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"Do... or do not. There is no try."
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Summary

The vascular endothelium is the innermost cell layer of all blood and lymphatic vessels,
which reacts to diverse stimuli with a multitude of biological functions. This thesis
explores various aspects of endothelial cell biology, including inflammatory responses,
cell type enriched transcriptional profiles, and functional investigation of an
uncharacterised gene predominantly expressed in this cell type .

Paper | focuses on the response of endothelial cells to the pro-inflammatory
cytokine tumour necrosis factor (TNF). Endothelial cells were exposed to TNF and
gene expression profiles were analysed at various time points up to 72 hours, to map
global temporal changes. The analysis revealed two distinct response phases: an
acute one occurring within 1-4 hours and a later one between 12-24 hours. We
identified uncharacterised genes, including long non-coding RNAs and pseudogenes,
which were regulated during the acute response. Genes regulated in the later phase
were largely related to interferon signalling and anti-viral responses. We provide an

online portal (www.endothelial-response.org) for user friendly access to all data.

Paper Il utilises human adipose tissue bulk RNA-sequencing data to generate a
cell type specific transcriptomic atlas. An integrative correlation method was used
to identify over 2,300 cell-type-enriched transcripts, including 157 endothelial-enriched
transcripts in visceral and 155 in subcutaneous adipose tissue. Comparative analysis
identified cell types driving gene expression differences in between subcutaneous and
visceral adipose tissue and sex-specific cell type profiles. Data is incorporated into the

Human Protein Atlas (www.proteinatlas.org/). These results, in combination with other

related studies from our group, were used as the basis for selection of an endothelial
enriched gene for characterisation in Paper IIl.

Paper Ill focuses on the functional investigation of the endothelial-enriched
transcript KANK3. KANKS3 expression and distribution was modified by shear stress
and KANK3 knockdown induced enhanced cell motility. The expression levels of the
coagulation factor tissue factor (F3) and of the anti-fibrinolytic factor PLAT were also
modified by KANK3 knockdown, with corresponding enhancement of thrombin
generation in plasma, attributable to tissue factor up regulation.

This thesis contributes to our understanding of endothelial cell responses to
inflammation, demonstrates how to extract useful information from existing datasets

and provides the first functional characterisation of an endothelial enriched gene.


http://www.endothelial-response.org/
https://www.proteinatlas.org/

List of Papers

Paper |

Eike C Struck, Tatiana Belova, Ping-Han Hsieh, Jacob Odeberg, Marieke L Kuijjer,

Philip J Dusart, Lynn M Butler: Global transcriptome analysis reveals distinct
phases of the endothelial response to tumour necrosis factor. Pre-print:
https://www.biorxiv.org/content/10.1101/2023.06.04.543378v1

Re-submitted following revision at Journal of Immunology.

Paper I

Marthe Norreen-Thorsen, Eike Christopher Struck, Sofia Oling, Martin Zwahlen,

Kalle Von Feilitzen, Jacob Odeberg, Cecilia Lindskog, Fredrik Pontén, Mathias
Uhlén, Philip James Dusart, Lynn Marie Butler: A human adipose tissue cell-type
transcriptome atlas. Cell Reports (Volume 40, Issue 2, 12 July 2022, 111046).
https://doi.org/10.1016/j.celrep.2022.111046

Paper Il

Eike Christopher Struck, Sofia Maria Oling, Philip James Dusart, Marthe Norreen-

Thorsen, Julian Connor Eckel, Larissa Dorothea Kruse, Casper Ullsten-Wahlund,
Jacob Odeberg, Clément Naudin, Lynn Marie Butler: KANK3 is a shear stress
regulated endothelial protein with a role in cell migration and tissue factor
regulation.

Manuscript.



Abbreviations

aa

AT
ATP
BAT
BH
BSA
CAT
CDH5
cDNA
CTRL
CVv
DAPI
DEG
DNA
DSG2
EC
ECM
EDHF
eNOS
ESAM
FA
FACS
FC
FVII
FVila
Flll, F3
GTEX
GO
HCAEC
HDMEC
HPA
HPAEC
HREC
HUVEC
ICAM1
IFN
IHC
IL1B
ISG
JAM
JAM-A/ F11R
KANK
KANK3
kb
KIF21A
LC
LIMMA
LPS

Amino acids

Adipose tissue

Adenosine triphosphate

Brown Adipose Tissue

Benjamini-Hochberg

Bovine Serum Albumin

Calibrated Automated Thrombogram
Cadherin 5/ VE-Cadherin

Complementary DNA

Control

Coefficient of variation
4',6-diamidino-2-phenylindole

Differentially Expressed Gene
Deoxyribonucleic Acid

Desmoglein-2

Endothelial Cell

Extracellular Matrix

Endothelium derived hyperpolarising factor
Endothelial nitric oxide synthase (also NOS3)
Endothelial selective adhesion molecule
Focal adhesion

Fluorescence-activated cell sorting

Fold change

Coagulation Factor 7

Coagulation Factor 7, activated

Coagulation Factor 3, Tissue Factor (TF)
Genotype-Tissue Expression project

Gene ontology

Human Coronary Artery Endothelial Cells
Human Dermal Microvasculature Endothelial Cells
Human Protein Atlas

Human Pulmonary Artery Endothelial Cells
Human Retinal Endothelial Cells

Human Umbilical Vein Endothelial Cells
Intercellular Adhesion Molecule 1

Interferon

Immunohistochemistry

Interleukin 1B

Interferon-stimulated Gene

Junctional adhesion molecule

Junctional adhesion molecule A

KN motif and ankyrin repeat domain-containing
KN motif and ankyrin repeat domain-containing 3
Kilobases

Kinesin Family Member 21A

Leukocyte

Linear Models for Microarray and RNAseq Data
Lipopolysaccharide



LSEC
MEM
MRNA
NO
NOS3

Y

P
PBS

PCR
PLAT
PLAU
PROCR
PECAM1
gPCR
Ref.T
RNA
RNAseq
RT-PCR
ROS
SAT
ScRNAseq
SD
SELE
SELP
SEM
SMC
SNPs
TF
TFPI
™
TNF
TNF+
tPA
TPM
UMAP
uPA
uT
UTP
VAT
VCAM1
VWF
WAT
WGCNA
WPB

Liver Sinusoidal Endothelial Cells
Minimal Essential Medium

Messenger RNA

Nitric oxide

Nitric oxide synthase 3 (see eNOS)
Spearman's rho, Speramn's correlation coefficient
P value

Phosphate buffered saline
Polymerase chain reaction
Plasminogen Activator, Tissue Type
Plasminogen Activator, Urokinase
Protein C Receptor

Platelet endothelial adhesion molecule
Quantitative polymerase chain reaction
Reference Transcript

Ribonucleic acid

RNA sequencing

Reverse Transcription PCR

Reactive Oxygen Species
Subcutaneous Adipose Tissue

Single cell RNA sequencing

Standard deviation

E-Selectin

P-Selectin

Standard error over mean

Smooth Muscle Cell

Single nucleotide polymorphism

Tissue Factor (not to be confused with transcription factor)

Tissue Factor Pathway Inhibitor
Thrombomodulin

Tumour Necrosis Factor

TNF-treated

Tissue-type plasminogen activator

Transcripts per Million

Uniform Manifold Approximation and Projection
Urokinase plasminogen activator

Untreated

Uridine-5-triphosphate

Visceral Adipose Tissue

Vascular Cell Adhesion Molecule 1

von Willebrand factor

White Adipose Tissue

Weighted Gene Coexpression Network Analysis
Weibel-Palade Bodies



Contents

L I ETOAUCTION ettt 1
1.1 The Vascular ENdOthelium ... 1
111 Endothelial HEtErOgENEILY ........ueviiiiiiiiie et 2
112 The Endothelium as Mediator of Vascular TONE ..........occveiiiiiiiiiiiicceee e 4
113 The Endothelial Barrier FUNCHON ..........oouiiiiiiiii et 5
114 The Vascular Endothelium in Acute Inflammation.............ccoooviiiiiiiiicceee 7
1.15 Cytokines in Vascular BiOlOQY ..........uuuiieeoiiiiiiiiieiee e s siciiie e e e e e e sstrae e e e e e e s s ssnnnanaeaaeeeeanns 8
1.1.6 The Endothelium in Angiogenesis and Vasculogenesis .......cccccceeevviiiviieeee e ssciiieeeeennn 9
11.7 The Vascular Endothelium in HAeMOSLASIS..........cccvvviiiiiiiciiiicc e 10
118 The CoaguIation CaASCAUE .........ccoiiiiiiiiiiii ettt 13
1.1.9 Fibrinolysis — The Degradation of BIoOd CIOtS .........c.ueviiiiiiieiiiiiie e 15
1.2 The Endothelial-enriched TransCriptoOmMe ..........oooviiiiiii e 16
121 Adipose Tissue Cell Type Enriched Transcriptome ..........cccoovvviiiiiiieiiiiiee e 17
1.2.2 0 L] 00 TS =T 7T 1 19
1.3 The Endothelial-enriched Transcript KANKS3 ..., 21
131 FOCAI ADNESIONS ...ttt 23
1.4  Gene EXpression Profiling.....ccccc i 26
141 The Central Dogma of Molecular Biology ............coouiiiiiiiiiiiiiiiiciee e 26
1.4.2 The Fate of a Cell: From Genome to Transcriptome to Proteome.............cccovcvvveeinnnenn. 27
1.4.3 LI L I = LTS Tod 101 1= 28
1.4.4 LI T o) A 5/ o= 29
145 TRE PIOTEOMIE ...ttt et e e s 31
1.4.6 Advantages and Disadvantages of Transcriptomics and Proteomics..................oeo..... 32
1.5 Web-Based Resources and Social Media in Biological Research ................... 33
2 AIMS OF the TRESIS ..oiiiiiiii e 35
3 MEthOAOIOGY oo 36
3.1  RNA SequenCiNg (RNASEQ) ...uuuuuuuuuiiiiuitiiniiiiiueetieeneeenensnsennesessnssnennneneeeeeeeneennanene 36
311 BUIK RINASEQ ettt ettt e e ettt e e e e e et e e e e e e e e e e nnaaeees 36
3.1.2 SIiNGIE CIIRNASE( ....eeeiei ittt ettt e e et e e et eeeanees 38
3.1.3 Types of RNAseq Used in ThiS ThESIS......ccoiiiiiiiiiiie e 39
3.2  Normalisation of RNASEQ Data.........coiiiiiiiiiiiiiiiii e 40
3.2.1 GEINE COUNTS....etiiiiii ettt e e e e e e e e e s s e e e e e e e aae 40
3.2.2 RPM/CPM, RPKM @nd FPKM ......iiiiiiiiiiie ettt 42
3.2.3 Transcripts Per Million (TPM) ...t 42
3.24 Linear Models for Microarray and RNAseq Data (Limma) ..........cccceeeviiiiiiieneeeeeninieee 43
3.25 DiIfferential EXPrESSION .......uiii ittt ettt e e et e e e e 43
3.2.6 Differential Expression Analysis for Sequencing 2 (DES€Q2) .......cccccvveiiiiiieeiiiineennnn, 44

3.2.7

(@] 1 =T 1Y, =31 0T Yo 45



R I ) = L ES A o= I LY, Lo Yo KT 45

3.3.1 Calculation of Coefficient of Variation (CV) .......cceeoiiiiiiiiiiiieeiee e 45
3.3.2 Multiple TeSHNG COMECTION ....ci.uiiiiiiiiiit ettt 45
333 Weighted Gene Coexpression Network Analysis (WGCNA) ......coovvveiiiiiieiiiiiee i, 46
3.34 Gene ontology enrichment analySiS .........ocviiiiiiiiiei e 48
3.4  Human Umbilical Vein Endothelial Cells (HUVEQC)............uuuuiiiiiiiiiiiiiiiiiiiiiiinnns 49
A MEENOAS . 51
4.1 Endothelial Extraction, Culture and Stimulation .........coeeevviiiiiiiieeeeeeeeeeen, 51
4.1.1 Extraction of endothelial CellS .........oc.uuiiiiiiii e 51
4.1.2 INFIAMMALION MOTEIS ... 52
41.3 R -gP C R 52
414 RNA isolation and SEQUENCING ....cocoeeeie it 52
4.2  Project 1: 72h TNF-Stimulation ANalYSiS ..........uuuuuiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinninenns 54
42.1 Gene Centric and Module Centric APProaches...........ccevvvvviiiviiiiiiieeeeeeee e 55
4.2.2 Module Independent Definition of Regulatory Profiles ..........ccccoceiiiiiinii 56
4.2.3 WEDSITE GENEIALION ....cci ittt 57
4.3 Adiposetissue enriched tranSCriptOmMe .......cceeiiiieiiiiiiiiice e 57
43.1 Genotype Expression Project Bulk RNAseq Data Set ..........cccccoevvveviviviiiiieeeeeeee 57
4.3.2 Integrative Correlation Based ANalySiS .......cooooveiiieie i, 57

4.3.3 Integrative Correlation Based Analysis in Bulk Sequence Data Using Cell Type Specific

R (=T =T oI I =V £ ] o N 58
4.3.4 RV =T )T o T o PSR 61

4.4  Functional Characterisation of KANKS3.......ooo i 62
44.1 Gene Knockdown and Recombinant KANK3 Protein EXpression.........cccoccevvevvvveeeenee 62
4.4.2 Confocal and Structured Hlumination MICrOSCOPY .....ccevvvvviieiiiiiiiiieieieeeeeeeeeeeeeeee e 62
4.4.3 Wound healing assay ("ScratCh asSay™)......cccoeeeieie e 63
444 Calibrated Automated Thrombogram (CAT) ....ccvvviviiiiiii e 63
445 FIOW Gy OMBIIY ... 65

D PaAPEI SUMMIAIIES ...ttt e e e e e e e ettt e e e e e e e e e e sttt e e e e eaeeesenaaanans 66
L0t R o o ] = o3 66
I o (0T o A | BTN 67
TR T o 0] =T o A || PPN 68

I B TE=Y o U 111 [0 o S PPSST 69
6.1  Project | - TNF 1iME COUISE cuuuuiiiiiiiiii et c et e e et e e e e e et e e e e et e e e aaa e e eeneans 69
6.2 Adipose TiSSUE TranSCrPIOMIE ..o uuuii e e et eeeeeeeeees 72
LS T 2N V1 S SURPPPPUPR 74

N o ] o o 11 F=] Lo o ISP 76
8  FULUIE PeISPECTLIVES ..ot e e e e e e eeenaanaes 78

9 (RS (= LoT= ISP 80



List of Figures

Figure 01:
Figure 02:
Figure 03:
Figure 04:
Figure 05:
Figure 06:
Figure 07:
Figure 08:
Figure 09:
Figure 10:
Figure 11:
Figure 12:
Figure 13:

Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:

Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:

The general structure of blood vessels

The vascular endothelium

Phenotypic differences of endothelial cells from different sources

The endothelium mediates blood pressure through communication with SMC
The endothelial junction

The endothelial glycocalyx

LC recruitment to the site of inflammation is facilitated by EC-LC interactions
The endothelium in angiogenesis

Overview of EC derived antithrombotic factors

Overview of EC derived prothrombotic factors

The coagulation cascade and role of the endothelium in coagulation
Principle of fibrinolysis

Definition of the endothelial-enriched transcriptome using a correlation-based
approach

Analysis and definition of the adipose tissue transcriptome

Distribution of white (WAT) and brown adipose tissue (BAT)
Endothelial-enriched genes defined by Butler et al. (2016)

General structure of KANK proteins

KANKS3 splicing variants

Localisation and structure of focal adhesions

Overview of differences between genomics, transcriptomics, and proteomics
Derivation of ectoderm, mesoderm, endoderm, and germ cells from a common
progenitor

General principle of RNA sequencing

Principle of single cell RNAseq

Rationale for normalisation in RNAseq

Sequencing depth in RNAseq

Premise of weighted gene coexpression analysis

lllustration of Gene Ontology Analysis

Extraction and culture of human umbilical vein endothelial cells

Two-sided approach for data analysis

RNA sequencing data from adipose tissue

Expression of reference transcripts in two example cell types

Differential correlation score

Principle of wound healing assay in endothelial cell culture

Thrombin generation analysis using a calibrated automated thrombinoscope
Endothelial-response website resource

01
02
03
04
05
06
07
09
11
12
13
15

16

18
19
21
22
23
24
26

27

36
38
40
41
46
48
49
52
58
60
61
63
64
71

Temporal differential expression profile of KANK3 in HUVEC after TNF stimulation 74



1 Introduction

The articles summarised in this thesis explore different facets of endothelial cell biology
and transcriptomics, shedding light on the complex processes involved in cellular
responses to stimuli, tissue dependent transcriptomics, as well as the role of cell type
enriched transcripts. The following introduction summarises endothelial participation in
key vascular processes, important aspects of adipose tissue biology, the basics about
transcriptomics, including normalisation methods and statistical analyses, and dives

deeper into important parts from the respective studies.

1.1 The Vascular Endothelium

Blood vessel

Endothelial cells
tunica intima

Smooth muscle cells
tunica media

Blood flow

tunica adventitia

Figure 01: The general structure of blood vessels: The blood vessel is made up of three
layers: the tunica intima, containing the endothelium and the basal lamina, the tunica media,
which is made up of smooth muscle cells and elastic fibres, and lastly the tunica adventitia,
that makes up the outermost layer, composed of connective tissue (1).

The vascular endothelium is the innermost cell layer of all blood and lymphatic vessels
(Figure 01 & 02). Amongst other functions, it separates the blood from the surrounding
tissue (2). With a surface area of 4000—-7000 m? and an average weight of ~1kg the

endothelium is one of the biggest organs in the average adult human body (3).

Earlier described as merely an inert separator between blood circulation and organs
with a rather passive role (4), the endothelium is now well recognised as a dynamic
organ that reacts to diverse stimuli and has a multitude of biological functions (2).
Endothelial cells (EC) play pivotal roles in many vascular processes, such as control
of haemostasis and thrombosis (5), mediation of inflammation (6), vascular tone (7),

angiogenesis (8), and metabolic transport between blood vessels and tissues (9).
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Figure 02: The vascular endothelium: Cross section of a blood vessel highlighting the
structure of the vascular endothelium and the surrounding smooth muscle cell layers. The
vascular endothelium is the innermost layer of all blood vessels and separates blood from
surrounding tissue (2).

Healthy EC display anti-thrombotic and anti-inflammatory properties, while endothelial
dysfunction leads to a reversal of these properties. The healthy endothelium is defined
by the ability to maintain the vascular tone, and constitutively expresses vasodilators,
such as nitric oxide (NO) and prostacyclin, alongside minimal levels of reactive oxygen
species (ROS) and uric acid (10, 11). Endothelial dysfunction refers to an activated or
damaged endothelium which exhibits an impairment in its regular function. It is
characterised by a reduction in vasodilation, increase of ROS, and upregulation of
adhesion molecules. EC activation leads to a prothrombotic, pro-inflammatory surface
with increased permeability (12). Endothelial dysfunction can cause a range of
vascular disorders, which include atherosclerosis, hypertension, coronary artery

disease and thrombosis (13).

1.1.1 Endothelial Heterogeneity

Endothelial phenotype and function differs depending on location and tissue (14, 15)
e.g., dynamic vascular fenestrations found in liver sinusoidal EC, facilitate bidirectional
transport of substrates (16). The selectively-permeable EC in the blood brain barrier
regulate in- and outflow of substances (17). Heart EC have specialised functions in
cardiac physiology (18). EC exhibit differences along the vascular tree, for example
EC dependent dilation depends on the vessel origin (11). Moreover, within capillaries

of a single organ, distinct subpopulations of specialised EC can be identified (19).
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Endothelial specific gene expression and functions have been previously described in
its relation to different vascular beds and tissues. They are highly specific compared
to housekeeping genes, constitutive genes that are essential for cellular functions, and
other gene clusters (20, 21) and one could reasonably infer that tissue- and cell-type

specific expression relates to tissue- and cell-type specific functions (22).

Figure 03: Phenotypic differences of endothelial cells from different sources: EC
phenotype differs depending on vascular bed and cellular function. Human umbilical vein
endothelial cells (HUVEC) and liver sinusoidal endothelial cells (LSEC) were stained for cell
plasma membrane (Cell Mask™). (A) HUVEC display an even, unperforated surface, while (B)
LSEC are fenestrated. Fenestrations (yellow box) are transmembrane nanopores that enable
passive transportation between the blood components and underlying cells. They cluster in
groups called "sieve plates" (23). These structures are absent in HUVEC [Structured
lllumination Microscopy images received, with courtesy, from Larissa Kruse].

A comparison between human umbilical vein EC (HUVEC), juvenile EC extracted from
the vein of the umbilical cord, with liver sinusoidal EC (LSEC), mature EC extracted
from the small capillaries of the liver, is shown in Figure 03. Both cell types fulfil
specialised functions in their respective organ and express different phenotypes.
HUVEC have a smooth continuous surface (Figure 03 A), whereas LSEC have clusters
of holes, called fenestrations (Figure 03 B), which allow for rapid exchange of

macromolecules between blood and liver tissue (16, 24).



1.1.2 The Endothelium as Mediator of Vascular Tone

EC maintain a delicate balance between the relaxation of blood vessels (vasodilation)
and the contraction of blood vessels (vasoconstriction) through messaging to smooth
muscle cells (SMC) by releasing vasoactive factors. Thereby, they influence blood flow

and blood pressure, a process known as "keeping the vascular tone" (25).
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Figure 04: The endothelium mediates blood pressure through communication with
SMC: (A) Endothelial and smooth muscle cell-cell communication controls blood pressure, by
dilating and constricting the blood vessel through release of various relaxing and contracting
factors. (C) The normal blood vessel displays a balanced lumen size and a normal diameter.
(B) When dilated the vessel diameter is larger and the blood flow is increased. (D) A constricted
blood vessel is tightened, and the diameter is reduced, leading to higher blood pressure and
reduced blood flow (25, 26).

EC-dependent vasodilation is mediated by a multitude of factors, such as nitric oxide
(NO), prostacyclin, and endothelium derived hyperpolarising factor (EDHF). EC
vasoconstriction is facilitated by factors, such as thromboxane, prostaglandin 1, and
endothelin-1 (7) (Figure 04). The release of NO in response to shear stress stimulates
vasodilation, which is directly proportional to the amount of NO released. Additionally,
NO inhibits platelet aggregation, monocyte adherence, and the proliferation of vascular

smooth muscle cells (27).

In response to shear stress or cellular damage, EC release adenosine triphosphate
(ATP), uridine-5'-triphosphate (UTP), and endothelin-1 which act as vasoconstrictors,

and produce less NO and prostacyclin which leads to unopposed vasoconstriction (28).



1.1.3 The Endothelial Barrier Function

Although functionally diverse, the vascular endothelium primarily acts as a selective
barrier between circulating blood and surrounding tissue by regulating tissue perfusion.
The permeability of the endothelial monolayer is tightly regulated and varies depending
on the organ, and is mainly maintained through endothelial junctions, extracellular
matrix and the endothelial glycocalyx (29). EC allow passive diffusion of small
substances, such as solutes, gasses and ions, but under resting conditions repels

structures of higher molecular weight or size, such as proteins or cells (30).
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Figure 05: The endothelial junction: The integrity of endothelial junctions are maintained by
several proteins in three types of junctions: Tight junctions, adherens junctions and gap
junctions. A variety of adhesion molecules, such as JAMs, ESAM, CLDN5, Occludin,
Connexins, PECAM-1, NECTIN, and CDH5, are responsible for the regulation and
maintenance of endothelial junctions (31, 32, 33).

Endothelial junctions are the connecting structures between EC, providing vasculature
integrity and restricting the extravasation of proteins, solutes, leukocytes, and
metastatic cells across the EC barrier. Endothelial junctions are controlled and
maintained through different adhesion molecules, including platelet endothelial cell
adhesion molecule (PECAM1), junctional adhesion molecule A (F11R/(JAM-A)),



junctional adhesion molecule C (JAM3/(JAM-C)), endothelial cell-selective adhesion
molecule (ESAM), claudin-5 (CLDN5), desmoglein-2 (DSG2), nectin-2 (NECTIN2) and
cadherin-5 (CDH5)(34).

These molecules constitute three distinct types of junctional complexes: tight junctions,
adherens junctions, and gap junctions (Figure 05). Tight junctions are positioned distal
to the basal lamina. They create a continuous belt-like structure encircling the cells
and regulating paracellular permeability, the ability to pass between adjacent cells,
through upholding the endothelial barrier function (35). Adherens junctions are located
beneath tight junctions. They facilitate cell-to-cell adhesion by interacting with the actin
cytoskeleton (35, 36). Gap junctions serve as communicative structures between
adjacent cells and enable the passage of small solutes with low molecular weight (36).
The expression and arrangement of these junctions vary based on the specific type of
blood vessels and the organ specific needs. Several EC types, such as liver sinusoidal
EC, are fenestrated, allowing rapid exchange of macromolecules between blood and

tissue (24) without need for junctional changes.

The extracellular matrix (ECM) is a network of proteins with multiple functions: it offers
physical and mechanical support to cells, while also facilitating biochemical
communication between them (37). Remodelling of the endothelial basement
membrane through deposition of extracellular matrix proteins influences endothelial
adhesion and barrier integrity by modulating basal cell contractility and force
transduction at the CDH5 junctions. Hence, ECM remodelling is well recognised to
play a major role in disease progression (38, 39, 40).
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Figure 06: The endothelial glycocalyx: (A) The endothelial glycocalyx is a layer on the lumen
of EC that separates the cell from shear forces of the blood flow. (B) The glycocalyx itself is
made up of several components, mainly glycoproteins and proteoglycans, hyaluronan and
proteins (41, 42, 43).

The endothelial glycocalyx is a negatively charged carbohydrate-rich layer (Figure 06)

connected to the endothelium through proteoglycans and glycoproteins. With a



thickness of 200-400nm, it repels proteins, platelets, and blood cells. It prevents
undesired interactions between blood and the surrounding tissue. Disturbance or
alterations of the negative charge can result in increased vascular permeability.
Furthermore, the inflammatory cytokine TNF has been shown to be a potent disturbing
factor to the endothelial glycocalyx, leading to its shedding (44, 45, 46, 47).

1.1.4 The Vascular Endothelium in Acute Inflammation

Vascular endothelial cells are important regulators of inflammatory response. They
providing an anti-inflammatory and anticoagulant surface in resting state (48) and
undergo morphological and functional modifications when activated by various stimuli.
Such changes include the presentation of pro-inflammatory mediators and the
recruitment of leukocytes (LC) through the expression of adhesion molecules (49). LC
are recruited in a series of sequential interactions between endothelial proteins and
leukocyte ligands. The interactions include the capture of LC through selectins,
followed by rolling, slow rolling, crawling, firm adhesion and transcellular or paracellular
migration through the endothelial layer and the movement to the target tissue (Figure
07) (6, 50, 51).

Movement to

. Capture and rolling * Slow rolling . Crawling . Firm adhesion . Migration . target tissue

Figure 07: Leukocyte recruitment to the site of inflammation is facilitated by EC-LC
interactions: Leukocyte adhesion is a multistep cascade depending on several factors.
Following activation, EC present adhesion proteins, such as P-selectin, E-selectin, ICAM1 and
VCAML1 to recruit flowing leukocytes to the EC monolayer and mediate adhesion. Leukocyte
recruitment is initiated by low-affinity interactions that allow rolling along the surface, followed
by high affinity interactions that induce firm adhesion. Finally, the leukocyte can move through
the endothelial layer by paracellular or transcellular migration into the target tissue (Figure
adapted from Ley, Laudanna (50) (2007)).



The interaction between EC and LC is initiated by different adhesion molecules, such
as selectins (E-selectin (SELE), P-selectin (SELP)). Upon endothelial activation, P-
selectin and Von Willebrand factor (VWF), are rapidly secreted from Weibel-Palade
bodies (small granules located in vascular EC) onto the endothelial surface. The rapid
release of P-selectin is then followed by de-novo transcription of E-selectin (52, 53).
Selectins interact with their respective LC ligands to enable capture and rolling on the
endothelial surface. Further interaction of LC integrins with EC adhesion molecules
intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion protein 1
(VCAML1) triggers slow rolling, followed by crawling, firm adhesion and arrest. This
processes is mainly mediated through chemokines which activate LC receptors and

the endothelium to control homing of LC to the target tissue (54).

The adhesion then strengthens, spreads and LC transmigrate through the endothelial
barrier via transcellular or paracellular diapedesis, facilitated by a set of different
molecules, expressed at the adherent junctions of the endothelium, among others
junctional adhesion molecules (JAMs), PECAM1 (55), CDH5 (56) and ESAM (57).
While cell-cell junctions facilitate the passage of most leukocytes across the
endothelial border in a paracellular way, studies have suggested that CDH5 mediated
migration might occur in a transcellular fashion (56), although results are conflicting

(58). Following transmigration, LC move on to the inflamed target tissue (59).

1.1.5 Cytokines in Vascular Biology

Study 1 of this thesis explores the endothelial response to TNF over time and presents findings
regarding a secondary signalling pathway involving interferon-stimulated genes. Study 3

employs TNF and IL-1B as stimulation agents to induce tissue factor production.

Cytokines are small proteins that act as mediators of cell signalling by binding to
receptors. Pro-inflammatory cytokines, such as tumour necrosis factor (TNF),

interleukins, and interferons play important roles in vascular biology and inflammation.

TNF is a pro-inflammatory cytokine that is mainly produced by pathogen-activated
macrophages and monocytes. It can activate EC in an analogous manner to bacterial
lipopolysaccharide (LPS) and interleukin-1B (IL1B). Activation by TNF leads to
increased vascular permeability and recruitment of leukocytes to the infected target
tissue through expression of adhesion molecules (E-selectin, VCAML1, ICAM1) on the
endothelial surface (60, 61, 62, 63).



Interferons (IFN) are mediators of innate and adaptive response in EC and key players
in antiviral defence. In the presence of viruses, IFN variants are produced by multiple
cell types, such as parenchymal cells, fibroblasts, macrophages, and dendritic cells
(64). IFNs induce interferon stimulated genes (ISGs), proteins with antiviral properties
that can inhibit cell proliferation, mainly through the JAK/STAT pathway, followed by

the activation of nearby cells (65).

1.1.6 The Endothelium in Angiogenesis and Vasculogenesis
Endothelial cells are central in vascularisation, the formation of blood vessels. Two key
processes are angiogenesis, the creation of new blood vessels from existing

vasculature, and vasculogenesis, the de novo creation of new blood vessels (66, 67).
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Figure 08: The endothelium in angiogenesis: (A) Angiogenesis is initiated by pro-
angiogenetic factors such as VEGF. (B) Pericytes, basement cells lining the capillaries and
venules, detach and the basal lamina is enzymatically degraded. (C) EC differentiate into tip
cells and move out of the vessel wall. (D) They extend into sprouting vessels with "stalk cells"
following the tip cell (E) and extend the vessel or sprout (not shown). (F) The vessel matures
by attraction of new pericytes and formation of a new basement membrane. Figure design
adapted from (66).

Angiogenesis (also known as neovascularisation) is the process of new blood vessel
formation from pre-existing ones. This can occur when meet tissue oxygen and nutrient
requirements are not met, to support wound healing, and form the vasculature during
embryogenesis. Therefore, common triggers for angiogenesis are hypoxia and

inflammation (66). Angiogenesis is kept in equilibrium by the interplay of pro-
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angiogenic (VEGF, MMP) and angiostatic factors (Endostatin, TIMP), which control the

"angiogenic switch".
The formation of new vessels in adults is a coordinated multi-step process (66, 68).

1. Angiogenic activation: The initiation is triggered by pro-angiogenic agents,
including vascular endothelial growth factor (VEGF) and basic fibroblast growth
factor (bFGF) (Figure 08A).

2. Matrix degradation: Pericytes, stabilising cells that surround capillaries,
detach and release from the endothelium. EC then break down the basement
membrane through the secretion of proteolytic enzymes, known as matrix
metalloproteinases (Figure 08B).

3. Endothelial differentiation: EC differentiate out of the vessel wall under
precise Notch/DLL4 control. These EC become tip cells, the leading cells at
vascular sprouts (Figure 08C-D).

4. Vessel formation: The tip cells extend filopodia (Figure 08E) that penetrate the
surrounding tissue and lead sprouting vessels towards angiogenic cues.
Proliferating stalk cells follow, the sprouts elongate and create lumens and
connect to form blood-perfused microvascular networks.

5. Maturation: New basement membranes and perivascular cell recruitment

solidifies these networks (Figure 08F).

Angiogenesis can be analysed in vivo, where sprouting of new blood vessels can be
observed using different markers and in different models, such as zebra fish or mouse.
In vitro measurement of angiogenesis can be done using various assays, such as
wound healing assays ("scratch assay"), tube formation assays, in microfluidic assays,
spheroid sprouting assays, or trans well migration assays (66).

The term vasculogenesis, on the other hand, refers to the de novo generation of blood
vessels from mesodermal precursors that differentiate into EC. This mechanism plays
a pivotal role in embryonic development and tissue regeneration. It is essential for

constructing a vascular network to supply tissues with oxygen and nutrients (67, 69).

1.1.7 The Vascular Endothelium in Haemostasis

The endothelium is a key player in the maintenance of vascular haemostasis. In
healthy conditions, the endothelium is non-adhesive and anticoagulant, inhibiting the

activation of platelets and the initiation of the coagulation cascade and maintaining the
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fibrinolytic system. Molecular links between inflammation and thrombosis have been
previously described, and the vascular endothelium is gaining increasing recognition

as a key player in thrombo-inflammation (70, 71, 72, 73).
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Figure 09: Overview of EC derived antithrombotic factors: Endothelial cells express and
secrete a multitude of anticoagulant factors that can inhibit platelets and coagulation factors
(adapted from references as below).
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EC produce and secrete a multitude of anticoagulant and pro-fibrinolytic factors (Figure
09), such as:

e Thrombomodulin (THBD, TM) is a transmembrane glycoprotein that
complexes thrombin, converting it to an anticoagulant enzyme, and furthermore
activating the anticoagulant protein C (74).

e Endothelial protein C receptor (EPCR, PROCR) is a multi-ligand receptor,
which acts as a key player in protein C mediated anticoagulation by induction
of protein C activation (75, 76).

e Protein Z / Vitamin K-dependent protein Z (PROZ) is a glycoprotein that
inhibits coagulation through degradation of Factor Xa (77, 78).

e Antithrombin Il (SERPINC1, ATIII) is an endothelial expressed surface
protein, which is mostly bound to endogenous heparin-like substances. It
inhibits thrombin by forming a complex with it and coagulation factor Xa and
inactivates them (70, 79).

e Additionally, EC express heparan-sulphate proteoglycans and heparan-like
molecules, which act as cofactors for ATl and increase its activity (80).

e Tissue factor pathway inhibitor (TFPI) is an anticoagulant that reduces the
activity of the Flll-Vila complex as well as forms of prothrombinase (81).

e PGI2 and NO act as vasorelaxant molecules that inhibit platelet activation, with
NO acting as additional enhancer for PGI2. PGI2 has been previously described
as the most potent natural inhibitor of platelet aggregation (82, 83, 84).
Endothelial nitric oxide synthases (eNOS, NOS3) produce nitric oxide (85).
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ATP activates adenylate cyclase, leading to elevated levels of cyclic adenosine
monophosphate (AMP). The rise in cyclic AMP inhibits platelet activation
Endothelial cells express ATPases and ADPases to reduce ATP to adenosine
diphosphate (ADP) and ADP to AMP (86).

Tissue-type plasminogen activator (t-PA, PLAT) is a serine protease and a
key player in the breakdown of blood clots. It is found on endothelial cells and

converts plasminogen to plasmin, the primary enzyme in fibrinolysis (87).
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Figure 10: Overview of EC derived prothrombotic factors: Upon activation endothelial cells
express a multitude of procoagulant factors (adapted from references as below).

EC release pro-coagulant factors such as tissue factor (F3), von Willebrand Factor

(VWF), plasminogen activator inhibitor 1 (SERPINE1) and coagulation factor VI
(F8) (Figure 10).

von Willebrand Factor (VWF) is a mediator of platelet adhesion and shear-
induced aggregation, which is stored in Weibel-Palade bodies and rapidly
secreted upon endothelial activation (88).
Factor 8 (FVIII, F8) has been reported in multiple EC types and is packaged in
Weibel-Palade bodies together with VWF. It is a key player in the intrinsic
coagulation cascade and acts as cofactor in the activation of factor X by factor
IXa (89, 90), leading to the common pathway of coagulation (89, 90).
Tissue Factor (FlII) is the initiator of the extrinsic coagulation pathway by
complexing and activating coagulation factor VII and activating FX and the
common pathway of coagulation (91).
Plasminogen activator inhibitor-1 (PAI-1) is an endothelial expressed protein
that inhibits fibrinolysis by acting as inhibitor of tPA and urokinase plasminogen
activator (UPA, PLAU), the main activators of plasminogen. Additionally, to EC
it is expressed in a multitude of cell types, such as: megakaryocytes, smooth
muscle cells, fibroblasts, monocytes, macrophages, adipocytes, and others (71,
92).
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1.1.8 The Coagulation Cascade
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Figure 11: The coagulation cascade and role of the endothelium in coagulation: The
coagulation cascade is a series of protein activations and interactions that lead to the formation
of a clot of cross-linked fibrin. The cascade is divided into three pathways: the intrinsic, the
extrinsic and the converged common pathway. The intrinsic coagulation cascade is activated
through exposure to negatively charged molecules (e.g., bacteria, lipids) and autoactivation of
FXII on their surface. This activates prekallikrein, stabilised by high molecular weight kininogen
(the contact activation system), followed by the activation of more factors, such as XIlI, XI, IX
and a common activation of FX by FVlla, phospholipids, calcium and FlXa. The extrinsic
pathway (tissue factor pathway) is triggered by damaged endothelium and release of tissue
factor, which activates FVII to FVIla and induces FX activation in presence of phospholipids
and calcium. Factor V acts in the intrinsic pathway and forms a prothrombinase complex with
factor X. Both pathways converge in the common pathway, where prothrombin is converted to
thrombin by FXa, simultaneously activating FXIIl to FXllla. Thrombin converts fibrinogen to
fibrin which is crosslinked by FXllla to stabilise the clot. Negative regulators of the extrinsic
pathway are ZPl and TFPI, with TFPI inhibiting TF-FVIla complex activation (adapted from
Palta et al. (2014) and Adams et al. (2009) (93, 94)).

Coagulation, or blood clotting, is the process of stopping bleeding by forming a stable
blood clot. A damaged blood vessel induces vasoconstriction to limit the blood flow,
activates platelets that adhere to the site of injury and form a temporary plug, followed
by activation of the coagulation cascade (95). The coagulation cascade is a series of
seguential enzymatic activations in which proenzymes and profactors are converted to
their active forms (96, 97).
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The coagulation cascade is divided into two pathways, the intrinsic and the extrinsic,
that merge up to form a common pathway (Figure 11). Each of them consists of several
factors that circulate the blood in inactive form. Activation of the intrinsic pathway
occurs when endothelial collagen is exposed, while the extrinsic pathway is initiated
after tissue factor release in response to external injury. Both pathways result in a burst
of thrombin which in return activates fibrin, which is converted to a stable network,
forming a blood clot. The clot acts as protective barrier over the injury site until healing
completes. While intrinsic activation plays a significant role in clot formation in vitro, it
seems to have no impact in vivo, as FXII deficient mice were shown to have regular

haemostatic ability, albeit capability for thrombus formation was impaired (96, 98).
The extrinsic pathway of coagulation (tissue factor pathway)

The extrinsic pathway is initiated by impairment of the endothelium, e.g., from physical
injury like cuts or penetration by sharp objects, as well as from the collapse of blood
vessels during severe cases of sepsis (96). Tissue factor (FlIl) is the primary initiator
of the extrinsic pathway of coagulation and one of the key players in coagulation (91).
Following vessel injury, Flll complexes and activates coagulation factor VII (FVII) to
factor Vlla (FVIla), which in return activates factor X (FX) to factor Xa (FXa) (96). While
cells exposed to the blood flow normally do not express FllII on their surface to prevent
undesirable clotting, this protein is found on a multitude of extravascular cell surfaces,
including smooth muscle cells (99, 100). Endothelial cells have been shown to express

FIIl upon activation which can result in the development of blood clots (5).
The intrinsic pathway of coagulation (contact pathway)

The intrinsic pathway of coagulation is initiated by internal damage to the blood vessel
and exposure of collagen by different factors, such as inflammation or trauma (96).
Factor Xll is activated to FXlla as part of a mechanism that includes high-molecular-
weight kininogen and plasma prekallikrein. FXlla activates FXI to FXla. FXI activates
FIX to FIXa, forming the intrinsic tenase complex (consisting of FVIII, FIXa and Ca?").

