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Summary 

Animal migration is a fascinating natural phenomenon where large numbers of animals 

embark on long-distance journeys, seeking out favorable environmental conditions and prey 

throughout the annual cycle. During their journeys, migrating animals play essential roles in 

a range of ecosystems and in human economies and cultures. Documenting the movement 

patterns of migrating animals is essential for understanding ecosystem processes and 

assessing the threats of a changing climate and anthropogenic disturbance. Whether 

migrating animals are capable of responding to ecosystem changes and their vulnerability to 

anthropogenic stressors are important questions in a rapidly changing world. However, 

studying migrating animals throughout their annual movements is logistically challenging, 

leading to knowledge gaps in some species' migration patterns and the mechanisms driving 

them, especially in the vast and dynamic ocean environment.  

In this thesis, a range of techniques was used to fill major knowledge gaps in humpback 

whale (Megaptera novaeangliae) movement patterns and migration ecology in the North 

Atlantic Ocean. The main objectives were (1) to document the movements of North Atlantic 

humpback whales throughout the annual cycle, with a particular focus on the Northeast 

Atlantic and reproductive females, (2) to study the migration strategies of these animals, 

and (3) to provide novel insights into the annual budgeting of energy during humpback 

whale migration.  

This thesis contains the description of a fully tracked annual migration of a pregnant female 

humpback whale, which demonstrated connectivity between three Northeast Atlantic 

feeding grounds (Barents Sea, Norway, Iceland) within the same season. Our results show 

that whales can adapt their migration speed to compensate for time spent foraging during 

winter while successfully providing for a calf. This work offered detailed insights into the 

movements of a mother-calf pair throughout the entire migration and suggested that the 

energetic cost of one of the longest documented mammalian migrations may be higher than 

in other humpback whale populations.  

In the second paper, we described the seasonality and spatial development of a foraging 

site in the northern Norwegian fjords during winter, using photo-identification. A female-
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biased sex ratio and high return rates to this area demonstrate that this site has become an 

important part of the annual cycle predominantly for female humpback whales in the 

Northeast Atlantic. Our results confirmed the connectivity between the Barents Sea feeding 

ground and the Norwegian winter feeding aggregation. Finally, we provided the first 

estimates of pregnancy rates for Northeast Atlantic humpback whales. 

We then compiled a basin-wide dataset of humpback whale movement from satellite 

telemetry collected over the last two decades. We identified six distinct migration strategies 

humpback whales use during their long migration between high latitude foraging grounds 

and the tropical breeding ground. Migration distance explained only 23% of the variation in 

these migration strategies, which highlights the enormous variability of migration strategies 

within foraging sites. We documented for the first time that some animals migrated toward 

the breeding grounds but spent no time in the area before returning northward. This work 

presented movement patterns inferred from satellite telemetry in all known foraging 

grounds of the North Atlantic and the main breeding ground in the West Indies. 

In conclusion, this thesis revealed important novel information on the space use of North 

Atlantic humpback whales throughout the year and the specific behaviors and habitat use of 

reproductive females. The included papers presented crucial knowledge regarding the 

migration ecology of Northeast Atlantic humpback whales, their unusual annual schedules, 

the connectivity between different areas of the foraging grounds, and their specific 

migration strategies and energetic requirements. This information can inform ecosystem 

management and assessment of the species’ conservation status. The presented movement 

patterns are a valuable reference for future changes caused by continued climate change 

and increasing anthropogenic use of the ocean.  
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1 Introduction 

Animal movement is a foundational aspect of ecology that shapes patterns of biodiversity in 

many ecosystems of the world. These emergent biodiversity patterns are underpinned by 

individuals and groups of animals completing the complex tasks of finding resources, 

avoiding risks, and moving efficiently through their respective landscapes (Dingle and Drake, 

2007). One of the most impressive feats of animal movement is the migrations that highly 

mobile animals undertake across often large distances. Migration is a ubiquitous 

phenomenon across animal taxa that allows animals to take advantage of spatially and 

seasonally separate favorable habitats or resources, including food, breeding opportunities, 

and shelter throughout the year (Dingle and Drake, 2007; Chapman et al., 2014). Migration 

can be considered the directed movement between home ranges, within which animals 

move on smaller temporal and spatial scales (Figure 1), although many variations of this 

definition exist in the literature (Dingle and Drake, 2007). Migration occurs across vastly 

different temporal and spatial scales: plankton exhibit diurnal vertical movements, birds, 

Figure 1 Schematic representation of a return migration between geographically and seasonally separate 
foraging and breeding areas, within which animals move in a less directed manner. During the migration, 
departure time, migration pace, and arrival time, as well as the use of potential stop-over areas, are 
important determinants of migration characteristics. 
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and whales undertake long-distance annual migrations, monarch butterflies engage in 

multi-generational migrations, and salmon and sea turtle hatchlings embark on once-in-a-

lifetime journeys. 

No matter the scale, the seasonal movements of large numbers of insects, birds, fish, or 

mammals play crucial roles in global ecosystems (Roman and McCarthy, 2010; Bauer and 

Hoye, 2014; Olds et al., 2016). Animal migrants act as vectors between ecosystems, 

transporting nutrients, diseases, and parasites across vast spatial scales (Altizer, Bartel and 

Han, 2011; Bauer and Hoye, 2014). While they occupy their seasonal habitats, they usually 

occur in great numbers, acting as important predators and heavily impacting nutrient 

transfer throughout the system (Lundberg and Moberg, 2003). Whales do so, for example, 

by fertilizing the ocean via defecation (Roman and McCarthy, 2010; Roman et al., 2014), and 

migrating salmon transport nutrients from the open ocean to forest ecosystems as they 

migrate up streams to spawn (Helfield and Naiman, 2001). Animal migrants are also 

important for human economies and nutrition (e.g., herring, salmon, whales, locusts) and 

hold significant cultural value globally (Shuter et al., 2011). Given the vital role of migration 

in global ecosystems, describing migration patterns and understanding the mechanisms 

underlying the phenomenon on an individual and population level is an important challenge 

in ecology (Bowlin et al., 2010). 

A range of methods can be used to document the movements of animal migrants 

throughout the annual cycle. Mark-recapture methods, genetics, and, more recently, 

biotelemetry each provide valuable insights into movement patterns across scales. 

However, the migration patterns of many species are still unknown, making it challenging to 

identify mechanisms underlying migration patterns and factors affecting migrating animal 

populations. As a first step toward conserving migratory species, the seasonality of their 

movements, spatial corridors, and habitats must be defined (Webster et al., 2002; Seidler et 

al., 2015; Hays et al., 2019). Information from movement data collected by satellite can then 

be linked to the energetic budgets on an individual (Braithwaite, Meeuwig and Hipsey, 

2015) and then population level (Dunlop et al., 2021; Pirotta, 2022). Energetic budget 

models can be used to assess the impact of anthropogenic disturbance and climate change 

on migratory species (van der Hoop, Corkeron and Moore, 2017; Pirotta, Mangel, et al., 

2018). 
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To understand the mechanisms that drive migration patterns, we can assess observed 

patterns in the context of energetic and reproductive outcomes. Optimal migration theory 

was developed to understand trade-offs associated with migratory decisions on an 

individual level using optimality principles (Alerstam, 2011). To survive and reproduce 

successfully, animal migrants must maximize fuel intake and limit energetic costs 

throughout migration. A migrating individual can optimize its movements either to minimize 

the locomotion costs by reducing the pace of migration or by minimizing the migration 

duration, which saves on daily metabolic costs (Hedenström and Alerstam, 1995). Many 

migrants are long-lived capital breeders that decouple the breeding and foraging season, 

and balancing their energy budget throughout the year is of unique importance for their 

fitness (Evans and Bearhop, 2022). Migratory decisions are constrained by species-specific 

qualities (e.g., locomotion mode), an individual’s annual energetic needs, and life-stage-

specific requirements (Avgar, Street and Fryxell, 2014). Individual differences in learning and 

experience also contribute to observed differences in migration patterns (Fayet, 2020). For 

example, site fidelity is thought to inhibit, to some degree, the adaptation to changed 

conditions (Matthiopoulos, Harwood and Thomas, 2005; Abrahms et al., 2021). External 

factors, such as density effects (Mysterud et al., 2011), prey dynamics (Szesciorka et al., 

2020), and environmental conditions (Shaw, 2016), also modulate the conditions under 

which animals have to optimize migratory decisions.  

Matching movements to the occurrence of resources in the seasonal cycle (phenology), and 

reproductive needs, is another primary constraint of animal migration (Alerstam and 

Bäckman, 2018). To successfully match their movements to the occurrence of resources, 

migrants rely on the predictability of prey occurrence and environmental conditions 

(Alerstam, Hedenström and Åkesson, 2003; Avgar, Street and Fryxell, 2014). On smaller 

scales, the heterogeneous distribution of resources, especially in patchy and dynamic 

marine environments, means that animals are inherently adapted to be able to respond to 

natural fluctuations in resources, but this ability is specific to a species’ behavioral and 

energetic potential (Fleming et al., 2016; Abrahms et al., 2018, 2021; Shuert et al., 2023). 

Identifying plasticity in migratory behavior is a priority in understanding potential responses 

to disturbance and changes in environmental conditions (Lindström et al., 2014; Silber et al., 

2017). 
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Climatic change or anthropogenic impacts can disrupt the balance of animal movements 

with their environment, leading to a mismatch between resources and the animals that 

need them. Changes in migratory timing in response to changes in, for example, the timing 

of spring onset are now well documented to affect marine systems (Anderson et al., 2013; 

Ramp et al., 2015; Descamps et al., 2017). For marine vertebrates, direct physiological 

effects and changes in the predator-prey relationship are predicted to be most common 

outcomes of climate change (Sydeman et al., 2015), resulting in altered distributions (Silber 

et al., 2017) and migration phenology (Ramp et al., 2015). In addition to these changes, 

marine migrants face habitat alterations, from increasing human use of the oceans, 

including coastal development, ship traffic and pollution (Avila, Kaschner and Dormann, 

2018).  
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While their movements may provide them the opportunity to escape certain conditions at 

some time during the year, migratory species are, for the same reason, exposed to a variety 

of potentially harmful human impacts across the range of their movements (Lascelles et al., 

2014). Migratory species, therefore, present unique challenges to management and 

conservation since they cross and inhabit a range of different countries' economic zones and 

often spend much of their time in areas outside of national jurisdiction (Harrison et al., 

2018; Dunn et al., 2019; Hays et al., 2019). Understanding the population structure and 

exchange based on movements is essential for designing effective management, 

conservation interventions, and monitoring programs (Lascelles et al., 2014; Clapham and 

Zerbini, 2015).  
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2 Study species 

Humpback whales (Megaptera Novaeangliae) undertake one of the most enigmatic animal 

migrations. Like many other species of baleen whales (Mysticetes), they migrate thousands 

of kilometers between breeding and foraging areas (Brown, 1957). Humpback whales are 

capital migrants, sensu Evans and Bearhop (2022), that decouple the foraging and breeding 

season almost entirely. In contrast, income migrants continue foraging as they migrate 

(Evans and Bearhop, 2022). As generalist predators, they feed on krill (Euphausiacea) or 

small forage fish, including herring (Clupea harengus), capelin (Mallotus villosus), and sand 

lance (Ammodytes spp.), at high latitudes of all ocean basins during the productive season 

(Chittleborough, 1953). Rorqual whales (balaenopterids) forage via a mechanism termed 

lunge diving. This highly costly filter feeding mode requires high densities of prey on the 

feeding grounds to be effective in energy acquisition (Goldbogen et al., 2011). Rorqual 

whales are uniquely adapted to migrating extremely long distances because of this efficient 

mode of foraging at high prey densities, large capacity for fat storage, and efficient mode of 

transport due to their size (Hein, Hou and Gillooly, 2012), adaptations that release them 

from some constraints other migrants experience. However, the upper bounds of baleen 

whale migration capabilities continue to be an active area of research.  

