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A B S T R A C T   

The rapid decline of Arctic sea ice makes understanding sympagic (ice-associated) biology a particularly urgent 
task. Here we studied the poorly known seasonality of sea-ice protist and meiofauna community composition, 
abundance and biomass in the bottom 30 cm of sea ice in relation to ice properties and ice drift trajectories in the 
northwestern Barents Sea. We expected low abundances during the polar night and highest values during spring 
prior to ice melt. Sea ice conditions and Chlorophyll a concentrations varied strongly seasonally, while partic-
ulate organic carbon concentrations were fairly stable throughout the seasons. In December to May we sampled 
growing first-year ice, while in July and August melting older sea ice dominated. Low sea-ice biota abundances in 
March could be related to the late onset of ice formation and short time period for ice algae and uni- and 
multicellular grazers to establish themselves. Pennate diatoms, such as Navicula spp. and Nitzschia spp., domi-
nated the bottom ice algal communities and were present during all seasons. Except for May, ciliates, di-
noflagellates, particularly of the order Gymnodiales, and small-sized flagellates were co-dominant. Ice meiofauna 
(here including large ciliates and foraminifers) was comprised mainly of harpacticoid copepods, copepod nauplii, 
rotifers, large ciliates and occasionally acoels and foraminifers, with dominance of omnivore species throughout 
the seasons. Large ciliates comprised the most abundant meiofauna taxon at all ice stations and seasons (50–90 
%) but did not necessarily dominate the biomass. While ice melt might have released and reduced ice algal 
biomass in July, meiofauna abundance remained high, indicating different annual cycles of protist versus 
meiofauna taxa. In May highest Chlorophyll a concentrations (29.4 mg m− 2) and protist biomass (107 mg C m− 2) 
occurred, while highest meiofauna abundance was found in August (23.9 × 103 Ind. m− 2) and biomass in 
December (0.6 mg C m− 2). The abundant December ice biota community further strengthens the emerging 
notion of an active biota during the dark Arctic winter. The data demonstrated a strong and partially unexpected 
seasonality in the Barents Sea ice biota, indicating that changes in ice formation, drift and decay will significantly 
impact the functioning of the ice-associated ecosystem.   

1. Introduction 

Arctic marine biota and upper ocean ecosystems are, by nature, 
finely tuned to strong seasonality, particularly concerning light, and 
show large fluctuations in terms of production and composition over the 
year (Sakshaug et al., 2009; Leu et al., 2015). The timing of ice 

formation and melt and the thickness and origin of ice floes affect not 
only the seasonality of biological processes, e.g. productivity, timing of 
ice algae and phytoplankton blooms and the match/mismatch with ice 
fauna and zooplankton grazers (Melle and Skjoldal, 1989; Hansen et al., 
2003; Søreide et al., 2010; Leu et al., 2011), but also the biodiversity 
(Bluhm et al., 2018; Hop et al., 2020; Ehrlich et al., 2020). Sea-ice biota 
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represents an important link in the carbon transfer to pelagic and 
benthic ecosystems (referred to as sympagic-pelagic-benthic coupling). 
Highly seasonal ice algal primary production, ice fauna grazing on algae, 
and release of algal aggregates (Riebesell et al., 1991; Assmy et al., 2013; 
Boetius et al., 2013) and fecal pellets strongly contribute to the carbon 
flux in the Arctic Ocean (Gradinger et al., 1999; Nozais et al., 2001; 
Søreide et al., 2010; Fadeev et al., 2021). However, many ecosystem 
connections and processes over the annual cycle are not well under-
stood. For example, unexpectedly high biological activity has been 
observed during the previously assumed dormant polar night (Vader 
et al., 2015; Berge et al., 2015; Grenvald et al., 2016). Further, knowl-
edge gaps exist regarding sympagic communities outside the well- 
studied spring and especially summer months (Hegseth and von Quill-
feldt, 2022 and references therein; Bluhm et al., 2018 and references 
therein) including the recruitment and seeding processes of sea-ice biota 
in the late winter/early spring (Olsen et al., 2017; Kauko et al., 2018; 
Gradinger and Bluhm, 2020). The ongoing environmental changes of sea 
ice growth, melt and large-scale ice disappearance (Comiso et al., 2008; 
Stroeve and Notz, 2018; Kwok, 2018) as well as the disruption of long- 
range sea ice transport (Krumpen et al., 2019) necessitate a deeper un-
derstanding of ice-associated ecosystem. These changes can lead to in-
direct or direct cascading effects on the Arctic food web (Kovacs et al., 
2011; Barber et al., 2015; Krumpen et al., 2019; Stige et al., 2019; 
Pagano and Williams, 2021), altering the biological and biogeochemical 
processes related to the sea ice system in terms of biodiversity, pro-
duction and seasonality of the biota inhabiting the sea ice. 

This study focuses on the structure of sea-ice biota in the Barents Sea 
across seasons and its relationship to ice origin under varying environ-
mental conditions. Although the Barents Sea is one of the better moni-
tored Arctic seas (Siwertsson et al., 2023), the seasonal evolution of the 
Barents Sea marine ecosystem is still poorly known, mainly due to 
restricted accessibility of the seasonally ice-covered area in winter and 
early spring. The Barents Sea is a relatively shallow shelf sea situated in 
the transition zone between the sub-Arctic and the Arctic. It is, 
throughout the year, influenced by warmer Atlantic water masses in the 
south, while the surface layers in the north represent fresher and colder 
Arctic water entering from the Nansen Basin (Loeng, 1991; Smedsrud 
et al., 2010). The Barents Sea ice cover is dominated by annual pack ice, 
mainly locally formed but also imported with large variability through 
the eastern passage between Franz Jozef Land and Novaya Zemlya (Lind 
et al., 2018; Efstahiou et al., 2022). Multiyear ice from the Central Arctic 
Ocean contributes only sporadically (Kwok, 2009; Lind et al., 2018). Sea 
ice typically forms in winter (November) and begins to melt in late 
spring (April-May) with an annual maximum sea-ice extent of 532 × 103 

km2 (April 2021) and annual minimum extent of 16 × 103 km2 in 
September (2021) (OSI SAF, 2023). Similar to other Arctic seas, the 
Barents Sea has experienced sea ice reduction over the last decades 
(Årthun et al., 2012; Onarheim and Årthun, 2017; Barton et al., 2018), 
especially in winter (Isaksen et al., 2022). While increased advection of 
Atlantic water masses (“Atlantification”, Asbjørnsen et al., 2020; 
Ingvaldsen et al., 2021) can explain the sea ice reduction in the eastern 
Barents Sea (Årthun et al., 2012) and north of Svalbard (Duarte et al., 
2020), a change of northerly winds and ice import has affected its 
northwestern parts (Screen and Simmonds, 2010; Lind and Ingvaldsen, 
2012; Lind et al., 2018; Dörr et al., 2021; Efstahiou et al., 2022). Overall, 
the northern Barents Sea is changing from a cold and stratified Arctic 
regime to a warmer and more mixed Atlantic-influenced regime with 
drastically changing ice conditions (Lind et al., 2018; Aaboe et al., 
2021). The weakened stratification and delayed formation of the ice 
cover in autumn allow for a larger heat flux from the warmer ocean to 
the atmosphere (Lind et al., 2018; Isaksen et al., 2022). In summer, the 
ocean receives more sunlight due to the decreased ice coverage. These 
warming trends are accompanied by an increase in precipitation and 
extreme weather events in the Arctic potentially linked to extreme 
weather at lower latitudes (Cohen et al., 2020; Moon et al., 2023). 

Sea ice is recognized as an important feeding habitat and hunting 

ground for a variety of small and large animals as well as humans, with 
somewhat varying roles across seasons (Carey, 1985; Melnikov, 1997; 
Ainley et al., 2003; Wassmann et al., 2011; Hop et al., 2019, 2021; 
Møller and Nielsen, 2020; Hegseth and von Quillfeldt 2022). The 
physical properties of sea ice allow the growth of a network of brine 
channels, a habitat with extreme seasonal as well as vertical changes in 
temperature, salinity, light and nutrient concentration (Arrigo, 2016; 
Petrich and Eicken, 2016). At any time of ice cover, the brine channels 
can host a wide variety of uni- and multicellular organisms (Carey, 
1985; Gradinger, 1999; Marquardt et al., 2011, Bluhm et al., 2018) that 
can be allochthonous (temporary) or autochthonous (permanent) to the 
sea-ice habitat (Carey, 1985; Gulliksen and Lønne, 1989). The highest 
densities of biota are often found in the bottom 20–30 cm of the ice 
where free exchange with nutrients from the underlying seawater can 
sustain substantial growth of algal biomass (Gradinger, 2009). The 
environmental conditions are generally most stable at the water–ice 
interface in all seasons, while conditions become more extreme (e.g., in 
nutrient availability, temperature, brine salinity, permeability, snow 
cover; Arrigo, 2016) in the ice interior and towards the ice-snow inter-
face as air temperatures drop in winter. This, in turn, limits the vertical 
distribution of biota within the ice (Arrigo and Sullivan, 1992; Mundy 
et al., 2005, 2007). Similar to arctic phytoplankton spring bloom pat-
terns, the ice protists often show a seasonal pattern, with diatoms often 
dominating the ice assemblages (Syvertsen, 1991; Ratkova and Wass-
mann, 2005; Lund-Hansen et al., 2017; Assmy et al., 2023) in the spring. 
Later in summer flagellated taxa can also contribute a significant frac-
tion (e.g., Gradinger, 1999) when nutrients are limiting for diatom 
growth in the ice, or diatoms attached to the bottom sea ice have been 
washed out (Assmy et al., 2013). In the Barents Sea pennate diatoms 
such as Nitzschia frigida are predominant (e.g., Niemi et al., 2011; 
Hegseth and von Quillfeldt, 2022), but the community composition can 
also vary depending on ice properties such as ice age. Nitzschia frigida 
has been suggested as an indicator species for first-year ice and Melosira 
arctica for multiyear ice (Syvertsen, 1991; Hop et al., 2020). Sea ice 
algae contribute to primary production with <5 up to 30 and even 50 % 
in different regions of the Arctic (Central Arctic Ocean - Gosselin et al., 
1997; and Fernández-Méndez et al., 2015; North of Svalbard – Ehrlich 
et al., 2021; Chukchi Sea – Feng et al., 2021), with estimates of up to 20 
% in the northern Barents Sea (Hegseth, 1998). In high latitudes, light is 
one of the main factors limiting the growth of primary producers (Sherr 
et al., 2003; Sakshaug et al., 2009; Hodal et al., 2012). With the return of 
light in early spring, shade-adapted ice algae species start growing under 
very low light conditions (Johnsen and Hegseth, 1991; Mock and Gra-
dinger, 1999; Mundy et al., 2005; Hancke et al., 2018) and the ice algal 
biomass usually accumulates by May (around 80◦N, Leu et al., 2011). 
The phytoplankton spring bloom is then initiated by melting ice in June/ 
July in seasonal ice zones (Smetacek and Nicol, 2005; Sakshaug et al., 
2009; Leu et al., 2011; Hodal et al., 2012). However, phytoplankton 
blooms below consolidated sea ice seem to become more frequent as the 
ice cover is getting thinner and melts earlier (Arrigo et al., 2012; Assmy 
et al., 2017; Ardyna et al., 2020). 

