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Abstract. A stochastic theory for the toppling activity in sandpile models is
developed, based on a simple mean-field assumption about the toppling process.
The theory describes the process as an anti-persistent Gaussian walk, where
the diffusion coefficient is proportional to the activity. It is formulated as a
generalization of the Itô stochastic differential equation with an anti-persistent
fractional Gaussian noise source and a deterministic drift term. An essential
element of the theory is rescaling to obtain a proper thermodynamic limit.
When subjected to the most relevant statistical tests, the signal generated by
the stochastic equation is indistinguishable from the temporal features of the
toppling process obtained by numerical simulation of the Bak–Tang–Wiesenfeld
sandpile.
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1. Introduction

The existence of self-organized critical (SOC) dynamics in complex systems has traditionally
been demonstrated through numerical simulation of certain classes of cellular automata referred
to as sandpile models [1, 2]. Nonlinear, spatio-temporal dynamics is always essential for the
emergence of SOC behavior, but the details of this dynamics for a specific natural system is
often poorly understood and/or not accessible to observation. In many cases the information
available is in the form of time series of spatially averaged data like stock-price indices,
geomagnetic indices, or global temperature data. For scientists who deal with such data a natural
question to ask is: are there specific signatures of SOC dynamics that can be detected from
such data?

In this paper, we shall report some results which provide a partial answer to such a question.
Some important statistical features of the toppling activity are common to most weakly driven
sandpile models described in the literature, and these are used to formulate a stochastic model
for the toppling activity signal. A benchmark case against which our results are tested, is a
numerical study of the Bak–Tang–Wiesenfeld (BTW) sandpile [3]. A crucial step in our work is
a rescaling of the dynamical variables which allows a natural passage to the thermodynamic
(continuum) limit. We demonstrate that this leads to new results concerning SOC scaling
laws. We find that the probability density function (pdf) for the toppling activity is a stretched
exponential, close to the Bramwell–Holdsworth–Pinton distribution [4], or close to a Gaussian,
depending on whether the sandpile is so slowly driven that avalanches are well separated, or it
is driven so hard that several avalanches run simultaneously. The pdf for avalanche durations is
unique in the thermodynamic limit, but is not a power law, unless we redefine the meaning of an
avalanche to be the activity burst between successive times for which the activity rises above a
positive threshold. Implementing such a threshold yields an exponent for the avalanche duration
pdf of 1.63, in agreement with [5], but in contradiction to [6]. It also gives power-law quiet-time
statistics as in [5] and thus refuting the claim in [7] that SOC implies power-law distributed
avalanche durations, but Poisson-distributed quiet times.

The sandpile models considered in this short paper deal with a d > 2-dimensional lattice
of N d sites each of which are occupied by a certain integer number of quanta which we
conveniently can think of as sand grains. The dynamics on the lattice is given by a toppling
rule which implies that if the number of grains on a site exceeds a prescribed threshold, the
grains on that site are distributed to its nearest-neighbors. If the occupation number of some of
these neighbors exceed the toppling threshold these sites will topple in the next time step, and
the dynamics continues as an avalanche until all sites are stable. The details of this toppling rule
can vary, but a useful theory for a broad class of natural phenomena should not be very sensitive
to such detail.

In natural systems, the SOC dynamics is usually driven by some weak random external
forcing. In sandpile models, this can be modeled by dropping of sand grains at randomly
selected sites at widely separated times. In numerical algorithms, this is often done by dropping
sand grains only at those times when no avalanche is running. This ensures that the drive does
not interfere with the avalanching process. Usually it will then only take a few time steps from
one avalanche has stopped until a new starts, so for a large system the quiet times between
avalanches will appear insignificant compared with their durations.

