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A real univariate polynomial of degree n is called hyperbolic if all of its n roots are 
on the real line. Such polynomials appear quite naturally in different applications, 
for example, in combinatorics and optimization. The focus of this article is on 
families of hyperbolic polynomials which are determined through k linear conditions 
on the coefficients. The coefficients corresponding to such a family of hyperbolic 
polynomials form a semi-algebraic set which we call a hyperbolic slice. We initiate 
here the study of the geometry of these objects in more detail. The set of hyperbolic 
polynomials is naturally stratified with respect to the multiplicities of the real zeros 
and this stratification induces also a stratification on the hyperbolic slices. Our main 
focus here is on the local extreme points of hyperbolic slices, i.e., the local extreme 
points of linear functionals, and we show that these correspond precisely to those 
hyperbolic polynomials in the hyperbolic slice which have at most k distinct roots 
and we can show that generically the convex hull of such a family is a polyhedron. 
Building on these results, we give consequences of our results to the study of 
symmetric real varieties and symmetric semi-algebraic sets. Here, we show that 
sets defined by symmetric polynomials which can be expressed sparsely in terms 
of elementary symmetric polynomials can be sampled on points with few distinct 
coordinates. This in turn allows for algorithmic simplifications, for example, to verify 
that such polynomials are non-negative or that a semi-algebraic set defined by such 
polynomials is empty.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

A monic real univariate polynomial f which has only real roots is classically called a hyperbolic polyno-
mial. Such polynomials and their multivariate relatives appear naturally in various mathematical contexts 
from differential equations to combinatorics, real algebraic geometry, and optimization (see for example 
[16,15,23,6]). By identifying monic polynomials of degree n with the list of coefficients, one can describe 
hyperbolic polynomials of degree n as a semi-algebraic subset of Rn. We consider linear slices, i.e., in-
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tersections with linear subspaces, of this semi-algebraic set, which is in fact the closure of one connected 
component of the complement of the discriminant variety. The study of these hyperbolic slices is inspired by 
the works of Arnold who considered families of hyperbolic polynomials where the first k coefficients were 
fixed. Arnold [2] and Givental [14] showed that these sets are topologically contractible (see also [25,24]) 
and have a rich geometric structure as was shown by Kostov [18] (see also [20,19] for more related results). 
In a similar spirit to the works of Arnold and Meguerditchian we study the local extreme points of these 
sets (see Definition 2.5). In analogy to their result, we show in Theorem 2.8 that these points correspond 
to hyperbolic polynomials with few distinct roots. Furthermore, we show in Theorem 2.14 that a generic 
hyperbolic slice only has finitely many local extreme points. This signifies in particular that the convex hull 
of each of its connected components is in fact a polyhedron. In contrast to the case considered by Arnold, 
our slices are in general not contractible and not compact. However, we are able to give some sufficient 
conditions to decide if a hyperbolic slice is compact or has at least a local extreme point.

One of our main interests in the study of these hyperbolic slices stems from an application to symmetric 
real polynomial functions, i.e., polynomial functions that are left invariant by any permutation of the 
variables. Real symmetric functions are related to hyperbolic polynomials via the so-called Vieta map: 
Recall that for 1 ≤ i ≤ n the i-th elementary symmetric polynomial in n variables is defined by

ei :=
∑

1≤j1<j2<···<ji≤n

Xj1 · · ·Xji .

By Vieta’s formula the coefficients of a univariate monic polynomial of degree n are given by evaluating 
these elementary symmetric polynomials at the corresponding roots. Conversely, it is also classical that 
the roots depend continuously on the coefficients and the natural action of Sn permuting the roots does 
not affect the coefficients. Therefore, the polynomial map from Rn to Rn defined by the above connection 
effectuates a homeomorphism from Rn/Sn to its image called the Vieta map. Since it is classically known 
that every symmetric polynomial can be uniquely written as a polynomial in the elementary symmetric 
polynomials one can view real symmetric polynomial functions as functions on the image of the Vieta map. 
This connection between univariate monic polynomials and symmetric polynomials in n variables gives rise 
to an application of our results on hyperbolic slices in the context of symmetric polynomial functions: We 
are interested in the question to what extent the global behavior of symmetric functions is determined by its 
behavior of symmetrical points or points with a large stabilizer. For example, several authors (e.g. [17,36]) 
have studied families of symmetric polynomials which attain their minimal values on symmetric points, 
i.e., points where all coordinates are equal. More generally, it has been shown that symmetric polynomial 
functions of a given degree 2d assume only non-negative values if and only if they have this property on 
point with at most d distinct coordinates [34,30]. To further this line of ideas, we introduce the notion of 
k-complete symmetric polynomial functions. Those are polynomial functions whose set of values is already 
obtained by evaluation only on points that have at most k distinct coordinates (see Definition 3.1). Using 
the geometry of hyperbolic slices we are able to identify a new class of k-complete functions in Theorem 3.8
which is given by functions that are constant or linear along a hyperbolic slice (see Definition 3.5 for the 
technical definition). The results we give here also include the mentioned findings of [34,30] which can be 
interpreted by saying that every symmetric polynomial of degree d ≥ 4 is 

⌊
d
2
⌋
-complete.

The class of k-complete symmetric functions allows for significant algorithmic simplifications in several 
algorithmic tasks related to polynomial functions. For example, it is known (see [28]) that checking if a 
real multivariate polynomial f is non-negative is in general NP -hard, already in the case of polynomials of 
degree 4. However, as we discuss in this article, the complexity of verifying non-negativity for a k-complete 
symmetric polynomial can be drastically reduced if k < n, since the set of points that need to be considered 
is of dimension k. We highlight this and several related results in the second part of the article.
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Outline In Section 2 we introduce the notion of hyperbolic slices as families of hyperbolic polynomials 
defined by linear conditions on the coefficients. Our main result in this section is that the local extreme 
points of such slices correspond to hyperbolic polynomials with few distinct roots (Theorem 2.8) and that 
generically there are only finitely many such local extreme points (Theorem 2.14). Finally, we give sufficient 
criteria for the existence of such local extreme points in the cases when a slice is not compact. In Section 3
we study symmetric polynomials which attain their minima on points with few distinct coordinates, i.e., 
on points with a non trivial and potentially large stabilizer. Our main results there (Theorem 3.8 and 
Corollary 3.10) provide a large class of such functions based on the results from Section 2. We furthermore 
highlight how to efficiently verify that a given symmetric polynomial satisfies the conditions needed to apply 
these results. The following Section 4 highlights the applicability of our results. We show that our findings 
allow for simple proofs for different symmetric inequalities and also recover the mentioned known results. 
Furthermore, we in particular highlight in Theorem 4.6 a family of symmetric polynomials that attain their 
minimum on symmetric points. Finally, we close with some concluding remarks and outlooks in Section 5.

Notation Throughout the article, we fix n ∈ N and denote by R[X] := R[X1, . . . , Xn] the polynomial ring 
in n variables over R.

2. Hyperbolic slices

In this section, we define and analyze the notion of a hyperbolic slice. To begin we formalize the notion 
of hyperbolic polynomials as used in the article.