A taxonomically diverse range of heterotrophic organisms from 
bacteria, flagellates, ciliates and sea-ice (or sympagic) meiofauna can 
feed on ice bacteria, algae and various heterotrophs (Carey, 1985; 
Grainger and Hsiao, 1990; Gradinger et al., 1999; Bluhm et al., 2018). 
Commonly observed sea-ice associated metazoans are copepods (mainly 
harpacticoids and cyclopoids) as well as copepod nauplii stages, rotifers, 
nematodes, acoel flatworms and occasionally meroplankton for instance 
polychaete larvae (Marquardt et al. 2011; Bluhm et al., 2018 and ref-
erences therein). The community structure of ice meiofauna is often 
related to water depth (shelf versus basin), ice properties (e.g., tem-
perature and salinity tolerance levels) and as well as ice age (first-year 
ice versus multiyear ice) (Bluhm et al., 2018; Patrohay et al., 2022 and 
references therein). Due to more stable conditions and easiest access of 
colonization from the pelagic and benthic habitats, highest abundances 
of meiofauna usually co-occur with high ice algae densities (i.e., food 
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availability) in the lowermost bottom centimeters of the ice (Friedrich, 
1997; Nozais et al., 2001; Arndt and Swadling, 2006; Marquardt et al., 
2011). A diverse range of metazoan eggs in the sea-ice channels (Werner 
and Hirche, 2001; Marquardt et al., 2011; Ehrlich et al., 2021) also 
points towards the importance of the sea ice also as a nursery ground. 
The taxonomic composition of the ice biota and indicators of repro-
duction in sea ice can provide a second line of indirect evidence of ice 
origin and longevity, in addition to back-tracking of floes. For example, 
the presence of benthic-origin fauna points towards origin in shallow 
areas rather than the deep central Arctic basin (Arndt et al., 2009; 
Marquardt et al., 2011). 

Our study goals were to characterize sea-ice biota including 
eukaryotic microalgae, and uni- and multicellular heterotrophs over the 
entire seasonal cycle, along a latitudinal gradient in the northwestern 
Barents Sea. We expected different patterns in seasonality of protist and 
meiofauna abundance and biomass based on different life history stra-
tegies. Specifically, we anticipated autotrophic algae (and correspond-
ing chlorophyll a biomass) to peak in spring (May) and summer (August) 
and algae-grazing meiofauna, here including large ciliates and fora-
minifers, to respond with some delay. Further, we expected that dif-
ferences in physical ice properties, and origin and age of the sea-ice floes 
would in part explain community structure differences in both protist 
and meiofauna communities. Specifically, we hypothesized that protist 
taxa characteristic of mature sea-ice communities would prevail in older 
ice (indicated by lower bulk salinities and long duration of drift). 
Furthermore, we hypothesized that meiofauna would be dominated by 
pelagic taxa where ice originated over deep water, while it would 
contain a higher fraction of benthic taxa where ice originated over 
shallower shelves. 

2. Material & methods 

2.1. Study area and ice sampling 

This study was part of the Nansen Legacy project (arvenetternansen. 
no, Wassmann, 2022). Sampling onboard R/V Kronprins Haakon was 

repeated along a latitudinal transect in the northwestern Barents Sea 
during four contrasting seasons: August (Cruise ID: Q3) and December 
2019 (Cruise ID: Q4), March 2021 and 2022 (Cruise IDs: Q1/JC3), May 
(Cruise ID: Q2) and July 2021 (Cruise ID: JC2-1) (Fig. 1, Table 1). The 
gap in 2020 was not intended, but a consequence of the COVID-19 
pandemic. The cruise reports, providing overviews and details 
regarding the entire science mission of each cruise, are available at: 
https://septentrio.uit.no/index.php/nansenlegacy/section/view/cruis 
e-reports. 

At ice-covered stations, ice cores were taken for the determination of 
abundance and biomass of sea-ice meiofauna and protists (lowermost 
30 cm) as well as for environmental variables (full cores: ice tempera-
ture, bulk salinity, Chlorophyll a (Chla) and particulate organic carbon 
(POC) and nitrogen (PON) concentrations. Ice cores were taken from 
undeformed level ice areas with a KOVACS ice corer (Mark II coring 
system, inner diameter 9 cm). For each core, snow and ice thickness and 
freeboard were determined (Table 1). Within tents for light protection, 
cores for Chla, POC and PON were sliced on a cutting board into the 
following sections, given as distance from the ice-water interface: 0–3 
cm (bottom ice layer), 3–10 cm, 10–20 cm, 20–30 cm, and in 20 cm 
intervals from there onwards to the top. For the lowermost 50 cm of the 
cores the matching segments of five ice cores were pooled for Chla, POC 
and PON. Above 50 cm core length only sections from two of the five 
cores were used for pooling due to the larger volume of the 20 cm sec-
tions. Three additional ice cores were taken at each station for sea-ice 
protist and meiofauna analysis, using the same sectioning but focusing 
on the lowermost 30 cm only. All ice sections were put into containers 
and then brought onboard for further processing. For bulk salinity and 
ice temperature section and measurement intervals see Section 2.3. 

2.2. Onboard sea-ice sample processing (Chla, POC/PON, ice protists and 
meiofauna) 

All sea-ice core sections were melted in the dark and at 4 ◦C within 
24–28 h, and 100 ml filtered seawater (<0.22 µm) was initially added 
per 1 cm section to reduce negative impacts related to osmotic stress. In 

Fig. 1. Study area and station overview in the northwestern Barents Sea from August 2019 to March 2022. Lower left in each panel the month, year and cruise ID are 
given. Daily sea ice concentrations (%) from every 1st of the month in white and open water in blue. Data obtained from MET Norway/E.U. Copernicus Marine 
Service Information; https://doi.org/10.48670/moi-00128 and plotted with the mapping software QGIS 3.28.2. 
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a few instances, when time was lacking, samples were melted at room 
temperature, while being continuously monitored and mixed to ensure 
homogenous salinity and low temperature. Total sample volume was 
recorded. 

After complete melt, Chla samples were filtered onto GF/F glass 
microfiber filters (Whatman, England) and immediately extracted in 5 
ml of methanol in darkness at 4 ◦C for ca. 24 h (Holm-Hansen and 
Riemann, 1978) and measured onboard with a Triology fluorometer 
(Turner, USA; final data: Vader et al. 2022a–e and March 2022 data in 
Vader et al., unpublished). 

Melted samples for POC/PON were filtered onboard onto pre- 
combusted Whatman GF/F filters. The limited volume of melted sea 
ice allowed typically only one but occasionally triplicate pseudo- 
replicates (500–1500 ml per replicate). Filters were stored at − 20 ◦C 
and analyzed within 1 year on a CE 440 Exeter analytical CHN Analyzer 
(Reigstad et al., 2008). Mean values and standard deviations were 
calculated for POC and PON values and the C:N ratio was calculated. 
PON values <3× the blank values were excluded from the dataset. POC/ 
PON datasets were made available by Marquardt et al. (2022a–f). 

The melted ice protist/meiofauna core sections were carefully mixed 
before taking a 90 ml subsample for protist identification and quantifi-
cation. These samples were fixed with 25 % electron microscopy grade 
glutaraldehyde (0.1 % final concentration) and 20 % 
hexamethylenetetramine-buffered formalin solution (1 % final concen-
tration) and stored in brown glass bottles. These samples were stored at 
room temperature until shipment to the Institute of Oceanology, Polish 
Academy of Sciences Poland (IOPAN) for microscopic analyses. The 
entire remaining volume was concentrated over a 20 µm sieve for 
meiofauna. When time allowed, sea-ice meiofauna were identified and 
counted alive onboard with Leica stereomicroscope (M80, 7.5–60× or 
M125, 7.8–160× magnification). Otherwise, samples were fixed (2 cores 
by adding 37 % formaldehyde for a final concentration of 2 %, 1 addi-
tional core by addition of 96 % Ethanol for a 95 % final concentration) 
and stored for further analysis in the lab at UiT The Arctic University of 
Norway (Tromsø). 

2.3. Ice biota measurements: Determination of abundance, composition, 
and biomass of sea-ice protists and meiofauna 

Depending on the density of the sample, a volume of 10–50 ml (when 
high sediment load: 3 ml) was settled in Utermöhl sedimentation 
chambers (Hydro-Bios, Kiel, Germany) for 48 h to study sea-ice protists. 
Cells were counted and identified to lowest possible taxonomic level 

using an inverted Nikon Ti-S and TE300 light microscope at 100–600×
magnification depending on the size of the species (Edler and 
Elbraechter, 2010). All organisms were counted in scaled fields of view 
along transects, across the entire chamber area. When the number of 
cells was below 400–500 using this approach, the entire chamber was 
counted. Except for protist data from March 2022 (Assmy et al., un-
published), the sea-ice protist data are published in Assmy et al. 
(2022a–d) and Wold et al. (2022). 

Counting, identification and documentation of sea-ice meiofauna in 
the fixated samples were performed with a Leica M205C stereomicro-
scope (8×–160×magnification) at UiT. Specimens were identified to the 
lowest taxonomic level possible. Large ciliates and other large protists 
(>20 µm, e.g., foraminifers) were also counted in alive and fixated 
samples and are included as “meiofauna” in this study. However, in the 
fixated samples they may be underestimated when high amounts of 
algae aggregates and debris obscured them in the samples. Eggs were 
counted in order to study reproduction patterns. Since no classification 
keys are available for the identification of eggs, they were sorted into 
morphotypes. Sea-ice meiofauna counts, abundance and biomass are 
published in Marquardt et al. (2023a–e). 