A more physical drive would be to drop sand also during avalanches. If the dropping rate
is slower than the typical duration of a system-size avalanche the drive would still not interfere
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with the avalanche dynamics, but the quiet times would depend on the statistical distribution of
dropping times, which is typically a Poisson distribution. In many natural systems, however,
avalanching occurs all the time, corresponding to a higher driving rate. In such cases, and
also because there will always be noise in time-series data, we cannot identify the start and
termination of an avalanche from a zero condition of our observable. In practice, we have to
define avalanches as bursts in the time series identified by a threshold on the signal [5]. In a
sandpile simulation such bursts are correlated and therefore the quiet times between the bursts
are power-law distributed even if the dropping of sand grains is chosen to be a Poisson process.
Hence, if focus is on modeling features that can be detected in observational data we shall think
of avalanches as activity bursts starting and terminating at a nonzero threshold value. Moreover,
one of the main results of this work is that power-law shape of the pdf for avalanche duration is
true only if one defines avalanches in this way.

2. The stochastic model

The BTW model was first developed in the seminal paper [3], and is described in many
monographs like [1, 2]. If zi is the number of sand grains occupying the i th site, the toppling rule
is zi → 0 and z j → zi + zi/4 if zi is overcritical and j is a nearest-neighbor of i . Whenever the
configuration has no overcritical sites a grain is added to a random site with uniform probability
on the lattice. In a continuously driven system, grains are added at random times at a preset
average rate, even when avalanches are running.

We shall assume that the lattice has linear extent L = 1 with N d sites, so the
thermodynamic limit N → ∞ can be thought of as a continuum limit. The sandpile evolves in
discrete time steps labeled by k = 1, 2, 3 . . ., and the number of sites whose occupation number
exceeds the toppling threshold at time k is called the toppling activity xN (k). The toppling

increment is 1xN (k)
def
= xN (k + 1) − xN (k). Let us define two active sites as dynamically

connected if they have at least one common nearest-neighbor, and define a connected cluster as a
collection of active sites which are linked trough such connections. From numerical simulations
of sandpiles we observe that such clusters never consist of more than a few elements and
that the instantaneous number of clusters nN increases in proportion to xN (see figure 1).
This implies that at each time k we can label the clusters by i = 1, . . . , cx N (k), where c < 1
is a constant depending on the specific toppling rule and the dimension d of the sandpile.
We can then decompose the increment 1xN (k) into a sum of local increment contributions
ξN ,i(k) produced by each of the clusters, i.e. 1xN (k) =

∑cxN (k)

i=1 ξN ,i(k). We think of the local
increment contributions as random variables which take values in a finite sample space. Indeed,
if each cluster i only consists of a single overcritical site, then ξi,N takes values in the set
{−1, 0, . . . , 2d − 1}.

As a first step to a stochastic model we make a mean-field assumption [8, 9], which
impiles that ξN ,i(k) and ξN , j(k) are statistically independent for i 6= j . Then the central limit
theorem states that in the limit N → ∞, xN (k) → ∞ the conditional probability density
P[1xN (k)|xN (k)] of an increment 1xN (k), given xN (k), is Gaussian with variance σ 2 xN (k),
where σ 2

= c2(E[ξ 2
N ,i |xN ] − (E[ξN ,i |xN ])2). This has been verified numerically in the two-

dimensional BTW model as shown in figure 2. The figure demonstrates the need to introduce a
conditional probability: the conditional variance of the increments is proportional to xN and the
conditional mean is not zero.
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Figure 1. The blue squares mark the active (toppling) sites at a randomly chosen
instant during an avalanche in a BTW lattice. Note that all the marked sites
belong to one avalanche only, i.e. they all are the result of one site going unstable
some time in the past due to the feeding of a grain at a marginally stable site. The
figure illustrates that a large avalanche in a large sandpile at a given time will
consist of a large number of small disconnected clusters.

