these
is image super-resolution (SR). Single-image SR techniques
are trained in a similar fashion as regression models: A full-
resolution image is often used as the prediction target and a
reduced resolution version of it as predictor data (see e.g. [20]),
which renders the problem a prediction task that resembles the
one in regression. Both the regression and the single-image SR
task can be solved with generative models, but it is noteworthy
that the literature identifies the SR task as an attempt to achieve
two conflicting goals: It should produce images with high
perceptual quality, meaning that they should appear natural and
realistic. At the same time, it should reconstruct the underlying
truth, that is, the high-resolution version of the input image,
as closely as possible [20]–[24].

The SR literature associates GAN losses and adversarial
training with the perceptual quality criterion, as these enforce
realistic fidelity and crispness in the generated image. This
is achieved at the expense of accurate reconstruction in the
MSE sense, since the generator module of the GAN effectively
learns to hallucinate the kind of spatial pixel configurations
that fools the discriminator module, but does not consider
pixel-wise reconstruction. On the other hand, pixel-wise losses
such as error measures based on the L1 and L2 norm naturally
reduce the reconstruction error, but lead to a blurry appearance
of the generated image that is not realistic [20], [21].

This has made us realise that although the Pix2Pix model
has established itself as a preferred standard model in image-
to-image translation, its GAN loss and adversarial learning
approach may be better suited for generative tasks where
the result must be visually credible. This is not a concern
in the regression of biophysical parameters, where regression
performance in terms of root mean square error (RMSE), mean
absolute error (MAE) or similar metrics is used to evaluate
and rank methods. When training such models, one should
therefore consider other loss functions or composite loss func-
tions that support the relevant aspects of the regression task.
The SR literature exemplifies ways of combining different loss
functions, both regarding which losses to select and how they
should interact [20], [21]. For instance, different losses can be
used sequentially in pretraining and fine-tuning, or they can
be used simultaneously as a composite loss.

Although perceptual quality is not of the essence for predic-
tion maps of forest parameters, it may still be worth including
loss functions that promote sharpness and visual information
fidelity as part of a composite loss. One particular class of
loss functions we find interesting to investigate is frequency-
aware losses. Their aim is to preserve the high-frequency
content of the image, which can e.g. be related to forest
boundaries, structure and texture. These have not previously
been utilised in forest applications, and to a limited extent in
SR, but relevant work is found in the more general computer
vision literature, where issues referred to as Fourier spectrum
discrepancy, spectral inconsistency, frequency bias or spectral

Fig. 1. The location of the Tanzanian dataset, represented by Sentinel-1A
image data covering the AOI overlaid with ground reference data shown as
red L-shaped clusters of ground plots. Figure from [12].

bias have gained a lot of attention [25]–[31]. These terms relate
to CNN-based generative models’ lack of ability to capture
the image distribution’s high-frequency components, leading
to blurriness and low perceptual quality.

Some claim that the spectral bias is caused by the up-
sampling method, e.g. transposed convolutions, used by the
generator network [26], [27], [31]. Thus, changing the up-
sampling method in the last layer of the generator network
has been suggested [27]. However, Björk et al. [29] claim
that changing the up-sampling procedure in the last layer from
transposed convolution to e.g. nearest-neighbour interpolation
followed by standard convolution gives ambiguous results.
Chen et al. [25] argue that the down-sampling modules in
the discriminator network of the GAN are the issue, resulting
in a generator network that lacks an incentive from the
discriminator to learn high-frequency information of the data.
However, more recent work [28] proves that the frequency
bias must be rooted in the GAN’s generator and not the
discriminator. Hence, there has been a focus on modifying
the generative training objective by incorporating a spectral or
frequency-aware loss with the traditional spatial loss during
training [26], [29], [30].

The observations and lessons from the precursor paper [12]
and from the literature on SR and generic generative models
prompts us to investigate if model accuracy improves when
we combine loss functions and whether pretraining of the
model is enough or if we can increase model performance with
a fine-tuning phase. Among the loss functions we combine
is a newly proposed frequency-aware loss: the simple but
promising FFT loss [29]. It has been shown to perform better
than other more complex frequency-aware losses [26], [30] on
experiments where it was used to train a generative variational
autoencoder (VAE) [32]. As the FFT loss has previously
only been evaluated on VAEs with images from common
benchmark datasets [29], we contribute with new insight into
its behaviour when employed for other models and tasks.

III. STUDY AREAS AND DATASETS

This section introduces the datasets used throughout this
work, i.e. the ground reference target data, the ALS-derived
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prediction maps of AGB and SV, and the SAR data from
the Sentinel-1 sensors. The ALS-derived prediction maps will
interchangeably be referred to as the pseudo-target datasets,
while the ground reference data are also referred to as field
data, data from the field plots, or true prediction targets. The
AGB dataset comes from the Liwale district in Tanzania. The
SV datasets are from three regions in the southeast of Norway:
Nordre Land, Tyristrand and Hole.

For Tanzania, both the field data and the ALS data were
acquired in 2014, as described in [9] and Section III-A1. The
Sentinel-1A satellite was launched in April 2014 and only
one single Sentinel-1A scene acquired in September 2015 was
found to comply with our requirements, meaning that it covers
one of Liwale’s two yearly dry seasons and is close enough in
time to the field inventory and the ALS campaigns in Tanzania.
For Norway, the acquisition of the ALS data in 2016 and the
field inventory in 2017 (see [10] and Section III-A3) implies
that more Sentinel-1 data are available. Thus, the models we
develop for the Norwegian test sites utilise a temporal stack
of Sentinel-1A and Sentinel-1B scenes from July 2017.

A. Study area and dataset description

This section briefly describes the Tanzanian and Norwegian
study areas, including the ground reference data and related
ALS-derived prediction maps. The interested reader is referred
to [9] and [10], respectively, for in-depth descriptions of the
ground reference data and the ALS-derived prediction maps.

1) Tanzanian study area: This work focuses on the same
study area as [12], i.e. the Liwale district in the southeast of
Tanzania (9◦52’-9◦58’S, 38◦19’-38◦36’E). The area of interest
(AOI) is a rectangular region with a size of 11.25×32.50 km
(WGS 84/UTM zone 36S). Fig. 1 shows the location of the
AOI in Tanzania and the distribution of the 88 associated field
plots. These field plots were collected within 11 L-shaped
clusters, each containing eight plots, as seen in Fig. 1.

The field work was performed in January-February 2014,
and a circular area of size 707 m2 represents each sample
plot on the ground, i.e. they have a radius of 15 m. We refer
to [33] for a description of the national level sample design in
Tanzania, while [9], [34], [35] explain how data from the field
work are used to develop large-scale AGB models. Generally,
the miombo woodlands of the AOI are characterised by a large
diversity of tree species. Measured AGB from the field work
ranged from 0 to 213.4 Mgha−1 [9] with a mean and standard
deviation of µ=51.3 and σ = 45.6Mg ha−1.

2) Tanzanian ALS-predicted AGB data: We follow [12] and
use the same ALS data from the Liwale AOI, which was
acquired in 2014. We refer to [9] for details on the ALS
flight campaign, ALS data processing, and the match-up of
ALS data with ground reference AGB data from the field
plots. After model fitting, the ALS-based AGB model was in
[9] used to infer a wall-to-wall prediction map for the whole
AOI in Liwale. The wall-to-wall map is represented as a grid
with square pixels of size 707 m2. We have gained access
to this prediction map and will use it as pseudo-targets to
train contextual CNN models for AGB predictions based on
Sentinel-1 SAR data.

