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ABSTRACT

This paper proposes a two-stage deep feed-forward neural network
(DNN) to tackle the acoustic-to-articulatory inversion (AAI) prob-
lem. DNNs are a viable solution for the AAI task, but the tem-
poral continuity of the estimated articulatory values has not been
exploited properly when a DNN is employed. In this work, we pro-
pose to address the lack of any temporal constraints while enforcing
a parameter-parsimonious solution by deploying a two-stage solu-
tion based only on DNNs: (i) Articulatory trajectories are estimated
in a first stage using DNN, and (ii) a temporal window of the es-
timated trajectories is used in a follow-up DNN stage as a refine-
ment. The first stage estimation could be thought of as an auxiliary
additional information that poses some constraints on the inversion
process. Experimental evidence demonstrates an average error re-
duction of 7.51% in terms of RMSE compared to the baseline, and
an improvement of 2.39% with respect to Pearson correlation is also
attained. Finally, we should point out that AAI is still a highly chal-
lenging problem, mainly due to the non-linearity of the acoustic-
to-articulatory and one-to-many mapping. It is thus promising that
a significant improvement was attained with our simple yet elegant
solution.

Index Terms— Acoustic-to-articulatory inversion, deep learn-
ing, DNN, FBE.

1. INTRODUCTION

The acoustic-to-articulatory inversion (AAI) problem is concerned
with estimating the vocal tract shape in the form of articulator posi-
tions based on the uttered speech. This inversion problem is highly
non-linear because of the many-to-one mapping, which refers to the
fact that different articulator configurations can produce the same
sound. AAI is an important task in speech processing since it can
be used in different speech technology applications, including au-
tomatic speech recognition (ASR) [1, 2, 3], and speech synthesis
[4]. Different machine learning techniques, such as codebook-based
models [5], Gaussian mixture models (GMMs) [6], hidden Markov
models (HMMs) [7], mixture density networks [8], deep neural
networks (DNNs) [9, 10, 11], and deep recurrent neural networks
(RNNs) [12, 13, 14] have been used to address the AAI task.

In recent years, DNNs have proven useful in obtaining high ac-
curacy articulatory inversion, but each articulator is estimated inde-
pendently in the time domain although inter-articulator correlations
exist among many of the measured articulators [15]. Such a short-
coming motivated the present investigation, and the use of a two-
stage approach based on deep architectures for improving the esti-
mation accuracy. In our solution, a DNN-based AAI is first trained
to accomplish acoustic-to-articulatory inversion. This neural archi-

tecture represents our baseline system. In a second stage, an inde-
pendent DNN refines the initial estimates provided by the baseline
DNN; the second DNN aims to learn the aforementioned correla-
tions leveraging upon the baseline estimates and the input acoustic
features. It should be pointed out that the temporal dynamic of the
estimated articulators is required for speech production systems, and
the proposed method captures temporal dynamics of articulators by
exploiting a temporal window of the estimated articulators.

The rest of the paper is structured as follows. In Section 2 deep
regression models including the stand-alone DNN and the two-stage
DNN achitecture are presented. Section 3 describes the ‘‘Haskins
IEEE Production Rate Comparison’’ [16] database, feature repre-
sentation, and the performance metrics used in this study, followed
by the experimental results in Section 4. Finally, Section 5 concludes
the paper.

2. DEEP REGRESSION MODELS

We discuss the DNN regression method for estimating the articula-
tory measurements in Section 2.1, and the proposed two-stage DNN
model in Section 2.2.