Definition 2.1. We will denote by

H :=
{
z ∈ Rn

∣∣ Tn − z1T
n−1 + · · · + (−1)nzn only has real roots

}
the set of hyperbolic polynomials of degree n, and for 1 ≤ m ≤ n the m-boundary of H

Hm :=
{
z ∈ H

∣∣ Tn − z1T
n−1 + · · · + (−1)nzn has at most m distinct roots

}
.

As described above we are interested in families of univariate monic hyperbolic polynomials whose coef-
ficients are restricted by linear conditions. In order to define this more concretely, we fix throughout this 
section an integer 1 ≤ k ≤ n, a real point a ∈ Rk, and a surjective linear map L : Rn −→ Rk. This choice 
of a linear map and a point characterizes the linear conditions we aim to impose on hyperbolic polynomials 
and the hyperbolic slices corresponding to these choices can be defined as follows.

Definition 2.2. With the notation introduced above, the hyperbolic slice associated to L and a is the affine 
linear slice

HL(a) := H ∩ L−1(a).

Furthermore, for 1 ≤ m ≤ n we define by

Hm
L (a) := Hm ∩ L−1(a),

its restriction to the m-boundary.

We briefly discuss one possible connection of the above definition to polynomial interpolation for which 
our results might be interesting in their own rights: For k ∈ N consider a1, b1, . . . , ak, bk ∈ R. Then the 
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Fig. 1. The hyperbolic slice HL(0,−6).

space of polynomials f of degree n which satisfy f(ai) = bi for 1 ≤ i ≤ k is called a polynomial interpolation 
space. Now, since evaluations at given points define linear maps, an interpolation problem for which one is 
interested only in hyperbolic polynomials constitutes one example of a hyperbolic slice defined above.

Clearly, the assumption that L is surjective is only for convenience in the notation. As mentioned above 
the set of hyperbolic polynomials is tightly connected to the Vieta map.

Remark 2.3. The set H of hyperbolic polynomials is the image of the so-called Vieta map

Γ : Rn −→ H
x = (x1, . . . , xn) �−→ (e1(x), . . . , en(x))

,

and the restriction of Γ to the polyhedral cone

W := {x ∈ Rn | x1 ≤ x2 ≤ . . . ≤ xn}

is a homeomorphism. In particular, the roots of a univariate polynomial depend continuously on its coeffi-
cients. H is in fact a basic closed semi-algebraic subset of Rn. Clearly, H = Hn ⊃ Hn−1 ⊇ · · · ⊇ H1 and 
Hn−1 is the topological boundary of H. Furthermore, for 1 ≤ m ≤ n the m-boundary Hm is the image of 
the union of the m-faces of W under Γ and therefore of dimension m. For more details, we refer to [37, 
Appendix V.4].

The next example shows one of the simplest situations of a hyperbolic slice obtained by fixing the first 
two coefficients of a monic polynomial of degree 4.

Example 2.4. For k ≥ 2 we can fix the first k coefficients of a monic polynomial. The set of hyperbolic 
polynomials in such a family defines a hyperbolic slice and this setup corresponds to the situation studied 
by Arnold [2] and Kostov [18]. For example, we can consider HL(0, −6), where

L : R4 −→ R2

(z1, z2, z3, z4) �−→ (z1, z2)
.

This choice yields the hyperbolic slice in the plane shown in Fig. 1.
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As can be seen from the example above, a hyperbolic slice is not convex but bears some resemblance to 
a polytope. By the connection via the Vieta map, we have that H is homeomorphic to the polyhedral cone 
W. Furthermore, one finds three extreme points/vertices in the above picture. For convex sets in Rn the 
extreme points contain important information about the set. To generalize this notion to the sets defined 
above, we will be interested in the following local notion of extreme points.

Definition 2.5. Let A ⊆ Rn. We call z ∈ A a local extreme point of A, if there is a neighborhood U ⊆ Rn

of z such that z is an extreme point of conv(A ∩ U). We denote the set of all local extreme points of A by 
locextr(A).

Classically, in convex optimization, the interest in extreme points stems from the fact that linear functions 
attain their minimum or maximum on these points. Similarly, the following holds for local extreme points.

Remark 2.6. Let A ⊆ Rn, and ϕ ∈ Hom(Rn, R) and zϕ ∈ A a (strict) local minimal point of ϕ in A. Then 
zϕ is also a local extreme point of A. Conversely, let z ∈ A be a local extreme point of A, then there is 
ϕz ∈ Hom(Rn, R) such that z is a local minimal point of ϕ in A.

Example 2.7. We more generally examine the local extreme points of the hyperbolic slices discussed above 
which are similar to the one in Fig. 1. We consider again the linear map

L : R4 −→ R2

(z1, z2, z3, z4) �−→ (z1, z2)
,

and we examine local extreme points of the family of slices HL(0, a), with a ∈ R. Then we find that the 
local extreme points in this case are

locextr(HL(0, a)) = H2
L(0, a) =

⎧⎨
⎩
⎛
⎝0, a,±

(√
−2a

3

)3

,−a2

12

⎞
⎠ ,
(
0, a, 0, a2

)⎫⎬
⎭ .

By examining the resultants of the corresponding quartic polynomials and their second derivative, one finds 
that each of these local extreme points corresponds to hyperbolic polynomials with at most two distinct 
roots.

As a first result, we are now going to establish that the above example generalizes in the following 
sense. For a general hyperbolic slice, defined through k linear conditions, the local extreme points can be 
characterized as hyperbolic polynomials of the k-boundary. This generalizes Theorem [30, Theorem 4.2] to 
general hyperbolic slices.

Theorem 2.8. The local extreme points of a hyperbolic slice are contained in the k-boundary, i.e.,

locextr(HL(a)) ⊆ Hk
L(a).

Proof. Let z ∈ HL(a) be a local extreme point, i.e., there is a neighborhood U of z such that z is an 
extreme point of conv(HL(a) ∩ U). We assume that z /∈ Hk

L(a) and want to find a contradiction. To this 
end, we want to find c ∈ kerL non-zero such that z ± εc ∈ HL(a) for all ε > 0 small enough. Consider 
f := Tn − z1T

n−1 + · · · + (−1)nzn with distinct roots x1, . . . , xm where m > k and factor as follows:

f =
m∏
i=1

(T − xi)︸ ︷︷ ︸
·q,
=:p
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where the set of zeros of q contains only elements from {x1, . . . , xm} and q is of degree n − m. Write 
q = Tn−m + q1T

n−m−1 + · · · + qn−m and define q0 := 1 and consider the linear map

χ : Rm −→ Rn

y �−→
(∑

i+j=1 qiyj , . . . ,
∑

i+j=n qiyj

) .
Since m > k, there is b ∈ ker(L ◦χ) \{0}. We define h := b1T

m−1+· · ·+bm and g := h ·q = c1T
n−1+. . .+cn �=

0, where c = χ(b) by construction and therefore c ∈ kerL. Now, because p has no multiple roots, p ± εh

is hyperbolic for ε > 0 small enough: the roots depend continuously on the coefficients and complex roots 
come as conjugated pairs (see Remark 2.3). Hence

(p± εh) · q = f ± εh · q = f ± εg

is hyperbolic for all ε > 0 small enough, i.e., z± εc ∈ HL(a). If we choose ε > 0 small enough we can ensure 
also that z ± εc ∈ U . But then

z = z + εc + z − εc

2 ,

a contradiction to z being an extreme point of conv(HL(a) ∩ U). �
Remark 2.9. If the map L is not surjective, one can obtain similar results by replacing k with rankL.