Sea-ice protist and meiofauna abundance per liter of melted sea ice 
were calculated by dividing the number of cell counts in each sample by 
the total volume of the ice core sections (added filtered seawater was 
removed). For the abundance in cells m− 2, the abundance per liter of 
melted of sections of sea ice was divided by the ice core area “A” (A = π 
× r2 = 0.006317 m2) where r is the radius of the core The integrated 
number of cells for the lowermost 30 cm of the ice core was calculated by 
summing the cell counts of the individual ice core sections analyzed 
(given as abundance in Ind. m − 2). The vertically integrated biomass 
(0–30 cm) for sea-ice protists and meiofauna (mg C m− 2) was deter-
mined per taxon by multiplying abundances by the carbon content per 
cell or individual. Sea-ice protists carbon content was derived from 
biovolumes estimated using geometric equations (Hillebrand et al., 
2002) and converted to carbon content per cell (Menden-Deuer and 
Lessard, 2000). Individual carbon contents for ice meiofauna taxa were 
based on literature summarized in Ehrlich et al. (2021), and carbon 
values for foraminifers were provided by de Freitas et al. (2021) for 
benthic species (Bolivinia sp.: 0.00875 µg C Ind.− 1; Elphidium sp.: 0.126 
µg C Ind.− 1) and Anglada-Ortiz et al. (2023) for the pelagic species 
Neogloboquadrina pachyderma (0.0013 µg C Ind.− 1). 

Table 1 
Station overview for sea ice sampling in the Barents Sea. Mean ice core length (ICL), ice thickness (IT) and freeboard (F) were from n = 3 replicates, snow thickness (ST) 
from n = 9 measurements. Ice age (FYI = first-year ice, SYI = second-year ice) was assigned according to bulk salinity profiles (figures in S1) and NSIDC ice age 
distribution data (Tschudi et al., 2019). Mean ice concentration (conc., %) is averaged over the four-week period preceding the sampling date (data from Steer and 
Divine, 2023). ND: not determined.  

Cruise Station Date Latitude Longitude ICL (cm) IT (cm) F (cm) ST (cm) Ice age % ice conc. 

Q1 P4 11-3-21  79.7720  33.6729 52.5  1 15.5 FYI 97 ± 3 
Q1 P6 15-3-21  81.5396  31.1004 50 48.8 3 9 FYI 28 ± 34 
Q1 P7 17-3-21  81.9994  29.9936 47 44 2.5 3.5 FYI 20 ± 35 
JC3 P5 27-2-22  80.6865  33.9812 35 34 3 1.5 FYI ND 
JC3 P7 2-3-22  82.0386  29.8910 39 38 − 1 13 FYI ND 
JC3 SICE-K 7-3-22  80.1205  29.2725 53.5 53 1 18 FYI ND 
Q2 P4 5-5-21  79.6782  33.5265 22.5 21.5 0 6 FYI 71 ± 33 
Q2 P5 8-5-21  80.5439  33.6217 60 59 − 1 13.5 FYI 96 ± 4 
Q2 P6 10-5-21  81.5626  30.8294 96.5 96 4 12 FYI 92 ± 7 
Q2 P7 13-5-21  82.2273  28.6964 120.5 120 10 4.5 FYI 96 ± 4 
JC2-1 P5 20-7-21  80.5002  33.4216 114 120 12 2 FYI/SYI 95 ± 6 
JC2-1 P6 22-7-21  81.5255  30.8165 109 107 8 2 FYI/SYI 94 ± 7 
JC2-1 P7 25-7-21  81.9845  30.0223 118 120 9 4.5 FYI/SYI 85 ± 23 
Q3 P6 17-8-19  81.5327  30.9684 104 108 9 12 FYI/SYI 96 ± 4 
Q3 P7 20-8-19  81.9861  29.9957 129 128 9 5 FYI/SYI 96 ± 5 
Q3 SICE4 23-8-19  81.9783  24.6400 166 159 17 9 ND ND 
Q4 P5 6-12-19  80.5333  34.3877 39 35 0 8 FYI 88 ± 14 
Q4 P7 2-12-19  82.0428  28.7516 118 112 8 13 FYI 98 ± 2  
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2.4. Ice physical measurements (bulk salinity, ice in situ temperature, 
brine salinity and volume) and ice trajectories 

The top 20 cm of the salinity core was cut into 5 cm thick segments 
(0–5 cm, 5–10 cm, etc.), while from 20 cm to the bottom of the core, it 
was cut into 10 cm intervals. Sections were melted in containers in the 
dark at room temperature. After complete melt, the bulk salinity of the 
ice-core sections was measured with a WTW 3310 conductivity sensor. 
Ice in situ temperature was measured immediately after coring using a 
VWR temperature sensor to take measurements in the drilled holes over 
the entire ice thickness, (The Nansen Legacy 2022, Version 10–14.17.1), 
starting at 2.5 cm from the top of the ice in 10 cm intervals. Salinity and 
temperature data are available in Jones et al. (2023). 

The brine salinity and brine volume fraction were calculated for each 
ice section using the equations given by Cox and Weeks (1983) and 
Leppäranta and Manninen (1988) based on the sea-ice bulk salinities 
and sea-ice temperature data. Ice age was determined (FYI = first-year 
ice, SYI = second-year ice, Table 1) according to bulk salinity profiles 
(Fig. S1) and NSIDC ice age distribution data (https://nsidc.org/data/ns 
idc-0611/versions/4). 

Trajectories of the locations of the on-ice stations were calculated 
backwards in time from daily gridded sea-ice drift and concentration 
data. The ice location was tracked in a Lagrangian manner by calculating 
the location of the ice station in daily steps backward in time according 
to the sea-ice drift resampled to the current location of the ice station. 
This was conducted similarly to the method described by Kimura et al. 
(2020) but tracking backwards in time instead of their forward tracking. 
At each daily timestep, the sea-ice concentration was retrieved at the ice 
station location, and the trajectory was ended when the condition of ice 
concentration below 50 % was met for three consecutive timesteps. An 
extension to the trajectory is shown as a dotted line to where the con-
dition of ice concentration below 15 % is met for three consecutive 
timesteps, in order to give some idea about the likely range of endpoints 
of the trajectories. 

All sea-ice data used in the backtracking are from the EUMETSAT 
Ocean and Sea Ice Satellite Application Facility (OSI SAF, https://osi-s 
af.eumetsat.int/). The sea-ice drift data was derived from multiple 
passive microwave sensors. The sea-ice drift climate data record version 
1 (OSI SAF, 2022a) was used for dates up to and including 2020, and the 
sea-ice drift near real time product (OSI SAF, 2010) for dates from 2021 
onwards. The sea-ice concentration was also based on selected passive 
microwave sensors. The sea ice concentration climate data record 
version 3 (OSI SAF, 2022b) was used for dates up to and including 2020, 
and the accompanying interim climate data record version 3 (OSI SAF, 
2022c) for dates from 2021 onwards. 

In Fig. 2, the sea-ice trajectories are shown together with a back-
ground of ice age at the closest time to the sampling at the locations. The 
sea-ice age data is from Tschudi et al. (2019) and covers the period up to 
December 2021. For stations after 2021, the sea-ice type from Coper-
nicus Climate Change Service (C3S) was used instead (C3S, 2023). 

The sea-ice drift products have spatial resolutions of 75 km (climate 
data record) and 62.5 km (near real time product) and therefore neither 
the products nor the calculated trajectories can necessarily capture the 
correct behavior and history of an individual ice floe. In addition, there 
is uncertainty in the ice drift product, which will accumulate the further 
back in time the trajectory reaches. Finally, there is significant uncer-
tainty about the exact endpoint of the trajectory, which here was ended 
at 50 %–15 % ice concentration where only a corresponding percentage 
of the ice parcels will still be over ice. The trajectories therefore 
contribute to an overall picture of how the ice has moved on a large scale 
but cannot be taken as precise for an individual ice floe. Finally, the 
trajectories were cut when backtracked into a masked region which 
reaches approximately 100 km from land, based on a landmask from the 
drift product. This especially affects ice stations close to Kvitøya or 
Edgeøya (see Fig. 2) where some stations have very short trajectories or 
could not be tracked at all due to trajectory trimming in coastal regions. 

2.5. Statistical and traits analyses 

Plots and statistical analysis were performed with RStudio (version 
2023.03.0 + 386) using R-basis (version 4.2.3) and following packages: 
vegan (2.6.4, Oksanen et al., 2022), ggplot2 (3.4.1, Wickham, 2016) 
tidyverse (2.0.0, Wickham et al. 2019), devtools (2.4.5, Wickham et al., 
2022), corrr (0.4.4, Kuhn et al., 2022), corrplot (0.92, Wei and Simko, 
2021), reshape2 (1.4.4, Wickham, 2007) and psych (2.3.3, Revelle, 
2023). 

A Spearman correlation test (S2.1) was run to test for significant 
correlations between variables followed by a Correspondence Analysis 
(CA) and a Canonical Correspondence Analysis (CCA) to visualize 
community similarity patterns across seasons. The CA and CCA was 
performed separately for both integrated abundance and biomass values 
(for the integrated lowermost 30 cm) of sea-ice protist (family level) 
and, separately, meiofauna (large group level, mainly Phylum except for 
“Copepod nauplii” and “Harpacticoids”) datasets. Meiofauna and protist 
datasets were square-root transformed before analysis and environ-
mental data were standardized (scale “x”, the community data matrix, to 
zero mean and unit variance) with the “decostand” command in R. 
Significant (significance level of alpha = 0.05) environmental parame-
ters were fitted onto the ordinations (S2.2). 

One-way PERMANOVAs were run to test for significant differences in 
community structure (based on abundance data) between different 
factors and variables (see S2.3) based on the Bray Curtis Similarity 
(permutations: 9999). 