Fig. 2. Location of the regions Nordre Land (A), Tyristrand (B) and Hole
(C) in the Norwegian dataset.

3) Norwegian study area: The Norwegian study area con-
sists of three regions shown in Fig. 2 and referred to as
Nordre Land (A), Tyristrand (B) and Hole (C). All field work
was performed during the summer and fall of 2017, initially
resulting in 386 circular field plots of shape 250 m2 distributed
over the three regions. We refer to [10] for a description of
the sampling design and related data properties.

Of the original 386 field plots used for modelling stem
volume, a total of 122 plots were not located within polygons
of forest stands delineated in the inventories, and thus fell
outside the spatial extent of the ALS-predicted SV datasets.
We therefore excluded these plots from the analysis. In Table I,
the column No. of plots (after filtering) indicates the number of
field plots included in the current study. The remaining entities
of Table I, such as geographical coordinates, inventory size,
field inventory information and distribution of the dominant
tree species in each region, are sourced from [10].

In Nordre Land, ground reference values of SV ranged from
33.7 to 659.2 m3 ha

−1 with a mean and standard deviation of
µ=252.7 and σ=145.5m3 ha

−1. In Tyristrand it ranged from
56.1 to 513.3 m3 ha

−1 with µ = 212.6 and σ = 96.9m3 ha
−1,

while in Hole it ranged from 29.5 to 563.9 m3 ha
−1 with

µ = 253.4 and σ = 125.8m3 ha
−1.

4) Norwegian ALS-predicted SV data: The ALS flight
campaigns were performed in 2016 for all three regions
of Norway. We refer to [10] for a description of how the
ALS data were processed, the formulation of the nonlinear
local prediction models and the match-up of ALS-derived
predictions with ground reference data. After model fitting,
maps of SV predictions were generated for all three regions,
limited to areas where the forest height exceeded 8-9 meters.
We refer to these as the ALS-derived SV prediction maps.
In all regions, predictions were made for square pixels of size
250 m2, i.e. 15.8 m×15.8 m on the ground. The ALS-derived
SV is given in units of m3 ha

−1.
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TABLE I
CHARACTERISTICS OF EACH OF THE THREE NORWEGIAN REGIONS INCLUDED IN THIS WORK. ALL ENTITIES, EXCEPT FOR COLUMN No. of plots (after

filtering), WHICH REFERS TO THE FIELD PLOTS THAT ARE USED FOR THIS WORK, ARE BORROWED FROM [10].

Region Name Geographical Inventory No. of plots Proportion Proportion Proportion
coordinates size (km2) (after filtering) spruce pine deciduous

A Nordre Land 60◦50´N, 490 136 74% 23% 3%
10◦85´E

B Tyristrand 60◦6´N, 60 77 15% 80% 5%
10◦20´E

C Hole 60◦1´N, 45 51 89% 4% 7%
10◦20´E

Fig. 3. Small section of the ALS-derived SV prediction map from Nordre
Land. SV has been predicted in the brown areas. The lattice represents the
common pixel grid of the SAR predictor data and the rasterised SV prediction
map. The original prediction map is obtained in vector format, with one SV
prediction per polygon and multiple polygons per grid cell. The rasterisation
process with merging of polygons is described in detail in the text.

B. Postprocessing of the ALS-derived prediction maps

The ALS-derived prediction maps have been obtained as
vector data in polygon format stored as shapefiles. These must
be converted to raster data in order to be used as training data
for CNN models. This conversion is straightforward for the
Tanzania datasets, where all polygons are square and have the
same areal coverage. Hence, we map project and sample the
SAR data such that the SAR pixels coincide with the polygons
of the AGB prediction map.

The process for the Norway dataset is more complicated.
Fig. 3 shows a section of the ALS-derived SV prediction map
retrieved in the Nordre Land municipality. Brown areas show
where SV predictions are available, whereas the background
(other colours) is retrieved from OpenStreetMap [36]. An
overlaid lattice of square grid cells can be seen at all zoom
levels of Fig. 3. This lattice represents two things: Firstly,
it contributes to the delineation of the polygons in the SV
prediction map. In this dataset, SV has been predicted for
polygons of varying size and shape, that are delimited by:
1) the grid cells of the lattice, as mentioned above; 2) the
commercial forest boundaries that enclose the brown areas;
and 3) curves within the brown areas that mark internal forest

boundaries and subdivide different forest areas. These are seen
at all zoom levels of the figure. Secondly, the lattice coincides
with the map grid of the SAR data, since we have map
projected and resampled the SAR images to align their map
grid with the lattice of the SV polygons. Hence, the lattice grid
is identical to the pixel grid we want for our training dataset.

In summary, SV is only predicted in brown areas. Each
prediction is associated with a polygon, which can be square
if it is only delimited by the lattice and coincides with a
lattice grid cell. It can also be of irregular shape and size,
if a forest perimeter or an internal forest boundary delimits
it. Each polygon is assigned a stem volume, V , and an areal
coverage, A. Some of the square lattice cells are fully covered
by one or more polygons, while others are only partly covered.
Some lattice cells contain one polygon, while others contain
two or more. We refer to this as a multipolygon format, as
every lattice grid cell potentially contains multiple polygons.

The multipolygon dataset must be rasterised into a target
dataset with the same pixel grid as the SAR predictor data.
This means that all polygons within a lattice grid cell must
be merged, and the grid cell must be assigned a single SV
value and the associated areal coverage. The predicted SV
contributed by all intersecting multipolygons is computed as

Vmerged =
n∑

i=1

Vmp(i), (1)

where mp(i) indicates multipolygon number i and n is the
number of multipolygons in a grid cell. Simultaneously, the
total areal coverage is computed as:

Amerged =

n∑

i=1

Amp(i). (2)

The described merging process guarantees that each grid
cell is assigned a unique SV, but this value does not necessarily
represent a full grid cell of 250 m2. To quality assure the SV
dataset, we remove all SV predictions with less than 40%
areal grid cell coverage. This threshold is chosen heuristically
to accommodate all three regions, as this removes less than
12% of the Nordre Land and Tyristrand dataset and less than
10% of the Hole dataset. The remaining SV prediction dataset
is deemed suitable for the training of CNN regression models.
All postprocessing steps are applied using QGIS [37].

C. SAR data

Low data cost can sometimes be crucial for developing
forest parameter monitoring systems suitable for commercial
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or operational use. This paper utilises SAR data from the freely
available Sentinel-1 sensors, which also offer short revisit time
and good coverage for the areas of interest. The SAR images
are dual-polarisation (VV and VH) C-band scenes acquired in
a high-resolution Level-1 ground range detected (GRD) format
with a 10 m pixel size. The SAR data was downloaded from
Copernicus Sentinel Scientific Data Hub1.

For the AOI in Tanzania, we use a single scene acquired
on 15 September 2015, as this is the only available Sentinel-1
product that covers the AOI at a time close to the acquisition
of the ALS data and during one of Liwale’s two yearly
dry seasons. The latter criterion implies that the radar signal
achieves sufficient sensitivity to dynamic AGB levels.

We utilise data from the Sentinel-1A and -1B satellites for
the three Norwegian regions. Since the field work for the three
Norwegian regions was performed during the summer and fall
of 2017, we decided to create temporal stacks of Sentinel-1
-scenes from July 2017 for each of the three regions.

D. SAR data processing and preparation of datasets

The Sentinel-1 GRD product in the Tanzanian dataset was
processed with the ESA SNAP toolbox [38] following the
workflow described in [12].