In view of Remark 2.6 we get the following.

Corollary 2.10. Let g : Rn → R be a linear or concave function and consider the optimization problem

min
z∈HL(a)

g(z).

Let M denote the set of minimizers of this problem. If HL(a) is non-empty and compact, then we have 
M ∩Hk

L(a) �= ∅. In particular HL(a) contains a point z ∈ Hk
L(a).

Proof. Since HL(a) is compact, there is a minimizer z ∈ M such that z is an extreme point of the convex 
hull of HL(a). In particular, z is a local extreme point of HL(a) and therefore on the k-boundary of HL(a)
by Theorem 2.8, i.e., z ∈ M ∩Hk

L(a). �
As can be observed in the example shown in Fig. 1 connected components of hyperbolic slices appear to 

have a similarity to polytopes. They are not convex but appear to be “deflated” polytopes. To make this a 
bit more concrete we show that a generic hyperbolic slice has only finitely many local extreme points. This, 
in particular, implies that their convex hull, or in fact the convex hull of each of its connected components, 
is a polytope. The proof uses elementary properties of subdiscriminants. The relevance of subdiscriminants 
for counting roots of real univariate polynomials is explained in [3, Chapter 4].

Definition 2.11. Let f ∈ R[T ] be a monic polynomial of degree n with roots x1, . . . , xn in C. Then the 
(n −m)-subdiscriminant, 1 ≤ m ≤ n, of f is defined as

sDiscn−m(f) =
∑

I⊆{1,...,n}

∏
i,j∈I
j>i

(xi − xj)2.
|I|=m
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Remark 2.12. Each (n −m)-subdiscriminant of f is defined above as a polynomial of degree m(m −1) in terms 
of the roots of f . Noticing that each of the expressions is, in turn, symmetric in the roots, one immediately 
obtains that each subdiscriminant of f can be expressed in the elementary symmetric polynomials evaluated 
at the roots, i.e., in the coefficients of f . Indeed, the subdiscriminants of f can be obtained directly by minors 
of the Sylvester matrix - also called subresultants - of f and f ′. So the degree of each (n −m)-subdiscriminant 
expressed in the coefficients is 2m − 2 [3, Proposition 4.27].

Proposition 2.13. [3, Remark 4.6 and Proposition 4.50] A monic polynomial f ∈ R[T ] of degree n has exactly 
k distinct roots if and only if

sDisc0(f) = · · · = sDiscn−k−1(f) = 0, sDiscn−k(f) �= 0.

Moreover, if and only if additionally

sDiscn−k(f) > 0, . . . , sDiscn−1(f) > 0,

then f has only real roots.

Theorem 2.14. The k-boundary Hk
L(a) of a generic hyperbolic slice is finite. In particular, a generic hyper-

bolic slice has only finitely many local extreme points. The number of those points is bounded by

min
{

2n−k (n− 1)!
(k − 1)! ,

(
n

k

)
(n− 1)!
(k − 1)!

}
.

Proof. First, we establish that for a generic hyperbolic slice the k-boundary Hk
L(a) is finite. For this recall 

that the set of hyperbolic polynomials with at most k distinct roots, Hk, is of dimension k by Remark 2.3. 
Therefore, a generic (n −k)-dimensional affine linear subspace will intersect Hk in only finitely many points. 
Furthermore, in view of Proposition 2.13 we see further that Hk is contained in the algebraic set defined by 
the vanishing of n − k polynomials. On the one hand, each of the subdiscriminants describing this algebraic 
set is a homogeneous polynomial of degree (2n −2), (2n −4), . . . , (2k) expressed in the elementary symmetric 
polynomials by Remark 2.12 and we can apply Bézout’s Theorem to obtain the bound

2n−k (n− 1)!
(k − 1)! .

On the other hand, we can apply the weighted Bézout’s Theorem (see [27, chapter VIII]): We assign to the 
i-th elementary symmetric polynomial ei the weight i. Then each subdiscriminant is weighted homogeneous 
of degree n(n − 1), (n − 1)(n − 2), . . . , (k + 1)k. Indeed, this is exactly the degree of the subdiscriminants 
expressed in the roots. Furthermore, we can bound the weighted degree of each of the k affine hyperplanes 
describing our slice by n, n − 1, . . . , n − k + 1. So we obtain the bound

1
n!

n!
(n− k)! ·

n!(n− 1)!
k!(k − 1)! =

(
n

k

)
(n− 1)!
(k − 1)! . �

Remark 2.15. The second bound obtained in 2.14 by the weighted Bézout’s Theorem can even be refined 
when one considers the coefficients appearing in L(z) for z ∈ H. For example, if just the first coefficients 
are fixed, i.e., L(z) = (z1, . . . , zk), then 

(
n
k

)
can be replaced by 1.

Since the extreme points of the convex hull of a set are local extreme points, we can deduce the following.
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Corollary 2.16. The convex hull of a generic hyperbolic slice is a polyhedron. The same applies to any of its 
connected components.

Note that the proof of Theorem 2.14 together with Proposition 2.13 gives an explicit description of the 
k-boundary of a hyperbolic slice as a semi-algebraic set. The following example shows that the k-boundary 
of a hyperbolic slice can be infinite. But even in this case, there might only be finitely many local extreme 
points.

Example 2.17. Consider L : R4 → R3, (z1, z2, z3, z4) �→ (z1, z3, z4) and a ∈ R. Then

HL(a, 0, 0) =
{

(a, z2, 0, 0)
∣∣∣∣ z2 ∈ R, z2 ≤ a2

4

}
= H3

L(a, 0, 0)

is not finite. But HL(a, 0, 0) is obviously convex with only local extreme point

(
a,

a2

4 , 0, 0
)

∈ H2
L(a, 0, 0).

Next, we will give sufficient conditions on L for the compactness of a hyperbolic slice and for the existence 
of local extreme points. For that, we will need the following definition.

Definition 2.18. Let f, g ∈ R[T ] be hyperbolic polynomials with real roots αn ≤ · · · ≤ α1 and βm ≤ . . . ≤ β1
respectively. We say that g interlaces f if αn ≤ βm ≤ αn−1 ≤ . . . ≤ α1 or βm ≤ αn ≤ βm−1 ≤ . . . ≤ α1. 
Furthermore, we say f and g are interlacing, if f interlaces g or g interlaces f .

Remark 2.19. If g interlaces f , then clearly f and g either have the same degree, i.e., n = m or the degree 
of g is smaller by one, i.e., m = n − 1.