Once taxa were identified, a biological traits analysis was conducted 
for sea-ice meiofauna using a total of 6 traits (body length, body width, 
salinity tolerance, temperature tolerance, feeding mode, and diet) rep-
resenting a total of 29 modalities. The trait-by-taxon matrix was 
compiled using Patrohay et al. (2022). Information on taxa found in the 
study area but missing in Patrohay et al. (2022) was gathered through a 
literature review and affinity to trait modalities was assigned using fuzzy 
coding with 0 representing no affinity to a given modality, 1 and 2 
indicating partial affinity and 3 indicating full affinity (Chevenet et al., 
1994). A trait-by-station matrix was then created for each seasonal 
sampling campaign by multiplying the proportional taxonomic abun-
dances at each station by the traits-by-taxon matrix following the pro-
cedures outlined in Degen et al. (2018). 

3. Results 

3.1. Seasonality of environmental conditions at sea-ice stations and ice 
cover 

The mean sea ice concentration at most sampled locations varied 
between 71 and 98 % (Table 1), with the exceptions of lower values 
(20–28 %) at the northernmost stations P6 (near the shelf break where 
Atlantic Water flows in) and P7 (in the Nansen Basin) in March 2021. 
The calculated ice trajectories indicated that the young pack ice sampled 
in March 2021 and 2022 was locally formed on the Barents Shelf in the 
northeast near Franz Jozef Land (elapsed drift time: <60 days; ice tra-
jectories in Fig. 2. At the southern shelf stations P4 (in 2021, Fig. 2a) and 
P5 (in 2022, Fig. 2b), the ice was potentially young ice that was 
seasonally formed (elapsed time: <10 days, Fig. 2). Note, that these two 
stations were located close to Kvitøya and therefore their trajectories 
were trimmed due to the landmask. However, in a test, allowing the 
trajectories to cross-over coastal regions still gave elapsed time <100 
days. Overall, these results agree with the bulk salinity profiles showing 
relatively high values throughout the core vertical profile, typical for FYI 
but with potential loss or melt of the lowermost bottom centimeters 
causing low values at the bottom (Fig. S1). 

In May 2021 all sea ice was considered FYI, with slightly older ice 
floes (about 200 days ice drift, Fig. 2c and Fig. S1) at stations P6 and P7 
starting the drifting from the northeastern Nansen Basin northeast of 
Franz Josef Land into the Barents Sea. The ice pack at the shelf stations 
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Fig. 2. Drift trajectories of the ice stations from the study sites in March 2021 (A), March 2022 (B), May 2021 (C), July 2021 (D), August 2019 (E) and December 
2019 (F). The estimated trajectories (colored lines, first colorbar: elapsed time in trajectory) are tracked backwards in time by using OSI SAF sea-ice drift and 
concentration data (OSI SAF, 2010, 2022a,b,c, see Section 2.4) from the years 2019–2022. Numbers on the map at each trajectory indicate the stations (their names 
given in the inset legend) and the location of the start point for backtracking. The background field, and the second colorbar, present the age of sea ice given in years 
(or age classes in (B)) from the closest data to the mean sampling date of the sites (data from NSIDC 2019, C3S 2023, see Section 2.4). The white color in these maps 
shows both open water and coast masking in the age and type fields. Grey solid lines indicate the 1000 m bathymetry contour and the entrance to the Arctic basin 
area. Names of locations referred to in the text (Section 3.1) are included in the map. 
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P4 and P5, in contrast, was younger (<50 days) and originated locally, 
however also here the ice pack at the two shelf stations was too close to 
land to be fully tracked. The mean drift field suggests that the sea ice at 
these locations would be approximately the same age, or less, as two 
northern stations. In July 2021 (Fig. 2d), the SYI with lower bulk sa-
linities originated from the Kara Sea shelf east of Franz Jozef Land 
within 500–600 days earlier and drifted over the northeastern Nansen 
Basin into the Barents Sea. Similar to July, the August pack ice had 
drifted for 400–600 days, originating in the Laptev Sea (P6 and P7, 
Fig. 2e) or nearby over the Eurasian Basin (SICE4). Older ice age esti-
mates are also supported by the low bulk salinity values in the vertical 
profiles indicating old FYI or SYI. In December 2019 (Fig. 2f), the tra-
jectories indicated a north south difference with older ice around the P7 
station (400 days of drift) coming from the northeastern Nansen Basin, 
while ice at P5 had potentially formed locally (<50 days) but also here 
the near-land location is the reason for the short trajectory. 

Ice thickness varied between stations and seasons. Generally, we 
found younger and thinner ice (<50 cm) in March and early May, while 
later in May and in the summer the sea ice encountered was over 100 cm 
thick (Table 1) agreeing with estimated older ice age based on drift and 
bulk salinities (see above). The sea-ice floes in December were very 
heterogeneous with mean ice thickness of 35 cm at station P5 and 112 
cm at station P7. Freeboard varied between − 1 and 8 cm in December, 
March and early May, while from mid-May to August it ranged from 8 to 
17 cm (Table 1). Snow thickness varied between stations and with 
seasons, with lowest snow depth of 1.5 cm in March 2022 (JC3 – P5) and 
2.0 cm in July (JC2-1 – P5 and P6). Highest average snow depth was 
measured in March 2021 (Q1 – P4) with 15.5 cm and in May (Q2 – P5) 
with 13.5 cm. 

Vertical profiles of ice in situ temperatures, brine salinity and brine 
volume at the different stations are presented in Fig. S1. Sea ice was 
coldest in March (2021 and 2022 between < − 5 ◦C and − 11 ◦C) and 
December (e.g., at P5 –12 ◦C top cm) in the top centimeters of the ice and 
gradually increased towards the ice-water interface. The temperature 
was close to the freezing point of sea water (around – 2 ◦C) in the 
lowermost centimeters during all sampling season, except July when it 
was warmer (− 0.5 to − 1 ◦C at P5 and P6). In July and August the sea-ice 
temperature increased within the sea ice to the top centimeters due to 
warmer air temperatures in these months. Brine salinities differed 
largely between the seasons and stations depending on ice in situ tem-
peratures. Following the temperature gradient, the calculated brine sa-
linities increased from December to May from bottom to top with 
highest values of 238 in the top 2.5 cm of sea ice at station P7 in March 
2021. In July/August brine salinity was lowest in the warm top centi-
meters of the ice and only ranged between 0.4 and 31.0. The calculated 
relative brine volume fraction was during all sampling season >5 % in 
the 10 lowermost bottom centimeters of the ice (exception P6 in March 
2021, <5 %), while on average the fraction was <5 % in the top cen-
timeters of the ice. In most cases, the relative brine volume increased 
from the top towards the bottom, with large variations in the interiors of 
the sea-ice cores. 

3.2. Seasonal dynamics of integrated Chla, POC, protist biomass and 
meiofauna abundance/biomass 

The Chla:Phaeo ratio was the lowest during March, July and 
December (Table S3, value ranging between 0.7 and 2.3). In August 
2019, the average ratio was 3.3 across stations and the highest value 
recorded in May 2021 was 8.4 at P4 and 6 at P7. The molar C:N ratio was 
highest in March (ranging from 17 to 47, Table S3), July and December, 
and lower in August and May (ranging from 7 to 13, Table S3). Inte-
grated Chla (0–30 cm) showed a clear seasonal pattern (Fig. 3a) with 
minimum values of <0.2 mg m− 2 in March and a ~10 to 100-fold in-
crease to peak values of up to 29.4 mg m− 2 in May. By July and August 
integrated Chla had declined again (range from 1.1 to 3.2 mg m− 2). 
December integrated Chla at station P5 was similar to values measured 

in March while it exceeded those measured at station P7 in July and 
August. In contrast to Chla, integrated POC showed no clear seasonal 
pattern (Fig. 3b) with average March values (796 ± 229 mg C m− 2) 
being only slightly lower than those measured in May, July and August 
(1082 ± 433 mg C m− 2). POC:Chla ratios were high throughout the year 
(range from 258 to 23,352, Table S3), except in May when the POC:Chla 
ratios were <160. 

Integrated sea-ice protist biomass also increased drastically from 
March to May, remained elevated from July through August and differed 
notably in December (Fig. 3c). Diatoms were dominant taxonomic group 
in biomass estimates, except in March when flagellates were dominant, 
and co-dominant with dinoflagellates in August. The seasonal pattern of 
diatoms followed that of integrated Chla, with highest biomass observed 
in May while dinoflagellates and flagellates showed a secondary peak in 
August, similar in magnitude to the one in May. The August peak was 
particularly pronounced in ciliates, exceeding May biomass by roughly a 
factor of 2, in agreement with the seasonal trend of larger ciliate biomass 
and abundance in the meiofauna fraction (Fig. 3d, e). Compared to the 
other protist groups integrated ciliate biomass was low in December at 
station P7. 

At higher taxonomic resolution (Fig. 4), pennate diatoms dominated 
integrated diatom biomass throughout the seasons with minor contri-
butions of Attheya septentrionalis and some pelagic species belonging to 
the genus Thalassiosira as the dominant centric diatoms (Fig. 4a). In 
March 2022 Navicula septentrionalis, Thalassiosira cf. gravida/antarctica 
and Nitzschia frigida dominated diatom biomass while in March 2021 
Navicula spp. (few N. transitans), Thalassiosira spp. (including spores) 
and unidentified pennate diatoms were the dominant taxa. From the 
peak in May to August, typical pennate sea-ice diatoms including 
Navicula pelagica, N. transitans, Nitzschia frigida, Diploneis litoralis and 
Entomoneis paludosa dominated diatom biomass. The surprisingly high 
diatom biomass at station P7 in December was dominated by N. pelagica 
(>77 % of total diatom biomass). Taxa belonging to the dinoflagellate 
order Gymnodiniales including the several unidentified species of the 
genus Gymnodinium, dominated integrated dinoflagellate biomass 
throughout the year (Fig. 4b). Other species such as G. ostenfeldii 
dominated integrated biomass during several seasons (March 2022, July 
and August). Cochlodinium spp. were an important part of the dinofla-
gellate biomass at almost all seasons (but not in December). Within the 
flagellates, unidentified flagellates (particularly the 7–10 µm size group) 
dominated integrated biomass with unidentified chrysophytes and the 
green algae Pyramimonas spp. coming next in importance (Fig. 4c). In 
May ciliate biomass was dominated by the mixotrophic species Meso-
dinium rubrum, particularly at station P6, together with Strombidium sp. 
and Didinium sp., except at station P7 where unidentified ciliates and 
Euplotes sp. dominated (Fig. 4d). During peak ciliate biomass in August a 
mix of M. rubrum, Uronema marinum, Didinium sp., Strombidium sp. and 
unidentified taxa dominated the ciliate community. In March, low 
ciliate biomass was dominated by Didinium gargantua in 2022 and cysts 
of unidentified ciliates in 2021. In terms of species richness, in May a 
total of 91 taxa was observed including the highest number of diatom 
taxa (43), in July 91 total taxa with 29 diatoms, and the highest total 
number in August with 95 taxa including 33 diatoms. 