The Sentinel-1 GRD products in the Norway dataset have
been processed with the GDAR SAR processing software at
NORCE Norwegian Research Institute. They are geocoded
with a 10 m × 10 m digital elevation model to the same
map projection as the ALS-derived SV prediction map and
resampled to a pixel resolution of 15.8 m to match the 250 m2

grid cells of the prediction map. Since [12] showed that it is
more advantageous to train CNN-based prediction models with
Sentinel-1 intensity data on decibel (dB) scale, the stacks of
Sentinel-1 scenes for the Norwegian regions are converted to
dB format. The final Sentinel-1 products for the Norwegian
regions contain nine features that were extracted from the
Sentinel-1 time series: NDI, mean(VV), mean(VH), min(VV),
min(VH), max(VV), max(VH), median(VV), median(VV).
NDI denotes the normalised difference index feature, a nor-
malised measure of how much the measured backscatter differs
in VV and VH. It is computed as

NDI = (V V − V H)/(V V + V H). (3)

IV. METHODOLOGY

This section describes the proposed methodology to train
contextual CNN models for forest parameter prediction. We
describe the semi-supervised approach and how training, test
and validation datasets are created for each region. In general
terms, we introduce the CNN models we use in our work and
describe the changes proposed to improve on the performance
obtained in [12]. This section focuses on a semi-supervised
learning strategy where we impute the sparse reference data
with data from ALS-derived prediction maps to increase the
amount of training data and to create a dataset that allows
us to train CNN models. It also explains the multiobjective
training approach, which exploits composite loss functions

1See https://scihub.copernicus.eu/dhus/#/home

Fig. 4. Overall workflow for dataset generation, model training and inference
to create prediction maps, displayed with image data from the Tyristrand
dataset. True targets (white circles) have been magnified for illustrative
purposes.

with varying objectives in the pretraining and fine-tuning
stages.

1) Overview: The framework of the proposed method is
illustrated in Fig. 4. Initially, the ground reference data, also
known as the true prediction targets, are imputed with the
ALS-derived prediction map, also called the pseudo-target
dataset. Then two binary masks are created, one indicating
the pixel positions of the true targets and the other indicating
pixels where pseudo-target data are available. The two masks
are referred to as ancillary training data. They enable the
CNN to learn from discontinuous pseudo-target data and boost
learning in regions where ground reference data are available.
When the pseudo-target data are spatially continuous and have
the same extent as the predictor data, the pseudo-target mask
will have a constant value of one. The imputed target dataset
and the two masks are combined with regressor data from
the Sentinel-1 sensor. See Section IV-B and Fig. 5 for details.
Fig. 4 shows that baseline models are pretrained as an initial
training step. Following the pretraining stage, fine-tuning may
be applied to the baseline CNN models with a composition
of different losses. Inference, i.e. production of SAR-derived
prediction maps, is done with the resulting models2.

A. Imputing ground reference data with pseudo-targets
The cGAN-based models developed in [12] for SAR-based

regression trained on ALS-derived prediction maps could not
compete with the conventional ALS-based regression model in
terms of prediction accuracy. We argue that this is because the
cGAN model is not trained on the true prediction targets and
therefore inherits too much of the uncertainty in the ALS-
based prediction maps. By contrast, the conventional ALS

2Code will be available from
https://github.com/sbj028/DeepConvolutionalForestParameterRegression
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model was fitted directly to all the true prediction targets.
To address this shortcoming and improve the performance of
CNN models, we propose to impute pseudo-targets from the
ALS-derived prediction maps into the dataset of true prediction
targets, so that the CNN model is trained on the complete
set of available targets. Since the ground reference dataset
is much smaller than the prediction maps, this is in practice
done by inserting true targets into the pseudo-target prediction
maps. Following the imputation process, the Tanzanian dataset
comprises less than 0.08% of target values originating from
the ground reference data. For the Norwegian datasets, the
ground reference data represents less than 0.04%, 0.11%, and
0.13% of the pixels in the respective Nordre Land, Tyristrand,
and Hole datasets after the imputation process.

We would generally use all available ground reference
data for model training and hyperparameter tuning. However,
for model evaluation, we report the performance after cross-
validation (CV), where we have trained models on a target
dataset that only contains 80% of the true target labels. The
remaining 20% are reserved for validation. Results obtained
with CV are referred to as CV-RMSE in the result section.

B. Preparing the datasets for contextual learning
To create training, test and validation datasets for the Nor-

wegian regions, all true target labels from the field inventory
were first inserted into the ALS prediction maps of pseudo-
targets. Two binary masks were additionally created; the
pseudo-target mask, denoted Mpt indicates the positions of
available ALS-derived predictions. It is needed for masked
computation of the loss functions, which are restricted to pixels
where prediction targets are available. The ground reference
mask, denoted Mgr, holds the positions of the true prediction
targets. It is also used in the loss computation, where we
weight the loss for the true prediction targets higher than the
pseudo-targets.

After having produced the imputed target dataset and the
two masks, we follow the workflow shown in Fig. 5 to create
datasets with training, test and validation image patches. The
figure illustrates the process for Tyristrand, but it is identical
for all three Norwegian regions. Firstly, all available data are
combined into a stack, including the Sentinel-1 mosaic of nine
feature bands, the imputed target map, and the two masks.
Then the entire scene is divided into superpatches by splitting
it into blocks with no overlap. A superpatch is defined as
a block of pixels that is larger than the image patches we
use for training, testing and validation. See Table II for an
overview of the total number of pixels in each region, the
corresponding size of each superpatch and the number of
possible superpatches that can be extracted for that region.
Mpt was used to remove superpatches with no overlap with
pseudo-targets. Among all available superpatches, those with
at least 10% overlap with Mpt were identified as candidates
for the test dataset. Fulfilling this criterion, approximately 15%
of all available superpatches were randomly selected as test
superpatches. These were further split into test patches of
64×64 pixels without overlap. Test patches having no overlap
with Mpt were discarded. Table II shows each region’s final
number of test patches.

TABLE II
DESCRIPTION OF THE DIFFERENT REGIONS, INFORMATION RELATED TO

CREATING TRAINING AND TEST PATCHES AND THE FINAL NUMBER OF
TEST AND TRAINING PATCHES PER REGION. THE LISTED NUMBER OF

TRAINING PATCHES ARE AFTER DATA AUGMENTATION. SEE
SECTION IV-B FOR DETAILS

Region Superpatch Number of Number of Number of
shape size superpatches test patches training patches

Region Name (pixels) (64× 64) (64× 64)
Nordre Land 3136× 1984 224× 248 128 87 18072
Tyristrand 1152× 896 128× 128 63 25 2776
Hole 768× 768 128× 128 12 14 1384
Liwale 423× 1222 – – 14 2784

The remaining superpatches were initially used for hyper-
parameter tuning. See Appendix A for details. After this,
all patches not used for testing were combined into training
sets for the Norwegian models by splitting superpatches into
training image patches of 64×64 pixels using 50% overlap and
data augmentation with flipping and rotation. Patches with no
overlap with Mpt were discarded. Table II lists the number of
training image patches per region after hyperparameter tuning.

The training, test and validation datasets for Tanzania were
created by similar use of superpatches. Since the Tanzanian
ALS-derived prediction map covers the whole AOI without
any discontinuities, there is no need to check if image patches
overlap with pseudo-targets. See Table II for details on region
sizes in pixels and the number of test and training patches.

To evaluate the models, we also created CV target datasets
where we used only 80% of the true target labels from the field
inventory. We compute the model’s performance both when it
is trained with all true target labels and also a CV performance
for the case when 20% of the true target labels are held out
and used for testing. When comparing these results, one must
recall that in the former case, the model has seen the test
data during training. Moreover, the models are in the CV case
trained with less true prediction targets.