The following classical result (see [10, Theorem 4.1.]) connects interlacing polynomials to linear pencils 
of hyperbolic polynomials.

Theorem 2.20 (Dedieu). Let f, g ∈ R[T ] be hyperbolic, non-zero polynomials of degree at most n. Then the 
following statements are equivalent:

(1) f and g are interlacing.
(2) f + ξ · g is hyperbolic for any ξ ∈ R.

From now on we express L in terms of k linearly independent linear forms l1, . . . , lk ∈ R[Z1, . . . , Zn]1 as 
L : Rn → Rk, z �→ (l1(z), . . . , lk(z)). We can use the results above to give a sufficient condition on l1, . . . , lk
for the existence of local extreme points of a hyperbolic slice.

Lemma 2.21. If Z1 ∈ span(l1, . . . , lk) and HL(a) �= ∅, then HL(a) has a local extreme point.

Proof. Let z ∈ HL(a) and write Z1 =
∑k

i=1 λili for some λ1, . . . , λk ∈ R. Furthermore, denote by x =
(x1, . . . , xn) ∈ Rn the roots of

fz := Tn − z1T
n−1 + · · · + (−1)nzn.

Then e1(x) = z1 =
∑k

λili(z) =
∑k

λiai and hence
i=1 i=1
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z2 = e2(x) = 1
2

(
e1(x)2 −

n∑
i=1

x2
i

)
≤ 1

2e1(x)2 = 1
2

(
k∑

i=1
λiai

)2

.

So the optimization problem

max
z∈HL(a)

z2

has a non-empty set of maximizers M . Suppose HL(a) has no local extreme point. Then M contains a 
line, i.e., there is a maximizer m = (m1, . . . , mn) ∈ M and a y = (y1, . . . , yn) ∈ Rn non-zero such that 
y1 = y2 = 0 and m + ξy ∈ H for all ξ ∈ R. This means f := Tn − m1T

n−1 + · · · + (−1)nmn and 
g := −y3T

n−3 + · · · + (−1)nyn are interlacing by 2.20, which is not possible because of degree reasons. �
We can use the existence of an extreme point, for example, to obtain the following result which connects 

to polynomial interpolation.

Corollary 2.22. Consider the set of polynomials of degree n, which solve a k-points interpolation problem. 
Then there exists a hyperbolic polynomial in this set if and only if there exists one with at most k+1 distinct 
roots.

Proof. Under the conditions, the corresponding hyperbolic slice has at least one extreme point by 
Lemma 2.21. �

By prescribing not only the first but also the second-highest coefficient of a monic polynomial, one directly 
obtains a sufficient condition for the compactness of a hyperbolic slice.

Lemma 2.23. If Z1, Z2 ∈ span(l1, . . . , lk), then HL(a) is compact.

Proof. As the empty set is compact we can assume that there is z ∈ HL(a). Furthermore we write Z1 =∑k
i=1 λili and Z2 =

∑k
i=1 χili for some λ1, . . . , λk, χ1, . . . , χk ∈ R and denote by x = (x1, . . . , xn) ∈ Rn the 

roots of

fz := Tn − z1T
n−1 + · · · + (−1)nzn.

Then e1(x) = z1 =
∑k

i=1 λili(x) =
∑k

i=1 λiai and e2(x) =
∑k

i=1 χiai and hence

n∑
i=1

x2
i = e1(x)2 − 2e2(x) =

(
k∑

i=1
λiai

)2

−
k∑

i=1
χiai.

This shows that x is contained in a ball, thus HL(a) is bounded. Furthermore, as the roots of a polyno-
mial depend continuously on the coefficients it is clear that HL(a) is closed and therefore compact (see 
Remark 2.6). �

We close this section with a selection of examples of two-dimensional hyperbolic slices that highlight the 
various mentioned scenarios.

Example 2.24. Consider HL(a2, a4), where a := (a2, a4) ∈ R2 such that a2 < 0 and a4 > 0 and

L : R4 −→ R2

(z , z , z , z ) �−→ (z , z )
.

1 2 3 4 2 4
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Then, there are the following three possible situations.
a: If a := (a2, a4) satisfy a2

2 − 4a4 < 0, the hyperbolic slice HL(a) will contain two local extreme points. 
In particular, H2

L(a) �= ∅. Furthermore, the local extreme points of HL(a) are not global extreme points. 
Therefore, they are not extreme points of the convex hull of HL(a). This is illustrated in Fig. 2a.
b: For all values a := (a2, a4) with a2

2 − 4a4 = 0, HL(a) will contain no local extreme points. But the 
2-boundary of HL(a) is non-empty. Indeed,

T 4 + a2T
2 + a4 =

(
T −

√
−a2

2

)2(
T +

√
−a2

2

)2

,

and thus (0, a2, 0, a4) ∈ H2
L(a). This situation is illustrated in Fig. 2b.

c: For the values a := (a2, a4) with a2
2 − 4a4 > 0, HL(a) will contain no local extreme point. Moreover, 

H2
L(a) is empty in this case, while HL(a) �= ∅. This is illustrated in Fig. 2c.
Indeed, the polynomial f = T 4 + a2T

2 + a4 is hyperbolic with the 4 distinct roots

x1,2,3,4 := ±

√
−a2 ±

√
a2
2 − 4a4

2 .

Therefore, the hyperbolic slice HL(a) is non-empty. On the other hand, suppose that the 2- boundary H2
L(a)

is non-empty, i.e., that we can find (a1, a2, a3, a4) ∈ H2
L(a). This in turn implies that there are x, y ∈ R

such that the polynomial

fa := T 4 − a1T
3 + a2T

2 − a3T + a4

factors either as

fa = (T − x)3(T − y) or fa = (T − x)2(T − y)2.

In the first case a comparison of coefficients shows a2 = 3xy + 3x2 and a4x
3y. Since a4 > 0 we must 

have x, y �= 0 and can solve y = a4
x3 . This implies a2 = 3a4

x2 + 3x2 and 3x4 − a2x
2 + 3a4 = 0. However, since 

x �= 0, a2 < 0 and a4 > 0 we must have 3x4 − a2x
2 + 3a4 > 0, and thus have a contradiction. Analogously, 

for the second case, comparing coefficients shows a2 = 4xy + x2 + y2 and a4 = x2y2. We solve for y and get 
y = ±

√
a4
x from which we find a2 = a4

x2 +x2 ± 4√a4. But since a2 < 0, a4 > 0 and a2
2 − 4a4 > 0 the resulting 

polynomial equation x4 + (±4√a4 − a2)x2 + a4 = 0 clearly has no real solution.

3. Positivity of symmetric polynomial functions

In this section we will study real polynomial functions defined by symmetric polynomials. Since every 
symmetric polynomial can be written in a unique way as a polynomial in elementary symmetric polynomials, 
we can use the geometric description of hyperbolic slices obtained before to characterize the minimal points of 
a large class of symmetric polynomial functions which are sparse in an appropriate sense (see Definition 3.5). 
Various authors had already observed that certain symmetric functions attain their minimal values on 
symmetric points (e.g. [17,12,21]). Other authors found that symmetric polynomial functions of a bounded 
small enough degree attain their minima on points with few distinct coordinates (e.g. [34,30]). We generalize 
these results by considering symmetric polynomial functions which are completely characterized through 
their values on points with at most k distinct coordinates.
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Fig. 2. Illustrations of the 3 different situations occurring in Example 2.24.