In fact, numerical simulations show that the conditional mean increment, E[1xN |xN ], is
positive for small xN , reflecting the natural tendency for the activity to grow when it is small. On
the other hand, the mean increment decays exponentially to zero for moderate xN , and becomes
negative when xN is comparable with the activity of a system-size avalanche, reflecting the
limiting influence of the finite system size. These effects will be incorporated as a drift-term
correction to the model, but for now we consider for simplicity of argument a Gaussian process
with non-stationary increments and no drift term:

1xN (k) = σ
√

xN (k) w(k), (1)

where w(k) is a stationary Gaussian stochastic process with unit variance. In section 3, we
demonstrate from the numerical sandpile data that the normalized toppling process

W (k)
def
=

k∑
k′=0

w(k ′) =

k∑
k′=0

1xN (k ′)

σ
√

xN (k ′)

has the characteristics of a fractional Brownian walk with Hurst exponent H ≈ 0.37 on
timescales shorter than the characteristic growth time for a system-size avalanche, consistent
with a power spectrum which scales like f −1.74. Thus, we model the normalized increment
process as w(k) = WH (k + 1) − WH (k), where WH (k) is a fractional Brownian walk with
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Figure 2. (a) A realization of the toppling activity xN (t) in the BTW sandpile.
(b) The increments 1xN (t) = xN (t + 1) − xN (t) of the trace in (a), showing that
1xN (t) is large when xN (t) is large. (c) Conditional pdfs of xN + 1xN for
xN = 10, 20 and 30, respectively. (d) The conditional mean and variance of 1xN

versus xN .

Hurst exponent H . For the transition to the thermodynamic limit, where time will become
a continuous variable, we can think about WH (k) as the result of a discrete sampling of the
(continuous-time) fractional Brownian motion (fBm) WH (t). This process has the property
〈|WH (t + τ) − WH (t)|2〉 = τ 2H . We now have a stochastic difference equation

1xN (k) = σ
√

xN (k) (WH (k + 1) − WH (k)). (2)

Numerical simulations show that xN ∼ N D1 ,4 where 0 < D1 6 d can be interpreted as a fractal
dimension of the set of active sites imbedded in the d-dimensional lattice space. This property is
used to rescale xN (k) such that it has a well-defined limit as N → ∞. We also have to rescale the
time variable by letting t = k1t , where 1t = N−D2 . The value of D2 will become apparent if
we define the normalized activity variable X N (t) = N−D1 xN (t/1t), such that the corresponding
increment becomes

1X N (t) = N H D2−D1 σ
√

X N (t) 1WH (t), (3)

where 1WH (t) = WH (t + 1t) − WH (t). A well-defined thermodynamic limit N → ∞

requires D2 = D1/2H , for which equation (3), by introduction of the limit function

4 The BTW model does not exhibit perfect finite-size scaling [2] and hence the scaling xN ∼ N D1 is not valid
for very large activity. The effect of imperfect scaling with increasing N can be built into equation (4) through an
N -dependent drift term. However, the distributions of duration and size of subsystem size avalanches (defined by
a threshold Xc > 0) is not sensitive to this feature of the BTW model. We have given a detailed treatment of this
problem in [10].
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Figure 3. (a) Structure functions S(q, l) plotted versus l in a log–log plot for
q = 1, . . . , 5. (b) The scaling exponent for the structure functions (the slopes of
the lines in (a)) plotted against q .

X (t) = limN→∞ X N (t), reduces to the stochastic differential equation

dX (t) = f (X) dt + σ
√

X (t) dWH (t), (4)

where we have heuristically added a drift term f (X) dt to account for the nonzero mean of
the conditional increment. We take f (X) to be an exponentially decaying function based on the
numerical results from the sandpile. In the two-dimensional BTW model, we find that D1 ≈ 0.86
and hence D2 = 1.16. This defines rescaled coordinates X N = xN/N 0.86 and tN = k/N 1.16.