C. Backbone U-Net Implementation

The CNN we use for SAR-based prediction of forest pa-
rameters is a modified version of the U-Net architecture in
[19], a fully convolutional encoder-decoder network originally
developed for biomedical image segmentation. The U-Net
consists of a contraction part and a symmetric extraction
path, with skip connections between each encoder block and
the associated decoder block. The skip connections imply
that low-level feature maps from the contraction part are
concatenated with high-level feature maps from the extraction
part to improve the learning in each level of the network.

Fig. 6 illustrates the U-Net generator network we use with
an encoder-decoder depth of 4. This is the depth used by
the Norwegian models, determined by hyperparameter tuning,
while the Tanzanian models use a depth of 5. In both cases, we
use ResNet34 [39] as backbone for the convolutional encoder
network and refer to the whole model as a regression U-Net.

The regression U-Net is trained to perform image-to-image
translation. I.e., given Sentinel-1 image patches from the input
domain, the model translates these into prediction maps of
AGB or SV maps for the same area, guided by the imputed
target data. For the Norwegian datasets, we have modified the
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Fig. 5. Illustration of how training and test image patches are extracted from the stack of Sentinel-1 dataset, imputed target dataset, pseudo-target mask
and ground reference mask. The datasets shown are retrieved from the AOI in Tyristrand. However, the process is identical for all Norwegian regions and
representative of how the Tanzanian dataset is prepared. See Section IV-B for details.

first layer of the encoder to enable nine-channel inputs, i.e.
input tensors of dimension 9×64×64. The Tanzanian models
take three-channel inputs with a shape of 3× 64× 64. Addi-
tionally, the segmentation head was removed from the original
U-Net architecture, as our work concerns a regression task
and not a segmentation task. Finally, the softmax activation
function in the final layer was replaced with a ReLU activation
function to ensure non-negative AGB and SV predictions.

The initial layer of the encoder network uses a 7×7 convo-
lution kernel with a stride of 2, followed by a normalisation
layer, ReLU activation and a max-pooling operation. This
implies that the number of feature channels is increased to 64,
while the image dimension is decreased to 16×16 pixels. The
following layer combines residual basic blocks, each using a
3 × 3 convolution, followed by a normalisation layer, ReLU
activation, 3 × 3 convolution and a normalisation layer. The
following encoder layers’ residual blocks additionally employ
down-sampling layers, which double the feature channels and
half the spatial resolution of the image. In addition to the skip
connections previously mentioned, each residual block uses
common short connections [39].

Each block in the extraction part uses upsampling through
nearest-neighbour interpolation and combines feature maps
from the skip connection. It further processes the feature
maps through two identical transformations, each including
3 × 3 convolutional filtering followed by a normalisation
layer, ReLU activation and identity mapping. The upsampling
procedure halves the number of feature maps while doubling
the spatial resolution. We use the Pytorch implementation of
the U-Net model from [41] for our regression U-Net, with the
above-mentioned modifications.

D. Pretraining Stage
We follow the training procedure proposed for ESRGAN,

a super-resolution model trained with multiple objectives in
[20], and divide the training of the U-Net architecture into
two stages: pretraining and fine-tuning.

In the pretraining stage, we train two baseline CNN models:
an L1-based regression U-Net and a cGAN-based generative

U-Net. In the fine-tuning stage, described in Section IV-E, we
continue to train the baseline models with additional losses.

1) Pixel-aware Regression U-Net: We refer to a regression-
type U-Net model optimised on a pixel-wise loss computed
between model-inferred predictions and target predictions as
a pixel-aware regression U-Net (PAR U-Net). In this work, the
PAR U-Net is optimised on the L1 loss similar to [20], i.e.

L1 =
∑

k

||Y − F(X)|| =
∑

k

||Y − Ŷ ||, (4)

where X and Y represent a corresponding pair of input and
target image patches from the training dataset, Ŷ = F(X) is
the image patch predicted by a CNN model F(·), and k is the
total number of image patches.

2) cGAN U-Net: In addition to training the modified U-
Net with a L1 loss, we also train it as a cGAN, like in [12].
Formally conditioned on image patches from the Sentinel-1
input domain, the cGANs generator (G) network is trained to
learn the optimal mapping G : X → Y to generate realistic-
looking image patches from the target domain. The G network
also uses the regression U-Net architecture in Fig. 6.

Simultaneously as the G network aims to improve the gener-
ation task, the adversarially trained discriminator network (D)
is trained to distinguish between real or false pairs of image
patches successfully. A real pair of image patches corresponds
to one Sentinel-1 image patch and the corresponding target
ALS-derived prediction map. On the other hand, a false pair
corresponds to one Sentinel-1 image patch and the correspond-
ing prediction map generated by G. Adversarial training of G
and D results from optimising the minimax loss function of
the so-called Vanilla GAN (VGAN) [42]:

min
G

max
D

LV GAN (D,G) = EX,Y [log D(X,Y )]

+EX [log(1− D(X,G(X)))].
(5)

However, to address stability issues during training of the
VGAN, the least squares GAN (LSGAN) was introduced [43].
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Fig. 6. Above: Regression U-Net architecture used for image-to-image translation. Below: modules of the regression U-Net. Modification of figure in [40].

In a conditional setting, it optimises the objective functions

min
D

LLSGAN (D) =
1

2
EX,Y [(D(X,Y )− b)2]+

1

2
EX [(D(X,G(X))− a)2] ,

(6)

min
G

LLSGAN (G) =
1

2
EX [(D(X,G(X))− c)2], (7)

where X and Y are image patches from the input and the
target domain, a and b are labels for false and real data, while
c denotes a value that G tricks D to believe for false data [43].

Isola et al. [16] suggest to combine a GAN loss with an L1

loss to reduce visual artefacts in the generated images. The
contribution of the L1 loss to the overall objective function is
weighted by a regularisation parameter α, which is determined
by hyperparameter tuning. In [12], the LSGAN model was
found to outperform a VGAN and a Wasserstein GAN [44].
We therefore replace (7) with the following objective function
for the generator of the baseline cGAN U-Net:

LcGAN (G) = LL1 + αLLSGAN (G), α ∈ [0, 1]. (8)

We find an optimal value of α = 0.01, as in [16]. Similar to
[16], we do not change the objective function of D for the
baseline cGAN U-Net.

In [16], different architectures were evaluated for the dis-
criminator D by altering the patch size N of the receptive
fields, ranging from a 1×1 PixelGAN to an N×N PatchGAN.
The D network applies convolutional processing to the pair
of image patches to produce several classification responses,
which are then averaged to determine whether the pair of
image patches is real or false. In a PixelGAN, the discriminator
attempts to classify each 1 × 1 pixel within the image patch
as either real or false. In contrast, for the two PatchGAN

networks, the discriminator tries to differentiate each N ×N
patch of pixels in the image patch as real or false.

E. Fine-tuning Stage
This section describes the loss functions used to fine-tune

the PAR U-Net model and the cGAN U-Net model.
1) Pixel- and frequency-aware regression U-Net: To en-

force the regression U-Net to focus on the alignment of
the image frequency components during training, we propose
to add a frequency-aware loss to the pixel-aware regression
model or the adversarial cGAN model. We choose to employ
the FFT loss from [29], which has shown promising results and
is complementary to existing spatial losses. It is formulated as

LFFT =
1

k

∑(
imag[F(Y )]− imag[F(Ŷ )]

)2

+

1

k

∑(
real[F(Y )]− real[F(Ŷ )]

)2

,

(9)

where F denotes the fast Fourier transform. The LFFT uses
MSE to enforce alignment of the real and imaginary parts of
target and generated image patches in the frequency domain.

