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A B S T R A C T   

This article contributes to the additive manufacturing-based production planning literature by developing a 
Mixed-Integer Linear Programming (MILP) formulation for the Identical Parallel 3D-Printing Machines Sched
uling Problem considering batching, multiple build platforms of restricted sizes, and sequence-independent setup 
times. Besides, a customized metaheuristic, named the Tailored Iterated Greedy (TIG) Algorithm is developed to 
solve the new optimization problem. TIG’s performance is evaluated through extensive numerical analysis and 
using a new testbed. It is shown that the customized computational mechanisms improve the optimization 
performance; statistical analysis is supportive of the significance of the resulting improvements. The developed 
mathematical model and optimization algorithm can be considered the basis for future developments in the 
optimization literature of additive manufacturing.   

1. Introduction 

With the recent advances in additive manufacturing, 3D printers are 
now used in direct manufacturing with a broad prospect as a major mode 
of future manufacturing [1–3]. Additive manufacturing is evolving 
around product and supply chain impacts. It facilitates the production of 
components with complex geometries that are hard to produce using 
subtractive methods [4]. Besides, 3D printing technology enhances 
supply chain speed, quality, flexibility, and reduces logistics costs [5–7]. 
High investment costs and limited know-how are recognized as the 
major barriers to the wider adoption of 3D printing technology for mass 
customization, which calls for further development in the academic 
literature [8,9]. 

Additive manufacturing, layer manufacturing, and rapid prototyping 
are used interchangeably in advanced manufacturing; although they 
share some similarities (i.e., rapid prototyping refers to building the 
scale model of a digital drawing, and layer manufacturing refers to the 
layer-by-layer addition of feedstock to build the physical product), these 
terms refer to distinct production approaches. Layer manufacturing is a 
broad term that covers both additive and subtractive manufacturing 
techniques, while rapid prototyping is a subset of additive 
manufacturing that focuses on the rapid production of prototypes. Ad
ditive manufacturing, on the other hand, encompasses all processes 

involving layer-by-layer addition of material to produce the final item. 
Additive manufacturing is generally classified into material extru

sion, material jetting, binder jetting, vat photopolymerization, sheet 
object lamination, Direct-energy Deposition (DeD), and Powder-bed 
Fusion (PbF) [10]. Notably, DeD and PbF are the best alternatives for 
producing metal parts and a viable method to replace the traditional 
methods in many industries, from aerospace, automobile, oil and gas, to 
electronics, and construction. Irrespective of the type, additive 
manufacturing is different from subtractive manufacturing in that it 
makes 3-dimensional objects through the layer-by-layer addition of 
compound material [11]. In traditional, subtractive manufacturing, 
complementary processes like forging, grinding, drilling, and assembly 
should follow the carving/cutting process, hence, several machines are 
required to complete the production process. 3D printers can handle 
high-complexity products more efficiently in a one-step procedure. 3D 
printing factories are often composed of different printers, making it 
necessary to employ effective production planning and control tools for 
effective operations management. Scheduling of 3D printing machines is 
different from that of subtractive manufacturing in that several parts/
geometries may be involved in a single production process where a 
batching process is required to assign heterogeneous parts into the 
machine’s build platform. The technical requirements of additive 
manufacturing make 3D printing scheduling more complex than that of 
traditional manufacturing. 
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The 3D printing machine scheduling literature is still limited [12]. 
For a detailed review of the existing papers, we refer interested readers 
to the recent reviews by Dall’Agnol et al. [13] and De Antón et al. [14]. 
The most relevant papers extended the Identical Parallel 3D-Printing 
Machines Scheduling Problem (IP3DMSP) formulation by including 
general scheduling constraints, like the due date [15] and setup time 
constraints [16], or by adding additional decision variables, like order 
acceptance [17], routing [18,19], and assembly-related decisions [20]. 
Preparatory controls, like the layout and orientation of parts as well as 
the size of the machine’s build platform, are process-specific consider
ations for the adoption of 3D printing machines from a manufacturing 
system perspective [21]. That is, the performance of 3D printing activ
ities depends heavily on the part orientation and the machine’s build 
volume [22]; very limited papers addressed such technical needs in 
production planning and scheduling literature [23]. The process-specific 
characteristics of additive manufacturing operations call for de
velopments in both mathematical formulation and solution algorithms 
[24]. Effective metaheuristics should be developed for solving additive 
manufacturing scheduling problems considering parallel machines, 
which is the practical setting in the third-party 3D printing service 
providers. 

A two-fold contribution is sought to contribute to this emerging 
production planning topic. (1) IP3DMSP with multiple build platforms 
of restricted sizes is formulated to address one of the most prevalent 
technical requirements of additive manufacturing. (2) customized 
computational mechanisms are introduced to develop the Tailored 
Iterated Greedy (TIG) algorithm for the effective optimization of the 
additive manufacturing scheduling problems. 

The rest of this article is organized as follows. Section 2 provides a 
review of the most relevant research works to support the identified gap. 
Section 3 elaborates on the developed methods, i.e., a new mathematical 
formulation and an effective metaheuristic for solving IP3DMSPs to 
contribute to this emerging topic of optimization and additive 
manufacturing. Section 4 presents a numerical analysis to investigate 
the effectiveness of the developed algorithm. Finally, concluding re
marks and suggestions for future research directions are provided in 
Section 5. 

2. Literature review 

3D printing has entered the growth stage of its development with its 
use cases reaching beyond prototyping to end-part manufacturing in the 
production sector and industries like energy, construction, pharmaceu
tical, aerospace, and aviation. Scheduling methods are essential to 
facilitate the development of additive manufacturing as a disruptive 

production technology. Production scheduling in additive 
manufacturing is more complex than traditional, subtractive 
manufacturing in that a single production run accommodates several 
parts/geometries, constituting heterogeneous jobs. Besides, the sched
uling problem requires a batch processing mechanism, and the parts 
assigned to a batch should be within the allowed machine’s build plat
form dimensions. In this situation, the way the jobs are grouped (i.e., 
packed) has a significant impact on the usage of the machine’s build 
volume and the operational cost. 

The first group of additive manufacturing-based production studies 
is focused on packing issues. Wu et al. [25] and Zhang et al. [26] 
investigated the best part positioning strategy on the machine’s build 
platform to enhance the productivity of the 3D printer while processing 
multiple parts at the same time. Freens et al. [27] converted the 3D 
printer production planning problem into a three-dimensional packing 
problem to increase productivity and maximize the number of products 
that the printer can produce at once. Kim et al. [28] developed a 
mathematical model to select the best product printing alternative and 
allocate the parts to the 3D printer, minimizing the completion using a 
Genetic Algorithm. Araújo et al. [29] offered a taxonomy analysis for the 
issue of irregular build volume packing in additive manufacturing. Leao 
et al. [30] investigated the same topic from a mathematical model 
perspective. Romanova et al. [31] adopted an ellipse layout optimiza
tion method for improving build volume packing in additive 
manufacturing. Improving production quality, flexibility, and cycle 
times requires operations management investigations [32]. 

Recently, Oh et al. [12] proposed a taxonomy analysis for additive 
manufacturing-based scheduling problems considering parts, con
structs, and 3D printing machines. On this basis, Nesting for Additive 
Manufacturing (NfAM), Scheduling for Additive Manufacturing (SfAM), 
and NSfAM as a combination of NfAM and SfAM are recognized. The 
latter group constitutes an integrated view of batching and operations 
scheduling, which tackles the scheduling problem while considering the 
size of the bottom plate in the 3D printing machines. Overall, NSfAM 
problems can be categorized considering the number of parts, the 
number of build platforms, and the number of identical/non-identical 
machines. The present paper investigates the problem of multiple 
parts, multiple builds, and identical parallel 3D printing machines (M / 
M / iM), which reflects real-world operations in third-party 3D printing 
service bureaus (3D print farms). 