2.1. DNN

Considering a wide temporal context when estimating the articula-
tory movements can be useful, as the co-articulation effect often ex-
tends beyond the phoneme level. Let x(i) be the acoustic feature
vector for the ith frame, the corresponding augmented vector, xa(i),
containing x(i) and its context is obtained as follows:

xa(i) = [x(i−M)>, . . . ,x(i)>, . . . ,x(i + M)>]>, (1)

where M denotes the number of left and right context frames, which
are added to x(i). Letting y(i) be the ith vector of the articulatory
estimates, then the regression model for a feed-forward DNN with L
hidden layers can be written as:
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i ), (i = 1, . . . , L+1) are the activation function of the

ith layer, and the matrix of weights between the (i−1)th and the ith

layer, respectively. The the input layer corresponds to the 0th layer.
In regression, gL is a linear activation function; whereas the remain-
ing layers have hidden units with a non-linear activation function,
such as Sigmoid, tanh, or ReLU. DNN parameters are optimized
during the training phase using a gradient descent technique and the
back propagation algorithm [17] with the goal of minimizing the
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ŷa(i)[ ]
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Fig. 1. Structure of the two-stage DNN regression model. The first stage performs a baseline AAI, while stage two refines the estimates by
combining the first stage estimates with acoustic information. Sections in red, blue, purple and black correspond to acoustic, articulatory,
joint acoustic+articulatory and hidden spaces, respectively.

mean squared error (MSE) between the estimated value, ŷ(i), and
the ground truth value, y(i).

2.2. Two-stage DNN

The regression model described in Section 2.1 does not take into
account the temporal continuity for estimated values of the articula-
tory measurements. To solve this problem, we propose a two-stage
DNN-based model that considers a temporal window for the esti-
mated values of the first stage. Let ŷ(i) be the output of the first
DNN, and we expand its temporal context following the principle
of Eq. (1), producing ŷa(i). By appending the acoustic data, xa(i)
and the concatenated outputs of the first DNN, ŷa(i), the DNN in
the second stage can be trained on those new features as follows:
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where (gi,W
2
i ), (i = 1, . . . , L + 1) are the weight matrices and

activation functions of the second DNN, respectively, and ŷt(i) de-
notes the output trajectory estimates. The structure of the proposed
method is shown in Fig. 1.

3. EXPERIMENTAL SETUP

3.1. EMA database

Measurements of the articulatory movements can be done by differ-
ent techniques such as MRI, microbeam X-ray, and electromagnetic
articulography (EMA). The EMA method is one of the most used
techniques for simultaneous recording of the speech and the articula-
tory data. One of the available databases is the ‘‘Haskins IEEE Pro-
duction Rate Comparison database’’ [16], which contains recordings
of eight native American English speakers, four female (F01-F04)
and four male (M01-M04) speakers. 720 phonetically balanced Har-
vard sentences[18] are spoken with normal and fast speaking rate
(SR) by each speaker. For some of the normal speaking rate utter-
ances, there are repetitions available as well. In our experiments,
only the normal speaking rate utterances were used. The amount of
data for each data set is shown in Table 1, where ‘‘N1’’ and ‘‘N2’’
represent the main set of utterances spoken with normal SR and the
set of repetitions of some of the normal SR sentences, respectively.
The speech waveforms are sampled at the rate of 44.1 kHz, and the

Table 1. Available amount of data in different data sets.
Speaking rate NO. utterances Amount of data
N1 5756 ∼ 244 (minutes)
N2 1379 ∼ 55 (minutes)

synchronously recorded EMA data have the sampling rate of 100
Hz. The EMA data is measured by eight sensors, placed at tongue
rear or dorsum (TR), tongue blade (TB), tongue tip (TT), upper and
lower lip (UL and LL), mouth left (ML), jaw or lower incisors (JAW)
and jaw left (JAWL). The articulatory measurements are aligned to
the occlusal plane in X, Y and Z directions, corresponding to move-
ments from posterior to anterior, right to left and inferior to superior,
respectively. The movements along the Y axis carry limited infor-
mation and we thus only employed the measured data along X and
Z axis. In this paper we used measurements for TR, TB, TT, UL, LL
and JAW which are measured in previous EMA databases as well,
such as MOCHA-TIMIT, MNGU0 and USC-TIMIT[19, 20, 21].