The total composite loss function becomes:

Ltot = L1 + αLLSGAN + γLFFT , α, γ ∈ [0, 1]. (10)

A regularisation parameter γ is associated with LFFT to adjust
its influence on Ltot. The α is still associated with LcGAN . All
objective functions we use in the fine-tuning can be formulated
with Ltot, as we can ablate it by setting α = 0 or γ = 0.

The baseline PAR U-Net model is either fine-tuned on the
LcGAN loss (Ltot with γ = 0), the combined L1 and LFFT

loss (Ltot with α = 0), or the Ltot loss. The baseline cGAN
U-Net model is fine-tuned on Ltot. We refer to Appendix A for
an extensive evaluation of model settings and hyperparameters
used in the pretraining and fine-tuning phase.
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F. Masked Loss Computation on Discontinuous Data

Due to the discontinuity of the ALS-derived SV prediction
maps from Norway, there is not a target pixel for every
pixel of the continuous SAR predictor dataset. To remedy
this, we introduce masked loss computation. In this way, the
convolutional processing of the predictor data creates a wall-
to-wall map of model predictions, but in the comparison with
the target dataset, pixels without prediction targets are masked
out and excluded from the learning process. In addition to
masking the pseudo-targets, we want to boost learning for
pixels and patches with true prediction targets, hence reducing
the impact of pseudo-targets relative to true targets.

As shown in Fig. 4, the training dataset contains two
binary masks of the same size as the input and target data
patches: the ground reference mask, Mgr, and the pseudo-
target mask, Mpt, which for the Tanzanian AOI contains only
ones. Masked losses are computed through simple Hadamard
products, i.e. element-wise multiplication, denoted ⊙. For
instance, the masked L1 loss becomes:

LM
1 = L(M⊙ Y ,M⊙ Ŷ )

=
1

N ×N

∑

i,j

(M× |yi,j − ŷi,j |),
(11)

where M can be Mpt or Mgr, yi,j and ŷi,j are pixels of the
target patch Y and the predicted target patch Ŷ, whose size
is N ×N . Similarly, LFFT can be computed on F(M⊙Y)
and F(M⊙ Ŷ). Also the discriminator D can be fed with
masked patches, either the real pair (M⊙X,M⊙Y ) or the
fake pair (M ⊙ X,M ⊙ G(X). With this input to D, the
LLSGAN losses in (6) and (7) generalise to the masked case.

Let loss functions masked with Mpt and Mgr be denoted
LMpt and LMgr , respectively. To weight the true targets and
the pseudo-targets differently, the total loss is decomposed as:

Ltot = δLMgr

tot + LMpt

tot

= δLMgr

1 + LMpt

1 + γ
(
δLMgr

FFT + LMpt

FFT

)

+ α
(
δLMgr

LSGAN + LMpt

LSGAN

)
,

(12)

with α, γ ∈ [0, 1] and true target weighting parameter δ ≫ 1,
found from hyperparameter tuning (see Appendix A). A
masked loss decreases when the mask has many zeros, which
is as intended, since the amount of true or pseudo-targets
contained in a patch should determine its impact. This is
inspired by pseudo-labelling [45], a related semi-supervised
learning algorithm for categorical prediction. It recommends to
balance the losses computed over pseudo-labels (the categori-
cal equivalent to the pseudo-targets in the regression task) and
true labels, as there are generally much more pseudo-labels
than true labels. In our training paradigm, this translates to
boosting the masked loss computed over the true targets.

V. EXPERIMENTAL RESULTS

This section presents experimental results of the prediction
models trained on the Tanzanian and Norwegian datasets. We
provide results on both regional and pan-regional models for
the Norwegian datasets. The pan-regional models have been

trained on all available training datasets from Nordre Land,
Tyristrand and Hole. The regional models were trained on
datasets from either Nordre Land, Tyristrand or Hole, and
evaluated on the test data from the same region it was trained
on. Appendix A provides details on hyperparameter tuning and
settings used during model training.

Results are given both for the pretraining stage, i.e. the
baseline models, and the fine-tuning stage as root mean square
error (RMSE) and mean absolute error (MAE). Models with
a low RMSE and MAE are preferred, as indicated by the
symbol ↓ in the tables. Models have been trained to in two
ways: (i) using all true target imputed with pseudo-targets; (ii)
in cross-validation (CV) mode by rotationally imputing 80%
of the target labels with the available pseudo-targets. For the
latter case, a CV-RMSE is reported as µ (mean) ±σ (standard
deviation). In the evaluation, we report model performance
on the true targets and unseen test dataset. Since the CNN
models work on image patches, model predictions are inferred
by processing the AOI as 64 × 64 Sentinel-1 image patches
with 50% overlap. A wall-to-wall prediction map is created by
mosaicking patches through linear image blending, using the
p-norm with a heuristic value of p=5, as proposed in [12].

A. Results: Tanzania models

The Tanzanian test set consists of 14 patches of pseudo-
target AGB predictions and true targets from the 88 field plots.
Quantitative results in terms of model performance on both
the pseudo-target dataset and on the true targets are given in
Table III. Metrics for the original ALS-derived AGB model,
see [9], [12], and the best sequential cGAN model from [12]
are also provided. Note that the best cGAN model from [12]
was trained only on pseudo-targets, without access to true
targets. We do not report the performance of the original ALS-
derived AGB model and the sequential cGAN model on the
test dataset, or the µ±σ CV-RMSE on the true targets, as these
metrics were not provided in [9], [12]. All units in Table III are
of Mgha−1. Numbers in boldface indicate the best-performing
model per column, while (•) indicates that a model performs
better than the baseline ALS model.

B. Results: Norwegian models

The Norwegian models have all been trained to translate
Sentinel-1 data into ALS-derived SV predictions for commer-
cial forests. Table II shows that data from Nordre Land is
over-represented in the Norwegian dataset. I.e., approximately
80% of the training image patches are from Nordre Land,
while only 6% are from the Hole region. Four types of Nor-
wegian models were developed: one pan-regional model that
represents all three regions and separate regional models for
Nordre Land, Tyristrand and Hole. The pan-regional models
were trained on pooled training data from all regions, but
evaluated separately on each region’s pseudo-target data and
true target data. The three regional models were both trained
and evaluated on data from each separate region.

Since Nordre Land is over-represented in the dataset, we
wish to investigate if the pan-regional models evaluated on
Nordre Land perform similarly to the corresponding regional



11

TABLE III
QUANTITATIVE EVALUATION OF MODELS TRAINED ON THE TANZANIAN DATASET. METRICS OF RMSE AND MAE ARE MEASURED WITH RESPECT TO
THE PSEUDO-TARGET DATA (LEFT SIDE OF THE TABLE) AND GROUND REFERENCE DATA (RIGHT SIDE OF THE TABLE). CV-RMSE IS GIVEN AS MEAN ±

STANDARD DEVIATION. NUMBERS IN BOLDFACE INDICATE THE BEST-PERFORMING MODEL PER COLUMN. ALL UNITS ARE IN Mgha−1

Models RMSE ↓ CV-RMSE ↓ MAE ↓ RMSE ↓ CV-RMSE ↓ MAE ↓
Pretraining: Fine-tuning: w.r.t. pseudo-target dataset w.r.t. ground reference data
Baseline ALSa – – – – 33.39 — 24.61
Sequential cGANb – – – – 39.84 — 31.46
PAR U-Net (L1) – 29.82 29.47 ± 0.15 20.05 34.24 35.64 ± 7.31 25.82
cGAN U-Net (LcGAN ) – 32.02 31.19 ± 0.21 22.46 37.22 38.78 ± 5.9 28.91
PAR U-Net (L1) LcGAN 29.31 29.81 ± 0.51 19.92 32.91• 35.53 ± 4.14 25.53
PAR U-Net (L1) L1 + LFFT 26.10 26.17 ± 0.05 18.11 34.40 36.13 ± 3.09 26.54
PAR U-Net (L1) LcGAN + LFFT 32.75 33.58 ± 0.54 24.21 36.19 37.46 ± 5.36 28.24
cGAN U-Net (LcGAN ) LcGAN + LFFT 29.40 30.73 ± 0.26 20.85 37.65 38.49 ± 7.17 29.18

a The conventional ALS-based statistical regression model proposed in [9]. Metrics are retrieved from [9] and [12].
b The optimal cGAN-based sequential regression models proposed in [12]. Provided metrics are from the same source.
• Indicates that a model performs better than the Baseline ALS model.