3.1. The notions of k-completeness and k-testability

Definition 3.1. For k ∈ N we consider the set

Ak :=
{
x ∈ Rn

∣∣ |{x1, . . . , xn}| ≤ k
}

of points with at most k different coordinates. Given a symmetric polynomial f ∈ R[X] and S ⊆ Rn we say 
that f is

(1) k-complete on S if

f(S) = f(S ∩ Ak).

(2) k-testable on S if

inf
x∈S

f(x) = inf
x∈S∩Ak

f(x).

In case S = Rn we may omit it and just speak of k-testable and k-complete polynomials.

The two notions of k-complete and k-testable are very closely connected, but the first one is stronger, 
while the second one might be interesting in particular in the context of optimization. In order to motivate 
the study of this class, we exemplify first how algorithmic problems can be substantially simplified for 
k-complete and k-testable symmetric polynomials.

Definition 3.2. A decreasing sequence of positive integers λ = (λ1, . . . , λk) which sums up to n is called 
a partition of n into k parts. We will write λ �k n to denote that λ is a partition of n into k parts. Let 
f ∈ R[X] be a symmetric polynomial. Then for λ �k n we define

fλ := f(X1, . . . , X1︸ ︷︷ ︸
λ1−times

, . . . , Xk, . . . , Xk︸ ︷︷ ︸
λk−times

) ∈ R[X1, . . . , Xk].

Note that the number of partitions of n into k parts is at most 
(
n+k
k

)
and thus polynomial in n for 

a fixed k. Therefore the above notion allows reducing, for example, the question of whether a symmetric 
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polynomial in n variables is non-negative to a polynomial number of such queries in k variables. It is, for 
example, known to be NP-hard to decide the non-negativity of a given polynomial of degree 4 (see e.g. 
[5] or [28]). Clearly, by applying the above procedure, one can obtain algorithmic simplifications that yield 
polynomial complexity for this kind of problem (see also [11] where this method is applied also for other 
algorithmic questions). We highlight in particular the following version of Artin’s solution to Hilbert’s 17th 
problem for k-complete symmetric polynomials, which is a direct consequence of the sketched procedure of 
identifying variables.

Proposition 3.3 (Hilbert’s 17th problem for k-complete polynomials). Let f ∈ R[X] be a symmetric k-testable 
polynomial. Then f attains only non-negative values on Rn if and only if for all λ �k n we can find a sum 
of squares of polynomials t ∈

∑
R[X1, . . . , Xk]2 such that t · fλ is also a sum of squares of polynomials.

The main interest in the statements presented above is that the reduction of dimension also gives new 
complexity bounds for the degrees of the polynomials in question. For example, for Hilbert’s 17th problem 
for k-complete polynomials, we can adapt the currently known complexity bounds.

Remark 3.4. Let f be a n-variate k-complete polynomial of degree d. Then f is non-negative if and only 
if we can write each fλ as a sum of at most 2k rational squares by [29]. We can also write each fλ as a 
sum of squares of rational functions, where, following [22], we obtain the following degree bounds for the 
numerators and denominators:

222d
4k

.

3.2. Sufficient and quasi-sufficient polynomials

Now, we want to show that it is possible to produce a large class of k-complete symmetric polynomials 
based on the results on hyperbolic polynomials. Throughout this section we fix 1 ≤ k ≤ n and consider 
the k linearly independent linear forms l1, . . . , lk ∈ R[Z1, . . . , Zn]1 and the linear map L : Rn → Rk, z �→
(l1(z), . . . , lk(z)). Recall that a symmetric polynomial f ∈ R[X] can be written uniquely in terms of the 
elementary symmetric polynomials, say f = g(e1, . . . , en). Now evaluation of f in a point x ∈ Rn translates 
into the evaluation of g in a point z ∈ H and the evaluation of f on Ak translates into the evaluation of g
on Hk. By partitioning

H =
⋃

a∈Rk

HL(a) and Hk =
⋃

a∈Rk

Hk
L(a)

for the map L, we can use our previous results to show under some mild conditions that f is k-complete 
or K-testable if it allows for a special representation in terms of k linear forms of elementary symmetric 
polynomials. We define these representations in the following.

Definition 3.5. Let f ∈ R[X] be a symmetric polynomial and write f in terms of elementary symmetric 
polynomials, say f = g(e1, . . . , en) for some g ∈ R[Z1, . . . , Zn].

(1) We say that f is (l1, . . . , lk)-sufficient if g ∈ R[l1, . . . , lk].
(2) We say that f is (l1, . . . , lk)-quasi-sufficient if f admits a representation of the form

f = f0 + f1e1 + · · · + fnen

for some (l1, . . . , lk)-sufficient polynomials f0, . . . , fn.
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(3) Furthermore, we say that f is (l1, . . . , lk)-concave-sufficient if g is concave on HL(a) for all a ∈ Rk.

Moreover, we say that a symmetric semi-algebraic set S ⊆ Rn is (l1, . . . , lk)-sufficient, if it can be described 
by (l1, . . . , lk)-sufficient polynomials.

The following proposition is a direct consequence of the unique representation of a symmetric polynomial 
of degree d in terms of the elementary symmetric polynomials and may serve as a motivation for the 
definitions given above.

Proposition 3.6. Let f ∈ R[X] be symmetric of degree d. Then f is (Z1, . . . , Zd)-sufficient and 
(
Z1, . . . , Z⌊ d

2
⌋)-

quasi-sufficient.

Remark 3.7. The notions defined above are increasingly strict in the following sense: Sufficiency (1) implies 
quasi-sufficiency (2), which in turn implies concave-sufficiency (3) of both f and −f .

The results on hyperbolic slices now translate to the following statements on symmetric real polynomial 
functions.

Theorem 3.8. Let S ⊆ Rn be a symmetric (l1, . . . , lk)-sufficient semi-algebraic set and let f ∈ R[X] be a 
symmetric polynomial.

(1) If f is (l1, . . . , lk)-sufficient and if every non-empty hyperbolic slice HL(a) contains a local extreme 
point, then f is k-complete on S.

(2) If f is (l1, . . . , lk)-concave-sufficient and HL(a) is compact for all a ∈ Rk, then f is k-testable on S.
(3) If f is (l1, . . . , lk)-quasi-sufficient and HL(a) is compact for all a ∈ Rk and S ∩ Ak is connected, then 

f is k-complete on S.
(4) If f is (l1, . . . , lk)-concave-sufficient and not (l1, . . . , lk)-sufficient and

inf
x∈S

f(x) > −∞,

then f is k-testable on S.