IP3DMSP was the first time formulated by Li et al. [33] to minimize 
the average operational cost per unit of product. Later papers contrib
uted to this emerging scheduling extension by developing new mathe
matical extensions and solution algorithms. Ransikarbum et al. [34] and 
Rohaninejad et al. [35] developed multi-objective optimization 

Notations 

p part number p ∈ {0, 1, ..., n}, where 0 represents the virtual 
part. 

b batch number b ∈ {0, 1, ..., k}, with 0 representing the 
virtual batch. 

i machine tag, i ∈ {1, 2, ..., m}. 
N the set of parts (jobs). 
K the set of batches. 
AM the set of 3D printing machines. 
n the total number of parts (jobs). 
k the number of batches. 
m the number of machines. 
jb the number of parts in batch b. 
ap the area of part p in square millimeters. 
vp the volume of part p in cubic millimeters. 
hp the height of part p in millimeters. 

l layer thickness. 
s printing speed. 
d printing distance. 
ST sequence-independent setup (e.g., preparation/cleaning) 

time before extrusion. 
RC required coating time. 
Hb maximum height of parts in batch b. 
Vb maximum volume of parts in batch b. 
A the allowed printing area of the bottom plate in the 

machine. 
PTb processing time of batch b. 
Xp,ib a binary variable; = 1 if part p from batch b is assigned to 

machine i, and = 0, otherwise. 
CTib integer variable to specify the completion time of 

processing batch b on machine i. 
Cmax the maximum completion time (makespan).  
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algorithms to solve the IP3DMSP (considering operational cost, load 
balance among printers, total tardiness, and the number of incomplete 
parts) and parallel selective laser melting machines (considering 
makespan and the total tardiness penalty), respectively. 

Oh et al. [23] developed a novel heuristic for optimizing the de
cisions on the machine’s build platform orientation and 
two-dimensional packing in IP3DMSP considering cycle time as the 
optimization criterion. Oh et al. [36] developed a three-step optimiza
tion model; (1) determining the direction of the part construction (2) 
placing it in a two-dimensional manner in a limited 3D printer platform 
(3) assigning them on multiple machines. They developed a Genetic 
Algorithm to minimize the printing time by grouping the parts of similar 
height, enhancing the utilization rate of the base plate. Chergui et al. 
[15] included due date constraints to minimize the total tardiness in 
IP3DMSP and developed a heuristic algorithm to solve small- to 
medium-sized instances. Dvorak et al. [37] considered a similar problem 
while considering bin packing decisions in the main problem consid
ering flowtime as the optimization criterion. Kim [16] extended the 
IP3DMSP by including setup time constraints and found new bounds 
considering small- to medium-sized instances. 

More recently, Kucukkoc [38] developed different scheduling for
mulations for the additive manufacturing scheduling problem consid
ering a single machine, identical parallel machines, and non-identical 
parallel machine settings. They used commercial software with an exact 
solution algorithm to solve very small instances considering the 
maximum completion time. Kapadia et al. [39] explored the effect of 
scheduling policies on the performance of facilities with multiple 3D 
printing machines. Li et al. [17] integrated the order acceptance de
cisions into the Parallel 3D-Printing Machines Scheduling Problem 
considering non-identical printers. 

From the most recent papers, Yılmaz [19] extended the IP3DMSP to 
work in a supply chain-like setting; they developed a new formulation 
and a best-fit heuristic-based solution approach to solve the problem for 
small- to medium-sized instances. Other papers extended the IP3DMSP 
by including post-production decision variables, like routing [18] and 
assembly operations [20]. Hu et al. [40] developed a mixed integer 
programming formulation to include practical constraints of 
two-dimensional packing and unequal part release times for the sched
uling of unrelated 3D printing machines. Oh and Cho [41] developed an 
optimization approach for scheduling the additive manufacturing op
erations based on flow-shop while including post-processing operations, 
like trimming, coloring, and assembly processes. These papers did not 
consider the physical limitations of the build platforms. Kim and Kim 
[42] addressed the scheduling of non-identical parallel 3D printing 
machines while accounting for build capacity. To the best of the authors’ 
knowledge, the IP3DMSP with the batching feature, build constraints, 
and sequence-independent setup times have not been developed; a gap 
that motivates this paper. 

3. Methods 

3.1. Preliminaries 

Additive manufacturing and more particularly 3D printing technol
ogy was introduced in the late 1980s for rapid prototyping and got 
patented by the development of the Stereo Lithography Apparatus a few 
years later. The first 3D printing machine, however, found its way to the 
market only in 2007. As one of the prevalent variants, 3D printing ma
chines with metal lasers, the so-called selective laser sintering that is a 
PbF technology is considered in this paper. 3D printing machines with 
selective laser sintering use the input from digital design documents to 
first make a two-dimensional model, apply polymer powder, and high- 
power laser beams to sinter it into a rough solid structure. The stacked 
layers make complex patterns to facilitate internal flow channels and the 
foundation for the product. 

Scheduling of 3D printing and subtractive machines are different in 

that heterogeneous jobs require to be grouped into the machines’ build 
platform. The IP3DMSP with multiple build platforms of restricted sizes 
is hereafter denoted by Pm|batch{3DP}|Cmax, which indicates a pro
duction environment with parallel machines, batching feature, and the 
maximum completion time (makespan) as the optimization criterion. To 
formally define the problem, let’s assume n parts that should be pro
cessed in k batches using m parallel 3D printing machines. The build 
platform of a 3D printer is characterized by a set of physical constraints, 
i.e. the limited allowed area of the bottom plate, height, and operational 
volume. This constraint is specific to 3D printing machines and should 
be included in developing a more realistic mathematical formulation. 
Given Jb parts (jobs) in batch b, every part is associated with the area, 
volume, and height parameters, which may restrict it from being 
assigned to certain build platforms. The parts’ shapes are disregarded as 
their tray areas are solely determined by the rectangular shape of the 
projected areas. Building orientations of the parts are not factored in as 
they are intentionally designed with a predetermined build orientation 
with a focus on quality maximization. 3D printing processing time is a 
function of the printing speed, distance, and layer thickness. Sequence- 
independent setup and coating times are also required in addition to the 
processing time before scheduling the 3D printing operations. It is 
assumed that there will be no interruptions, i.e., maintenance and 
downtime when the process begins. Once processing a batch begins, the 
parts cannot be reassigned and the processing time and completion time 
of the parts are assumed identical. Finally, the operational parameters 
are assumed to be deterministic. The objective is to maximize efficiency, 
which is done by maximizing the number of parts processed at the same 
time, and to minimize machine operation time, which is reflected by 
minimizing the maximum completion time. 

3.2. Mathematical formulation 

The following indices, sets, and decision variables are defined to 
formulate the Pm|batch{3DP}|Cmax problem. 

Given the above notations and considering that the 3D printing 
machine uses laser metal laminate procedure with PbF, the IP3DMSP 
with multiple build platforms of restricted dimensions is formulated as a 
Mixed-Integer Linear Programming (MILP) model as follows. 