Humpback whales breed at low latitudes in areas delineated by the 21°C thermocline 

(Rasmussen et al., 2007). Patterns in migration timing and routes vary with sex, age, and 

reproductive stage as they are mediated by differing energetic and habitat requirements 

(Dawbin, 1966; Lockyer, 1986; Brown et al., 1995; Craig and Herman, 2000; Pallin, Baker, et 

al., 2018; Bejder et al., 2019). While males may aim to arrive early on breeding grounds to 

maximize access to mating opportunities and thus leave feeding grounds early in the 

season, pregnant females generally stay longest on feeding grounds to maximize energetic 

intake (Chittleborough, 1965; Dawbin, 1966; Pallin, Baker, et al., 2018). Mother-calf pairs 

may choose migration routes near coastal areas where they can rest and nurse (Craig and 

Herman, 2000; Bejder et al., 2019). Migration destinations to breeding and foraging grounds 

are thought to be stable and maternally directed, as calves remain with their mothers for 

their first migration during the first year (Clapham and Mayo, 1987; Baker et al., 2013). As a 

result, site fidelity, or annual return rates to foraging grounds, are high (Clapham et al., 

1993; Herman et al., 2011; Barendse et al., 2013). Usually, humpback whales also exhibit 

https://www.zotero.org/google-docs/?broken=ZwZlS3
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site fidelity to breeding sites, but there have been exceptions that demonstrate some 

flexibility in this pattern. For example, some individual whales were observed to switch 

between breeding grounds in the North Atlantic (Stevick et al., 2016).  

The adaptive benefits of baleen whale migration have been vividly debated in the literature, 

with limited consensus (Pitman et al., 2020). Potential candidates for the adaptive benefits 

of baleen whale migration include the energetic and growth benefits of warm water 

temperatures in breeding areas and predator avoidance benefits for calves (Corkeron and 

Connor, 1999; Clapham, 2017). It has also been proposed that warm water provides 

benefits for adult whales during a season in which prey densities are below the threshold at 

which foraging strategies are energetically efficient (Brodie, 1975; Kshatriya and Blake, 

1988), although more recent work suggests that warm waters present a thermoregulation 

challenge, rather than benefits, for highly insulated whale bodies (Ryg et al., 1993). Most 

recently, the need for epidermal molting in warm waters was proposed as a possible driver 

of migrations (Pitman et al., 2020). Molting requires increased blood flow to the outer skin 

layers which would cause excessive heat loss in cold waters, with potential secondary 

benefits to calf growth and survival (Pitman et al., 2020). The reasons likely remain debated 

partly due to a lack of knowledge on the links between whale behaviors, the associated 

energetic costs and benefits, and reproductive outcomes mediated by energy budgeting of 

different behaviors through the annual cycle. 

Like all great whales, humpback whale populations have been decimated during the era of 

industrial whaling (Stevick et al., 2003; Pallin, Baker, et al., 2018; Zerbini et al., 2019). In 

contrast to some other baleen whale species, humpback whales have been remarkably 

successful at recovering their population sizes and, as a result, are no longer listed as 

endangered across much of their range, with some notable exceptions, including, in the 

North Atlantic, the CVI population segment (Cooke, 2018). Climate change and increasing 

anthropogenic use of the ocean and its resources pose new challenges to recovering large 

whale populations (Avila, Kaschner and Dormann, 2018; Nelms et al., 2021). For example, a 

decline in the reproductive success of West Atlantic and Northeast Pacific humpback whales 

was linked to climate-mediated changes in the food web (Kershaw et al., 2020; Gabriele et 

al., 2022). However, humpback whales are often considered relatively resilient to stressors 

due to their flexibility in prey choice and habitat preferences (Fleming et al., 2016; Moore 
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and Reeves, 2018; Moore et al., 2019). Some humpback whale populations and other 

baleen whales have already been observed to change their movement patterns temporally 

and spatially (Carroll et al., 2014; Ramp et al., 2015). However, the impact of direct 

anthropogenic stressors acting in concert with such changes can lead to compounding 

effects (Maxwell et al., 2013; Halpern et al., 2015). Humpback whales face mortality and 

stress from entanglements in fishing gear, ship strikes, and pollution, including noise 

(Dunlop, 2019; Sprogis, Videsen and Madsen, 2020), plastic (Garcia-Garin et al., 2021), and 

chemical pollutants (Elfes et al., 2010; Sala et al., 2022). While these factors affect the 

individual, they can affect reproductive success, survival, and eventually, population viability 

(E. Pirotta et al., 2019; Dunlop et al., 2021; Torres et al., 2022). 

Establishing a baseline understanding of migrating animals' spatial and temporal 

distributions, movement paths, reproductive rates, and ecosystem roles is paramount to 

assessing potential changes in their population status (Lascelles et al., 2014; Avila, Kaschner 

and Dormann, 2018; Nelms et al., 2021). Humpback whales form crucial links in food webs 

locally, turning over large amounts of biomass into nutrients, thereby increasing production 

(Roman et al., 2014; Blanchet et al., 2019). Their movements link across geography 

transporting biomass between ecosystems from the poles to the (sub-) tropics. Their sinking 

bodies provide crucial nutrients to specialized benthic communities (Lundberg and Moberg, 

2003; Smith, Roman and Nation, 2019).  

Humpback whales forage at high latitudes to take advantage of seasonally high productivity 

during summer and fall in specific areas, with high maternally directed site fidelity (Clapham 

and Mayo, 1987). Six largely distinct foraging sites are described in the North Atlantic 

(Figure 2), located in Norway (including the Barents Sea, Norwegian Sea, and coastal 

northern Norway), Iceland, Atlantic Canada (including the Gulf of St. Lawrence and 

Newfoundland-Labrador), the Gulf of Maine (USA), and Greenland (Katona and Beard, 1990; 

Smith et al., 1999; Stevick et al., 2006). Two known breeding grounds are described in the 

North Atlantic: The West Indies, an island chain in the Caribbean Sea, and the Cape Verde 

Islands, off the coast of Mauretania and Senegal (Figure 2). Information on the seasonality 

and duration of the feeding season has been documented traditionally from photo-

identification studies, which also provided knowledge on the connectivity between breeding 
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and feeding grounds, and whaling records (Chittleborough, 1965; Dawbin, 1966; Clapham 

and Mayo, 1987). 

 

Figure 2 Schematic overview of the feeding grounds in the North Atlantic in brown: The Gulf of Maine, 
Atlantic Canada, Greenland, Iceland, Barents Sea/Norway. The breeding grounds, Cape Verde 
Islands and West Indies, are shown in blue. 
 

While humpback whales from across the North Atlantic travel to the West Indies, recent 

evidence is mounting that the western and eastern parts of the population are distinct 

based on their behavior, i.e., distribution in time and space in this region (Jones, 2018; 

Stevick et al., 2018). Northeast Atlantic whales are more likely to be re-sighted in the Lesser 

Antilles, which include Dominica and Guadeloupe (Stevick et al., 2018). The breeding season 

is thought to peak in April, ca. six weeks later than the breeding season in the more 

northwestern Greater Antilles. The Greater Antilles are much better researched, including 

the well-documented Dominican Republic and protected Silver and Navidad Bank breeding 

areas. Recently, acoustic monitoring has provided more detailed information on the 
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seasonality of habitat use in the West Indies, showing that individuals continue to be 

present well into May in the Greater Antilles (Heenehan et al., 2019). 

The CVI breeding ground, in contrast, is occupied by a much smaller number of humpback 

whales during March and April and has received considerably less research attention until 

recently. This area is thought to be dominated by Northeast Atlantic whales, predominantly 

sighted in Norway during winter (Wenzel et al., 2020). The two breeding areas, West Indies 

and CVI, appear to be genetically and behaviorally distinct population segments that mix on 

the northeast foraging grounds (Jones, 2018; Gabualdi et al., 2023), with some exchange 

due to individual whales that use both breeding grounds in different years (Stevick et al., 

2016). 
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3 Objectives 

The principal aim of this work was to improve our understanding of humpback whale 

migration ecology and their distribution throughout the annual cycle in the North Atlantic. 

In collaboration with my coauthors, I analyzed a comprehensive dataset of humpback whale 

movement data from satellite telemetry in conjunction with photo identification, hormone 

and genetic profiling, and bioenergetic models.  

The specific objectives were to: 

1) Document the movements of North Atlantic humpback whales throughout the annual 

cycle, with a particular focus on the Northeast Atlantic and reproductive females (paper 1, 

2, 3) 

2) Document different migration strategies (pathways, phenology, and migration pace) and 

how they relate to sex, reproductive state, and feeding ground origin (paper 1, 2, 3) 

3) Assess the energetic demands and trade-offs associated with humpback whale migration 

from the Northeast Atlantic (paper 1). 
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4 Analytical approaches 

To address the objectives defined for this thesis, we used a range of tools that provide 

insights into humpback whale migrations across multiple scales. In papers 1 and 3, we used 

satellite telemetry, which provides individual-level detailed movement information on the 

annual and ocean-basin-scale. Based on the telemetry data in paper 1, we used a 

bioenergetic model to quantify the energetic cost of migration for a humpback whale in the 

Northeast Atlantic. In paper 2, a large sample of photo-identification and hormone and 

genetic screening of biopsy material obtained over a decade was analyzed to describe the 

demographic parameters of one specific feeding area in the Northeast Atlantic. In paper 3, 

we collated telemetry data from over 200 humpback whales and two decades to assess the 

variability in migration strategies and movement patterns across their range in the North 

Atlantic Ocean. In the following, I outline the general principles of the main methods used in 

this thesis.  

 

Telemetry data 

In papers 1 and 3, we used satellite telemetry as a basis to assess the movements and 

behaviors of humpback whales across the North Atlantic. Biotelemetry has emerged as a 

crucial tool in ecology and conservation, and ongoing technological advances mean it is now 

widely available (Cooke, 2008; Hussey et al., 2015). The most used satellite technology in 

the marine realm is based on the Argos system. Argos is a global system of satellites 

maintained by the company CLS (www.cls-telemetry.com). Transdermal Argos satellite tags 

developed for large baleen whales (SPOT or SPLASH tags from www.wildlifecomputers.com) 

were deployed on humpback whales using an air-powered rifle from small motorboats. Tags 

were deployed between 2014 and 2019 in coastal fjords of northern Norway during the 

winter and during a cruise in September 2018 in the Barents Sea, in the waters east of 

Svalbard. 

We further collated, harmonized, and cleaned Argos satellite telemetry data from 

collaborators across the North Atlantic region during two decades from all other foraging 

grounds of the North Atlantic and the common breeding ground in the West Indies. These 

http://www.cls-telemetry.com/
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collaborators followed the above-outlined procedure, but some data from experimental 

deployments using other types of tags were included in Paper 3 (Heide-Jørgensen and 

Laidre, 2015). 

Because satellite signals cannot travel through water, Argos tags send a unique identifier or 

small package of data to a single satellite within the short time air-breathing animals 

breathe at the surface. A location is determined based on the known trajectory of the Argos 

satellite and the Doppler shift between two subsequent signals by triangulation (Hooten et 

al., 2017). While these benefits make Argos suitable for tracking large marine vertebrates 

over long distances, the uncertainty around locations tends to be large, ranging from 

hundreds to thousands of meters. These errors were classified with categorical error classes 

for each location until 2007, with each error class associated with a specific uncertainty 

estimate (defined by CLS). Since 2011, a multi-model Kalman filter algorithm has been used 

to estimate error ellipses around the provided location, providing error ellipses for all valid 

locations. This method accounts for the anisotropic nature of the errors caused by the polar 

orbit of Argos satellites (Hooten et al., 2017). Processing raw location information also relies 

on previous locations to improve accuracy, and the uncertainty around individual locations 

is influenced by weather conditions, the location of the animal and the satellites, and animal 

behavior because the type of movement impacts the frequency and duration of surfacing 

events. 