Proof. (1): Let g ∈ R[Z1, . . . , Zn] such that f = g(e1, . . . , en). Let x ∈ S and consider z := Γ(x) and 
a := L(z). There is z̃ ∈ Hk

L(a) by Theorem 2.8 since HL(a) admits a local extreme point. So there is x̃ ∈ Ak

with Γ(x̃) = z̃. Then f(x) = f(x̃) and x̃ ∈ S since f and S are (l1, . . . , lk)-sufficient.
(2): Let g ∈ R[Z1, . . . , Zn] such that f = g(e1, . . . , en). Let x ∈ S and consider z := Γ(x) and a :=

L(z). Since g is concave on L−1(a) by the concave-sufficiency of f and HL(a) is compact we can apply 
Corollary 2.10 and get that

min
y∈HL(a)

g(y) = min
y∈Hk

L(a)
g(y),

i.e., there is z̃ ∈ Hk
L(a) with g(z̃) ≤ g(z). Let x̃ ∈ Ak with Γ(x̃) = z̃. Then f(x̃) ≤ f(x) and x̃ ∈ S since S

is (l1, . . . , lk)-sufficient and we can conclude that f is k-testable on S.
(3): Let x0 ∈ S. We can apply (2) since f and −f are both (l1, . . . , lk)-concave-sufficient by Remark 3.7

and get that

inf
x∈S

f(x) = inf
x∈S∩A

f(x) and sup f(x) = sup f(x),

k x∈S x∈S∩Ak
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so there are x1, x2 ∈ S ∩ Ak with f(x1) ≤ f(x0) and f(x2) ≥ f(x0). Since S ∩ Ak is connected there is 
x̃ ∈ S ∩ Ak with f(x̃) = f(x0) by the intermediate value theorem.

(4): Let g ∈ R[Z1, . . . , Zn] such that f = g(e1, . . . , en). There is x0 ∈ S with

inf
x∈S

f(x) = f(x0).

Consider z0 := Γ(x0) and a := L(z). Since g is concave and not constant on HL(a), g attains its minimum 
on an extreme point of HL(a), i.e., we can assume that z0 ∈ Hk

L(a) and therefore x0 ∈ Ak. �
The existence of local extreme points in Theorem 3.8 (1) is indeed necessary, as in cases without local 

extreme points it is possible to construct situations where the statement will not hold. We showcase this in 
the following.

Example 3.9. Let K(h) = R4, l1 := Z2, l2 := Z4 and L : R4 → R2, z �→ (l1(z), l2(z)) and consider the 
(l1, l2)-sufficient symmetric polynomial

f = (e2 + 5)2 + (e4 − 4)2 ∈ R[X1, X2, X3, X4].

The 2-boundary H2
L(−5, 4) is empty by Example 2.24 (3). So f(x) > 0 for all x ∈ A2, but f(1, −1, 2, −2) = 0.

One can in fact prove that the polynomial f in Example 3.9 is still 3-complete. Indeed, the necessity of 
the existence of an extreme point in every hyperbolic slice seems to restrict the applications of Theorem 3.8. 
However, by applying Lemma 2.21 and Lemma 2.23 we can obtain the following version of Theorem 3.8
which avoids this issue at the price of a slightly weaker conclusion.

Corollary 3.10. Let S ⊆ Rn be a symmetric (l1, . . . , lk)-sufficient semi-algebraic set and let f ∈ R[X] be a 
symmetric polynomial.

(1) If f is (l1, . . . , lk)-sufficient, then f is (k + 1)-complete on S.
(2) If f is (l1, . . . , lk)-concave-sufficient, then f is (k + 2)-testable on S.
(3) If f ∈ R[X] is (l1, . . . , lk)-quasi-sufficient and S ∩ Ak is connected, then f is (k + 2)-complete on S.

Moreover if Z1 ∈ span(l1, . . . , lk), then (k + 1) in (1) can be replaced by k-complete. If Z1, Z2 ∈
span(l1, . . . , lk), then (k + 2) in (2) and (3) can be replaced by k.

The results in this section were given entirely for symmetric functions. To conclude this section we remark 
the following direct translation of the results to even symmetric polynomials or equivalently copositive 
symmetric polynomials.

Remark 3.11. The results on symmetric polynomials translate directly to even symmetric polynomials, i.e., 
polynomials invariant by the natural action of the Hyperoctahedral group S2 ≀ Sn. Denote by

E : =
{
z ∈ Rn

∣∣∣ T 2n − z1T
2(n−1) + · · · + (−1)nzn is hyperbolic

}
=
{
z ∈ H

∣∣ Tn − z1T
n−1 + · · · + (−1)nzn has only non-negative roots

}
the set of even hyperbolic polynomials. Furthermore, we define

Ek :=
{
z ∈ E

∣∣ Tn − z1T
n−1 + · · · + (−1)nzn has at most k positive roots

}
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and EL(a) := E∩L−1(a) and Ek
L(a) accordingly. Then the proof of Theorem 2.8 translates to locextr(EL(a)) ⊆

Ek
L(a) and both sets are generically finite. By replacing Ak by

Bk :=
{
x ∈ Rn

∣∣ |{x2
1, . . . , x

2
n} \ {0}| ≤ k

}
we can transfer the statements of Theorem 3.8 and Corollary 3.10 about k-completeness and k-testability 
of (quasi-)sufficient symmetric polynomials to (quasi-)sufficient even symmetric polynomials f , i.e., polyno-
mials that admit a representation of the form

f = g(e1(X2
1 , . . . , X

2
n), . . . , en(X2

1 , . . . , X
2
n))

with g ∈ R[l1, . . . , lk]. Note that in this case, it suffices already to fix the first coefficient to obtain compact-
ness, so one can replace (k + 2) in Corollary 3.10 (2) and (3) by (k + 1).

3.3. Deciding sufficiency

Generally, the definition of sufficient and quasi-sufficient given above can appear to be not directly 
verifiable. Especially since most often one is given a symmetric polynomial without its representation in 
terms of linear combinations of elementary symmetric polynomials. Therefore, we want to briefly present how 
to algorithmically approach the question if a given symmetric polynomial is sufficient or quasi-sufficient. In 
order to decide if a symmetric polynomial f ∈ R[X] is sufficient for some collection of linear forms l1, . . . , lk
one has principle two task:

(1) Finding a representation of f = g(e1, . . . , en) in terms of elementary symmetric polynomials: This can 
be achieved, for example, by using the Gröbner basis G := {g1, . . . , gk}, where

gk =
∑

α∈Nn−k+1
0

|α|=k

Xα1
k · · ·Xαn−k+1

n +
k∑

i=1
(−1)iYi

∑
α∈Nn−k+1

0
|α|=k−i

Xα1
k · · ·Xαn−k+1

n

of the ideal I = (e1 − Y1, . . . , en − Yn) ⊆ R[X, Y1, . . . , Yn] which is independent from f and then by 
computing the remainder g of f on division by G. One obtains now f = g(e1, . . . , en) (see Proposition 
4 and Proposition 5 in §1 of Chapter 7 in [8] for details). Alternatively one can use the algorithm 
presented in [35].