3. The normalized toppling process is a fractional Brownian walk

A fractional Brownian walk is a self-affine stochastic process with Gaussian increments and
self-affinity (Hurst) exponent H . In strict mathematical terms a stochastic process W (k) is
self-affine only if the rescaled process c−H W (ck) is equal in distribution to W (k) for any
positive stretching factor c. This means that for any sequence of time points k1, . . . , kn and
any positive c, the random variables c−H W (ck1, . . . , ckn) have the same joint distribution
as the random variables W (k1, . . . , kn). This definition can be used for theoretical purposes,
but not as a practical tool to verify the self-affinity of actual time series. This can be done,
however, by means of multifractal analysis. The simplest method is to compute structure
functions,

S(l, q) = E[|W (k + l) − W (k)|q]. (5)

For a multifractal process S(l, q) ∼ lζ(q), where ζ(q) may be a nonlinear function of q, whereas
for a monofractal (self-affine) process ζ(q) = q H , where H is the self-affinity exponent
(see for instance the review [11]). This means that for a self-affine process we have linear
relations between log (S(l, q)) and log (l) and between ζ(q) and q. These linear relationships
are shown for the normalized toppling activity of numerical sandpile simulations in figure 3, and
demonstrates that this process is a fractional Brownian walk with Hurst exponent H = 0.37.
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4. Analysis of avalanches

A time series X (t)> 0, representing a succession of avalanches with zero quiet times, can
be constructed numerically from the discrete-time version of equation (4) by integrating the
equation using realizations of the fractional Gaussian noise process 1WH (t). At those times
when X (t) drops below zero we consider the avalanche as terminated, and a new, independent
realization of 1WH (t) is generated and used to produce the next avalanche. From long,
stationary time-series generated from the stochastic model and from the sandpile model this
way, we can construct pdfs P(X) which turn out to give almost identical results for the
two models (see figure 4). The shape of this pdf is universal in the thermodynamic limit: a
stretched exponential P(X) ∼ exp (−aXµ) with µ ≈ 0.5. A different pdf appears if the time-
series are constructed by launching the avalanches at random times (Poisson-distributed) with
characteristic time between launches shorter than the growth time of a system-size avalanche.
In this case several avalanches may run simultaneously, and for moderate strength of the drive
P(X) from both models are close to the Bramwell–Holdsworth–Pinton distribution, which was
claimed to be valid for the toppling-activity in the BTW model in [4]. However, for stronger
drive the pdf tends more toward a Gaussian. These results are merely empirical, based on the
numerical sandpile simulations. So far, there are no hard analytical results on the shape of the
activity pdf.

Consider a solution of equation (4) with initial condition X (0) = Y > 0, and let P(X, t)
be the evolution of the density distribution in X -space of an ensemble of realizations of the
stochastic process X (t) all launched at activity X = Y at time t = 0. Every realization X (t) will
sooner or later terminate at a finite time t = τ for which X (τ − 1) > 0 and X (τ )6 0, and then
we remove it from the ensemble. P(X, t) contains information about all commonly considered
avalanche characteristics. For example, it is easily found from equation (4) that, on timescales
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Figure 5. (a) Double-logarithmic plots of the variance of X (t) with respect to
the pdf P(X, t). The variance grows like t2h , with h = 2H = 0.74 for times less
than the duration of a system-size avalanche. (b) Double-logarithmic plots of the
survival function ρ(τ) in the rescaled coordinates X N and tN , demonstrating that
the pdf of avalanche durations is not a power law. The dotted line has slope −0.5.

shorter than the growth time of a system-size avalanche, X (t) is a self-similar process with non-
stationary increments and self-similarity exponent h = 2H [10]. Hence the variance of X (t)
with respect to P(X, t) will scale as ∼ t2h . That this relation holds for the two-dimensional
BTW model can easily be verified through numerical simulation (figure 5(a)).