The tenase complex activates FX to FXa (96).
The common pathway of coagulation

Both pathways lead to factor X activation. FXa converts prothrombin (FIl) to thrombin,
which in return converts fibrinogen to fibrin. Fibrin is crosslinked by FXIllla which is

activated from FXIII by thrombin. Crosslinked fibrin then forms a stable clot (96).
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1.1.9 Fibrinolysis — The Degradation of Blood Clots

Breakdown of blood clots is a crucial part in wound healing through a process called
fibrinolysis. Fibrinolysis is controlled by plasmin, an enzyme that degrades blood clots
at various places (101). This leads to the circulation of fibrin degradation products,

such as D-dimer, an important marker for the presence of thrombosis (102).
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Figure 12: Principle of fibrinolysis: Cross linked fibrin is degraded by plasmin. Plasmin is
activated through tissue-type plasminogen (tPA) activator and urokinase plasminogen
activator (uPA). Inactivation of these through PAI-1 inhibit the downstream activation of
plasminogen to plasmin (adapted from Meltzer et al. (2009) (103)).

Plasmin is mainly produced in the liver and circulates the blood in its inactive form
plasminogen (104). The conversion of plasminogen to active plasmin, which enables
the process of fibrinolysis, is facilitated by tissue plasminogen activator (t-PA) and
urokinase plasminogen activator (UPA) (103). PAI1 protects, amongst other factors,

against downstream plasmin activation (71) (Figure 12).

Fibrinolysis and the coagulation are intertwined processes that intricately maintain
haemostasis. The initiation of fibrinolysis starts simultaneously with the coagulation
system, working in tandem to control the development of blood clots. This ensures the
fluidity of blood, preventing undesired clots, while simultaneously protecting against
blood loss (103).
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1.2 The Endothelial-enriched Transcriptome

The endothelial-enriched transcriptome describes all genes that display a high EC-
specificity. It was only vaguely defined until Butler, Hallstrom (20) (2016) developed a
then novel method to identify a set of pan-endothelial-enriched genes by profiling 124
body-wide tissue samples from 32 different organs using tissue transcript profiling of
existing RNAseq data. It assumes that the number of EC specific transcripts relates to
the amount of EC (Figure 13). While there were endothelial transcriptomes available
prior to this approach, Butler's approach was distinguished by utilising whole-body

transcriptome, instead of relying on microarray data from isolated cells.

Transcript correlation analysis used to identify EC-enriched genes:
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Figure 13: Definition of the endothelial-enriched transcriptome using a correlation-
based approach: Known endothelial specific reference transcripts were used to compare
against the protein coding transcriptome. Genes with similar correlation behaviour over the
whole sample set were defined as endothelial-enriched. Figure from Butler, Hallstrom (20)
(2016).

Three endothelial cell specific transcripts (VWF, CD34 and CLEC14A) were used as
combined surrogate markers ("reference markers") to create an in vivo endothelial
enrichment score by comparing correlation coefficients to 20.073 mapped protein
coding genes. 234 transcripts were defined as endothelial-enriched. 88 of those gene
transcripts were not previously reported as endothelial expressed, whereas 30 were
completely uncharacterised proteins. One of these uncharacterised proteins is KANKS3,

the target of project 3 (20).
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1.2.1 Adipose Tissue Cell Type Enriched Transcriptome

The adipose tissue cell type enriched transcriptome is presented in study 2.

However, the endothelial enriched transcriptome defined by Butler et al. (2016) has
certain limitations. It exclusively focused on endothelial cells and did not categorise
transcripts based on tissue or sub-tissue location. It lacked definition for other cell
types. It utilised a now outdated version of the GTEx resource. Furthermore, it
incorporated a smaller sample size in comparison to the more recent transcript atlases
established by our group (105, 106, 107). One of the follow up projects, addressing
these issues, was the adipose tissue enriched transcriptome described in study 2 of
this thesis (105).

The adipose tissue (AT) enriched transcriptome describes the specificity of cell-type
transcripts within adipose tissue (Figure 14). It was generated by Norreen-Thorsen et
al. (2022) (105) using adipose tissue bulk RNAseq data from 527 samples of human
visceral and 646 samples of subcutaneous adipose tissue from the Genotype
Expression (GTEx) web resource (108).

AT comprises a variety of cell types, including adipocytes, adipocyte progenitor cells,
endothelial cells, fibroblasts, smooth muscle cells, stromal cells, as well as immune
cells such as macrophages and T cells (105, 109). Ten cell types were profiled using
an integrative correlation approach, based on the one previously defined by Butler et
al. (2016) (20). Using a correlative method of full tissue sequencing, challenges
regarding single cell RNAseq analysis, were bypassed and more than 2,300 cell-type-
enriched transcripts could be identified. Among those were 157 EC enriched

transcripts in visceral and 155 EC enriched transcripts in subcutaneous adipose tissue.
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Figure 14: Analysis and definition of the adipose tissue transcriptome: Unfractionated
human adipose tissue RNAseq transcript levels (TPM) from visceral and subcutaneous
adipose tissue were retrieved from the GTEx database. Cell-type enriched transcriptome
profiles for 10 different cell types were calculated, using a correlative analysis base on three
cell type specific markers per cell type, followed by tissue- and sex-specific comparison (from
Norreen-Thorsen et al. (2022) (105)).

While single cell RNAsequencing studies have been used for identification of adipose
tissue cell specific transcriptomics (110, 111, 112), challenges with this method exist
with regard to large cell types, cells with high buoyancy, or multinucleated cells (113),
leading to the absence of adipocyte data from several single cell RNAseq datasets,
including but not limited to tabula muris and tabula sapiens (114, 115, 116). These

problems are partially addressed by single nuclei sequencing, which uses isolation of
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single nuclei instead of cells, but it is important to note that transcript expression can

vary between nuclei and cytoplasm (117).

1.2.2 Adipose Tissue

Adipose tissue (AT), also known as body fat, is a connective tissue type, which is
mainly composed of adipocytes. It acts as energy depot, mainly in form of lipids,
regulates metabolism and provides insulation (118). The earliest recorded mention of
adipose tissue in published literature can be traced back to 1837, with subsequent
mentions appearing until the 1940s. Long thought of as merely an energy depot and

insulation, adipose tissue remained understudied for decades (119, 120).
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Figure 15: Distribution of white (WAT) and brown adipose tissue (BAT): WAT is the main
deposit of body fat, making up 95% of adipose tissue. WAT is widely distributed across the
body, mostly within subcutaneous regions (beneath the skin), and visceral areas (around
organs). BAT is predominantly localised in specific body regions such as the cervical,
supraclavicular, axillary, periaortic, paravertebral, inguinal and perirenal regions surrounding
organs. The two distinct main types, based on physical distribution, are visceral and
subcutaneous adipose tissue. Visceral adipose tissue is located around organs, while
subcutaneous adipose tissue is located under the skin (Figure adapted from BioRender).

Adipose tissue is broadly characterised by physiological location into visceral adipose

tissue (VAT), which is located in the abdomen and around organs, and subcutaneous
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adipose tissue (SAT), which is located beneath the skin or by histology into beige,
brown, and white adipose tissue (Figure 15) (121, 122, 123).

White adipose tissue (WAT) is the main type of adipose tissue, accounting for over
95% of the total adipose mass, while brown adipose tissue comprises of 1-2% of the
overall body fat content. Beige adipose tissue comprises cells within WAT that have
the capability to transform into brown-like adipocytes upon exposure to cold

temperatures or body stress response (118).

There are notable distinctions in terms of secretory, morphological, and metabolic
aspects between WAT and BAT: WAT insulates organs and stores energy, while BAT
transforms energy into heat which dissipates into the body and acts as regulator of
thermogenesis by burning calories. Therefore, BAT is highly vascularised and
maintains a high number of mitochondria, as well as multilocular lipid droplets,

displaying a high rate of fatty acid and glucose uptake and oxidation (122).

Excess VAT is involved in the pathogenesis of several diseases, including metabolic
disorders, obesity, cardiovascular disease, and cancer (124). In addition to the
occurrence of obesity, the distribution of body fat is related to variances in the risk of
cardiometabolic disease and diabetes. Adipose tissue distribution is an important

factor concerning the development of these co-morbidities (125).

This distribution is sex-linked: Women tend to have a higher occurrence of the "pear
shape" fat distribution, while men have a higher prevalence of the "apple shape”,
characterised by a central fat distribution. The apple shape is associated with an

increased risk of cardiometabolic disease (126).
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1.3 The Endothelial-enriched Transcript KANK3

Transcripts fulfilling inclusion criteria:

Known EC expression/ 7 Unknown EC expression/ Uncharacterised proteins:
function: 116 transcripts ‘ function: 88 transcripts 30 transcripts
10 most highly correlated 10 most highly correlated 10 most highly correlated
Gene symbol Mean Std. Dev Gene symbol Mean Std. Dev Gene symbol Mean Std. Dev
JCOHs ___ 083 002 | JADCYA ____ ¢ 079 003 | [CXorde ____ 078___004_]
ARHGEF15 0.82 0.06 BCL6B 0.79 0.02 CCDC85A 0.65 0.04
ESAM 0.81 0.07 MYCT1 0.78 0.06 SHE 0.65 0.05
[ 081 __004_ | \USHBP1 ____ | 0.78___006_ | |FAM110D____ 0.65___ 006 _
I MMAN2_ _ ~ ~ "~ 0.80___ 008 _1 JAFAPILT ___ 0.75_ 0041 |KANK3 _____ | 0.64___ 005 4
ROBO4 0.79 0.04 COX412 0.74 0.05 TM4SF18 0.63 0.04
RAMP2 0.78 0.07 LHFP 0.73 0.08 KIAA0355 0.62 0.05
7 078 __o001_ | |EHD2 _____ 072 __002_ | |FKBPO _____. 062___012_
JJIET_— T 0.77___005_71 [FAM26E ~~ " 0777700271 JOLEML2A___ " | 0.62___ 007 _]
PTRF 0.77 0.04 GNG11 0.71 0.07 Clorf198 0.61 0.05

Figure 16: Endothelial-enriched genes defined by Butler et al. (2016): Endothelial-
enriched genes were sorted into three categories based on previous literature research. 116
Transcripts were defined with known EC expression, 88 transcripts with unknown EC
expression or function and 30 were previously completely uncharacterised proteins. KANKS3,
the protein of interest of study 3, was found to be one of the highest uncharacterised proteins
correlating to endothelial markers. Figure from Butler, Hallstrom (20) (2006).

Butler et al. (2016) (20) identified the protein KANK3 as one of the most highly
correlating endothelial-enriched transcripts, that had not been previously described
(Figure 16). Transcript enrichment found for a tissue or cell type may suggest
specialised function. Furthermore, since this initial study KANK3 has been consistently
described as endothelial-enriched in multiple tissues by Dusart et al (2023) (107) in
human brain (106), by Oling et al (2022) in stomach (127) and by Norreen-Thorsen
et al. (2022) in adipose tissue endothelium (105), indicating important endothelial

and vascular specific functions.

KANK3 has been found present in vascular and lymphatic endothelial cells in human
lung, pancreas, and testis (128). The human protein atlas profiled multiple
immortalised cell lines. KANK3 is mainly expressed in the endothelial cell lines TIME
and HUVEC/TERTZ2 (129). Numb-Binding Protein (NBP), a zebrafish homologue of
KANKS, has furthermore been identified in vasculature and has been described as
essential for epidermal integrity and embryonic transformation of the neural plate into
the neural tube (130).
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KANK3 is a member of the KN motif and ankyrin repeat domain-containing (KANK)
family. The protein family of four members is evolutionary well conserved and defined
by their common structural elements: The N-terminal KN-motif, the N-terminal and
central coiled-coil domains and C-terminal ankyrin repeat units (131, 132) (Figure 17).
While other members of the family have been previously described, the endothelial-

enriched protein KANK3 remains largely unexplored.

KN-motif Coiled coil domain Ankyrin repeats

(pos. 33-74) (pos 181-230, 367-404) (pos. 622-652, 656-690,
695-724, 728-758, 762-795)

Figure 17: General structure of KANK proteins: The KANK family is evolutionary conserved
with 4 paralogues in vertebrates. Their unique structure consists of three central elements:
The KN-motif in the N-terminal site, which acts a as a talin binding domain, the coiled-coiled
domains which binds to scaffolding proteins (liprins) and forms stabilisation complexes, and
the ankyrin repeat units, which act as microtubule binding sites through KIF21A (adapted from
Kakinuma et al. (2009) (131)).

The KN-motif has been shown to interact with talin, a focal adhesion protein. The
coiled-coil domain interacts with liprins, a scaffolding protein mediating cell integrity.
The ankyrin repeat units recognise the kinesin-like motor protein KIF21A, a protein
associated with microtubules and intracellular transport (133, 134, 135). The N-
terminal and central coiled-coil domains of KANK proteins have been shown to mediate
interactions of KANK proteins with other proteins, such as liprin beta-1, in melanoma
(136).

KANK1 and KANK2 have been recognised to be involved in cytoskeletal reorganisation
mediated by binding of focal adhesions and stabilisation complexes. KANK1, 2 and 3
have been described to be involved in the regulation of cell migration, suppression of
proliferation (137, 138, 139), as well as potential targets for tumour suppression, in
renal cell carcinoma and lung adenocarcinoma. KANK3 expression is linked to lung
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adenocarcinoma prognosis, with silencing of KANK3 leading to enhanced ability of
cancer cells to migrate and proliferate (137, 140). Except for these cancer-focussed

studies, the function of KANK3 remains unexplored in a vascular context.

Transcript ID Name bp Protein
ENSTO00000330915.7 | KANK3-201 | 2787 | 821aa

ENST00000593649.5 | KANK3-203 | 2672 | 840aa
ENST00000595639.1 | KANK3-204 | 506 146aa
ENSTO00000593331.1 | KANK3-202 | 590 | No protein

Figure 18: KANK3 splicing variants: KANKS3 has four splicing variants. Three of them are
proteinogenic and one is non-coding. Variant KANK3-201, give rise to 821 amino acids (aa)
and is the most prevalent variant and therefore the one mainly explored in study 3 of this thesis.
The protein product of variant KANK3-204 lacks most of the structural components of KANK
family members, due to its short nature, while the protein product of variant KANK3-203 is
structurally most similar to the KANK3-201 protein (data from ENSEMBL 110 (2023) (141)).

The molecular context of other family members, in particular KANK1 and 2, along with
the discoveries in cancer tissue, suggests that KANK3 might play a significant role in
cell migration, proliferation, and cytoskeletal organisation. Furthermore, the high
endothelial enrichment observed across multiple tissues and cell types raises the
possibility that KANK3 may also be involved in other vascular functions, such as

haemostasis, inflammation, or mediation of vascular tone.

KANKS has four known splicing variants (Figure 18). Three of them are protein coding,
one is non-coding (KANK3-202). One variant (KANK3-204) is 146aa in length, and
therefore missing most KANK specific domains and two are essentially similar in length
and structure (KANK3-201, KANK3-203) (141).

1.3.1 Focal Adhesions

Focal adhesions (FA) are dynamic structures composed of more than hundred different
proteins. They regulate cellular responses to mechanical signals from the extracellular
matrix. FA serve as active sites for actin polymerisation and form complexes between
actin bundles and integrins, which connect to the ECM (Figure 19). FA cluster within
the cell and undergo continuous association and dissociation in response to signals.

FA dynamically change in size and composition, adapting to mechanical stress (142).
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Figure 19: Localisation and structure of focal adhesions (A) Focal adhesion are structures
proximal to the extracellular matrix and intricately connected to integrins and stress fibres (143)
(B) Integrin dimers are bound to the extracellular matrix, sense and transmit mechanical
signals to the multi-protein focal adhesion complexes which in return are associated to the
cytoskeleton. Notably, KANK proteins have binding sites for microtubules, liprins and talin.
Figure partially adapted from Yoon (2019) (144) and Yu et al. (2022) (145).

FA provide structural support to the cell, reorganise the cytoskeleton, transmit signals
to the nucleus, and are controllers of cell adhesion, migration, and proliferation (142).

The central proteins involved in focal adhesions include:

e Integrins are a principal component of FAs. They are transmembrane receptors
that mediate cell adhesion to the extracellular matrix. Integrins consist of alpha
(a) and beta (B) subunits. These subunits can combine in humerous ways to
form integrin dimers and are able to bind to a variety of molecules, including
glycoproteins, fibronectins, laminins, and collagen (146, 147).

e Vinculin (VCL) is a membrane-cytoskeletal protein that is enriched in focal
adhesion and adherens junctions. It is a key player in the linkage of integrins to
the actin cytoskeleton. VCL has binding sites for F-actin, paxillin, and lipids and
is conformationally regulated and recruited to FA after activation (148).

e Talin (TLN) are focal adhesion proteins that bind to the integrin beta subunits
and can activate integrins by coupling them to the cytoskeleton, and therefore
regulate integrin signalling. Talin has a vinculin binding site (149).

e Paxillin (PXN) is a 68 kDa protein that gets recruited to focal adhesions during
the initial stages of FA nascency. These proteins primarily serve as scaffold and
adaptor proteins, functioning as linkers within the cytoskeleton. They act as

targets for tyrosine kinases after to integrin signalling (150).
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Focal adhesion kinases (FAK) are a group cytoplasmic kinases that facilitate
communication between integrins and intracellular proteins, influencing cell
polarity, adhesion, migration, and invasion and strength of FA (146).

Zyxins (ZYX) are a group of zinc-binding phosphoprotein which are enriched in
focal adhesions. These mechanosensitive regulators of cytoskeletal dynamics
bind alpha-actinins and target TES and ENA/VASP (151, 152).
ENA/Vasodilator-stimulated phosphoprotein (ENA/VASP) is a group of
focal adhesion proteins that binds to vinculin and zyxin. VASP recruits the G-
actin binding profilin proteins and acts as a binding intermediate to focal
adhesions and profilin. It is likely involved in actin filament assembly and cell
motility (153)

a-actinins are proteins that crosslink F-actin and anchor it to a multitude of
intracellular structures, to create a scaffolding matrix and regulate cellular
stability. Actinins regulate cell motility through the binding of myosin and actin.
They play a key role in the development and maturation of focal adhesions, by
linking actin to integrins and creating a cytoskeletal scaffold (154).
Proline-rich tyrosine kinase 2 (PYK2) is a tyrosine kinase that regulates focal
adhesions. After response to cell adhesion and ECM proteins, it is transported
to focal adhesions. PYK2 promotes cell proliferation and formation of focal
adhesions. PYK2 has been shown to compensate for loss of FAK (155).

Rho family GTPases (including Rho, Rac, and Cdc42) are molecular switches
that, among other functions, control signalling pathways that regulate the
assembly or disassembly of actin and focal adhesions (155).
Phosphatidylinositol 3-kinase (PI3K) is a mediator of integrin-mediated
migration. This lipid kinase is involved in the restructuring of focal adhesion

plaques by binding to a-actin (156, 157).

The cytoskeleton and focal adhesions play important roles in a multitude of vascular

functions. These include upholding of the structural integrity to withstand shear forces

imposed by the blood flow (158), regulation of cell motility in angiogenesis, (159),

stabilisation and reinforcment of EC-junctions, regulation of vascular permeability
(160), and in haemostasis (161) and inflammation (162).
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1.4 Gene Expression Profiling

Gene expression profiling is the analysis of expression levels of a gene within a tissue
or organism by measuring RNA transcripts or their final products, such as proteins. It
allows to determine which genes are active or inactive in certain cell types or after

activation, e.g., by a stimulus or during cell cycle, proliferation, etc.

1.4.1 The Central Dogma of Molecular Biology

The central dogma of molecular biology, defined by Francis Crick in 1958, describes
the one-directional flow of biological information. It suggests that DNA contains all
information to make proteins and is often shortened to "DNA - RNA - Protein". The
dogma describes that DNA is transcribed into RNAs, which are then translated into an

amino acid chain that is folded into functional proteins (163, 164) (Figure 20).

DNA RNAs Proteins

transcription /\/\/\ translation
LUl —_—

| |

Genomics Transcriptomics Proteomics
Study of the complete genetic Study of all RNA molecules Study of all proteins and peptides
information (protein coding and non-coding)

Figure 20: Overview of differences between genomics, transcriptomics, and
proteomics: Genomics, transcriptomics, and proteomics are the three distinct disciplines of
molecular biology. They centre on different facets of biological molecules. Genomics focus on
the genetic information within DNA. Transcriptomics focus on the different RNA molecules
which are transcribed and spliced from the DNA. Proteomics is the study all protein products
and peptides.

Crick's simplified model is still mostly valid today, although it is now known that not all
RNAs encode proteins. It also was not originally accounting for reverse transcription,
the synthesis of complementary DNA (cDNA) from an RNA template. Earlier, non-
protein-coding DNA elements were often referred to as "junk DNA" and thought to be
non-functional (165, 166). Today it is well established that most RNA molecules
(>80%) are non-protein coding gene regulatory elements, such as siRNAs, miRNAs,
circular RNAs, pseudogenes or long non coding RNAs (167, 168, 169), while other
RNA elements are mainly involved in protein biosynthesis (MRNA, tRNA, rRNA) (170).
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1.4.2 The Fate of a Cell: From Genome to Transcriptome to Proteome

At the time of writing, the current human reference genome (GRCh38.p14) was
released by the Genome Reference Consortium in May 2022. It has been expanded
since its beginning around the year 2000 and contains nearly 20,000 protein coding

genes, and 233,615 total splicing variants (86,245 of them protein coding) (171, 172).

The genome encompasses all DNA sequences in an organism, while the transcriptome
refers to the complete set of transcripts in a cell at a certain time point. The genome is
mostly stable, meaning each diploid cell contains the same DNA information (173).
Even though all cells in a body share the same genome, their cellular phenotypes and
functions differ depending on multiple factors, such as cell type, tissue, surrounding
cells, intra-tissue location, as well as environmental factors, and sex. The cell identity
is defined through a multitude of intra- and extra-cellular signals during development
that aids in establishing a cell identity that is maintained throughout a cell life. Its role
and morphology are defined by transcriptional regulation, which can be influenced by
tissue structure, cell-cell and cell-matrix interactions, mechano-transduction, and
chemical or physical cues from the microenvironment. These factors may be directly

and indirectly impacting cellular phenotype and behavioural responses (174, 175).
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Figure 21: Derivation of ectoderm, mesoderm, endoderm, and germ cells from a
common progenitor. Pluripotent cells generate diverse mature cell types, which further
differentiate into tissue-specific subtypes crucial for organ and tissue development (from
BioRender).
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Cellular differentiation is the result of multiple factors. Pluripotent stem cells give rise
to a multitude of mature cell types. These can branch into ectoderm (skin and nerves),
mesoderm (bones and muscles), and endoderm (most of internal organs) before they
differentiate further into tissue specific cell subtypes. They are important for the
development of organs and tissues. Differentiation into a mature cell changes its type,
function, and metabolic activity (Figure 21) (176, 177).

Cell types can be classified based on different factors, e.g., their function, source,
location, shape, and transcriptome (106). Several transcripts exhibit tissue specificity
or enrichment, indicating that their expression is distinct or elevated in certain tissues
compared to others. These genes typically encode transcripts that are strongly
associated with specific biological functions of their tissues. In instances where similar
gene enrichment patterns are observed across multiple tissues, it is often due to

shared functions among those tissues (178, 179, 180).

1.4.3 The Transcriptome

The transcriptome of a cell or organism encompasses the entirety of its RNA
molecules, commonly known as transcripts. RNAs are less stable and more transient
compared to other biomolecules. RNA is broadly categorised into coding or messenger
RNA (mRNA) and non-coding RNA (ncRNA). Until recent times, it was common that
text books referred to very few types of RNAs (rRNA, tRNA, mRNA) and did not
acknowledge the others (181). There are different kinds of RNAs, which are involved
in a multitude of processes, among others the protein coding ones (MRNA), the types
involved in protein biosynthesis (MRNA, tRNA, rRNA), the types involved in nuclear
RNA production (RNA precursors, snRNA, spliceosome), the types involved in RNA
interference (siRNA, IncRNA, miRNA, piRNA) (170). Although the genome remains
relatively stable, with variations such as mutations and epigenetic changes, the
transcriptome exhibits high variability. Each cell type expresses a unique set of genes
based on function, location, and tissue type, despite sharing the same genome.
Furthermore, the cellular transcriptome undergoes additional variations influenced by
factors such as the cell cycle stage, disease presence, exposure to drugs, and the
aging process (182, 183, 184).
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1.4.4 Transcript Types

All projects in this thesis rely on the analysis of gene transcripts, with many transcript types

investigated in projects 1 and 2. Project 3 focuses on the analysis of transcripts of the KANK

family. Transcript types shall therefore be explained in more detail here.

RNA can be broadly categorised as either protein coding or non-coding, serving

various specialised roles depending on their subtype.

Protein coding RNAs are transcripts that encode for proteins or peptides.

Messenger RNA (mRNA) is a single stranded type of RNA, which contains a
genetic template for protein synthesis. mRNA is carried from the nucleus of a cell
to the ribosomes in the cytoplasm. The mRNA is then translated to proteins in the
ribosome by tRNAs. Although of critical biological function, mMRNA makes up only
about 1-5% of the RNA in a cell. mRNA are the product of pre-mRNAs post
splicing, ligation of exons, capping and polyadenylation. (185, 186, 187).
Messenger RNA precursors (pre-mRNAs) describes the intermediate product of
MRNA before it is converted into the primary target of transcription. It contains non-
coding regions (introns), which are removed, and coding regions (exons) which are
reassembled and spliced together, followed by 5'-end capping, 3'-end cleavage,
and polyadenylation. Pre-mRNA can be generated within seconds, while splicing
takes longer (188, 189).

Non-coding RNAs (ncRNASs) are transcripts that do not encode for a protein. They

can be regulatory elements and are directly involved in protein biosynthesis.

Furthermore, in a recent pre-print, it has been suggested that ncRNAs are key players

driving animal lifespan evolution (190).

Ribosomal RNA (rRNAs) are involved in the formation and function of the
ribosome. The large subunit of the ribosome is composed of 5S, 5.8S, and 28S
RNA and complexed with numerous proteins. rRNA catalyses peptide bond
formation between two amino acids, leading to the formation of proteins. rRNA is
the most abundant type of RNA within the cell, making up 80% of RNA (170).

Transfer RNA (tRNA) is a specialised molecule that helps translate the genetic
information encoded in MRNA into proteins. It has a specific three-dimensional

structure utilising anti-codons to recognise and pair with codons on the mRNA. The
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flexibility of the pairing, guided by modifications in the tRNA, allows for accurate
and efficient translation of the genetic code (170).

Small/short interfering RNAs (siRNA) are short double stranded RNAs, 20-24
base pairs in length, which play roles in gene silencing through RNA interference
(RNAI). They are produced through cleavage of long double-stranded RNA by the
enzyme DICER, which cleaves long fragments into short siRNA. It is then
complexed by the RNA-induced silencing complex (RISC), which uses the structure
of the siRNA for recognition of a complementary target sequence to degrade (191).
MicroRNAs (miRNA) are a well-studied RNA subtype, which has been shown as
a regulatory RNA with many of its functions related to gene silencing. Similar to
siRNAs they are processed by DICER to form a RISC. These small RNA molecules
are 21-23 bp long and form negative regulatory networks (167, 170). They have
been linked to several diseases, such as cardiovascular disease, immune
diseases, respiratory disease, and diabetes, but have also shown protective
effects, such as tumour suppressant (192, 193, 194, 195, 196).

Small nuclear RNAs (snRNAs) have a significant function in the removal of introns
from primary genomic transcripts through splicing. They are present in splicing
speckles and Cajal bodies of the cell's nucleus and bind different proteins to form
RNA-protein complexes, recognising them through base-pairing interactions or
nucleotide-nucleotide contact between pre-mRNA and snRNA (197, 198, 199).
Small nucleolar RNAs (snoRNA) are a group of small RNA molecules, found in
the nucleolus. They are responsible for directing modifications, such as maturation,
into various RNA molecules, particularly rRNA, tRNA and snRNA. C/D snoRNAs
methylate target nucleotides, H/ACA snoRNAs modify uridine to pseudouridine
(200).

circular RNAs (circRNA) are single stranded RNAs, that form a closed loop that
are covalently linked exons of a single pre-mRNA in a process called back-splicing.
Their circular structure makes them resistant to degradation. circRNA perform
various roles, including acting as decoys for microRNAs or RNA-binding proteins,
thereby influencing gene expression or translation of proteins(201).
long-non-coding RNA (IncRNAs) are RNAs that are longer than 200 nucleotides
and transcribed from the non-coding regions of the genome. InNCRNAs play

significant roles as regulators of gene expression, operating at both the
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transcriptional and post-transcriptional stages. Their functions are manifold, as they
can modulate chromatin structure, gene expression. INcRNAs are able to interact
with proteins, DNA and RNAs. They have been shown to be involved in multiple
disease, such as neurodegenerative, cardiovascular, muscular, and immune
disorders. Their potential as biomarkers has been well acknowledged (202, 203).

e Piwi interacting RNAs (piRNA) are recently discovered short non-coding RNAS,
spanning 24 to 31 nucleotides. They interact with argonaut proteins from the piwi
family and serve regulatory functions by modulating signalling pathways pre and
post transcription. They are expressed across various human tissues (204).

e Small activating RNAs (saRNA) are a double-stranded RNAs of approximately
21 base pairs in length, similar in structure to siRNA. Unlike siRNA though, it
enhances gene expression by an as yet unknown mechanism. Similar to siRNA it
engages with argonaut proteins to establish RISC (205, 206).

e Antisense RNA (asRNA) is a single stranded RNA, which is complementary to
MRNA and acts as suppressant by hybridising the complementary structure at
multiple levels, such as replication, transcription, and translation (207).

e Pseudogenes are gene-like sequences that do not have a regulatory sequence
needed for transcription, translation, or defective coding sequences. Previously
labelled as junk-DNA. Four types are known: processed, duplicated, unitary, and
retrotransposed. They have been shown to have some regulatory functions, with

some of them processed into siRNAs (208, 209).

1.4.5 The Proteome

The proteome describes the complete set of proteins expressed by a cell, organ, or an
organism at a given time point, including isoforms and post-translational variants.
Similar to the transcriptome, the proteome is a functional unit of the genome. The
proteome is a complex and dynamic unit, among other factors due to the presence of
numerous proteoforms. Proteoforms are protein variations that lead to functional
diversity. This happens through different processes, such as post-translational
modifications, alternative splicing, and other modifications. Additionally, the expression
levels of proteins exhibit significant dispersion to the transcriptome (210). On the other
hand, only a small part of the transcriptome, the mRNA, gets translated to proteins
while the other parts play regulatory functions. Therefore, neither the transcriptome nor

the proteome are an accurate reflection of the other.
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1.4.6 Advantages and Disadvantages of Transcriptomics and Proteomics
Transcriptomics and proteomics are the two central approaches to study biological
data. Proteomics is a field within molecular biology focused on investigating proteins,
encompassing their structure, function, interactions, and abundance within a specific
biological system. Transcriptomics focusses on the transcriptome in a system at a
certain time point and investigates all sets of RNAs.

Targeted approaches such as microarrays, gPCR, flow cytometry, western blot or
immunostaining require prior knowledge on the potential target, while untargeted

approaches such as mass spectrometry and RNAseq allow for a global profiling.
Transcriptomic approaches have advantages and disadvantages over proteomics:

¢ RNAsequencing is a sensitive and accurate tool for measuring transcript
expression but mMRNA expression is not a reliable indicator of protein levels and
their activity. Therefore, it is hard to reliably predict the proteome from the
transcriptome.

e Some regulatory elements, such as non-coding RNAs are missing in proteomic
approaches.

e Transcriptomics reveal details about gene expression levels, but it does not
offer insights into post-translational modifications (211).

e RNA sequencing methods are reliable and affordable for clinical settings,
offering a high specificity and sequencing depth, while the depth of proteomics
is much lower (212).

¢ RNAseq more cost-effective to mass-spectrometric approaches (213).

Proteomics and transcriptomic approaches can be used complementary to gain insight
about the regulatory profile and the proteins of an organism. Analyses could gain
substantial advantages through the employment of "cross-omics" strategies, the
combination of different omics methods, such as proteomics, transcriptomics,
lipidomics, glycomics, and metabolomics (214). When brought together, these distinct
methods can complement each other to provide a better representation of the complex
biological landscape. Notably, a recent pre-print with bacteria focus suggested that,
both the proteome and the transcriptome modules consist of a similar roster of gene
products and they used statistical modelling to infer the absolute allocation of the

proteome from the transcriptome alone (215).
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1.5 Web-Based Resources and Social Media in Biological

Research

Biological research has been substantially changed by the adoption of web-based
resources for biological data, which now openly facilitate the sharing of information.
These resources enable the rapid and widespread availability of data to the scientific

community, serving as a valuable tool for investigation and as a data repository.
Online resources include, among others:

e The Human Protein Atlas (HPA, https://www.proteinatlas.org/) encompasses a

combination of imaging, transcriptomics and antibody-based proteomics
approaches to map the full human proteome, as well as transcripts for tissue
samples and cell lines (129, 179, 216), recently expanded using tissue specific
transcriptomics data (105, 106, 107).

e The tabula sapiens is a human cell atlas across multiple organs, encompassing
histology and single cell transcriptomics data (115).

e A similar approach for mouse organ data was created by tabula muris (114).

e GeneRanger offers access to processed data on gene and protein expression
across normal human cells and tissues, serving as a valuable resource for
target discovery (178).

e The Genotype-Tissue Expression (GTEX) project is a public resource to study
tissue-specific gene expression, offering transcriptomics data for multiple
organs from ~960 donors and over 30,000 samples (108).

e Important genomic databases include ENSEMBL, one of the biggest
infrastructures to access gene data and annotation (141), and the human gene
database GeneCards (217).

Study 1 of this thesis contributes to the multitude of web-based resources by offering
a sex-matched, temporal transcriptional resource of the endothelial response to TNF
and temporal baseline, available under http://www.endothelial-response.org (218).

This resource allows for a multitude of analyses. Additionally, the results of study 2 are
featured on the HPA, one of the world's major databases for biological research on

https://www.proteinatlas.org/humanproteome/tissue+cell+type/adipose+tissue.

33


https://www.proteinatlas.org/
http://www.endothelial-response.org/
https://www.proteinatlas.org/humanproteome/tissue+cell+type/adipose+tissue

In addition to web-based resources, social networks such as X (formerly Twitter),
Instagram, Facebook, Reddit, and ResearchGate play big roles in scientific
communication, data availability, or sharing of presentations, scientific papers, and
research data. Twitter, followed by Instagram and Facebook, is the most used social
media platform to share and disseminate scientific research between peers and
communicate it to the public (219, 220, 221), while ResearchGate serves the additional
purposes of sharing scientific discoveries, asking for advice, discussing research, and
fostering connections with peers (222). These platforms can help to facilitate world-

wide collaborations and networking amongst researchers from different fields.
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2 Aims of the Thesis

Global hypothesis: Cells from different tissues differ in their transcriptomic profile and
tissue specific expression allows for cell or organ specific functions. Endothelial cells
play a critical role in the response to various stimuli, and understanding the intricate
mechanisms underlying their cellular responses is essential for advancing our
knowledge of disease pathogenesis. Transcriptomics, with a focus on temporal
resolution, response time, impact of sex and tissue specificity can be used to explore
endothelial cell biology and tissue heterogeneity. Similar to the temporal
transcriptomics in project 1, the tissue dependent transcriptomics in project 2 can

expand the landscape of targets for diagnosis, disease prevention and treatment.

Project I: Global transcriptome of the endothelial response to tumour necrosis
factor: The study aimed to investigate the temporal changes in gene expression
patterns by subjecting endothelial cells to TNF stimulation over a time course ranging
from 0.5 to 72 hours.

Project Il: A human adipose tissue cell-type transcriptome atlas: The primary aim
was to generate a comprehensive transcriptome atlas encompassing ten distinct cell
types within human adipose tissue, utilizing publicly available bulk RNA sequencing
data from subcutaneous and visceral fat samples. This was part of a larger series of
related projects in the lab, with an overall aim to identify genes with endothelial

enriched expression across tissue types.

Project lll: Functional investigation of the previously undescribed endothelial-
enriched transcript KANK3: The aim of this study was to investigate the function of
the endothelial-enriched transcript KANK3 in a vascular context. Therefore, KANK3
function was assessed in multiple approaches testing multiple factors, ranging from

wound healing, proliferation, haemostasis, and inflammation.
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3 Methodology

The following sections aim to explain the theoretical framework of methods used in this this thesis, as

well as the rationale and strength and weaknesses of the research approaches used in this thesis.

3.1 RNA Sequencing (RNAseq)

RNA sequencing (RNAseq) is a widely sensitive and highly accurate method to
analyse the abundance and identity of gene transcripts. This method allows for
detection of transcript isoforms and alternative splicing variants, and can indicate gene
fusions, mutations, and single nucleotide polymorphisms (SNPs), coding- and non-
coding RNAs and allow for sense or antisense strand determination (223, 224). It gives
information over gene expression and is able to measure alternative splicing variants,

post-transcriptional modifications, gene fusions and mutations/SNPs.

3.1.1 Bulk RNAseq
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Figure 22: General principle of RNA sequencing: General workflow of RNAseq, highlighting
the crucial processes from sample collection to data analysis. (1) A tissue or cell samples are
collected and (2) RNA molecules are isolated from the sample using various extraction
methods, separating them from other cellular components (3) The isolated RNA is then
fragmented into smaller pieces to facilitate downstream processing and (4) converted into
cDNAs through reverse transcription, allowing for the amplification of the RNA sequence
information. (5) Adapter sequences are ligated to the ends of the cDNA fragments. (6) The
ligated cDNA fragments are sequenced using high-throughput technologies. This step
generates a massive amount of short DNA sequences called "reads" or "read counts". (7) The
reads are mapped and aligned to a reference transcriptome by matching them to known
transcripts. Afterwards, the read counts are normalised to account for differences in
sequencing depth and other technical factors (Created with BioRender.com.).
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Bulk RNAseq is a transcriptomic method that measures the average gene expression
across a population of cells, which can be heterogenous (e.g. organ biopsies) or from
a singular source (e.g. cultured cells) (225). RNAseq relies on libraries, the collections
of RNA molecules that have been converted into complementary DNA (cDNA)
fragments (Figure 22). It usually involves sequencing two types of libraries: mRNA-
only library and whole transcriptome library that includes all RNA species except for

rRNA. Two main approaches of RNAseq are "short-read" and "long-read" sequencing.

e Short-read sequencing is a common and powerful approach. It involves reading
short fragments of RNA, usually ranging from 50 to 300 base pairs. Although it
generates a high volume of reads, each individual read only covers a small section
of the transcript. Single ended short-read sequencing is the most frequently used
bulk RNAseq approach, often focused on differentially expressed genes.

e Long-read sequencing is especially useful for detecting complex RNA, as it
captures much longer fragments of RNA, typically several thousand base pairs in
length. Although it produces fewer reads compared to short-read sequencing, each
read covers a significantly larger portion of the transcript. Thus, this technique can
be used to detect alternative splicing variants. The main disadvantage of long-read
sequencing are the higher costs and lower yields in read count compared to short-
read sequencing. The low read count might also pose a challenge to conducting

differential expression analyses (226, 227).

Bulk RNAseq includes a diverse set of different RNAs and is able to detect low
abundance RNAs due to the high amount of sample used compared to single cell
approaches (228). It relies on removal of the overly abundant rRNA (80-90% of total
RNA in eukaryotic cells), to increase sequencing depth and detection limit. This can
be performed by selectively removing rRNA, or selecting polyadenylated RNAs using
poly(T) oligos that target the poly(A)-tail and remove all remaining RNAs, except for
MRNA, IncRNA and pseudogenes (225).

Common workflow: Cells or tissues are lysed, and the RNA is isolated. RNA quality
control is assessed through different methods, such as RNA integrity number (RIN)
analysis, spectrophotometry, or electrophoresis. Enzymatic or chemical fragmentation
of RNA is carried out. Reverse transcription and adaptor ligation for recognition follow.

Complementary DNA (cDNA) is amplified in PCR, and the RNA is sequenced. The last
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steps are data processing and analysis (229, 230). Most of these steps allow a

multitude of different options. Common problems of bulk RNAseq include:

e Limited resolution of cells: Bulk RNAseq does not distinguish between cell
types and their expression changes, as an averaged expression of the whole
sample is measured (225).

e Batch effects: Technical variation between experiments and sequencing runs
can lead to systematic differences that need to be adjusted for.

e Low sensitivity for genes in lowly expressed cell types: Bulk RNAseq could
potentially not cover or underestimate genes that are only expressed by a small
sub-population of cells, and could therefore be lost as "noise" (231).
Furthermore, the amount of RNA is dependent on cell size. Bigger cells have
been described to have more mRNA than smaller cells (232). Thus, differences

in gene expression in smaller cells might be masked.