Minimize Z = Cmax (1)  

Subject to: 

∑m

i=1

∑k

b=1
Xp,ib = 1; p = 1, 2, ..., n (2)  

∑n

p=1
apXp,ib ≤ A; i = 1, 2, ...,m; b = 1, 2, ..., k (3)  

∑n

p=1
Xp,i(b+1) ≤ M⋅

∑n

p=1
Xp,ib; i = 1, 2, ...,m; b = 1, 2, ..., k − 1 (4)  

PTib = ST⋅
∑n

p=1
Xp,ib +

Vb

l⋅s⋅d
+

RC⋅Hb

l
; b = 1, 2, ..., k; i = 1, 2, ...,m (5)  

CTi(b− 1) + PTib ≤ CTib (6)  

Cmax ≥ CTib; i = 1, 2, ...,m; b = 1, 2, ..., k (7)  

CTi,0 = 0∀i ∈ {1, ...,m} (8)  

Xp,ib ∈ {0, 1};p = 1, 2, ..., n; i = 1, 2, ...,m; b = 1, 2, ..., k  

CTib ≥ 0; i = 1, 2, ...,m; b = 1, 2, ..., k (9) 

The objective function in Eq. (1) specifies the minimization of the 
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maximum completion time, makespan, which is subject to the following 
constraints. Eq. (2) ensures that every part is assigned to one and only 
one batch for processing. Constraint (3) restricts the printing machines 
from accepting a batch of parts with a total area larger than the allowed 
dimensions. Given M as a very large positive number, Constraint (4) is 
defined for batch processing. On this basis, a batch can be processed on a 
certain machine only after the printing process of the preceding batch 
has been completed. Constraint (5) associate the allocated parts with a 
processing time that includes the printing time of the batch and the 
setup time. Notably, the processing time is a function of the printing 
speed and dimensions. According to Constraint (6), the job orders on the 
same printing machine follow the batch order. On this basis, only one 
batch can be processed at a time and the completion time of batch b = 1, 
2, ..., k is larger than the completion time of batch b − 1 plus the pro
cessing time of batch b on the same machine. According to Constraint 
(7), the completion time of the last batch specifies the total completion 
time. The auxiliary job’s completion time is equal to zero in Equations 
(8). Finally, the integrality constraints in the last part of the formulation 
specify the type and range of the decision variables. 

The developed MILP formulation is relatively compact, and exact 
commercial solvers can tackle it for small instances. To solve large-sized 
problems, however, various solution methods, such as constructive 
heuristics, metaheuristics, and approximation methods, should be 
considered. Metaheuristics excel in tackling complex optimization 
problems and offer an attractive trade-off between solution quality as 
well as computational efficiency. Besides, their ability to handle diverse 
problem domains and flexibility in exploring large solution spaces 
makes them a valuable tool in operations research and engineering 
software. The next section introduces a customized metaheuristic for 
solving IP3DMSPs. 

3.3. Solution algorithm 

The Iterated Greedy (IG) algorithms [43] have been successfully 
applied to solve complex scheduling problems in various forms of 
traditional (i.e., subtractive) manufacturing, from distributed flowshops 
[44,45], blocking flowshops [46], and no-wait jobshops scheduling [47] 
to the basic additive manufacturing scheduling problems [48,49]. The 
general pseudocode of an IG algorithm fortified with a local search 
mechanism is provided in Fig. 1. Considering the different nature of the 
scheduling problems in additive manufacturing, some of the computa
tional mechanisms should be customized to improve the effectiveness of 
the metaheuristic in the application area. In addition to the modifica
tions made in the initialization and destruction/construction proced
ures, three novel local search approaches are employed to improve the 
exploitation power of the search algorithm. This section provides a 
detailed explanation of the computational elements of the TIG 
algorithm. 

3.3.1. Solution initialization and encoding 
A vector is used to represent solutions in all benchmark algorithms. 

In this method, the vector constitutes a batch sequence, α, and the 
sequence of the parts inside the batches, β, to be represented by π =
[α|β]. In this representation method, delimiter 0 is used to separate the 
batches/parts. Given m 3D printing machines and n parts, there will be a 
total of m − 1 0 s separating the batches in the first part of the vector 
while the number of batches determines how many delimiters exist in 
the second part, which is k − 1. That is, a total of m + k − 1 and m + k − 1 
elements in the first and second parts of the solution vector, respectively. 
Taking the illustrative example in Table 1 as an example, there are 20 
parts and two 3D printers. 

The solution in the illustrative example shows that batches 1 and 4 
are processed on machine 1, and batch 1 contains parts 16, 3, 1, 18, 19, 
7, 5, and 10; batch 2 includes parts 20, 9, and 2. It is worthwhile noting 
that the contents provided in section β of the vector, i.e. the parts order 
do not affect the printing time of batch orders, because it is the char
acteristic of the 3D printing machine and the batch size that determines 
the processing speed. The completion time of all parts inside a batch is 
equal to that of the batch. 

Given the above encoding mechanism, the following procedure is 
considered for initializing solutions. The parts are first sorted in a 
descending order considering their height. Second, the part with the 
largest height parameter is assigned to the first batch. Given the limi
tation of the 3D printing machine, i.e. the size of the bottom plate 
(machine’s build volume), assigning a part into a batch should take into 
account the remaining capacity of the plate; a new part can be added if 
the unoccupied area of the machine’s build platform can accommodate 
it; otherwise, the new part is assigned to a new batch. This procedure 
continues until all parts are assigned to the batches. Since the processing 
time of a batch is impacted by the maximum height of parts in that 
batch, the rationale behind this part-grouping mechanism is to group 
parts with similar heights into a batch, aiming to reduce the total pro
cessing time of batches and, thereby, reducing the makespan of the 
initial solution. This initialization method is preferred over random 
initialization because it minimizes the number of build platforms, re
duces the total processing time and the makespan, and ensures the 
feasibility of the initial solutions. 

Third, once the batch processing orders are completed, they are 

Fig. 1. Pseudocode of the basic Iterated Greedy.  

Table 1 
Specifications of the illustrative example.  

Batch Parts Height 
(mm) 

Area 
(mm2) 

Volume 
(mm3) 

Processing time 
(Mins) 

1 16 37 393 2859  
3 36 42 263 
1 34 629 15,293 
18 30 302 5944 
19 30 560 3517 
7 25 185 3890 
5 16 201 3176 
10 11 165 1544 

Max. height: 37 2477 36,486 91.16 
2 6 28 882 10,057 

13 27 766 18,871 
17 22 846 1503 

Max. height: 28 2494 30,431 71.14 
3 11 24 1197 10,881 

4 18 486 8513 
12 14 255 87 
15 9 370 1262 

Max. height: 24 2308 20,743 59.91 
4 20 18 974 3759 

9 13 711 2895 
2 11 679 5278 

Max. height: 18 2364 11,932 44.98 
5 8 10 962 3076  

14 6 571 1573 
Max. height: 10 1533 4649 26.55  
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Fig. 2. Schematic representation of the destruction procedure.  

Fig. 3. An illustrative example showing the construction procedure of TIG.  
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assigned to the machines considering the dispatching rule of Longest 
Processing Time (LPT). That is, the batches are sorted considering the 
printing time from large to small where the batch with the longest 
printing time is assigned first to one of the identical machines. Finally, 
the completion time of the machines determines where the next batches 
are assigned, i.e., the machine with the smallest completion time is 
considered for the next assignment. 

3.3.2. Destruction mechanism 
This paper adjusts the destruction method developed by Ruiz et al. 

[50] to improve it for parallel machines scheduling. For this purpose, the 
destruction count accepts a number between 1 to the smallest batch 
processing order in all machines. When d = 1, the batch order on the 
machine with the longest completion time is considered to extract the 
batch associated with the longest processing time. In the illustrative 
example shown in Fig. 2, machine 2 has the longest completion time and 
the printing time of batch 4 is the largest, hence, batch 4 assigned to 
machine 2 is extracted. Given a destruction count of d = 2, the batch 
with the longest processing time from the machine with the longest 
completion time is selected first. Then, the second batch is selected 
randomly considering all the machines. Considering a destruction count 
larger than 2, d > 2, the longest ⌈d/2⌉ batches are extracted from the 
machine with the largest completion time and d − ⌈d/2⌉/(m − 1) 
batches are randomly selected from every other machine. Assuming d =
3 in the illustrative example with three machines, ⌈3/2⌉ = 2 batches 
from the machine with the largest completion time, i.e. m2, as well as 3 
− ⌈3/2⌉/(3 − 1) = 1 random batch from the remaining machines, i.e. m1 
and m3 are selected. 