Given these limitations of raw location data obtained from the Argos system, the data must 

be further processed. Simple filters on maximum swim speeds and spikes in turning angles 

(Freitas et al., 2008) can identify erroneous location fixes. State-space models have become 

instrumental in obtaining reliable estimates of an animal’s movement and space use 

(Patterson et al., 2008). State space models consider the uncertainty estimates around 

provided locations and movement process models (Mcclintock et al., 2015) to reconstruct a 

most-likely movement path based on the raw data. Continuous-time state-space models 

employ a random or correlated random walk, and regularized locations can be sampled 

from this path (Jonsen et al., 2020). In this thesis, we used a continuous-time state space 

model to reconstruct a most likely movement path from raw satellite locations with either 

error ellipses or categorical quality information (Jonsen and Patterson, 2020). 
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Figure 3 Example of movement persistence modeled from satellite telemetry data in the Gulf of Maine and 
Atlantic Canada foraging grounds. Dark blue indicates low movement persistence (indicative of ARS), and light 
blue indicates high persistence or transiting movements. 

 

We obtained a regularized set of locations an animal has likely used over time from the 

state-space model. We can infer underlying behavioral modes based on this most likely 

movement path (Jonsen et al., 2019). This method relies on the movement speed of an 

animal (step length between locations), the turning angles between successive locations, 

and the degree of autocorrelation of these parameters along the path (movement 

persistence, , Figure 3). Movement persistence varies between 0-1 and indicates the 

autocorrelation between successive speeds and turning angles along the path (Jonsen et al., 

2019; Jonsen and Patterson, 2020). These parameters indicate types of behaviors, for 

example, ‘area restricted search behavior’ (ARS), which is generalized as localized 

movement with varying turning angles and low autocorrelation, representative of, for 

example, foraging, search behavior, or resting (Tinbergen, Impekoven and Franck, 1967). In 

contrast, if an animal is transiting or migrating, speed and turning angles may be highly 

correlated as an animal maintains movement direction and speed. 
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Bioenergetic modeling 

Due to their highly mobile nature and size, we cannot directly measure most physiological 

parameters for large cetaceans, particularly over long timescales, and distances. In paper 1, 

we used a bioenergetic model calibrated for humpback whales. This model allowed me to 

estimate the cost of migration based on the swim speed estimated from Argos location 

data. The energy required to overcome the drag a typical whale would experience while 

swimming at a given speed is estimated as the cost of transport in addition to a metabolic 

cost estimate per day (Fish, 1996; Braithwaite, Meeuwig and Hipsey, 2015). The parameters 

for this model require knowledge of the kinematics of movement and body shape of a 

whale. These parameters are difficult to obtain and must be estimated for large whales, so 

they are associated with some uncertainties. To allow for comparisons to earlier studies, we 

maintained the same parameter values (Braithwaite, Meeuwig and Hipsey, 2015; Riekkola 

et al., 2020). In the model, static parameters include the wetted surface area, body mass, 

drag coefficient, propulsive efficiency, aerobic efficiency, the ratio of active to passive drag, 

and the density of seawater. Swim speed is then varied dynamically according to swim 

speed estimated from telemetry data along regularly sampled steps of the reconstructed 

movement path. This gives the instantaneous cost of swimming at a given speed per second 

(in Watts), which is multiplied by the seconds in a day and added to an estimate of the basal 

metabolic rate, representing the energy required for physiological processes, resulting in 

the total energetic cost per day. 
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Photographic identification  

Mark-recapture techniques are a traditional tool used to understand population dynamics 

across space and time when direct observation of the entire life cycle is difficult or 

impossible. In paper 2, we used this method to describe the connectivity between different 

foraging areas, describe the seasonality of the foraging aggregations, and investigate return 

rates for individual animals. Artificial markings, such as ringing, tagging, or color markings, 

can be used to identify individuals in different regions and across seasons (Hammond, 

2009). In some cases, natural individual markings are present, making the artificial tagging 

of individuals superfluous. Humpback whales have individually recognizable and stable 

markings in their ventral flukes' coloring and ridge patterns (Katona and Whitehead, 1981). 

These natural markings allow researchers to follow individual whales' movements across 

entire ocean basins and decades of movement using repeated photographic identification 

(Hammond 2009; Herman et al., 2011). This method also allows citizen scientists, tourists, 

and dedicated individuals out on the water and along coastlines to contribute data, which 

substantially increases the availability of photographic material (Peres dos Santos et al., 

2022; Cheeseman et al., 2023). The natural markings on humpback whale flukes can be 

assessed by eye, given sufficient picture quality (Friday et al., 2000). These methods can 

yield information on spatiotemporal movement patterns and demographic parameters such 

as reproductive success and population abundance (Ramp et al., 2010; Kershaw et al., 

2020). As such, photo-id studies are indispensable for studying the population dynamics of 

wide-ranging animals such as baleen whales (Cheeseman et al., 2023). 

 

Hormone screening 

Assessing population health based on photographic identification requires long-term effort 

and the presence of researchers or the public near whale aggregations to be feasible 

(Herman et al., 2011). When whales aggregate in remote areas, such as the Northeast 

Atlantic, photographic material is often insufficient for such long-term studies. Physiological 

parameters obtained from tissue samples can be used to assess individuals' health and 

reproductive status to infer population health (Clark, 2013). Hormone levels can provide 

detailed insights into an animal's health and life cycle status. Recently, methods have been 
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developed to measure sex hormones (testosterone and progesterone) to assess the 

reproductive biology of large whales (Kellar, 2008; Vu et al., 2015). The method is becoming 

a popular tool to monitor the population health of baleen whales since it allows for the 

collection of large numbers of biopsy samples even in remote areas with limited logistical 

support because these hormones are relatively accessible in the outer blubber layer and 

stable once frozen at -20°C (Pallin et al. 2023). 

Little is known about the humpback whales foraging in Northeast Atlantic waters, especially 

in the remote Barents Sea and coastal Norway. We, therefore, aimed to establish the first 

estimates of the pregnancy rate in this population to help identify whether movement 

patterns in this subset of the population are distinct by sex and reproductive status. In 

paper 2, we used progesterone measured in biopsy samples of humpback whales from the 

Barents Sea and Norwegian fjords to determine the reproductive status of female 

humpback whales. Tissue biopsies were collected over multiple years in northern Norway 

and in one year in the northern Barents Sea. We extracted hormones using a protocol 

established for humpback whales (Kellar, 2008; Clark et al., 2016; Pallin, Robbins, et al., 

2018) and measured the progesterone level in the outer blubber layer. Subsequently, the 

likelihood of pregnancy was established based on a model calibrated with known 

pregnancies in other populations (Pallin, Baker, et al., 2018; Kershaw et al., 2020). To 

increase the available sample size, we also used additional data from collaborators who had 

used a slightly different hormone extraction method. This allowed us to assess whether 

deviations in the laboratory methods were comparable, which can be an important 

consideration for future studies. The presented progesterone levels will also be valuable to 

inform our understanding of the development of hormone levels throughout gestation and 

the annual cycle since this is the first study to present progesterone values from the winter 

months, relatively late in the gestation period.  
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5  Summary of the main findings 

In this thesis, I aimed to fill gaps in the existing knowledge by describing the space use of 

humpback whales in the North Atlantic throughout the year and identifying their migratory 

patterns. This essential information has been fragmented so far due to the logistical 

difficulties of sampling and instrumenting large mobile animals inhabiting remote areas such 

as the Arctic and their long-distance movements across the open ocean. The included 

papers addressed gaps in our understanding of humpback whales’ individual and 

population-level movement patterns by using satellite telemetry data, photographic 

identification, and hormonal and genetic screening of tissue samples. This work also 

explored the migration ecology of humpback whales in the North Atlantic across different 

scales, from assessing the detailed movements and energetic expenditure of one individual 

throughout an annual cycle and migration to quantifying the demographic structure of the 

Northeast Atlantic foraging grounds, to an exploration of the diverse migration strategies of 

humpback whales from this area and the whole North Atlantic. 

In paper 1, we started at the scale of one single individual (Figure 4, panel 1). We assessed 

its migration route and timing, migration pace and which factors affected it, space use 

throughout the year, and the estimated energetic cost of this extremely long migration (ca. 

18 000 km both ways). In this first paper, we demonstrated that Northeast Atlantic 

humpback whales can follow an unusual annual schedule, connect multiple foraging 

grounds in the Northeast Atlantic, modulate speed according to this routine, and might give 

birth outside known breeding grounds on the way to their destination. These results 

illustrate the capabilities of humpback whales to push the boundaries of long-distance 

migrations. Using data from one individual with a complete migration track and additional 

knowledge on its successful reproduction event, we were able to provide a highly magnified 

window into the life of the elusive Northeast Atlantic humpback whales and discuss gaps in 

bioenergetic models as they have been developed for humpback whales.  
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Figure 4 This thesis investigated the movement ecology of North Atlantic humpback whales on different scales.                      
(1) Paper 1 included data on one individual through one annual cycle, (2) paper 2 provided information on the 
demographics of hundreds of individuals over a decade, and (3) paper 3 included telemetry data from >200 
individuals across the North Atlantic basin over two decades. 
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As a second step, we provided novel information on the spatiotemporal distribution of 

Northeast Atlantic humpback whales, this time using a larger window of focus, specifically 

the Barents Sea and fjord systems of northern Norway (Figure 4, panel 2). We described the 

demographics of the Northeast Atlantic feeding ground using photographic matching and 

genetic and hormone screening of biopsy materials. We also established evidence for the 

connectivity between the Barents Sea and the fjord systems of northern Norway. The 

results provided a detailed description of the geographical distribution of whales each year 

since humpback whales started visiting northern Norway in 2010 and the first published 

description of the establishment of this foraging site. We showed that individual whales 

return at remarkably high rates to northern Norwegian fjord systems and identified a 

female bias in this area and higher rates of pregnancy in contrast to the Barents Sea. Until 

the end of this study in 2019, 866 individuals had been recorded. Overall, this study 

demonstrated that humpback whales in the Northeast Atlantic could respond to shifts in 

herring distribution and used this resource excessively throughout winter. Notably, the site 

seems valuable to females who continue to feed late in the season. The study also 

complements paper 1 by providing further evidence of the annual routines of Northeast 

Atlantic humpback whales and the first estimates of pregnancy rates for this population. 

Eventually, we used an even broader perspective and considered the migration strategies of 

humpback whales using satellite telemetry data spanning the entire North Atlantic and two 

decades (Figure 4, panel 3). Paper 3 presented an overview of the current state of 

knowledge on the spatiotemporal distribution of humpback whales in the North Atlantic as 

documented by satellite telemetry data. A primary aim was to collate and standardize this 

data as a comprehensive overview, since the dataset included some published but many so 

far unpublished satellite tracks. We identified six different migration strategies across 

foraging grounds of the Barents Sea, northern Norwegian fjords, and Iceland. These 

strategies differed mainly in migration timing (Figure 5) and pace. The diversity of within-

site strategies was remarkable, and this demonstrates the extent to which individuals can 

modulate their migrations, likely optimizing their movements to various external and 

internal drivers. Most notably, we identified a previously unknown migration tactic in which 

Northeast Atlantic whales return towards foraging grounds before ever reaching the 

described breeding ground area or spending substantial time there. This provides an 
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important hint as to the constraints and trade-offs under which humpback whales 

undertake this long-distance migration. We proposed that this ‘returning early’ behavior 

could represent a carry-over effect from time constraints of the annual cycle or be related 

to life-history stage of the animals. This can help us further understand the reasons for 

baleen whale migrations by providing an unexpected example of migratory behavior.  