3.2. Acoustic representation

The acoustic features are extracted from resampled audio of 16 kHz
with 25ms frame length and 10ms frame shift. The resulted features
have 100 Hz sampling rate, like the articulatory features. The acous-
tic features are calculated from 40 filters which are linearly spaced
on the Mel-scale frequency axis. The energies in the overlapping fre-
quency bands constitute the filter bank energy (FBE) features. The
extracted features are concatenated with the M = 10 past and future
frames to generate the augmented vector xa(i) specified in eq. (1).

3.3. Performance measurements

To measure the performance of the AAI methods, the root mean
squared error (RMSE) and the Pearson’s correlation coefficient
(PCC) metrics are used. The first metric reports the deviation and
the latter indicates the similarity between the estimated and the
ground truth trajectories. These measures are defined as:

RMSE =
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1
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)2
, (4)
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Fig. 2. Performance evaluation of two-stage DNN with different
temporal context size over the the first stage DNN estimates. RMSE
(Blue line) and PCC (Red line)
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where y(i) and ŷ(i) are the ground truth and estimated EMA
value of the ith frame, respectively; ȳ, and ˆ̄y are mean values of
y(i), and ŷ(i). All results are based on training on the N1 subset,
and testing on the N2 subset. 5% of the training data is used as the
validation data, which is used to stop the training of DNN to prevent
the network from getting over-fitted to the training data.

3.4. Network architecture

For optimizing the neural network parameters, several experiments
were performed. We observed that a network configuration having
5 hidden layers with 300 units outperforms all other configurations
tested in our laboratory. Moreover, rectified linear units (ReLU) [22]
were used as the non-linear activation function for the hidden layers.
The stochastic gradient descent (SGD) optimizer was employed to
train the networks during the training phase. A batch size of 128
was chosen for all experiments. The actual implementations was
carried out using Keras [23] with TensorFlow backend [24]. The
same network architecture was used in both the first and the second
stage DNN.

Table 2. Performance of AAI systems in terms of RMSE and
PCC measures for the baseline (DNN) and the proposed method
(2sDNN).

Spk. RMSE-DNN RMSE-2sDNN PCC-DNN PCC-2sDNN
F1 1.821 1.594 0.859 0.895
F2 1.959 1.831 0.786 0.818
F3 1.532 1.432 0.774 0.806
F4 1.896 1.727 0.847 0.876
M1 1.501 1.384 0.807 0.841
M2 1.938 1.827 0.819 0.839
M3 1.803 1.676 0.768 0.803
M4 1.516 1.420 0.782 0.811

4. RESULTS

The N1 subset of the data is used for training and testing is done
on the N2 subset. 5% of the training data is used as validation data
to avoid overtraining. Evaluation of speaker trained performance is
done by training separate models for each speaker and testing on
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Fig. 3. Illustration of the TB trajectory for sentence ‘‘Glue the sheet
to the dark blue background’’ and the low pass filtered estimated
trajectories from 1st stage (black) and 2nd stage (red) DNNs.

the corresponding speaker’s test data. Joint training is done using
the training speech from all speakers to train a single model which
is tested on the pooled test data from all speakers. In this section,
we first evaluate the effect of the temporal context size at the output
of the first DNN level, ŷ(i), in two-stage DNN. Next, we provide
the performance of both baseline and proposed two-stage systems
in terms of RMSE and PCC. Finally, results for joint training are
presented and compared with speaker trained performance.

4.1. Temporal context size

As discussed above,the outputs of the first stage DNN, are concate-
nated together to form the context vector, ŷa(i).