3.3.3. Construction mechanism 
The construction phase consists of inserting the extracted batches 

into the partial solutions resulting from the destruction procedure, 
named internal insertion. For this purpose, the extracted batches are first 
sorted considering their processing time in a descending order to set an 
order for the re-insertion procedure. The machines’ completion times 
are then calculated to select the one with the smallest completion time 
for the first insertion. Considering the optimization goal of minimizing 
the maximum completion time, the outcome will be the same regardless 
of where in the list of the selected machine the new batch is inserted; 
hence, the new batches are always inserted to the end of the list. The 
construction procedure continues until all the extracted batches are 
reinserted. An illustrative example is provided in Fig. 3 to clarify this 
procedure. 

With a destruction count equal to d = 3, the extracted batches are 
first sorted to 4, 14, 6, and 5 considering the processing times of 12, 10, 

Fig. 4. Schematic representation of the local search algorithm.  

Fig. 5. Pseudocode of the local search mechanism.  
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8, and 2. Given the machines’ completion time, machine 2 has the 
minimum completion time of 14, hence, batch 4 is inserted at the end of 
the associated list to machine 2 and re-calculate its completion time, 
which is 14 + 12 = 26. The next batch from the unassigned list, i.e. 14 
goes to machine 3 considering that the completion time of 24 is shorter 
than 29 and 26. Continuing the same procedure, batches 6 and 5 are 
inserted into machines 2 and 1, respectively. The resulting maximum 
completion time is 34, which is better than that of the primary solution. 

3.3.4. Local search 
A new solution resulting from the construction procedure, πnew, will 

be perturbed using a local search mechanism to help escape local opti
mality and improve the exploitation power of the optimization algo
rithm. Three local search procedures are considered; internal insertion 
(LS1), internal exchange (LS2), and external exchange (LS3). The 
computational procedure of LS1 is shown in Fig. 4(a) where a part is 
randomly selected from all batches before the last batch and is inserted 
into the last batch. This is because when the parts are batched, the space 
left in the last batch is often the most, hence, it will be less likely to get 
infeasible solutions by inserting a new part at the end of the last batch 
with an opportunity to reduce the total completion time. In this 
approach, if the available build volume of the last batch is not enough to 
accommodate the new part, another random part will be selected for 
insertion. In LS2, two random parts from batches assigned to the same 
machine are selected for exchange while observing the machine’s build 
volume limitation, as shown in Fig. 4(b). Finally, LS3 randomly selects 
two parts assigned to different machines and exchanges their positions, 
as presented in Fig. 4(c). The pseudocode of the local search mechanism 
is presented in Fig. 5. 

3.3.5. Acceptance mechanism 
As a rule of thumb, the current best solution will be replaced with a 

new solution of better quality. Such a strict measure may result in local 
optimality traps. Besides, the algorithm should sometimes extend its 
search scope for better exploration power. The TIG algorithm uses the 
acceptance mechanism suggested by Hatami et al. [45], which proved to 
be highly competitive. In their approach, the Relative Percentage Dif
ference (RPD; to be calculated using Eq. (10)) is used as a gage to 
generate a threshold for a random trial to decide whether or not to 
accept a new solution that is worse in terms of fitness value. Smaller RPD 
values are indicative of better alternative solutions, π′, compared to the 
current best solution, π. Given the RPD value, if random ≤ e − RPD, the 
new solution is accepted even if it is less performing. 

RPD =
Cmax(π′) − Cmax(π)

Cmax(π)
× 100 (10)  

4. Numerical analysis 

In this section, TIG is compared with the IG, and three alternative 
variants, to evaluate the performance of the developed algorithm and 
draw conclusions on the effectiveness of the developed computational 
modules. For this purpose, four local search mechanisms are considered 
to investigate the impact of the customized local search mechanisms on 
the algorithm’s performance. That is, IG1, IG2, and IG3 algorithms differ 
in the applied local search mechanism, where LS1, LS2, or LS3 is used, 
respectively, IG0 does not apply a local search mechanism, while the TIG 
algorithm applies all; the other computational mechanisms of these al
gorithms are similar. All the algorithms were coded and compiled using 
Visual 2017 C++ with a personal computer with the following specs: 
Intel® Core™ i7–6700 CPU 3.40 GHz, 8GB RAM, and Windows 10/ 
64bit operating system. 

This study follows Arroyo and Leung [51] to set the destruction 
count parameter before conducting the final experiments. In their 
approach, d in the destruction stage is generated randomly from a 
Uniform Distribution Function with U[1, b], where b represents the 

minimal number of dispatched batch numbers considering all 3D 
printing machines in the solution. Besides, the termination condition 
used for all the benchmark algorithms is the maximum CPU time, i.e. 
0.2*n as suggested by Arroyo and Leung [51]. Finally, the experiments 
were replicated 10 times for each test instance. The configuration of the 
testbed is summarized in Table 2. The remainder of this section con
tinues with experimental results analysis and the statistical test of 
significance. 

This paper considered the PbF machines with a production space of 
500 mm × 500 mm × 500 mm. In this approach, a laser or electron beam 
is used to fuse a layer of powder in the powder bed followed by applying 
the next layers. In this setting, the parts should be batched considering a 
total area of 2500 mm2. If a new part cannot fit in the machine’s build 
platform, it should be assigned to a new batch/machine. Making thinner 
layers increases process accuracy and part quality but results in a longer 
processing time. The thickness of each layer is considered equal to 0.05 
mm with the scanning speed and distance being set at 10,000 mm/s and 
0.1 mm, respectively. 

A total of 20 small-size instances are first considered to compare the 
performance of the developed algorithm with that of an exact solver 
from the LINGO 9.0 software, using the default parameter settings. After 
running the exact approach in 10 attempts, we observed that 95 percent 
of the experiments resulted in a run time error. Hence, a CPU time of 50 s 
for the TIG and a termination time of 120 min for the LINGO solver were 
used to solve the instances; results are reported in Table 3. It is worth
while noting that the results under MILP are near-optimum obtained 
within the specified computation time. Except for instances 14 and 16, 
TIG yields a better solution when solving the small-size instances. 

In the next step, the results are analyzed considering large-scale in
stances, the RPD values are calculated using Eq. (10), where π and π′ 
represent the results obtained by the best and alternative optimization 
algorithms, respectively. In the RPD measure reported in Table 4, the 
best solution for each instance obtains a zero value, and the solutions 

Table 2 
Configuration of the test instances.  

Category Instance ID Parts (n) Machines (m) 

Small S01-S20 15 2 

Large 

L01-L20 20 2 
L21-L40 50 3 
L41-L60 100 5 
L61-L80 200 10 

Parameter Value 

MAX_area U(600, 1600) 
aj U(10, MAX_area) 
hj U(5, 40) 
vj U(30,aj*hj) 
l 0.05(mm) 
s 10,000(mm/s) 
d 0.1(mm) 

ST 300(s) 
RC 6(s)  

Table 3 
Results for the small-size instances (best in bold).  

Instance TIG MILP Instance TIG MILP 

S01 8769 9602 S11 7950 8039 
S02 6928 8302 S12 7244 7677 
S03 7572 8327 S13 7797 10,913 
S04 10,834 10,926 S14 7704 7217 
S05 7793 8676 S15 8467 8550 
S06 8931 9107 S16 9571 10,174 
S07 7378 8415 S17 9387 11,465 
S08 8720 9212 S18 8594 9063 
S09 7848 8852 S19 9166 9168 
S10 9509 9586 S20 8953 7800  

K.-C. Ying et al.                                                                                                                                                                                                                                 



Advances in Engineering Software 186 (2023) 103546

8

associated with a smaller RPD value are preferred in the benchmark. 
IG3 yielded the best solution in nine out of 80 large-size instances. 