Overall, the sea-ice meiofauna community was comprised of har-
pacticoid copepods, different copepod nauplii, rotifers and a diverse 
range of large ciliates (>20 µm) which contributed significantly to 
biomass in all seasons. In total we found six different phyla, a list of 
identified species/taxa and morphotypes is given in the Table S4. The 
seasonal changes in sea-ice meiofauna biomass (Fig. 3d) followed in 
general the protist and Chla biomass patterns (Fig. 3b and c). In March 
2021 meiofauna was completely absent in 2021 (Q1: P4, P6 and P7), or 
had very low biomass in March 2022 (on average <0.08 mg C m− 2, 
Fig. 3d). Meiofauna biomass was highest in December (averaged 0.4 mg 
C m− 2), followed by August (averaged 0.3 mg C m− 2), excluding a high 
May value caused by a single amphipod species (P7: 56.71 mg C m− 2). 
Abundances showed a different pattern. Highest abundances were found 

M. Marquardt et al.                                                                                                                                                                                                                            



Progress in Oceanography 218 (2023) 103128

8

Fig. 3. Depth-integrated A) Chlorophyll a, B) POC, C) protist biomass, D) meiofauna biomass, E) meiofauna abundance and F) diet type trait frequency for meiofauna 
for the lowermost bottom 30 cm of the sea ice. Note the difference on the y-axis for the depth-integrated data. Note at P7 station Q2 sections different scaling for 
integrated metazoan = 56.71 mg C m− 2. 
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in August with an average of 23 × 103 Ind. m− 2 (Fig. 3e), and in 
December with a mean of 11 × 103 Ind. m− 2. In March (2022), copepod 
nauplii, harpacticoids, a few ciliates and other metazoans (mainly tro-
chophora larvae at station SICEK) contributed largely to the biomass. In 
May ciliates dominated the biomass (b) and abundance (a) at P4 (b: 0.07 
mg C m− 2, a: 5998 Ind. m− 2) and P6 (b: 0.1 mg C m− 2, a: 12 × 103 Ind. 
m− 2), while copepod nauplii were a major contributor at P5 (b: 0.05 mg 
C m− 2, a: 2734 Ind. m− 2). The occurrence of a single specimen of the ice 
amphipod Apherusa glacialis caused the high biomass value at P7 
(Fig. 3d, b: 56.71 mg C m− 2, a: 64.8 Ind m− 2). We identified at least 
eleven different morphotypes of ciliates (Table S4), including tintinnids, 
and the genera Didinium spp. and Euplotes spp. Rotifers were also com-
mon in May, for instance at P6 (b: 0.09 mg C m− 2, a: 3779 Ind m− 2), and 
most rotifers identified belonged to the Order Ploima and about 98 % 
were assigned to the Synchaetidae family. 

Beside high ciliates biomass/abundance, the harpacticoids Tisbe spp. 
and especially Microsetella spp. were common in the sea ice at several 
stations in July and August, (e.g., July at P5: b: 0.06 mg C m− 2, a: 105 
Ind m− 2). During the phases of high harpacticoid biomass in these 
summer months, we found many eggs and loose egg sacs in the ice (July: 
610–1610 Ind m− 2, August: 134–1620 Ind m− 2). Many of the eggs were 
suggested to be copepod eggs. Biomass was not calculated for eggs. 

Interestingly, we found the planktic foraminifer Neogloboquadrina 
pachyderma, but also benthic foraminifers, such as Elphidium cf. exca-
vatum and Bolivinia spp., both alive and dead in the sea ice in July, 
August and December (Fig. 3d, e). Foraminifers contributed negligibly 
to the community biomass in July and August (0.004 mg C m− 2) due to 
their low abundance (55–197 cells m− 2) and small size. 

Total meiofauna biomass in December was 0.15 mg C m− 2 at P5 
(total integrated abundance: 5494 Ind. m− 2), similar compared to May, 
July and August. P7, however, had the highest biomass (0.62 mg C m− 2) 
from all stations in all seasons and presented a very diverse community 
composition for that time of the year. Foraminifers were quite common 
in the ice (1462 Ind. m− 2) next to ciliates (8558 Ind. m− 2), copepod 
nauplii (2296 Ind. m− 2) and rotifers (1617 Ind. m− 2) and they contrib-
uted a little more to the biomass (0.009 mg C m− 2) than in the summer 
months. The highest biomass, here, was estimated for other metazoan 
(0.3 mg C m− 2) that belonged to acoels (white morphotype, Phylum 
Xenacoelopmorpha) and gastropods, potentially the subfamily 
Lacuninae. 

The traits analysis revealed that the meiofauna community was 
comprised of mainly pelagic species with relatively low salinity and 
temperature tolerance that were present in the ice year-round (Fig. S5). 
The frequency of species with varied tolerance did not fluctuate much 

Fig. 4. Depth-integrated biomass (mg C m− 2) of the four major protist groups for the lowermost 30 cm of the sea ice: A) diatoms, B) dinoflagellates, C) flagellates and 
D) ciliates. Note the different y-axis scales. 
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with seasons, nor did feeding mode or diet traits (the latter given in 
Fig. 3f, other in Fig. S5). Omnivores represented the most dominant diet 
type trait frequency throughout the year (25–50 %, Fig. 3f), followed by 
detritivores (~25 %) and bacterio-/ciliovores (~25 %), while purely 
herbivore species only were represented in a smaller fraction in August 
and December (<15 %), but were dominant in July (~30 %) at P5 and 
P6, as well as at P5 in March (2022). Suspension feeders were most 
present in May (Fig. S5). 

A Correspondence analysis (CA) and a Constrained Correspondence 
analysis (CCA) were run with both protist and meiofauna community 
datasets (Fig. 5, S2.2 for explanatory variables and detailed results). The 
CCA model was only significant for the protist community (Fig. 5b) but 

not for the meiofauna community (CA presented in Fig. 5a). As the 
outcome of the CA for sea-ice meiofauna abundance and biomass was 
similar and showed little variation, we only present the CA based on 
abundance here. Further, a Canonical Correspondence Analysis (CCA) 
was also performed for both protist and meiofauna abundance and 
biomass data. The CCA model was not significant for the sea-ice meio-
fauna data and is, therefore, not presented. The CCA model with the 
protist data was significant for both abundance and biomass, and only 
the abundance-based CCA results are presented here to keep results 
comparable with the meiofauna CA. 

The meiofauna samples corresponded very much with each other 
and hence grouped around the zero point (Fig. 5a), especially the 
communities in July and August. SICEK and P5 samples in March, 
however, were ordinated furthest away from the other samples and were 
most dissimilar. Abiotic and biotic variables were fitted onto the CA but 
only significant variables (p < 0.05) are shown. Variables that influ-
enced the meiofauna community composition to a certain degree in 
May, July and August were Daylength, Chla:Phaeo ratio and ice tem-
perature, while brine salinity influenced March and December compo-
sition. While the CA for the most part did not indicate large variations, 
the one-way PERMANOVAs test (see S2.3 for details) found significant 
differences between meiofauna community datasets (integrated abun-
dance presented, biomass results in S2.3) and Month (March, May, July, 
August, December; R2 = 0.74, p < 0.0001) and daylength (R2 = 0.6, p <
0.004). Further PERMANOVA tests indicated that meiofauna abundance 
showed significant differences for the origin of the ice floe (shelf versus 
basin areas; (R2 = 0.19, p < 0.02). 

The CCA model (p < 0.001) with protist data showed a more distinct 
seasonal separation than the meiofauna dataset. The CCA1 axis 
explained 22.5 % (p < 0.005) and CCA2 axis 16.9 % (p < 0.032) of the 
variance (total inertia: 32.8, constrained: 21.3, unconstrained: 11.5). 
March samples of both years grouped together and showed similarities 
with P6 in July and most of the May stations. Low snow thickness 
seemed to be a driver (negative correlation) of the protist communities 
in July (P5, P7) and December (P5, P7). Other significant explanatory 
variables such as highest meiofauna abundance, highest ice thickness 
and elapsed time of ice drift were driving the community composition in 
August. These variables and time of daylength explained the most 
variation between August versus the other months. Ice temperature, 
brine salinity and C:N ratio were not significant. The one-way PERMA-
NOVA tests supported the CCA model (see S2.3 for details) and found 
significant differences between protist community datasets (integrated 
abundance presented and biomass results in Table S2.3) and Month 
(March, May, July, August, December; R2 = 0.78, p < 0.0001) as well as 
daylength (R2 = 0.6, p < 0.0006). Further tests indicated that there were 
significant differences between protist communities regarding ice 
thickness (R2 = 0.93, p < 0.03) and elapsed time of ice drift (R2 = 0.97, 
p < 0.001). 

3.3. Vertical distribution patterns of Chla and (POC concentrations, 
protist and meiofauna abundance/biomass 

Chla was very low but measurable in March of both years, with 
concentrations ~0.09 µg/L in the lowermost 3 cm and usually 
decreasing towards the top of the ice (S6 a). Highest ice Chla concen-
trations were recorded in May in the lowest 3 cm at P4, P6 and P7 with 
values between 10 and 181 µg/L, with the highest record in the rela-
tively thin ice (22.5 cm) at P4 (Table 1). In July and August, vertical 
Chla profiles showed average concentrations of 2.4 µg/L in the lower-
most ice section. In these two months a different pattern was observed, 
and Chla concentrations in the ice interior were comparable to or higher 
than in the lowermost bottom centimeters (e.g., July – P6, August SICE4, 
S6 a). In December, high concentrations of Chla were measured at P7, 
(0.4–6.5 µg/L) with the highest values in the 10–20 cm ice section and 
not the bottom section. At P5 Chla was rather negligible from bottom to 
top (Chla: <0.1 µg/L) and comparable with March periods. 