TABLE IV
QUANTITATIVE EVALUATION OF PAN-REGIONAL NORWEGIAN MODELS. METRICS FOR EACH REGION ARE PROVIDED WITH RESPECT TO PSEUDO-TARGET
DATA (LEFT SIDE OF THE TABLE) AND GROUND REFERENCE DATA (RIGHT SIDE OF THE TABLE) AS RMSE, MAE AND CV-RMSE, THE LATTER GIVEN AS

MEAN ± STANDARD DEVIATION. NUMBERS IN BOLDFACE INDICATE THE BEST-PERFORMING MODEL PER COLUMN. ALL UNITS ARE IN m3ha−1

Models RMSE ↓ CV-RMSE ↓ MAE ↓ RMSE ↓ CV-RMSE ↓ MAE ↓
Pretraining: Fine-tuning: w.r.t. pseudo-target data w.r.t. ground reference data

Region: Nordre Land
Baseline ALS – – – – 83.54 – 63.29
PAR U-Net (L1) – 68.08 68.67 ± 0.29 31.89 73.72• 92.63 ± 3.74 38.32•
cGAN U-Net (LcGAN ) – 77.66 77.22 ± 3.30 34.31 88.30 120.6 ± 27.35 48.03•

PAR U-Net (L1) LcGAN 68.94 69.17 ± 0.26 32.90 73.93• 79.36± 3.37 32.86•
PAR U-Net (L1) L1 + LFFT 72.38 71.96 ± 0.48 35.32 70.92• 79.66 ± 4.01 33.66•
PAR U-Net (L1) LcGAN + LFFT 71.57 72.84 ± 2.34 34.03 68.72• 99.67 ± 36.23 37.71•
cGAN U-Net (LcGAN ) LcGAN + LFFT 78.48 77.22 ± 1.19 37.46 93.09 92.55 ± 33.16 53.51•

Region: Tyristrand
Baseline ALS – – – – 75.62 – 59.17
PAR U-Net (L1) – 62.31 63.01 ± 1.37 24.83 43.77• 58.96 ± 6.20 28.30•
cGAN U-Net (LcGAN ) – 84.96 79.43 ± 6.44 30.17 76.59 98.98 ± 14.35 55.68•

PAR U-Net (L1) LcGAN 64.22 66.51 ± 0.93 25.77 40.75• 45.78 ± 4.61 28.56•
PAR U-Net (L1) L1 + LFFT 76.86 75.63 ± 1.41 28.94 42.80• 49.17 ± 2.16 28.28•
PAR U-Net (L1) LcGAN + LFFT 65.50 65.99 ± 1.72 26.74 55.04• 74.89 ± 22.09 35.74•
cGAN U-Net (LcGAN ) LcGAN + LFFT 84.84 78.30 ± 5.95 29.88 101.55 98.54 ± 14.62 65.96

Region: Hole
Baseline ALS – – – – 60.94 – 50.06
PAR U-Net (L1) – 113.82 116.18 ± 1.00 57.68 72.47 82.43 ± 7.37 41.39•
cGAN U-Net (LcGAN ) – 136.03 129.57 ± 3.62 65.24 95.61 126.87 ± 12.53 64.37
PAR U-Net (L1) LcGAN 121.14 124.71 ± 1.15 59.90 67.54 72.24± 5.49 37.05•
PAR U-Net (L1) L1 + LFFT 124.13 123.51 ± 0.54 61.09 64.69 69.89 ± 3.13 39.22•
PAR U-Net (L1) LcGAN + LFFT 114.59 116.10 ± 1.78 59.13 68.83 94.44 ± 27.35 43.06•
cGAN U-Net (LcGAN ) LcGAN + LFFT 123.98 125.40 ± 2.39 60.99 94.10 122.90 ± 17.08 59.66
• Indicates that a model performs better than the Baseline ALS model.

models developed for Nordre Land. On the other hand, as
the available data from both Hole and Tyristrand are limited,
we wish to compare the respective regional models to the
pan-regional model. The aim is to identify and quantify any
difference in performance and, if possible, to draw conclusions
about transferability and impacts of dataset size.

As for the Tanzania, different CNN models were evaluated
against each other by comparing their performance on unseen
test patches of pseudo-target data and on true targets of field
measured SV. The number of field plots, i.e. true targets,
in each region, can be found in Table I. The Hole test set
consists of 14 patches of pseudo-target data, Tyristrand of 25
and Nordre Land of 87 test patches, each of 64× 64 pixels.

Quantitative results from the evaluation of the pan-regional
Norwegian models are listed in Table IV while Table V lists

results for the regional models. For the regional models, only
results for the baseline PAR U-Net model and the model
pretrained on L1 and fine-tuned with the LcGAN loss are
given, as these have proven to be robust on both the Tanzanian
data and the pan-regional Norwegian dataset. Metrics obtained
with the original ALS-derived SV model have been computed
for each region by extracting the area-weighted mean of ALS-
derived SV predictions at the location of each field plot. The
CV-RMSE for the original ALS-derived SV models were not
provided to us for this work and are therefore not given in
Table IV or Table V. All metrics in both tables are in units of
m3 ha−1. Boldface numbers in a column of Table III indicate
the model that performs best. A (•) symbol indicates that a
model performs better than the baseline ALS model.
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TABLE V
QUANTITATIVE EVALUATION OF REGIONAL NORWEGIAN MODELS. METRICS FOR EACH REGION ARE PROVIDED WITH RESPECT TO PSEUDO-TARGET

DATA (LEFT SIDE OF THE TABLE) AND GROUND REFERENCE DATA (RIGHT SIDE OF THE TABLE) AS RMSE, MAE AND CV-RMSE, THE LATTER GIVEN AS
MEAN ± STANDARD DEVIATION. NUMBERS IN BOLDFACE INDICATE THE BEST-PERFORMING MODEL PER COLUMN. ALL UNITS ARE OF m3ha−1 .

Models RMSE ↓ CV-RMSE ↓ MAE ↓ RMSE ↓ CV-RMSE ↓ MAE ↓
Pretraining: Fine-tuning: w.r.t. pseudo-target data w.r.t. ground reference data

Region - Nordre Land:
Baseline ALS – – – – 83.54 – 63.29
PAR U-Net (L1) – 69.65 69.48± 0.23 31.89 75.53• 92.36 ± 2.06 36.82•
PAR U-Net (L1) LcGAN 70.45 70.51 ± 0.15 32.94 69.41• 82.40 ± 3.68 32.70•

Region - Tyristrand:
Baseline ALS – – – – 75.62 – 59.17
PAR U-Net (L1) – 66.77 67.96 ± 0.59 27.79 48.04• 63.77± 8.22 32.5•
PAR U-Net (L1) LcGAN 68.80 69.36 ± 0.42 28.96 45.22• 60.73 ± 4.80 27.35•

Region - Hole:
Baseline ALS – – – – 60.94 – 50.06
PAR U-Net (L1) – 136.19 138.82 ± 1.13 71.88 74.60 99.48 ± 10.47 42.55•
PAR U-Net (L1) LcGAN 132.47 132.58 ± 0.76 70.73 65.47 77.38± 5.37 38.22•
• Indicates that a model performs better than the Baseline ALS model.