IG1 and IG2 obtained the best solution in one and two instances, 
respectively. This measure amounts to 69 for the TIG algorithm. The IG 
algorithm equipped by LS1 showed about 90 percent improvement 
considering small-size and 67.5 percent for large-size test instances. LS2 
appeared to be more effective for solving large-scale instances when 
compared to LS1 with about 90 percent improvement in solving the 
large-scale instances, while the observed improvement for small in
stances amounted to only 30 percent. Integrating LS3 into the IG algo
rithm shows the highest improvement with almost 100 percent in both 
small- and large-scale test instances. 

The Average Relative Performance Deviation (ARPD, to be calcu
lated using Eq. (11)) values are recorded in Table 5 to analyze the 
overall performance of the benchmark algorithms considering different 
numbers of parts. The TIG algorithm performed meaningfully better 
with an ARPD of 0.00875, followed by IG3 with a performance of 
0.39275. The best-found solutions and standard deviation over the 

replications are provided in the Appendix for interested readers. Overall, 
69 out of 80 best solutions are obtained by the TIG algorithm and the rest 
are obtained by the other local search-based IG variants with marginally 
smaller makespan. It is worthwhile mentioning that IG2 recorded the 
highest stability over the replications. 

ARPD =
Cmax(πincumbent) − Cmax(πbest)

Cmax(πbest)

/

10 (11) 

As a final step to the numerical analysis, a statistical test of signifi
cance is conducted to check whether including a local search mechanism 
results in a significant change in the solution quality and find the most 
important source of improvement. Statistical analysis provided in 
Table 6 is supportive of including the local search mechanism in the 
metaheuristic algorithm. With 95 percent confidence, we can claim that 
the TIG algorithm outperforms the IG and its local search-based variants, 
regardless of the type. This is true considering all instance sizes. 

Table 4 
Relative percent deviation over the large-scale instances (best in bold).  

Ins. TIG IG0 IG1 IG2 IG3 Ins. TIG IG0 IG1 IG2 IG3 

L01 0.0000 4.5715 2.1983 4.5715 0.7848 L41 0.0097 0.5033 0.3410 0.4908 0.0000 
L02 0.0000 2.7064 2.0092 2.7064 1.4343 L42 0.0000 1.2333 0.7774 1.2280 0.7509 
L03 0.0000 2.3965 2.0874 2.4536 0.4359 L43 0.0000 1.3938 1.4282 1.4140 0.9950 
L04 0.0000 2.3661 1.1532 2.3661 0.9253 L44 0.0000 2.1610 1.7646 2.1610 0.7513 
L05 0.0000 2.2427 1.5960 2.2585 1.4849 L45 0.0000 0.0810 0.0956 0.0789 0.0067 
L06 0.0000 3.3500 0.7270 3.3500 0.7108 L46 0.0000 0.6070 0.6178 0.6037 0.3873 
L07 0.0000 1.8044 0.4402 1.8044 1.1553 L47 0.0000 0.0306 0.0282 0.0272 0.0083 
L08 0.0000 2.7417 0.8676 2.8584 0.1210 L48 0.0000 0.0109 0.0200 0.0113 0.0031 
L09 0.0000 0.8601 0.7778 0.8601 0.6135 L49 0.0000 0.5790 0.5677 0.5681 0.2838 
L10 0.0000 2.9873 2.0982 2.9873 0.9713 L50 0.0000 0.0343 0.0538 0.0274 0.0104 
L11 0.0000 4.1278 4.1826 4.1278 0.9697 L51 0.0000 1.1045 0.9024 1.0994 0.1978 
L12 0.0000 1.8455 0.5523 1.8486 0.2270 L52 0.0000 0.9713 0.9020 0.9713 0.0049 
L13 0.0000 1.5913 1.6099 1.6099 0.6557 L53 0.0000 1.2486 0.3068 1.2470 0.2932 
L14 0.0000 1.7925 1.2305 1.7925 0.8756 L54 0.0029 0.0100 0.0000 0.0031 0.0000 
L15 0.0000 2.5147 2.0442 2.5150 0.1809 L55 0.0000 0.2970 0.2738 0.2779 0.0071 
L16 0.0000 2.2335 0.5609 1.4763 0.6045 L56 0.0142 0.3581 0.2060 0.3573 0.0000 
L17 0.6729 3.9614 2.7569 3.9614 0.0000 L57 0.0000 0.7628 0.7415 0.7429 0.1544 
L18 0.0000 0.9726 0.8511 0.9726 0.1541 L58 0.0000 0.3243 0.0242 0.3012 0.0127 
L19 0.0000 4.1180 2.7983 4.1180 0.5617 L59 0.0003 0.0095 0.0147 0.0077 0.0000 
L20 0.0000 2.1728 2.0739 2.1838 0.0133 L60 0.0004 0.0214 0.0211 0.0114 0.0000 
L21 0.0000 1.7067 1.2328 1.6960 0.7313 L61 0.0000 1.9154 0.9509 1.9137 0.9644 
L22 0.0000 1.9111 1.5069 1.9254 1.1489 L62 0.0000 0.0177 0.0030 0.0051 0.0028 
L23 0.0000 2.2442 0.5143 2.2755 1.0461 L63 0.0000 0.0052 0.0128 0.0010 0.0002 
L24 0.0000 0.7167 0.4645 0.7167 0.4220 L64 0.0000 0.0088 0.0027 0.0022 0.0049 
L25 0.0000 3.1407 1.7137 3.1590 1.8222 L65 0.0000 0.0098 0.0029 0.0037 0.0044 
L26 0.0000 1.6844 1.6652 1.6667 0.8882 L66 0.0011 0.0066 0.0077 0.0000 0.0004 
L27 0.0000 1.3215 0.4568 1.0846 0.0256 L67 0.0000 1.5487 0.3940 1.5293 1.1278 
L28 0.0000 1.7446 1.7012 1.6995 1.2658 L68 0.0000 0.5769 0.5999 0.5718 0.1565 
L29 0.0000 1.1576 0.0131 1.1576 0.5103 L69 0.0020 0.0464 0.0031 0.0067 0.0000 
L30 0.0000 1.3853 0.0258 1.4099 0.0258 L70 0.0000 0.0073 0.0130 0.0003 0.0013 
L31 0.0000 0.8774 0.8790 0.8604 0.4485 L71 0.0002 0.0053 0.0005 0.0000 0.0004 
L32 0.0000 1.1856 0.2745 1.2600 0.3379 L72 0.0000 0.0060 0.0156 0.0002 0.0006 
L33 0.0000 0.4692 0.0289 0.4856 0.0292 L73 0.0036 0.0094 0.0033 0.0051 0.0000 
L34 0.0000 1.8617 1.2474 1.8773 0.4534 L74 0.0000 1.1507 0.1875 1.1394 0.9061 
L35 0.0000 0.8477 0.0911 0.8282 0.1070 L75 0.0000 0.0099 0.0169 0.0012 0.0008 
L36 0.0000 1.2591 1.2007 1.2575 0.9393 L76 0.0015 0.0066 0.0019 0.0025 0.0000 
L37 0.0000 1.3979 1.3967 1.3912 0.4502 L77 0.0000 0.0056 0.0015 0.0016 0.0016 
L38 0.0000 0.4112 0.3649 0.3911 0.3527 L78 0.0000 0.0065 0.0005 0.0007 0.0005 
L39 0.0000 1.3060 1.3086 1.2985 0.4229 L79 0.0000 0.0062 0.0017 0.0032 0.0003 
L40 0.0000 0.3407 0.2969 0.3015 0.0732 L80 0.0000 0.0067 0.0082 0.0001 0.0006  

Table 5 
Average relative performance deviation considering the problem size (best in 
bold).  

Number of parts TIG IG0 IG1 IG2 IG3 

20 0.034 2.568 1.631 2.541 0.644 
50 0.000 1.348 0.819 1.337 0.575 
100 0.001 0.587 0.454 0.581 0.193 
200 0.000 0.268 0.111 0.259 0.159  

Table 6 
Statistical test of significance with 95 percent confidence.  

