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Abstract—Distribution system networks (DSN) are subject to a drastic evolution in their operation conditions, due to high 

integration of renewable energy resources (RES) and their ability to regulate the voltage. This has raised concerns about Hosting 

Capacity (HC) of the DSN because the results are affected by the reactive power provided by smart inverters or RES. Moreover, one 

of the most difficult issues in control and optimization is making effective use of the reactive power capability of smart inverters in 

reactive power control. Offline optimization of smart inverters may not be enough to address the critical challenges posed by high 

PV integration. This study investigates the effect of PVs' reactive power support on the DSN to minimise active power losses and 

control system voltage. An HC analysis is performed on a DSN that lacks any RES to determine the location and capacity of the PV 

system to be installed. To minimise losses, a co-simulation-based optimization of the reactive power of the PVs' smart inverters is 

performed downstream the installation. Using co-simulation, detailed mathematical modelling of the DSN in the optimization model 

can be avoided, allowing the optimization to be completed in less time while maintaining convergence. Faster optimization builds a 

foundation for using the proposed methodology in real-time optimal reactive power control in a smart distribution network. 
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I. INTRODUCTION 

With the rise in integration of variable renewable energy sources in the distribution system networks (DSN), the operation 
condition of the network has evolved with drastically in terms of operating condition [1]. Moreover, the involvement of the smart 
inverters in voltage regulation adds more computational burdens for implementing optimal control techniques in the DSN [2]. 
To incorporate the optimal control technique in such DSN, co-simulation based optimization can be one option to consider [3]. 
However, detailed description of co-simulation-based optimization problem formulation and solving a optimization problem is 
still big challenge. Hence, this paper intends to provide detailed description for the co-simulation-based optimization problem 
formulation and to solve the proposed methodology for obtaining the optimal reactive power control from smart inverter in DSN. 

There are various approaches for controlling reactive power in the scientific literature [4]. In the case of a distribution 
network, OPF created using conventional power-flow techniques like Gauss-Seidel, Newton-Raphson, and fast decoupled load 
flow may not converge [5]. So, the distribution network is modeled using the LinDistflow equations or sensitivity-based modeling 
in most works on optimal reactive power control. However, the convergence in such case requires more time depending on the 
complexity of the network under consideration. Also, due the increased fluctuations in the operating condition of the DSN, 
optimization problem is required to completed on short time. Co-simulation based optimization is one of the options to perform 
faster optimization. Also, the sizing of the RES is also an important aspect to consider before implementing the optimal reactive 
power control in the network. The capacity of the smart inverter affects the allowable reactive power support from the RES. 
Also, the nature (inductive or capacitive) of the reactive power support has a huge impact on the total network loss in the network. 
To operate the network optimally with minimum network loss, optimal reactive power support is to be considered. Optimal 
reactive power control in power system network is studied in [6]–[9]. However, these papers do not consider the sitting and 
sizing of the renewable energy sources (RES) prior to considering the optimization problem. Hence, in this paper, hosting 
capacity (HC) analysis is done prior to implementing the optimization problem for the reactive power control.  

The focus of this work is to propose a detailed method to perform co-simulation optimal reactive power regulation in DSN 
to minimise total active power losses. The co-simulation framework has been created between a power system specialised 
software (PSSS) and a programming language environment. The co-simulation-based optimisation problem has been constructed 
using the load flow equation of the PSSS and defining a non-explicit objective function in the programming language 
environment. Specifically, the PSSS and the programming language exploited in this paper are DIgSILENT PowerFactory and 
Python respectively. This method has been applied to the Kumamoto distribution network. The summary of the contribution 
made in this paper are listed below. 

1. Detailed description of the co-simulation based optimization problem for reactive power control in the distribution 
networks. 
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2. Hosting capacity computation for obtaining the sizing of the renewable energy sources in the distribution network. 

The following sections make up the remainder of the paper. Sections II describes the theoretical concepts and formulation of 
hosting capacity and co-simulation based optimization problem formulation. Section III analyze the hosting capacity of the test 
system. Similarly, the optimization output analysis is presented in section IV. Finally, the last section highlights the analyses' 
main contribution and suggests future research directions 

II. PV INSTALLATION AND REACTIVE POWER OPTIMISATION 

Hosting capacity (HC) is a powerful method for determining the maximum capacity of new generation that can be installed 
on each bus without exceeding network constraints. In this paper, an HC analysis is developed to install a photovoltaic (PV) 
power plant in a distribution network which lacks any renewable energy resource (RES). Following that, an optimization-based 
method is used to exploit the PV converters to minimise active power losses also while adjusting the voltage within the boundaries 
via their reactive power control. In the following subsections the two-stage method is described. 