(2) Once g ∈ R[e1, . . . , en] is obtained, one has to decide if there exist k < n linear combinations l1, . . . , lk of 
the e1, . . . , en such that g ∈ R[l1, . . . , lk]. Also, this can be accomplished quite concretely, for example, 
by using the approach outlined by Carlini [7]. As described there, the smallest number k of linear forms 
l1, . . . , lk needed such that g ∈ R[l1, . . . , lk] is obtained by computing the rank of the Catalectican matrix 
of g. This matrix is obtained by the coefficients of the partial derivatives of g. More concretely, one can 
also explicitly construct these linear forms by computing a basis for the vector space of the (d − 1)-th 
partial derivatives of g.

The steps described above rely mostly on linear algebra and can be efficiently implemented for larger 
numbers of variables.

Remark 3.12. In the special case when one wants to decide if a symmetric polynomial f is ei1 , . . . , eim-
quasi-sufficient (where 1 ≤ i1 ≤ · · · ≤ in ≤ k) one can actually proceed with the following examination of 
the gradient of f without going through the steps above: As a symmetric polynomial f can be written as 
f = g(e1, . . . , en) we have
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∇f = ∇gJe1,...,en .

Noting that Je1,...,en is invertible over R(X1, . . . , Xn) we get

∇fJ−1
e1,...,en = ∇g.

Now, if for I ⊆ {1, . . . , n} the corresponding entries in ∇g are constants, then f is (ei){1,...,n}\I -quasi-
sufficient.

We give a short example to illustrate the algorithmic approach.

Example 3.13. We consider the following toy example of a symmetric polynomial in three variables to 
showcase the methods described above

f =
∑
σ∈S3

σ

(
1
2 X3

1 + X2
1X

2
2 + 3X2

1X2 + X3
1X2 + X1X2X3 −X2

1X
2
2X

2
3

+ 1
2X

3
1X

3
2X

2
3 − 2X3

1X
2
2X3 −X3

1X2X3 − 2X2
1X

2
2X3 + 5

2X
2
1X2X3

)
,

where S3 acts on R[X1, X2, X3] by permutation of variables.
The Gröbner basis corresponding to the ideal

I := 〈e1 − Y1, e2 − Y2, e3 − Y3〉

is given by

G = {X1 + X2 + X3 − Y1, X
2
2 + X2X3 −X2Y1 + X2

3 −X3Y1 + Y2, X
3
3 −X2

3Y1 + X3Y2 − Y3}.

By computing the remainder of f on division by G one obtains

g = Y 3
1 + Y 2

1 Y2 − 2Y 2
1 Y3 − 2Y1Y2Y3 + Y1Y

2
3 + Y2Y

2
3 ∈ R[Y1, Y2, Y3]

with f = g(e1, e2, e3). In order to compute the Catalactican of g, we fix a monomial basis

M = {M1, . . . ,M6} = {Y 2
1 , Y1Y2, Y1Y3, Y

2
2 , Y2Y3, Y

2
3 }

for the ternary forms of degree 2 = deg(g) − 1. Calculating the partial derivatives

∂ig = ci1M1 + · · · + ci6M6

we obtain he Catalactican Cg of g defined as (Cg)ij = cij , i.e.

Cg =
( 3 2 −4 0 −2 1

1 0 −2 0 0 1
−2 −2 2 0 2 0

)
.

The number of linear forms needed to express g is then equal to rank(Cg) = 2. In order to find linear forms 
needed to express g, it suffices to compute a basis for the span of the second partial derivatives of g, we 
obtain
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{Y1 − Y3, Y2 + Y3}

and indeed

g = (Y2 + Y3)(Y1 − Y3)2 + (Y1 − Y3)3,

i.e. f is (Y2 + Y3, Y1 − Y3)-sufficient and (Y1 − Y3)-quasi-sufficient.

4. Applications and examples

We will now show some applications of the theory developed here and use it on some concrete examples 
to underline the potential of the results presented. We begin with examining the following polynomial which 
was given by Robinson [32] as an example of a non-negative form which is not a sum of squares. Note that 
this example could also be obtained by a variant of the half-degree principle to even symmetric polynomials.

Example 4.1 (Robinson Polynomial). The non-negativity of the Robinson polynomial

R = X6 + Y 6 + Z6 −
(
X4Y 2 + X2Y 4 + X4Z2 + X2Z4 + Y 4Z2 + Y 2Z4)+ 3X2Y 2Z2

can be easily verified using Remark 3.11. Indeed,

R = e1(X2, Y 2, Z2)3 − 4e1(X2, Y 2, Z2)e2(X2, Y 2, Z2) + 9e3(X2, Y 2, Z2)

is a Z1-quasi-sufficient even symmetric polynomial. Therefore, we only need to examine R on the set

B1 :=
{
x ∈ R3 ∣∣ |{x2

1, x
2
2, x

2
3} \ {0}| ≤ 1

}
.

Since we easily find that the two (dehomogenized) univariate polynomials

R1 = R(1, T, T ) = T 4 − 2T 2 + 1 = (T − 1)2(T + 1)2

R2 = R(1, T, 0) = T 6 − T 4 − T 2 + 1 = (T 2 + 1)(T − 1)2(T + 1)2,

are non-negative, R is indeed non-negative. Moreover, we directly also see that R has at least the 10
projective zeros

(1,±1,±1), (0,±1,±1), (±1, 0,±1), (±1,±1, 0)

which constitute the orbits of (1, 1, 1) and (1, 1, 0). One easily checks that these zeros are isolated. From 
this observation one immediately also obtains that R cannot be a sum of squares. Indeed, since a zero of a 
sum of squares also has to be a zero of every summand, a sextic which is a sum of squares can have at most 
9 isolated zeros.

Furthermore, we will show how our results can be used to verify symmetric inequalities rather easily.

Example 4.2 (AM–GM inequality). The inequality of arithmetic and geometric means is a standard inequal-
ity from analysis, stating that for all x ∈ Rn

≥0 we have

x1 + x2 + · · · + xn ≥ n
√
x1 · x2 · · ·xn,
n
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or equivalently

en1 − nnen ≥ 0 on Rn
≥0.

By squaring the variables this is equivalent to

F = e1(X2
1 , . . . , X

2
n)n − nnen(X2

1 , . . . , X
2
n)

is non-negative, which can be proven by applying again Remark 3.11 similarly to the previous example.