3.1.2 Single Cell RNAseq

Single cell sequencing is a commonly used technique in molecular biology, which

enables the examination of gene transcript expression in individual cells.
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Figure 23: Principle of single cell RNAseq: General workflow of RNAseq, highlighting important
steps from sample collection to data analysis. (1) A tissue or cell samples are collected and (2)
Cells are dissociated, extracted, and depending on isolation method marked, (3) and sorted. (4)
Sequencing is performed after library preparation, followed by bioinformatic analyses (5) single cell
expression profiling, (6) and cell clustering (Created with BioRender.com).
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Common workflow: The workflow is similar to bulk sequencing but differs in sample
preparation, as cells must be separated to be analysed. Tissue is dissociated and
single cells are suspended into single cell suspension droplets. Viability is usually
assessed for quality control and dead cells are removed. Capture and barcoding: Cells
are then captured and labelled using various methods, such encapsulating single cells
in water-in-oil droplets along with microparticles carrying unique primers and lysis
buffer. The mRNA content of each lysed cell is captured by a single primer's poly-A tail
domain and labelled with cell-specific barcodes and unique molecular identifiers
(UMls), short random nucleotide sequences added to individual RNA molecules to
distinguish them and correct for errors in the amplification (233). Most of these steps
allow for a multitude of different methods to approach. From here the experimental
approach is identical to bulk RNAseq and allows for multiple different techniques to be
used. Demultiplexing methods, employing barcode information to sort samples, are

performed before bioinformatics analysis. Common problems of scRNAseq include:

e Sub-Poisson loading trade-offs: Deviations from the goal of having exactly one
barcoded cell in each droplet. This includes multiple cells or microparticles in a

single droplet ("multiplets"/"'doublets") or empty barcoded droplets (233).

e Presence of 0 values: Some genes may have no or low expression in certain cells
or conditions, resulting in 0 read counts. This may be due to low cell numbers. The
small amount of individual RNA per cell can result in low library complexity, and
difficulty in detecting rare transcripts, especially in low abundant cell types.

e Activation of live cells: During the collection and dissociation process, live cells
might be stimulated or activated, leading to changes in gene expression profiles
that do not accurately represent their true physiological state.

e Limited donors and small sample sizes: scRNAseq is often limited in donor and

sample size, often not reflecting a broader population.

3.1.3 Types of RNAseq Used in This Thesis

For projects 1 and 3 RNA sequencing was performed using poly-A selection based
bulk sequencing for differential expression profiling (1,3) and splicing variant analysis
(3). Project 2 and 3 used bulk RNAseq data from the Genotype-Tissue Expression
(GTEX) project to calculate cellular enrichment scores for KANK3 (3) and the whole
transcriptome of adipose tissue samples (2). Project 2 uses single cell RNAseq data

from mice and humans as validation and comparison to bulk sequencing data.
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3.2 Normalisation of RNAseq Data

Comparing RNAseq data requires some type of normalisation, to ensure that the data
is uniformly scaled, remove technical bias and batch effects (234). Commonly used
methods are, TPM, FPKM, RPKM, CPM/RPM, Limma, TMM and DESeqg2. In the
presented studies, DESeq2 normalisation for studies 1, TPM normalisation in study 1
and 2, and downloaded TPM normalised data from the GTEXx portal in study 2 and 3.
Studies 1 applied a temporal, sex-matched and gene-matched differential using
DESeg2 and TPM normalised differential expression. While DESeq2 and TPM serve
different purposes, in these projects they were used for complementary analyses.

Ai i

RNA Fragments
P Gene A Il I N D O b N e
I G I BN BN B .

smc»----------
Gene D N N N B B B B B B B B |
L) N N [ S Sy
Bi Sample ii iii
Detected Fragments Gene counts Relative expression

=

]
Q- (] Qj = Q - Gene A GeneB  GeneC  GeneD  GeneE GeneA  GeneB  GeneC  GeneD  GemeE

Figure 24: Rationale for normalisation in RNAseq: RNAseq relies on normalisation
techniques to enable comparisons of gene expression across samples. (Ai) Variability in RNA
transcript lengths exists, and (ii) longer transcripts correspond to a greater number of
fragments during sequencing compared to shorter ones. (Bi) This disparity introduces bias
during the quantification process. RNAseq involves fragment detection and quantification,
leading to the generation of (ii) raw counts that represent the detected fragments. (iii) If left
unadjusted, these counts can show substantial differences due to transcript length effects.

3.2.1 Gene Counts

Gene counts (also read counts or raw counts) refer to the number of reads mapped to
a gene within a sample. Using gene counts alone, one cannot compare between genes
and between samples and calculate differential gene expression, the gene counts
need to be normalised. If a gene is being detected is dependent on several factors, the
relative abundance (number of genes per sample), sequencing depth, and gene
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length. To detect the relative abundance of a gene transcript, several methods rely on

gene length (Figure 24) and sequencing depth (Figure 25) normalisation (235).
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Figure 25: Sequencing depth in RNAseq: The normalisation strategies adopted in this thesis
incorporate gene counts, gene lengths, and total reads within each sample (read depth). (A)
Disparities in read counts mapped to genes across samples can arise due to variances in
sequencing read depth. Disregarding these differences might lead to an inaccurate perception
of differential gene expression between distinct samples. (B) Read counts and read depth are
considered during normalisation. Tables and graphs representing read counts and normalised
expression. (i) To illustrate, a hypothetical read count profile is presented, demonstrating how
(ii) the gene count alone might erroneously indicate Gene C as the most highly expressed on
average. However, upon implementing normalisation techniques, the (iii and iv) normalised
profiles highlight a comparable expression pattern among genes, with Gene E displaying the
highest expression level on average.
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3.2.2 RPM/CPM, RPKM and FPKM

RPM (reads per million, also CPM (counts per million)), RPKM (Reads Per Kilobase
Million), FPKM (Fragments Per Kilobase Million) were amongst the most popular
methods for normalisation of RNAseq data, to measure transcript levels. These
methods have been largely replaced by TPM (236, 237, 238, 239). They are not used
within this thesis but are mentioned for the sake of completeness.

RPM is a normalisation method, which maps the reads of each gene (readScenx)
normalised to the total reads (readswa), adjusted per million. RPKM is similar to RPM,
but adjusted by the length in base pairs (lengthe..x) of the transcript and calculated per
kilobase (x1000). The RPKM measure, although commonly used, is inconsistent in
between samples (240). The formulas for RPM/RPKM are:

_ readsgenex*1,000,000 _ RPMgepnex*1000
RPMGeneX_ RPKMGeneX_ lengthgeneX

readsiotg

In FPKM analysis, the fragment counts per kilobase are normalised by length per
million mapped fragments. It calculates the number of fragments of a certain gene
(Fragementscenex) divided by the length of the gene in kilobases (lengthe...x) and the
total reads of all transcripts (readswa). The result is multiplied by a million. The method
IS prone to error, sensitive to outliers and variation, as it is affected by gene length and
dependent on total mapped reads. It has been largely replaced by TPM, which fixes a
number of those problems (240). The formula for FPKM is:

Fragmentsgenex

FPKMgenex= 1eN9th genex T€20S 0 1,000,000

Differential expression is calculated in a similar fashion for all these normalisation
types. By dividing the expression value of the Gene in two different conditions, the fold
change is calculated. While RPKM is used in single end sequencing, FPKM is used in

paired end sequencing.

3.2.3 Transcripts Per Million (TPM)

TPM (Transcripts Per Million) is a normalisation method used to quantify relative gene
expression levels in RNAseq data. It is unit-less and therefore easy to compare. This
technique allows the comparison of gene expression levels of all genes within a sample
or across multiple samples. TPM normalises for the total number of obtained reads

and the length of the transcripts.
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The method adjusts for differences in gene length and sequencing depth by evaluating
counts and gene lengths. TPM was developed as statistical modification of the
commonly used model RPKM by switching the order of operations. It is similar to
RPKM and scaling with it by sharing part of the formula, it eliminates statistical biases
by applying adjustment for average invariance (240, 241, 242).

TPM values are calculated by dividing the number of exon reads of a gene “Gene X”
(readscex) by the length in base pairs (lengths.x) and the total number of exon reads
in a sample by length Sum (A), multiplying by one million as scaling factor (= per

million).

The formula for TPM is the following:

= TPM =1,000,000*
I eng th GeneX Genex

Sum(A)

TPM based differential expression analysis is calculated by dividing the TPM value of

one state by the TPM value of another state.

3.2.4 Linear Models for Microarray and RNAseq Data (Limma)

Limma (Linear Models for Microarray and RNAseq Data) is a software package used
for analysis of gene expression data from RNAseq or micro arrays. It relies on
previously normalised data to perform differential expression analysis (243).
Differential expression between different conditions is estimated, using a linear model.
The count data is normalised into log-counts per million (log-CPM) to stabilise the

variance (236).

3.2.5 Differential Expression

Genex icondition1)

DE GGeneX =
Genex condition2)

The data is often used to display logarithmic and decimal fold changes. A logarithmic
model, usually base 2 or base 10, is used to scale the data around a central unit, such

as 0 or 1, to assess effects in both directions in a comparable way.
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3.2.6 Differential Expression Analysis for Sequencing 2 (DESeq?2)

Another popular method to assess differential expression is DESeg2. It is a commonly
used measure of normalisation. It estimates differential expression through gene-wise
dispersion parameter of negative binomial distribution (244). It is a successor to its
predecessor, DESeq. DESeq2 is applied to statistically compare gene expression
levels between different conditions and identify differentially expressed genes.

DESeg2 calculation is more complex than traditional differential expression methods
and requires a statistical programming language, such as Python or R. DESeq?2 differs
from Limma, as it does not need normalised datasets and a linear algorithm (236). The
DESeq2 R-package offers a multitude of graphical outputs, including volcano plots and
heatmaps (244). It can be used to create normalised and differential expression data.

DESeq2 applies a multi-step formula, starting with internal normalisation, followed by
on estimation of size factors, estimation of dispersion, negative binomial regression,
and fold change generation, adjusted by Benjamini-Hochberg (BH) statistical
correction. DESeg2 can use gene counts directly. Previous normalisation of RNAseq

data is not required for the analysis (243). The simplified multi-step formula:

e Internal normalisation: The count data is automatically normalised and corrected
for differences in the library sizes. Gene length is not considered. DESeq2's
objective involves creating a "virtual reference sample" by calculating the geometric
mean of gene counts across all samples for each specific gene. DEseg2 counts
have been described as more stable than TPM/RPKM data (242).

e Estimate of size factors: Size factor is calculated based on the median of ratios.

e Estimate of Dispersion: The dispersion estimate, defined as variability in
expression levels among different samples per gene, is calculated.

e Negative Binomial Regression: A negative binomial model is applied to the count
data, applying the estimate size factors and estimate of dispersion, as well as
variation and noise.

e Fold change generation: The differential expression is estimated in the form of
fold change. Statistical significance using null hypothesis (p-value) and false
discovery rate (FDR) are calculated.

e Statistical correction: Statistical correction accounting for the possibility of false

positives is achieved using Benjamini-Hochberg (BH) correction.
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3.2.7 Other Methods

There is a multitude of other ways to calculate differential expression data and the
choice of the right tool depends on the type of data generated or the desired analysis
or type of data correction. Further methods of normalisation and differential expression
analysis that are not discussed in this thesis include TMM, DESeql, Two-Stage
Poisson Model (TSPM), Differential gene expression in RNAseq data, edgeR, and
Bayes estimation sequencing (baySeq) (237).

3.3 Statistical Methods

3.3.1 Calculation of Coefficient of Variation (CV)

The coefficient of variation (CV) is a value that is used to measure the relative variability
of a dataset. CV was assessed in project 1, to assess the relative change in expression
per gene. This was done using the normalised sets (TPM). These sets consider the
gene length and library size, providing a measure of the proportion of transcripts for

each gene in a sample.

CV can be affected by variation between samples. By performing CV analysis after
TPM normalisation, less variation is generated by the data itself, but from the

differential in between samples. The equation to calculate CV is the following:

CV = (SD/ p) * 100 with SD = the standard deviation of dataset, g = mean of dataset

3.3.2 Multiple Testing Correction

Multiple testing correction (p value adjustment) addresses an analysis for false positive
values. With each individual test conducted within the same dataset the probability of
false positives increases. Consequently, there is a need to adjust the p-value to

address multiple testing (245).

When conducting a statistical test, a p-value cutoff of <0.05 indicates that less than 5%
of the observed effects are attributable to random chance when the null hypothesis
holds true. Using the example of study 1 in this thesis, the dataset comprises of 58884
genes, which is reduced to approximately 30,000 after cutoff for low expression. These
genes are evaluated for differential expression with 30,000 distinct tests for identifying
differential expression among the datasets. Using a p-value of 0.05 would therefore
inaccurately label around 1,500 genes as differentially expressed solely due to

stochastic variations (=random chance), thereby producing false positives.
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To address this, the Benjamini-Hochberg (BH) (246) correction was employed to
correct for false positives. This method adjusts for the false discovery rate (FDR),
which represents the proportion of false positives among all significant results. BH
correction effectively controls the FDR at the designated level (usually <= 0.05). BH
correction assumes that the majority of null hypotheses hold true, with only a minor

fraction of the dismissed null hypotheses representing false positives (247).

3.3.3 Weighted Gene Coexpression Network Analysis (WGCNA)

The Weighted Gene Coexpression Network Analysis (WGCNA), also known as
weighted correlation network analysis, is a frequently utilised technique for examining
transcript data. It allows exploration of connections or patterns of coexpression among
gene sets. This method is commonly utilised for the detection of gene coexpression
groups, referred to as modules. Therefore, it proves advantageous for analysing
intricate datasets and operates in an "unsupervised" manner, by avoiding any pre-
existing inputs that might influence the study's outcomes. Key applications of WGCNA
include biomarker discovery, network-based functional prediction, and identification of

key regulatory genes (248).
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Figure 26: Premise of weighted gene coexpression analysis: WGCNA analyses the
association between gene expression patterns. (A) Genes that behave similarly across sample
sets, e.g., treatments and time points. (B) Coexpression is calculated between all genes and
genes are grouped together based on their coexpression pattern in a hierarchical dendrogram.
These groups are also called "modules” (C) Gene modules can be displayed on a heatmap to
visualise the expression pattern of all involved genes. (D) The first principal component ("the
module's average expression profile") can then be mapped to describe the module in an
expression context in form of a general pattern for a panel of genes. Partially adapted from
Langfelder and Horvath (2008) (248), generated from own data.
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While other approaches, such as differential expression analysis, show which genes
are regulated in a specific cellular state or in a cell type, they do not uncover the
relationships among them. Furthermore, coexpression analyses illustrate the
correlations among genes, providing insights into potential functionalities. These could
manifest as clusters of genes linked to particular stimuli or disease states, as well as
clusters associated with distinct cell types or pathways implicated in a specific disorder.
The concept behind WGCNA is, that genes with correlated expression patterns across
samples, also called co-expressed genes, are likely to be functionally related.

WGCNA creates an unbiased map of transcripts by calculating the similarity in
expression patterns (Figure 26). This involves computing correlation coefficients
among all transcripts and subsequently grouping them together based on their shared
expression patterns. As this unsupervised methods groups genes based on their
expression profiles, requiring the gene dataset to undergo normalisation and batch
effect correction for WGCNA. The normalisation step ensures that the gene expression
values are on a comparable scale, while the batch effect removes systematic bias. It
iIs recommended to exclude genes with low counts and minimal variability, as the
presence of noise may lead to incorrect clustering and overly large clusters of genes

that are not regulated. Graphical outputs include heatmaps and network plots.

3.3.3.1 WGCNA in Study 1

Gene coexpression networks were constructed using the WGCNA package in R (248).
Genes with low expression or variation (CV > 0.2) across all samples were filtered out.
The goal of the correlation network in study 1 was to visualise how genes relate to one
another based on their temporal and post stimulation expression patterns. "Soft
thresholding” was used to make the connections more meaningful. Intricately
connected gene croups were identified using topological overlap and the dissimilarity
was calculated between them. The profiles of each module were visualised using a

heatmap of scaled gene expression profiles and the module eigengene.

3.3.3.2 WGCNA in Study 2

WGCNA was used to create gene clusters. Those were compared with the previous
lists containing reference transcripts to determine if the genes classified by cell type
were predominantly represented within a single cluster, or if they were distributed or

blended across cell types. The aim of was to reduce input bias of reference transcripts.
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3.3.4 Gene ontology enrichment analysis

Gene Ontology (GO) enrichment analysis is a method used to detect the
overrepresentation of genes in datasets corresponding to biological processes, cellular
locations, and molecular functions within a given set of genes. The ontologies are
clustered in a tree like hierarchical structure of terms (GO-terms). The gene
annotations are defined from existing literature using automated methods and manual
curation. It has to be noted, that a significant annotation bias exists, with a majority of

annotations focused on a small fraction of human genes. (249).

The ontology tree is split into three main categories at the highest levels of the tree:
Biological process, cellular component, and molecular function. These terms
subcluster into a multitude of further terms, which get more and more precise with each
level of the tree (represented in Figure 27). Full gene ontology trees can be accessed

via https://amigo.geneontology.org (250).
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Figure 27: lllustration of Gene Ontology Analysis (A) Hierarchical structure of the gene
ontology tree, with each successive level providing a more detailed explanation of a term. (B)
Implementation of GO analysis involves inputting a gene list into a GO tool or software. It
reveals terms overrepresented in the gene list compared to a reference set. Statistical
significance is evaluated, determining if GO term presence in the gene set exceeds chance
expectations (term list from own data).

There is a multitude of web tools and packages in programming languages to assess
GO terms for a dataset, amongst them PantherDB (251), EasyGO (252), GOminer
(253), AmiGO (250), GOstat (254), GOToolBox (255), topGO (256), GSEA (257), and
DAVID (258), ShinyGO (259), and GOSeq (260). The R packages GOstats (261),
clusterProfiler (262) and the PantherDB classification resource (251), were used to
identify overrepresented terms in gene lists in the studies of this thesis. GO analysis is

conducted by providing a gene list into a GO-tool or statistical software. GO enrichment
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tests whether a GO term is overrepresented in a list of given genes compared to a

reference list.

Statistical significance can be calculated by using different tools, often dependent on
the GO enrichment tool used. Among the statistical tests are hypergeometric testing,
binominal test, x2 test, or Fisher's exact test, which assesses whether the occurrence
of GO terms in the gene set goes beyond chance. If the number of genes associated
with a GO term within the set is greater than it would be by random chance, the term
is categorised as overrepresented or enriched (261, 263). High enrichment scores

suggest that a supplied gene list is biologically meaningful.

3.4 Human Umbilical Vein Endothelial Cells (HUVEC)

The in vitro study of endothelial function requires a stable cellular model. Human
umbilical vein endothelial cells (HUVEC) are infant endothelial cells from the vein of
the umbilical cord (Figure 28). They are the most used endothelial cell model in cell
biology and are easy to isolate using collagenase (264, 265).

A. Cell extraction from umbilical vein B. HUVEC in cell culture

Umbilical cord

HUVEC

\ 4

e

Umbilical vein

Figure 28: Extraction and culture of human umbilical vein endothelial cells: (A) The
umbilical cord has two arteries and a vein. HUVEC are extracted from the vein of the umbilical
cord, using a collagenase digest, breaking down the basement membrane and freeing the
cells. (B) In in vitro culture, EC form a tight monolayer which has a "cobblestone-like"
appearance in phase contrast microscopy.

HUVEC are primary cells, therefore they come with advantages and disadvantages
compared to cell lines. An advantage is that they are isolated from an abundant tissue
that does not require surgical isolation procedures, and would otherwise have been

discarded as waste. Further, HUVEC can be passaged multiple times and are
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commonly used for different analyses studying endothelial function and dysfunction.
HUVEC express important endothelial regulators and markers and keep the native
expression profile during early passages of cell culture (20) and can be used to study

sex differences (266).

Of great importance for transcriptional studies is the donor variability of HUVEC; each
donor expresses some degree of heterogeneity. In Study 1 and 2, we mitigated this

problem by pooling multiple donors into a singular donor pool.

Limitations when using HUVEC is their short lifespan when compared to immortal cell
lines, as HUVEC can only be passaged a certain number of times before they become
senescent (267). Therefore, HUVEC are not suitable for long term experiments,
ranging over the span of multiple weeks. Other disadvantages include slow growing
times, lack of in-depth knowledge about the anonymised donors, and the fact that all

donors come from foetal tissue rather than mature tissue.
Other Primary Endothelial Cell Models

In addition to HUVEC, we used different EC types as comparison in study 3. Among
those are mouse liver sinusoidal endothelial cells (MLSEC), human pulmonary artery
endothelial cells (HPAEC), human coronary artery endothelial cells (HCAEC), human
dermal microvasculature cells (HDMEC), and human retina endothelial cells (HREC).
All these cells are primary cells and therefore have the same disadvantages as
described above. HDMEC, used in study 3, were isolated from the dermis of juvenile

foreskin and are therefore always of male sex.
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4 Methods

4.1 Endothelial Extraction, Culture and Stimulation

Projects 1 and 2 used HUVEC cells as a model. Ethical approval for endothelial cell
isolation and subsequent experimentation was granted by Regionala
Etikprévningsnamnden i Stockholm (diarienummer 2015/1294-31/2).

4.1.1 Extraction of endothelial cells

HUVEC were isolated from anonymised human umbilical cords, collected from
Karolinska Hospital (Stockholm, Sweden) using a method previously described (268).
In short, the umbilical cord was directly cut from the placenta and squeezed to remove
any blood and blood clots. The cord was clamped 2 cm from each end, with the bottom
end cut above the clamp, leaving the clamp intact, and the front end cut below the
clamp, leaving the cord open. This measure helps prevent infection, as the ends are

more susceptible to contamination.

Three blood vessels are found in umbilical cords: two thin elasticated arteries and one
thicker, collapsible vein. The vein can be identified by its wider appearance and clearly
visible walls and opened using a bent nosed clamp, which was inserted approximately
2-3 cm into it. A glass cannula was then inserted into the vein and secured using one
or two cable ties. The cord-vein was filled with sterile PBS until it became taut, ensuring

that any potential leaks were clamped to seal them.

To drain the PBS from the vein, the bottom clamp was opened, allowing the liquid to
flow into a waste container. If the liquid was bloody, it was washed with additional
sterile PBS until it became clear, after which the bottom clamp was reattached.
Subsequently, the cord was filled with 0.1% collagenase in PBS until it became taut
and placed in the incubator at 37-39 °C for 15-20 minutes. After the incubation period,
the cord was removed from the incubator and massaged to facilitate the detachment
of cells. The bottom end of each cord was placed into a falcon tube, and the liquid was
forced out of the cords into the tube. Then, an equal volume of FCS in PBS was pushed

through the cord to match the volume of collagenase in PBS for inactivation purposes.

The resulting cell suspension was centrifuged at 400xG to form a stable cell pellet. The
supernatant was discarded into a waste bottle, and the pellet was resuspended in 6 ml

of sterile Medium 199 with additives. The resulting cell suspension was plated in
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cultivation flasks and placed in the incubator. If the medium appeared very bloody in
any flask, it was washed with PBS and the medium was replaced after approximately
four hours. Cells were cultivated in M199 with supplements for further experiments.
For a subset of experiments in project 3, HUVEC and other EC types were purchased

from Merck/Sigma Aldrich.

4.1.2 Inflammation Models

Inflammation models by stimulation with cytokines and LPS were used in projects 1 and 2.

Endothelial response to inflammation was measured by adding different cytokines to
the cell culture medium. The activation of endothelial cells was subsequently analysed
using transcriptomic or proteomic approaches. Cytokines were supplied in the
following final concentrations: IFNo (6ng/ml), IFNy, (60ng/ml), IL-1 (10ng/ml), IL-4
(10ng/ml), TNFa (10ng/ml).

4.1.3 RT-gPCR
Reverse transcription PCR (RT-PCR) followed by quantitative real time PCR (qPCR) was used

in projects 1 and 2.

Reverse transcription followed by quantitative PCR used the TagMan ™ Fast Cells-to-
CT ™ Kit provided by ThermoFisher Scientific. In projects 1 and 2 it was used for sex-
determination to select HUVEC donors for the target mRNA UTY (Ubiquitously
Transcribed Tetratricopeptide Repeat Containing, Y-Linked). In project 3, this method
was employed to determine KANK3 knockdown efficiency, as well as mRNA

expression of target proteins.

gPCR was performed using TagMan Fast Universal PCR mix. Target primer
conjugated to FAM-probes were used to assess target gene mRNA levels. 18s rRNA
(4319413E conjugated to VIC probe, ThermoFisher) was used as endogenous control.
gPCR was performed using a RealTime PCR LightCycler 96 ® system (Roche Life
Sciences) or StepOnePlus™ from Applied Biosystems.

4.1.4 RNA isolation and sequencing

RNA isolation and sequencing was performed in projects 1 and 3. Project 2 and 3 used publicly

available RNAseq data (GTEx, human protein atlas, and tabula sapiens).

RNA isolation was performed using the RNAeasy mini kit (Qiagen). The RNA

concentration was measured using Nanodrop 2000 spectrophotometer and RNA
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integrity number (RIN) determined using Agilent 2100 Bioanalyzer. RIN >9 were

required for inclusion to sequencing.

Library preparation and RNA sequencing was performed by the National Genomics
Infrastructure Sweden (NGI) using lllumina stranded TruSeq poly-A selection kit and
lllumina NovaSeq6000S (4 lanes, 2x 150bp reads, incl 2Xp kits). The data was

processed using demultiplexing.

Data storage and initial analyses were performed using server sided computation were
enabled by resources provided by the Swedish National Infrastructure for Computing
(SNIC) at Uppsala Multidisciplinary Center for Advanced Computational Science
(UPPMAX) partially funded by the Swedish Research Council through grant
agreement no. 2018-05973.

Sequence annotation was carried out using the reference genome sequences
Homo_sapiens.GRCh38 for genome assembly and the reference assembly

Homo_sapiens.GRCh38.96 was used for sequence alignment and annotation.

Sequence alignment was carried out using STAR/2.5.3a. Gene mapping has been
carried out using subread/1.5.2 and the module feature counts. Transcript mapping
carried out using Salmon/0.9.1. Normalisation was performed from gene counts to

TPM and Deseq2 as described before.
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4.2 Project 1. 72h TNF-Stimulation Analysis

HUVEC from male and female donors were either treated with TNF or left untreated
and bulk RNA sequencing was performed, as described above. Raw gene counts were
normalised to TPM or differential DESEQg2 counts. The study contained 132 samples:
6 donors (3 male, 3 female), with 11 time points (hours: 0.5, 1, 2, 4, 6, 8, 12, 24, 36,
48, 72), and two conditions ("Untreated"”, "TNF stimulated").

DESeq2 differential expression values were used to map gene count comparisons
between samples across the same groups. Groups were defined by treatment type,
sex, and time point to identify genes affected by TNF treatment, gene centric
differential expression analysis was performed between TNF treated sample and the
matched control. The analysis was executed by comparing sex-, time- and donor-
matched TNF stimulated samples to their respective control and calculating fold
change values. It should be noted that each sample had a time matched control.
Average values were generated by merging same sex replicates for each timepoint or

merging all replicate samples for respective time points.

Multidimensional scaling plots were generated to visualise the clustering of samples
based on overall gene expression. These plots included both replicates and averaged
expression across biological replicates. The DESeq?2 time series design was employed
to identify genes with different expression between treated and untreated samples for
both female and male samples. The full model, represented by ~treatment + time +
treatment:time, and the reduced model, represented by ~treatment + time, were used
in the analysis. Genes with an adjusted P-value <0.05 and an absolute fold change of

log2 >1 were classified as differentially expressed genes (DEGS).
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4.2.1 Gene Centric and Module Centric Approaches

Gene centric approach Module centric approach

-female TNF vs female unstimulated - with low total expression counts (< 10)
-male TNF vs male unstimulated - with low coefficient of variation (CV <= 0.2)

plotting multiple differentially expressed genes - Grouping genes based on expression patterns
or pathways - Co-Expression analysis of gene expression

plotting multiple differentially expressed genes sorting genes by temporal and directional
or pathways behaviour into "regulation profiles"

Figure 29: Two-sided approach for data analysis: The gene centric approach encompasses
the analysis of singular genes in both baseline behaviour and differential expression between
analysed variables. The module centric approach uses an unsupervised clustering method,
which generates gene groups with behavioural similarity throughout the whole study.

The project employed two central approaches: The gene centric and the module
centric approach. Both approaches rely on normalisation of the transcript data,
followed up by several analysis steps (Figure 29).

The gene centric approach explores the baseline and differential expression of both
individual gene transcripts and gene groups without removing any genes or applying
any filters. This approach allows analysis of baseline and differential expression values
for any gene.

o Single gene correlation analysis allows plotting of individual genes to find
gene groups that match the gene behaviour on baseline level or
considering the differential profile.

o Gene group expression analysis allows multiple genes to be checked

simultaneously for comparison of differential and baseline profiles.
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The module centric approach explores gene groups that have been clustered into
modules by weighted coexpression analysis after filtering. Lowly expressed genes
were filtered out and then clustered into groups with similar expression patterns using
the WGCNA clustering algorithm.

o Weighted coexpression analysis defined 48 modules with unique
expression patterns, highlighting similarities and differences between
baselines, differential profiles, and sexes.

o Temporal and stimulation differential sorting was performed to identify
differential regulation patterns after TNF treatment.

o Furthermore, the principal component, the eigengene, of each module

was defined to create a central pattern for behaviour of groups.

The website resource was then developed employing results from both approaches.
Results generated from the website resource were subsequently merged into the

results of this project.

4.2.2 Module Independent Definition of Regulatory Profiles

To further classify the DEGs, gene subgroups were created based on their reaction
profile from the previous analysis, excluding genes with low expression. The DEGs
were then clustered into positive or negative regulation profiles. Genes that fell into
both categories at different time points and in different sexes were excluded from the
analysis. For inclusion, DEGs had to be classified as temporally differentially

expressed at two or more sequential time points in DESEQ2.

Positive DEGs were classified using exclusion criteria, where genes with a decreasing
baseline and stable TNF expression were excluded. Genes were excluded if they
exhibited low variation within TNF-treated samples and high variation within the

baseline samples compared to the start time (0.5 h).

Negative DEG profiles were defined as "downregulated" when TNF reduced gene
expression from a stable baseline, or as "temporally delayed,” "inhibited," or "other"
when baseline changes could drive differential expression. DEGs that did not fit into

any of these three categories were categorised as "other."
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4.2.3 Website generation

A web resource available under http://www.endothelial-response.org has been created

in the course of this project using R and shiny (269). The resources utilises normalised
expression values (TPM) and the data generated in the WGCNA analysis to make the
data available to the public. It allows to view differential expression of genes, profile
gene groups and pathways, perform gene centric correlations to find clusters with
similar behaviour to a target gene and to investigate the temporal activation profile, as
well as the sex split differential between samples. The module central analysis allows
for investigation of patterns for genes with similar behaviours, defined in study 1. All

data generated in this study is freely available through this resource.

4.3 Adipose tissue enriched transcriptome

4.3.1 Genotype Expression Project Bulk RNAseq Data Set

Bulk RNAseq data for subcutaneous adipose tissue (SAT) [n = 646] and visceral
adipose tissue (VAT) [n = 527] was downloaded from the Genotype-Tissue Expression
(GTEx) project (GTEx Analysis V8 (dbGaP Accession phs000424.v8.p2),

www.gtexportal.org) (270). The data was provided as TPM values corresponding to

ENSEMBL IDs. The metadata contained the following variables: donor id, cause of
death (categorical), sex, race, and age. Subcutaneous adipose tissue was taken from
beneath the skin on the medial side of the leg. Visceral adipose tissue was taken from

the greater omentum, a fibro-fatty tissue that spans the abdomen.

4.3.2 Integrative Correlation Based Analysis

Butler et al. (2016) developed a bioinformatics based approach using integrative
correlation analysis of selected reference transcripts, to determine cell type enriched
genes by the aids of selected cell type specific reference transcripts. While Butler et
al. (2016) focused solely on EC enriched cell types, Dusart et al. (2019) significantly
expanded the scope by introducing thresholds and conducting cell type comparisons,
allowing for the examination of multiple cell types within the same tissue (brain) (20,
106) . Integrative correlation is a statistical method utilised to evaluate the consistency
of gene expression data across a set of studies or samples. This highly reproducible
gene-specific measure estimates the correlation of correlations among multiple genes.
This type of analysis was developed for measure of cross-study reproducibility across

gene expression data sets (271).
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By evaluating the correlations of TPM values among numerous genes, in different
samples or studies, the approach computes a gene-specific correlation score. This
correlation score serves as an estimation of the extent to which a group of genes is
likely to be enriched in a specific context. Integrative correlation can be performed

through various statistical software, such as R or Python.

4.3.3 Integrative Correlation Based Analysis in Bulk Sequence Data Using
Cell Type Specific Reference Transcripts
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Figure 30: RNA sequencing data from adipose tissue: Adipose tissue is composed of a
mixture of cell types that are present at various numbers in each tissue sample of which bulk
RNA sequencing data is based on. Reference transcripts, which are cell specific markers, are
chosen based on a similar transcript ratio across samples, as they have same cell type origin.
They can be used to identify other cell type enriched transcripts with a similar expression
pattern. (Figure received, with courtesy, from Marthe Norreen-Thaorsen).

The GTEx samples were extracted from bulk sequencing of tissue samples. This
means transcript data was not sorted by cell type but rather represents a mix of
different cell types in different distributions. Specific markers for each cell type were

selected using existing literature.
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These markers are referred to as "reference transcripts”. In this study three reference
transcripts (Ref.T) were chosen per cell type. While each of these gene transcripts
could serve as a representative marker for a particular cell type within a mixed
population of cells, the combined three reference markers to establish that reference
transcripts expression patterns reflect cell type proportion in tissue samples, and

therefore transcripts from cell type are found with same ratio and correlate (Figure 30).

Expression values (TPM) of the Ref T. were assessed. To measure the strength of the
relation, a correlation based analysis to the mapped transcriptome was performed
using Spearman's ranked correlation (Figure 31). Spearman's rank correlation

coefficient (p) is defined as follows:
p = Spearman's correlation coefficient

—1 6, diz th di = difference between two ranks
P = nn2-1) wit n = number of data pairs
Spearman's rank correlation will generate values between -1 and 1, with the value of
1 being perfect correlation and -1 being a total inverse correlation. A value close to 0

indicates no relationship.

This analysis assumes that gene transcripts from the same cell type are expressed to
a similar extent in each cell of the same type, but in different extent or not at all in other
cell types. Housekeeping genes that appear in similar extents in diverse cell types or
genes that correlate with multiple cells were corrected for by choosing multiple specific

reference transcripts (Ref.T.) (Figure 31).

To find cell type enriched transcripts, three Ref.T. were defined per constituent cell
type using literature research and cell type specific IHC staining results in the Human
Protein Atlas. The following ten constituent cell types for adipose tissue were defined:
adipocytes, adipocyte progenitor cells, endothelial cells, macrophages, mast cells,
mesothelial cells, neutrophils, plasma cells, smooth muscle cells, and t-cells. The
hypothesis was that transcripts with high correlation with Ref.T from only a single cell

type likely have cell type specific expression.
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Figure 31: Expression of reference transcripts in two example cell types: (i, iii) Reference
transcripts (Ref.T.) for the same cell types have a high correlation, when similar cells are
expressing genes in a consistent manner (ii) but differ in correlation when the cell types are
not related, as their expression patterns differ (Figure received, with courtesy, from Marthe
Norreen-Thorsen).

To find suitable candidates for cell specific reference markers a shortlist of candidates
was created, and Spearman correlation coefficients were calculated between these
candidates. Candidates selected must have shown a high positive correlation
coefficient with another and a low correlation coefficient with any other Ref.T.

4.3.3.1 Cell Type Enrichment

To reduce false positives, lowly expressed gene transcripts (TPM <0.1 in more than
50% of the samples) were regarded as noise and excluded from the analysis.
Spearman's rank correlation coefficients were calculated between the three selected
Ref.T. per cell type and all other sequenced transcripts. P-values below 0.05 and FDR
< 0.0001 was required for inclusion. Subsequently, a threshold correlation value was

chosen for inclusion and exclusion of gene transcripts:

(a) Correlation value above which >95% of all transcripts reached the threshold
with only the Ref.T. panel.
(b) A minimum of 20.50, if higher than (a).
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A differential correlation score (Figure 32) was used to identify and exclude multi-
enriched transcripts: transcripts correlating with more than one cell-type. The
differential score was defined as the difference between the highest mean correlation
coefficient with a Ref.T. panel, and the second highest mean correlation coefficient
with another Ref.T. panel. Transcripts with a differential correlation value >0.1 were

classified as cell type enriched.
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Figure 32: Differential correlation score: The differential correlation score was defined as
difference between a transcript mean correlation with a Ref.T panel of one cell type vs.
another. The enrichment rank represents the position of a transcript in a cell type enriched list.
Transcripts with a differential score below 0.1 were excluded from the cell type enriched list
and classified as co-enriched (Graphic received from Marthe Norreen-Thorsen).

4.3.4 Verification

Verification of the Ref.T. correlation results was performed in multiple ways:

e Geneontology (GO) analysis: GO biological process enrichment analysis was
carried out for each cell type enriched list using the Gene Ontology Consortium
(272) and PANTHER classification resources (273, 274), to define significant
over-represented terms. These terms could indicate involvement in cell specific
processes. They thereby act as a reasonable indication for correctness of cell
type classification and were used for validation of cell type specific processes.

e WGCNA: Calculation of pairwise correlation coefficients among all transcripts,
followed by clustering based on their similarity in expression patterns, was
performed as described in section 3.3.3. and was used as additional support to

the reference-based classification, as it is not based on any pre-set input.
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e |HC staining: For a selection of cell type enriched genes, the cell specificity of
the corresponding protein was verified using IHC staining, provided by the
Human Protein Atlas (179).

e Single Cell sequencing resources: We used single cell sequencing resources
(tabula sapiens human cell atlas (115), tabula muris (114) ) and created Uniform
Manifold Approximation and Projection (UMAP) plots to compare the data
generated in this study to the cell type ell type annotated cluster with highest
expression. The four studies employed three thresholds: avg. log2 fold change
of >0.2, >0.5 or >1 in each annotated cell type, relative to all other cell types

within each study. Significance was assessed using hypergeometric testing.

4.4 Functional Characterisation of KANK3

4.4.1 Gene Knockdown and Recombinant KANK3 Protein Expression

KANK3 function was investigated using gene knockdown and overexpression
strategies. For knockdown, three siRNA targeting KANK3 were used. siRNA was
transfected into cells using lipofectamine and Opti-MEM. Knockdown efficiency was
evaluated after 48-72h using RT-gPCR and Western Blot. Overexpression was
achieved by transfecting plasmids into cells using Lipofectamine 3000 in HEK293 cells.

4.4.2 Confocal and Structured Illlumination Microscopy

Confocal and structured illumination microscopy were used to determine the protein
localisation and effects of gene expression loss. For confocal microscopy, cells were
fixed in 4 % formaldehyde, permeabilised using 0.05% Triton X in phosphate buffered
saline (PBS), and blocked using 3% bovine serum albumin (BSA) in Triton X. They
were then incubated with primary and secondary antibodies and mounted with DAPI
(4',6-diamidino-2-phenylindole) nuclear stain. Images were captured using a confocal
microscope and analysed using Fiji ImageJ2 software. Structured illumination
microscopy was conducted on fixed cells grown on glass coverslips. Primary and
secondary antibodies were applied, and DAPI staining was performed. Images were
acquired using an OMX Blaze SIM microscope, and reconstruction and analysis were

performed using software.

The cells were then imaged using a microscope, and gap size was measured over time

using Fiji software.
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4.4.3 Wound healing assay ("Scratch assay")

Investigate gap closing

Cultivate cells Scratch HUVECs with 100l pipette tip to create gap for 72h und 5
or under microscope

Figure 33: Principle of wound healing assay in endothelial cell culture. (A) The EC layer
is cultivated until confluence. (B) A gap using a pipette tip or culture inlets is created and the
medium is washed to remove cells that have been lifted off (C) Surrounding cells will begin
close the gap through proliferation and migration. (D) The gap size is captured over time.

A wound healing assay, also known as scratch assay, is a commonly used technique
to study cell migration, proliferation, and cell-cell- interactions. It is simple, low cost and
easy to reproduce. Cells are grown to confluence and a wound is created by scratching
the cell layer (Figure 33). The scratch is usually created with a pipette tip or another
sharp object (275, 276), but several companies (e.g., Ibidi) sell inlets for cell culture
creating a gap. The cells will usually start to close the gap, which can then analysed

using time lapse microscopy (276).

An inherent drawback of the employed technique lies in the potential non-uniformity of
the gaps generated while utilizing a pipette tip for gap creation. The cells close to the
gap could also be damaged or activated. Meanwhile, the utilization of inlets on fully
confluent endothelial cell monolayers resulted in inconsistent detachment of cells or
cell segments for us. Manual gap measurements can lead to bias, which is why we
randomised and anonymised the samples before analysis. Due to low image quality,

an unbiased deep learning approach failed.

4.4.4 Calibrated Automated Thrombogram (CAT)

Thrombin generation is an essential step to induce and maintain haemostasis,
directing the coagulation cascade to a fibrin clot, as explained in section 1.1.5.
Thrombin cleaves soluble fibrinogen into insoluble fibrin, and thereby forming a blood
clot. Measure of thrombin generation can be used as a tool to assess blood clotting
ability (277).
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A first thrombin generation test was developed by Macfarlane and Biggs (1953) and
has been used in clinical and laboratory settings since then (278, 279). The assay has
been constantly improved, by using different measurements and by employing
computational approaches (280, 281).
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Figure 34: Thrombin generation analysis using calibrated automated thrombinoscope:
CAT determines thrombin activity over time in plasma by measuring released fluorescence
due to specific substrate cleavage. The assay analyses the time until thrombin generation
starts (lag time), time to peak (time to reach maximum thrombin concentration), peak height
(maximum thrombin concentration), the area under the curve (representing total thrombin
generation) is called endogenous thrombin potential (ETP).