A. Hosting Capacity 

The proposed HC method takes the advantage of one of the power system specialised software (PSSS) toolbox and it is 
briefly described below; further details on PSSS tools for HC analyses are explained in [10]. Following the network modelling, 
the candidate buses for installing the PV system must be chosen. Load flow simulations are performed iteratively for each bus, 
with the PV capacity being properly adjusted according to voltage and thermal limits at each iteration. The convergence is 
reached when the first constraint limit is reached, providing the maximum capacity that can be installed to the analysed candidate 
bus. The HC was applied in two extreme operating conditions to obtain a more reliable solution, namely the minimum and 
maximum load value of the day.  

B. PV converter reactive power optimisation 

The HC simulations have been carried considering a unity power factor of the PV system. However, current converter 
technologies allow to provide reactive power to control the voltage[11]. For this purpose, a co-simulation-based optimisation 
framework has been developed between a PSSS and an external programming language. The objective function is to minimise 
the active power losses (𝑃𝑙𝑜𝑠𝑠) and to avoid voltage exceeding the desired boundaries, by means of a penalty function (𝑓𝑉), 
controlling the reactive power of the PV system converters: 

 min
𝑸𝑷𝑽

𝐹(𝑸𝑷𝑽) = 𝑃𝑙𝑜𝑠𝑠(𝑸
𝑷𝑽) + 𝑓𝑉(𝑸

𝑷𝑽) 
(1)  

in which 𝑸𝑷𝑽 is the vector of the PV converters’ reactive power. This is one of the key features of the co-simulation, i.e., it is 
possible to define non-explicit objective function or constraints deriving from the PSSS, providing a more modelling flexibility. 
Further details on co-simulation properties are provided in Error! Reference source not found..  

 

Fig. 1. Voltage penalty rule implemented. 



Defining with 𝑁𝑃𝑉the total number of PV system installed in network, the reactive power bounds of each smart converter can 
be obtained from the following equation: 

 𝑄𝑖
𝑃𝑉 ≤ ±√𝑆𝑖

𝑃𝑉2 − 𝑃𝑖
𝑃𝑉2    ∀ 𝑖 = 1,… , 𝑁𝑃𝑉 (2)  

where  𝑆𝑖
𝑃𝑉 is the rated apparent power of the converter, whereas 𝑃𝑖

𝑃𝑉  is supplied active power of the 𝑖-th PV system. 

The penalty function of (1) is defined as expression of number of buses exceeding the minimum (𝑉𝑚𝑖𝑛) or the maximum 
(𝑉𝑚𝑎𝑥) voltage limit. Fig. 1 shows the rule implemented in the programming language environment, where 𝒗 is the vector of the 
nodal voltages, 𝑁𝐵 is the bus number of the system, in which 𝑏 is the index of the generic busbar, whereas 𝑝𝑒𝑛 is the penalty 
value. 𝑓𝑉  is function of the square of the outbound index number to force the optimisation to avoid undesired operating 
conditions. The both the voltages and the losses derive from the PSSS AC load flow simulation, carried on as function of the 

controlling variable 𝑸𝑷𝑽 set in the programming language environment. Hence, the AC load flow equations represent non-
explicit constraints of the optimisation problem. Equation (3) reports the active (𝑃𝑏) and reactive power (𝑄𝑏) as function of the 
voltage (𝑉𝑏), the self-admittance (𝑌𝑏𝑏) and the mutual-admittance between two interconnected nodes (𝑌𝑐𝑏).  

 

{
 
 
 

 
 
 
𝑃𝑏 = 𝑅𝑒 [𝑉𝑏

∗(𝑉𝑏𝑌𝑏𝑏 +∑𝑉𝑐𝑌𝑏𝑐

𝑁𝐵

𝑐=1
𝑐≠𝑏

)]

𝑄𝑏 = 𝐼𝑚 [𝑉𝑏
∗(𝑉𝑏𝑌𝑏𝑏 +∑𝑉𝑐𝑌𝑏𝑐

𝑁𝐵

𝑐=1
𝑐≠𝑏

)]

∀ 𝑏 = 1,… , 𝑁𝑏 (3)  

 

Add a small Figure on co-simulation? 