 

Figure 5 The variability of migration timing in individuals, as indicated by latitudinal changes in their location 
for each day of the year, tracked from various feeding grounds in paper 3. 

 

In conclusion, this thesis revealed important novel information on the space use of North 

Atlantic humpback whales throughout the year and the specific behaviors and habitat use of 

reproductive females. Crucial knowledge regarding the migration ecology of Northeast 

Atlantic humpback whales, their unusual annual schedules, the connectivity between 

different areas of the foraging ground, and their specific migration strategies and energetic 

requirements were presented. This information will be crucial in ecosystem management 

and important as documentation of a baseline condition in a changing ocean. The presented 

results can also be informative for future studies on baleen whale migration behavior and 

the trade-offs associated with very long migration distances. 
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This thesis includes the following main insights: 

1. Connectivity between foraging grounds in the Northeast Atlantic throughout the 

seasonal cycle 

2. Full annual documentation of the movements of a pregnant female 

3. Indication for breeding activities outside breeding grounds 

4. A female bias on the northern Norwegian winter feeding ground 

5. A first assessment of the pregnancy rates of Northeast Atlantic humpback whales 

6. A comparison of migration strategies across a latitudinal gradient of migration 

distances; including a novel migration strategy 

7. An overview of movement data collected over two decades in the North Atlantic 

In the following, I will first outline some notable limitations of my work, then discuss specific 

aspects of this work in the context of migration ecology and suggest directions for future 

research. 
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6 Limitations  

Gaps in the available telemetry data 

Although we collated and analyzed a large satellite telemetry dataset in this thesis, there 

were some notable gaps in the available data. First, we tagged many individuals in the 

northern Barents Sea and Norway, but we could not capture any migrations to the CVI 

breeding area. The behavior of whales migrating to the CVI remains poorly documented. We 

have few insights into their migrations apart from a general understanding of the 

connectivity and general timing of their whereabouts in Norway and CVI based on recent 

efforts in collecting photo-identification material (Wenzel et al., 2009, 2020), and genetic 

estimates of their level of interchange with the general population of the North Atlantic 

(Palsbøll et al., 1995; Ruegg et al., 2013). However, the expected divide in migration 

pathways would be around British waters, and photo identification suggests strong 

connectivity between those areas and CVI, with the highest number of matches from the 

Norwegian coastal feeding ground to the CVI (Broms, 2015; Jones, 2018). The CVI is a small 

and endangered part of the population (Wenzel et al., 2020) and constitutes a separate 

population segment in the North Atlantic (Jones, 2018; Gabualdi et al., 2023). If the 

migration corridor of these animals were more coastal in the southern part of the migration, 

it would cross many exclusive economic zones, with high amounts of fishery and other 

infrastructure around Europe (Halpern et al., 2015), exposing these whales to many 

potential threats along their migrations. Future studies are required to understand such 

risks along their migration routes. Additional work should address whether their behavior is 

unique in terms of movements and seasonality on northern feeding grounds so that 

appropriate conservation measures can be undertaken that ensure the protection of whales 

belonging to this small population segment on their feeding ground, where they interact 

with fisheries, tourism, shipping and infrastructure for the petroleum industry (Mul, 2020).  

Furthermore, due to logistical constraints, sampling and telemetry deployments in the 

Barents Sea/Svalbard area were restricted to one year, and most of the photo-identification 

effort was also conducted during the same cruise. Although this kind of bias in effort is 

common in telemetry studies (Hamilton et al., 2021), it is important to acknowledge that it 

may introduce biases in the interpretation of the data. Migration data was also only 
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fragmented in the western basin, despite decades of humpback whale tracking. However, a 

dedicated study would find sufficient data in paper 3 to assess the migration ecology of the 

Gulf of Maine humpback whales in more detail, perhaps in conjunction with simulated 

trajectories based on known departure and arrival time frames, which are well documented 

in this area.  

 

Uncertainties in pregnancy rates  

Due to limited sample sizes, the pregnancy rates we established in paper 2 were not robust 

enough to infer population health or changes in pregnancy rates over time. Nevertheless, 

these first pregnancy rate estimates will provide a baseline for future assessments. Large 

sample sizes, consistently obtained over a longer period, can provide valuable insights into 

the movement patterns of pregnant females, their foraging success, and thus population 

health (e.g., Pallin et al. (2018; 2023). Alternatively, long-term observational studies can be 

conducted to assess the rate at which females return with calves (calving rate), as 

demonstrated, for example, in Atlantic Canada (Herman et al., 2011; Kershaw et al., 2020). 

These kinds of studies require sustained funding and large teams and are logistically 

demanding in terms of sampling and laboratory work. Alternative measures of population 

health, e.g., estimated body condition from unmanned aerial vehicles (UAV) and 

photogrammetry, can be used, although to be useful, they have to be included in 

monitoring schemes (Aoki et al., 2021; Bierlich et al., 2022; Torres et al., 2022).  

 

Uncertainties and assumptions in the bioenergetic model  

In paper 1, we used a bioenergetic model to quantify the energetic cost of humpback whale 

migration in the Northeast Atlantic. This drag-based approach to assessing the cost of 

transport requires swim speeds to be estimated over a time frame that can be varied but is 

limited by the accuracy of the biotelemetry location data. In paper 1, for example, we used 

a step length of 6 hours. Swim speeds rely on the estimated distance swum by the animal 

between two locations as a straight line and, as such, cannot account for any tortuosity or 

variability of speed between the two locations. This estimated swim speed, therefore, 
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always includes uncertainties. Recently, movement models became available that can 

simulate a range of trajectories for each set of locations, therefore providing a confidence 

interval around the speed estimate (Noonan et al., 2019).  

Swimmers can also modulate their behavior to optimize locomotion costs, e.g., by varying 

their dive patterns and the depth at which they swim, so some effect of this variability in 

blubber layer thickness and, thus, buoyancy and body shape may be behaviorally offset 

(Nousek McGregor, 2010; Arce et al., 2019). For example, diving at a certain minimum depth 

will avoid additional costs caused by interactions between the animal body and the water 

surface; at approximately three times an animal's body 'height' wave drag becomes 

negligible (Blake, 2009). However, this might incur additional costs due to having to 

overcome buoyancy to dive. Furthermore, swimmers and flyers continue to move forward 

after the cessation of propulsive activity ('stroke'); by using this 'glide' phase, a stroke-and-

glide movement pattern can save up to 32% energy compared to constant-stroke 

movement (Ribak, Weihs and Arad, 2005). During this glide period, the animal can also save 

energy by reducing additional drag incurred when moving the body during stroke, a 

phenomenon well documented in pinnipeds (Biuw et al., 2003; Aoki et al., 2011). These 

behavioral modifications were not accounted for in our model. However, as described 

above, the limited precision in the estimation of animal movement speeds from telemetry 

data, especially from error-prone Argos satellite telemetry, inherently smoothes over 

smaller-scale movement processes. However, this method can still provide a rough estimate 

of the costs of movement over long time scales, i.e., months. 

Some parameters used to estimate the energetic cost of movement in humpback whales in 

paper 1 have traditionally been estimated based on studies from other species or dead 

animals (Braithwaite, Meeuwig and Hipsey, 2015). Recent advances in technology and their 

application to large whales increasingly allow for more precise estimates of swimming and 

foraging kinematics, as well as morphometrics, such as the surface area of an animal. For 

example, the drag coefficient can now be estimated from the oscillation of high-frequency 

suction cup tags in conjunction with biophysical modeling exercises (Gough et al., 2021), 

and surface area can be estimated from UAV and photogrammetry (Christiansen et al., 

2016). Nonetheless, we decided to maintain traditional parameter spaces to make our 

results comparable to previous studies from other regions and because updated parameters 
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are still being validated (Zhang et al., 2023). A dedicated work assessing the sensitivity of 

the bioenergetic model to changes in the used parameter space would provide a more 

precise assessment of the trade-offs that humpback whales face while making movement 

decisions. Such work could make more robust statements on whether humpback whales use 

time or energy-optimizing strategies during migration. Such a sensitivity analysis could also 

improve our understanding of the performance of older parameter estimates against 

recently refined measurements and how these changes might influence past interpretations 

of bioenergetic models.  

General limitations of the drag-based approach to bioenergetic modeling include that some 

parameters change over time, even if they are taken accurately during tag deployment (Aoki 

et al., 2021). These include, for example, the thickness of the blubber layer, which 

influences the cost of locomotion in free-ranging marine mammals since it determines the 

animal's buoyancy (Aoki et al., 2011) and influences body shape by varying the drag 

coefficient. Many baleen whales are capital breeders and thus naturally vary their blubber 

layer thickness throughout the annual cycle by building up fat reserves during the foraging 

season and consuming it when they fast during migration and lactation in the breeding 

season. Whether or not an animal is pregnant will also influence the drag by modulating the 

circumference and shape through abdominal distension, altering the finesse ratio by ~ 3 - 

4% throughout gestation (Nousek McGregor, 2010; Christiansen et al., 2016), a factor that 

will change throughout gestation and with changing body condition as stored fat is used to 

nurture the calf (Christiansen et al., 2014). 

 

Missing baseline knowledge in the Northeast Atlantic 

Limited knowledge of the historical distributions and seasonal movement of humpback 

whales in the Northeast Atlantic makes it challenging to understand whether movement 

patterns are already changing in response to climate change and increased anthropogenic 

pressures in the oceans during the last decades. Accounts from early whalers describe that 

humpback whales were present in the Northeast Atlantic during the winter and moved 

through the Norwegian and Barents Sea in the progression of the season (Hjort, 1902; 

Ingebrigtsen, 1929). It thus seems possible that Northeast Atlantic humpback whales always 
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had an 'unusual' annual schedule compared to animals from other areas. The formative 

studies for our understanding of humpback whale migration patterns stem from other 

areas, particularly the southern Ocean (Chittleborough, 1958; Dawbin, 1966). Knowledge on 

past movement patterns in the Northeast Atlantic is fragmented. There is also limited 

knowledge on humpback whale movements during recent decades, i.e., while the 

population was recovering. We therefore lack an understanding of how movement patterns 

might have changed with simultaneously occurring ecosystem changes or fluctuations, 

including climate change impacts in the Barents Sea and fluctuating distribution patterns of 

prey species, despite efforts from extensive surveys in the last decades and, more recently, 

acoustic monitoring (Øien, 2009; Løviknes et al., 2021; Aniceto et al., 2022). These knowledge 

gaps limit our understanding of how each factor impacts the whale distribution patterns 

observed since photo-id effort increased and biotelemetry deployments were initiated. Is 

the winter foraging activity related to population recovery and density effects, possibly in 

conjunction with environmental changes in the core foraging area? Have Northeast Atlantic 

humpback whales always displayed this 'unusual' annual routine, and are we only starting to 

see this with more available data? Or is this annual routine a result of some of these 

changes in conjunction? While we can say that humpback whales followed the herring into 

different fjord wintering areas (paper 2), we cannot make definitive statements on these 

questions. Most likely, the phenomenon is driven by a combination of these factors, and I 

discuss some of them in more depth in the perspective and conclusion section. 
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7 Perspective and Conclusion 

Spatiotemporal distribution on North Atlantic foraging grounds 

The results presented in this thesis support the idea of a more or less continuous foraging 

area and season of the Northeast Atlantic humpback whales throughout the Norwegian and 

Barents Seas, as had been suggested by studies based on historical whaling data 

(Ingebrigtsen, 1929) and ecosystem surveys (Øien, 2009). Previous studies also considered 

the foraging area as a continuous region, including the Norwegian Sea, with known foraging 

hotspots around Jan Mayen and Bear Island, and the Barents Sea, including the area around 

Svalbard (Stevick et al., 2006). For example, the movement patterns of the individual 

tracked in paper 1 confirm that animals start foraging around Bear Island upon returning 

from breeding grounds and then continue towards the Barents Sea as the season 

progresses. Multiple individuals used the known foraging area around Bear Island. The 

movement data presented in paper 3 also suggests that some of the winter sightings in 

Iceland can be attributed to this area being along the migration pathway of individuals 

foraging in the northern Norwegian and Barents Sea and the fjords of northern Norway. 