The calibrated automated thrombogram (CAT) assay encompasses several essential
steps in evaluating thrombin generation (Figure 34).

e The initiation of the coagulation cascade is achieved through a triggering agent,
activator, leading to thrombin production.

e A fluorescent substrate specific to thrombin is then introduced, responding to
thrombin's proteolytic activity.

e This prompts thrombin to selectively break down the substrate, leading to the
release of a fluorophore. The fluorescence signal is continuously monitored
over time. This real-time signal corresponds to the amount of active thrombin
present in the sample at any given moment.

e To extrapolate thrombin concentration from the fluorescence signal, the assay
is "calibrated" by using known thrombin concentrations reagent as endogenous
control, enabling precise quantification by comparing the generated thrombin

activity with the reference calibrator.
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e Thrombin generation is measured by assessment of several factors, such as
lag time, endogenous thrombin potential (ETP), time to peak and peak height.
The area under the curve represents the endogenous thrombin potential (ETP).
It reflects the amount of thrombin generated. Lag time is the time until thrombin

generation starts. Peak height shows the maximal thrombin concentration.

While CAT assays are usually performed with plasma samples which are activated by
exogenous commercial activator reagent, we employed an in house assay where the
activation is triggered by cultured cells in the flat bottom plate. Therefore, the
assessment was indirectly measuring endothelial expression of coagulation factors
and the potential of EC to induce the coagulation cascade. CAT was employed to
investigate the impact of KANK3 on the coagulation pathway in ECs. HUVEC were
stimulated with TNFa, and thrombin generation was initiated using a reaction mixture
(a buffer containing a fluorescent substrate, calcium chloride, and phospholipids).
Thrombin generation was quantified using Thrombinoscope software. Mouse
monoclonal anti-tissue factor antibody or corn trypsin inhibitor were added 15 min prior
adding fluorogenic substrate to control for extrinsic pathway or intrinsic pathway

activation. Experiments were performed in triplicates.

4.45 Flow Cytometry

Flow cytometry was performed on HUVEC transfected with siRNA targeting KANK3.
A subset of cells were stimulated with TNF and collected by trypsinisation after 24
hours. Flow cytometry analysis was conducted to identify tissue factor levels in in cells.
HUVEC were collected and concentrated, and treated with PE-conjugated anti-CD142
Clone NY2 (30 ul/ml) and isotype-matched control mouse-IgG1 (6 ul/ml) followed by
incubation on ice for 30min and centrifugation. The pellet was then resuspended in
PBS. Flow cytometry was performed using the Beckman Coulter CytoFLEX Flow
Cytometer (acquisition settings FSC 20 V, SSC 150 V, PE 130 V). Gating and data
analysis was done using CytExpert for CytoFLEX Acquisition and Analysis Software
and FlowJo™ v10.7. Gating was performed for live vs dead and singlets vs doublets.
Dead cells and doublets were excluded, followed by gating for tissue factor positive
and negative cells. Isotype control signal was subtracted from PE-conjugated anti-
CD142 total fluorescent signal for each sample. Median fluorescence intensity and

tissue factor positive cells were identified for each condition.

65



5 Paper summaries

5.1 Project |

Global transcriptome analysis reveals distinct phases of the

endothelial response to tumour necrosis factor

Objectives: The objective of this study was to investigate the transcriptional changes
in endothelial cells (EC) in response to TNF over an extended time period in both male
and female HUVEC, to elucidate the overall dynamics of the EC response to TNF and

identify regulated genes and coexpression profiles.

Methods: We conducted an extended time-course analysis of the EC response to
TNF, ranging from 30 minutes to 72 hours. This study utilised gene expression analysis
techniques to identify regulated genes and employed weighted gene correlation
network analysis to decipher coexpression profiles. A website resource was created to

analyse and download the data created in this study.

Results: The study revealed two distinct temporal phases of the EC response to TNF.
The first phase, the acute response, occurred between 1-4 hours after TNF stimulation.
During this phase, several previously uncharacterised genes were strongly regulated,
among them IncRNAs and pseudogenes. The second phase, referred to as the later
phase, occurred between 12-24 hours after TNF stimulation. In this phase, the majority
of regulated genes were related to viral response, independent of de novo interferon
production. Downregulation patterns were mostly not associated with inflammation GO

related terms.

Conclusions: This study provides insights into the global dynamics of the endothelial
cell transcriptional response to TNF. The analysis highlights distinct gene expression
patterns during the acute and later phases of the response. Additionally, the findings
suggest that TNF can regulate genes independent of interferon production. The
identified genes and coexpression profiles may contribute to a better understanding of
the role of endothelial cells in inflammation. Data for all analysed gene transcripts can

be explored on the accompanying website http://www.endothelial-response.org/.
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5.2 Project I

A human adipose tissue cell-type transcriptome atlas

Objectives: This human adipose tissue cell-type transcriptome atlas project uses an
integrative correlation analysis to identify cell type enriched transcriptome profiles of
adipose tissue constituent cell types from unfractionated tissue samples. In the context
of this thesis, results from the endothelial profiling can be used to find candidate genes

for further profiling.

Methods: An integrative correlation analysis was used to identify enriched genes in
ten cell types using the adipose tissue data. Adipose tissue bulk RNAseq data was
obtained from the GTEx web resource, and selected cell specific markers - reference
transcripts, was used to identify other possible transcripts with similar expression
pattern and ratio across the sample pool, of which could indicate enrichment within the

corresponding cell type.

Results: Ten major constituent cell types were profiled in visceral human adipose
tissue (VAT), based on 527 samples from male and female donors. More than 2,300
cell-type-enriched transcripts were identified. 8 constituent cell types were similarly
profiled in subcutaneous adipose tissue (SAT) using and 646 samples. Comparative
analysis revealed depot- and sex-specific cell-type-enriched genes. The variation
between SAT and VAT gene expression profiles was primarily driven by mesothelial
cells. Additionally, a panel of male-only cell-type-enriched genes was uncovered
through sex-subset analysis. These were exclusively assigned to the Y-chromosome.

KANK3 was found on the EC enriched list and was further investigated in study 3.

Conclusions: The generated transcriptome atlas serves as a roadmap for
understanding the biology of adipose tissue, contributing to the identification of cell-
type-specific genes, and is employed within the human protein atlas. Enriched genes
can be targets for research in health and disease. The bulk sequencing approach
overcomes technical challenges associated with single-cell RNA sequencing analysis

of adipose tissue.
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5.3 Project Il

KANK3 is a shear stress regulated endothelial protein with a role in

cell migration and tissue factor regulation

Objectives: The objective of this study was to functionally investigate the role of
KANKS3, a previously defined EC-enriched transcript, in endothelial cells. Considering
that cell type specific genes have cell type specific functions, we investigated KANK3

in a vascular context, exploring coagulation, inflammation, and proliferation.

Methods: Human umbilical vein endothelial cells (HUVEC) were transfected with
siRNAs targeting KANK3 and treated with or without the inflammatory cytokine TNFa.
An in vitro scratch assay was performed to evaluate cell proliferation and migration.
Quantitative polymerase chain, reaction (qPCR) was used to measure the expression
of coagulation-related, inflammatory, and proliferation genes. Calibrated automated
thrombinoscope (CAT) was used to evaluate changes thrombin generation. Protein
localisation in HUVEC were analysed using fluorescence microscopy (SIM, confocal).

Protein quantification was performed using western blot or flow cytometry.

Results: KANK3 knockdown was found to positively regulate the mRNA expression of
coagulation factors tissue factor and the pro fibrinolytic factor PLAT. These findings
were confirmed through the utilisation of a thrombin generation assay, wherein the
reduction of KANK3 resulted in heightened thrombin production. In wound healing
assays, the KANK3 siRNA-EC cells demonstrated a faster rate of gap closure,
indicating enhanced cell migration, under both serum-starved and non-starved
conditions, compared to the control group. KANK3 accumulation was observed in cell-
cell interaction sites. KANK3 distribution and expression was regulated by flow.

Conclusions: The findings of this study suggest that KANK3 plays a role in the
regulation of coagulation by modulating the expression of tissue factor in EC.

Additionally, KANKS3 appears to be important for the regulation of cell migration.
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6 Discussion

6.1 Project | - TNF time course

In this study, we investigated the temporal response of endothelial cells (EC) to
stimulation with TNF using RNAseq at 11 different time points up to 72 hours post-
stimulation. To our knowledge, this is the first study in EC encompassing such a
comprehensive temporal response to stimulus, along with a high sequencing depth.
Existing studies focus on either specific gene(s) or phenotypic characteristics, e.g.,
(282, 283, 284), or global transcriptional response at a limited number of time points
(285, 286).

We identified two distinct temporal phases of gene expression changes induced by
TNF, as well as distinct types of downregulation profiles. The early phase of the
response occurred between 1-4 hours after stimulation and included well-known genes
involved in leukocyte adhesion, and other commonly described inflammatory markers.
We identified several genes encoding uncharacterised proteins and uncharacterised
non-coding transcripts, which showed similar expression dynamics during the initial
phase, suggesting potential candidates for further investigation in the context of
inflammation. While the early response included the expected TNF regulated genes,
we also observed a delayed phase of response, that occurred between 12-24 hours
post-stimulation, which primarily consisted of interferon-stimulated genes (ISGs). We
also identified a panel of genes that were downregulated by TNF stimulation, including
some that had not been previously reported in this context. The regulation of ISGs in
EC by inflammatory cytokines is not well understood, but the findings of this study were
consistent with a recent report suggesting the induction of a late-stage interferon
response in EC following TNF stimulation (287). The expression of ISGs was
independent of de novo production of interferon, contrary to previous reports that

suggested that ISG expression is dependent on IFNf (288, 289, 290).

We also found upregulation of genes involved in the cyclic GMP-AMP (cGAS) and
STING pathway, which detect pathogenic DNA (291), as well as the upregulation of
genes encoding various pattern recognition receptors, such as toll-like receptors and
RIG-I-like receptors. These receptors are known to induce interferon production in

response to bacterial or viral ligands, suggesting a potential mechanism for 1SG
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induction in EC (288, 292, 293, 294). This mechanism is likely a priming for antiviral
response after infection. Additionally, we found several non-coding RNAs within the
gene modules associated with 1ISGs, some of which have to-date unknown functions

and could be interesting candidates for further study.

Furthermore, our study offers insight in the sex-based TNF response, comparing male
and female cells. Studying sex differences, especially the female sex, is an often
neglected variable in clinical and biological science. This gap in comprehending sex
differences has led to healthcare inequality and life-threatening incidents. Approved
drugs can have severe negative impacts on women due to male-centric biases in
research across basic research the clinic (295). Sex even more neglected in in vitro
studies, where the sex of primary cells is often not specified. A review of 295 articles
from 2016 to 2017 published in ATVB, focusing on cells obtained from animal tissue,
found that less than only 11-21 % of studies disclosed the sex, with only 3 articles
comparing male and female cells (296). This study contrasts the response of male and
female HUVEC after TNF stimulation. Our analysis revealed that the TNF-response
was comparable between female and male HUVEC, but we saw differences on
baseline and in magnitude of total response. Only a small set of genes was regulated

between male and female and by TNF.

While we did not find significant differences in the EC response to TNF based on
chromosomal sex, we found differences in baseline levels of gene expression. It must
be noted that other factors, such as sex hormones, may influence vascular responses
in vivo. It is also important to note that the study does not provide an overview of all
aspects of the TNF response, such as immediate responders (e.g., secretion of P-
selectin), protein phosphorylation or complex, and nuclear translocation, or any non-

transcriptional aspect of TNF response.

We provide this data on a user-friendly website resource, the endothelial response
database, which offers accessible information for researchers. The website is available

under www.endothelial-response.org (Figure 35). It can serve as a valuable tool for

analysing the dataset and exploring the extensive temporal coverage of the EC
transcriptional response to TNF stimulation. Researchers can easily access the
profiles of TNF-regulated genes or perform gene centric analyses. The resource also
facilitates understanding of the global temporal context of transcriptomic changes

through weighted network correlation analysis.
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Endothelial TNF Response Database

Home Differential Expression Pathway Profiling Gene Correlation Analysis Module Centric Analysis Temporal profiling

Home Categories Study Design Approaches Gene Centric Approach Module Centric Approach

Acknowledgements

Endothelial TNF Response Database

Figure 35: Endothelial-response website resource. A key aim of study 1 was to provide a
web resource for investigation of genes or gene groups in context of vascular inflammation.
The resource expands the array of online resources by presenting a sex-matched
transcriptional dataset of HUVEC response to TNF, along with a temporal baseline. It allows
for different calculations without prior knowledge of molecular biology necessary.

Limitations of the studies are among others, that EC is a foetal cell type, rather than
adult. Discrepancies between adult and foetal cell types have been described before,
among them variations in their transcriptional reaction to TNF (297). As described
before, it should be mentioned that EC have organ-specific heterogeneity (298, 299).
meaning that stimulation responses of other EC types or vascular bed might not be
comparable to those we observed in HUVEC. Furthermore, the EC in this study were
not cultured under flow or together with other cells of the same microenvironment,
which could affect their transcriptome (300, 301, 302, 303) or the response to TNF
(304). It should be noted that the proteome is not necessarily directly related to the
transcriptome, and can also be temporarily delayed (305). While transcriptomics may
reveal important regulatory elements, our study does not reveal changes in the
proteome. Furthermore non-genetic regulatory elements, such as secreted proteins

(e.g., P-selectin and Von Willebrand factor (306)) are not measured.
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6.2 Adipose Tissue Transcriptome

This project aimed to study the gene expression profiles of different cell types within
adipose tissue (AT) (105). AT serves various functions in the body, including energy
storage, insulation, and regulation of metabolism (118). It consists primarily of white
AT, categorised as visceral adipose tissue (VAT) located in the abdominal region and
subcutaneous adipose tissue (SAT) located under the skin (121, 122, 123).

Previous studies have used single-cell RNA sequencing (scRNAseq) to analyse
specific cell types within adipose tissue, but this approach has limitations, such as the
need for fresh tissue and low read depth, as well as adipocytes themselves being
difficult to profile (110, 113). This project aimed to overcome these challenges by
analysing unfractionated tissue RNAseq data and identifying cell-type-enriched
transcripts, using pre-existing data from GTEx (108). The substantial number of
biological replicates allows for robust comparisons between different subgroups. We
provide a comprehensive database of coding and non-coding gene expression profiles

specific to both adipose tissue cell types.

We found several genes with enriched expression in adipocytes, including both known
genes involved in adipocyte development and function, as well as previously
uncharacterised genes. Several enriched non-coding RNAs, which have been
increasingly recognised in biological regulation, were also identified. Sex specific
differences were mainly driven by Y-chromosome genes. Gene expression profiles
between VAT and SAT revealed differences at the cell-type level, with mesothelial cells
being found to be a primary driver of these differences.

In silico approaches often come with limitations. Using our approach, several factors

need to be taken into consideration.

e Dependency on choice of reference transcript (Ref.T.): The integrative
correlation analysis relies on selecting appropriate reference transcripts that
accurately represent the cell type under investigation. The choice of reference
transcripts needs to be specific to the cell type they are intended to represent.
It also needs to be a representative of its target cell population and needs to
correspond to other reference transcripts. Otherwise, it is easy to miss out

biological differences or use falsely annotated genes.
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e Limitation to known cell types: The use of reference transcripts to identify cell
type-enriched transcripts is limited to known cell types or even to well described
ones.

e Difficulty in profiling cell sub-types: The method may face challenges in
accurately profiling cell sub-types that do not have a distinct set of uniquely
expressed genes. In cases where sub-types exhibit varying levels of the same
genes, differentiation becomes more difficult using this method.

e Statistical limitations: Our threshold is not based on hard statistics, but rather
on convenience factors, such as the arbitrary number of 0.5. A gene with a
correlation of 0.50001 would be included, while ones with 0.49999 would be
excluded. These limitations would reduce false positives. It was partially
addressed by implementation of differentials. These differentials were
intentionally set high, so that false negatives are more likely than false positives,
as the aim was a gene list that is more positively enriched, rather than a larger

list of more vaguely enriched genes.

e Genes that are specific under stimulation: Some genes that may not be
expressed in resting state, but only in activated state, could be cell type

enriched. These genes would not be found in our analysis.

This dataset can be used to optimise deconvolution algorithms used to determine the
proportions of cell types in bulk RNAseq data. By employing an integrative correlation
analysis, we successfully identified enrichment profiles of constituent cell types in 2

different adipose tissues.

The data is accessible through the "Tissue Cell Type" section of the Human Protein

Atlas website: https://www.proteinatlas.org/humanproteome/tissue+cell+type.
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6.3 KANKS3

In this study, the functional characterisation of the uncharacterised, endothelial-
enriched protein KANK3, was presented. It has been previously identified in several
tissues as endothelial-enriched by our group (20, 105, 106, 107, 127) and as
vasculature-specific for a homologue in zebrafish (130). In non-endothelial cells
KANK3 is described as cancer enriched and influences cancer migration and
proliferation (140). KANKS3 belongs to an evolutionary well conserved protein family of
four members with a unique structure: The N-terminal talin binding sites (KN moitif),
central coiled coil domains, which recognise liprin, and C-terminal ankyrin repeat units,
which bind to KIF21A, a motor protein that binds to tubulin. Other family members have
been described as focal adhesion proteins. While KANK1 and KANK2 are well
described, KANK3 has remained understudied, especially in a vascular context, in
vertebrates. Additionally, the HPA defines KANKS as a cancer-associated protein that
is highly expressed, although not exclusively, in rhabdoid cancer. It was found to be
expressed in 28 out of 29 analysed cancer cell lines, with the exception of testicular

cancer where its expression was not detected (129).

Our study of KANK3 focused primarily on vascular processes, such as inflammation,
wound healing, and thrombosis, as well as cellular localisation and actin organisation.
Based on the results in study 1, we found KANK3 expression enhanced after TNF
stimulation (218) (Figure 36). This could indicate that KANKS3 is directly or indirectly
related to inflammatory processes, even though KANK3 knockdown does not influence
the gene expression of inflammatory markers (SELE, ICAM1, VCAM1).

Differential expression KANK3

KANK3

|
v

Figure 36: Temporal differential expression profile of KANK3 in HUVEC after TNF
stimulation: shows an enhanced differential profile. Employing the endothelial-response web
resource from study 1, we investigated the temporal profile of KANK3, showing that its
expression is enhanced compared to untreated control (218).

38
time.

74



Interestingly, however, we observed that knockdown of KANK3 enhances the
expression of the prothrombotic coagulation factor tissue factor (F3) on mRNA and
protein level, as well as profibrinolytic factor tPA. Our findings therefore suggest that
KANKS3 is a player in haemostatic balance via unknown mechanisms. A suppression
of KANKS in endothelial cells induced a shift towards a prothrombotic state in gene
and protein expression. It induces a heightened procoagulant environment via
mechanisms distinct from standard cellular activation, as evidenced by the absence of
alteration in adhesion molecules. KANKS3 could therefore be an interesting target for
investigation in cardiovascular disease, such a thrombosis or atherosclerosis. A
potentially prothrombotic phenotype in vitro is furthermore validated by functional
experiments showing enhanced thrombin generation, following KANK3 inhibition,
thereby providing additional evidence for these findings.

Previous studies have suggested that the KANK protein family plays a role in actin
cytoskeletal organisation as a focal adhesion protein, as well as a migratory mediator
in cancer cells. We conducted protein localisation studies of KANK3 in endothelial cells
and found that KANKS localises to focal adhesions, along the cytoskeleton, indicating
its potential role in these cellular processes. Additionally, live-cell microscopy studies
of endothelial cells with KANK3 knockdown showed increased cell motility without
changes in cell proliferation. These results suggest that KANK3 has a role in
modulating cellular migration, probably related to focal adhesion signalling.

In summary, the study sheds light on KANKS's potential significance in vascular biology
and suggest a potential impact on thrombotic tendencies. These implications make
KANKS an interesting target for therapeutic interventions in cardiovascular disorders,
such as atheroscleros and thrombosis. Further studies should be conducted to fully
elucidate the intricate function and precise molecular mechanisms of KANK3 within the
vasculature, including its precise localisation and its potential role as a therapeutic

target for thrombotic disorders.
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7 Conclusion

Study 1

Two distinct phases of EC gene expression patterns in response to TNF were identified
through an extended time-course analysis (30 minutes to 72 hours): an acute response
phase (1-4 hours) and a later phase (12-24 hours). Most other studies focus the
analysis on a single time-point post stimulation, giving only a limited insight in the
global response. The acute phase included previously studied genes associated with
EC leukocyte adhesion receptors, as well as relevant uncharacterised genes. The later
phase primarily consisted of TNF-induced expression of interferon-stimulated genes
(ISGs), independent of de novo interferon production. Genes linked to pattern
recognition receptors and non-coding RNAs within ISG-containing gene modules were
also upregulated. Additionally, a novel panel of downregulated genes in response to
TNF stimulation was identified. Furthermore, a web-based resource was created to

analyse the defined genes and modules in this study.
Study 2

By employing integrative correlation analysis, enrichment profiles for various cell types
in visceral and subcutaneous adipose tissue were predicted. The analysis revealed
that these fat depots exhibited similar overall cell type expression profiles. The
differences between depots were mainly driven by mesothelial cells. Only a small
subset of sex-specific cell type enrichment differences were observed, all associated
with Y-linked genes, enriched exclusively in males. The data from this study was
implemented into the Human Protein Atlas. This study also provided candidate genes

for further investigation, such as the endothelial enriched transcript KANK3.
Study 3

Building upon study 2, Study 3 delves into the functional significance of the predicted
endothelial-enriched gene transcript KANK3. KANK3 is confirmed as an endothelial-
enriched protein in multiple tissues. KANK3 expression is increased, and protein
redistributed under flow. KANKS3 inhibition is associated with higher cell motility, but
not with higher proliferation rates. KANK3 has a potential role in the regulation of tissue
factor and tissue plasminogen activator. Functional analyses showed that KANK3
knockdown increases thrombin generation. Thus, KANK3 might be involved in cell

adhesion and intracellular signalling.
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Collective conclusion

Collectively, these studies underscore the importance of multi-faceted approaches in
endothelial research, ranging from comprehensive time-course analyses to integrative
cell-type-specific investigations in tissues, and to functional analysis of specific
proteins. Both project 1 and 2 can generate interesting targets for further investigation.
When exploring different aspects of EC biology, interdisciplinary approaches can help
and complement each other to advance our knowledge of complex biological systems.
Furthermore, the development of web-based resources and the integration of data into
broader platforms like the Human Protein Atlas can enhance the accessibility of these

findings for the scientific community.
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8 Future Perspectives

Project 1 investigated the temporal transcriptional response of HUVEC to TNF to
identify regulated genes and coexpression profiles, as well as providing a web based
resource. We identified two distinct response phases: an acute response phase and a
later phase, involving IFN independent regulation of interferon stimulated genes,
providing insights into the dynamics of endothelial cell transcriptional response to TNF.
Future studies could include the functional analysis of previously uncharacterised
genes in both acute and late responses, as well as a more comprehensive exploration
of the secondary ISG regulation and uncover novel endothelial roles in inflammation
and haemostasis. Further studies will deal with the expansion of the website resource
and usage of different stimuli (such as interferon, shear stress and hypoxia), introduce
new cell types (e.g., monocytes or different EC types), and investigate miRNAs, as
well as investigation of interesting target genes, such as the late stage responders
related to interferon, in the dataset. A comparative downstream-transcriptional map
could be created, mapping gene-gene interactions using the data created in both study
1 and 2. Interesting targets could be adipose tissue specific EC transcripts defined in
study 2. Future improvements could involve expanding and updating the web resource
with additional data, integrating other relevant datasets, as well as incorporating
advanced analysis tools and visualisations. Additionally, we are currently in the
process of expanding the web resource by focussing on the untreated base line and

shifts in gene expression over culture time.

Project 2 employed the analysis of bulk sequencing data from the GTEx portal to
analyse adipose tissue. Follow-up and sister studies in our group have already been
concluded and we defined cell type specific transcriptome profiles for, gastrointestinal
tract, stomach, and the cell type enriched transcriptome atlas for 15 human tissues.
Follow up projects could include the further investigation of non-coding transcripts or
the analysis of the found tissue-enriched EC types in a clinical or in vitro context, as
well as function or phenotype specific atlas projects, e.g., a body-wide fenestrated

endothelial transcriptome.

Project 3 presented the endothelial-enriched transcript KANK3 and showed results in
regard to regulation of tissue factor expression and plasminogen activator tissue type

expression after knockdown. It also influences cell motility. Although highly interesting,
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we could not establish if these were a direct result of the knockdown or a confounding
effect by the influence of KANK3 on mechanosensing or actin assembly. Follow-up
studies could explore this effect and help to widen our understanding of cardiovascular
disease and wound healing. They could include investigating its response when
cultured under oscillating flow conditions simulating disturbed flow observed in
atherosclerosis and thrombosis. Moreover, exploring the interaction between focal
adhesion kinase (FAK) and cadherin, a regulator of intercellular endothelial junctions,
could provide insights into KANK3's role in LC transmigration speed and LC adhesion.
Performing RNA sequencing after KANK3 knockdown could reveal potential gene
expression changes associated with KANK3's absence, shedding light on its
downstream effects. Conducting a vinculin knockdown to assess KANK3 levels and
localization could uncover the relationship between KANK3 and vinculin, a main
regulator of recruitment to focal adhesions. Similarly, the effect of inhibition of other
focal adhesion regulators could be of interest. Considering KANK3's potential influence
on actin assembly and therefore arterial stiffness, and cell spreading in the context of
atherosclerosis might provide valuable insights into its role in regulating vascular
health. Atomic Force Microscopy (AFM) could be employed to explore this aspect. The
focus of the haemostatic system lied on tissue factor and thrombin generation, as we
were not able to assess tPA at the time. Therefore, a reasonable follow-up could dive
into the change in fibrin deposition and fibrinolysis.

Together, these projects and their follow-ups hold the potential for collaborative
utilisation. Their insights can synergistically enhance each other in multiple ways:
Projects 1 and 2 can be employed to uncover potential connections between tissue-
specific endothelial cells and their temporal transcription profiles, thereby identifying
additional EC specific targets for further investigation. Alternatively, the focused
investigation of particular targets, as shown in project 3, within the context of tissue
specificity or stimulation-induced dynamics could be of interest. Temporal enrichment
profiles between different, EC and non-EC, cell types could help to create an

endothelial enriched atlas of immune responders or in pathogenic states.

In these ways, the collaborative integration of findings from different types of projects

can help to expand our understanding of endothelial cell biology.
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ABSTRACT

The vascular endothelium acts as a dynamic interface between blood and tissue. Tumour
necrosis factor-a (TNF), a major regulator of inflammation, induces endothelial cell (EC)
transcriptional changes, the overall response dynamics of which have not been fully
elucidated. Here, we conducted an extended time-course analysis of the human EC
response to TNF, from 30 minutes to 72 hours. We identified regulated genes and used
weighted gene correlation network analysis to decipher co-expression profiles, uncovering
two distinct temporal phases - an acute response (between 1-4 hours), and a later phase
(between 12-24 hours). Sex-based subset analysis revealed that the response was
comparable between female and male cells. Several previously uncharacterised genes
were strongly regulated during the acute phase, while the majority in the later phase were
interferon-stimulated genes (ISGs). A lack of interferon transcription indicated that this
ISG expression was independent of de novo interferon production. We also observed two
groups of genes whose transcription was inhibited by TNF - those that resolved towards
baseline levels, and those that did not. Our study provides insights into the global
dynamics of the EC transcriptional response to TNF, highlighting distinct gene expression
patterns during the acute and later phases. Data for all coding and non-coding genes is

provided on the website (http://www.endothelial-response.org/). These findings may be

useful in understanding the role of EC in inflammation and in developing TNF signalling-

targeting therapies.

KEY POINTS
1. This study investigates TNF-induced endothelial transcriptional changes over 72 hours
2. Global analysis revealed discrete acute and delayed temporal gene expression phases

3. Interferon stimulated gene expression was independent of interferon production
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INTRODUCTION

The vascular endothelium is a dynamic interface between blood and tissue that has a role
in the regulation of coagulation, blood pressure, solute movement, and inflammation. The
resting endothelium is an anti-inflammatory and anti-thrombotic surface, which is
unreceptive to interactions with circulating blood cells (Ley and Reutershan 2006, Yau,
Teoh et al. 2015). The cytokine tumour necrosis factor-a (TNF) is a key driver of acute
and chronic inflammation (Webster and Vucic 2020, Jang, Lee et al. 2021) and can bind
to endothelial cells (EC) via TNF-receptors 1 and 2. This interaction induces signalling
cascades that regulate the activity of several transcription factors, including NF-kappaB
(NFkB) and activator protein-1 and 2 (Vandenabeele, Declercq et al. 1995, Baud and
Karin 2001), leading to various cellular responses, such as the expression of adhesion
molecules and chemokines that facilitate leukocyte recruitment into tissue (Liao 2013).
TNF can also induce the EC expression of interferon regulatory factors and interferon-
stimulated genes (ISGs) (Venkatesh, Ernandez et al. 2013, Yan, van Meurs et al. 2017).
Indeed, the concept that EC are multifaceted conditional innate immune cells has gained
traction in recent years (Shao, Saredy et al. 2020, Lu, Sun et al. 2022). However, the
global dynamics of the EC response to TNF is not well understood, with existing studies
tending to focus on specific gene(s) or phenotypic characteristics, e.g., (Ulfhammer,
Larsson et al. 2006, Jung, Shimizu-Albergine et al. 2020, Brandt, Gerke et al. 2022), or
global transcriptional changes at a single, or small number, of time points (Rastogi,
Rizwani et al. 2012, Ryan, Ma et al. 2022). The same is true of studies of the TNF
response in other cell types, such as the immortalised embryonic kidney cell line HEK293
(Bouwmeester, Bauch et al. 2004, Ma, Li et al. 2009) or fibroblasts (Hao and Baltimore
2013, Paulsen, Veloso et al. 2013). Existing studies also tend to neglect the influence of
chromosomal sex on cell behaviour (Lu, Schmidt et al. 2018), despite reported differences
between male and female EC, e.qg., in preeclampsia (Zhou, Yan et al. 2019), and following
exposure to shear stress (James and Allen 2021), X-ray induced damage (Campesi,
Brunetti et al. 2022) and hyperoxia (Zhang and Lingappan 2017).

Here, we profiled the EC transcriptional response to TNF over an extended time, including
11 time points ranging from 30 minutes to 72 hours post stimulation. We identified TNF
up regulated or down regulated genes and used weighted gene network correlation
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analysis to decipher co-expression profiles, revealing two distinct temporal phases; an
acute response initiated between 1-4 hours, and a subsequent later one between 12-24
hours. Sex-based analysis revealed a high similarity in response profile between female
and male EC. Several completely uncharacterised genes were strongly regulated during
the acute phase of the response, while the majority of those in the latter phase were
interferon stimulated genes (ISG). Our data indicated that this ISG expression was
independent of de novo interferon production and subsequent autocrine signalling. All

data is available on (http://www.endothelial-response.org/), which users can view on a

gene centric or regulation-profile basis.
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RESULTS

Existing studies of EC responses to inflammatory stimuli, such as TNF, focus primarily on
early signalling and associated transcriptional changes. Here, we profiled global changes
in the EC transcriptome following TNF stimulation, over an extended time course. Human
umbilical vein endothelial cells were extracted and pooled by donor sex, before treatment
with or without TNF for 0.5, 1, 2, 4, 6, 8, 12, 24, 36, 48 or 72 hours, and subsequent
analysis by RNA sequencing (Figure S1 A).

TNF induces EC transcriptome modifications over an extended time course
Average DESeqg2 expression values for each treated sample (biological replicates: n=3
male and n=2 female) were normalised to the sex- and time-matched untreated controls,
to identify differentially expressed genes (DEG). 2099 positive and 2162 negative DEG
were identified (fold change vs. untreated control FC log2 > 1 and FC log2 < -1,
respectively [in both male and female sample sets], TPM>1 at least one sample time point,
raw counts >10 in all samples, adjusted by p-value) (Figure S1 B and methods for analysis
details) (Table S1 B). Of these, a total of 918 genes were further classified as up regulated
in response to TNF (Figure 1 A.i), and 210 as down regulated (Figure 1B.i), based on a
TNF-induced change from a relatively stable baseline expression in untreated (control)
EC over time (coefficient of variation [CV] between TPM values < 0.3) (Figure S1 C.i and
D.i). Genes classified as DEG due to changes in expression in untreated control EC over
time (Figure S1 C.ii and S1 D.iii), or a TNF-induced lag in such changes (Figure S1 D.ii),
were excluded, as such changes may be linked to in vitro culture conditions and/or the
influence of TNF on other inflammation-independent temporal processes.

The majority of up regulated genes were classified as protein coding (823/918; 89.7 %),
followed by long non-coding RNAs (IncRNA) (61/918; 6.6%), pseudogenes (30/918; 3.8%)
and ‘others” (3 TEC, 1 sRNA) (Figure 1A.i). A similar profile was observed for down
regulated transcripts, with the majority classified as protein coding (193/210; 91.9 %),
followed by IncRNA (14/210; 6.9%), pseudogenes (2/210; 1%) and ‘others” (1 TEC, 1
sRNA) (Figure 1B.i). We performed gene ontology analysis (Ashburner, Ball et al. 2000)
to identify over-represented groups in genes classified as regulated by TNF; significant
enrichment terms included ‘immune system processes’ (FDR 9.5 x10**)” and “response
to cytokine” (FDR 8.2 x10% (Table S2 A) and (overall summary in Figure 1C).
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Figure 1. Overview of tumour necrosis factor (TNF) regulated genes in human
endothelial cells. Human umbilical vein endothelial cells (EC, n=5) were treated with or
without tumour necrosis factor alpha (TNF) and harvested at 0.5, 1, 2, 4, 6, 8, 12, 24, 36,
48 or 72 hrs, before RNAseq analysis. Genes were classified as (A) up regulated or (B)
down regulated by TNF (fold change vs. untreated control >2 or <0.5, respectively). Plots
show: (i) total TNF regulated genes (in both sexes) and corresponding biotype, and
number of (ii) protein coding, (iii) INcRNA or (iv) pseudogenes regulated at each time point,
by sex. (C) Gene ontology analysis showing over-represented terms for all TNF regulated
transcripts. (D) and (E) show the number of genes classified as either up regulated or
down regulated, respectively, in females or males only, or in both sexes. Heatmaps show
relative expression in control or TNF treated female (left) or male (right) samples for genes

reaching the threshold for classification as TNF-regulated in (i) males or (ii) females only.
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To investigate the temporal profile of genes up or down regulated in response to TNF, we
determined the number of transcripts classified as such at each time point, in each sex
(Figure 1 A.ii-iv and B.ii-iv). A limited number of protein coding transcripts (n=10) were
classified as up regulated already by 30 minutes post-stimulation, in both sexes (Figure 1
A.ii), including those encoding for components of the NFikB-signalling pathway (NFKBIA,
NFKBIZ), chemokines regulated by this pathway (CXCL2, CXCL3, IL6) and FAM167A,
which was recently described as an activator of the non-canonical NFkB-pathway in
chronic myeloid leukaemia (Yang, Sim et al. 2022) (Table S2 B).

A small panel of IncRNAs were classified as up regulated by 1-hour post-stimulation, in
both sexes (n=10) (Figure 1 A.iii); including those known to be expressed in response to
inflammation in EC, e.g., MIR155HG (Barros Ferreira, Ashander et al. 2022), but also
those not previously described in this context, e.g., wound and keratinocyte migration-
associated long noncoding RNA 2 (WAKMARZ2), which restricts inflammatory chemokine
production in keratinocytes, and enhances their migratory capacity (Herter, Li et al. 2019).
TNF-responsive pseudogenes tended to be classified as up regulated slightly later in the
time course than protein coding or long non-coding genes. From a total of 30
pseudogenes classified as up regulated by TNF (Figure 1 A.iv), 10/30 [33%] were
members of the ferritin gene family (FTH1P2, 7, 8, 10, 11, 12, 15, 16, 20, 23), some of
which have known regulatory functions (Di Sanzo, Quaresima et al. 2020). Ferritin has a
role in EC angiogenesis (Tesfay, Huhn et al. 2012) and chemokine signalling (Li, Luo et
al. 2006); a potential role of this family in the EC response to inflammatory stimulation
remains to be explored. Overall, the total number of genes that were up regulated in
and iv).

In contrast to TNF-induced up regulated genes, no protein coding genes were classified
as down regulated at the earliest time point (Figure 1 B.ii). Those classified as such within
the first four hours (n=54), included HOXAS9, which inhibits NFxB dependent EC activation
(Trivedi, Patel et al. 2007). The total number of down regulated protein coding transcripts
peaked around 12 hours (Figure 1 B.ii). IncRNAs classified as down regulated in response
to TNF were also classified as such later than those that were up regulated (Figure 1B.iii),
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and only a small number of pseudogenes were consistently down regulated across the
time course (Figure 1 B.iv).

Thus, the global primary EC response to TNF stimulation predominantly consists of the
induction of protein coding and, to a lesser extent, long non-coding gene expression.
TNF-induced changes are comparable between male and female endothelial cells
Differences in inflammatory response have been previously described in female and male
EC (Addis, Campesi et al. 2014, Zhou, Yan et al. 2019). In our analysis described above,
177 genes were classified as up regulated only in female samples and 325 only in male
samples (Figure 1 D), and 70 genes were classified as down regulated only in female
samples and 77 only in male samples (Figure 1 E) (Table S1 C). Heatmap plots of genes
classified as up or down regulated only in female EC (Figure 1 D.i and E.i, respectively)
or only in male EC (Figure 1 D.ii and E.ii, respectively), revealed similar patterns of
regulation over the time course in the other respective sex (relative expression in female
EC on the left and male EC on the right). Thus, these differences in classification were
likely due to the strict thresholding criteria we initially applied to identify the most
consistently and strongly regulated genes, rather than a fundamental difference between
the responsiveness of EC from each sex. Indeed, when we applied a threshold of up- or
down regulation in one or more samples of one sex (FC log2 abs >1), versus no regulation
in any samples of the other sex (FC abs <1.1 [FC log2 <0.1375]) no genes were classified
as sex-specifically regulated by TNF. Multidimensional scaling revealed high global
similarity in TNF-induced transcriptome modifications over the time course in female
(Figure S2 A.i) and male (Figure S2 A.ii) EC. Thus, the chromosomal composition of the
EC does not appear to markedly effect the global transcriptional response to TNF
stimulation.

To identify baseline (unstimulated) differences in gene expression in female versus male
EC, we performed differential expression analysis between the control unstimulated
samples of each sex. 99 genes were classified as differentially expressed between the
sexes at every time point (FC log2 abs >1, adjusted p<0.05), with 58 genes being higher
in females and 41 higher in males (Figure S2 B). As expected, Y chromosome genes
represented the most significantly differentially expressed genes in male EC (Figure S2
B.i) and the long noncoding RNA XIST, a regulator for X-inactivation (Loda and Heard
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2019), was the most significantly differentially expressed gene in female EC (Table S2 C).
Of the non-sex chromosome linked genes that were differentially expressed between male
and female EC at baseline (with mean expression [in either sex] TPM>1), 14 were also
classified as TNF-regulated in both sexes (Figure S2 B.ii and Table S2 C). Of these, nine
were more highly expressed in female vs. male cells (PLLP, TNFSF10, CBLN3, MMP12,
ANGPTZ2 [up regulated by TNF] and PLXDCZ2, ABCA8, MS4A2, AC104083.1 [down
regulated by TNF]) (Figure S2 B.ii), and five were more highly expressed in male vs.
female cells (FOSB, IL27RA, CDH2, PHLDAZ [up regulated by TNF] and PITPNM3 [down
regulated by TNF]) (Figure S2 B.ii). Although such genes had similar TNF regulatory
profiles in female and male cells (for examples see Figure S2 B.iii and iv), the differences
in absolute expression levels could indicate sex specific transcriptional regulation.
Weighted gene network analysis reveals TNF-induced gene signatures

To explore the potential relationship between TNF-regulated genes, in terms of
expression dynamics over time, we performed a weighted co-expression gene network
analysis (WGNCA) (Langfelder and Horvath 2008), where correlation coefficients
between all transcripts across the sample set (male and female samples were handled
together) were calculated and subsequently clustered into 48 related modules (Figure 2
A.i), based on expression profile similarity. In addition to the identification of co-regulated
genes, this analysis could potentially highlight genes with a currently unknown roles in
specific stages of the EC response to TNF.