Fig.2 describes the overall methodology for co-simulation-based optimization problem for reactive power control in distribution 
network. The network is designed in digsilent power factory. A python program is written to run the power factory through 
Python API. The optimization is modelled using the Python libraries. The co-simulation is executed for a period of day to 
compute optimization and the hosting capacity of the network. 

 

Fig. 2. co-simulation based optimization problem for reactive power control in distribution network. 

III. HC ON KUMAMOTO TEST SYSTEM 

The proposed approach has been applied to the Kumamoto distribution system [12], shown in Fig. 2. This network is devoid 
of thermal rating of the power lines; therefore, a preliminary load flow simulation has been carried on, and the selected rating 
current are reported in Table I, with the loading percentage. 



 

Fig. 3. Kumamoto distribution test system. 

TABLE I.  RATED CURRENTS OF THE KUMAMOTO NETWORK 

Line Rated current [kA] Loading [%] 

Line 1-2 1.00 99.9 

Line 10-11 0.50 69.3 

Line 12-13 0.26 20.1 

Line 13-14 0.26 18.3 

Line 14-15 0.26 8.5 

Line 2-3 1.00 96.6 

Line 3-12 0.26 28.1 

Line 3-4 1.00 81.6 

Line 4-5 0.26 33.9 

Line 4-7 1.00 57.8 

Line 5-6 0.26 6.9 

Line 7-8 1.00 47.7 

Line 8-9 0.50 85.1 

Line 9-10 0.50 78.3 

 

DIgSILENT PowerFactory is the chosen PSSS for HC analysis, and the user manual contains additional information on this 
methodology [13]. A daily profile has been assigned to the 14 installed loads, keeping the original load power factors. Fig. 3 
shows the quarter-hour load profile, with a peak value of 16.88MW and a minimum value of 1.98 MW, that are the conditions 
in which the HC has been analysed.  

Table II presents the HC results with voltage limits of [0.95÷1.05] pu and maximum line loading of 100%. Only Bus 1, the 
interconnection point with the external grid, was left out of the HC analysis. The external grid is configured as a slack bus with 
a target voltage of 1.02 pu. The maximum loading (L.) is the limiting bound in both cases. Specifically, during peak load, the 
minimum and maximum PV capacity at Bus 6 and Bus 2 are respectively 5.36 MW and 36.38 MW. Furthermore, the installation 
of PV results in a slight increase in voltage on the examined buses, with the maximum occurring at Bus 11 with 1.036 pu. During 
the minimum load, the HC result has a lower PV capacity while the voltages are higher than the previous case. Indeed. On Bus 
14 and Bus 15 the reach bound is maximum voltage. The minimum and maximum capacity RES occur on Bus 15 and Bus 2, 
with capacities of 3.18 MW and 21.50 MW, respectively. In relation to the HC results, the PV systems have been connected on 
the Bus 2 (𝑃𝑉2) with a capacity of 20 MVA, and on Bus 11 (𝑃𝑉11)  with 10 MVA. The first is the bus with the highest generation 
that can be installed, whereas the second is the bus on which is connected the greatest load. The PV capacity choice criterion is 
based on obtaining central hours of the day with a production greater than the required load. 



 

Fig. 4. Quarter-hour daily load profile of Kumamoto network. 

TABLE II.  MINIMUM AND PEAK LOAD HC RESULTS. 

Bus 

Peak Load Minimum load 

P  
[MW] 

L. [%] V [pu] 
Limiting 
element 

P  
[MW] 

L. [%] V [pu] 
Limiting 
element 

2 36.38 99.8 1.020 1-2 21.50 99.9 1.034 1-2 

3 35.78 99.9 1.020 2-3 21.38 
99.9 

1.034 2-3 

4 33.26 99.8 1.024 3-4 21.22 
99.8 

1.035 3-4 

5 6.68 99.8 1.020 4-5 5.44 
99.9 

1.041 4-5 

6 5.36 99.9 1.020 5-6 5.18 99.9 1.043 5-6 

7 29.70 99.9 1.029 4-7 20.70 
100.0 

1.037 4-7 

8 28.38 99.9 1.031 7-8 20.50 
100.0 

1.037 7-8 

9 17.65 100.0 1.034 8-9 10.51 
99.9 

1.046 8-9 

10 17.02 99.9 1.034 9-10 10.48 99.9 1.047 9-10 

11 
16.19 99.9 1.035 10-11 10.32 99.9 1.048 10-11 

12 6.16 99.9 1.020 3-12 5.30 99.9 1.041 3-12 

13 
5.91 99.8 1.023 12-13 5.27 99.9 1.046 12-13 

14 5.85 99.9 1.028 13-14 4.64 87.7 1.050 Bus 14 

15 
5.38 99.9 1.029 14-15 3.81 72.2 1.050 Bus 15 

 