We can also compute the survival probability ρ(τ) =
∫

∞

0 P(X, τ ) dX , which is the
probability that a realization of an avalanche has not terminated at the time τ . This function
is related to the pdf for avalanche durations by pdur(τ ) = −ρ ′(τ ), so that pdur(τ ) is a power
law if and only if ρ(τ) is a power law. Figure 5(b) shows the function ρ(τ) for numerical
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a small threshold Xc on the toppling activity. The function shows power-law
behavior with exponent −0.63 for avalanches smaller than system size. (b) The
pdf for duration times from simulations of equation (4) when avalanches are
defined in the same way as for the sandpiles. The dotted line has slope −1.63.

simulations of the BTW sandpile in the rescaled coordinates X N and tN , demonstrating that the
pdf for avalanche durations does not represent a power law. The power-law form ρ(τ) ∼ τ 0.5

proposed in [6] can only be obtained as a tangent to the log–log plot of ρ(τ) at a given duration
time τ , and the slope of this tangent depends crucially on the duration time τ for which this
tangent is drawn.

The situation changes if we let all avalanches terminate when X drops below a small
threshold Xc > 0 as proposed in [5]. In this case avalanche durations are the return times to the
line X = Xc, and by changing coordinates to Y = X − Xc we see that this corresponds to the
return times to the time axis of the process given by the stochastic differential equation dY (t) =

σ
√

Xc + Y (t) dWH (t). For small avalanches where X (t) − Xc � Xc we can approximate this
expression with dY (t) = σ

√
Xc dWH (t), i.e. can approximate Y (t) by a fractional Brownian

motion with Hurst exponent H . Using the result of Ding and Yang [12] on the return times of a
fractional Brownian motion we get pdur(τ ) ∼ τ 2−H

= τ−1.63.
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Numerical simulations of the BTW model verify this result: the survival function ρ(τ)

becomes a power law on timescales shorter than a system-size avalanche (see figure 6(a)), and
the slope of the graph in a log–log plot is approximately −0.63, which corresponds to a scaling
of the pdf for duration times on the form pdur(τ ) ∼ τ−1.63. The result is also reproduced by
simulations of equation (4) with an exponentially decaying drift term. Figure 6(b) shows the
log–log plot of the pdf for duration times in the stochastic differential equation and a line with
slope −1.63, demonstrating that the avalanche statistics in the BTW sandpiles is captured by
the stochastic differential equation.

From the scaling ρ(τ) ∼ τ−α we can deduce an exponent for the pdf of avalanche size
as well. On the timescales where the toppling activity can be approximated by a fractional
Brownian motion WH (t), the signal disperses with time as X ∼ t H , the size of an avalanche of
duration τ scales like S(τ ) ∼

∫ τ

0 t H dt ∼ τ H+1. Assuming that the pdf for avalanche size is on
the form psize(S) ∼ S−ν , the relation psize(S) dS = pdur(τ ) dτ yields τ−ν(H+1)+H

∼ τ−α−1, so

ν =
H + α + 1

H + 1
=

2

H + 1
. (6)

With H = 0.37, we obtain ν = 1.46. The dependence of α and ν on H is the same as obtained
in [13] and [14].

We also remark that if we omit the drift term and let H = 1/2 and Xc = 0, we obtain the
so-called mean-field theory of sandpiles. In this case, the stochastic differential equation has a
corresponding Fokker–Planck equation

∂ P

∂t
=

σ 2

2

∂2

∂ X 2
(X P).

If we solve this equation on the interval [0, ∞) with absorbing boundary conditions in X = 0,
we can obtain an analytical expression for P(X, t), and from some straightforward algebra,
we find for large τ that pdur(τ ) ∼ τ−2 [10]. Since Xc = 0 we cannot approximate the toppling
activity by a Brownian motion on any scale and thus X (t) diverges like ∼ th , where h = 2H . By
replacing H with h = 2H in equation (6) we get psize(S) ∼ S−3/2, in agreement with previous
mean-field approaches [8, 9].

5. Concluding remarks

We point out that the validity of equation (4) is not restricted to the BTW model. For instance,
the equation has been verified for the Zhang model [10, 15], though with a different Hurst
exponent H . Time series of global quantities derived from numerical simulation of different
sandpile and turbulent fluid systems can be shown to be adequately described by generalizations
of equation (4), where H , the specific form of the ‘diffusion coefficient’ in the stochastic term,
and the drift term, all depend on the system at hand [10].
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