TNF up requlated genes have two main requlation profiles

The majority of genes we earlier classified as up regulated in response to TNF stimulation
fell into two main module regions on the WGNCA dendrogram (Figure 2 A.i), occupying
neighbouring leaves on common clades: annotated as group 1 [orange, purple, black and
royal blue] and group 2 [tan and turquoise] modules (Figure 2 A.ii) (see shaded boxes).
Up regulated group 1- Early induction (1-4 hours post stimulation):

Group 1 modules contained genes that were up regulated by 1 hour [orange] (Figure 2
B.i-ii), 2 hours [purple, black] (Figure 2 Ci-ii and Di-ii) or 4 hours [royal blue] (Figure 2 E.i
- ii) post-TNF stimulation. Genes in the orange (Figure 2 B.i-ii), purple (Figure 2 C.i-ii) and
black (Figure 2 D.-ii) modules reached a peak between 4 and 8 hours, after which the
differential expression vs. control gradually declined. Several genes with well-established
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roles in the initial stages of inflammation were in the "earliest responder” orange module
(see Figure 2B.iii for the top 50 up regulated genes with highest correlation to the
eigengene), including those encoding for components of the NF«kB-signalling pathway
e.g., NFKBIA, NFKBIZ, leukocyte adhesion receptors e.g., VCAM1, SELE, and various
chemokines or cytokines, e.g., CXCL8, CX3CL1, CCL2 and CCL20. A PubMed search,
retrieving the number of publications containing the search terms [gene] and [TNF],
revealed most of the orange module top 50 genes had been previously referred to in the
context of the TNF response (Figure 2 B.iii). However, some, e.g., FAM177B, an -
uncharacterised gene with little to no expression under baseline conditions, have no
previous reported link with the EC response to TNF, or indeed inflammation processes in
general. This was also true for some genes in the other modules, e.g., purple module long
non-coding gene MIR1915HG, which currently has no assigned function, and black
module gene ALOXES3, which encodes for a member of the lipoxygenase family that was
recently reported as expressed in EC and up regulated by shear stress exposure (Sabbir,
Wigle et al. 2022). One could speculate that such genes encode for proteins with currently
unknown important roles in the initial stages of inflammation, and thus represent
interesting candidates for functional investigation. Gene ontology analysis of TNF up
regulated genes in the orange (Figure 2 B.iv), purple (Figure 2 C.iv) and black (Figure 2
D.iv), revealed over representation of similar inflammation-related terms, such as
inflammatory response and response to cytokine (Table S2 D). Apoptosis-related GO groups
were overrepresented in the orange module only (apoptotic processes [FDR 1.18 x10%], Table S2
D). Upregulated genes in these groups included those encoding for proteins that inhibit apoptosis,
such as TNFAIP3, SOD2, NUAKZ and BCL2A1, as well as those with a likely role in the induction
of cell death, e.g., CYLD and PMAIP1, and those with potential roles in both, depending on
context, e.g., CD40. Outside of the orange module, other genes with anti-apoptotic and pro-
survival functions, e.g., XIAP, BCL2A1, BIRC3 and CFLAR were also up regulated by TNF (Table
S1 B). Together, this suggests that TNF induces both pro- and anti-apoptotic factors with complex
interactions, consistent with the concept that death is not the default cellular response to TNF, and

that various protectives brakes, or cell death checkpoints protect against apoptosis (van Loo and
Bertrand 2023).
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Figure 2. Weighted network correlation analysis (WGNCA) reveals temporal
relationships between TNF up regulated genes: Group 1 ‘early induced’. Human
umbilical vein endothelial cells (EC, n=5) were treated with or without tumour necrosis
factor alpha (TNF) and harvested at 0.5, 1, 2, 4, 6, 8, 12, 24, 36, 48 or 72 hrs, before
RNAseq analysis. Weighted correlation network analysis (WGCNA) was used to cluster
genes into modules, based on expression pattern similarity across sample sets. (A) (i)
Dendrogram showing WGCNA modules and (ii) corresponding distribution of genes
previously classified as TNF up regulated. For modules (B) orange, (C) purple, (D) black,
(E) royal blue: (i) relative gene expression plots displaying the module eigengenes and (ii)
heatmaps showing the temporal expression profile for all genes in the module with
eigengene >0.8 (p<0.05). (iii) Circle plots for the top 50 genes classified as TNF-
upregulated within each module: showing expression values in control and stimulated EC,
the peak fold change, the biotype and number of PubMed hits for ‘gene name’ + ‘TNF’,

and (iv) over-represented terms by gene-ontology analysis (biological processes).
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In contrast to the other group 1 modules, TNF up regulated genes in the royal blue module
remained elevated across the 72-hour time course (Figure 2 E.i-ii) and contained genes
encoding for several types of pattern recognition receptors (PRR), e.g., toll-like- (TLRZ2,
TLR5), RIG-I-like- (DDX58, DHX58, IFIH1) and NOD-like- (NOD2, NLRC5) receptors, and
cyclic guanosine monophosphate adenosine monophosphate synthase (cGAS). This
module also contained /ISG20, an interferon stimulated gene (ISG) that encodes a
nuclease enzyme that can cleave viral RNA. Gene ontology analysis of TNF up regulated
genes in this module revealed that overrepresented terms included those linked to viral
defence, such as response to virus (Figure 2 E.iv) (Table S2 D).

Up regulated group 2 - Delayed induction (12-24 hours post stimulation):

Group 2 modules [turquoise and tan] (Figure 3 A) contained genes that were up regulated
between 12-24 hours post-TNF treatment, with the highest differential expression vs.
control at 72-hours (Figure 3 Bi-ii and Ci-ii). Genes that were up regulated following TNF
treatment in the turquoise module (Figure 3 B) included those encoding for a panel of
interferon-induced cytokine ligands for the antigen presenting cell receptor CXCRS3:
CXCL9, CXCL10 and CXCL11 (Figure 3 B.iii), the expression of which is linked with viral
infection, progression and replication control (Yin, Wang et al. 2019, Karin 2020, Callahan,
Hawks et al. 2021). Other ISGs in this module included IFIT2, IFIT5 and IFIT35, that, to
our knowledge, have not previously been reported as being modified following TNF
stimulation. Gene ontology analysis of up regulated genes in the turquoise module
revealed over representation of terms associated with defence to virus symbiont (Figure
3 B.iv), in addition to general inflammation terms, such as response to cytokine (Table S2
D). Genes that were up regulated following TNF treatment in the tan module also included
a large panel of ISGs e.g., among others IFIT1, IFI6, IFI27, OAS1/2/3/L, MX1/2 and
IFITM1 (Figure 3 C.iii) and, correspondingly, gene ontology analysis revealed a highly
significant over representation of terms related to response to interferon and viral infection
(Figure 3 C.iv) (Table S2 D). Thus, this latter stage of the response was dominated by the
induction of interferon/anti-viral related gene transcription.
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Figure 3. Weighted network correlation analysis (WGNCA) reveals temporal
relationships between TNF up regulated genes: Group 2 ‘delayed induced”. Human
umbilical vein endothelial cells (EC, n=5) were treated with or without tumour necrosis
factor alpha (TNF) and harvested at 0.5, 1, 2, 4, 6, 8, 12, 24, 36, 48 or 72 hrs, before
RNAseq analysis. Weighted correlation network analysis (WGCNA) was used to cluster
genes into modules, based on expression pattern similarity across sample sets. (A) (i)
Dendrogram showing WGCNA modules and (ii) corresponding distribution of genes
previously classified as TNF down regulated. For modules (B) tan and (C) turquoise: (i)
relative gene expression plots displaying the module eigengenes and (ii) heatmaps
showing the temporal expression profile for all genes in the module with correlation to the
eigengene >0.8 (p<0.05). (iii) Circle plots for the top 50 genes classified as TNF-up
regulated within each module: showing expression values in control and stimulated EC,
the peak fold change, the biotype and number of PubMed hits for ‘gene name’ + ‘'TNF’,
and (iv) over-represented terms by gene-ontology analysis (biological processes). (D) and
(E) show the number of hits returned for TNF up regulated genes in the tan or turquoise
modules, respectively, in a PubMed search for 'gene name' + 'interferon’' and 'gene name'
+ 'interferon’ + 'endothelial’, with temporal expression plots for selected examples (created
using the website tool provided as part of this study). (F) Temporal distribution of
interferon-related genes upregulated by TNF across orange, royal blue, tan, and turquoise

modules.
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Indeed, a PubMed search for studies citing genes that were upregulated following TNF
treatment in the turquoise (Figure 3D) and tan (Figure 3E) modules, together with the term
‘interferon’, revealed most had been previously reported in this context (40/59 [68%] and
57/66 [88%], respectively). Additional searches using related terms ([virus], [viral],
[antiviral], [interferon stimulated gene], or [immune response]) showed a similar
distribution of hits (Table S2 F). Whilst not all hits containing two terms necessarily imply
a meaningful functional association, such an analysis can offer a perspective as to the
likelihood of the absence or presence of a link. Only a small proportion of the genes had
PubMed hits that included the terms “interferon” and “endothelial” (Figure 3 D and E, dark
shaded bars) or “viral” and “endothelial” (Table S2 F), indicating that these pathways are
less well understood in this cellular context. Genes in the turquoise module with only one,
or no hits linking them to interferon (Figure 3D), included several non-coding genes, which
are typically less well studied than protein coding genes, e.g., HCP5, which has
polymorphisms linked to HIV viral load (Thorner, Erikstrup et al. 2016) and is a
susceptibility locus for Kawasaki disease, a systemic vasculitis of infants and children
(Kim, Yun et al. 2017), the uncharacterised pseudogene ANKRD26P1, and LINC01094
(Figure 3 D, right panels). Thus, it is possible that such genes have currently unknown
roles in EC interferon-related signalling, based on the similarity of their temporal
expression profile with others in the module.

11 genes in the tan module had only one, or no hits linking them to interferon, including
the solute transported SLC12AZ2, the G-protein coupled receptor MCHR1 and the
paranodal junction component CNTNAP1 (Figure 3 E, right panel). The role of these
genes in inflammation, and any possible connection to EC interferon and/or viral response
signalling remains to be established.

ISG expression following TNF treatment is not driven by de novo interferon
production

Although the mechanisms of ISG expression following TNF treatment of EC are not well
understood, previous studies have reported that it is driven by de novo production and
subsequent autocrine signalling of type | interferon (IFNB) (Venkatesh, Ernandez et al.
2013). We found that three of the nine members of the interferon regulatory factor family
(IRF1-9), which are critical for the induction of type | interferon (McNab, Mayer-Barber et
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al. 2015), were up regulated following TNF stimulation, and all were found in the group 1
"early responding” modules orange (IRF1) and royal blue (IRF2 and IRF7) (Figure 3 F.i),
thus temporally preceding the induction of the majority of the ISGs, which fall in modules
turquoise and tan (Figure 3 F.ii). However, only a modest induction of IFNB71 was
observed at later time points (max. any sample, any time point = 1.02 TPM [24h]) (mean
values for all interferon proteins in Table S2 E); importantly, expression of many ISGs
preceded the time point at which IFNBT1 was expressed at detectable levels e.g., ISG20
(Figure 4 A.i), IFIT3 (Figure 4 A.ii), IFI35 (Figure 4 A.iii)), CXCL10 (Figure 4 A.iv) CXCL11
(Figure 4 A.v), and MX1 (Figure 4 A.vi). The same was also observed for various pattern
recognition receptors, e.g., DDX58 (Figure 4 A.vii), TLR2 (Figure 4 A.viii), NODZ2 (Figure
4 A.ix), and IFIHT (Figure 4 A.x). Thus, in this system, the transcriptional induction of such
genes was not driven by autocrine IFNp signalling. Changes in the expression of genes
encoding for key components of the interferon/anti-viral response pathways (JAK/STAT,
NFkB-IRF1, TLR, RLR and cGAS/STING) following TNF treatment are summarised in
Figure 4 B.
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Figure 4. TNF up regulation of interferon-stimulated and pattern recognition
receptor gene expression is independent of de novo interferon production. (A)
Temporal expression profiles in unstimulated control or tumour necrosis factor alpha
(TNF) stimulated EC for IFNB1 and (i) ISG20, (ii) IFIT3, (iii) IFI35, (iv) CXCL10, (v)
CXCL11, (vi) MX1, (vii) DDX58, (viii) TRL2, (ix) NOD2 and (x) IFIH1 (sample set F). (B)
Summary of key genes and pathways linked to interferon stimulated gene expression: (i)
NFKB-IRF1 signalling (adapted from Feng et al., 2021), (ii) RIG-I like receptor signalling
(adapted from Rehwinkel and Gack., 2020), (iii) JAK-STAT signalling (adapted from
Schneider et al., 2014), (iv) TLR-signalling (adapted from Duan et al., 2022), and (v)
CGAS-Sting signalling (adapted from Feng et al., 2021). Heatmaps show the differential
gene expression between unstimulated control and TNF stimulated EC for the adjacent
gene. Grey squares in the heatmap are the result of zero TPM values, thus differential
expression is not calculated. Bold gene symbols denote those that were classified as TNF

upregulated. Heatmaps were created using the website tool provided as part of this study.
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TNF down regulated genes have two main regulation profiles

The majority of genes classified as down regulated in response to TNF stimulation fell into
two main regions on the WGNCA dendrogram (Figure 5 A.i), occupying neighbouring
leaves on common clades: annotated as group 1 [dark orange, saddle brown] and group
2 [green and light yellow] modules (Figure 5 A.ii) (highlighted with shaded boxes). Modules
in both groups contained genes that were down regulated by TNF between 2- and 4-hours
post-stimulation (Figure 5 Bi-ii, Ci-ii, Di-ii, and Ei-ii).

Down regulated group 1 - Inhibition maintained over time:

Genes in the group 1 modules dark orange (Figure 5 B.i-ii) and saddle brown (Figure 5
C.i-ii) reached maximum down regulation 4- and 12-hours post stimulation, respectively,
an effect that was maintained across the remainder of the time course. There were no
significantly enriched gene ontology terms in lists of down regulated genes appearing in
the group 1 down regulated modules, possibly due to the low numbers, or lack of previous
reports of gene function.

Down regulated group 2 - Inhibition resolved over time:

In contrast to group 1, TNF down regulated genes in group 2 modules, green (Figure 5
D.i-ii) and light yellow (Figure 5 E.i-ii), trended back towards baseline level after reaching
maximum down regulation at 6- and 12-hours post stimulation, respectively. Again, there
were no significantly enriched gene ontology terms in any of lists of down regulated genes
appearing in the highlighted modules; indeed, an automated PubMed search for the
search terms [down regulated gene] and [TNF], retrieved markedly fewer hits than the
equivalent search for genes we previously classified as up regulated by TNF (Figure 5 B-
E.iii). Despite a lack of significant enrichment terms, some links between constituent
genes could be observed e.g., four out of five TNF down regulated homeobox family
transcription factor genes were classified into module green (HOXA6, HOXA10, HOXAT1
and HOXDS8) (Figure 5 D.iii). Whilst HOX10 has been reported as an activator of canonical
NF-kB signalling in pancreatic cancer cells (Li, Chang et al. 2022), and the antisense to
HOXA11 (HOXA11-AS) linked to protection of EC barrier function following injury (Yuan,
Yuan et al. 2022), insight into the potential role of these genes in the EC TNF response is
currently lacking.
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Figure 5. Weighted network correlation analysis (WGNCA) reveals temporal
relationships between TNF down regulated genes. Human umbilical vein endothelial
cells (EC, n=5) were treated with or without tumour necrosis factor alpha (TNF) and
harvested at 0.5, 1, 2, 4, 6, 8, 12, 24, 36, 48 or 72 hrs, before RNAseq analysis. Weighted
correlation network analysis (WGCNA) was used to cluster genes into modules, based on
expression pattern similarity across sample sets. (A) (i) Dendrogram showing WGCNA
modules and (ii) corresponding distribution of genes previously classified as TNF down
regulated. For modules (B) dark orange, (C) saddle brown, (D) green, (E) light yellow: (i)
relative gene expression plots displaying the module eigengenes and (ii) heatmaps
showing the temporal expression profile for all genes in the module with correlation to the
eigengene >0.8 (p<0.05). (iii) Circle plots for genes classified as TNF-down regulated
within each module: showing expression values in control and stimulated EC, the peak

fold change, the biotype and number of PubMed hits for ‘gene name’ + “TNF’.
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In both TNF down regulated modules group 1 and 2, gene baseline expression levels and
TNF-response profiles were similar between male and female samples (Figure 5 B.i-E.i
and Figure S2 C).

Visualisation of temporal gene regulation pathways using the website tool

We have created a website resource that allows users to perform both gene centric or
module-based lookup of our endothelial TNF time course data. Key features include a
data viewer, to observe the transcriptional responses of specific genes (Figure S3 A), or
the WGCNA module into which they were classified (Figure S3 C), and the generation of
vector-image downloadable expression plots for both predefined and custom gene lists,
e.g., TNF regulated CXCL- and CCL-chemokines (Figure S3 B). The dataset can also be
analysed to identify genes with high correlation across conditions with any given input

gene (Figure S3 D).
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DISCUSSION

Here, we used RNA sequencing to measure the temporal response of EC to TNF
stimulation, incorporating 11 time points up to 72h. Following the identification of TNF
regulated genes, we used weighted network correlation analysis to understand the global
temporal context of these transcriptomic changes. To our knowledge, this is the first study
to map the EC TNF response at a transcriptome-wide level in such temporal detail.

We identified two main profiles into which TNF-induced genes could be classified - those
with an “early” or “delayed” induction. Early induced genes (~1-4 hours post stimulation)
included many previously well studied in this context, such as those encoding for EC
leukocyte adhesion receptors (e.g., SELE, VCAM1 and ICAMT) (Pober 2002), but we also
identified several genes with similar expression dynamics that encoded for completely
uncharacterised proteins (e.g.. FAM177B), which could be interesting candidates for
future study in the context of inflammation. TNF up regulated genes with a delayed
induction (12-24 hours post stimulation) were primarily ISGs, whose regulation by
inflammatory cytokines in EC is generally not well understood, but our observations were
consistent with one recent study which reported the induction of a late stage interferon
response in EC, following TNF stimulation (Valenzuela 2022). ISG expression is primarily
considered to be driven by the production and subsequent signalling of interferon, via
canonical (JAK-STAT) or non-canonical pathways (Mazewski, Perez et al. 2020).

We found that three out of the nine members of the interferon regulatory factor family
(IRF1, 2 and 7), which are critical for the induction of interferon (McNab, Mayer-Barber et
al. 2015), were up regulated by TNF in EC at time points that preceded ISG expression.
Of these, IRF1 and IRF7 have been implicated as positive regulators of type | interferon
production (Honda, Takaoka et al. 2006) and previous reports have shown that TNF-
induced expression of ISGs, such as CXCL9 and CXCL10, in murine EC was dependent
on [IRF1-induced de novo production of IFNB (/FNBT), and its subsequent autocrine
signalling through STAT1 (Venkatesh, Ernandez et al. 2013). However, our data indicated
that EC expression of ISGs following TNF treatment was independent of de novo
production of interferon, as we did not observe its transcription prior to ISG expression.
We observed an up regulation of genes encoding for cyclic GMP-AMP (CGAS) and the
cyclic GMP-AMP receptor stimulator of interferon genes (STING), a system which detects
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pathogenic DNA (Hopfner and Hornung 2020). A recent study showed that the expression
of various ISGs that were induced by TNF in fibroblasts, including CXCL10, IFIT1 and
IFIT44 (all of which were also up regulated by TNF in the current study) was markedly
reduced in CGAS and STING knockout cells (Willemsen, Neuhoff et al. 2021). TNF-
dependent mitochondrial damage and mtDNA leakage was shown to underlie this
response; one could speculate a similar mechanism contributes occurs in EC.

We observed an up regulation of genes encoding for other pattern recognition receptors,
including toll-like- (TLR2, TLR5), RIG-I-like- (DDX58, DHX58, IFIH1) and NOD-like-
(NOD2, NLRC5) receptors. Whilst these receptors are known to induce production of
interferon and subsequent expression of ISG in response to bacterial or viral ligands,
(Uematsu and Akira 2007, Opitz, Eitel et al. 2009), whether or not they have a role in the
induction of ISG in EC following TNF production, similar to that reported for CGAS and
STING (Willemsen, Neuhoff et al. 2021), remains to be explored.

We identified several non-coding RNAs within the gene modules that otherwise
predominantly contained I1SGs, including ENSG00000225886 (antisense to /FI6), NRIR,
a negative regulator of SARS-CoV-2 infection (Enguita, Leitao et al. 2022) and
LINC02056, an interferon-inducible transcript with a proposed role in IRF3 nuclear
translocation (Xu, Yu et al. 2021). As is often the case with non-coding genes, functional
annotation of others was lacking e.g., LINC02051 and LINC02068; these are potentially
interesting candidates to study in the context of the EC interferon response. Overall,
deciphering the relative contributions of various pathways in the TNF-induced expression
of ISGs is complex, with potential differences between cell types and species.

We identified a panel of 210 gene transcripts that were at lower levels following TNF-
stimulation. Whilst studies of the TNF response tend to focus on genes whose expression
in increased in response to stimulation, several of those we identified as down regulated
had been previously reported as such, e.g., NOS3, the mRNA stability of which is inhibited
by TNF (Yan, You et al. 2008), DHH, which prevents EC activation (Chapouly, Hollier et
al. 2020), and RGS4, which regulates the secretion of VWF (Patella and Cutler 2020).
However, many had not been previously reported in this context, e.g., CNR1, SLC7A8
and CLEC14A, which were amongst the most down regulated by TNF.
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Sex differences have been reported in several inflammatory conditions of the vasculature,
such as cardiovascular disease (Gao, Chen et al. 2019) and thrombosis (Nordstrom and
Weiss 2008). Whilst our data indicates that chromosomal composition alone does not
markedly affect the EC response to TNF, a multitude of other factors influence vascular
responses in vivo, such as sex hormones, which may drive sex linked inflammatory
differences (Rathod, Kapil et al. 2017, Pabbidi, Kuppusamy et al. 2018).

Study strengths and limitations: One of the main strengths of our study is size of the
dataset generated; we analysed 130 samples, incorporating 35 biological replicates. The
global EC transcriptome was analysed at 11 different time points post-TNF treatment, and
the inclusion of matched control samples for each sample set, at every time point, allowed
us to control for baseline transcriptional changes, such as those due to changes in the
microenvironment (Majewska, Wilkus et al. 2021) or cell density (Hamada, Osaka et al.
2014), which could otherwise be incorrectly annotated as TNF driven. To our knowledge,

the website resource we provide (http:/www.endothelial-response.org/) is the most

extensive of its type; all data is accessible without the need for bicinformatic expertise.

The EC we used in our study were isolated from human umbilical veins (HUVEC), from
which we could generate a large amount of fresh primary EC. Thus, we avoided the need
to passage, freeze/thaw, or culture the EC for a prolonged period prior to treatment and
analysis, factors that could affect behaviour and response to cytokines (Liao, He et al.
2014, Ohori, Nakayama et al. 2021). However, it should be acknowledged that this EC
type is foetal, rather than adult, and differences have been reported between the two,
including the transcriptional response to TNF (Viemann, Goebeler et al. 2006).
Comparisons of microarray data for human dermal microvascular EC (HMEC1) and
HUVEC have shown that around half of the TNF induced changes were specific for only
one or other of these EC types (Viemann, Goebeler et al. 2006). However, key genes that
were highlighted as only up regulated by TNF in HMEC1, but not HUVEC (e.g., IL1B,
DUSP6, OAS1, CLDN1, CD70, MMP12), were classified as up regulated in our HUVEC
dataset - potentially indicating that other factors, such as the sensitivity of EC types to
passage in culture or freeze thraw cycles could influence response, as opposed to core
characteristics of the EC types per se. Indeed, other studies show more similar
characteristics between EC types, such as the response to shear stress exposure, which
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was largely comparable between human adult aortic cells and HUVEC (Maurya, Gupta et
al. 2021). Furthermore, EC have organ-specific heterogeneity (Kalucka, de Rooij et al.
2020, Tabula Sapiens, Jones et al. 2022), meaning that vascular bed specific responses
to TNF might not be comparable to those we observed in HUVEC.

It should also be noted that EC in our study are not cultured under flow, or together with
other cell types found in the normal microenvironment, both factors that can affect in vitro
gene expression (Heydarkhan-Hagvall, Helenius et al. 2003, Nakajima and Mochizuki
2017, Helle, Ampuja et al. 2021, Afshar, Ma et al. 2023). Exposure to different levels of
flow in vitro can modify the EC response to TNF (Sheikh, Rainger et al. 2003) and thus,
our data may be more representative of EC responses in low, rather than high, shear
exposed vessels. Finally, although under steady-state conditions protein expression is
highly dependent on mRNA level (Liu, Beyer et al. 2016), the relationship between the
two after state transitions, such as those induced by TNF, is subject to time dependent
processes, such as maturation, export and translation of mRNA (Liu, Beyer et al. 2016).
Thus, there will be a delay between transcriptional changes and the associated protein
level increase or decrease. Although extensive, our dataset does not provide a
comprehensive overview of all aspects of the TNF response; the majority of microRNAs
are not profiled, due to the RNA isolation method used, and the release of stored and
secreted immediate responders, e.g., P-selectin and Von Willebrand factor (Metcalf,
Nightingale et al. 2008), and processes such as protein phosphorylation and nuclear

translocation are not measured.
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MATERIALS AND METHODS

LEAD CONTACT

Further information and requests for resources and reagents should be directed to and
will be fulfilled by the Lead Contact: Dr. Lynn Marie Butler. Email: Lynn.butler@ki.se
MATERIALS AVAILABILITY

This study did not generate new unique reagents.

DATA AND CODE AVAILABILITY

The data generated by this study is publicly available. Any additional information required
to reanalyse the data reported in this paper is available from the lead contact upon
request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Isolation, culture, and sex-determination of human umbilical vein endothelial cells
Human umbilical vein endothelial cells (EC) were isolated from human umbilical cords,
collected from Karolinska University Hospital, Stockholm, Sweden, as described(Cooke,
Usami et al. 1993). Ethical approval was granted by Regionala etikprévningsndmnden i
Stockholm (2015/1294-31/2). EC were cultured in Medium M199, supplemented with 10%
foetal bovine serum, 10 ml/l penicillin-Streptomycin, 2.5 mg/l Amphotericin B (all
ThermoFisher, Gibco), 1 mg/l hydrocortisone and 1 pg/l and human epidermal growth
factor (hEGF) (both Merck). To determine EC sex, transcripts encoding Ubiquitously
Transcribed Tetratricopeptide Repeat Containing, Y-Linked (UTY) were measured by
gPCR. Cell lysis and cDNA generation was performed using the 2-Step Fast-Cells-to-CT-
Kit (Invitrogen, ThermoFisher) according to their protocols. gPCR was performed using
TagMan Fast Universal PCR mix and target (UTY) primer conjugated to FAM-probe
(Hs01076483, ThermoFisher) with 18s rRNA primer (4319413E conjugated to VIC probe,
ThermoFisher) as endogenous control. QPCR was performed using a RealTime PCR
LightCycler 96 ® system (Roche Life Sciences). EC positive for UTY expression were
classified male, and those negative classified female. 5-6 sex-matched biological
replicates were pooled to create each sample set (33 donors in total). Sample sets were
A, B, C (annotated male) and D, E, F (annotated female). Following sequencing, a low
level of Y-linked transcripts were detected in sample set F, indicating an incorrect
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annotation of one of the constituent donors as female. Thus, this sample was excluded
from any subsequent sex-based analysis but included in non sex-split analyses.

EC treatment, RNA isolation and sequencing

Pooled HUVEC sample sets were grown to confluence before treatment with or without
recombinant tumour necrosis factor alpha (TNF; 10 ng/mL) (ThermoFisher) in cell culture
medium. HUVEC treated with a concentration of 10 ng/mL TNF express key markers of
inflammation, such as SELE, VCAM1 and ICAM1 (Mackay, Loetscher et al. 1993,
Majewska, Paleolog et al. 1997) and can support leukocyte recruitment (Butler, Rainger
et al. 2005), whilst maintaining viability over a prolonged culture period (Khan, Awad et al.
2017). HUVEC maintained morphological features and confluence over the time course.
Following the initial treatment with or without TNF, the cell culture medium was not
changed for the remainder of the time course, to minimise cell exposure to external shear
forces and/or temperature fluctuations, factors associated with changes in gene
expression in EC (Braddock, Schwachtgen et al. 1998, Horioka, Tanaka et al. 2020). EC
were lysed at 0.5, 1, 2, 3, 4, 6, 8, 12, 24, 36, 48 or 72 hours post-stimulation, using RLT
lysis buffer from the RNAeasy mini kit (Qiagen).

RNA isolation and purification was performed using the RNAeasy mini kit (Qiagen). RNA
concentration was measured using Nanodrop 2000 spectrophotometer and RNA integrity
number (RIN) determined using Agilent 2100 Bioanalyzer (RIN>9 required for inclusion).
Library preparation and RNA sequencing was performed by the National Genomics
Infrastructure Sweden (NGI) using lllumina stranded TruSeq poly-A selection kit and
lllumina NovaSeqg6000S (4 lanes, 2x 150bp reads, incl 2Xp kits). The data was processed
using demultiplexing. Data storage and initial analyses were performed using server sided
computation supplied by the Swedish National Infrastructure for Computing (SNIC).
Genome assembly used for sequence alignment:
Homo_sapiens.GRCh38.dna.primary_assembly.fa and annotation performed using:
Homo_sapiens.GRCh38.96.gtf. Sequence alignment was carried out using STAR/2.5.3a.
Gene mapping has been carried out using subread/1.5.2 and the module feature counts.
Transcript mapping carried out using Salmon/0.9.1.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data normalisation and differential gene expression analysis
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We used the “DESeq2” package in R to normalise raw gene expression counts (Love,
Huber et al. 2014), which were log2 transformed and averaged across biological
replicates. Genes with total DESeq count <10 across all samples were excluded and
differentially expressed genes (DEG) between untreated control and TNF-treated EC, at
each time point, were identified using the DESeqg2 time series design. In this case, the full
model is represented by ~treatment + time+ treatment:time and the reduced model by
~treatment+time. To correct for multiple sampling for DEG p values were adjusted using
Benjamini-Hochberg (BH) correction. DEG were defined as those with adjusted P-value
<0.05 and an absolute fold change between untreated control and TNF treated EC of log2
>1. Female and male samples were analysed separately, thus excluding a possible
influence of sex-based discordant baseline expression levels, and data was later merged,
where stated. In total, comparisons for 11 time points (hours: 0.5, 1, 2, 4, 6, 8, 12, 24, 36,
48, 72) were performed. Classifications as DEG defined by DESeq2 (without application
of additional criteria as described below) and associated statistical information is provided
in Table S3 B.

To see the clustering of samples, multidimensional scaling (MDS) plots were generated
to visualise the clustering patterns among samples. Pairwise Euclidean distances
between samples were calculated and scaled using classical MDS transformation. The
resulting MDS coordinates were used to create a two-dimensional scatter plot using the
ggplot package.

Thresholding and classification of genes as TNF-regulated

To identify genes that were regulated by TNF we applied several additional criteria. Raw
gene counts (Table S3 A) were normalised to TPM (transcripts per kilobase per million
reads mapped) and genes with low expression (max TPM <1 at any time point or
condition) were excluded. Of those remaining, 4262 genes were classified as DEG by
DEseq?2 (Figure S1 B.i). When regulated at multiple time points, DEG had a consistent
effect direction (i.e., showing only positive or negative regulation in response to TNF).
Genes that were not differentially expressed at two or more sequential time points were
excluded from further categorisation (Figure S2 B.ii). Genes were classified as TNF up
regulated when the following additional criteria were fulfilled (Figure S2 C.i): (i) a low
variation of expression over time in untreated EC (coefficient of variation [CV] of mean
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expression across time points <0.3) (ii) high variation of expression over time in TNF
treated samples (CV >0.3) and (iii) a high minimal fold change (log2 FC>0.7) vs. the initial
timepoint (0.5 h). Positive DEG that did not fulfil these criteria were excluded (Figure S1
C.ii), as the differential expression between untreated and TNF stimulated EC was driven
by expression changes in untreated EC over time (Figure S1 C.ii). Genes were classified
as TNF down regulated when the following criteria were fulfilled: (i) a low variation of
expression over time in untreated EC (coefficient of variation [CV] < 0.3), (i) a high
variation of expression over time in the TNF-treated samples (CV >0.3) and (iii) a minimum
log2 absolute fold change of >0.7 in TNF treated EC vs. control untreated EC (Figure S1
the differential expression was primarily driven by either a TNF-induced delay (Figure S1
D.ii) or inhibition (Figure SZ2.iii) of expression in control untreated EC over time.

We applied these criteria to highlight genes with clear, distinct TNF-regulated expression
profiles; our classifications should thus be viewed as an illustrative guide, rather than a
comprehensive categorisation. Indeed, individual regulation profiles for genes of interest
are best considered on a gene-by-gene basis.

Gene co-expression network construction

A gene co-expression network was constructed using the WGCNA package in R
(Langfelder and Horvath 2008). After filtering of low expressed genes (total DESeg2
counts over the time course <10) and genes with low variation across all samples (CV
>0.2), 12 428 genes were remained for further analysis. The appropriate soft-thresholding
power was selected by applying “pickSoftThreshold” function with parameter
“networkType” set to signed hybrid. Then the correlation network adjacency matrix was
calculated using selected soft thresholding of 12 and with parameter “networkType” set to
signed hybrid. The adjacency matrix was turned into topological overlap (TOM) and the
corresponding dissimilarity (dissTOM) was calculated. Finally, average linkage
hierarchical clustering was applied according to the dissTOM value and gene modules
were identified using dynamic tree cut algorithm with the minimum module size of 30
genes. Module eigengenes (MEs) representing the first principal component of each
expression module were calculated for each module. Genes with correlation to the
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eigengene >0.80 (p-value <0.05) were featured in the figures and associated subsequent
analysis. Heatmaps show log2 transformed scaled expression, as calculated by DSeqZ2.
Module visualisation

The profiles of each module were visualised using a heatmap of scaled gene expression
profiles. Additionally, plots displaying the expression of each gene within module and the
expression of its eigengene were produced (Langfelder and Horvath 2008), which returns
the gene in each module with the highest connectivity.

Functional enrichment of co-expression modules and DEGs

The Gene Ontology Consortium (Ashburner, Ball et al. 2000) and PANTHER classification
resource (Mi, 2019) were used to identify overrepresented terms in gene lists using the
GO databases (release date 2023-07-05). Plots of GO terms were created using the R
package clusterProfiler (Wu, Hu et al. 2021).

Additional statistical analyses and website development

Graphs were created using the packages ggplot2 (Wickham 2016) and base R(Team
2022) and GraphPad Prism. Temporal graphs for Figures 3D, 3E, 4, S2 and S3 were
created using our website tool. Circle plots were created by using the R package circlize
(Gu, Gu et al. 2014) and PubMed lookups were performed using the R package
easyPubMed by Damiano Fantini (Fantini 2019) (date of lookup 01.03.2023). Figures
were assembled using Affinity Designer and Adobe lllustrator.

The following additional R packages were used for mapping, normalisation, clustering,
and display of the data: readR, dplyr, data. table, matrixStats, NormExpression, edgeR,
viridis, RcolorBrewer.

Further statistical analyses and website implementation were performed in RStudio (R
version 4.0.3) using shinyapps. The following packages were used: shiny (Chang, Cheng
et al. 2022), shinyjs, gplot, ggplot2, DT, plotly and ggthemes.

The website is available here: http://www.endothelial-response.org/

Website and data availability resource

Average Gene TPM and DEG values (available as log2, log10 or decimal) for each
timepoint are available in Table S1 A and B. Raw gene counts are available in Table S3
A or from https:/github.com/PhilipDusart/ TNF_timecourse. TPM, DESeq2 and DEG
values for each individual donor pool, and data for modules can be downloaded from
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http://www.endothelial-response.org/ All gene expression profile plots and data for all

genes can be downloaded directly from the website. The data is available as TPM or DEG
fold change values and can be split by sex and filtered by observation timeframes of

interest.
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Figure S1. Experimental design and gene classifications. (A) Overview of the
experimental procedure. (i) Endothelial cells were extracted from human umbilical veins
and cultured to confluency before (ii) gPCR for Y-chromosome gene UTY was used to
identify male vs. female donors. (iii) Cells were pooled into sex-matched sample sets,
grown to confluency and (iv) stimulated with tumour necrosis factor alpha (TNF; 10
ng/mL), before RNA extraction at 0.5, 1, 2, 4, 6, 8, 12, 24, 36, 48 or 72 hours post
stimulation, followed by (v) RNA sequencing analysis. (B) Sankey plots displaying (i) total
number of genes detected and classified as differentially expressed genes (DEG) (ii)
numbers of positive and negative DEG, and the subsequent classification as (C) Positive
DEGs as: (i) up regulated by TNF from a stable baseline expression in control EC, or (ii)
stable on the background of reduced baseline expression in control EC over time. (D)
Negative DEGs as: (i) down regulated by TNF from a stable baseline expression in control
EC, or (ii) delayed or (iii) inhibited by TNF, where baseline gene expression in control EC
increases over time, but this change either occurs later or is not observed in TNF treated

EC, respectively. Genes that did not fall into these groups were categorised as “other’.
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Figure S2. Sex-based comparison of global gene expression profiles. Human
umbilical vein endothelial cells (EC, male n=3, female n=2) were treated with or without
tumour necrosis factor alpha (TNF) and harvested at 0.5, 1, 2, 4, 6, 8, 12, 24, 36, 48 or
72 hrs, before RNAseq analysis. (A) Multidimensional scaling plot for control or TNF
treated (i) female or (ii) male EC, at all analysed time points. (B) (i) Volcano plot displaying
differentially expressed genes between male and female EC under baseline (unstimulated
control) conditions, with X- and Y-chromosomal genes annotated with Y™ and "X,
respectively (ii) panel showing all transcripts classified as sex-differentially expressed at
baseline (mean expression [in either sex] TPM>1), with those also classified as up or down
regulated by TNF highlighted in larger red or green text, respectively. Expression data is
provided for example genes annotated with star symbols: (iii) PLLP and (iv) PLXDCZ2. (C)
Scatter plot comparing normalised average expression values between male and female

samples for each WGCNA module.
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Figure S3. Website resource examples. All data generated in this study is available on
http://www.endothelial-response.org/. Selected features include: (A) data viewer for

temporal gene expression over time (displayed as absolute values and relative differential
expression), (B) data plot generator to be used either with user defined gene lists, or
predefined gene categories, selected from the dropdown menu (e.g., ‘leukocyte
recruitment’), (C) weighted network correlation analysis data section and module look up
tool for any given input gene, (D) Expression similarity tool that can identify genes with
the highest correlation to any given input gene across the dataset. Data plots can be

downloaded as vector-images
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SUMMARY

The importance of defining cell-type-specific genes is well acknowledged. Technological advances facilitate
high-resolution sequencing of single cells, but practical challenges remain. Adipose tissue is composed pri-
marily of adipocytes, large buoyant cells requiring extensive, artefact-generating processing for separation
and analysis. Thus, adipocyte data are frequently absent from single-cell RNA sequencing (scRNA-seq) data-
sets, despite being the primary functional cell type. Here, we decipher cell-type-enriched transcriptomes
from unfractionated human adipose tissue RNA-seq data. We profile all major constituent cell types, using
527 visceral adipose tissue (VAT) or 646 subcutaneous adipose tissue (SAT) samples, identifying over
2,300 cell-type-enriched transcripts. Sex-subset analysis uncovers a panel of male-only cell-type-enriched
genes. By resolving expression profiles of genes differentially expressed between SAT and VAT, we identify
mesothelial cells as the primary driver of this variation. This study provides an accessible method to profile
cell-type-enriched transcriptomes using bulk RNA-seq, generating a roadmap for adipose tissue biology.

INTRODUCTION

Adipose tissue acts as an energy depot, provides insulation, and
is an important endocrine organ that communicates with other
tissues to regulate systemic metabolism (Kahn et al., 2019).
Most adipose tissue in adults is white adipose tissue, broadly
categorized as visceral adipose tissue (VAT), located deep in
the abdomen and around internal organs, or subcutaneous
adipose tissue (SAT), located under the skin. Excess VAT is
associated with metabolic disorders, e.g., diabetes and cardio-
vascular disease (Britton et al., 2013; Chait and den Hartigh,
2020; Oikoenomou and Antoniades, 2019), while SAT is associ-
ated with reduced risk, possibly even protection (Lumish et al.,
2020). Recent studies have profiled differences in gene expres-
sion between adipose depots using bulk RNA sequencing
(RNA-seq) (Bradford et al.,, 2019; Schleinitz et al., 2020), but
the relative contribution of specific cell types to the observed
differences is not known.