The PV systems daily production is set exploiting a winter day profile provided in [12], and their quarter-hour production is 
depicted in Fig. 4. The PV systems supply power to the network within 8:15 to 17:45. The peak production occurs at 13:00 with 
roughly 18.6 MW, and a total energy of approximately 113 MWh. Furthermore, from 12:30 to 14:45 the PV systems production 
exceed the required load, exporting the difference to the external network (red bars). Finally, Fig. 5 depicts the maximum and 
average loading of the lines with and without the PV penetration. The PV penetration has a positive impact on the line loading, 
the higher is the penetration, the greater is the loading reduction. During the daylight hours the maximum loading has a mean 
reduction of 19.1%, where the maximum loading moved from 88.6 % to 69.1 %. Analogously, the mean loading is subject to a 
mean reduction of 14.5 %. 



 

Fig. 5. Installed PV system active power production. 

 

Fig. 6. Maximum and average line loading with (thicker) and without (thinner) PV production. 

IV. REACTIVE POWER OPTIMISATION 

The co-simulation framework was modelled using PowerFactory as the PSSS and Python as the programming language 
environment. Hourly load flow simulation has been configured in PowerFactory to exploit active and reactive power balance 
equations as non-explicit constraints, as well as the losses and the voltage penalty function of (1) in the optimisation problem. In 
Python, the SciPy library [14] was used to model the optimisation problem using the Differential Evolution solver [15]. 
Considering the HC results from Table II, the voltage boundaries for all buses have been set to [0.99÷1.035] pu, to force the 
optimisation to redispatch the reactive power, whereas the penalty constant (𝑝𝑒𝑛) is 1000. The simulations have been performed 
on a laptop with an 8 core i7-10870H processor running at 2.20 GHz and a RAM of 32 GB.  

Fig. 6 depicts the base case losses as well as the losses after the optimisation problem has been solved. During the day, the base 
case losses range from 4.7 kW to 132.6 kW, for a total energy loss of 862.5 kWh. On the contrary, the optimal solution has lower 
volatility, varying from 3.0 kW to 130.9 kW, with a total energy loss of 843.0kWh; therefore, a reduction of the daytime losses 
of 19.5 kWh has been achieved. Fig. 7 depicts the statistic values of the voltages before and after the optimisation. On the one 
hand, prior to optimization, the average nodal voltage is close to the upper bound of 1.035 pu until 07:00, owing to the low 
loading of the lines and for the low required load. Following that, the increase in load as well as the energy supply by PV systems 
cause a sudden drop in average voltage, reaching a low of 1.016 pu at 09:00. Throughout the day, the average voltage follows an 
increasing and decreasing trend with lower slopes. The optimal solution, on the other hand, meets the voltage constraints 
throughout each hour. Specifically, until 07:00, the average voltage is close to the slack bus's target voltage. Then it fluctuates 



between a maximum of 1.030 pu and a minimum of 1.020 pu. Fig. 8 shows the optimal reactive power provided by PV systems 
to the network. As can be seen, the voltage trend closely follows the dispatched reactive power of the PVs: when they produce 
inductive reactive power (negative sign), the optimal average voltage is lower than the base case ones; whereas, when they 
withdraw inductive reactive power (positive sign), the optimal average voltage is higher than the base case ones. 

 

Fig. 7. Base case (blue) and optimal (red) system losses. 

 

Fig. 8. Base case (line) and optimal (dashed) minimum, maximum and average hourly nodal voltage. 



 

Fig. 9. Hourly optimal reactive power provided by the PV converters. 

V. CONCLUSIONS 

The current paper proposes a methodology for installing PV systems into a distribution network devoid of any RES power 
plant using HC analysis and controlling the reactive power of the installed PV systems using an optimisation problem to minimise 
the system's active power losses. The HC was performed in two extreme scenarios: the daily minimum and maximum system 
load of the winter peak day, properly assigned. The buses were chosen based on the highest generation that could be installed 
and the maximum installed load. The installed PV system was then given a suitable daily power production profile. The results 
show that, in addition to the suitability of the installed location, the lines' power flow during daylight hours is subject to 
lower loading than the initial network without RES. As a result, the power supplied by PV systems is a first step toward reducing 
system losses. 