Fig. 5. A) Correspondence Analysis (CA) based on integrated ice meiofauna 
abundance of large taxa groups. Significant variables (p < 0.05) were fitted 
onto the CA (detailed results in Table S2.2) and B) Canonical Correspondence 
Analysis (CCA) based on integrated ice protist abundance (Family level). Filled 
circles indicate station and season sampled. Arrows represent quantitative and 
standardized explanatory vectors with arrowheads indicating their direction of 
increase (results in Table S2.2). Explanatory variables/vectors: Chla:Phaeo =
Chlorophyll a: Phaeophytin ratio, Ice_thick = Ice thickness, Algae_abu = total 
protist abundance, Snow_thick = Snow thickness, Ice_temp = Ice in situ tem-
perature, Sbrine = Brine salinity, Chla_tot = total Chlorophyll a concentration, 
BrineVol = Brine volume. 
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POC concentrations were relatively homogenous throughout the 
different seasons (S6 b vertical plot, also see also Fig. 3b) and also 
vertically, with a much weaker concentration gradient from bottom to 
top compared with Chla. In March (2021 and 2022), highest POC values 
were measured in the bottom 10 cm of the ice with an overall station 
average of 1516 µg/L. Very high values were detected at SICEK with 
5030 µg/L in the bottom 3 cm. Highest POC concentrations, agreeing 
with highest Chla values, were found in May at P4 in the lowermost 3 cm 
(7907 µg C L− 1). In July and August POC varied between 236 and 3120 
µg/L, including high POC concentration in the top centimeters at SICE4 
in August (150–160 cm: 3120 µg/L). In December, POC was between 
336 and 565 µg/L at P5 and varying between 417 and 900 µg/L at P7, 
thus, in contrast to the Chla pattern, relatively similar with slightly 
higher concentrations at P7 (10–20 cm: 900 µg/L). 

The algae abundance was low in March 2021 and 2022 with 
maximum abundances of 0.1 × 106 cells L− 1 in the bottom 3 cm (e.g., at 
Q1 - P7, Fig. 6a), dominated by flagellates. In the top ice section at SICEK 

and P7 (March 2022) diatoms of the genus Navicula spp. and Nitzschia 
frigida were slightly higher in abundance. In March 2022, the vertical 
protist biomass distribution was higher for dinoflagellates, especially in 
some sections at P5 and P7, dominated by Gymnodinium spp.. Overall, 
the vertical biomass distribution of protists at most stations followed the 
abundances pattern (Fig. 6b). In May, highest abundances were recor-
ded in the bottom 3 cm at P4 (30 × 106 cells L− 1) with diatoms domi-
nating in abundances and biomass and decreasing to the top of the ice 
(Fig. 6). Also in July, diatoms were the major taxa contributing to 
abundance (and biomass) within the ice, mainly in the bottom centi-
meters, but very low in abundances (<2 × 106 cells L− 1) with Nitzschia 
frigida observed at all stations. In August 2019, unidentified flagellates 
(3–7 µm) dominated the protist composition in abundance (Fig. 6a). The 
haptophyte Phaeocystis pouchetii (not shown), was also present, but did 
not contribute much to biomass. The protist biomass was more homo-
geneous in composition compared to the other months, with co- 
dominance of diatoms (e.g., Synedropsis hyperborea, Nitzschia frigida 

Fig. 6. Vertical distribution (lowermost 30 cm of ice floes) of sea-ice protist groups in the different months in the northwestern Barents Sea. A) Abundance (in 106 

cells L− 1), and B) Biomass (µg C L− 1) for the four major taxonomic groups. “St_ice” refers to the various SICE stations cruise, see Table 1. Note that the x-axis for the 
March cruises is different from the others. 
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and Navicula pelagica) and especially dinoflagellates (e.g. Dinophyceae 
indet., Gymnodiniales indet., Cochlodinium sp.). Ciliates such as Meso-
dinium rubrum, Didinium sp., and Uronema marinum among others, were 
low in abundance but contributed a higher biomass share. In August, the 
abundance and biomass were not concentrated in the bottom 3 cm of the 
ice, but also found to be stable in the other sections compared to the 
other sampling periods. Protist abundance at P5 in December was low 
throughout the whole core supporting the Chla results (Fig. S6a). At P7, 
as the Chla and POC results indicated (Fig. S6), the protist community 
was dominated by diatoms in abundance and biomass throughout all ice 
sections (e.g., at 3–10 cm, a: 2.2 × 106 cells L− 1, b: 250 µg C L− 1) fol-
lowed by unidentified flagellates (3–7 µm) and within high abundance 

of Chrysophyceae cysts (e.g., at upper ice sections, 0.5 × 106 cells L− 1). 
In March, sea-ice meiofauna was either completely absent (2021) or 

occurred in very low in abundance in the lowermost three centimeters 
(e.g., 23 Ind. L− 1 at P7 in 2022), with decreasing abundance higher up in 
the ice (Fig. 7a). In May, abundance and biomass were also highest in the 
bottom 3 cm, with very few animals found higher up in the ice column. 
Highest abundance (0–3 cm: 837 Ind. L− 1) was detected at P6, domi-
nated by rotifers (132 Ind L− 1) and ciliates (0–3 cm: 651 Ind L− 1). 
Biomass was highest in the lowermost centimeters of P7 (2.1 µg C L− 1), 
explained by a single Apherusa glacialis specimen (see above). Meiofauna 
abundance was more uniformly distributed within the four core sections 
in July (e.g. P6: 44–62 Ind L− 1) with a slightly higher variability in 

Fig. 7. Vertical distribution (up to 30 cm) of sea-ice meiofauna, including large ciliates and metazoan eggs, through the different months in the northwestern Barents 
Sea. A) Abundance (Individuals L− 1) for the major taxa and eggs counted. B) Biomass estimates (µg C L− 1), eggs are not included here. Stations indicated on the right 
side, “St_ice” standing for the different SICE stations per cruise, see Table 1. Note the x-axis can vary in the different months. 
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biomass. For instance, at P6 biomass peaked in the 10–20 cm section 
(0.006 µg C L− 1, Fig. 7b), mainly driven by rotifers. In August ciliates 
were the main contributors throughout all ice sections examined with 
little vertical variability (Fig. 7). Similar to July, biomass was more 
variable and highest in the lowermost 3 cm and peaked at P6 (7.0 µg C 
L− 1) with harpacticoids as main contributor (5.6 µg C L− 1). In December, 
similar abundances were found as in August (~100 Ind L− 1). However, 
in this month the values were highest in the bottom 3 cm and decreased 
towards the higher sections, with P7 highest in abundance (0–3 cm: 243 
Ind L− 1) and biomass (8 µg C L− 1). Abundance and biomass were lower 
at P5 in December (a: 3.6–101 Ind L− 1, b: 0.3–1.5 µg C L− 1) but showed 
the same decreasing trend from bottom to top. 

4. Discussion 

This study is, to our knowledge, the first seasonal investigation 
characterizing both sea-ice primary and secondary producers over the 
entire seasonal cycle in the northwestern Barents Sea. Although the 
samples were taken as a series of snapshots in non-contiguous years due 
to the unfortunate worldwide COVID-19 pandemic, they depicted clear 
seasonal signals of biological responses (Fig. 3) to the changing envi-
ronment (Fig. 5). Sea-ice protists and meiofauna were found all year 
round in varying abundances and biomass (apart from meiofauna in 
March 2021). The seasonal succession pattern was especially pro-
nounced in the sea-ice protist community and algal biomass, while 
meiofauna showed a delayed response relative to the protists and not 
much variation in composition. In addition, many of the meiofauna taxa 
identified in this study can switch between summer grazing and winter 
omnivory (Marshall, 1949; Uye et al., 2002; Kramer, 2011) leading to 
less pronounced seasonal changes in feeding trait composition. To 
develop a seasonally-based scenario, we therefore defined seasons ac-
cording to ice algal phenology as March – late winter/early spring, May 
– (late) spring, July – late-bloom/early summer, August – late summer/ 
autumn and December – polar night/winter. 

4.1. March – late winter/early spring 

In March (2021 and 2022) Chla, protist and meiofauna biomass was 
negligible or even absent. Diatom biomass values (0.25–0.27 mg C m− 2) 
were similar to data from sea ice in northwestern Svalbard in March to 
May (Leu et al., 2015 and references therein) but higher than in the 
Nansen Basin in March (Olsen et al., 2017; Granskog et al., 2018). The 
high POC values in March, coupled with concurrently low algal and 
meiofauna biomass, suggest the presence of other carbon fractions not 
examined in our study, such as detritus, viruses, bacteria, and exopo-
lymeric substances. These components may occur in sea ice in high 
proportions and dominate during wintertime (Krembs et al., 2011; 
Torstensson et al., 2023). High C:N ratios well above the Redfield ratio 
of 6.6 in both March 2021 (C:N = 18) and 2022 (C:N = 32) suggested 
allochthonous sources of carbon. 

The sea-ice diatom composition in the two March periods was largely 
similar (Fig. 5b CCA) and somewhat diverse with dominance of, e.g., 
Navicula septentrionalis, Thalassiosira spp. and Nitzschia frigida. We only 
detected small differences: the community composition comprised more 
pelagic species in 2021 while in 2022 the ice-associated diatom Nitzschia 
frigida was more abundant. In both years, the occurrence of pelagic 
diatom taxa belonging to the genus Thalassiosira suggests recruitment 
from the water column. Thalassiosira is a very common pelagic genus in 
Arctic seas (Poulin et al., 2011) and more frequently observed in FYI 
compared to older ice (Hop et al., 2020). These March findings were 
overall consistent with earlier findings that early spring sea-ice com-
munities are usually diverse during the early stage of freeze-up, which 
later will evolve towards a more typical sea-ice assemblage (Kauko et al., 
2018). 