Adipose tissue contains adipocytes, adipocyte progenitor
cells, endothelial cells, smooth muscle cells, stromal cells, and
immune cell types, including macrophages and T cells (Lu

et al., 2019). Single-cell RNA-seq (scRNA-seq) has been used
to profile macrophages, endothelial cells, fibroblasts, and adipo-
cyte progenitors from human VAT or SAT (Acosta et al., 2017;
Esteve et al., 2019; Vijay et al., 2020). Such studies provide
high resolution of different cell (sub)types but are limited by the
requirement for fresh tissue, low number of biological replicates,
and compromised read depth (Beliakova-Bethell et al., 2014;
Rizzetto et al., 2017; Saliba et al., 2014; Ziegenhain et al,,
2017). Furthermore, the analysis of adipocytes, the major
functional cell type in adipose tissue, is challenging; with high
buoyancy and large size, they require extensive, artefact-gener-
ating proteolytic digestion for tissue separation (Rondini and
Granneman, 2020; Viswanadha and Londos, 2006), and thus,
adipocyte data are absent from many scRNA-seq datasets
(e.g., Hildreth et al., 2021; Karlsson et al., 2021; Tabula Muris
et al., 2018; Tabula Sapiens et al., 2022; Vijay et al., 2020). Pro-
genitor cells isolated from human adipose tissue have been used
to generate adipocytes in culture for analysis (Min et al., 2019),
but potential phenotype modifications, due to induced differen-
tiation in the absence of the native microenvironment, are a lim-
itation of this model. Transgenic labeling of cell-type-specific

Cell Reports 40, 111046, July 12, 2022 ©® 2022 The Authors. 1
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mRNA (Roh et al., 2017) has been used to overcome these
technical problems for analysis of murine adipocytes, but this
cannot be applied to human tissue. Adipocytes have been
analyzed using single-nuclei RNA-seq, circumventing some
scRNA-seq limitations, but transcript expression can differ be-
tween nuclei and cytoplasm (Thrupp et al., 2020). Non-coding
RNA is emerging as a novel, important class of molecules in
adipose biology (Squillaro et al., 2020; Xu and Sun, 2020), but
to date, there is no description of adipose-cell-type-specific
non-coding RNAs.

Here, using an analysis approach to circumvent technical
challenges associated with profiling individual cell types in adi-
pose tissue, we identified over 2,300 transcripts with cell-type-
enriched expression. Of all cell types profiled, adipocytes had
the highest number of enriched transcripts and the greatest pro-
portion of non-coding. Comparisons between female and male
samples revealed a panel of cell-type-enriched Y-linked tran-
scripts, of which three were adipocyte enriched in both depots.
Finally, we resolve the overall differences in gene expression
between VAT and SAT to a cell-type level, uncovering the pri-
mary driver to be cell-type composition, specifically the pres-
ence of mesothelial cells in VAT, but not SAT. Data are available
through the Human Protein Atlas portal (www.proteinatlas.org/
humanproteome/tissue+cell+type/adipose+tissue).

RESULTS

Identification of cell-type transcriptome profiles in
visceral adipose tissue

Cell-type reference transcripts correlate across
unfractionated adipose RNA-seq data

VAT is linked to the development of metabolic dysfunction and
associated disorders (Chait and den Hartigh, 2020). To identify
cell-type-enriched transcriptome profiles, we performed an
analysis based on our previously reported method (Butler
et al., 2016; Dusart et al., 2019) (concept summary, Figures 1A
and S1A), using VAT RNA-seq data (n = 527) from Genotype-Tis-
sue Expression (GTEx) portal v.8 (www.gtexportal.org) (Con-
sortium, 2015). For each cell type, a panel of three marker genes
were selected (“reference transcripts” [Ref.T.s]). Correlation co-
efficients (corr.) between the expression levels of the Ref.T.s and
all other sequenced transcripts were calculated across samples;
those that highly and selectively correlated with the Ref.T. panel
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were classified as enriched in the corresponding cell type
(Figure S1A). We shortlisted candidate Ref.T.s for all main
constituent cell types, including (1) well-established markers
identified in older “none-omics” studies (e.g., Hu et al., 1996);
(2) markers identified by scRNA-seq of mouse (Tabula Muris
et al., 2018) or human (Han et al., 2020) adipose tissue; (3) marker
lists from large databases containing data from multiple sources,
e.g., Cell Marker (Zhang et al., 2019) and PanglaoDB (Franzen
et al.,, 2019); and (4) commercial marker panels (e.g., https://
www.rndsystems.com/). VAT RNA-seq data were processed
to generate Spearman correlation coefficients (corr.s)
between all candidate Ref.T.s and a panel selected to represent
each cell type, based on the following criteria: (1) a high corr.
(minimum 0.70) between Ref.T.s within each cell type panel (Fig-
ure 1B; Table S1, tab 1, table A), consistent with cell type co-
expression; adipocyte panel (ADIPOQ, LIPE, and PLINT;
mean corr. = SD 0.91 + 0.002), adipocyte progenitor panel
(FKBP10, COL6A1, and COL6A2; 0.86 + 0.06), mesothelial
panel (UPK3B, MSLN, and KRT19; 0.92 + 0.02), endothelial
panel (MMRNZ2, ESAM, and CDH5; 0.80 + 0.03), smooth
muscle panel (KCNMB1, CNN1, and MYH11; 0.80 + 0.06),
macrophage panel (CD68, C1QC, and FCER1G; 0.83 = 0.03),
neutrophil panel (CSF3R, FCGR3B, and CXCR2; 0.81 + 0.04),
mast cell panel (CPA3, TPSB2, and TPSABT; 0.83 + 0.03),
T cell panel (TRBC2, CD6, and CD3E; 0.89 + 0.02), and plasma
cell panel (IGKC, JCHAIN, and MZB1; 0.89 + 0.04; all p < 4.0 x
109%); (2) a low corr. between Ref.T.s in different cell type panels
(Figure 1B; Table S1, tab 1, table A), consistent with high speci-
ficity of each panel (mean inter-panel corr. + SD 0.05 + 0.25); and
(3) a normal distribution of Ref.T. expression across samples
(Figure S1B). Candidate B cell Ref.T.s were lowly expressed in
VAT, with low intra-panel corr. (Table S1, tab 2, table A). In a
comparative dataset, human spleen RNA-seq, GTEx v.8 (n =
241), selected due to high B cell content, the candidate B cell
Ref.T.s were highly expressed and strongly correlated with
each other (Table S1, tab 2, table B). Thus, B cells were excluded
from subsequent profiling of VAT, due to presumed low numbers
or absence from a large proportion of VAT samples. Candidates
within the panels selected as potential Ref.T.s for pericytes,
lymphatic endothelial cells, and dendritic cells did not correlate
as well as those selected to represent other cell types
(Table S1, tab 2, tables C, D, and E, respectively), consistent
with previous reports that these cell types lack multiple highly

Figure 1. Integrative co-expression analysis of unfractionated human visceral adipose tissue (VAT) RNA-seq can resolve constituent cell-

type identities

(A) Overview of analysis concept; human VAT RNA-seq data (n = 527 individuals) were retrieved from GTEx portal v.8 and constituent cells “virtually tagged” using
cell-type-specific reference transcripts (Ref.T.s). Integrative co-expression analysis was used to identify transcripts with comparable profiles.

(B) Heatmap of Spearman correlation (corr.) values between Ref.T. panels selected for VAT cell types: adipocyte (AC), adipocyte progenitor (AP), mesothelial
(MesoC), endothelial (EC), smooth muscle (SMC), macrophage (MC), neutrophil (NP), mast cell (MastC), T cell (TC), and plasma cell (PlasC).

(C) Mean corr. values between genes above designated threshold (see results section for criteria) and all Ref.T. panels.

(D) (i) For transcripts above the designated corr. threshold with macrophage (squares, MC) or neutrophil (circles, NP) Ref.T. panels, the “differential corr. score”
(difference between mean corr. with MC and NP Ref.T.s) was plotted versus “enrichment ranking” (position in each respective list; highest corr. = rank 1).
Corresponding colored lines indicate numbers above the designated threshold. Bold text annotations show transcripts in both MC and NP lists (circular and
square symbol on the same x axis dimension). (i) scRNA-seq data from the Human Protein Blood Atlas (Uhlen et al., 2019) showing gene expression in classical,
intermediate, and non-classical monocytes and neutrophils from whole blood.

(E and F) Comparative plots for transcripts are classified as (E) adipocyte progenitor (AP) or mesothelial (MesoC) enriched (shaded blue box indicates co-enriched
genes) and (F) MC or AP enriched.

See also Figures S1 and S2 and Tables S1, tabs 1, 4a, and 4b, and S2, tab 1.
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specific pan-markers (Armulik et al., 2011; Sichien et al., 2017;
Takeda et al., 2019). Thus, they were not included in the subse-
quent analysis.

Reference transcripts analysis can identify distinct cell-
type-associated transcripts

We generated corr.s between each Ref.T. and all sequenced
transcripts (~53,625) across VAT samples. The proportion of
constituent cell types between samples vary, due to both sam-
pling and heritability factors (Glastonbury et al., 2019), but ratios
between cell-specific co-expressed genes should remain con-
stant. Thus, a high corr. of a given transcript with all Ref.T.s in
any one panel is consistent with expression in the corresponding
cell type. For each Ref.T. panel, a list of such transcripts was
generated using a corr. value threshold cutoff, which was either
(1) that above which >95% of transcripts reached this threshold
with only that Ref.T. panel or (2) >0.50, whichever was higher
(for thresholds, see Table S1, Tab 1, Table B). Resultant
transcripts were generally well separated (Figure 1C), but some
overlap was observed between closely related cell types, e.g.,
macrophages [MCs] and neutrophils [NPs]; Figure 1C, row 2).
To compare specific transcripts in two cell-type classified
groups, e.g., MC and NP enriched (Figure 1D.i), the following
was calculated for each transcript: (1) the “differential correlation
score,” defined as the difference between the mean corr. with
the two sets of Ref.T.s, i.e.,, MC panel (CD68, C1QC, and
FCER1G) and NP panel (CSF3R, FCGR3B, and CXCRZ2), and
(2) the “enrichment ranking,” based on the mean corr. value
with the Ref.T. panel (rank 1 = highest corr.). Three transcripts
were provisionally classified as both MC and NP enriched:
LILRA2, MNDA, and FPR1 (Figure 1D.i; gene IDs in bold text).
LILRAZ2 had comparable corr. with both MC and NP Ref.T.
panels (mean corr. + SD: 0.61 + 0.07 and 0.65 + 0.07, respec-
tively), while MNDA and FPR1, despite reaching the threshold
for both, were more highly correlated with the NP Ref.T. panel
than the MC panel (MNDA: NP 0.71 = 0.04 versus MC 0.62 +
0.08 and FPR1: NP 0.72 + 0.07 versus MC 0.63 + 0.14). We ex-
tracted expression data for these genes in monocytes (MonoC)
and neutrophils in blood (Figure 1D.ii)) from scRNA-seq gener-
ated as part of our Human Protein Atlas (HPA) blood atlas (Uhlen
etal., 2019). In all three cases, these transcripts were expressed
in both MonoC and NP (Figure 1D.ii, central column). In contrast,
transcripts we classified as enriched only in MC (CD300C, CD86,
and MS4A4A) or only in NP (ARG1, PROK2, and MGAM) were
predominantly expressed in MonoGC or NP in blood, respectively
(Figure 1D.ii). Although MonoC and MC are not directly compa-
rable, the majority of the monocyte transcriptional profile is main-
tained during differentiation (Martinez et al., 2006), and so these
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data support our annotated classifications. These annotations
were also consistent with data from scRNA-seq of macrophages
and neutrophils from human SAT (Tabula Sapiens et al., 2022;
Figure S2B). Thus, to exclude potentially dual-enriched tran-
scripts from cell-type classification, we excluded transcripts
with a differential corr. value < 0.1 versus any other Ref.T. panel.
The highest number of transcripts excluded for this reason were
those that correlated with both adipocyte progenitor cell and
mesothelial cell Ref.T. panels; 84 transcripts were excluded
from cell-type classification due to likely co-expression (Fig-
ure 1E; Table S1, tab 4a). Gene ontology (GO) and reactome
analysis of this gene list revealed over-representation of terms
related to “plasma membrane bounded cell projection
organization” (false discovery rate [FDR] 1.26 x 1072 and
“BBSome-mediated cargo targeting to cilium” (FDR
8.09 x 1073), respectively (Table S1, tab 4b, with selected exam-
ples highlighted in Figure 1E), suggesting a possible link to the
importance of primary cilia in the regulation of adipose tissue
expansion (Hilgendorf, 2021; Ritter et al., 2018). In most other
cases, transcripts were well separated between cell types,
e.g., MC classified versus adipocyte progenitor (AP) classified
(Figure 1F). We classified 2,343 transcripts as cell-type enriched
in VAT (Tables S1, tab 1, table B, and S2, tab 1), the majority of
which (2,036 [87%]) were protein coding (Figure 2A).

Independent methods and datasets support cell-type
classifications

Unsupervised weighted network correlation analysis
(WGNCA) is consistent with Ref.T. analysis

As our analysis method is based on manually selected Ref.T.
panels, cell-type classification is subject to an input bias. As a
comparison, we analyzed the same dataset using an unbiased
WGCNA (Langfelder and Horvath, 2008). Corr.s between all tran-
scripts were calculated, and they were subsequently clustered
into related groups, based on expression similarity (Figure 2B.i).
Members of the same Ref.T. panels clustered into the same
WGCNA group, e.g., adipocyte Ref.T.s (ADIPOQ, LIPE, and
PLINT; cluster 8, orange box) and mesothelial Ref.T.s (UPK3B,
MSLN, and KRT19; cluster 4, light gray box, Figure 2B.i), or
into adjacent leaves on the same clade, e.g., macrophage
Ref.T.s (CD68, C1QC, and FCER1G; group 25 and 83, blue
box, Figure 2B.i). The locations of all other Ref.T.s are indicated
by the respective colored boxes. Thus, WGCNA results were
consistent with intra-panel Ref.T.s having shared expression
profiles (i.e., in a common cell type). Protein-coding transcripts
classified as cell-type enriched (Figure 2A) predominantly clus-
tered into the same WGCNA group(s) as the corresponding

Figure 2. Integrative co-expression analysis of unfractionated RNA-seq reveals enriched protein-coding transcriptomes of human visceral

adipose tissue (VAT) cell types

(A) Heatmap of protein-coding transcripts classified as cell type enriched (indicated by horizontal colored bars), showing differential score between mean corr.
with the corresponding Ref.T. panel versus highest mean corr. coefficient among the other Ref.T. panels.

(B) Human VAT RNA-seq data (n = 527 individuals) were subject to weighted correlation network analysis (WGCNA). (i) Colored squares indicate Ref.T. location on
dendrogram (colors correspond to cell types as annotated in A). (ii) Distribution of protein-coding transcripts classified as cell type enriched across dendrogram

groups.

(C) Human adipose tissue sections were stained using antibodies targeting proteins encoded by transcripts classified as adipocyte, endothelial, smooth muscle,

macrophage, or T cell enriched. Scale bar, 200 pm; inset, 50 pm.
See also Table $2, tab 1, and Figure S3,
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Ref.T.s, e.g., mast cell enriched (lime green bar, group 137) and
macrophage enriched (blue bars, groups 25 and 83;, (Fig-
ure 2B.ii) and, in some cases, different leaves on a common
clade, e.g., adipocyte enriched (orange bars, groups 8, 16,
105, 121, 28, 44, and 38) and smooth muscle cells (purple
bars, groups 36, 127, and 115) Figure 2B.ii). Thus, protein-cod-
ing transcripts classified as cell-type enriched also clustered
together in an unbiased WGCNA, consistent with cell type co-
expression. Protein profiling of human adipose tissue is provided
for selected adipocyte-, endothelial-, smooth-muscle-cell-,
macrophage- and T-cell-enriched transcripts (Figures 2C
and S3A).

Cell-type-enriched transcripts in visceral adipose tissue

Adipocytes had the most enriched transcripts (n = 700), of which
the greatest proportion were protein coding (Figure 3A.i, light
gray circles), followed by long non-coding RNA (IncRNA) and
pseudogenes (Figure 3A.i; Vertebrate Genome Annotation
[VEGA] database; Harrow et al., 2014). Mesothelial cells (Fig-
ure 3C.i), and adipocyte progenitor cells (Figure 3B.i) also had
a relatively high number of enriched transcripts (n = 532 and
272, respectively), while immune cells, and other non-tissue-
specific cells, had fewer: endothelial (n = 157) (Figure 3D.i),
smooth muscle (n = 142) (Figure 3E.i), macrophages (n = 151)
(Figure 3F.i), neutrophils (n = 56) (Figure 3G.i), mast cells
(n =19) (Figure 3H.i), T cells (n = 200) (Figure 3L.i), and plasma
cells (n = 114) (Figure 3J.i; Table 82, tab 1). In most cell types,
IncRNAs represented the majority of transcripts outside
those classified as protein coding (Figures 3A.i-3J.i), with the
notable exception of T cells and plasma cells, where the majority
were T cell receptor (TR) (Figure 3L.i) or immunoglobulin (IG)
genes (Figure 3J.i), respectively. GO and reactome analysis
(Ashburner et al., 2000; Gene Ontology, 2021) was performed
to identify over-represented classes and pathways in each list
of enriched transcripts (Table S2, tabs 2-11). Results were
consistent with known cell functions. For example, for adipo-
cyte-enriched transcripts, most significant GO terms included
“small molecule metabolic process” (FDR 2.5 x 10~%%) and “car-
boxylic acid metabolic process” (FDR 1.4 x 10~°7) and reac-
tome pathways included “metabolism” (FDR 2.9 x 10779,
for smooth muscle-enriched transcripts, GO terms included
“muscle system processes” (FDR 5.9 x 10" and reactome
pathways included “muscle contraction” (FDR 1.9 x 10~%; for
endothelial-cell-enriched transcripts, GO terms included “blood
vessel development” (FDR 8.8 x 1079 and “angiogenesis”
(FDR 1.1 x 10°%); and for neutrophil-enriched transcripts, GO
terms included “neutrophil activation” (FDR 1.9 x 10 '8 and re-
actome pathways included “neutrophil degranulation” (FDR
5.6 x 1079 (for all cell types, see Table S2, tabs 2-11, tables
Ai and Aii). We visualized the top 50 enriched protein-coding
transcripts for each cell type (Figures 3A.ii-3J.ii), ranked by high-
est mean corr. with the Ref.T. panel, to compare differential corr.

¢ CellPress

OPEN ACCESS

values (corr. with corresponding cell type Ref.T. panel minus
max corr. with any other Ref.T. panel) and expression. Overall,
expression values for enriched genes were highest for adipo-
cytes (Figure 3A.ii), adipocyte progenitor cells (Figure 3B.ii),
endothelial cells (Figure 3D.ii), macrophages (Figure 3F.ii), and
plasma cells (Figure 3J.ii) and lowest for neutrophils, mast cells,
and T cells (Figures 3G.ii-3l.ii). However, cell-type-enriched tran-
scripts had a range of expression values, indicating variation in
regulatory mechanisms, transcript stability, or presence of cell
subtypes.

Cell-type-enriched non-coding transcripts in VAT

We classified 307 non-coding transcripts as cell-type enriched in
VAT, the highest number of which were in adipocytes (n = 144),
followed by mesothelial cells (n = 89) (Figure 4A; Table S2, tab 1).
Cell-enriched non-coding transcripts were typically expressed
at lower levels than cell-enriched protein-coding transcripts
(mean transcripts per million [TPM] + SD, protein coding: 45.4
+ 118.5 versus non-coding: 3.06 = 5.2), with a higher frequency
of samples with low or no expression (mean % samples with
expression >0.1 TPM + SD, coding 2.7 + 7.8 versus non-coding
12.4 + 14.9). Cell-type-enriched non-coding transcripts predom-
inantly clustered into the same WGCNA group(s)/clades as the
corresponding protein-coding Ref.T.s (Figures 4A.ii and 4A.iii,
Ref T. location marked by colored boxes), e.g., adipocyte en-
riched (orange ovals, groups 8, 16, 105, 121, 28, 44, and 38;
Figure 4A.iii), consistent with cell type co-expression. We visual-
ized up to the top 50 enriched non-coding transcripts for the four
cell types with the highest number (Figures 4B.i-4B.iv), ranked
by highest mean corr. with the Ref.T. panel, to compare differen-
tial corr. values (corr. with corresponding cell type Ref.T. panel
minus max corr. with any other Ref.T. panel) and expression.
Overall, expression values for non-coding enriched genes were
highest for adipocytes (Figure 4B.i). Although there is no compa-
rable existing dataset to validate these results, we used scRNA-
seq data from the analysis of human SAT (Tabula Sapiens et al.,
2022; Figure 4C.i) to make some comparisons. Although this
dataset does not include adipocytes or mesothelial cells
(those with the highest number of predicted enriched non-cod-
ing transcripts) and lacks data for many non-coding transcripts,
it provides supportive evidence for our classifications in the other
cell types (Figures 4G.ii—4C.viii). All enrichment scores for non-
coding transcripts can be searched via the web portal https://
cell-enrichment.shinyapps.io/noncoding/.

Identification of cell-type transcriptome profiles in
subcutaneous adipose tissue (SAT)

White adipose tissue is broadly classified by location; VAT is
intra-abdominal, adjacent to internal organs, while SAT lies un-
derneath the skin. The proportion of VAT to SAT increases in
obesity and is linked to metabolic dysregulation (Chait and den
Hartigh, 2020). In order to compare these two depots, SAT-
cell-type-enriched profiles were determined as described for
VAT, using human SAT RNA-seq data (n = 646) from GTEXx portal

Figure 3. Core transcriptional identities of human VAT cell types

Cell-type-enriched transcripts in (A) adipocytes, (B) adipocyte progenitor cells, (C) mesothelial cells, (D) endothelial cells, (E) smooth muscle cells,
(F) macrophages, (G) neutrophils, (H) mast cells, () T cells, and (J) plasma cells, displayed to show (i) proportional representation of transcript types (absolute
numbers below) and (i) the top-50 protein-coding genes ranked by corr. score, with differential expression scores (corr. with corresponding cell type Ref.T. panel
minus max corr. with any other Ref.T. panel) and mean TPM expression. TEC, to be experimentally confirmed. See also Table S2, tab 1, and Figures S4 and S5.

Cell Reports 40, 111046, July 12, 2022 7

158




¢? CelPress Cell Reports

OPEN ACCESS

Ai. Non-coding transcripts classified as cell type enriched
Reference transcript panel |
Ad 10
o
05 e
3
offl @
=
— osf 2
123
10fl 8
)
ii.
3
< 58
S 2
)

Number =
= (Jesseo
. © & me
Il. (42

(ouo()o D1

Ci. scRNAseq data (Tabula Sapiens) i

Correlation Differential

s b
0 o

B i.[Adi
Mean TPM
o >1000
, Pt |
Vg, 5 °;;, s o
3 Differential (17 /S O N0 ctt®  100" )
Re, “kf:?’r@’o Mean TPM [/ 500 g s 0 Meen TP oAl
1nargdST TR e
UNGoo 8.1 o\ \NCOU'
an-zemag \351-356PB.4
RP11-414H17.5 €T0-3064M3.3
FGF14-ASZ Acf:m”
jore Ais,141925 4
ot A»!“oqu‘ T Yor
?ﬁwﬁs L Loz
« “»\“q,{\q ,;9; e
3 e
o %
2 7
<« ‘99' & 2 %00 o
&0 2 %,

o Teell T groe AC093390.1 LINC00670
e Myo-fb/smooth muscle s 75
» Neutrophil % 50
o Endothelial S _ﬁ \‘
e Fibroblast ? 54
* Plasma cell 5
e Macrophage
* Bcells
® Leucocyte PRKCQ-AS1 LINC00861
® Mastcell . I
® Natural killer- ) LINCO1936 AF00154.8.:?
% 4
3 3
LINCO1871 ITGB2-AS1
iv. Neurophil  [IVEIERGothelal " Vil Adipocyte progenitor
LINCO1127 PCAT19 SLC44A3-AS1 IGHV3-69-1 RP11-8L8.2
LINC02207 MEOX2-AS1 RP11-834C11.4 IGHGP RP11-589N15.2
CTB-61M7.2 HSPC324 LINC01503 IGLC6 MIM25
RP11-76E17.4 LINC00987 AC156455.1 IGHV4-55
RP11-44F14.1 ZNF833P
O Fo
. T « ~ .
LINCO1127 PCAT19 l SLC44A3-AST " * | IGHV3-69-1 RP11-8L8.2

8 Cell Reports 40, 111046, July 12, 2022

159

(legend on next page)



Cell Reports

v.8 (www.gtexportal.org; Consortium, 2015). Adipocyte, adipo-
cyte progenitor, endothelial, smooth muscle, macrophage,
mast cell, T cell and plasma cell Ref.T.s had high intra-panel
corr. (all >0.72; p < 9.0 x 107%) with low inter-panel corr.
(Table S1, tab 3). However, the Ref.T.s selected for the mesothe-
lial cell and neutrophil panel in VAT did not correlate well with
each other in SAT (mesothelial Ref.T. panel [mean corr. + SDJ:
SAT 0.15 + 0.04 versus VAT 0.92 + 0.02; neutrophil Ref.T. panel:
SAT 0.62 + 0.08 versus VAT 0.81 + 0.04). Expression of these
genes was also much lower in SAT than VAT (mesothelial:
UPK3B [SAT versus VAT TPM] 1.4 versus 125.8, MSLN 0.3
versus 144.8, KRT19 14.1 versus 153.4; neutrophil: CSF3R
0.81 versus 37.8, FCGR3B 2.1 versus 8.8, CXCR2 0.9 versus
4.6), indicating a low number, or absence, of these cell types in
SAT, consistent with reports that mesothelial cells are absent
(Esteve et al., 2019) and neutrophils preferentially infiltrate VAT
rather than SAT (Elgazar-Carmon et al., 2008). Thus, these cell
types were excluded from subsequent profiling of SAT. As for
VAT, SAT cell-type-enriched transcripts were well separated
by designated Ref.T. panels (Figure S3B) and clustered into
related groups in WGCNA (Figure S3C), and terms identified by
GO and reactome analysis were consistent with cell identity
(Table 52, tabs 2-11, tables Bi and Bii).

Adipose tissue scRNA-seq is consistent with Ref.T.
analysis

We performed a comparison between our results and scRNA-
seq or small nuclear RNA-seq (snBNA-seq) data of human SAT
or murine adipose tissue generated by Sun et al. (2020)
(snRNA-seq), Hildreth et al. (2021), Tabula Sapiens et al.
(2022), and Tabula Muris et al. (2018) (all scRNA-seq)
(Table 1, tab 5). None of these studies contained all cell types
we profiled; adipocytes were only in the snRNA-seq study from
Sun et al. (2020) and plasma cells only in the Tabula Sapiens
et al. (2022) dataset. For some cell types, e.g., progenitors, clas-
sification and/or terminology varied between studies, as is
typical (Wang et al., 2021), and so comparisons were made be-
tween closely related cell types with common marker genes,
e.g., “adipocyte progenitor,” “pre-adipocytes,” “fibroblasts,”
or “mesenchymal stem cells” (Table S1, tab 5 [row 2 states
cell-type annotation]). For cell types represented in all, or most,
of the independent studies, a high proportion of our predicted
cell-type-enriched genes were elevated in the corresponding
cell type in at least one (average Log2 fold change >1.0, >0.5,
or >0.2 versus all other cell types [p < 0.01]): adipocyte progen-
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itor (81%), endothelial cell (98%), smooth muscle cell (69%),
macrophage (87%), neutrophil (96%), T cell (83%), and plasma
cell (81%) enriched (Table S1, tab 5; Figures S4A and S4B).
For adipocyte-enriched genes, independent validation was
lowest of all cell types at 30%, which could be due to the limited
coverage given by comparison with only a single study (Sun
et al., 2020) or differences between the sensitivity of snRNA-
seq versus bulk RNA-seq (Pimpalwar et al., 2020). Gene
ontology and reactome analysis of the predicted adipocyte-en-
riched genes that were not consistent with data from Sun et al.
(2020), revealed significant enrichment of terms associated
with adipocyte function, e.g., "small molecule metabolic pro-
cess" (adjusted FDR 8.7 x 1072%) and "metabolism" (adjusted
FDR 4.3 x 10 2°). To compare cell profiles across all datasets,
we calculated the significance of overlap wusing a
hypergeometric test (Figure S5). Genes predicted as cell-type
enriched in our study were over-represented in the enriched
genes in the corresponding cell types in the scRNA-seq and
snRNA-seq studies (defined as those >0.5 Log?2 fold change
in expression versus all other cell types in the same study
[p < 0.01)) (Figure S5), and this overlap was comparable to,
or more significant than, that between the scRNA-seq and
snRNA-seq studies themselves.

Ref.T. analysis can predict source of adipose-tissue-
enriched genes

RNA-seq data from unfractionated human or murine tissues can
be used to identify genes with enriched expression in adipose
tissue versus other tissues. Adipocytes make up the majority
of adipose tissue, with the most specialized function. We ex-
tracted lists of the top 200 human-adipose-tissue-enriched
genes from HPA (Uhlen et al., 2015) and GTEx (Consortium,
2015), collated in the Harminozome database (Rouillard et al.,
2016; Figure S4C.i). Of those genes classified as adipose tissue
enriched in both datasets (n = 86), our analysis classified 66
(76.7%) as adipocyte enriched and one (1.2%) as endothelial en-
riched (ARHGEF15) (Figure S4C.ii). Thus, our analysis indicates
that the majority of adipose-tissue-enriched genes are
selectively expressed in adipocytes.

Sex- and depot-specific differences in adipose-cell-type
transcriptome profiles

There are sex- and depot-specific differences in accumulation,
distribution, endocrine, and metabolic function of adipose
tissue (Blaak, 2001; Chait and den Hartigh, 2020; Lumish et al.,

Figure 4. Integrative co-expression analysis of unfractionated RNA-seq reveals enriched non-coding transcriptomes of human VAT cell
types

(A) (i) Heatmap of all non-coding transcripts classified as cell type enriched (indicated by horizontal colored bars), showing differential score between mean corr.
with the corresponding Ref.T. panel versus highest mean corr. coefficient among the other Ref.T. panels. (i) Human VAT RNA-seq data (n = 527) for all sequenced
transcripts were subject to WGCNA. Colored squares indicate Ref.T. location on resultant dendrogram (colors correspond to cell types as annotated in A.i). (iii)
Colored ovals indicate distribution of non-coding transcripts classified as cell type enriched across dendrogram groups.

(B) Cell-type-enriched non-coding transcripts in (i) adipocytes, (i) mesothelial cells, (i) T cells, and (iv) smooth muscle cells displayed to show up to the top 50
ranked by corr. score, with differential expression scores (corr. with corresponding cell type Ref.T. panel minus max corr. with any other Ref.T. panel) and mean
TPM expression.

(C) scRNA-seq data from analysis of cell types from human subcutaneous adipose tissue were sourced from Tabula Sapiens (Tabula Sapiens et al., 2022) and
used to generate uniform manifold approximation and projection (UMAP) plots showing (i) scRNA-seq cell-type annotations and the expression of examples of
non-coding genes we predicted as being (i) T cell, (iiij smooth muscle cell, (iv) neutrophil, (v) endothelial, (vi) adipocyte progenitor, (vii) plasma cell, or (viii)
macrophage enriched.

See also Table 52, tab 1.
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2020; Valencak et al., 2017), but to our knowledge, there are no
studies describing sex- and depot-specific differences in
adipose-cell-type-specific transcriptome profiles. Therefore,
we profiled SAT-cell-type-enriched transcriptomes and per-
formed a comparative sex subset analysis in VAT and SAT,
and we did a comparison between cell types found in both
depots.

Prediction of sex-specific differences in adipose-cell-
type-enriched transcripts

We performed a subset analysis of the VAT RNA-seq dataset
(female n = 165; male n = 362) to identify sex-specific, cell-
type-enriched transcriptome profiles. As in the full dataset,
intra-panel cell type Ref.T.s correlated well in female- and
male-sample subsets (all >0.83; p < 1.0 x 1073%) (Table S3,
tab 1, tables A and B). We compared transcripts classified as
male or female cell type enriched (Figure 5; Table S3, tab 2).
Cell profiles were largely comparable between sexes (Figures 5
and S6; transcripts enriched in both males and females repre-
sented by common colored circle and square symbols, respec-
tively). Some transcripts were classified as enriched only in
males or females (Figures 5 and S6; represented by differently
colored circle and square symbols, respectively); however,
most had differential corr. scores close to zero, indicating that
they fell marginally below the designated threshold for classifica-
tion as enriched in the other sex. A small number of markedly
male-only cell-type-enriched transcripts were identified in adi-
pocytes (Figure 5A.i; TBL1Y, RP11-115H13.1, LINC00278, and
GYG2P7), adipocyte progenitor cells (Figure 5B.i; NLGN4Y),
mesothelial cells (Figure 5C.i; ZNF736P9Y), and T cells (Fig-
ure 5D.i; BCORPT). In all cases, transcripts were Y linked, and
mRNA expression was only detected above background levels
in male VAT samples (Figures 5A.ii-5D.ii). There were no clear
sex-specific differences in the other cell-enriched transcriptome
profiles (Figure S6).

Comparison of predicted sex-specific VAT- and SAT-
cell-type-enriched transcripts

To establish whether these sex-specific differences also existed
in SAT, we performed an equivalent subset analysis of the SAT
RNA-seq dataset (female n = 212; male n = 434). As in the full da-
taset, intra-panel cell type Ref.T.s correlated well in female- and
male-sample subsets (all >0.71; p < 14.0 x 1073") (Table S3, tab
3, tables A and B). We compared transcripts classified as male or
female cell type enriched (Figures 5 and S7; Table S3, tab 4).
Three out of the four transcripts we identified as adipocyte en-
riched in male VAT, but not female VAT, had the same profile
in SAT (TBL1Y, RP11-115H13.1, and GYG2P1) (Figure S7A),
showing consistency between adipose depot type. The single
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transcript we identified as adipocyte progenitor enriched in
male, but not female, VAT (NLGN4Y) (Figure 5B.i) was not
classified as such in SAT (Figure S7B). However, the corr. value
between NLGN4Y and the adipocyte progenitor Ref.T. panel
fell marginally below the threshold for definition as enriched
in SAT, and a clear male-female differential corr. existed
(SAT male corr. 0.46 versus SAT female corr. 0.10) (Table S3,
tab 4). The transcript we identified as mesothelial enriched
in male, but not female, VAT (ZNF736PSY) (Figure 5C.i) was not
expressed in SAT, consistent with the absence of mesothelial
cells in this depot (Esteve et al.,, 2019). The male-only T cell
enriched in VAT (BCORP1) was excluded from analysis in
SAT, due to low expression in the majority of samples (>50%
with TPM < 0.1). There were no clear sex-specific differences
in the other SAT-cell-type-enriched transcriptome profiles
(Figures S7TB-S7H).

Prediction of depot-specific differences in adipose-cell-
type-enriched transcripts

Previous studies have reported differential gene expression pro-
files between VAT and SAT depots, using bulk sequencing data
(Bradford et al., 2019; Schleinitz et al., 2020), but reports on dif-
ferences at the cell-type level are lacking. Here, we compared
transcripts classified as cell type enriched in VAT or SAT. As
we profiled two additional cell types in VAT, compared with
SAT (mesothelial cells and neutrophils), prior to comparison,
we excluded any SAT-cell-type-enriched transcripts that were
predicted as primarily enriched in neutrophils or mesothelial cells
in VAT (see Table S1, tab 6). This exclusion revealed that 79
genes were predominantly enriched in different cell types in
VAT and SAT, e.g., IL18 was classified as macrophage enriched
in SAT but mesothelial-enriched in VAT (Table S1, tab 6, line 74),
where its expression was higher (mean TMP + SD; VAT 44.0 +
41.1 versus SAT 11.8 + 10.2). Adipocyte-enriched profiles were
similar between depots, with around 500 transcripts classified
as such in both VAT and SAT (Figure 6A; represented by com-
mon colored circle and square symbols, respectively)
(Table S2, tab 1). LINC0O1632 and GPAT3 were classified as
adipocyte enriched in VAT only (Figure 6A), and both were ex-
pressed at higher levels in VAT than SAT (Figures 6C.i and
6C.ii). Conversely, NRCAM, MAGI2-AS3, and SEPT11 were
classified as adipocyte enriched in SAT only (Figure 6A) and
were all expressed at higher levels in SAT than VAT
(Figures 6C.iii-6C.v). These data are consistent with these tran-
scripts having both an adipocyte-restricted and depot-restricted
profile. Glucagon-like peptide-2 receptor (GLP2R) was classified
as adipocyte enriched in SAT only (Figure 6A), but it was ex-
pressed at higher levels in VAT (mean TMP + STD; VAT 11.2 +
11.28 versus SAT 1.37 = 0.85). This gene could be strongly

Figure 5. Identification of sex-specific, cell-enriched transcripts in human VAT

VAT RNA-seq data (n = 527 individuals) were divided into female and male subgroups (female n = 165; male n = 362) before classification of cell-type-enriched
transcripts. For transcripts classified as (A.i) adipocyte, (B.i) adipocyte progenitor, (C.i) mesothelial, or (D.i) T cell enriched, in either sex, the “sex differential corr.
score” (difference between mean corr. with the Ref.T. panel in females versus males) was plotted versus “enrichment ranking” (position in each respective
enriched list; highest corr. = rank 1). On each plot, transcripts enriched in both females and males are represented by common colored circle and square symbols,
respectively, and transcripts classified as enriched only in females or males are represented by differently colored circle and square symbols, respectively.
Expression in female and male samples for transcripts identified as male-only enriched in (A.ii) adipocytes, (B.ii) adipocyte progenitor, (C.ii) mesothelial, or (D.ii)

T cells. See also Figure S6 and Table S3.
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transcriptionally regulated by environmental factors, analogous
to regulation of the related glucagon receptor gene in response
to glucose (Svoboda et al., 1999), in VAT only and thus here
does not consistently correlate with the stably expressed adipo-
cyte Ref. T. Like adipocytes, adipocyte-progenitor-enriched pro-
files were similar between depots, with 186 transcripts classified
as such in both VAT and SAT (Figure 6B; represented by com-
mon colored circle and square symbols, respectively)
(Table S2, tab 1). CPT1C was classified as adipocyte progenitor
enriched in VAT only (Figure 6B) and expressed at higher levelsin
VAT than SAT (Figure 6D.i). Conversely, ADGRE5 and RP11-
38H17.1 were classified as adipocyte progenitor enriched in
SAT only (Figure 6B) and were expressed at higher levels in
SAT than VAT (Figures 6D.ii and 6D.iii). These data are consistent
with these transcripts having both an adipocyte-progenitor-
restricted and depot-restricted profile. There were no clear
depot-specific differences in the other cell-type-enriched tran-
scriptome profiles (Figures S8A-S8F).

As our analysis indicated that cell-type-enrichment profiles
did not differ substantially in VAT and SAT, we investigated
the cell-type-expression profile of genes identified as most
differentially expressed between depots. We extracted data
from a study (Schleinitz et al., 2020) where the authors analyzed
samples from 15 human-fat depots and generated a list of most
differentially expressed genes between SAT and VAT. Of the
298 transcripts identified by the authors, data for 272 were
available in our analysis. We performed lookups in our dataset
to determine whether these genes were classified cell type en-
riched and whether this expression profile differed between
VAT and SAT (Figure 6E). For transcripts with a higher expres-
sion in VAT, compared with SAT (Schleinitz et al., 2020; Fig-
ure 6E, indicated by red dashed external line), the majority
were classified as mesothelial cell enriched in VAT in our anal-
ysis (Figure 6E.i), a cell type not found in SAT (Esteve et al.,
2019). A further 25 of these transcripts were found in the list
of 84 we excluded from cell-type classification, due to likely
co-expression in both VAT mesothelial and adipocyte progeni-
tor cells (Figure 6E.i; Table S1, tab 4a). For those transcripts
with a higher expression in SAT versus VAT (Schleinitz et al.,
2020; Figure 6E, indicated by black dashed line), most were
not annotated as cell type enriched, but those that were had
similar expression profiles between depots. Classification as
depot enriched in Schleinitz et al. (2020) was broadly consistent
with corresponding TPMs in the GTEx data (Figures 6E.iii and
6E.iv). The application of our data in this way demonstrates
its usefulness for extracting cell-type information from whole-
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tissue data, allowing further understanding of observations
made in other studies, with broad applicability across datasets
and analysis platforms.

DISCUSSION

Here, we present a method to resolve unfractionated tissue
RNA-seq data, providing an alternative to scRNA-seq for the
identification of cell-type-enriched transcripts. Our approach cir-
cumvents some challenges associated with scRNA-seq, e.g.,
requirement for fresh tissue, artefact-generating sample pre-
processing, and limited read depth (Beliakova-Bethell et al.,
2014; Rizzetto et al.,, 2017; Saliba et al., 2014; Ziegenhain
et al., 2017). By analyzing a high number of biological replicates,
this approach allows for well-powered subgroup comparisons,
e.g., female versus male. Public repositories contain thousands
of bulk RNA-seq datasets; our method can utilize these re-
sources to profile cell types for which little or no information
currently exists.