We further presented evidence that continuing to forage in Norway after a precluded 

season in the Barents Sea is a common strategy among Northeast Atlantic humpback whales 

(papers 1 and 2). However, in paper 3, we also showed that many individuals headed 

directly south on their migration after foraging in the Barents Sea until the end of the fall 

and sometimes continued foraging even into winter in the Barents Sea. Our results also 

showed that upon leaving known foraging grounds in coastal northern Norway, some 

animals continued to show ARS-like movements while moving southward along the 

Norwegian coast and in coastal areas of Iceland (paper 3). In conjunction, these 

observations confirm that the foraging season lasts not only through the winter in 

Norwegian fjords but also longer than previously assumed in the Barents Sea (although the 

observations were restricted to one particular year), and even continues after animals leave 

the Norwegian fjords (paper 3). This is a much later foraging season than previously 

assumed, based on knowledge from other feeding grounds and surveys in the Northeast 

Atlantic (Øien, 2009; Bengtsson, Lydersen and Kovacs, 2022). Much previous knowledge on 

humpback whale migrations stems from other, better documented, foraging grounds, e.g., 
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in the Gulf of Maine, and our results indicate that Northeast Atlantic humpback whales have 

a different annual schedule, as suggested earlier (Smith and Pike, 2009). 

Due to their costly foraging mode, the distribution and density of prey patches are 

important key determinants of the foraging efficiency of baleen whales and, consequently, 

their energetic balance throughout the year (Goldbogen et al., 2011). A visual comparison 

among the movements in the foraging areas in paper 3 indicated that animals spent 

transiting between foraging patches within the foraging sites might be different. This could 

be due to differences in prey species or prey distributions and could also be related to the 

geographic characteristics of each foraging ground. For example, foraging activity in the 

Barents Sea occurs over a wide shelf area, where prey distribution could be more 

ephemeral than, for example, in the Gulf of Maine, which is constrained by the coastline 

and shows distinct foraging hotspots. If whales forage in fjord systems, such as coastal 

Norway and Iceland, prey may be more densely aggregated or prey patches less dispersed 

across space. Therefore, the energy gain in these different foraging areas could be different, 

which could affect movement patterns, either within feeding grounds or in the timing of the 

following migrations. Future studies would be needed to understand the differences of 

migration patterns of humpback whales across the North Atlantic in the context of 

environmental conditions on their respective foraging grounds. For example, in the 

Northeast Atlantic, previous studies have attempted to assess how whale movements are 

related to prey fields from surveys (Skern-Mauritzen et al., 2011; Nøttestad et al., 2015), 

and the data presented here provides an opportunity for a more detailed look at such 

relationships (Vogel et al., 2021). Since telemetry and biopsy data collection is expensive 

and logistically challenging, efforts to share and collate are crucial for advancing our 

understanding of the movement ecology of large marine migrants. Collaboration and open 

data practices will become ever more urgent to assess the potential effects of ecosystem 

changes on movement dynamics. 

 

Winter whales in northern Norwegian fjords – a novel phenomenon? 

An interesting question raised but not answered in this thesis is: Does the seasonal 

occurrence of humpback whales during winter in northern Norwegian fjords reflect a 
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change in the migration phenology of Northeast Atlantic humpback whales, or have 

humpback whales only changed their spatial distribution during the winter? Further, why, 

and how have humpback whales re-established their presence in the area after a 100-year 

absence? 

Multiple factors should be considered in conjunction: 1. A general lack of reliable data on 

this population's historical spatiotemporal distribution and movements 2. A population 

collapse of humpback whales due to over-harvesting. 3. A collapse and changes in the 

distribution of NSS herring and other prey within the last decades. 4. Simultaneous changes 

in the Arctic and subarctic ecosystems. I will discuss these reasons in the following.  

(1) Historical whaling observations document that humpback whales were present along the 

northern Norwegian coast during winters more than 100 years ago, but apparently in much 

lower numbers than documented in paper 2 (Ingebrigtsen, 1929). After this, various sighting 

surveys provided information on the distribution of humpback whales in the Norwegian Sea 

(Øien, 2009), but these were unable to document movements throughout the year. Further, 

the breeding ground areas to which Northeast Atlantic humpback whales predominantly 

migrate historically received less research attention (Kennedy and Clapham, 2017). This 

precludes knowledge on whether Northeast Atlantic humpback whales have changed their 

migration phenology in the last decades.  

(2) The disappearance of large whales from many areas, has been documented worldwide, 

and in some areas, whales are starting to return (Jackson et al., 2020; Keen et al., 2021a; Herr, 

2022). A loss of cultural memory can break down patterns of migration in over-harvested 

populations, a mechanism suggested to have prevented the re-occupation of extirpated 

areas in baleen whales, and recovery of this behavior can take generations (Clapham, Aguilar 

and Hatch, 2008; Jesmer et al., 2018). In addition, density effects in migratory and resource-

discovery processes are a well-established phenomenon in which higher abundances 

increase the likelihood of exploratory movements that can lead to the discovery of new 

habitats (Mysterud et al., 2011). For example, in partial migrants, where migration is a 

plastic trait, more animals migrate in years of higher population abundance (Nilsson et al., 

2006). It is, therefore, reasonable to assume that population density effects and loss of 
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knowledge after exploitation could partly explain why whales were not present in this area 

since they were observed 100 years ago (Ingebrigtsen, 1929).  

(3) Since whales have recovered from exploitation to larger population sizes, the 

distribution of NSS herring, on which they feed in northern Norway, has changed multiple 

times (Dragesund, Johannessen and Ulltang, 1997). Before the recent observation of whale 

foraging in northern Norway (paper 2), herring wintering distribution was concentrated in 

the fjord systems of Tysfjord – Vestfjord. This area is further south and further inland than 

the fjord systems in which humpback whales are now observed. Whales might therefore 

have been less likely ‘discover’ this herring stock while searching for prey.  

(4) The foraging area in the Barents Sea has been undergoing drastic changes due to rapid 

climate change (Johannesen et al., 2012). Seasonal dynamics and distributions of sea ice and 

water masses have led to shifts in prey species and their predators’ movements (Bengtsson, 

Lydersen and Kovacs, 2022). Humpback whales using this area as a foraging ground are 

thought to be flexible in their prey choices and might have shifted their habitat use in recent 

years in response throughout the Norwegian Sea (Løviknes et al., 2021). Furthermore, 

increased whale densities on the foraging ground (Barents Sea) might have led to increased 

resource competition and therefore the necessity for whales to explore resources outside of 

this core foraging area.  

While I cannot provide an answer to the questions of ‘if’ and ‘why’ in this thesis, I will 

speculate further on the ‘how’, i.e., potential behavioral processes behind the emergence of 

this winter foraging site, in a later section (potential social mechanisms of adaptation) since 

this evokes relevant questions regarding the behavioral ecology of humpback whales.  
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Migration ecology of North Atlantic humpback whales 

Variability in migration strategies 

My findings provide further evidence that humpback whales on their breeding migrations 

can modulate migratory schedules at an individual level as part of their migration strategy. 

This was evident in the various migration schedules presented in paper 3 (Figure 5). How 

this affects the energetic balance of these whales throughout the year, and what the 

underlying reasons are (external or internal), needs further investigation. Recent work on 

the energetic budgets of migratory baleen whales indicates that the energetic cost of 

migration is low relative to average or good foraging seasons. In years of poor foraging 

success, however, the cost of migration could be detrimentally expensive relative to the 

energy gain during the foraging season (Gough, 2022). These results lend more support to 

the idea that some animals might forego migrations during some years, which is of 

particular relevance to animals having to cover very long distances and has been repeatedly 

suggested for Northeast Atlantic humpback whales as a possible tactic (Smith and Pike, 

2009; Kennedy et al., 2014; Kennedy and Clapham, 2017). However, we demonstrated that 

animals can alternatively limit their time spent on the breeding grounds (paper 3) and 

modulate migration speed (paper 1). While we provided an initial estimate of the energetic 

cost of this long migration under a 'high migration speed' scenario in paper 1, the energetic 

outcome of the various strategies documented in paper 3 should be investigated in more 

depth using bioenergetic models (E. Pirotta et al., 2019). This work could also be extended 

by simulating additional migration tracks for foraging grounds that currently have little or no 

migration data available. Higher-resolution movement data (e.g., from suction cup tags) 

from the different foraging grounds could be integrated to understand variations in foraging 

success in relation to migration strategies. 

In paper 3, we found that some individuals completed the migration but spent no or very 

limited time on the breeding grounds. This strategy has, to my knowledge, not been 

observed in other humpback whale migrations. Limiting time on breeding grounds could be 

a valuable tactic that results from time constraints after extensive time spent foraging late 

in the season and covering very long migration distances. It is also possible, that some 

individuals are unable to accumulate sufficient energetic reserves for this migration. This 
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surprising migration strategy evokes questions on the role and adaptive benefits of 

migration. While the potential benefits of baleen whale migration continue to be debated, 

the most recent suggestions focus on the potential benefits of reaching warm temperatures, 

with 21C temperature delineating breeding grounds (Rasmussen et al., 2007), for 

epidermal molt, or the sloughing of skin cells (Pitman et al., 2020). Animals from various 

reproductive groups returned before spending any substantial time in the breeding areas 

(paper 3), which could indicate that reaching warm-enough temperatures for a short time 

fulfills the annual requirements of epidermal molt. Males, non-pregnant females, and 

females with failed pregnancies could constitute this sample. Another reason for this tactic 

could be that these whales had already precluded mating during their approach to the area. 

Singing, and therefore potential mating, is increasingly documented at high latitudes 

(Kowarski et al., 2018; Magnúsdóttir and Lim, 2019; Aniceto et al., 2022), providing more 

evidence for potential breeding behaviors northward of breeding areas.  

 

The specific requirements of reproductive females 

We considered the life-stage specific requirements of humpback whales in the Northeast 

Atlantic in each paper, with a particular focus on females during gestation (papers 1 and 2). 

We know that humpback whales have differing habitat requirements and timing of their 

movements depending on their sex and reproductive state (Brown et al., 1995; Herman et 

al., 2011). Females are known to show habitat preferences during migration in other 

regions, for example, by migrating closer to shore and seeking out sheltered areas for 

nursing (Félix and Guzmán, 2014; Bejder et al., 2019). However, the movements of mother-

calf pairs outside the breeding grounds, especially during migration, and their potentially 

specific requirements remain cryptic in many areas. Some recent studies detailed the 

behavior of mother-calf pairs on feeding grounds, where short-term high-resolution data 

provided insights into their small-scale interactions (Félix and Botero-Acosta, 2011; Bejder et 

al., 2019; Tackaberry et al., 2020). We assessed the movements of an individual pregnant 

female in paper 1, detailing that whale mothers from the Northeast Atlantic use the 

foraging ground in northern Norway extensively and even spent time on the Icelandic shelf 

after leaving this core foraging area in February. In paper 2, we provided more support for 
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the idea that northern Norway is particularly important for females by demonstrating a 

female-biased sex ratio at the same site during the winter. This result is in line with the 

expectation that females and pregnant females stay longest on foraging grounds, and 

results from whaling data obtained in the Northeast Atlantic (Ingebrigtsen, 1929; Dawbin, 

1966). This is the first work addressing the habitat requirements or migration patterns of 

female humpback whales in this region and the first to estimate pregnancy rates. Hormones 

extracted from males in our sample for paper 2 were shared with collaborators and will be 

used to assess male reproductive biology using testosterone levels. Because obtaining tissue 

samples from free-ranging cetaceans is challenging, other methods, such as observational 

catalogs of calving rates and measurements of body condition from UAV, can be alternative 

or complimentary tools to study the reproductive success of large whale populations. 