ŷa(i)> = {ŷ(i−M)>, . . . , ŷ(i)>, . . . , ŷ(i + M)>} (6)

which is then fed into the second stage DNN. We evaluate the per-
formance of temporal context size for M = [0, 5, 10, 15, 20] frames
on each side of the current output. The experimental results for the
F1 speaker is shown in Figure. 2. From the figure, we can observe
that introducing a temporal context of M = 20 causes a decrease
in the RMSE by 0.1 mm and an increase in the PCC by 0.03 rel-
ative to using only static information. It can also be observed that
the performance improves with increasing M , but flattens out for
M > 10. Moreover, comparing the speaker F1 performance of the
proposed two-stage system with the baseline system in Table 2, we
can see from Fig. 2 that the proposed system without temporal con-
text (M = 0), , attains 0.14 mm improvement in terms of RMSE,
and a 0.01 improvement in terms of PCC when compared against the
baseline system.

4.2. Performance evaluation

From Figure 2, we can observe that no significant improvement is
achieved using M ≥ 15. Therefore, M = 15 is chosen for gener-
ating the augmented vector, ŷa(i). Table 2 shows the experimental
results with this setting for each speaker. Here, the AAI model is
trained on data from the same speaker as the test speaker. The ex-
perimental evidence clearly demonstrates that a smaller RMSE is



Table 3. Performance of AAI systems in terms of RMSE and PCC measures for the estimated articulators.

Articulator positions TDx TDz TBx TBz TTx TTz ULx ULz LLx LLz JAWx JAWz

RMSE(mm) 1.692 2.181 1.991 2.125 2.103 2.214 0.758 1.332 0.859 0.845 1.079 1.992
PCC 0.838 0.841 0.849 0.868 0.858 0.863 0.839 0.849 0.763 0.787 0.826 0.844

Table 4. Performance of AAI systems in terms of average RMSE
and PCC measures for speaker trained and jointly trained systems.
Spk. RMSE-DNN RMSE-2sDNN PCC-DNN PCC-2sDNN
Speaker trained 1.745 1.611 0.805 0.836
Jointly trained 1.728 1.582 0.802 0.835

attained using the two-stage DNN system compared to the baseline
DNN system, and an averaged improvement of 0.13 mm is attained.
Moreover, PCC of the two-stage DNN system is 0.03 better, on aver-
age, than that of the baseline DNN system. In Figure 3, we visualize
the TB trajectories for both the baseline and the proposed two-stage
systems for a randomly spoken utterance from the test set. The orig-
inal EMA trajectories are the TB positions in X and Z axis. We can
argue that the two-stage DNN approach achieves better estimation
results for the peaks of TB articulator. The recordings contained ini-
tial and final silences, which were removed from the training data.
Figure 3 shows the complete utterance including initial and final si-
lences. The trajectories at the beginning and end are thus not indica-
tive of the performance during speech.

We also implemented a system using joint training of speakers.
RMSE and PCC average values for each of the articulators obtained
by joint training is reported in Table 3. The overall RMSE and PCC
average values are given in Table 4. From those results, we can
conclude that that performance of the joint training over all speakers
is slightly better than that of the per speaker training, in terms of
RMSE for both architectures.

5. CONCLUSION

This paper has addressed the issue of AAI, and proposed utilizing a
two-stage DNN regression model. The architecture is designed using
a two-stage DNN approach that allows inter-articulator correlations
by leveraging temporal information from articulator estimates cap-
tured in the first stage. By appending the acoustic data to the context
augmented output of the first stage DNN architecture the trajectory
estimates are subsequently refined by the second DNN stage archi-
tecture. The model is evaluated on a EMA database for six articu-
latory locations using FBE acoustic features computed using 25ms
frame length and 10ms frame shift. Employing this database is of
interest because multi-speaker measurements are available for both
male and female speakers which will be useful for further investiga-
tions on the speaker independent training AAI systems. Compared
to the baseline model, r a higher Pearson correlation and a significant
reduction in the RMSE is observed for each of the male and female
speakers.

For the future work, we will consider exploration of recurrent
layers in our structure which leads to have a smoother estimated tra-
jectory compared to the feed forward networks. Also, having convo-
lutional layers on top of estimated trajectories before concatenating
them to the input vectors, will be of interest to see what will be the
frequency response of the filters.
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