To our knowledge, this study provides the most comprehen-
sive publicly accessible database of adipose-tissue-cell-type
coding and non-coding gene-expression-enrichment profiles,
searchable on a gene-by-gene basis. Our dataset could also
be a useful tool for the optimization of deconvolution algorithms
used to determine proportions of constituent cell types in adi-
pose tissue bulk RNA-seq, e.g., CIBERSORT (Glastonbury
et al., 2019; Newman et al., 2015). Such analyses typically use
input expression matrices generated from transcriptome anal-
ysis of isolated cell types to identify cell-type reference genes.
Various factors can reduce the accuracy of input matrices,
including contaminating cell types in input datasets, technical ar-
tefacts due to cell extraction and processing, and limited input
data availability for some cell types or for cells sourced from ad-
ipose tissue. Cross checking input matrices against our dataset
could identify the most likely highly enriched genes in vivo.

Genes classified as adipocyte enriched in VAT or SAT included
those with established roles in adipocyte development or func-
tion, e.g., GPD1, AQP7, LPL (Rotondo et al., 2017), CIDEC (Keller
et al., 2008), GYG2, TUSC5, and PPP1R1A (Ambele et al., 2016),
but others had no known function, e.g., HEPACAM, PECR,
C190rf12, and AL845331.1. HEPACAM encodes an adhesion
molecule studied mainly in brain glial cells (Barrallo-Gimeno
and Estevez, 2014), but it was identified as a key driver in a reg-
ulatory gene network associated with BMI and cholesterol in VAT
from patients with coronary artery disease (Franzen et al., 2016).
HEPACAM was one of 47 genes differentially expressed in SAT

Figure 6. Identification of depot-specific, cell-enriched transcripts in human adipose tissue

Human VAT (n = 527 individuals) or SAT (n = 646 individuals) RNA-seq data were used for classification of cell-type-enriched transcripts (see results for criteria).
(A and B) For transcripts classified as (A) adipocyte or (B) adipocyte progenitor enriched, in either VAT or SAT, the “depot differential corr. score” (difference
between mean corr. with the Ref.T. panel in VAT versus SAT) was plotted versus enrichment ranking (position in each respective enriched list; highest corr. = rank
1). On each plot, transcripts enriched in both VAT and SAT are represented by common colored circle and square symbols, respectively, and transcripts classified
as enriched only in VAT or SAT are represented by differently colored circle or square symbols, respectively. Correspondingly colored threshold lines denote
ranking below which transcripts were classified as VAT or SAT enriched.

(C and D) Expression levels in SAT and VAT of (C) transcripts classified as adipocyte enriched in (i and ii) VAT only or (iii-v) SAT only; (D) adipocyte progenitor-
enriched classified transcripts in (i) VAT only or (i and iii} SAT only.

(E) Transcripts identified as differentially expressed between VAT and SAT depots by Schleinitz et al. (2020) are displayed with cell-type-enrichment classification
in our analysis of (i) VAT and (ji) SAT. Corresponding expression levels in the GTEx datasets are displayed for (iii) VAT and (iv) SAT.

See also Figure S8 and Tables S1, tab 6, and S2.
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from twin pairs with high and low BMI and was associated with
adipocyte diameter (Kaartinen et al., 2020). PECR is involved in
chain elongation of fatty acids (Gloerich et al., 2006) and is a
candidate gene influencing fat mass in mice (Karst et al.,
2011), intramuscular fat deposition in cows (Sadkowski et al.,
2014), and pig weight (Stuczynska et al., 2018). Mutations in
C190rf12 cause neurodegeneration with brain iron accumulation
(Gagliardi et al., 2015), and C790rf12 could have arole in lipid ho-
meostasis (Hartig et al., 2011), due to high expression in adipose
tissue and co-regulation with genes involved in fatty-acid meta-
bolism. AL845331.1 has been re-classified from non-coding to
novel protein coding, on the basis of its similarity to AQP7, a
gene we also classified as adipocyte enriched, as have others
(Rotondo et al., 2017).

Non-coding RNAs are increasingly recognized as important in
adipose biology (Squillaro et al., 2020; Statello et al., 2021; Xu
and Sun, 2020), but descriptions of adipose-cell-type expression
profiles are lacking. In our analysis, adipocytes had the most en-
riched non-coding genes, including antisense transcripts to
adipocyte-enriched protein-coding genes, e.g., ALDH1L1-AS2,
ADIPOQ-AS1, LIPE-AS1, and CNTFR-AS1. Other adipocyte-en-
riched non-coding genes included RP17-863K70.7, an antisense
transcript to ERLIN2, a gene with a role in the accumulation of
cytosolic lipid droplets (Wang et al., 2012); MIRLET7BHG, which
is important for adipocyte differentiation in mice (McGregor and
Choi, 2011; Sun et al., 2009); and MIR193BHG, which was
characterized as a cellular steroid biosynthesis pathway modu-
lator in MCF7 cells (Wu et al., 2020). Mesothelial-cell-enriched
non-coding genes included antisense transcripts to mesothe-
lial-enriched protein-coding genes, e.g., SEMA3B-AS, DPP10-
AS1T, FAM83H-AS1, and WT7-AS1. Other mesothelial-enriched
non-coding genes included LINC01133, reported as having a
role in the Wnt signaling pathway (Yang et al., 2021), which is
associated with metabolic disease development, with adipose
depot-specific roles (Chen and Wang, 2018). Most non-coding
transcripts classified as T cell or plasma cell enriched in our anal-
ysis were TR genes or IG genes, respectively. Other non-coding
transcripts classified as T cell enriched included PRKCQ-AST,
which was postulated to have a role in T cell function in a study
of IncRNAs in vaccine response (de Lima et al., 2019) and targets
the protein-coding gene PRKCQ, which was also classified as
T cell enriched in our analysis. However, the majority of non-cod-
ing transcripts we identified as cell type enriched are
uncharacterized.

Sex differences in the accumulation, distribution, and endo-
crine and metabolic function of adipose tissue is well acknowl-
edged (Blaak, 2001; Lumish et al., 2020; Valencak et al., 2017),
although studies on underlying cell-type gene-expression differ-
ences are limited. Cell-type profiles were similar between sexes,
but we did identify a small panel of transcripts with sex-depen-
dent enrichment profiles, including TBL1Y, GYG2P1, and
RP11-115H13.1, which were adipocyte enriched only in male
VAT and SAT. TBL1Y, a Y-linked gene similar to its gonosomal
homologue TBL1X, is one of 27 genes that encode distinct
male-specific Y proteins (Jeffery et al., 2013). TBL1Y has a role
in hereditary hearing loss (Di Stazio et al., 2019) and cardiac
developmental regulation (Meyfour et al., 2017), the latter of
which has been suggested to contribute to the sexual
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dimorphism of cardiac diseases. Although previously reported
as expressed in adipose tissue (Jeffery et al., 2013), there are
no reports of TBL1Y being adipocyte specific or its function
there. GYG2P1 is a Y-linked pseudogene of GYG2 (Meyfour
et al.,, 2017). GYG2 was classified as adipocyte enriched in
both males and females in our analysis; although its function in
adipocytes has not been studied, its expression coincides with
adipocyte maturation of adipose-derived stromal cells (Ambele
et al.,, 2016). Although pseudogenes are often assumed to
lack function, they are increasingly found to have key roles
(Cheetham et al., 2020) functioning as antisense, endogenous
small-interference or competing endogenous transcripts (Singh
et al.,, 2020). There are no reports of GYG2P7 function, but it
was downregulated in SAT from children with obesity versus
those without (Liu et al., 2018). A recent study used bulk RNA-
seq to analyze SAT from females and males to identify genes
with differential expression (Anderson et al., 2020). According
to our data, the identified genes had similar cell-type enrichment
profiles between sexes (majority adipocyte enriched). Thus, sex
differences in SAT are likely driven by variable gene expression
in a common cell type or differences in the proportion of this
cell type.

Previous studies have identified differences in cellular compo-
sition, adipocyte size, activity, and capacity for fat uptake be-
tween VAT and SAT (lbrahim, 2010). Although RNA-seq has
been used to determine differences in gene expression between
VAT and SAT (Bradford et al., 2019; Schleinitz et al., 2020), to our
knowledge, there have been no studies comparing cell-type-en-
riched transcriptome profiles. We found that NRCAM, a neuronal
cell adhesion molecule of the immunoglobulin superfamily,
mainly studied in a neuronal development (Sakurai, 2012), was
adipocyte enriched in SAT, but not VAT. NRCAM was one of
32 genes upregulated throughout the differentiation of human-
adipose-derived stromal cells isolated from SAT (Ambele et al.,
2016), and in a study of SAT from siblings with high and low
BMI, NRCAM was identified as part of an obesity-related tran-
script network (Walley et al., 2012). NRCAM was expressed in
SAT, but not VAT, from individuals with extreme obesity (Gerhard
et al., 2014). However, NRCAM function is unknown. In SAT, but
not VAT, CALB2 and PKP2 were adipocyte enriched and /L18
was macrophage enriched. In all three cases, overall expression
was higher in VAT than SAT, and these genes were predomi-
nantly expressed in mesothelial cells in VAT, consistent with
previous reports for IL18 (Darimont et al., 2008) and CALB2 (Bar-
beris et al., 1997). Indeed, our data show that mesothelial cells in
VAT drive differences in global gene expression between depots
(Bradford et al., 2019; Schleinitz et al., 2020).

In summary, our method circumvents some challenges
associated with the analysis of adipose tissue to provide an atlas
of constituent cell type defining transcriptional profiles. The data
can be used to further interpretate existing observations and to
identify candidates for functional studies to expand our knowl-
edge of adipose tissue in health and disease.

Limitations of the study

There are limitations to our study. We do not profile specific cell
subtypes; while it may be possible to resolve the data further in
this way, there is a lack of consensus regarding cell-subtype
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identity, e.g., multiple adipocyte progenitor cells subtypes have
been reported (Raajendiran et al., 2019), but others claim this
population is homogeneous (Acosta et al., 2017). Thus, selection
of subtype Ref.T.s required for input into our analysis model, or
interpretation of WGNCA, is challenging. Thus, our classification
informs about cell-type restricted expression but does not
discriminate between transcripts expressed uniformly across
all cells of a given type and those expressed in a sub-population.
Some cell types are not profiled in our analysis, due to difficulties
in the identification of cell-type-specific markers as suitable
Ref.T.s. Thus, some genes classified as cell type enriched in
our analysis may also be expressed in other (non-profiled) cell
types, a limitation that applies to existing scRNA-seq and
snRNA-seq adipose tissue datasets, which all lack data for
some constituent cell types (e.g., Hildreth et al., 2021; Tabula
Muris et al., 2018; Tabula Sapiens et al., 2022; Vijay et al,,
2020). Expression of some genes in adipose tissue can be modi-
fied by genetic, epigenetic, or environmental factors (Sun et al.,
2019). Such genes may not correlate with the Ref.T.s, due to a
variation in expression that is independent of cell-type propor-
tions. Thus, such genes could be false negatives in our analysis.
We have used high thresholds for classification of genes as cell
type enriched, likely leading to the incorrect exclusion of some.
For example, EPAS1, SHROOM4, and GPR4 are endothelial-en-
riched transcripts across tissue beds (Butler et al., 2016), but
they fall just below the threshold for classification as endothelial
enriched here. However, in these cases, the enrichment score
clearly indicates a cell-type-restricted expression; thus, our clas-
sifications are intended only as a guide, and the reader should
consider the data on a transcript-by-transcript basis.
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact: Dr. Lynn
Marie Butler. Email: Lynn.butler@ki.se.

Materials availability
This study did not generate new unique reagents.

Data and code availability
@ This paper analyses existing, publicly available data. The accession number for the datasets are listed in the key resources ta-
ble.
o All original code has been deposited at GitHub and is publicly available as of the date of publication. DOIs are listed in the key
resources table,
® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bulk RNA-seq data analyzed in this study was obtained from the Genotype-Tissue Expression (GTEx) Project (gtexportal.org)
(Consortium, 2015) accessed on 2019.11.29 (dbGaP Accession phs000424.v8.p2). Sample IDs of visceral adipose tissue (VAT)
and subcutaneous adipose tissue (SAT) samples used in the analysis can be found in Table S1. Human tissue protein profiling
was performed in house as part of the Human Protein Atlas (HPA) project (Ponten et al., 2008; Uhlen et al., 2015, 2017) (www.
proteinatlas.org). Adipose tissue samples were obtained from the Department of Pathology, Uppsala University Hospital, Uppsala,
Sweden, as part of the Uppsala Biobank. Samples were handled in accordance with Swedish laws and regulations, with approval
from the Uppsala Ethical Review Board (Uhlen et al., 2015).

METHOD DETAILS

Tissue profiling: human tissue sections

Adipose tissue sections were stained, as previously described (Ponten et al., 2008; Uhlen et al., 2015). Briefly, formalin fixed and
paraffin embedded tissue samples were sectioned, de-paraffinized in xylene, hydrated in graded alcohols and blocked for endog-
enous peroxidase in 0.3% hydrogen peroxide diluted in 95% ethanol. For antigen retrieval, a Decloaking chamber® (Biocare Med-
ical, CA) was used. Slides were boiled in Citrate buffer®, pH6 (Lab Vision, CA). Primary antibodies and a dextran polymer visualization
system (UltraVision LP HRP polymer®, Lab Vision) were incubated for 30 min each at room temperature and slides were developed
for 10 min using Diaminobenzidine (Lab Vision) as the chromogen. Slides were counterstained in Mayers hematoxylin (Histolab)
and scanned using Scanscope XT (Aperio). Primary antibodies, source, target and identifier are as follows: Atlas Antibodies:
ACSL1 (Cat#HPA011316; RRID:AB_1844536), ACO1 (Cat#HPA019371; RRID:AB_1844519), FBX027 (Cat#HPAQ46800;
RRID:AB_2679813), MYH9 (Cat#HPA064783; RRID:AB_2732721), GIMAP4 (Cat#HPA019135; RRID:AB_1849670), FLNB
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(Cat#HPA004886; RRID:AB_1848600), PLN (Cat#HPA026900; RRID:AB_1855314), LMOD1 (Cat#HPA028435; RRID:AB_10602180),
DES (Cat#HPA018803; RRID:AB_1847616), TBXAS1 (Cat#HPA031257; RRID:AB_2673812), ITGB2 (Cat#HPA016894;
RRID:AB_1846257), PRKAR2B (Cat#HPA008421, RRID:AB_1855421), C190rf12 (Cat#HPA046930, RRID:AB_10962836), SHANK3
(Cat#HPAQ03446; RRID:AB_1079958), CASQ2 (Cat#HPA027285; RRID:AB_1845933), SLC30A3 (Cat#HPA060505; RRID:AB_
2684296), LCP1 (Cat#HPA019493; RRID:AB_1855457), IFI30 (Cat#HPA026650; RRID:AB_10602237), SP140 (Cat#HPA006162;
RRID:AB_1857403), CD247 (Cat#HPA008750; RRID:AB_1857863). Santa Cruz: TYROBP (Cat#sc-20783; RRID:AB_638987),
TBX21 (Cat#sc-21003; RRID:AB_2200557), Thermo Fisher Scientific: ZAP70 (Cat#MS-1911), Merck: KLRK1 (Cat#05-945;), R&D
Systems: CDH13 (Cat#MAB3264). All IHC images are available on the HPA website (https://www.proteinatlas.org/).

QUANTIFICATION AND STATISTICAL ANALYSIS

Reference transcript-based correlation analysis

This method was adapted and expanded from that previously developed to determine the cross-tissue pan-EC-enriched transcrip-
tome (Butler et al., 2016) and human brain cell enriched genes (Dusart et al., 2019). Pairwise Spearman correlation coefficients were
calculated between reference transcripts selected as proxy markers for: adipocytes [ADIPOQ, LIPE, PLIN1], adipocyte progenitor
cells [FKBP10, COL6A1, COL6AZ], mesothelial cells [UPK3B, MSLN, KRT19], endothelial cells [MMRN2, ESAM, CDH5], smooth
muscle cells [KCNMB1, CNN1, MYH11], macrophages [CD68, C1QC, FCER1G], neutrophils [CSF3R, FCGR3B, CXCR2], mast cells
[CPAS3, TPSB2, TPSABT], T cells [TRBCZ2, CD6, CD3E] and plasma cells [[GKC, JCHAIN, MZB1] and all other sequenced transcripts.
Transcripts with a TPM value < 0.1 in more than 50% of samples were excluded from analysis (but are still included in data tables).
See results section for full criteria required for transcript classification of transcripts as cell-type enriched (also Table S1, tab 1,
table B). Correlation coefficients were calculated in R using the corr.test function from the psych package (v 1.8.4). In addition to cor-
relation coefficients False Discovery Rate (FDR) adjusted p-values (using Bonferroni correction) and raw p-values were calculated.
FDR <0.0001 for correlation was required for inclusion as cell type enriched, but no transcripts in either VAT or SAT required exclusion
due to this criterion.

Weighted correlation network (WGCNA) analysis

The R package WGCNA (Langfelder and Horvath, 2008) was used to perform co-expression network analysis for gene clustering, on
log2 expression TPM values. The analysis was performed according to recommendations in the WGCNA manual. Transcripts with
too many missing values were excluded using the goodSamplesGenes() function. The remaining genes were used to cluster the sam-
ples, and obvious outlier samples were excluded.

Gene ontology and reactome analysis

The Gene Ontology Consortium (Ashburner et al., 2000) and PANTHER classification resource (Mi et al., 2013, 2016) were used to
identify over represented terms (biological processes) in the panel of identified cell-type-enriched transcripts from the GO ontology
(release date 2021-10-09) or reactome (release date 2021-11-17) databases.

Processing of data from adipose tissue scRNA-seq and snRNA-seq datasets

Data from scRNA-seq analysis of human SAT (Hildreth et al., 2021; Tabula Sapiens et al., 2022), scRNA-seq of murine adipose tissue
(mixed depot) (Tabula Muris et al., 2018) and snRNA-seq of human SAT (Sun et al., 2020) was downloaded or received from the
authors upon request. Cell type clustering and categorization was performed as originally described, but immune cell subtypes in
(Hildreth et al., 2021) were merged, and myofibroblasts and smooth muscle cells in (Tabula Sapiens et al., 2022) were handled
together. The R Seurat package (Hao et al., 2021) and the FindAllMarkers function was used to determine the Log2 fold change
values for each gene in all cell types versus all others within each study, and to generate illustrative UMAP plots when required.
The statistical significance of overlap between cell-type enriched genes in each study was calculated using a hypergeometric test
(Figure S5). Criteria used for comparison of our cell type-enriched datasets with expression profiles in the independent studies
are given in the relevant results sections and associated tables or figure legends.

Visualization

Circular graphs (Figures 3, 4B, and 6E) were constructed using the R package circlize (Gu et al., 2014). Some figure sections were
created with BioRender.com.

ADDITIONAL RESOURCES

Analyzed data for all protein coding genes is provided on the Human Protein Atlas website: (www.proteinatlas.org/humanproteocme/
tissue+cell+type/adipose+tissue). Analyzed data for non-coding transcripts is provided on: hitps://cell-enrichment.shinyapps.io/

noncoding/. The published article includes all datasets generated during this study, including depot- and sex-subset analysis
(Tables S1, 52, and S3).
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Figure $1

Figure S1. Methodological summary and expression distribution and correlations between
human visceral adipose tissue (VAT) cell type reference transcripts. Related to Figure 1 and
Table S1, Tab 1. (A) Schematic of analysis concept. (B) Expression of Ref.T selected to represent:
(i) adipocytes, (ii) adipocyte progenitors, (iii) mesothelial cells, (iv) endothelial cells, (v) smooth

muscle cells, (vi) macrophages, (vii) neutrophils, (viii) mast cells, (ix) T-cells and (x) plasma cells.
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Figure S2

Figure S2. scRNAseq of subcutaneous adipose tissue provides supportive evidence for cell
type enrichment predictions from integrative co-expression analysis of unfractionated
visceral adipose tissue (VAT). Related to Figure 1D. (A) (i) For transcripts above the designated
correlation threshold with the macrophage (squares, MC) or neutrophil (circles, NP) Ref.T. panels,
the ‘differential correlation score’ (difference between mean corr. with MC and NP Ref.T.) was plotted
vs. ‘enrichment ranking’. Bold text annotations show transcripts appearing in both MC- and NP lists
(circular and square symbol, on the same X-axis dimension). (ii) scRNAseq data from the Human
Protein Blood Atlas (Uhlen et al., 2019) showing gene expression in classical, intermediate, and non-
classical monocytes, and neutrophils from whole blood. (B) scRNAseq data from analysis of cell
types in human subcutaneous adipose tissue was sourced from Tabula Sapiens (Tabula Sapiens.,
2021), and used to generate UMAP plots showing (i) scRNAseq cell type annotations, and (ii)
expression profiles of genes we predicted as macrophage (MC)-enriched [CD86, CD300C, MS4A4A]
(blue bar), co-enriched in both MC and neutrophils (NP) [LILRAZ, FPR1, MNDA] (grey bar) or
predominantly NP-enriched [ARG1, PROK2, MGAM] (pink bar).
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Figure S3

Figure S3. (A) Protein profiling of transcripts identified as cell-enriched in VAT. Related to
Figure 2. Human adipose tissue sections were stained using primary antibodies targeting proteins
encoded by transcripts classified as adipocyte-, endothelial-, smooth muscle-, macrophage- or T-
cell-enriched. Scale bar 200um, inset 50um. See also Table S2, Tab 1.

(B-C) Integrative co-expression analysis of unfractionated RNAseq reveals enriched
transcriptomes of subcutaneous adipose tissue (SAT) cell types. Related to Figure 6, Figure
S7, Figure S8. Human SAT RNAseq data (n=646), retrieved from Genotype-Tissue Expression
(GTEXx) portal V8, was used to determine correlation coefficients (corr.) between selected adipose
cell type Ref.T and all other sequenced transcripts. (A) Heat map plot of transcripts classified as cell
type-enriched (indicated by horizontal-coloured bars), showing differential score between mean
correlation coefficient with the corresponding Ref.T. panel vs. highest mean correlation coefficient
amongst the other Ref. T. panels. (B) SAT RNAseq data was subject to weighted correlation network
analysis (WGCNA). (i) Coloured squares indicate Ref.T. location on resultant dendrogram. (ii)
Distribution of transcripts classified as cell type-enriched across dendrogram groups. See also Table

S2, Tab 1.

177



FB EC TC Pre-AC EC CD4'TC

178

Figure S4

AP/Pre-AC EC TC MSC EC TC

scRNAseq SAT snRNAseq SAT scRNAseq SAT scRNAseq mixed Genes logFC >0.2 in
[TS] [Sun] [Hildreth] [TM] at least 1 dataset
. . 0000000000 0000000000 0000000000 0000000000 0000000000
Adipocyte progenitor (AP) gg@ 0000000 ©000000000 000 0000000000 0000000000
Total genes = 186 000 0000000000 , 0000000000
. S sssssssses| ¢ S
L m>10 o) 000 ® °
& E9>05 o) 000 0000000000
S =>02 O 000 0000000000
o <02 ‘ o) 000 0000000000
< mm Not detected/in dataset (@) (@]l OO000O0OOO00
ii. Endothelial cell (EC) s 144 e
Total genes = 93 @ 000 @ [ J
o 000 ® Q
O mm>1o clD 000 000 0000000000
L w05 000 000 0000000000
D om0 0000 000 0000000000
9 <02 44 288 0000000000
< mm Notdetected/indataset SSS55550000 OOOOOOO0 0 000 0000000000
0000000000 0000 0000000000 | 0000000000
T-cell (TC) 0000000000 00000 00 0000 | @ @
Total genes = 98 0000000000 00000 0000000000 | ©
0000000000 Q0000 0000000000 | @
O gm0 0000000000 0000 0QOO00O0000 | @
e 0000000000 0000 0OOO0OO0000 | @
e 0000000000 0000 0000000000 | ®
= 0000000000 0000 0QOO0OO0000 | @
2 - - 0000000000  OO0OOOOO00 0000 000000reee | @
< Hm Notdetected/indataset ©5OO0C000000 0000000000 OOOOOO0000 0000000000 O
Ci.
4 = . . .
@) GTEXPortal (29 tissues) HUMAN PROTE'N ATLAS** (31 tissues)
86 common
...... I op200> adipose-enriched <T°p200
genes
v
ii. cen type classification
0000000000
Adipose enriched genes identified ::::z::::: ® Adipocyte Adipose enriched genes identified
from bulk RNAseq comparison :::::::::: @ Endothelial from bulk RNAseq comparison
Q0000000 OO® O Unclassified
0000000000
0000000000
0000000000
Q000000000



Figure S4

Figure S4. Comparison of predicted human visceral adipose tissue (VAT) and subcutaneous
adipose tissue (SAT) cell type enriched transcriptomes with scRNAseq or snRNAseq of
human SAT or murine adipose tissue. Related to Figure 3, Table S1 Tab 5, and Table S2, Tab
1. (A) Data generated by single cell (scRNAseq) or single nuclear (snRNAseq) profiling of human
SAT or murine adipose tissue was sourced from (i) Tabula Sapiens (Tabula Sapiens., 2021)
(scRNAseq SAT [TS]), (ii) Sun et al. (Sun et al., 2020) (snRNAseq SAT [Sun]), (iii) Hildreth et al.
(Hildreth et al., 2021) (ssRNAseq SAT [Hildreth]) and (iv) Tabula Muris (Tabula Muris et al., 2018)
(scRNAseg mixed [TM]). (B) Genes predicted as enriched in (i) adipocyte progenitor cells, (ii)
endothelial cells or (iii) T-cells, in both VAT and SAT, were cross checked with the independent
studies. Colour coding indicates proportion of genes that have average Log2 fold change >1.0, >0.5
or >0.2 [p<0.01] in the corresponding cell type vs. all other cell types profiled in the independent
study. FB: fibroblast, AP: adipocyte progenitor, Pre-AC: pre-adipocyte, MSC: mesenchymal stem
cell, EC: endothelial cell, TC: T-cell. (C.i) The top 200 human adipose enriched genes in Human
Protein Atlas and GTEx datasets were sourced from Harminozome database (Rouillard et al., 2016)

and (C.ii) classification as cell type-enriched in our analysis of VAT determined.
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Figure S5

Figure S5. A comparison of cell-type enriched genes identified in different adipose tissue cell
type profiling studies; Related to Figure 3 and S4. Bubble heatmap showing the significance
(indicated by dot size and colour) of shared enriched genes between adipose tissue cell types, as
identified in the current study using integrative correlation analysis of bulk RNAseq of (A) human
visceral adipose tissue [VAT] (Unfractionated VAT) and (B) human subcutaneous adipose tissue
[SAT] (Unfractionated SAT), or by single cell/single nuclear profiling of human SAT, sourced from
(C) Tabula Sapiens (Tabula Sapiens., 2021) (scRNAseq SAT [TS]) (D) Sun et al. (Sun et al., 2020)
(snRNAseq SAT [Sun]) and (E) Hildreth et al. (Hildreth et al., 2021) (ssRNAseq SAT [Hildreth]), or in
(F) murine adipose tissue from Tabula Muris (Tabula Muris et al., 2018) (scRNAseqg mixed [TM])
(enriched genes defined as those =0.5 Log2 fold change in expression vs. all other cell types in the
same study [p<0.01]). Cell type-enriched genes were compared across all studies (indicated by
different coloured blocks on x-axis), N.B. not all cell types were represented in every study. When
overlap of enriched genes was not statistically significant (hypergeometric test, P > 0.05), no dot is
displayed. AC: adipocyte, AP: adipocyte progenitor, EC: endothelial cell, SMC: smooth muscle cell,
MC: macrophage, NP: neutrophil, MastC: mast cell, TC: T-cell, PlasC: plasma cell, MesoC:
mesothelial cell, FB: fibroblast, NKC: natural killer cell, BC: B-cell, LC: leukocyte, Pre-AC: pre-
adipocyte, MonoC: monocyte, DC: dendritic cell, ILC: innate lymphoid cell, MSC: mesenchymal

stem cell.
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Figure S6

Figure S6. ldentification of sex-specific cell type-enriched transcripts in human visceral
adipose tissue (VAT); Related to Figure 5. VAT RNAseq data (n=527), retrieved from Genotype-
Tissue Expression (GTEx) portal V8, was divided into female and male sample subgroups (female
n=165, male n=362) before classification of cell type-enriched transcripts (see results section for
criteria). For transcripts classified as: (A) endothelial, (B) smooth muscle, (C) macrophage, (D)
neutrophil, (E) mast cell, or (F) plasma cell enriched, in either female or male subsets, the “sex
differential correlation score’ (difference between mean corr. with the Ref. T panel in females vs.
males) was plotted vs. ‘enrichment ranking’ (position in each respective enriched list, highest corr. =
rank 1). On each plot, transcripts classified as enriched in both females and males are represented
by common coloured circle and square symbols, respectively, and transcripts classified as enriched
only in females or males are represented by differently coloured circle or square symbals,
respectively. Correspondingly coloured threshold lines denote ranking below which transcripts were

classified as female or male enriched. See also Table S3, Tab 2.
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Figure S7

Figure S7. Identification of sex-specific cell-enriched transcripts in human subcutaneous
adipose tissue (SAT); Related to Figure 5. Human SAT RNAseq data (n=646), retrieved from
Genotype-Tissue Expression (GTEx) portal V8, was divided into female and male sample subgroups
(female n=212, male n=434) before classification of cell type-enriched transcripts (see results section
for criteria). For transcripts classified as: (A) adipocyte, (B) adipocyte progenitor, (C) endothelial, (D)
smooth muscle, (E) macrophage (F) mast cell, (G) T-cell, or (H) plasma cell enriched, in either female
or male subsets, the “sex differential correlation score’ (difference between mean corr. with the Ref. T
panel in females vs. males) was plotted vs. ‘enrichment ranking’ (position in each respective enriched
list, highest corr. = rank 1). On each plot, transcripts enriched in both females and males are
represented by common coloured circle and square symbols, respectively, and transcripts classified
as enriched only in females or males are represented by differently coloured circle or square
symbols, respectively. Correspondingly coloured threshold lines denote ranking below which
transcripts were classified as female or male enriched. Transcripts with differential corr. score >0.40

are labelled with identifiers. See also Table S3, Tab 4.
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Figure S8

Figure S8. Identification of depot-specific cell-enriched transcripts in human adipose tissue;
Related to Figure 6. Human visceral adipose tissue (VAT, n=527) or subcutaneous adipose tissue
(SAT, n=646) RNAseq data, retrieved from Genotype-Tissue Expression (GTEx) portal V8, was used
for classification of cell type-enriched transcripts (see results section for criteria). For transcripts
classified as: (A) macrophage, (B) endothelial, (C) smooth muscle, (D) mast cell, (E) T-cell, or (F)
plasma cell enriched, in either VAT or SAT, the "depot differential correlation score’ (difference
between mean corr. with the Ref.T panel in VAT vs. SAT) was plotted vs. ‘enrichment ranking’
(position in each respective enriched list, highest corr. = rank 1). On each plot, transcripts enriched
in both VAT and SAT are represented by common coloured circle and square symbols, respectively,
and transcripts classified as enriched only in VAT or SAT are represented by differently coloured
circle or square symbols, respectively. Correspondingly coloured threshold lines denote ranking
below which transcripts were classified as VAT or SAT enriched. Selected transcripts with differential

corr. score >0.40 are labelled with identifiers.
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ABSTRACT

The endothelium is the innermost layer of all blood vessels. Endothelial cells (EC) play a central
role in the regulation of vascular processes, such as coagulation, inflammation, and angiogenesis.
Proteins with EC restricted expression tend to be critical for such cell type specific functions. In a
previously published bicinformatic based analysis of ENAseq, we predicted that KANK3, which
encodes an uncharacterised protein, had body wide enriched expression in human EC. Here, we
verify that KANK3 is a body-wide endothelial-enriched protein at the transcript and protein level.
We characterise its subcellular distribution in primary EC and uncover that its expression is
strongly induced in response to shear stress exposure. When KANKS protein was depleted using
siRNA, the distribution of the EC intermediate filament vimentin was disrupted in both static and
shear stress exposed cultures, indicating a direct or indirect interaction between these proteins.
Correspondingly, in a wound healing model, depletion of KANK3 increased EC migratory capacity,
but did not increase proliferative capacity. Furthermore, we observed an increase in the
expression of the pro-coagulant protein tissue factor in KANKS depleted EC, indicating that it could

have further regulatory roles, beyond those associated with cytoskeletal modification and motility.
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INTRODUCTION

The vascular endothelium lines the inside of all blood and lymphatic vessels and has numerous
functions, including in the regulation of inflammation, haemostasis, and blood pressure [1, 2].
Proteins specifically expressed in endothelial cells (EC) tend to have central roles in cell
specialised functions, e.g., cadherin-5 (CDH5), claudin-5 (CLDN5) and endothelial cell-selective
adhesion molecule (ESAM), play established roles in EC integrity, polarity and shape, vessel
permeability and signalling [3-6], and the vascular endothelial growth factor receptor 1 (FLT1) and
2 (KDR) are central to angiogenesis [7]. In earlier work, based on bioinformatic analysis of bulk
RNAseq, we predicted that the gene encoding the uncharacterised protein KN Motif And Ankyrin
Repeat Domains 3 (KANK3) had body wide enriched expression in human EC [8].

The KANK family consist of four members (KANK 1-4), which arose through gene duplication and
diversification, with strong conservation across the evolutionary tree [9, 10]. They are defined by
their unique structure, consisting of a variable number of coiled-coil motifs in the central N-terminal
regions, five ankyrin repeats in the C-terminal region and a talin-binding KN-motif domain at the
N-terminus [10, 11]. The interaction between KANK1 and talin regulates the recruitment of
complexes that stabilize cortical microtubules to focal adhesions [11]. KANK2 promotes the
creation of central adhesions by triggering talin activation and is responsible for the reduction of
force transduction across integrins [12]. KANK1 and 2 are involved in cell migration and adhesion,
via interactions with kinesin family member 21A (KIF21A), and the regulation of its activity through
its coiled-coil domain [10, 13].

The cytoskeleton and focal adhesions are crucial for various EC specialised functions, such as
the maintenance of the structural integrity required to withstand the mechanical forces exerted by
the blood flow [14], to control movement and migration during processes such as angiogenesis
[15], to stabilise junctional connections and control vascular permeability [16] and in processes

such as coagulation [17] and inflammation [18].
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While KANK1 and KANK2 are well relatively studied, KANKS is comparably poorly described;
currently, it has no reported function in a vascular context in vertebrates. A homologue of KANK3
has been described in vascular EC in of zebrafish embryos, where it was essential for embryonic
development and survival, with a potential role in cell adhesion and tissue integrity [19, 20]. Over
expression of KANKS in NIH3T3 cells revealed a possible role in actin stress fibre formation [21],
and other studies have indicated a role in the regulation of cell migration in hepatocellular
carcinoma [22] and lung adenocarcinoma [23].

In this study, we verify that KANK3 is a body-wide endothelial-enriched protein. We characterise
its subcellular distribution in primary EC, and report that it is shear stress-induced gene. We show
that KANK3 depletion modifies the subcellular distribution of the EC intermediate filament vimentin
and increases EC motility in a gap closing assay. We observed an increase in the expression of
the pro-coagulant protein tissue factor in KANK3 depleted EC, particularly under inflammatory
conditions, together with an increased capacity to induce thrombin generation in plasma. Thus,

we demonstrate a role for the EC enriched protein KANKS in EC specialised functions.
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RESULTS

KANK3 IS AN ENDOTHELIAL ENRICHED PROTEIN IN HUMAN

KANK3 mRNA expression correlates with endothelial cell genes in human tissues

Proteins expressed specifically by EC tend to be critical for EC specialised functions. Previously,
using mixed tissue bulk RNAseq, we found that KANK3 expression was strongly correlated with
EC marker genes, indicating EC specificity [8]. More recently, using a similar approach, we profiled
gene enrichment signatures for cell types in 15 individual tissue datasets [24-27] (data is displayed

on the Human Protein Atlas [www.proteinatlas.org/humanproteome/tissue+cell+type]). Here,

KANK3 was predicted to be EC enriched in multiple vascular beds (Figure S1 A.i), whilst other
KANK family members, KANK1, 2 or 4 were not (Figure S1 B-D.i).

To further explore this potential relationship using a KANK3-centric approach in an expanded
dataset, we retrieved bulk RNAseq datasets for 36 human tissue types from Genotype-Tissue

Expression (GTEx) V8 (www.gtexportal.org)[28] (mean samples/tissue =377, range 85-803)

(Table S1A). For each dataset, we calculated Pearson correlation coefficient values between
KANK3 and all other mapped genes (Table S1B). The top 100 most highly correlating genes with
KANKS3 (all correlation coefficient [corr.] >0.5, p-value<0.0001) in each tissue type (Table S1C)
were cross-compared, to identify 67 genes that were highly correlated with KANK3 in 10 or more
tissue types (Figure 1A) (Table S1D). These genes included EGFL7 (32 tissues; mean corr.
=0.76), ROBO4 (29 tissues; mean corr. =0.74), ESAM (29 tissues; mean corr. =0.76) and CDH5
(29 tissues; mean corr. =0.72); all of which have key roles in EC specific functions [29-32].

Gene ontology (GO) analysis [33] was performed to identify over represented groups within this
list of 67 genes (Figure 1B and Table S1E). Over-represented terms were related to vascular or
EC function and included “vasculature development” (p=1.1 x 10'%), "angiogenesis” (p=1.8 x 10'")
and “establishment of endothelial barrier (p=3.2 x 107) (Figure 1 B) (Table S1E). As high
correlation values between genes within tissue can indicate co-expression in a common cell-type,
these results are consistent with our prediction that KANK3 is an EC enriched gene.

5
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Figure 1. KANK3 is an endothelial cell enriched protein in the human. RNAseq data from 36 human

tissue types was sourced from Genotype-Tissue Expression (www.gtexportal.org) [28]. Pearson correlation

coefficient values between KANK3 and all other mapped genes were calculated for each. (A) Genes most
frequently among the top 100 most highly KANK3 correlated genes (all >0.50, p<0.0001) across tissue types
(B) Gene Ontology over-represented terms associated with genes amang the top 100 most highly KANK3
correlated genes in 210 tissues. (C) Data was downloaded from Tabula Sapiens [34] and used to generate
Uniform manifold approximation and projection (UMAP) visualizations for KANK3 expression in human: (i)
liver, (ii) skin, (iii) fat, (iv) prostate, (v) mammary gland, (vi) pancreas, (vii) muscle, (viii) lung, (ix) large
intestine and (x) kidney. (D) Protein profiling for KANK3 across human tissue types. (D) Immortalised human
cell lines in the panel tested that had with the highest expression of KANK3, generated as part of the Human

Protein Atlas project (ref).
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KANKS3 endothelial enriched expression can be verified by scRNAseq and protein profiling
Single cell RNAseq data from the Tabula Sapiens [34] was used to explore expression profiles of
KANKS in skin, liver, fat, prostate, mammary gland, pancreas, muscle, lung, large intestine, and
kidney (Figure 1 GC.i-x). In all cases, KANK3 was predominantly expressed within clusters
annotated as EC. Low levels of KANK3 were detected in myofibroblasts in fat (Figure S1 C.iii),
and pericytes in muscle and lung (Figure 1C.vii and viii). There was little or no KANK3 expression
in tissue specific cell types, e.g., hepatocytes in the liver (Figure 1 C.i) or pneumocytes in the lung
(Figure 1 C.viii). Protein profiling confirmed EC expression of KANK3 in multiple tissues, including
colon, kidney, liver, breast, adipose, cortex, prostate, skeletal muscle, thyroid (Figure 1D) and
others (Figure S1B) [35].

KANK3 expression is enriched in cell lines of endothelial origin

To determine if KANK3 expression is maintained in cells of EC origin following immortalisation,
we examined its expression in RNA-sequencing data from different 41 cell lines from the HPA
[35]. KANK3was not detectable, or detectable only at very low levels (n'TPM < 0.5) in 30/41 (73%)
of the cell lines tested. The highest expression was detected in human umbilical vein endothelial
cells (HUVEC), HUVEC/TERT2 cells (7.2 nTPM), followed by the mesenchymal cell line U20S
cells (1.8 nTPM) (Figure 1E) (data for all shown in Figure S1). In comparison, other members of
the KANK family (KANK1, 2 and 4), which we have previously predicted to lack EC specificity
across human tissue types [36], show no EC specificity in immortalised cell lines (Figure S2) or in
scRNAseq data from Tabula Sapiens (Figure S2). Together, these data support our prediction [8,

24, 27, 36] that KANKS3, but not KANK1, KANKZ2 or KANK4, is a human endothelial enriched gene.
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Figure 2. Validation of tools for the study of KANK3 function. (A) Detection of KANK3 splice variants
by RNAseq in: (i) primary HUVEC and (ii) unfractionated human tissue from Genotype-Tissue Expression

(www.gtexportal.org). HEK293 cells were untreated or transfected with KANK3-eGFP expressing plasmids

and used to generate (B) cell lysates for Western Blot analysis using primary antibodies: (i) HPA051153, a
rabbit polyclonal antibody raised to target KANKS, or (ii) an anti-eGFP antibody, or (C) immunocytochemistry
staining to show signals from eGFP (yellow), HPA051153 (Magenta), Actin (Phalloidin-647; yellow) or DAPI
(Nuclear staining, Gray), in (i) KANKS transfected or (ii) untreated cells. HUVEC were transfected with
siRNAs targeting KANK3 and cultured for between 48 and 168h before cell lysis and (E) measurement of
KANK3 mRNA expression using real time qPCR and (F) Western blot analysis using primary antibody
HPA051153 and an anti-GAPDH as loading control, or (G) immunocytochemistry using HPA051153
(Magenta), and DAPI (Nuclear staining, grey) (72 hours post transfection). Allimmunocytochemistry images

were captured using captured using structured illumination microscopy (SIM).
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GENERATION AND VERIFICATION OF TOOLS FOR THE STUDY OF KANK3

The search term KANKS returns 11 hits on PubMed (https:/pubmed.ncbi.nim.nih.gov/), confirming

this protein is not well studied. One reason why under studied proteins are unattractive targets for
functional analysis can be a lack, or unknown reliability, of research tools with which to investigate
them [37, 38]. Thus, we tested our model system and generated or purchased reagents prior to
study of KANK3 functional role in EC.