TIG Vs. Difference T Critical t DoF p-value 

Ave StD S.E. 

IG0 1.193 1.151 0.1287 − 9.344 − 1.66437 79 0.000 
IG1 0.754 0.844 0.094 − 8.058 − 1.66437 79 0.000 
IG2 1.18 1.153 0.1289 − 9.228 − 1.66437 79 0.000 
IG3 0.393 0.454 0.051 − 7.346 − 1.66437 79 0.000 

StD: Standard Deviation, S.E.: Standard Error, DoF: Degree of Freedom. 
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Table A1 
Results for the large-size instances 1–40 (best in bold).  

Instance TIG IG0 IG1 IG2 IG3 

Min Ave. StD Min Ave. StD Min Ave. StD Min Ave. StD Min Ave. StD 

L01 1,010,395 1,249,326 136,630 1,472,297 1,472,297 0 1,232,508 1,411,980 98,885.3 1,472,297 1,472,297 0 1,089,686 1,367,875 126,236.2 
L02 1,174,305 1,370,689 97,451.6 1,492,124 1,492,124 0 1,410,242 1,483,936 25,893.4 1,492,124 1,492,124 0 1,342,735 1,425,711 52,832.9 
L03 1,288,834 1,588,967 216,988 1,597,698 1,601,390 3317.0 1,557,862 1,712,188 122,047 1,605,058 1,605,058 0 1,345,011 1,621,811 200,168.1 
L04 1,412,201 1,681,917 162,375.7 1,746,345 1,746,345 0 1,575,061 1,842,017 142,758.1 1,746,345 1,746,345 0 1,542,876 1,729,326 92,939.7 
L05 1,333,982 1,621,864 160,642 1,633,152 1,634,838 888.4 1,546,881 1,741,951 125,176.7 1,635,259 1,635,259 0 1,532,068 1,712,526 117,175.3 
L06 1,672,515 1,972,809 171,955 2,232,809 2,232,809 0 1,794,102 2,138,155 182,323.5 2,232,809 2,232,809 0 1,791,396 2,049,425 124,909 
L07 1,541,261 1,800,210 214,097.3 1,819,369 1,819,369 0 1,609,111 1,908,867 127,616.9 1,819,369 1,819,369 0 1,719,319 1,882,851 121,530.8 
L08 1,360,956 1,656,523 187,739.9 1,734,089 1,743,123 6931.3 1,479,030 1,786,575 122,973.8 1,749,970 1,749,970 0 1,377,424 1,700,533 181,026.9 
L09 1,977,080 2,073,275 69,964.9 2,147,119 2,147,119 0 2,130,860 2,181,148 31,442.4 2,147,119 2,147,119 0 2,098,374 2,146,904 25,430.4 
L10 1,227,168 1,584,779 231,043.7 1,593,757 1,593,757 0 1,484,658 1,658,002 111,815.5 1,593,757 1,593,757 0 1,346,357 1,614,899 143,932.3 
L11 1,371,606 1,900,896 232,445 1,937,781 1,937,781 0 1,945,288 2,042,415 111,568.2 1,937,781 1,937,781 0 1,504,604 1,931,105 213,660.8 
L12 1,352,027 1,579,427 138,593.6 1,601,539 1,601,710 221.0 1,426,706 1,694,507 161,168.2 1,601,967 1,601,967 0 1,382,741 1,533,957 98,864.0 
L13 1,484,112 1,607,576 81,344.9 1,720,275 1,721,656 1455.2 1,723,036 1,799,215 71,399.0 1,723,036 1,723,036 0 1,581,418 1,781,595 123,970 
L14 1,371,903 1,520,217 88,867.5 1,617,821 1,617,821 0 1,540,714 1,703,109 95,839 1,617,821 1,617,821 0 1,492,020 1,647,610 100,229.1 
L15 1,430,770 1,696,675 181,666.4 1,790,570 1,790,570 0 1,723,249 1,908,981 116,966.8 1,790,570 1,790,570 0 1,456,651 1,725,195 151,448.6 
L16 1,753,683 2,067,736 149,278.1 2,145,363 2,147,017 871.5 1,852,039 2,126,316 101,077.7 2,012,586 2,132,705 42,217 1,859,685 2,070,305 109,743.7 
L17 1,664,862 2,048,320 181,839 2,177,842 2,177,842 0 1,989,947 2,146,453 63,716.6 2,177,842 2,177,842 0 1,559,897 1,973,505 223,016.6 
L18 1,376,549 1,527,607 101,756.7 1,510,434 1,510,434 0 1,493,703 1,679,013 135,757.9 1,510,434 1,510,434 0 1,397,760 1,516,818 71,547.1 
L19 1,172,104 1,581,872 181,739.2 1,654,774 1,654,774 0 1,500,090 1,833,315 233,247.9 1,654,774 1,654,774 0 1,237,938 1,710,611 206,099.6 
L20 1,839,933 2,037,410 130,760.7 2,239,706 2,240,928 1051.3 2,221,520 2,257,753 59,571.1 2,241,742 2,240,928 0 1,842,376 2,062,053 122,273.2 
L21 3,154,859 3,484,129 156,009.7 3,693,287 3,699,571 3634.1 3,543,798 3,674,374 64,636.3 3,689,928 3,689,928 0 3,385,571 3,559,148 110,595 
L22 2,512,903 2,750,092 157,655.7 2,993,151 2,994,452 1072.0 2,891,579 2,982,307 34,111.0 2,996,748 2,998,820 2202.0 2,801,595 2,931,586 68,308.2 
L23 2,436,941 2,803,014 174,021.1 2,983,850 2,987,614 2192.9 2,562,261 2,866,041 164,676.8 2,991,473 2,991,473 0 2,691,874 2,817,808 105,692.6 
L24 2,868,425 2,999,289 53,998.1 3,074,005 3,077,391 2093.8 3,001,653 3,132,807 137,428.2 3,074,005 3,074,005 0 2,989,476 3,060,031 130,422.1 
L25 2,278,391 2,731,914 185,240.6 2,993,965 2,995,433 2378.9 2,668,836 2,975,334 112,985.2 2,998,127 3,000,164 1753.1 2,693,550 2,836,035 99,564.9 
L26 2,563,538 2,884,495 148,300.2 2,995,346 2,998,432 3126.2 2,990,430 3,002,340 4184.6 2,990,805 2,992,659 1425.1 2,791,225 2,964,763 66,065.9 
L27 2,996,983 3,284,481 161,018.3 3,393,045 3,403,233 5793.8 3,133,885 3,386,333 93,439.9 3,322,040 3,388,356 23,410.8 3,004,670 3,391,781 208,863 
L28 2,539,992 2,810,225 135,184.1 2,983,112 2,989,013 5877.9 2,972,102 2,995,745 8307.3 2,971,672 2,976,820 4451.4 2,861,502 2,949,306 41,413 
L29 2,997,886 3,123,962 143,685.9 3,344,920 3,349,628 3829.8 3,001,806 3,283,324 181,724.3 3,344,920 3,344,920 0 3,150,860 3,299,404 71,607.4 
L30 2,242,656 2,504,668 222,716.7 2,553,327 2,557,230 2607.7 2,248,444 2,588,519 181,614.8 2,558,849 2,558,849 0 2,248,444 2,520,198 226,220.7 
L31 2,753,055 2,906,967 73,663.7 2,994,600 2,998,329 2301.2 2,995,048 2,998,435 2804.7 2,989,914 2,993,763 1387.4 2,876,521 3,279,225 494,795.8 
L32 2,642,956 2,830,889 97,740.6 2,956,293 2,962,569 6126.9 2,715,495 2,917,356 94,918.4 2,975,967 2,975,967 0 2,732,250 2,887,678 74,118.5 
L33 2,242,956 2,283,470 48,874.1 2,348,214 2,349,690 1807.4 2,249,438 2,307,418 102,586.5 2,351,882 2,351,882 0 2,249,506 2,445,227 219,163.6 
L34 2,519,376 2,773,639 117,639 2,988,412 2,990,820 1802.3 2,833,654 2,977,082 50,436.6 2,992,335 2,992,335 0 2,633,615 2,838,975 112,596.6 
L35 2,967,415 3,114,233 112,439.9 3,218,976 3,229,073 5209.6 2,994,461 3,399,627 229,536.6 3,213,169 3,213,714 1723.1 2,999,190 3,189,608 74,029.8 
L36 2,657,473 2,905,552 92,375.3 2,992,068 2,994,582 1962.0 2,976,544 2,991,203 10,181.2 2,991,648 2,991,648 0 2,907,077 2,965,522 29,722.6 
L37 2,616,513 2,883,669 132,183.2 2,982,277 2,986,943 3311.7 2,981,952 2,989,390 7233.9 2,980,510 2,982,030 1058.6 2,734,316 2,929,372 76,852.0 
L38 2,880,447 3,020,159 101,815.3 2,998,891 3,005,872 3679.2 2,985,551 3,075,640 124,661.9 2,993,091 2,995,894 1156.5 2,982,036 2,996,598 10,736.2 
L39 2,644,703 2,934,544 107,270.3 2,990,103 2,992,351 1924.3 2,990,793 2,995,222 2374.1 2,988,105 2,989,582 962.8 2,756,544 2,924,234 89,173.0 
L40 2,881,883 2,936,560 38,127.1 2,980,060 2,983,004 1444.9 2,967,454 2,981,181 7098.6 2,968,771 2,977,094 4495.0 2,902,981 2,965,713 24,146.9  
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Table A2 
Results for the large-size instances 41–80 (best in bold).  