Example 4.3 (Maclaurin’s inequality). More generally we have

i

√
ei(x)(

n
i

) ≥ j

√
ej(x)(

n
j

)
for all x ∈ Rn

≥0 and i ≤ j which is equivalent to

F =
(
n

j

)2i

ei(X2
1 , . . . , X

2
n)2j −

(
n

i

)2j

ej(X2
1 , . . . , X

2
n)2i

is non-negative. F is (Zi)-concave-sufficient and even symmetric. First we show that infx∈Rk f > −∞. Since 
F is in particular (Z1, Zi)-concave-sufficient, it suffices to show that

Fλ := F (X, . . . ,X︸ ︷︷ ︸
λ1−times

, Y, . . . , Y︸ ︷︷ ︸
λ2−times

, 0, . . . , 0︸ ︷︷ ︸
λ3−times

)

is bounded from below for all partitions λ1 + λ2 + λ3 = n. Since Fλ is homogeneous it suffices to show that 
the dehomogenization

F̃λ = Fλ(X, 1)

has positive leading coefficient. It has leading coefficient

(
n

j

)2i(
λ1

i

)2j

−
(
n

i

)2j(
λ1

j

)2i

> 0

for i ≤ λ1 < n (this can be easily shown by induction on λ1) and F̃λ = 0 for λ1 = n and for λ1 < i. Now 
we can use Theorem 3.8 (4) and Remark 3.11, so it suffices to check that

Fμ := F (X, . . . ,X︸ ︷︷ ︸
μ−times

, 0, . . . , 0︸ ︷︷ ︸
(n−μ)−times

)

is non-negative for all partitions μ + n − μ = n. Since Fμ is homogeneous it suffices to show that the 
dehomogenization

F̃μ = Fμ(1) =
{(

n
j

)2i(μ
i

)2j − (ni)2j(μj)2i, for i ≤ μ < n

0, else

is non-negative.
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It is interesting to notice that the idea of certifying symmetric inequalities in the way sketched has 
been done albeit not as general. For example, the main Lemma [26, Lemma 2.4] used to prove some new 
inequalities between elementary symmetric polynomials can be seen as a special case of Remark 3.11 for 
Z1-quasi-sufficient even symmetric polynomials. Moreover, our setup also recovers as a special instance of 
Corollary 3.10 together with Proposition 3.6 the so-called Degree and Half-Degree Principle shown in [34].

Corollary 4.4 (Degree Principle). Let S ⊆ Rn be a symmetric semi-algebraic set, which can be described by 
symmetric polynomials of degree at most d. Then S is empty, if and only if S ∩ Ad is empty.

Corollary 4.5 (Half-Degree Principle). Let f ∈ R[X] be symmetric of degree d. Then f is k-complete, where 
k := max

{
2,
⌊
d
2
⌋}

.

We remark that it is known to be NP-hard already for quartics to decide non-negativity (see e.g. [5] or 
[28]). However, for univariate polynomials, non-negativity can be certified via sums of squares decomposition. 
Such a decomposition can be efficiently obtained via semi-definite programming. The feasible region of a 
semi-definite program is given by a linear matrix inequality (LMI), i.e., an inequality of the form A0 +
x1A1 + x2A2 + . . . + xnAn � 0, where A0, . . . , An are real symmetric matrices all of the same size and 
x1, . . . , xn are supposed to be real scalars. Now for a symmetric 1-complete polynomial of degree 2d we have 
that f is non-negative if and only if the univariate polynomial f̃ := f(T, T, . . . , T ) of same degree is non-
negative. This in turn is the case, if and only if there exists a symmetric matrix A ∈ R(d+1)×(d+1) which is 
non-negative and for which we have f̃ = (1, T, T 2, . . . , Tn) ·A · (1, T, T 2, . . . , Tn)t. Therefore, non-negativity 
of a 1-complete symmetric polynomial can be decided with semi-definite programming. This motivates the 
following sufficient criterion for 1-complete polynomials.

Theorem 4.6. Let l ∈ R[Z1, . . . , Zn]1 be linear and homogeneous, say l = λ1Z1 + · · · + λnZn for some 
λ1, . . . , λn ∈ R. Let f be a l-sufficient symmetric polynomial. Let m denote the largest index i of the non-
zero λi, i.e., m := max {i ∈ {1, . . . , n} | λi �= 0}. If m is odd, then f is 1-complete.

Proof. Write f as f := g(l(e1 . . . , en)) for some univariate polynomial g. Let x ∈ Rn and define a :=
l(e1(x), . . . , en(x)) ∈ R. We will show that H1

l (a) �= ∅. Consider the univariate polynomial

p :=
m∑
i=1

λi

(
n

i

)
T i − a ∈ R[T ].

Since m is odd, p has a real zero y ∈ R. Consider now z = (z1, . . . , zn) ∈ Rn defined by zi :=
(
n
i

)
yi. Then 

z ∈ H1
l (a) by construction. Now

f(x) = g(a) = g(l(z1, . . . , zn)) = f(y, . . . , y). �
Convex sets for which membership can be described via semi-definite programming, i.e., which are 

projections of feasibility regions of semi-definite programs are called spectrahedral shadows. Recently, Schei-
derer [33] was able to show that in general, the cone of positive semi-definite forms is not, in general, a 
spectrahedral shadow. Using Corollary 3.10 and Remark 3.11 we can identify families of convex cones of 
(even-)symmetric positive semi-definite forms which are spectrahedral shadows, generalizing Theorem 4.29 
in [9].

Proposition 4.7. Let P2d denote the convex cone of positive semi-definite n-ary forms of degree 2d and 
2 ≤ j ≤ n. Then, the subcones of all (Z1, Zj)-sufficient and (Z1, Z2)-quasi-sufficient symmetric forms 
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are spectrahedral shadows. Similarly, the subcone of all (Z1, Zj)-quasi-sufficient even-symmetric forms is a 
spectrahedral shadow.

Proof. All forms in the mentioned subcones are 2-complete by Corollary 3.10 and Remark 3.11. Therefore 
non-negativity can be decided by restricting to A2, respectively B2. Dehomogenizing the resulting binary 
forms we obtain univariate polynomials, which are non-negative if and only if they are sums of squares. �
5. Conclusion and open questions

We have defined the notion of hyperbolic slices and showed that the local extreme points of such slices 
correspond to hyperbolic polynomials with few distinct roots. We show that generically these hyperbolic 
slices contain at most finitely many local extreme points. We expect that this holds generally, i.e., also 
in those cases when the k-boundary is not finite. In particular, we expect that the convex hull of each 
connected component of any hyperbolic slice is a polyhedron. Arnold and Givental [2,14] had shown that 
the hyperbolic slices which are obtained by fixing the first k coefficients are contractible. Our examples 
show that hyperbolic slices are in general neither connected nor compact and therefore in particular not 
contractible. It would be very interesting to study the topological properties of these sets. Similarly to the 
results in [4], an understanding of the topology of these slices might allow for new efficient algorithms to 
compute the homology of symmetric semi-algebraic sets defined by k-complete polynomials. Furthermore, 
the definition of hyperbolic slices naturally involved elementary symmetric polynomials. From the viewpoint 
of symmetric polynomials, it seems interesting to study analogous sets for different choices of n symmetric 
polynomials which generate all symmetric polynomials. For example, the first author observed in [31] that 
symmetric polynomials defined by any k Newton sums are at least (2k + 1)-complete. Finally, a natural 
question is to explore the connections to invariant polynomials of other groups, most notably finite reflection 
groups. In [13,1] the authors showed that the image of polynomial functions invariant by a finite reflection 
group can be described by the points on flats in the hyperplane arrangement if the degree is sufficiently 
small. We expect that the notions and techniques presented here can be transferred also to this more general 
setup.
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