Information on the sex and reproductive state of individuals in a habitat such as the fjords 

of northern Norway could inform management. In this area, reproductively active females 

spend extensive time foraging and might therefore be particularly sensitive to disturbance. 

 

Energetic cost of migrations  

In paper 1, we estimated the energetic cost of a complete annual migration based on an 

existing bioenergetic model calibrated for humpback whales (Braithwaite, Meeuwig and 

Hipsey, 2015; Riekkola et al., 2020). We used the same parameter space as these previous 

studies to allow for comparisons to results obtained in other areas. However, the 

importance of an improved calibration of this model emerged. The relative contribution of 

different parameters determines the importance of the cost of transport relative to the 

basal metabolic rate. Therefore, the calibration of this model affects the interpretation of 

model results and the ecological questions being addressed with these models. These 

questions include, for example: Are longer migrations more costly even if whales adapt the 

migration speed? Will detours or increased migration distances have deleterious effects on 

whales? What is the effect of years of poor feeding conditions on the annual energetic 

budget of a whale?  

Longer migrations seem more costly than shorter migrations, even though whales can 

increase the migration speed to reduce the duration of migration (Riekkola et al., 2020). 
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Recent work also demonstrated the importance of successful foraging seasons to offset the 

energetic costs of migration (Gough, 2022). Therefore, the relative balance between 

foraging energy intake and expenditure during the migration is a crucial factor in the energy 

balance throughout the annual cycle (Gough, 2022), meaning that whales with longer 

migrations may be very sensitive to reduced foraging success and disturbance during the 

foraging season. While bioenergetic models will always provide an approximation of the 

true cost of animal movements, our results indicated that it was crucially important to 

understand the relative importance of the cost of transport, which varies with swim speed 

and the physiological state of the whale, in comparison to the cost of daily maintenance. 

This relative cost will influence our inferences on whether faster migrations are most 

optimal (time optimizers) and how individual whales might optimize their migration strategy 

to conserve energy. This knowledge is important in delineating the potential effects of 

changing conditions on the foraging grounds and during migrations. 

The effects of disturbance from anthropogenic activities have been found to be highly 

context-dependent (Pirotta et al., 2021), so if animals are, for example, foraging and 

exposed to a stressor such as noise, the stressor has a higher impact on their energetic 

balance than if they had been resting at the time. If the stressor occurred in a poor-forage 

year, the effects might have a proportionally much larger effect on survival. Comparing 

foraging success in more detail across foraging areas and linking the dataset presented here 

with higher-resolution data from tag deployments on the foraging grounds can accurately 

assess foraging success and energy expenditure during the foraging season (Aoki et al., 

2021; Bierlich et al., 2022) would create a more comprehensive picture of the variation in 

the annual energy budgets across humpback whales' distributional range in the North 

Atlantic. 

 

Optimal migration in humpback whales 

Optimal migration theory is a useful framework for understanding the trade-offs associated 

with migration on an individual and population level (Alerstam, 2011). The theoretical 

concepts were established and widely used in the study of bird migrations (Alerstam and 

Hedenström, 1998). Optimality concepts were first employed in the context of animal 
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migration by researchers studying flight mechanics, aerodynamics, and physiology (Alerstam 

and Hedenström, 1998). In recent decades, an explosion of knowledge has enabled 

increasingly complex considerations and opened new perspectives (Alerstam and 

Hedenström, 1998; Alerstam, Hedenström and Åkesson, 2003). While there are some 

differences between the original concepts and their application to marine mammal 

migrations, the same concepts can be considered to understand the adaptive benefits of 

baleen whale migrations and the constraints under which they migrate (Braithwaite, 

Meeuwig and Hipsey, 2015). For example, unlike birds, whales can store large amounts of 

fat and still move efficiently, although buoyancy effects might have some influence on their 

cost of transport (Nousek McGregor, 2010). Instead, rorqual whales are, for example, 

constrained by the high cost of foraging, which requires high prey densities to be efficient 

(Goldbogen et al., 2011; Gough, 2022). 

In contrast to birds and pinnipeds, baleen whales are theoretically able to give birth and 

nurse their young anywhere and do not need to match the timing of birth as precisely as 

land-based breeders. We provide an example of this in paper 1. Due to the high potential 

for fat storage, whales can thus decouple the use of breeding habitats from lactation more 

easily. However, they must optimize their migration speed to balance resting, nursing, and 

transport vs. basal metabolic costs while matching their arrival to resource abundance on 

the foraging grounds (paper 1). Braithwaite and coauthors (2015) found that the optimal 

migration strategy in humpback whales depends on the timing of movements to seasonal 

prey availability and suggested an optimal migration speed. Optimal time allocation is a 

crucial consideration in optimal migration theory, but such predictions are sensitive to the 

calibration of the bioenergetic model and depend on ecosystem phenology. In paper 1, we 

found that this energetic model would benefit from further refinement to make robust 

assessments on whether humpback whales optimize their migrations for time or energy 

savings (discussed above). Future studies could build on this work and conduct further 

modeling and simulation exercises to understand the strategies for optimal migration in 

humpback whales based on our results in paper 1 and using the collated dataset and 

information in paper 3. Such a study could also include aspects of phenology in the different 

foraging sites. 
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Extensions of the energetic model 

As an extension of the energetic model we used in paper 1, which assessed the migration 

cost of an individual, others have established modeling frameworks to understand the 

relationship between migration decisions and energetic outcomes (Pirotta, Mangel, et al., 

2018) and can be further developed to simulate the ecological implications of disturbance 

on a population level (Pirotta, Booth, et al., 2018; Dunlop et al., 2021). Such dynamic 

variable state-space models integrate physiology and movement decisions with 

environmental conditions and then link outcomes of different strategies to the survival and 

reproductive success on a population level. In one such study applied to baleen whales, 

individual migration decisions were primarily determined by fat reserves, future 

reproductive needs, and time constraints throughout the annual cycle (E. Pirotta et al., 

2019). Using simulations, Pirotta and coauthors also explored the energetic envelope of the 

movement decisions, and their results emphasized a high potential for variability between 

individuals, something we also documented for North Atlantic humpback whales in paper 3. 

Notably, the timing and location of birth can be critical in these models since they 

determine the cost of lactation and the timing of critical energetic demand of the mother. 

This or similar models could be adapted to humpback whales in the North Atlantic, as an 

extension of the work presented in this thesis (Pirotta, 2022). The novel migration strategies 

we documented in paper 3 (early return from breeding migration) also open highly relevant 

questions about the energetic condition of such animals and their ability to accumulate 

sufficient reserves for migration which should be addressed in the future. Such work would 

allow an assessment of the risk of anthropogenic activities and improve predictions on the 

effects of climatic change on humpback whales across the North Atlantic. 

 

Conservation implications 

The spatiotemporal distributions of animals can determine which threats they are exposed 

to (Stepanuk, 2021). Although studying the conservation of humpback whales was not an 

explicit aim of this thesis, the presented results will be informative for future management 

assessments and for population assessments conducted by the International Whaling 

Commission. While the pressures of human activities are highest in coastal waters (Kron, 
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2012; Avila, Kaschner and Dormann, 2018), high-seas migration routes may also expose 

whales to encountering fisheries and shipping (V. Pirotta et al., 2019), and these effects 

tend to be poorly documented and quantified because they occur in remote areas. Since 

females seem over-represented in northern Norway (paper 2), they might experience higher 

rates of disturbance than whales foraging exclusively in the Barents Sea because 

anthropogenic impacts are concentrated in coastal areas (Kron, 2012; Mul, 2020). The 

Norwegian fjord systems have a higher degree of overlap with anthropogenic activities, 

particularly from fisheries, tourism interactions, and shipping (Mul, 2020). Due to the high 

energetic costs of reproduction in mammals (Oftedal, 1997; Christiansen et al., 2016) and 

the added constraints of accounting for the requirements of a smaller accompanying calf, 

the energetic balance and movements of female humpback whales are likely more 

constrained in comparison to non-reproducing females or males (Braithwaite, Meeuwig and 

Hipsey, 2015). This information is essential in a population health context and should be 

considered in ecosystem management frameworks for this region. To effectively inform 

management, long-term sampling schemes of either body condition, or pregnancy rates, 

should be included in official monitoring programs. Closer monitoring of the effects of 

disturbance, particularly entanglements in fishing gear and interactions with whale-

watching tourism, should be established in northern Norway, given that pregnant females 

and animals from the small population segment in CVI use this area. 

During their migrations, Northeast Atlantic humpback whales spend much of their time 

traveling through the high seas ecosystem (papers 1 and 3). The results in papers 1 and 3 

suggest that birth or breeding activities might occur outside the delineated breeding areas. 

The breeding area is at least partly within protected areas managed for impacts on marine 

mammals, for example, the Sanctuary for Marine Mammals of the Dominican Republic 

(Mattila et al., 1989). Derville and coauthors (2019) also noted a surprising independence of 

mother and calf pairs of sheltered waters in Oceania. If it is true and turns out to be a 

common phenomenon that Northeast Atlantic whales give birth outside the West Indies 

breeding ground, this may lead to differential exposure to anthropogenic activities in 

contrast to whales migrating in the western basin, who can access breeding ground areas 

with less effort and under fewer time constraints. Notably, some Northeast Atlantic whales 

passed through the area of a newly established high-seas marine protected area during 
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their migration (NACES MPA, https://www.ospar.org). Recently, the Intergovernmental 

Conference on Marine Biodiversity of Areas Beyond National Jurisdiction has also, after 

decades of negotiations, agreed on a treaty on the protection of high seas habitat in 2023. 

The movements and habitat use of humpback whales in relation to these areas should be 

examined in more detail.  
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Humpback whale migrations in a changing ocean 

Migration phenology under climate change 

Long-distance migrants are considered vulnerable to climate change, as the habitats to 

which their movements are attuned in time and space may shift at different rates (Anderson 

et al., 2013; Kubelka et al., 2022). In addition, some of the predictability on which migrating 

animals base their movement decisions may become unreliable as accurate predictors of 

foraging conditions, leading to mismatches of movement and resources. While the impacts 

of climate change were not explicitly addressed in this thesis, the presented results provide 

important baseline information, and some of the observed patterns open questions about 

the future of humpback whale migrations. Since telemetry was first employed on humpback 

whales, many animals have changed their migrations due to climate change (Ramp et al., 

2015; Davidson et al., 2020). Humpback whales have been documented to shift their annual 

schedules and arrive earlier, for example, on the Gulf of Maine feeding grounds (Pendleton 

et al., 2022). Whales in Atlantic Canada shifted their arrival date by one day per year due to 

rising sea surface temperatures and earlier ice-break up (Ramp et al., 2015), and the 

duration of the breeding season has expanded by one month in the Eastern Pacific (Avila et 

al., 2020). This indicates that external cues play a role in the decision-making of migration 

timing in humpback whales, as has been demonstrated for blue whales (Oestreich et al., 

2022). However, the large variability in departure timing demonstrates that migration 

timing emerges from an interplay between internal and external cues, as expected for 

humpback whales, given the staggered migration schedules of different groups 

(Chittleborough, 1965).  