At first sight, the low densities of biota during March may be 
explained by the overall high brine salinity and low brine volume 

fraction which may inhibit the presence of sea-ice biota specifically in 
impermeable ice interior sections (Friedrich, 1997; Golden et al., 1998, 
2007). This is for example also suggested by the low tolerance to 
extreme environmental settings found in the meiofauna trait analysis 
(see Fig. S5c and d). However, the bottom 10 cm of the sea ice did not 
actually show extreme values for physical properties and, still, meio-
fauna was genuinely low in abundance (2022) or even absent (2021). 
This finding could be related to a lack of seeding from the water column, 
sea floor or other ice floes, or it points towards the importance of water 
depth. Specifically benthic-origin taxa were limited in their occurrences 
to shallow shelf stations where recruitment from the benthos might have 
been facilitated as evident in the 2021 samples (Carey and Montagna, 
1982; Gradinger et al., 1999; Arndt et al., 2009). This argument is also 
supported by the higher abundance of pennate diatoms in March 2022, 
as those may survive in surface sediments and are brought back to the 
surface water layers by mixing processes from where they can enter sea 
ice (von Quillfeldt et al., 2003). Despite that, the low abundance of ice 
algae and other protists made food availability a likely limiting factor for 
meiofauna in March. Despite the food scarcity, copepod nauplii (i.e., 
young developmental stages) were the major group found in the Barents 
Sea ice in March (2022), albeit in very low abundance (e.g., P7 with <20 
Ind. L− 1). This finding is consistent with an earlier study from south of 
Svalbard/Storfjorden in March (up to 100 Ind. L− 1) (Schünemann and 
Werner 2005). Schünemann and Werner (2005), and references within, 
concluded that the copepod nauplii may endure the food-limited winter 
in the pack ice by being non-feeding naupliar stages or living of their 
storage lipids. Some even younger stages, namely metazoan eggs, were 
also present in the brine channels as early as March. Those potentially 
belonged to the copepods Calanus hyperboreus and/or Oithona spp.. Eggs 
of the winter spawner C. hyperboreus were present in the water column 
during our cruises in December and March. The wax-ester rich eggs are 
buoyant and drift to the under-ice surface ready for spawning in March 
to April for the nauplii to be able to graze on sea-ice algae (Conover 
et al., 1991). This explains their winter occurrence in our sea ice sam-
ples. In contrast the life cycle of Oithona spp. is not tied to the spring 
bloom, and therefore eggs were found during all sampled seasons (pers. 
observations by Christine Gawinski, UiT The Arctic University of 
Norway). 

Similar ice characteristics contributed to the limited interannual 
variation in community structure of ice biota between March 2021 and 
2022. In both years potentially locally formed and young, first-year ice 
dominated, which limits the time for sea-ice biota recruitment and 
seeding (Niemi et al., 2011; Kiko et al., 2017; Kauko et al., 2018). 

4.2. May – (late) spring 

From March to May, ice biota abundance and biomass strongly 
increased and community composition shifted for both protists and 
meiofauna in the young first-year ice. This is in agreement with earlier 
studies on protists in the winter to spring bloom transitions (Niemi et al., 
2011; Olsen et al., 2017; Hegseth and von Quillfeldt, 2022). Evidence for 
reaching the spring bloom stage was our integrated algal biomass values 
exceeding 1 mg Chla m− 2, which Leu et al. (2015) suggested as the 
threshold for defining an ice algae spring bloom. Our estimations for 
Chla and protist abundance in May were comparable to but lower than 
reported earlier in May for Barents Sea pack ice (Hegseth and von 
Quillfeldt, 2022). Abundance differences among stations could be 
related to local episodic ice melt events, e.g., at station P5 where also 
bulk salinity was relatively low, potentially due to melt events. Inter-
estingly, high Chla biomass at station P4 was not reflected in the 
microscopy-based protist biomass estimates which could be caused by 
loss of algae during sampling, or high contributions of small protist size 
classes (Müller et al., unpublished) which are hard to detect by light 
microscopy. 

In May protist community composition reflected a typical (late) sea- 
ice spring bloom situation: ice algae were dominated by pennate 
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diatoms such as Nitzschia frigida and Navicula pelagica, while centric 
diatoms such as Thalassiosira spp. and Attheya septentrionalis occurred in 
lower abundances as found in earlier studies (Tamelander et al., 2009; 
von Quillfeldt, 2000; Poulin et al., 2011; Arrigo, 2014; Hop et al., 2020). 
Other typically ice-associated pennate taxa previously recorded in the 
Barents Sea were Diploneis litoralis and Entomoneis paludosa (Poulin and 
Cardinal, 1982; Ratkova and Wassmann, 2005). Furthermore, the 
highest recorded Chla:Phaeo ratio of 2–8 and low C:N ratio (7–11) close 
to Redfield ratio (Redfield et al., 1963) indicated growing and generally 
not nutrient limited sea-ice algae (Gosselin et al., 1990; Gradinger, 
2009). Yet, differences in snow cover and resulting different irradiances 
and algal growth kinetics could have caused to local minor nutrient 
limitation or delayed algal growth effects indicated by highest C:N 
recorded at highest snow cover (Tables 1 and S3). 

In May, sea-ice protists and meiofauna contributed most to total 
POC, similar to May observations from north of Svalbard (Fernández- 
Méndez et al., 2018). The POC:Chla ratio range of 50–156 was compa-
rable to earlier values for ice algae in the Canadian Arctic (15 – 180, 
Hudson Bay, Gosselin et al., 1990). However, the upper values in either 
study were higher than the typical value found in healthy algal cells (45, 
Passow, 1991) again, as in March, pointing towards other particulate 
carbon sources existing within the ice not determined here (Torstensson 
et al., 2023). 

Similar to March, highest meiofauna and protist abundances were 
found in the lowermost bottom centimeters as is typical in growing first- 
year ice (Gradinger et al., 1999). The large contribution of larger ciliates 
and metazoan eggs are in line with previous sea ice spring studies 
(Nozais et al., 2001; Marquardt et al., 2011; Ehrlich et al., 2021). Also, 
harpacticoid copepods (Melnikov, 1989; Werner, 2005; Hirche and 
Kosobokova, 2011; Kosobokova et al., 2012, Timchenko et al., 2021) 
and rotifers are commonly reported from the ice habitats (Friedrich 
1997; Friedrich and De Smet, 2000). Averaged integrated metazoan 
abundances from all four stations varied between 130 and 4038 Ind. 
m− 2 which was slightly lower than values in Timchenko et al. (2021) 
who studied sea ice in April–May 2019 very close to our stations. 
Backtracking exercises in both Timchenko et al. (2021) and the present 
study indicated ice origin north of Franz Josef Land. Yet Timchenko 
et al. (2021) found benthic taxa in their samples, albeit in low abun-
dance, including Acari and Nematoda, which were absent in our study. 
They reported high abundances of harpacticoids, calanoid copepods and 
amphipods, but noted the absence of rotifers. Differences could be 
attributed to the extreme heterogeneity of the sea ice habitat down to 
the small scale (Spindler, 1994). 

The absence of nematodes throughout all seasons and stations in this 
study has also been found in other recent studies (Ehrlich et al., 2021; N- 
ICE dataset in Bluhm et al., 2018), and is potentially caused by a 
fundamental change in the sea ice regime. Nematodes, platyhelminth 
flatworms and acoels, the latter only found at a single occasion in 
December in this study, have previously reported as the most abundant 
taxa in several Arctic sea-ice studies (Friedrich, 1997; Gradinger, 1999; 
Gradinger et al., 1999; Nozais et al., 2001; Schünemann and Werner, 
2005; Gradinger et al., 2005). Nematodes are assumed to colonize the 
sea ice from sediments in shallow waters (Carey and Montagna, 1982; 
Gradinger et al., 1999) and even reproduce in the ice (Marquardt et al., 
2011; Gradinger and Bluhm, 2020; Ehrlich et al., 2021). Ehrlich et al. 
(2021) hypothesized that the absence of nematodes may reflect the 
reduction in multi-year ice and a reduced connectivity between the ice- 
producing Siberian shelves and the pack-ice areas of the deep Arctic 
Basin suggested by Krumpen et al. (2019). Further, the transition from a 
multi-year to a predominant seasonal Arctic ice cover limits the time for 
completing life cycles in the sea ice and will benefit biota of pelagic 
origin (Kiko et al., 2017; Ehrlich et al., 2021). This conclusion is 
generally supported by our results and by the substantial compositional 
overlap of the ice meiofauna with the under-ice community, which was 
only qualitatively sampled (Marquardt et al., 2023f). 

4.3. July – late-bloom/early summer 

By July, the main spring bloom had terminated and a more hetero-
trophic and detritus dominated succession stage was reached. Evidence 
for this interpretation lies in algal biomass values in the lowermost ice 
sections being below the spring bloom threshold of 1 mg Chla m− 2 (Leu 
et al., 2015), as well as lower algal abundances, higher POC:Chla and C: 
N ratios and high abundance of large ciliates in the meiofauna com-
munity. The more heterotrophic succession stage of ice biota in July 
combined with older ice ages (old FYI or SYI) could explain the higher 
POC concentration in our study (1100–1438 mg POC m− 2) compared to 
data from FYI east of Svalbard (543–620 mg POC m− 2 in Tamelander 
et al., 2009) as the older ice might have retained organic matter through 
the melt seasons. 

The low protist biomass in July was still dominated by diatoms. 
Species typical for the end of spring in the Barents Sea (e.g., Tamelander 
et al., 2009) were found such as the sea-ice diatoms Navicula transitans 
and Nitzschia frigida and pelagic species of the genus Thalassiosira (Leu 
et al., 2015). Interestingly, increased Chla values were found higher up 
in the ice which can be explained through more accessible interior space 
by higher internal permeability of summer sea ice (Tedesco et al., 2019) 
combined with biomass loss at the ice bottom due to melt (Gradinger 
et al., 1991; Assmy et al., 2013; Boetius et al., 2013). The high meio-
fauna abundance in July could also have contributed towards the 
decrease in ice algal biomass through grazing (Werner, 1997; Michel 
et al., 2002), as also supported through the trait frequency of herbivores 
(e.g., at P5 and P6). 

Interestingly, eggs were the most abundant contribution to total 
meiofauna abundances at this time with 54 %. The high abundance of 
eggs and their presence in all seasons in this and earlier studies (Carey, 
1992; Friedrich, 1997; Marquardt et al., 2011; Ehrlich et al., 2021) 
highlights once again the importance of sea ice as a nursery and 
reproduction ground (Grainger et al., 1985; Søreide et al. 2010; Mar-
quardt et al., 2011). This habitat function will likely be impacted by 
progressive sea ice loss. 