Instance TIG IG0 IG1 IG2 IG3 

Min Ave. StD Min Ave. StD Min Ave. StD Min Ave. StD Min Ave. StD 

L41 3,559,267 3,696,294 59,949.4 3,734,797 3,736,888 1459.6 3,677,096 3,732,536 19,495.1 3,730,360 3,730,674 380.3 3,555,828 3,703,623 66,885 
L42 3,007,985 3,271,485 148,400.2 3,378,971 3,385,192 4380.5 3,241,820 3,389,821 113,682.4 3,377,372 3,377,372 0 3,233,856 3,359,925 49,666.6 
L43 3,275,812 3,605,810 150,828.2 3,732,404 3,744,103 4586.9 3,743,656 3,747,732 4253.6 3,739,027 3,739,475 483.1 3,601,746 3,708,716 54,262.8 
L44 3,076,005 3,527,450 191,880.7 3,740,745 3,747,359 3479.3 3,618,789 3,730,504 46,156.3 3,740,745 3,740,745 0 3,307,091 3,565,362 149,231.2 
L45 3,722,406 3,736,241 11,193.4 3,752,684 3,757,285 1841.3 3,757,966 3,758,368 423.2 3,751,760 3,751,890 185.4 3,724,916 3,746,944 10,748.3 
L46 3,533,806 3,644,616 82,150.2 3,748,400 3,751,846 1902.9 3,752,133 3,753,916 1545.7 3,747,129 3,747,519 526.5 3,670,686 3,741,092 25,033.4 
L47 2,995,599 3,003,148 3187.3 3,004,756 3,006,050 1053.9 3,004,041 3,006,253 2331.7 3,003,734 3,003,838 99.9 2,998,086 3,003,028 2754.1 
L48 3,003,988 3,007,707 1365.8 3,007,259 3,008,601 963.3 3,009,996 3,010,918 323.8 3,007,377 3,007,855 181.0 3,004,927 3,007,029 1134.6 
L49 3,535,068 3,702,949 68,591.3 3,739,752 3,744,284 3058.9 3,735,746 3,747,762 6416.2 3,735,893 3,736,089 356.6 3,635,381 3,723,721 31,171.5 
L50 3,737,242 3,746,423 4297.7 3,750,077 3,752,881 2174.7 3,757,363 3,757,363 0 3,747,498 3,748,152 419.1 3,741,143 3,747,512 3493.3 
L51 3,372,645 3,561,785 145,797.4 3,745,159 3,748,709 2631.8 3,677,003 3,743,411 32,849.4 3,743,446 3,743,446 0 3,439,343 3,630,835 99,297.7 
L52 3,416,726 3,601,098 122,384.4 3,748,584 3,752,991 4183.7 3,724,914 3,756,356 11,052.3 3,748,584 3,748,584 0 3,418,394 3,673,733 112,104.2 
L53 3,325,182 3,576,116 144,414.8 3,740,352 3,744,483 2531.2 3,427,212 3,711,666 101,051.3 3,739,843 3,740,401 370.7 3,422,677 3,603,039 123,932.1 
L54 3,004,402 3,004,999 574.2 3,006,553 3,008,916 1558.1 3,003,543 3,009,838 2714.7 3,004,478 3,005,124 545.9 3,003,543 3,004,910 677 
L55 3,623,824 3,689,443 48,765.7 3,731,441 3,734,581 2572.5 3,723,054 3,736,020 4935.6 3,724,523 3,724,593 220.4 3,626,411 3,711,616 32,050.8 
L56 3,614,163 3,673,091 22,083.6 3,738,262 3,740,530 2833.3 3,683,390 3,727,453 30,433.1 3,737,969 3,737,969 0 3,609,035 3,681,191 27,461 
L57 3,468,114 3,578,882 78,973.7 3,732,652 3,738,897 2822.3 3,725,291 3,739,450 4974.9 3,725,764 3,725,764 0 3,521,644 3,649,458 78,718.1 
L58 3,001,784 3,062,492 60,913.5 3,099,126 3,138,133 17,880.6 3,009,044 3,157,980 113,592.2 3,092,190 3,092,190 0 3,005,587 3,181,255 203,141.4 
L59 3,005,269 3,007,505 1376.2 3,008,041 3,009,287 682.5 3,009,601 3,009,870 141.7 3,007,495 3,007,685 319.0 3,005,186 3,006,949 1345.3 
L60 3,741,521 3,746,286 2935.3 3,749,376 3,750,303 795.1 3,749,238 3,751,800 2205.0 3,745,617 3,746,656 819.4 3,741,354 3,745,796 2680.5 
L61 3,145,702 3,540,947 170,273.8 3,748,237 3,752,571 3564.8 3,444,821 3,606,812 105,549.6 3,747,689 3,747,689 0 3,449,074 3,593,138 95,490.8 
L62 3,745,403 3,748,145 2238.9 3,752,023 3,754,226 1458.6 3,746,537 3,747,328 1181.7 3,747,332 3,747,715 511.0 3,746,441 3,748,913 1829.8 
L63 3,760,484 3,760,541 45.8 3,762,446 3,763,948 983.7 3,765,291 3,765,821 279 3,760,520 3,760,581 61.4 3,760,567 3,761,616 846.2 
L64 3,750,904 3,753,253 1044.5 3,754,201 3,755,810 1359.1 3,751,902 3,752,622 602.7 3,751,726 3,752,455 460.2 3,752,744 3,753,684 683 
L65 3,751,403 3,754,729 1681.6 3,755,072 3,757,360 1126.2 3,752,494 3,752,761 215.8 3,752,792 3,753,010 331.2 3,753,066 3,754,534 1834.6 
L66 3,752,958 3,754,241 1163.9 3,755,028 3,756,951 1116.2 3,755,443 3,758,109 937.0 3,752,541 3,752,609 55.8 3,752,700 3,753,998 1609 
L67 3,014,263 3,366,098 172,499.9 3,481,067 3,486,745 2908.1 3,133,029 3,344,110 98,070.6 3,475,248 3,475,248 0 3,354,226 3,461,425 41,772.8 
L68 3,548,449 3,733,511 65,068.7 3,753,159 3,756,935 2104.7 3,761,314 3,762,465 606.7 3,751,337 3,751,544 278.3 3,603,965 3,734,374 47,563.5 
L69 3,746,723 3,748,836 1061.9 3,763,334 3,765,186 3079.7 3,747,146 3,748,573 950.8 3,748,470 3,748,773 212.5 3,745,971 3,749,771 2558.5 
L70 3,758,676 3,758,932 236.6 3,761,413 3,762,476 808.4 3,763,572 3,763,688 61.1 3,758,779 3,759,053 223.6 3,759,156 3,760,026 492.0 
L71 3,758,745 3,759,098 346.3 3,760,645 3,761,401 341.7 3,758,846 3,759,034 143.3 3,758,669 3,758,795 186.2 3,758,813 3,759,532 505.3 
L72 3,755,960 3,757,184 2011.0 3,758,225 3,760,740 1107.4 3,761,801 3,762,420 237.6 3,756,026 3,756,120 95.5 3,756,200 3,757,751 1181.7 
L73 3,751,336 3,753,244 1368.3 3,753,499 3,755,789 1074.1 3,751,209 3,752,278 820.0 3,751,893 3,752,102 250.9 3,749,983 3,752,809 1373.3 
L74 3,366,454 3,705,861 121,343.6 3,753,838 3,755,083 1340.8 3,429,568 3,650,652 119,534.8 3,750,026 3,750,174 166.2 3,671,500 3,744,532 25,751.5 
L75 3,754,486 3,754,980 325.0 3,758,184 3,759,296 1065.2 3,760,822 3,760,981 56.0 3,754,928 3,755,067 161.3 3,754,770 3,756,428 1573.8 
L76 3,755,545 3,757,012 1037.0 3,757,463 3,759,209 1190.8 3,755,673 3,756,122 378.3 3,755,901 3,755,989 98.2 3,754,968 3,756,841 1353.0 
L77 3,760,462 3,761,439 951.5 3,762,576 3,763,811 783.5 3,761,028 3,761,119 141.0 3,761,054 3,761,118 110.3 3,761,053 3,761,675 437.3 
L78 3,760,305 3,760,853 1130.0 3,762,750 3,763,575 676.4 3,760,504 3,760,563 69.4 3,760,581 3,760,615 68.1 3,760,483 3,761,330 1034.0 
L79 3,755,962 3,758,202 1036.8 3,758,282 3,760,086 1123.2 3,756,612 3,757,756 832.3 3,757,178 3,757,240 84.7 3,756,080 3,757,998 1273 
L80 3,759,853 3,759,957 104.0 3,762,359 3,763,892 769.2 3,762,935 3,764,434 820.3 3,759,872 3,760,088 90.25495 3,760,086 3,761,260 878.2  
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5. Conclusions 