VI. DISCUSSION

Six new CNN-based regression models (two baseline and
four fine-tuned ones) have been developed to improve earlier
work on the Tanzanian dataset using the semi-supervised
imputation strategy proposed herein. Above all, Table III
shows that the model pretrained on the L1 loss and fine-
tuned on the LcGAN loss performs better than the conventional
statistical ALS-based AGB model proposed in [9], and all
other Tanzanian models on the field data. The CNN model
that most accurately recreates the AGB pseudo-target data is
pretrained on the L1 loss and fine-tuned on the combined L1

and LFFT loss, see Table III. The results on the Tanzanian
dataset show the potential of a two-stage training paradigm and
of frequency-aware training to reduce the impact of spectral
bias. Furthermore, the results in Table III show that the
baseline PAR U-Net model performs better than the baseline
cGAN U-Net model on both the pseudo-target and the true
target data. These findings align with existing knowledge in the
field of image super-resolution: It is disadvantageous to adopt
a purely adversarial training strategy on tasks that require
high reconstruction accuracy in terms of RMSE. In this case,
employing a simpler pixel-wise regression U-Net is better. The
proposed baseline cGAN U-Net model is most similar to the
sequential cGAN model proposed in [12]. Table III shows that
the proposed semi-supervised imputation strategy improves the
CNN models’ performance in AGB prediction.

Several new CNN models are also proposed for SV predic-
tion on the Norwegian datasets. Our approach is to train pan-
regional models by combining data from all three Norwegian
regions, Nordre Land, Tyristrand and Hole, followed by eval-
uation of test and field data from each individual region. The
purpose of the pan-regional models is to develop models that
generalise well to more than one region, which is particularly
advantageous for regions with little training data. As a result,
these models hold the potential for substantial cost-savings if
field work can be reduced during operational inventories.

According to Table IV, the baseline PAR U-Net model
outperforms the other models in accurately recreating the
pseudo-target SV data. We advise to avoid the baseline cGAN
U-Net model or the pan-regional model that was pretrained

on the LcGAN loss, followed by fine-tuning on the combined
LcGAN and LFFT losses, when training CNN models for SV
prediction. As the models are evaluated on RMSE and not
perceptual quality, the results suggest that adversarial training
should be avoided in the initial training phase. As demon-
strated in Table IV, fine-tuning and the composition of losses
generally improve model performance with respect to field
data, with few exceptions. Moreover, all pan-regional fine-
tuned models perform better than the conventional statistical
ALS-based models derived for either Nordre Land, Tyristrand,
or Hole. Based on the CV-RMSE, we recommend using fine-
tuned models that are pretrained on L1 and fine-tuned on
either the combined L1 and LFFT loss or on LcGAN . For
instance, the model fine-tuned on the combined L1 and LFFT

loss performs best on the Hole field data, whereas the model
fine-tuned on LcGAN performs best on Tyristrand field data.

In addition to the pan-regional models trained on the whole
Norwegian dataset, regional models were developed for this
work. Unlike the pan-regional models, these were only trained
and evaluated on a specific region. Table II shows a significant
difference in the amount of available training data among the
regions. The Hole region has the least data, followed by Tyris-
trand, while Nordre Land has the most data. Consequently, it
implies that the regional Nordre Land model has been trained
on almost the same training data as the pan-regional model.
For Hole (and Tyristrand), the regional models are trained
on only a fraction of the training data available for the pan-
regional model, which could impact their relative performance.
Based on the discussion above, we train the following two
models: a regional PAR U-Net model and a regional model
pretrained on L1 and fine-tuned on the LcGAN loss. The fine-
tuned model was chosen among the other three, as it has
proven to be robust on both the Tanzanian data and the pan-
regional Norwegian dataset.

In general, comparing the results of the pan-regional models
in Table IV to the regional models in Table V, we observe
that the pan-regional Norwegian models perform better than
all regional models with one exception. The regional Nordre
Land model pretrained on the L1 objective and fine-tuned on
the LcGAN objective performs better than the pan-regional
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model on the corresponding regional model on field data.
These results show the potential of training regional models
that utilises all available data from nearby regions.

To our knowledge, it is the first time that the LFFT loss
has been evaluated outside the natural image domain, e.g. on
remote sensing images. Our results from both the Tanzanian
and Norwegian models show that the simple LFFT objective
function efficiently reduces the impact of spectral bias and
thereby improves the performance of the CNN model.

VII. CONCLUSION

Through the use of a semi-supervised imputation strategy,
we demonstrate the ability of contextual generative CNN
models to accurately map Sentinel-1 C-band data to target
data consisting of spatially disjoint polygons of ALS-derived
prediction maps. The generalisation ability of our modelling
approach was evaluated for AGB prediction in the Tanzanian
miombo woodlands and for SV prediction in three managed
boreal forests in Norway. Our results show that the models
developed using the imputation strategy achieve state-of-the-
art performance compared to previous studies, suggesting
that the contextual C-band SAR-based models outperform
conventional statistical ALS-based models in accurately pre-
dicting the target labels of ground reference data. Further-
more, we demonstrate that a two-phased learning strategy,
which includes pretraining with a pure pixel-wise regression
U-Net followed by either a regression cGAN model or a
pixel- and frequency-aware regression U-Net in the fine-tuning
phase, improves model performance. We argue that pixel-
aware pretraining enforces the model to focus on pixel-to-pixel
relationships before learning general relationships.
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APPENDIX

A. Hyperparameter tuning for model selection

Extensive hyperparameter tuning was performed on the
training and validation datasets for the Tanzanian and Nor-
wegian models. Experiment tracking with Weights & Biases
sweeps [46] was used, employing grid search during both
pretraining and fine-tuning phases. Unlike most studies in
forestry deep learning research [14], the Adam optimiser was
used for all proposed models. Hyperparameter tuning focused
on finding optimal batch size (BS), β1 value for the Adam
optimiser, learning rate (lr), encoder network, encoder/decoder
depth, discriminator network, cGAN loss, and number of
epochs. Three discriminator networks were evaluated: 1 × 1
PixelGAN, 16 × 16 PatchGAN, and 34 × 34 PatchGAN.
The two PatchGAN networks were created following [12]
by modifying discriminator depth to achieve receptive field
sizes of 16 × 16 or 34 × 34. Hyperparameter tuning also
evaluated normalisation layers, two different weight initial-
isation methods, and selection of objective functions for
the pretraining and fine-tuning stages. 5-fold cross-validation
(CV) was used for hyperparameter tuning of the Tanzanian
and Norwegian models. For Norwegian models, training and
validation datasets used for CV consisted of image patches
from all three Norwegian regions. Superpatches not used
for test sets were divided into training and validation splits
with 80% for training and 20% for testing in 5-fold CV.
Superpatches were further divided into training (or validation)
image patches of 64×64 pixels with 50% overlap allowed for
training data. Data augmentation with flipping and rotation
was applied to increase training data. Validation loss, based
on mean and median RMSE, was used to identify optimal
hyperparameters and model settings for both the Tanzanian and
Norwegian models. Table VI lists evaluated hyperparameters
and search ranges for the Tanzanian and Norwegian models,
where normalisation ”None” refers to no normalisation layers.