Photoperiod and temperature are recognized as universal migration cues (Bauer et al., 

2011). However, in northern Norway, internal state and prey availability appear to override 

such cues, given the large variability of departure timing (papers 1, 2, 3). Since phenological 

shifts in humpback whale migration have occurred over a timeframe shorter than an 

individual whale's average lifespan, it appears that individuals can adjust the migration 

phenology throughout their lifetime (Ramp et al., 2015; Pendleton et al., 2022). The 

migration tracks from which we derived migration strategies in paper 3 were primarily 

collected in recent years, as opposed to movement data on the foraging grounds. Thus, 
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temporal trends in this dataset are unlikely to be detectable. For example, humpback 

whales have used the coastal Norwegian fjords to forage on herring since ca. 2010 (Jourdain 

and Vongraven, 2017). However, the data collated in paper 3 provides an opportunity for 

future work to understand the differences in phenology between the various foraging areas 

in more detail, i.e., which cues might the movements be related to, and how might the 

phenology have changed throughout the two decades of data included in this dataset.  

 

Are humpback whales resilient to climate change? 

While migratory animals experience challenges in changing ecosystems (Wilcove and 

Wikelski, 2008), humpback whales are sometimes considered one of the potential 'winners' 

of climate change. The species is considered 'resilient,' following, e.g., Moore and Reeves 

(2018), based on their robust population size after recovery from exploitation, their large 

spatial distribution, behavioral plasticity, and overall population health. Humpback whales 

score high in this resiliency range because they are generalist predators able to switch 

between different prey types occurring in different areas, despite their general philopatry to 

migration routes and foraging grounds (Moore and Reeves, 2018). However, it is unclear 

whether North Atlantic humpback whales have reached historical abundance after 

exploitation due to uncertainties in estimating historical abundance estimates (Ruegg et al., 

2013).  

As a seasonal migrant, humpback whales only visit polar regions during the productive 

season, are not directly ice-associated, and may thus benefit from extended periods of sea-

ice free seas, leading to extended foraging seasons and spatially increased habitat, 

potentially increased productivity, or availability of prey species such as northward shifting 

fish stocks. The results in paper 2 suggest that Northeast Atlantic humpback whales 

responded to changes in the spatial distribution of herring. However, how far this response 

requires changes in the annual schedules is uncertain due to the limited data on their 

previous temporal migration patterns. Whether spatially, temporally, or both, changes in 

distribution patterns provide challenges for traditional static ecosystem management and 

conservation (Atwell, O’Neal and Ketterson, 2011; Ingman et al., 2021). While endemic Arctic 

species score significantly lower on the resiliency framework and prioritizing the 
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management and conservation of these species is crucial, seasonal migrants also face 

anthropogenic impacts that accumulate over their large range movement and across the 

annual cycle (Lascelles et al., 2014).  

 

Potential social mechanisms of adaptation 

Our results in paper 2 demonstrated that whales foraged on herring in Norwegian fjord 

systems in increasing numbers over the study duration, returning year after year at high 

rates. Given this growth in numbers of whales and the high return rates of individuals to this 

area (paper 2), a social learning component could be a plausible explanation for the 

increased whale abundance in fjords of northern Norway. Social learning can help spread 

innovative adaptations to changing conditions through the population (Teitelbaum et al., 

2016), and humpback whale social aggregations might drive population structuring 

(Clapham and Zerbini, 2015; Wray, Keen and O’Mahony, 2021). Baleen whale migration 

routes are thought to be a learned trait, via matrilineally transmitted knowledge (Baker et 

al., 2013). Although humpback whales live in fission-fusion societies, there is some evidence 

that they form long-term bonds with specific individuals (Wray, Keen and O’Mahony, 2021), 

a mechanism that may enhance social learning (Aikens et al., 2022). Social cues are 

increasingly being recognized as a crucial component of migratory decisions. For example, 

collective sensing helps to salmon and blue whales move accurately in accordance with 

environmental cues, thus shaping phenology (Berdahl, Westley and Quinn, 2017; Oestreich 

et al., 2022).  

Baleen whales are re-occupying historical habitats, slowly increasing their presence there 

over time, for example, fin whales in specific fjords of Canadian British Columbia and the 

Southern Ocean, and Southern Right whales in the Southern Ocean (Carroll et al., 2014; 

Jackson et al., 2020; Keen et al., 2021b; Herr, 2022). Baleen whales’ ability to recover lost areas 

of their historical distribution may in part be driven by social learning mechanisms, 

indicating how important such processes can be for conservation and movement ecology. 

Northern Norway could provide an interesting case study for future research that aims to 

address how far social learning plays a role in baleen whale movement processes. Since 

social learning and animal culture could provide important mechanisms for adaptation to 
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changes in environmental conditions (Brakes et al., 2021), these questions are not only of 

value to basic research but have important implications for the conservation of migratory 

species in an age of ecosystem change and as such deserves more research attention. 
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Conclusion  

The results presented in this thesis fill major knowledge gaps in our understanding of the 

distributions of North Atlantic humpback whales. By investigating different scales, we have, 

for the first time, gained a clear picture of the year-round movements of Northeast Atlantic 

humpback whales, including their migration patterns. Notably, we have examined their 

movement dynamics in the fall and winter, as well as the demographic composition of the 

recently established winter foraging site in fjords of northern Norway, along with an 

assessment of the differences in movements between various demographic groups. 

The work included in this thesis highlights the variability in migration strategies, offering 

novel insights into the pacing of migrations and carry-over effects between migration 

stages. Additionally, we have estimated the energetic cost of one of the longest mammalian 

migrations. The impressive example of the unusually timed migration of the Northeast 

Atlantic humpback whales showcases our continuously evolving understanding of the 

ecology of marine migrants. We also provided an overview of movement patterns across all 

feeding grounds by collating satellite telemetry data from over 200 individuals over two 

decades. Documenting humpback whale movement patterns in space and time provides 

essential information for ecosystem management. 

Overall, this thesis opened exciting avenues for future research and laid a strong foundation 

for understanding North Atlantic humpback whale migrations. It also offers valuable insights 

for the study of baleen whale migration in general. 
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Abstract

In the northern hemisphere, humpback whales (Megaptera novaeangliae) typically migrate

between summer/autumn feeding grounds at high latitudes, and specific winter/spring

breeding grounds at low latitudes. Northeast Atlantic (NEA) humpback whales for instance

forage in the Barents Sea and breed either in the West Indies, or the Cape Verde Islands,

undertaking the longest recorded mammalian migration (~ 9 000 km). However, in the past

decade hundreds of individuals have been observed foraging on herring during the winter in

fjord systems along the northern Norwegian coast, with unknown consequences to their

migration phenology, breeding behavior and energy budgets. Here we present the first com-

plete migration track (321 days, January 8th, 2019—December 6th, 2019) of a humpback

whale, a pregnant female that was equipped with a satellite tag in northern Norway. We

show that whales can use foraging grounds in the NEA (Barents Sea, coastal Norway, and

Iceland) sequentially within the same migration cycle, foraging in the Barents Sea in sum-

mer/fall and in coastal Norway and Iceland in winter. The migration speed was fast (1.6 ms-

1), likely to account for the long migration distance (18 300 km) and long foraging season,

but varied throughout the migration, presumably in response to the calf’s needs after its

birth. The energetic cost of this migration was higher than for individuals belonging to other

populations. Our results indicate that large whales can modulate their migration speed to

balance foraging opportunities with migration phenology, even for the longest migrations

and under the added constraint of reproduction.

Introduction

In many animal taxa, migration is a crucial behavior that allows organisms to match their life
history requirements to environmental variability in space and time [1]. In many cases, feeding
and breeding areas are geographically separated, sometimes by substantial distances. In
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response, some long-range migrants have developed a capital breeding strategy, where they
fast while in suitable breeding areas and accumulate energy reserves at suitable feeding
grounds [2, 3]. The survival and reproductive success of capital breeders therefore relies on
maximizing energy gain on feeding grounds and minimizing energy expenditure, to cover
fasting periods of migration and reproduction. Because the amount of energy available to a
capital breeder is fixed during the feeding period, capital breeders need to optimally match
migrations to external conditions and internal state (e.g., prey availability and pregnancy, [3–
5]). This requires careful budgeting of energy over the annual and life cycle [3, 4]. While there
is currently no way to obtain continuous data on energy expenditure of free-ranging large ceta-
ceans over their annual cycle, bioenergetic models can be used to estimate energy expenditure.
Long-term individual tracking data provides information (such as movement speed) to param-
eterize these models [4, 6, 7].

Humpback whales (Megaptera novaeangliae) undertake the longest migrations of all mam-
mals. In the northern hemisphere, they typically migrate from summer and fall feeding
grounds at high latitudes to winter breeding grounds in specific tropical areas delineated by
warm water temperatures [8, 9]. In the Northeast Atlantic (NEA), humpback whales forage in
the Barents Sea and adjacent waters [10, 11], around Iceland [12] and Greenland [13], and
then migrate to breeding grounds in the West Indies [14, 15] or the Cape Verde Islands [15,
16]. The distance between the Barents Sea and the West Indies represents the longest migra-
tion route of any humpback whale population (a great circle distance of ~ 9 000 km vs. 8 461
documented by [9]). Northwest Atlantic humpback whales also migrate to the West Indies
from Newfoundland-Labrador, the Gulf of St. Lawrence, or the Gulf of Maine [15, 17–19], a
distance up to 5 000 km. As a result of this long migration distance, NEA humpback whales
may face high energetic constraints compared to whales migrating elsewhere. However, until
now, no tracking data following NEA humpback whales on their migration has been available.

During the last decade, hundreds of humpback whales have been observed in specific fjord
systems of northern Norway during winter (main season November–January [20–23]). Here,
the whales feed on large aggregations of Norwegian Spring Spawning herring (Clupea haren-
gus) that have overwintered in these fjord systems in this period [20, 22]. While within-season
photographic matches have been reported between coastal Norway and the Cape Verde
Islands [21], it remains unclear whether whales feeding in coastal Norway during the winter
also migrate to breeding grounds in the West Indies within the same season. Given the tradi-
tional view of humpback whale migration phenology, feeding during the winter may present a
shifted or extended feeding season, which may exacerbate the existing constraints of covering
the long distance to breeding grounds and matching the timing of the reproductive season.
However, since Norway lies between the Barents Sea and breeding grounds, feeding there may
allow individuals to accumulate additional energy reserves prior to migration to increase
breeding success [23]. While pregnant humpback whales commonly maximize the time spent
on feeding grounds and leave later than other groups [24–26], this may present a critical trade-
off if they must reach suitable waters prior to the end of gestation, for instance if early calf sur-
vival is influenced by water temperature or the availability of sheltered waters [9, 27].

Here, we present the first tracking data of a full round-trip migration for a humpback
whale. The female was tagged at the feeding area in coastal northern Norway in January.
Because the whale was observed without a calf when tagged, and then observed again with a
calf upon its return to the same area in the following season, we had the unique opportunity to
examine the round-trip migration covering late pregnancy, calving and lactation. We aimed to
1) describe the migration phenology and migration pathway through the NEA, 2) describe the
movement characteristics of a female during pregnancy and lactation, and 3) estimate the
energetic cost of this migration.
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Materials & methods

Tag deployment and data pre-processing

We deployed a transdermal Argos satellite tag (SPOT-303, size: 300mm x 24mm, www.
wildlifecomputers.com) on a female humpback whale on the winter feeding grounds in
coastal northern Norway (Kvænangen fjord, January 8th, 2019, Fig 1). The tag was deployed
from a 26-ft open rigid-hull inflatable boat using an Aerial Rocket Tag System launcher
(LKARTS- Norway) from about eight meters distance. Tagging procedures were approved
by the Norwegian Food Safety Authorities (Mattilsynet) under permit FOTS-ID 14135. We
programmed the tag to send 16 transmissions/hour for the first 100 days, then 14 transmis-
sions/hour for the following 30 days and then 12 transmissions/hour for the next 90 days.
After 220 days, the tag sent 80 transmissions per day for the rest of the deployment. The
sighting history of this individual was extracted from the North Norwegian Humpback
Whale Catalogue (NNHWC, [28]) by matching photographs of its fluke (sighting history in
S1 Table in S1 File). Sightings on the 2nd and 14th November 2019 confirmed the presence
of a calf (Fig 2). All numerical and statistical analyses were performed using R software ver-
sion 4.0.3 [29].