As a disruptive production technology, 3D printing improves the 
cost, time, quality, and flexibility of the supply chains and facilitates the 
effective implementation of the make-to-order supply chain strategy. 3D 
printing has found its way to direct manufacturing and has implications 
for mass customization. Scheduling problems should be extended for 
optimizing additive manufacturing operations to facilitate the devel
opment of this revolutionary technology. Research on additive 
manufacturing-based production planning is still limited and its litera
ture is in the early development stages. 

A threefold contribution represents the significance of this research 
in advancing the state-of-the-art in additive manufacturing-based pro
duction scheduling: (1) an original mathematical problem, IP3DMSP is 
proposed with the incorporation of multiple build platforms, each 
having restricted sizes. By including new features of 3D printing, the 
study offers a more practical model for scheduling additive 
manufacturing processes. The problem is formulated using MILP, which 
provides a robust and versatile mathematical framework for addressing 
the complexities of production scheduling. (2) the renowned IG algo
rithm is extended to more effectively solve this highly intractable 
scheduling extension. (3) novel local search mechanisms are specifically 
designed to enhance the exploitation power of the search algorithm for 
additive manufacturing-based production scheduling. The developed 
computational mechanisms contribute to improved optimization per
formance, allowing for more refined and precise scheduling solutions. 
Extensive experiments and statistical analysis demonstrated that TIG 
achieves significantly better solution quality compared to both the 
original IG algorithm and its local search-based variants. Overall, this 
study established a standard for evaluating the performance of future 
scheduling algorithms in the context of additive manufacturing. TIG 
metaheuristic is expected to serve as a benchmark for subsequent 
research works in the field. 

The following suggestions for future research may be of interest to 
the readers to contribute to this emerging production research topic. 
First, the developed mathematical formulation can be extended to ac
count for case-specific production needs and constraints; in particular, 
IP3DMSP should be extended to work across distributed production sites 
for applications in mass customization. Second, orders from different 
agents and interfering jobs could be considered to extend the problem. 
The third suggestion comes from considering other printing technolo
gies and the scheduling of heterogeneous 3D printing machines. Fourth, 
learning-based metaheuristics should be developed to improve the best- 
found solutions obtained by TIG. In particular, the batch process can be 
improved taking into account the less-tangible aspects of the products 
that are hard to be captured using hard approaches. Finally, additive 
manufacturing-based production scheduling is a complex research topic 
with uncertainties that have not been addressed in the existing litera
ture. Future research may incorporate the shop floor uncertainties in 
additive manufacturing-based production planning and control. 

CRediT authorship contribution statement 

Kuo-Ching Ying: Conceptualization, Project administration, Soft
ware, Supervision, Methodology. Pourya Pourhejazy: Investigation, 
Validation, Writing – original draft, Writing – review & editing. Ya- 
Hsuan Huang: Formal analysis, Data curation. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 

The corresponding author would like to acknowledge the financial 
support from the Interreg Aurora Program for implementing DED AM in 
future manufacturing—IDiD project with grant reference number 
20358021. The first author’s research received financial support from 
the Ministry of Science and Technology of the Republic of China, 
Taiwan, under Grant MOST 111-2221-E-027-067. 

Appendix. Results 

Tables A1–A2. 

References 

[1] Bose S, Bandyopadhyay A. Additive manufacturing. CRC Press; 2019. https://doi. 
org/10.1201/9780429466236. 

[2] Salmi M, Ituarte IF, Chekurov S, Huotilainen E. Effect of build orientation in 3D 
printing production for material extrusion, material jetting, binder jetting, sheet 
object lamination, vat photopolymerisation, and powder bed fusion. Int J Collab 
Enterp 2016;5:218. https://doi.org/10.1504/IJCENT.2016.082334. 

[3] Lin S, Bao D, Xiong C, Fang J, An H, Sun Z, et al. Human-made corals for marine 
habitats: design optimization and additive manufacturing. Adv Eng Softw 2021; 
162–163:103065. https://doi.org/10.1016/j.advengsoft.2021.103065. 

[4] Asadi-Eydivand M, Solati-Hashjin M, Fathi A, Padashi M, Abu Osman NA. Optimal 
design of a 3D-printed scaffold using intelligent evolutionary algorithms. Appl Soft 
Comput 2016;39:36–47. https://doi.org/10.1016/j.asoc.2015.11.011. 

[5] Haghdadi N, Laleh M, Moyle M, Primig S. Additive manufacturing of steels: a 
review of achievements and challenges. J Mater Sci 2021;56:64–107. https://doi. 
org/10.1007/s10853-020-05109-0. 

[6] Demir E, Eyers D, Huang Y. Competing through the last mile: strategic 3D printing 
in a city logistics context. Comput Oper Res 2021;131:105248. https://doi.org/ 
10.1016/j.cor.2021.105248. 

[7] Delic M, Eyers DR. The effect of additive manufacturing adoption on supply chain 
flexibility and performance: an empirical analysis from the automotive industry. 
Int J Prod Econ 2020;228:107689. https://doi.org/10.1016/j.ijpe.2020.107689. 
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