1) Summary of findings from hyperparameter tuning: We
observed that the three ResNet networks used as convolutional
encoder had similar performance, but ResNet34 was the most
accurate and was therefore selected. We found that cGAN-
based models optimised on the LcGAN objective were more
accurate than those optimised on the VGAN objective, and
the LcGAN loss was therefore selected. The evaluation of
different D networks showed that the Tanzanian adversarial
models preferred the PixelGAN, while the 16×16 PatchGAN
was preferred by the Norwegian adversarial models.

We also investigated the impact of the network’s normal-
isation layers on the model performance. Previous work has
argued that using BN in the network might harm the inherent
range flexibility of the features [20], [47], [48]. They suggest to
remove the BN layers from the model architecture to increase

performance and reduce computational complexity for recon-
struction tasks that optimise e.g. the RMSE. Motivated by [20],
[47], [48], we compared batch normalisation (BN) layers to
instance normalisation (IN) layers and no normalisation. Our
experiments did not confirm that normalisation, and BN in
particular, should be avoided. On the contrary, most models
preferred BN or IN.

The potential of transfer learning was investigated by ini-
tialising the Tanzanian or Norwegian networks with or with-
out ImageNet weights. Use of pretrained ImageNet weights
requires that the input image patches from Sentinel-1 must
be scaled to the range [0, 1] and normalised with ImageNet
mean and standard deviation. This implies that the Sentinel-1
data no longer are in dB form. However, experiments showed
that randomly initialised weights gave better performance than
pretrained ImageNet weights. This confirms the claims from
[12] that avoiding normalisation and keeping the input data
on dB form resulted in improved prediction of ALS-derived
AGB maps. Thus, no models in this study employ pretrained
ImageNet weights.

In [16], the regularisation weight α was applied on the
L1 part of the generator loss function and evaluated for
α ∈ [0, 100]. As explained in Section IV-D2 and shown in Eq.
(8), we apply α on LLSGANand combine it with L1, to form
LcGAN . We evaluated α = [0.01, 0.1, 1]. In accordance with
[16], we found that models trained with α = 0.01 performed
best.

Initial experiments showed that the L1 loss magnitude
varies around 3 × 101, while the LGAN loss approximates
1×100. In contrast, the LFFT loss assumes magnitudes around
3 × 108. To balance the impact of the LFFT loss with the
other loss functions, we evaluated the following range for its
regularisation weight: γ = [1e-8, 3e-8, 5e-8, 7e-8, 9e-8, 1e-7].
Our experiments show that γ = 9e-8 or 1e-7 is best.

The true target weight δ, used in Eq. (12), must be large
to compensate for the strong imbalance between the numbers
of true targets and pseudo-targets. We experimented with δ=
[100, 200, 300, 400, 500] for the Tanzanian models and δ =
[200, 300, 400, 500, 600, 700] for the Norwegian models.

The selected hyperparameters for the models pretrained on
the Tanzania dataset and the Norway dataset are shown in
Table VII. The resulting hyperparameters for the fine-tuned
Tanzania models and the fine-tunes pan-regional Norwegian
models are shown in Table VIII. The hyperparameters selected
for the regional Norwegian models are similar to those of
their pan-regional counterparts. The exceptions are the regional
PAR U-Net baseline model, which was trained for 250 epochs
instead of 200, and the regional model pretrained on the L1

loss and fine-tuned on the LcGAN loss, which was fine-tuned
for 250 epochs instead of 100. The tables report the number
of epochs as Ep+Ef , denoting Ep epochs of pretraining and
Ef in fine-tuning.
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TABLE VI
SEARCH RANGE FOR HYPERPARAMETERS AND MODEL SETTINGS USED IN TANZANIAN AND NORWEGIAN MODELS.

Hyperparameters Tanzanian dataset Norwegian dataset
Batch size (BS) [2, 4, 6] [8, 32, 64, 128]
β1 (Adam optimiser) [0.4, 0.5, 0.6, 0.7, 0.8, 0.9] [0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
Learning rate (lr) [1e-2, 1e-3, 2e-3, 1e-4, 2e-4, 2e-5, 1e-5] [1e-2, 1e-3, 2e-3, 1e-4, 2e-4, 2e-5, 1e-5]
Encoder Network [ResNet18, ResNet34, ResNet50] [ResNet18, ResNet34, ResNet50]
Encoder, Decoder depth [4, 5] [4, 5]
Discriminator network [PixelGAN, PatchGAN(16), PatchGAN(34)] [PixelGAN, PatchGAN(16), PatchGAN(34)]
cGAN objective [VGAN, LSGAN] [VGAN, LSGAN]
Normalisation [Instance, Batch, None] [Instance, Batch, None]
α [0.01, 0.1, 1] [0.01, 0.1, 1]
γ [1e-8, 3e-8, 5e-8, 7e-8, 9e-8, 1e-7] [1e-8, 3e-8, 5e-8, 7e-8, 9e-8, 1e-7]
True target weight δ [100, 200, 300, 400, 500] [200, 300, 400, 500, 600, 700]

TABLE VII
SELECTED HYPERPARAMETERS AND MODEL SETTINGS FOR PRETRAINED MODELS.

Hyperparameters Tanzanian models Norwegian models
PAR U-Net cGAN U-NET PAR U-Net cGAN U-NET

Batch size (BS) 2 2 8 8
β1 (Adam) 0.7 0.7 0.8 0.8
Learning rate (lr) 0.0001 0.001 0.0001 0.001
Encoder Network ResNet34 ResNet34 ResNet34 ResNet34
Encoder/decoder depth 5 5 4 4
Discriminator network — PixelGAN — PatchGAN(16)
Normalisation None Instance Instance Batch
α 0 0.01 0 0.001
True target weight δ 500 300 200 400
Epochs 150 150 200 200

TABLE VIII
SELECTED HYPERPARAMETERS AND MODEL SETTINGS FOR FINE-TUNED MODELS.

Fine-tuned Tanzanian models Fine-tuned pan-regional Norwegian modelsXXXXXXXXXXXHyperpar.

Pretraining:
Fine-tuning: PAR U-Net

LcGAN

PAR U-Net
L1+LFFT

PAR U-Net
LcGAN+LFFT

cGAN U-Net
LcGAN+LFFT

PAR U-Net
LcGAN

PAR U-Net
L1+LFFT

PAR U-Net
LcGAN+LFFT

cGAN U-Net
LcGAN+LFFT

Batch size (BS) 2 2 2 2 8 8 8 8
β1 (Adam) 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8
Learning rate (lr) 0.0001 0.0001 0.0001 0.001 0.0001 0.0001 0.0001 0.001
Encoder Network ResNet34 ResNet34 ResNet34 ResNet34 ResNet34 ResNet34 ResNet34 ResNet34
Encoder/decoder depth 5 5 5 5 4 4 4 4
Discriminator network PixelGAN — PixelGAN PixelGAN PatchGAN(16) — PatchGAN(16) PatchGAN(16)
Normalisation Instance None Instance Instance Instance Instance Instance Batch
α 0.01 0 0.01 0.01 0.01 0 0.01 0.01
γ 0 9e-8 1e-7 1e-7 0 9e-8 1e-7 1e-7
True target weight δ 400 200 500 400 700 700 200 700
Epochs 150+250 150+100 150+50 150+100 300+100 300+100 200+150 300+50
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