Following that, the DE algorithm was used to dispatch the reactive power of the PV converters in a co-simulation-based 
optimisation problem, with the goal of minimising losses and limiting nodal voltages. Throughout the day, there has been a 
further reduction in losses. Furthermore, the optimization improves the nodal voltage trend by reducing extreme values and 
variation over two consecutive time steps. The results can be improved further by installing PV systems in more buses with lower 
rated power to control the local voltage, reducing the losses, rather than installing two larger PV systems. 

Further work can address the definition of reactive power costs to remunerate the service provided by the owner of the PV 
system, as well as the costs of active power in order to evaluate the benefits even from an economical perspective. 

REFERENCES 

[1] M. H. J. Bollen et al., “Power Quality Concerns in Implementing Smart Distribution-Grid Applications,” IEEE Trans. Smart Grid, vol. 8, no. 1, pp. 

391–399, 2017. 

[2] D. Sampath Kumar, O. Gandhi, C. D. Rodríguez-Gallegos, and D. Srinivasan, “Review of power system impacts at high PV penetration Part II: 

Potential solutions and the way forward,” Sol. Energy, vol. 210, pp. 202–221, 2020. 

[3] D. Pettersen, E. Melfald, A. Chowdhury, M. N. Acosta, F. Gonzalez-Longatt, and D. Topic, “TSO-DSO Performance Considering Volt-Var Control 

at Smart-Inverters: Case of Vestfold and Telemark in Norway,” in 2020 International Conference on Smart Systems and Technologies (SST), 2020, 

pp. 147–152. 

[4] M. Jalali, V. Kekatos, N. Gatsis, and D. Deka, “Designing Reactive Power Control Rules for Smart Inverters Using Support Vector Machines,” IEEE 

Trans. Smart Grid, vol. 11, no. 2, pp. 1759–1770, 2020. 

[5] T. Ochi, D. Yamashita, K. Koyanagi, and R. Yokoyama, “The development and the application of fast decoupled load flow method for distribution 

systems with high R/X ratios lines,” in 2013 IEEE PES Innovative Smart Grid Technologies Conference (ISGT), 2013, pp. 1–6. 

[6] H. J. Liu, W. Shi, and H. Zhu, “Distributed Voltage Control in Distribution Networks: Online and Robust Implementations,” IEEE Trans. Smart 

Grid, vol. 9, no. 6, pp. 6106–6117, 2018. 

[7] A. Safavizadeh et al., “Impacts of voltage control methods on distribution circuit’s photovoltaic (PV) integration limits,” IEEE Trans. Smart Grid, 

vol. 10, no. 1, pp. 84–94, Mar. 2019. 

[8] M. Jafari, T. O. Olowu, and A. I. Sarwat, “Optimal Smart Inverters Volt-VAR Curve Selection with a Multi-Objective Volt-VAR Optimization using 

Evolutionary Algorithm Approach,” 2018 North Am. Power Symp. NAPS 2018, 2019. 

[9] M. N. Acosta, F. Gonzalez-Longatt, M. A. Andrade, and J. R. Torres, “Optimal Reactive Power Control of Smart Inverters: Vestfold and Telemark 



Regional Network,” in 2021 IEEE Madrid PowerTech, 2021, pp. 1–6. 

[10] M. Z. Ul Abideen, O. Ellabban, and L. Al-Fagih, “A review of the tools and methods for distribution networks’ hosting capacity calculation,” 

Energies, vol. 13, no. 11, pp. 1–25, 2020. 

[11] G. Tricarico, R. Wagle, M. Dicorato;, G. Forte;, F. Gonzalez-Longatt, and J. L. Reuda, “Zonal Day-Ahead Energy Market: A Modified Version of 

the IEEE 39-bus Test System,” in 2022 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA), 2022. 

[12] S. Li, K. Tomsovic, and T. Hiyama, “Load following functions using distributed energy resources,” in 2000 Power Engineering Society Summer 

Meeting (Cat. No. 00CH37134), 2000, vol. 3, pp. 1756–1761. 

[13] DigSilent PowerFactory version 2022, “User Manual,” 2022. 

[14] P. Virtanen et al., “SciPy 1.0: fundamental algorithms for scientific computing in Python,” Nat. Methods, vol. 17, no. 3, pp. 261–272, 2020. 

[15] R. Storn and K. Price, “Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces,” J. Glob. Optim., 

vol. 11, no. 4, pp. 341–359, 1997. 

 

 