KANKaS3 splice variant expression profile in HUVEC reflects that found in vivo

Having confirmed that KANK3 is an EC enriched protein across tissue types, we went on to verify
its expression profile in freshly isolated primary HUVEC, which we planned to use as an
experimental model. RNA sequencing of in vitro cultured HUVEC (n=5) revealed that KANK3 was
reasonably highly expressed (mean 26.37 TPM * std dev 2.25). Other KANK family members
were expressed at similar levels: KANKT (39.5 TPM = std dev 3.31), KANKZ (27.3 TPM = std dev
2.62), with the exception of KANK4, which was very lowly expressed (0.04 TPM + std dev 0.03).
KANKS3 splice variant ENST00000330915 was the most common isoform in HUVEC (61.6%;
length: 821 aa), whilst the other variants were expressed at lower levels: ENST00000593331
(20.3%; non-protein coding), ENST00000595639 (11.9%; length: 146 aa) and ENST00000593649
(6.2%; length: 840 aa) (Figure 2A.i). Data from bulk sequencing of unfractionated human tissues
in GTEx revealed that, similar to HUVEC, ENST00000330915 was the most highly expressed
KANK3 splice variant, followed by the non-protein coding variant ENST00000593331 (Figure 2
A.ii). The transcript ENST00000610351.1 in the GTEx data (Figure 1 A.ii) was retired after
ENSEMBL version 104 and is not part of the current ENSEMBL gene set (V110), which our
sequencing data was mapped against (hence its absence from Figure 1 A.i). It can be assumed,
based on the verification of KANK3 as an endothelial enriched protein (Figure 1), that the
expression site of the KANK3 isoforms within GTEXx tissues is largely EC restricted. Thus, the

relative expression profile of KANK3 variants in HUVEC reflects that found in vivo.
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Figure 3: KANK3 is a shear stress regulated protein. HUVEC were cultured under (A) static or (B) shear
stress exposed conditions (4 or 40 dyn/cm?) for 48 hours after they were (i) untreated, or transfected with
(i) scrambled control siRNA, (iii) siRNA1-KANK3 or (iv) siRNA2-KANK3. Immuno-cytochemistry was
performed using primary antibodies targeting KANK3 (magenta), F-actin (yellow) or vimentin (VIM; cyan).
(C) Untreated HUVEC from 3 donors were cultured under static or shear stress exposed conditions (4
dyn/cm?) for 48 hours ("flow”") before analysis of KANK3 protein expression by Western blot, with GAPDH
as a loading control. (D) Expression of (i) KANK3 mRNA in HUVEC following static or shear stress exposure

or (ii) VIMin HUVEC following transfection with or without siRNAs targeting KANK3. ** p<0.001, * p<0.01
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Verification of KANK3 antibody specificity and siRNA knockdown efficiency

Antibody reliability can be a problematic issue and a major source of research waste; it has been
suggested that up to half of all commercially available antibodies have significant issues with
sensitivity and specificity [39, 40]. Furthermore, the availability and testing of such reagents
targeting understudied proteins is limited [41] and thus, the validation of antibody reagents is
important.

We obtained an in house generated rabbit polyclonal antibody targeting KANK3 (HPA051153)
[35]. To verify its binding specificity, we took a twofold approach. Firstly, we designed a plasmid
vector coding for KANK3 with an eGFP tag, based on the sequence of the most common KANK3
isoform (ENST00000330915). This was used to express recombinant KANK3 in HEK293 cells,
which do not express endogenous KANK3. Western Blot analysis of cell lysates with antibody
HPA051153 detected bands corresponding to the size of the KANKS protein (130kDA) (Figure 2
B.i), and staining with an anti-eGFP antibody gave similar results to HPA051153, over a range of
dilutions (Figure 2B.ii).

Immunofluorescence staining of KANK3-eGFP transfected HEK293 cells with antibody
HPA051153 (Figure 2 C.i) showed selective binding (pink) to cells expressing recombinant
KANKS3-eGFP (yellow) (Figure 1 C.i, large panel). HPA051153 did not bind KANK3-eGFP negative
HEK293 cells within the transfected culture (Figure 1C.i, large panel), or to untreated HEK293
cells (Figure 2 C.ii). Secondly, to test antibody HPA051153 specificity for HUVEC KANK3, we
used siRNA to deplete the protein. Two different siRNAs (siRNA1-KANKS3 and siRNA2-KANKS)
effectively depleted HUVEC KANK3 mRNA expression over an extended time course (fold change
at 48h [mean + std dev]: siRNA1 0.22 + 0.006, siRNA2 0.21 + 0.086) (Figure 2E).
Correspondingly, subsequent Western Blot analysis with HPA051153 showed that bands of a size
corresponding to KANK3 protein (130kDA) were smaller, or absent, in cell lysates from siRNA
transfected HUVEC (Figure 2F); an inhibition that was maintained over several days. Having
verified efficient KANK3 knockdown in HUVEC using siRNA, we performed immunofluorescence

14

203



Paper I

staining using HPA051153 as a primary antibody (Figure 2G). HPA051153 showed clear punctate
staining in untreated HUVEC (Figure 2 G.i), which was absent when cells were transfected with
siRNA targeting KANK3 (Figure 2 G.ii). Thus, we can have high confidence that HPA051153
selectively binds KANK3 protein in both Western Blot and immunofluorescence staining
applications. Furthermore, HUVEC appear to be a suitable model system for the functional
investigation of KANK3, and siRNA-mediated depletion induced a robust knockdown of KANK3
protein for several days after transfection.

KANKS3 localizes within the cytoplasm and accumulates in cell-cell interaction sites

A recent study found KANKS to be expressed at the plasma membrane of mouse EC in dermal
and lymphatic vessels (S. S. Guo et al. 2021), with more diffuse staining in kidney, lung brain and
oesophagus EC. Immunofluorescence staining of native KANK3 expression in endothelial cells
such as HUVEC and mouse LSEC however, shows punctate distribution of KANK3 in the
cytoplasm and accumulation in cell-cell interaction sites (FIGURE S2B) as well as partial
colocalization to the cytoskeleton (Figure S2A).

Expression of KANKS is enhanced under flow versus static conditions

Whilst KANKS is poorly studied in a functional context, it shares structural homology with other
members of the KANK family, which have been shown to have a role in cytoskeletal organisation,
and focal adhesion formation [21, 42]. As such processes are key in the EC response to shear
stress [14, 43], we investigated KANKS3 expression and distribution in this context.

Untreated HUVEC, or those transfected with siRNA1-KANKS3, siRNA2-KANK3 or a scrambled
siRNA control were cultured under static or shear stress exposed conditions (4 or 40 dyne/cm?)
for 48 hours. Cell were fixed and stained for KANK3, vimentin - the major endothelial intermediate
filament (IF) that is a key regulator of focal contact size and cell-matrix adhesions in EC subjected
to shear stress [44, 45] and the actin cytoskeleton which has a vital role in cell-cell adhesions [46].
Under static conditions, in both untreated and control HUVEC, KANK3 had a diffuse punctate
distribution (Figure 3 A.i and ii, magenta arrows) and its expression was markedly up regulated
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following shear stress exposure (Figure 3 B.i and ii, magenta arrows). Staining patterns revealed
distinct areas of dense KANK3 expression. Western blotting confirmed that a significant up
regulation of KANK3 protein was induced in HUVEC that had been exposed to shear stress, in 3
biological replicates (Figure 3C). Measurement of KANK3 mRNA showed significantly elevated
levels following exposure to shear stress of both 4 and 40 dyne/cm? (fold change vs. static + std
dev: 4 dyne/cm?2 6.15 £ 5.6 p=0.004, 40 dyne/cm2 9.5 + 8.1 p=0.002) (Figure 3D).

Under static conditions, in both untreated and control HUVEC, vimentin was located to the
endogenous IF network (Figure 3 A.i and ii, turquoise arrows) with notable directional redistribution
following shear stress exposure (Figure 3 B.i and ii, turquoise arrows), as previously described
[47]. In KANK3 depleted HUVEC, cultured under static conditions, vimentin expression was
markedly reduced compared to untreated or control HUVEC (Figure 3 A.iii and iv, turquoise
arrows, Figure S2C & D). Shear stress exposure failed to induce a recovery of vimentin expression
or a more typical redistribution pattern in KANK3 depleted cells (Figure 3 B.iii and iv, turquoise
arrows).

In EC cultured under static conditions, VIM mRNA expression was lower in siRNA1-KANK3
treated HUVEC, compared to untreated or control HUVEC, but not in siRNA2-KANK3 treated
HUVEC (fold change control EC vs. siRNA1-KANK3 + std dev 0.51 £ 0.27 p=0.03, siRNA2-KANK3
0.74 + 0.25 p=0.10) (Figure 3 D.ii). Thus, the effects of EC KANK3 depletion on vimentin
expression/cellular distribution is unlikely to be driven by changes at the transcriptional level. Actin
was diffusely expressed under static conditions, in both untreated and control HUVEC (Figure 3
A.i and ii, yellow arrows). Actin was redistributed to align with flow direction following shear stress
exposure, as previously described [48] (Figure 3 B.i and ii, yellow arrows). Unlike vimentin, actin
redistribution in response to shear stress was not markedly modified by KANK3 depletion (Figure
3 B.iii and iv, yellow arrows).

Thus, our results show that KANKS3 levels are increased in response to EC and that KANK3 has
a previously unreported direct or indirect link to vimentin distribution.
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Figure 4. KANK3 depletion increases EC migration in vitro. HUVEC were cultured to
confluence in (A) standard or (B) low serum (0.5%) culture medium, following transfection with
scrambled control siBNA, siBNA1-KANK3 or siRNA2-KANK3. A ‘'wound™ was created in the
monolayer, using a pipette tip, and (i) gap closure was monitored over 72 hours. (ii) Representative
phase contrast images and (iii) corresponding data points from individual experiments, from the

36-hour time point. *** p<0.001, ** p<0.01, *p<0.05
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KANKS3 has a role in endothelial cell migration

KANKS3 has not been studied in the context of EC motility, but it has been reported to have a role
in the regulation of cell motility in cancer cells [22, 23]. Furthermore, we observed that KANK3
depletion modified EC vimentin distribution, a protein with a key role in EC migration[49].
Therefore, we analysed the influence of KANK3 depletion in an EC gap closing assay. EC were
transfected with one of 2 siRNAs targeting KANKS, or a scrambled siRNA control and cultured to
confluence before a gap was created in the monolayer. Gap closure was monitored in real time,
using phase contrast microscopy, and the wound area was measured at 24h, 36h, 48h and 72h.
KANKS3 siBRNA treated EC tended to close the gap faster than those treated with the scrambled
control EC (p for trend C vs siRNA 1 p for trend 0.0142, C vs siRNA 2 p for trend: 0.0505) (Figure
4 A.i). Representative phase contrast images show the gap size at 0 and 36 hours (Figure 4 A.ii),
with corresponding data points for replicate experiments (Figure 4 A.iii) (Change in gap closure
normalised to control [%] * std dev: siRNA1-KANK3: +30.9 + 24.9, p=0.004, siRNA2-KANKS:
+36.0 £ 24.6, p=0.028). Accelerated gap closure could be either due to increased migratory
capacity of cells in which KANK3 has been depleted, or an increase in cell proliferation.

To assess the relative role of each, we performed the same experiment in low serum culture
medium as we have previously showed that proliferation is inhibited in this condition [50]. As
expected, closure of the gap was inhibited in low serum medium (Figure 2 A.ii) (% of gap remaining
[control HUVEC] standard vs. low serum * std dev: 36h 57.1 £16.8 vs. 75.9 £ 7.5and 72h 10.3 =
11.8 vs. 50.3 + 13.7).

As observed for standard medium, KANKS3 siRNA treated EC tended to close the gap faster than
control EC (p for trend C vs siRNA 1 p for trend 0.0307, C vs siRNA 2 p for trend: 0.0402) (Figure
4 B.i), but no gap closed completely within the 72-hour time frame. Representative phase contrast
images of the gap size at 0 and 36 hours (Figure 4 B.ii) and corresponding data points for replicate
experiments (Figure 4B A.iii) (Change in gap closure normalised to control [%] £ std dev: siRNA1-
KANKS: 23.3 £ 21.0, p=0.018, siRNA2-KANK3: +23.5 + 6.0, p=0.0004), showed similar results as
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those obtained in standard culture medium. Furthermore, measurement of PCNA mRNA revealed
no difference in expression between control of KANK3 depleted cells (fold change control EC vs.
siRNA1-KANK3 £ std dev 0.71 £ 0.11, siRNA2-KANK3 1.08 £ 0.07). Therefore, the increased rate
of gap closing observed in KANK3 depleted HUVEC appears to be primarily driven by an

increased migratory capacity, as opposed to an increased rate of proliferation.
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Figure 5: Effects of endothelial KANK3 knockdown on coagulation related proteins. HUVEC
were untreated, or transfected with scrambled control siRNA, siBNA1-KANK3 or siRNA2- KANKS.
Measurement of: (A) PLAT or (B) (i) F3 mRNA expression by gPCR, or (ii) cell surface tissue
factor protein by flow cytometry. HUVEC were treated with or without IL1p (10 ng/ml) before
measurement of MRNA encoding for (C) F3, or (D) the cytokine responsive adhesion molecules
(i) ICAM1, (ii) VCAMT, (iii) SELE. (E) Calibrated automated thrombogram (CAT) assay was used
to assess the thrombin generation potential of HUVEC treated with TNF (10 ng/ml) for 24 hours
with or without pre-incubation with a function blocking anti-tissue factor antibody (HTF1). (F) Bar
plots show the (i) total endogenous thrombin potential (i) maximum endogenous thrombin
potential (iii) lag time until the beginning of thrombin production (iv) time until peak thrombin

production. *** p<0.001, ** p<0.01, *p<0.05 vs. scrambled control.
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KANKS3 effects tissue factor and tissue type plasminogen activator expression

As other members of the KANK family have potential functions beyond cytoskeletal regulation,
e.g. KANK4 can regulate VEGFR2 signalling via its interaction with talin [51], we screened
untreated, scrambled siRNA transfected and KANK3 depleted EC for expression profiles of the
following gene panels, which are related to EC specialised functions: (i) Coagulation related.
Factor 8 (F8), protein C receptor (PROCR), protein S (PRQOS), tissue factor (F3), tissue factor
pathway inhibitor (TFPI), tissue plasminogen activator (PLAT) and von Willebrand Factor (VWF)
(i) Inflammation related: intracellular adhesion molecule 1 (/ICAMT), vascular cell adhesion
molecule 1 (VCAMT), E-selectin (SELE) and (iii) angiogenesis related. angiopoietin-1 receptor
(TEK), angiopoietin-2 (ANGPT2), vascular endothelial growth factor A (VEGFA) and vascular
endothelial growth factor receptor 1 (FLT1), and kinase insert domain receptor (KDR, also known
as vascular endothelial growth factor receptor 2).

Two genes in the coagulation related panel, PLAT and F3, were expressed at higher levels in both
siRNA1-KANK3 and siRNA2-KANKS3 treated EC, compared to the scrambled control (mean fold
change £ stddev F3:4.1 £2.8, PLAT: 3.1 £ 1.9, both p<0.05) (Figure 5 A and B.i). No other genes
tested were consistently elevated, or reduced, in KANK3 depleted EC (Figure S3). As the F3 gene
encodes for the protein tissue factor, which is the key initiator of the extrinsic coagulation cascade,
we investigated its relationship with KANK3 further. In line with the changes observed at the
transcript level, flow cytometry confirmed an increase in the cell surface expression of tissue factor
(TF) protein on KANK3 depleted HUVEC, compared to the scrambled control (Figure 5 B.ii)
(scrambled control: MFI 29489; 6.66% cells TF positive, sSIRNA1-KANK3: MF| 47548; 27.3% cells
TF positive, siRNAZ2-KANK3: MF1 93347; 62.3% cells TF positive).

F3 expression is relatively low on resting EC, but strong induced by inflammatory cytokines [52],
so we tested if KANK3 depletion would modify this response. HUVEC transfected with scrambled

siRNA, siRNA1-KANKS3, or siRNA2-KANK3 were treated with the inflammatory cytokine IL-13 for
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24h. IL-1pB strongly induced F3 mRNA expression in scrambled siRNA HUVEC (scrambled siRNA
vs. scrambled siRNA +IL-13 [mean fold change + std dev] 22.4 + 18.7), an increase that was
exacerbated further by KANKS3 depletion (scrambled siRNA +IL-1B vs. siRNA1-KANK3+IL-1[3
[mean fold change * std dev]: 2.1 £ 1.0, siRNA2-KANK3+IL-1B: 3.2 £ 1.6) (Figure 5C).

To test if this was a consequence of a general enhancement of IL-1B signalling, we measured the
expression of EC adhesion molecules. As expected, all were induced by IL-1p treatment (Figure
5 D i-iii), but we did not observe any further increase in expression in KANK3 depleted EC (Figure
5 D i-iii). Thus, KANKS depletion does not appear to enhance cytokine signalling per se.

F3 is also induced by the inflammatory cytokine TNF, which has many signalling pathways in
common with IL-1B [53]. To test if there was a functional consequence of this enhanced expression
of F3in KANK depleted EC, thrombin generation potential was measured using the calibrated
automated thrombograph (CAT) (Figure 5E). Relative to scrambled siRNA control, the depletion
of KANKS resulted in enhanced thrombin generation, as shown by a representative curve (Figure
SE). Whilst no statistically significant difference in endogenous thrombin potential (ETP) was
observed (Figure 5 D.i), response time (scrambled siRNA vs. siRNA1-KANKS3 [difference [min;%],
+ std dev]: -1.5 min, -52.2 %), time to peak (scrambled siRNA vs. siRNA1-KANK3 [difference
[min;%], £ std dev]: -1.5 min, -52.2 % -3.3min; -42.2 %), and peak thrombin generation levels
(scrambled siRNA vs. siRNA1-KANKS3 [difference [levels; %], + std dev]: +134.04; +105.1%) were
all enhanced in KANK3 depleted EC (Figure 5 F.i-iv). Similar results were observed with siRNA2-
KANK3 (Figure S3 B and C). When KANK3 depleted EC were pre-treated with tissue factor
function blocking antibodies, these effects were largely abolished (Figure 5 E and F ii-vi),

consistent with tissue factor being the driver behind the increased thrombin generation.
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DISCUSSION

Previously, we generated the first prediction that KANK3 was an EC enriched protein in the human
[8]. Here we confirm that KANK3 has a body wide EC enrichment at both the transcript and protein
level. Recent work in mice also showed KANK3 expression exclusively in the vasculature, whilst
KANK1 was expressed at the basal side of epithelial cells in various tissues, and KANK2 was
observed predominantly at the plasma membrane and/or in the cytoplasm of mesenchymal cells
[54]. Thus, the strictly restricted cell type expression profile of KANK3 is unique among the KANK
family, the other members of which are also expressed more broadly in the human [26]. The EC
type specific profile of KANK3 could underlie the lack of studies on its function, as indeed a several
studies regarding KANKS primarily center on cancer and overlook EC types in experimental design
[9, 22, 23, 55], presumably due to the fact that EC are a minority cell type within any given tissue
[8]- In the absence of understanding the likely context (cell type) in which a protein functions, it
can be challenging to functionally characterise it. Understudied proteins can be unattractive
targets for functional analysis due to a lack, or unknown reliability, of research tools with which to
investigate them [37, 38]. Here, we validated our in house generated anti-KANKS3 antibody, using
both over expression and knockdown systems, as antibody specificity and reliability can be a
problematic issue [39, 40, 56]. A study from 2008 showed that this problem is systemic. Of 6000
tested antibodies, fewer than 3000 were able to bind their target correctly. Due to the increased
use of commercial antibodies, without validation, this might mean that an entire project could be
based on artifacts. Due to the widespread utilisation of research antibodies, this is potentially a
billion-dollar problem, with approximately 1.7 billion USD that have been wasted to antibodies in
2019. Hence, validation of any antibody used in a project is an essential step in research [57, 58].
The KANK family have a unique shared structure, consisting of a small N-terminal motif (“KN-

motif”), C-terminal coiled-coil domains and ankyrin repeats (Zhu et al. 2008; Kakinuma et al. 2009).
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The protein structure of KANK3 would indicate a function within cytoskeletal organization and in
focal adhesions, due to the presence of a talin binding domain. It consists of a liprin binding domain
and a KIF21A binding domain, which links them to the cytoskeleton [11, 59]. Immunofluorescence
staining of endogenous KANK3 expression in EC, including HUVEC and mouse LSEC, reveals a
distinctive punctate pattern within the cytoplasm. Notably, there is an accumulation of KANKS at
sites of cell-cell interactions in murine LSEC. This supports the role of KANK3 being linked to cell
adhesions and to the basement membrane, which are important for integrity of the endothelial
layer under stressful conditions such as flow or inflammation [60, 61] Crosstalk between focal
adhesion proteins and cell junction proteins has been previously described in the regulation of
endothelial barrier function [62]. Considering the critical role of EC barrier function and the
established involvement of the cytoskeleton and focal adhesions in the maintenance of cellular
junctions [16], it could be speculated that KANK3 has a role in anchoring EC to the extracellular
matrix and neighbouring cells. Furthermore, KANK3 might play a role in cell junction processes in
some vascular beds.

EC shear forces have been shown to modulate various biochemical processes, in addition to
cellular morphology and reorganisation of the cytoskeleton [63]. Shear stress has previously been
shown to induce focal assembly, recruit signalling complexes to FA, and induce redistributions in
stress fibres in EC [14]. We observe a significant upregulation of KANK3 gene and protein
expression following EC exposure to shear stress. Similar mechanoregulation has been previously
reported for different focal adhesion proteins through vinculin-vinculin regulation [64]. Laminar
shear stress has been shown to induce integrin expression [65], a-actinin recruitment [66] and to
mediate redistribution of intracellular stress fibers. Consequently, under the influence of this shear
stress, there is a force-dependent alteration in the dynamics of FAs due to enhancement in actin
fibers. The enhancement in actin fibers results in the sustenance or growth of the FAs connected

to them [67]. FA have been shown to be involved in matrix-adhesion and mechanosensing in EC
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[14], and vascular resistance in SMC [68]. Due to its vascular specificity, one could speculate, that
KANKS is involved in similar vascular functions.

We also observed that KANK3 depletion had a marked effect on the distribution of vimentin. This
did not appear to be driven by a modification in VIM transcription, and could therefore be driven
by a direct or indirect KANK3-vimentin protein-protein interaction, such as is observed with other
cytoskeletal components, e.g., actin and myosin [69] or intermediate filaments and microtubules
[70]. Vimentin is a major intermediate filament in EC [44], which has roles in cell migration and
polarity, cell structure and integrity, response to mechanical stress and EC differentiation [71-74]
and has been described as integral to cell adhesion and EC sprouting [44]. Although there is a
lack of research regarding the interactions between KANK proteins and vimentin, it's worth noting
that vimentin plays a role in cell migration. Previous research has indicated its involvement in
determining cellular polarity, regulating the formation of cell contacts, and organizing and
transporting signalling proteins that contribute to cell motility [75]. Vimentin increases cell stiffness
and promotes cell migration when cells are densely cultured. However, its impact on the migration
of cells plated sparsely is minimal or negligible [76].

Here we show that KANK3 depletion increases EC migratory capacity. Previously, talin has been
identified as a regulator of cell motility [77] and the stability of talin rods has been shown to control
cell migration [78]. It could be reasonably assumed that KANK3 migratory control is driven through
KANKS3-talin interactions. Although to our knowledge, KANK3 has not been studied in the context
of EC motility, previous reports showed it had a role in the regulation of oxygen dependent
suppression of cell motility in hepatocellular carcinoma cells [22], and the inhibition of invasion
and migration of lung adenocarcinoma [23] and was therefore considered a valuable target in
cancer research. The increase of cell motility in KANKS depleted cells could suggest a protective
effect against shear forces and increase in matrix adhesion, similar to the contribution of vimentin

networks to the stiffening of cells, which allows them to withstand mechanical forces [79].
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Focal adhesions play a pivotal role in relaying mechanical forces and exiernal signals to
intracellular pathways. Disturbed multidirectional shear stress of the vasculature is recognised for
its role in triggering the activation of atherogenic and thrombogenic genes in EC and SMC [80].
Hence, it is plausible that KANK3 mediated modifications in the cytoskeleton might initiate
signalling pathways linked to the regulation of genes associated with coagulation. FA activation in
vascular smooth muscle cells regulates arterial stiffness and procoagulant properties of the vessel
wall. Their findings revealed a decrease in thrombin generation potential of vascular smooth
muscle cells (VSMCs) as the matrix stiffness increases On a rigid matrix, the presence of avb3
integrin within the FA complex diminishes the accessibility of binding sites for prothrombin. As a
consequence, this leads to a reduction in the generation of thrombin on VSMCs. Conversely, it
could be hypothesized that this outcome is reversed when dealing with a less rigid matrix [81].
This connection underscores the intricate interplay between FA signalling, vascular mechanics,
and thrombotic potential.

In summary, our study provides insight into the function of KANKS in the vascular compartment.
Our findings are consistent with it having EC specific functions, in line with its enriched expression

profile in this cell type.
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METHODS

Tissue profiling

Protein profiling was performed as part of the Human Protein Atlas (HPA) project. Tissue sections
from breast, adipose tissue, cortex, thyroid gland, colon, kidney, liver, prostate, epididymis,
duodenum, bronchus, testis, endometrium, cervix, appendix, stomach, oesophagus, lung,
pancreas and ovary were generated and stained, as previously described (Pontén, Jirstrém, and
Uhlen 2008; Uhlen et al. 2015). Briefly, formalin fixed, and paraffin embedded tissue samples were
sectioned, de-paraffinized in xylene, hydrated in graded alcohols and blocked for endogenous
peroxidase in 0.3% hydrogen peroxide diluted in 95% ethanol. For antigen retrieval, a Decloaking
chamber® (Biocare Medical, CA) was used. Slides were boiled in Citrate buffer®, pH6 (Lab Vision,
CA). Primary antibody against KANK3 (HPA051153) and a dextran polymer visualization system
(UltraVision LP HRP polymer®, Lab Vision) were incubated for 30 min each at room temperature
and slides were developed for 10 min using Diaminobenzidine (Lab Vision) as the chromogen.
Slides were counterstained in Mayers haematoxylin (Histolab) and scanned using Scanscope XT
(Aperio).

Isolation and culture of human umbilical vein endothelial cells

Ethical approval for endothelial cell isolation and subsequent experimentation was granted by
Regionala etikprévningsndmnden i Stockholm (diarienummer 2015/1294-31/2). Human umbilical
vein endothelial cells (HUVEC) were isolated from human umbilical cords, collected from
Karolinska Hospital (Stockholm, Sweden) and from the University Hospital of Northern Norway
(UNN; Tromsg, Norway), as previously described (Cooke et al. 1993). HUVEC were cultured in
Medium M199, supplemented with 10% fetal bovine serum (FBS) (or 0.5% FBS in some
experiments), 10ml/l Penicillin-Streptomycin, 2.5mg/l Amphotericin B (all ThermoFisher, Gibco),

1mg/l Hydrocortisone 1ug/l and human Epidermal Growth Factor (hREGF) (both Merck). In some
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experiments, EC were cultured under laminar shear stress (4dyn or 40dyn) for 48 hours in flow
chamber slides (u-slide VI 0.4, Ibidi), integrated into an Ibidi flow pump system.

HEK293 cells were obtained in frozen vials from ATCC (HEK-293 CRL-1573) and cultured in
DMEM Cell culture medium supplemented with 10ml/l Penicillin-Streptomycin and 10% fetal
bovine serum (FBS).

Mouse liver sinusoidal endothelial cells (MLSEC) were gifted from Vascular Biology Research
Group (VBRG) at UiT The Arctic University of Norway, isolated and cultured in RPMI 1640
supplemented with L-Glutamine (300mg/l), 10ml/l Penicillin-Streptomycin, as previously described
[82].

siRNA transfection

HUVECs and HEK239 cells were transfected with siRNA sequences targeting KANKS3 (silencer
select siRNA s230059, s230061, ThermoFisher) or Silencer Select negative control siRNA
(ThermoFisher: 4390843). Transfection was performed using Lipofectamine RNAIMAX
transfection reagent (Invitrogen), according to manufacturer instructions, at 60-80% confluency in
Opti-MEM reduced serum medium (ThermoFisher, Gibco) without additives for 4h. Medium was
changed to standard cell culture medium. Knockdown efficiency was accessed after 48h by gPCR,
Western blot, or immunofluorescence staining.

Recombinant KANK3-eGFP protein expression

Transient transfection of vector coding for KANK3_eGFP (GenScript) into HEK293 (ATCC: CRL-
3216) cells was done using Lipofectamine 3000 (ThermofisherScientific), according to the
manufacturer’s instructions. Plasmid transfection was performed at cell confluency of 60-80% in
Opti-MEM reduced serum medium without additives for 5h using Lipofectamine 3000 transfection
reagent (Invitrogen), according to manufacturer instructions. 48 h after transfection, transfected
cells were lysed with RIPA cell Lysis Buffer and sample was frozen, or cells were fixed for further

analyses.
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RNA sequencing

RNA isolation and purification was performed using the RNAeasy mini kit (Qiagen). RNA
concentration was measured using Nanodrop 2000 spectrophotometer and RNA integrity number
(RIN) determined using Agilent 2100 Bioanalyzer (RIN>9 required for inclusion). Library
preparation and RNA sequencing was performed by the National Genomics Infrastructure Sweden
(NGI) using lllumina stranded TruSeq poly-A selection kit and lllumina NovaSeq6000S (4 lanes,
2x 150bp reads, incl 2Xp kits). The data was processed using demultiplexing. Data storage and
initial analyses were performed using server sided computation supplied by the Swedish National
Infrastructure for Computing (SNIC). Genome assembly used for sequence alignment:
Homo_sapiens.GRCh38.dna.primary_assembly.fa and  annotation performed  using:
Homo_sapiens.GRCh38.96.gtf. Sequence alignment was carried out using STAR/2.5.3a. Gene
mapping has been carried out using subread/1.5.2 and the module feature counts. Transcript
mapping carried out using Salmon/0.9.1.

Gap closing (“scratch”) assay

A ‘gap’ was created in a confluence EC monolayer using a 100 pl pipette tip. Gap size was
monitored with an Olympus IXplore Live microscope in phase/contrast mode in 10x magnification,
with cells in a 37°C, 5% CO: on stage incubator chamber. Gaps were imaged every 30min for
96h. Gap size was measured every 6h in Fiji using ImageJ2 graphics procession software.
Shear stress exposure

Endothelial cells were cultured in flow chamber slides (p-slide VI 0.4, Ibidi) until confluence. The
slide was connected to an Ibidi flow pump system and cultured under laminar shear stress (4dyn
or 40dyn) for 48 hours. The cells were then lysed for qPCR, Western blot, and fixed for confocal
microscopy.

gPCR

Cell lysis and cDNA creation were performed using the 2-Step Fast-Cells-to-CT-Kit (Invitrogen,
ThermoFisher) according to their protocols. gPCR was performed using TagMan Fast Universal
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PCR mix. Target primer conjugated to FAM-probe (4448892, ThermoFisher) was used to access
KANKS levels. 18s rBRNA (4319413E conjugated to VIC probe, ThermoFisher) was used as
endogenous control. gPCR was performed using a RealTime PCR LightCycler 96 ® system
(Roche Life Sciences).

SDS-PAGE and Western blot

Lysate was analysed for KANKS expression by western blotting with rabbit polyclonal anti-KANK3
antibody (1:250, HPA051153) and horseradish peroxidase (HRP)-coupled goat anti-rabbit
antibody (1:2000, Dako). After chemiluminescence detection, membrane was washed, incubated
in stripping buffer, and analysed for GAPDH housekeeping gene expression. Additionally, mouse
monoclonal anti-eGFP antibody (1:1000) with secondary HRP-coupled goat anti-mouse antibody
(1:2000, Dako), were used.

Flow cytometry

Endothelial cells were cultured in 6 well plates and transfected with 2 different siRNAs targeting
KANKS or a scrambled siRNA control 48h prior 2 harvesting cells. 4h prior to harvest cells were
stimulated with 10ng/ml TNF. Cells were harvested by trypsin digest followed by centrifugation
(x350¢g, 7min) and separation, decantation of supernatant and resuspension of EC in ice-cold PBS
(Gibco, ThermoFisher). Cells were split into two tubes and treated with PE-conjugated anti-CD142
Clone NY2 (30 pl/ml) and isotype-matched control mouse-IgG1 (6 pl/ml) and incubated on ice for
30min, followed by centrifugation (x350g, 7min), decantation of supernatant and resuspension of
cells in PBS. Flow cytometry was performed in Beckman Coulter CytoFLEX Flow Cytometer
(acquisition settings FSC 20V, SSC 150V, PE 130V). Gating and data analysis was performed
using CytExpert for CytoFLEX Acquisition and Analysis Software and FlowJo™ v10.7. Gating was
performed for live vs dead cells and singlets vs doublets. Dead cells and doublets were excluded,
followed by gating for TF positive and TF negative cells. Isotype control signal was subtracted
from full stain for each sample and median fluorescence intensity (MFI) and TF positive cells (%)
were identified for each condition.
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Confocal microscopy

Cells were fixed in 4 % paraformaldehyde in PBS, permeabilised in 0.5% triton X-100 and blocked
using 5% BSA. Primary antibodies against KANK3 (HPA051153, Atlas antibodies) and vimentin
(OMA1-06001, Invitrogen) were incubated on cells for 20 minutes, followed by FITC-conjugated
anti-rabbit antibody (F-9887, Sigma), Alexa 555-conjugated anti mouse IgG, and either TRITC-
conjugated (P1951, Sigma) or Atto-647N-conjugated (65906, Sigma) phalloidin, depending on
experiment, and were then coated in mounting medium (VectaShield) containing DAPI nuclear
stain for storage and imaging. Images were taken using a Leica TP5 SP5 confocal microscope
and image analysis was performed in Fiji Imaged2 graphics procession software.

Structured lllumination Microscopy and Deconvolution imaging

48h after siRNA or plasmid transfection, cells were plated on fibronectin coated (1 pg/cm?) #1.5
glass coverslips (Zeiss) subconfluently (30-50k cells per cm?) and cultivated for 1h (HEK293 cells)
or 4h (HUVECs). Afterwards, cells were fixed in 4% paraformaldehyde (Merck, Sigma) in PBS
(Dulbecco, Sigma) for 20 min, washed with PBS (Dulbecco, Sigma) and left in PBS until further
analysis. Samples were permeabilised in 0.05% Triton X-100 (Sigma) in PBS and blocked in 3%
BSA in PBS. Primary antibody from Rabbit against KANK3 (HPA051153, Atlas antibodies) was
prepared in blocking buffer, followed by incubation with phalloidin conjugated to atto-647,
secondary anti rabbit IgG conjugated to Alexa 555 and anti-mouse 1gG conjugated to Alexa 488
for 30 minutes at RT, nuclear stain was performed with DAPI for 20 minutes at RT in the dark.
Samples were mounted using hardset antifade mounting medium (VectaShield). Images were
taken in an OMX Blaze SIM microscope using a 60X 1.42NA oil-immersion objective (GE
Healthcare; Olympus). 3D-SIM images stacks of up to 3 um were acquired every 125 nm in five
phases and three angles, resulting in 15 raw images per z-plane and total of 24 focal planes.
Reconstruction used SoftWoRx software (GE Healthcare). Image analysis was performed in Fiji

ImageJ2 graphics procession software.
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Calibrated automated thrombinoscope (CAT) assay

HUVECs were cultivated until confluency in medium M199 and, if stated, knocked down as
described above. Cells were transferred to flat-bottom 96 well plates (VWR) treated with tumour
necrosis factor alpha (TNF; 10 ng/mL) (ThermoFisher) for 24h before thrombin generation assay.
After washing the cells with PBS, thrombin formation was initiated in 120 pL reaction mixtures
containing human citrated plasma, 4 yM phospholipids (Thrombinoscope BV), 16.6 mM Ca2 +
and 2.5 mM fluorogenic substrate (Z-Gly-Gly-Arg-AMC, Thrombinoscope BV). As controls, Tissue
factor (1 pM, Dade Innovin), mouse monoclonal anti-TF antibody (12.5 pug/ml, HTF-1, BD
Pharmingen) or corn trypsin inhibitor were added 15 min before adding the substrate. All real time
thrombin formation experiments were run in triplicates. Thrombin generation was quantified using
the Thrombinoscope software package (Version 5.0.0.742) that reported means + SD.

Gene ontology analysis

The Gene Ontology Consortium [33] and PANTHER classification resource (Mi, 2019) were used
to identify overrepresented terms in gene lists using the GO databases (release date 2023-07-
05). Plots of GO terms were created using the R package clusterProfiler [83].

Data usage and analysis

Human tissue RNAseq data was retrieved from Genotype-Tissue Expression (GTEx) portal V8

(www.gtexportal.org) [84]. Statistical analyses were done in RStudio (R V 4.0.3), using the

corr.test function from the additional package psych (V 2.0.12) (Pearson correlation coefficient).
Single Cell sequencing data was sourced from data collected into the Tabula Sapiens [85].
Software: Image analyses

Image analysis was performed using ImageJ2 Fiji using ImageJ2 graphics procession software
[86].

Software: Graphs, Figures and Tables

Graphs and calculation tables were created using GraphPad Prism (V. 8.4.3) and Microsoft Excel
2019 (Office 365). Figures were created in Photoshop.
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Software: Statistical analyses
Statistical analyses were performed in RStudio (R version 4.0.3) using the following additional

packages: psych, readr dplyr, data.table and tools.
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Figure S1. Enrichment of KANK family members in human tissues and immortalized cell
lines. Expression profiles for (A) KANK3, (B) KANK1, (C) KANK2 and (D) KANK4 in: (i) human
cell types profiled using bioinformatic based analysis of bulk RNAseq data [26], or in (ii)

immortalised cell lines [35].
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Figure S2. Subcellular location of KANK3 in static and flow culture: Immunocytochemistry
staining using anti-KANK3 antibody (magenta), DAPI nuclear stain (grey), and phalloidin F-actin
stain (cyan) for (A) HUVEC Z stack average (B) mLSEC. (C,D) Immunocytochemistry staining
using anti-KANKS3 antibody (magenta), anti-vimentin antibody (yellow), DAPI nuclear stain (grey),

and phalloidin F-actin stain (cyan) in (C) static cultured and (D) shear stress exposed HUVEC.
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Figure S3: Effect of KANK3 depletion on gene expression. (A) HUVEC were untreated, or
transfected with scrambled control siRNA, siRNA1-KANK3 or siRNA2-KANK3 before
measurement of mRNA level of genes indicated by gPCR. *p<0.05 vs. scrambled control. (B)
Calibrated automated thrombogram (CAT) assay was used to assess the thrombin generation
potential of HUVEC treated with TNF (10 ng/ml) for 24 hours with or without pre-incubation with a
function blocking anti-tissue factor antibody (HTF1). (C) Bar plots show the (i) total endogenous
thrombin potential (ii) maximum endogenous thrombin potential (iii) lag time until the beginning of
thrombin production (iv) time until peak thrombin production. *** p<0.001, ** p<0.01, *p<0.05 vs.

scrambled control.
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Afterword

As | reflect on the last years, | consider myself to be exceptionally lucky to have been part of
these very different approaches of scientific investigation with a great research group

In concluding this doctoral journey, these studies do not only contribute to the expanding body
of knowledge in the field of endothelail biology, but also underscore the ongoing quest for
innovative solutions and underline the importance of multi-faceted approaches in research.
The three projects presented in this thesis are merely a starting point for deeper investigation
to broaden our understanding. | hope, that as the pages of this thesis close, they open new
chapters of inquiry, inspiring future scholars to explore these projects in even greater depths.

As scientists, we bear the responsibility of pushing the boundaries of knowledge and
uncovering the hidden truths that shape our world. This noble obligation urges us to persevere
tirelessly, facing challenges head-on and refusing to yield. Hence, | would like to conclude this

thesis with the following quote:

"When the beating of your heart
echoes the beating of the drums.
There is a life about to start when

tomorrow comes.”

Do you hear the people sing - Les Misérables
Claude-Michel Schonberg, Alain Boublil, Jean-Marc Nate, Victor Hugo

Thank you
for reading!
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