Metazoan abundance was relatively low compared to previous 
studies in the Arctic during June-July (Beaufort Sea - Kern and Carey 
(1983); North of Svalbard – Ehrlich et al., 2020; Barrow Alaska - Gra-
dinger et al., 2010). Such low values were unexpected given we sampled 
old FYI/SYI, which would have had longer time for settlement and 
growth of allochthonous ice metazoans than the sea ice that we sampled 
earlier in the year. Here a combination of several factors may be the 
cause, including the lack of multiyear ice (MYI) providing seed pop-
ulations of ice-endemic taxa, and the great water depth limiting the 
presence of often highly abundant larval and juvenile stages of benthic 
taxa in sea ice of shallow seas (Bluhm et al., 2017). Large ciliates 
contributed substantially to meiofauna abundance in our study in July, 
consistent with earlier studies (Gradinger et al., 1991; Marquardt et al., 
2011; Ehrlich et al., 2020). Ciliates dominating within the ice habitat 
may be explained through faster reproduction by cell division than 
metazoans. Their high relative contribution combined with the unique 
species composition of Arctic ice ciliates which is distinctly different to 
pelagic communities (e.g., Agatha et al., 1993) warrants a more detailed 
study on their biodiversity in future research. 

Although low in abundance, foraminifers including the pelagic 
Neogloboquadrina pachyderma and a few unidentified benthic specimens 
were found alive at two stations (P5 and P6). N. pachyderma is the 
dominant pelagic foraminifer species in polar regions (Volkmann, 2000; 
Schiebel and Hemleben, 2017) including the Barents Sea (Anglada-Ortiz 
et al., 2023). It has, however, only been sporadically observed within 
Arctic sea ice (Bluhm et al., 2018 and references therein), while regu-
larly occurring in Antarctic ice (Dieckmann et al., 1991). Finding this 
species in Barents Sea ice is not only biologically interesting but also 
relevant for paleoenvironmental applications (Bertlich et al., 2021). 
Supporting the passive transport theory, it is noteworthy that we 
detected not only living but also dead (transparent) individuals of 
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N. pachyderma at all stations in very high numbers (Table S4). Incor-
poration of this pelagic species could have happened while drifting over 
the deep basin water. In contrast, sea ice sampled in July drifted all the 
way from the Kara Sea (Fig. 2d) on the shallow Siberian shelf (on 
average ~130 m, Jakobsson, 2002). This origin could explain the 
presence of benthic foraminifers within the sea ice. 

4.4. August – late summer/autumn 

Ice algal biomass in August was slightly higher than in July and 
comparable to previous studies from the northern Barents Sea (Gra-
dinger and Zhang, 1997) and central Arctic Ocean (Fernández-Méndez 
et al., 2014) during the same season. The increased protist biomass was 
dominated by dinoflagellates which cope better with limiting nutrient 
concentrations typical for this period and are less prone to ablation due 
to their motility compared to ice-attached diatoms (Horner and 
Schrader, 1982; Alou-Font et al., 2013; Leu et al., 2015 and references 
within). 

This dominance by heterotrophic taxa (dinoflagellates and ciliates) 
compared to all other seasons is typical of late summer sea-ice algae 
community composition (Leu et al., 2015). Similar to July, protist 
abundance and biomass was low in the lowermost 3 cm, but increased 
higher up in the core, probably introduced by warmer under-ice water 
temperature and ice melting (Gradinger et al., 1991; Hegseth and von 
Quillfeldt, 2022). 

In August, we observed the haptophyte Phaeocystis pouchetii at all ice 
sections and stations, and even in high abundances at P7 where it was 
also highly abundant underneath the ice (Assmy et al. 2022e) and 
contributed to the vertical carbon flux (Bodur et al., 2023). This 
microalga is not common in sea ice but can occasionally occur in the 
brine channels during pronounced under-ice blooms potential initiated 
by leads in the pack ice (Assmy et al., 2017) and often occurs at later 
successional stage after the spring bloom in the Barents Sea water col-
umn (von Quillfeldt, 2000; Hegseth et al., 2019; Assmy et al., 2022e). 

Meiofauna abundance was highest in August for the entire study 
period and animals were more evenly distributed within the cores than 
in other seasons. While meiofauna abundances were similar to other 
Arctic studies, the composition was distinctly different (Gradinger et al., 
2005; Schünemann and Werner, 2005; Bluhm et al., 2018). The domi-
nance of ciliates had further increased, followed in abundance by roti-
fers, which have been previously reported from the Barents Sea 
(Friedrich, 1997; Friedrich and de Smet, 2000) in similar abundances. 
Interestingly, again foraminifers were found including Bolivinia spp. and 
Elphidium cf. excavatum. The latter species is common in sediments of 
Arctic shelf areas (e.g., Siberian shelf, Bauch et al., 2004) and was also 
present in Barents Sea sediments during our field campaign (Thaise de 
Freitas, University of Oslo, pers. observation). Benthic foraminifers are 
important proxies for the reconstruction of past sea-ice extent due to 
their fast response to changing environmental conditions (Seidenkrantz, 
2013; Fossile et al., 2020). As for July, the sea ice drift trajectories 
suggest that those benthic foraminifers were incorporated into the sea 
ice on the shallow Siberian shelf, in this case the Laptev Sea shelf where 
they have also been reported before (Lukina, 2001; Bauch et al., 2004). 
We exclude local incorporation at P6 and P7 due to the water depths 
exceeding 800 m. The occurrence of living specimens within the ice after 
400–600 days of drift indicates that they can use the ice as a habitat and 
reproduce, since their life span may last for up two or more years at 
higher latitudes (Goldstein, 1999). 

4.5. December – polar night/winter 

The harsh environmental conditions within Arctic winter sea ice in 
terms of low irradiance, temperatures, and brine volume fractions and 
high brine salinities cause substantial stress on biota living within the ice 
(Lund-Hansen et al., 2020). This agrees with low Chla and protist 
biomass at P5 as seen in earlier observations (Gradinger and Ikävalko, 

1998; Lund-Hansen et al., 2020), pointing towards the heterotrophic 
phase of the ice biota seasonal cycle (Leu et al., 2015). Surprisingly, the 
basin-station P7, in contrast, had very high integrated Chla and diatom 
biomass contributions by phytoplankton species (e.g., N. pelagica) 
frequently observed in the region around Svalbard all year round (Hop 
et al., 2020). Algal abundances at P7 were even two orders of magnitude 
higher than winter reports from other Arctic sea ice areas (Beaufort sea – 
Niemi et al., 2011; North of Svalbard, 2.4 × 106 cells L− 1, Hegseth and 
von Quillfeldt, 2022). This observation supports recent studies that 
revoked the assumed dormant state of the Arctic ecosystem during the 
polar night (Berge et al., 2020 and references within). 

Long microalgal survival (Johnsen et al., 2020) combined with 
efficient incorporation of protists into growing sea ice (Gradinger and 
Ikävalko 1998) can explain this astonishing observation. Microalgae can 
survive extended periods of time under cold and dark conditions (Niemi 
et al., 2011; Vader et al., 2015; Hegseth and von Quillfeldt, 2022 and 
references within). However, we know very little about winter survival 
at the species level and how that impacts community composition in the 
subsequent spring. Cysts formed by Chrysophyceae and dinoflagellates, 
that were also present in this study, have been reported from sea ice 
before and are a common life cycle strategy to survive the harsh Arctic 
winter conditions (Stoecker et al., 1998; Montresor et al., 2003; Olsen 
et al., 2017; Kauko et al., 2018; Hegseth and von Quillfeldt, 2022). 

The surprisingly high protist biomass, combined with high POC 
concentrations, for the season, provided a strong food base for a diverse 
and highly abundant sea meiofauna community. Again, ciliates domi-
nated, but specifically copepod nauplii were the most abundant meta-
zoans, likely originating from reproduction of pelagic copepods 
(discussed in 4.1 March). Acoela and gastropod larvae, commonly found 
in other studies (Gradinger, 1999; Nozais et al., 2001; Gradinger et al., 
2005), were only encountered in December. The strong differences be-
tween the shelf station P5 and the slope station P7 can be linked to 
different source populations and age of the ice. P5 station being a very 
young locally formed ice regime, while the older ice around P7 origi-
nated from the Nansen Basin supporting recruitment of ice biota nearby 
(Olsen et al., 2017). 

5. Summary and conclusion 

The data demonstrated a strong and partly unexpected seasonality in 
sea-ice biota. Changes in the timing of ice formation and melt (Lind 
et al., 2018, Lundesgaard et al., 2022), as well as overall changes in ice 
transport (Krumpen et al., 2019) will significantly impact composition 
and phenology of sympagic communities. As expected, seasonality was 
particularly pronounced in sea-ice algae with typical ice-associated di-
atoms dominating in spring. Unexpected was the muted seasonality of 
POC biomass suggesting the sea ice as organic carbon reservoir beyond 
the productive season. The surprisingly high December abundances, 
however, further strengthened the recently emerging notion of an active 
biota in the dark Arctic winter, at least in the Atlantic inflow region 
while at the same time providing the seed populations for subsequent 
spring and summer growth. Our findings emphasize the need to 
strengthen knowledge on activity and biodiversity during the polar 
night. Ice trajectories and trait studies helped to potentially identify 
origin and recruitment histories (e.g., of benthic foraminifers) of ice 
biota and refine how community trait frequencies fluctuate over the 
year. Here, we recommend help of molecular tools to strengthen the 
taxonomic resolution (as used by Hardge et al., 2017; Marquardt et al., 
2018). The ice meiofauna community was dominated by pelagic taxa (e. 
g. ciliates, copepod nauplii, rotifers) during all seasons. Especially taxa 
with shorter establishment times such as ciliates will be favored over 
benthic-sympagic species (e.g., nematodes). This is furthermore sup-
porting the concept that the loss of older ice types favor pelagic- 
sympagic species (Kiko et al., 2017; Ehrlich et al., 2020) which may 
alter the ice-associated carbon pathways (tracked by Ehrlich et al., 2021; 
Cautain et al., 2022; Kohlbach et al., 2023). Several novel findings in 
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this study like high winter abundances, the occurrence of foraminifers 
and the strong ciliate contribution to meiofauna abundance and biomass 
emphasize the need to study the role of sea ice in the Barents Sea and 
other Arctic Seas’ ecosystems. 
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