Because migration speed was one of the key parameters used in our analyses, the raw
Argos locations were projected to an azimuthal equidistant projection centered on the
middle of the track (45˚N, 20˚W) to best conserve distances between locations across the
latitudinal range. Extreme outlier positions were then removed using a speed, angle and
distance filter (max speed: 9 ms-1, sda() function of the trip package, version 1.7.1, [32]
based on [33]). All positions with quality class Z were removed. The filtered locations were
then used to reconstruct the most likely path using a continuous time state-space model
from the foieGras package using fit_ssm() in version 0.6–9 [34–36]. This model
assumes an underlying correlated random walk process considers the error ellipse esti-
mates around the original locations provided by CLS-Argos (S1 Fig in S1 File), and the
most likely movement path and its associated uncertainty estimates are returned. We sam-
pled locations along the predicted path at 6-hourly intervals, which were then used
throughout our further analyses.

We also calculated the movement persistence, γ, between successive locations, which is the
autocorrelation in speed and directionality for each step [35], using fit_mpm() in foieGras.
Movement persistence characterizes a continuous behavioral mode, ranging from meandering
movements associated with area restricted search behaviors (ARS, γ = 0) to directed movement
(γ = 1) usually associated with transit. Switches in γ therefore indicate changes in behavioral
mode, e.g., between migration and residence. To identify start and end dates of migration, we
conducted a segmentation analysis on γ, using the “Lavielle” method, lavielle() within
adehabitatLT, version 0.3.25 [37–39].

To identify the calving date, we carried out the same analysis using speed as the parameter.
Based on gestation duration, the whale would have given birth in the first months after leaving
the feeding grounds, so we limited this analysis to the southbound leg of the migration. We
assumed two different behavioral states (pre- and post-birth) distinguished by the difference
in swim speed between pregnancy and lactation (i.e., accompanying a neonate calf).

To assess whether the whale deviated from the shortest possible path to the breeding
grounds, we calculated the least cost path through water between the mean latitude and longi-
tude of feeding and breeding locations, constraining the path to water depth> 10m (obtained
from [30]), using the lc.dist() function in marmap, version 1.0.4 [40]. Two resulting
alternative shortest distances are given between the feeding ground and breeding ground:
either directly or via the observed stopovers (Fig 1).
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Energetic model

We estimated the energetic cost of this migration using a bioenergetic model that estimates the
energy required for an animal to cover 1) its basic energy requirements (basal metabolic rate,
BMR) and 2) the cost of overcoming the drag forces associated with moving its body through
water at a given speed (cost of transport, ECOT, based on [41]). The model parameters
(Table 1) are described in [6] and [7]. We estimated BMR using the Kleiber allometric

Fig 1. Full migration track of a pregnant female humpback whale in the Northeastern Atlantic. Locations from predicted path colored by the different migration
segments. Tagging location is indicated by an orange triangle and the putative location of birth is indicated by an orange square. The inset shows movements on the
breeding grounds, colored by movement persistence, yellow indicating directional travel, and blue indicating meandering movement. Arrows show the direction of
movement. Dotted blue lines in the main map indicate the shortest possible distances through water. Contour lines show the 200 m, 1000 m, and 2000 m bathymetric
isolines (data from [30] for the main map and [31] for the inset). Landmass data was obtained from naturalearth.

https://doi.org/10.1371/journal.pone.0268355.g001
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equation of BMR in relation to body mass in kcal day-1 [42]:

BMR à 4186:8 70M0:75â ä ÖEq 1Ü

where M is body mass (kg). We assumed a body mass of 30 000 kg for a 13 m female (in
accordance with [6, 43]). We multiply by 4186.8 to convert to Joule day-1 and then multiply by
the migration duration (in days) which gives the metabolic maintenance cost (Joule).

The energetic cost of transport ECOT is calculated as:

ECOT à
l

2εAεP

✓ ◆
rSCdV3 ÖEq 2Ü

Here, the aerobic efficiency εA describes how efficiently metabolic energy is converted to
mechanical work by the muscles, and εP is the propulsive efficiency describing how efficiently
mechanical work is converted to forward motion [44]. The Cd term is the drag coefficient, ρ is
the density of water (kg m-3) and S is the wetted surface area of the whale (m2). The ratio of
active to passive drag, λ, accounts for the fact that active body movements and posture changes
change how drag forces act on a body moving through a medium [41]. Finally, V is the speed
of the animal through water (ms-1), estimated from displacement between predicted locations.

Fig 2. Photographs from deployment and resighting with calf. Left: Fluke and tag position at time of deployment (January 8th, 2019). Right: First re-sighting the
following season, the individual accompanied by calf (November 2nd, 2019) with the tag still in place. Photo: A. Rikardsen.

https://doi.org/10.1371/journal.pone.0268355.g002

Table 1. Parameters, units and values used to calculate the energetic cost of migration. Parameter estimates were chosen in accordance with [6, 7].

PARAMETER UNIT VALUE SOURCE

CD Drag coefficient 0.003 [6]

S Wetted surface (m2) 0.054 M0.696 [45]

M Mass (kg) 30 000 [43]

EP Propulsive efficiency 0.8 [46]

EA Aerobic efficiency 0.2 [46]

λ Ratio of active to passive drag 0.7 [41]

P Density of seawater (kg m–3) 1 027 Standard for seawater

V Swim speed (ms-1) dynamic Displacement between locations, constant for each 6-hour step

https://doi.org/10.1371/journal.pone.0268355.t001
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Eq (2) gives the instantaneous power required to overcome drag (in Watt, or Joule s-1) at a
given speed. Our data consists of interpolated positions at 6-hour intervals, providing swim
speed estimates for each of these intervals. To convert the instantaneous power (Eq 2) to the
energy expenditure required to swim at this speed for the duration of each interval, we there-
fore multiply it by the timestep duration (i.e., 6 hours). To obtain an estimate of the daily cost
of transport, we then sum every set of four 6-hour estimates. We then calculated the total ener-
getic cost of migration as the sum of estimated metabolic maintenance cost and cost of trans-
port (ECOT), for the duration of the round-trip (139 travelling days, 14 days along Iceland and
17 days on breeding grounds).

Because we use swim speed to estimate the energy requirements of migration it is impor-
tant to account for the way ocean currents may assist or impede movements, i.e., how much
of the observed displacement is due to movement by the whale itself. We estimated speed
over ground from the geodesic distance between consecutive predicted locations using geo-
dist() in the geodist package [37]. We then corrected speed over ground for ocean surface
currents to obtain estimated swim speed through water. We used the nearest available
record of surface current from a coupled atmosphere-land-ocean-sea ice model at quarter-
degree spatial and hourly temporal resolution [47] (S1 Fig in S1 File). The ocean current
data were prepared by the UK Met Office, Exeter, UK and made available online by E.U.
Copernicus Marine Service Information [48]. We extracted the u and v current vectors
nearest to each observed whale location in time and space. We followed [49] using wind-
Support() in the package windR [50] (accessed 15.02.2021). Speeds presented through-
out the manuscript refer to speed through water (current- corrected swim speeds). We
classified each location during the migration as either resting (< = 0.5ms-1) or transiting
(> 0.5ms-1 in accordance with [6]). Summary statistics are given as medians and 25th and
75th quantiles (Q25-Q75), unless otherwise stated.

Results

We satellite tracked a female humpback whale for 321 days (January 8th, 2019 –December 6th,
2019) from the fjords of northern Norway to the West Indies and back to the same Norwegian
fjord (November 2019), via the Barents Sea (Fig 1). The whale was last photographed in the
same fjord on January 2nd, 2020. Previous photographic records from the North Norwegian
Humpback Whale Catalogue (NNHWC) show that it was present on the Norwegian coastal
feeding grounds also during the 2013/14 and 2014/15 winter seasons (NNHWC, S1 Table in
S1 File). We identified seven segments in the track which corresponded to changes in the
movement persistence mean: 1. Norway, 2. Transit to Iceland (“migration south 1”), 3. Iceland,
4. Transit to breeding grounds (“migration south 2”), 5. West Indies, 6. Transit to feeding
grounds (“migration north”), 7. Barents Sea and Norway (Fig 1). The breakpoints between seg-
ments identified departure and arrival times (dashed lines Fig 3).

The whale left the Norwegian fjords on February 7th, 2019, to the east coast of Iceland,
where it spent 15 days before continuing the southward migration on March 1st (Fig 3). It was
present on known breeding grounds from mid-April to mid-May. After its return to the NEA,
the feeding season lasted between late July and late October 2019 in the Barents Sea, and
between early November and at least until the last sighting on January 6th, 2020, in the Norwe-
gian fjords (> 5 months). We found that using the stopovers in Norway and Iceland increased
the shortest possible distance between feeding and breeding grounds by 7.5% to 9 071 km (Fig
1). The cumulative distance of the observed migration path was 18 500 km, split between 9500
km on the 68-day southward migration (coastal Norway–West Indies) and 9000 km on the
71-day northward migration (West Indies–Barents Sea). The whale deviated from the shortest
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Fig 3. Migration and movement persistence. Migration of the whale as indicated by the change of latitude over time with movement persistence, γ, at the respective
location shown in color (0–1). Background shading indicates when the whale was observed over the continental shelf (water depth< 200 m [32]). The time spent on
shelf regions are associated with low γ in dark blue indicative of area restricted search behavior, while high γ in yellow indicates transit. The blue dotted lines indicate
the break points based on changes in mean movement persistence.

https://doi.org/10.1371/journal.pone.0268355.g003
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path and followed different paths during the southward and northward migration, with the
northward path further to the east (Fig 1).

Based on the segmentation, we define migration as the part of the track between coastal
Norway until switching to low movement persistence south of the Barents Sea. During this
migration, 139 days were classified as transiting (speed: 1.5 ms-1, Q25-Q75: 1.1–1.8) and 31
days as stationary at stopover areas in Iceland and on the breeding ground in the West Indies
(Fig 3). Migration speed was fastest in the first migration segment (“migration south 1”, Nor-
way to Iceland: 1.9 ms-1, Q25-Q75: 1.7–2.2, Fig 4). We detected a breakpoint, i.e., a change in
mean speed, during the second migration segment (“migration south 2”) from Iceland to the
West Indies. This was associated with a shift in median speed from 1.7 ms-1 (Q25-Q75: 1.4–2.1)
to 1.3 ms-1 (Q25-Q75: 0.8–1.6, Fig 4). After an initial sharp decline and short period (24 hours)
of very slow speeds (< 0.5 ms-1), speeds increased again but remained lower than during the
early migration (Fig 4). This suggests that calving occurred just after crossing the Gulf Stream/
North Atlantic Current at 39˚N 49˚W, on March 25th (Fig 1) in sea surface temperature
around 18˚C. Most resting (< = 0.5 m/s) occurred after this date (Fig 4, red circles). During
the northward migration median speed was 1.5 ms-1 (Q25-Q75: 1.1–1.8). Therefore, median
speed prior to the putative calving date was overall faster (pre-calving: 1.8 ms-1, Q25-Q75: 1.5–

Fig 4. Speed during the migration segments. Chronological from left to right: Norway–Iceland, Iceland–West Indies, West Indies–Barents Sea. Segmentation
based on movement persistence. The dotted red line indicates the putative time of calving based on a segmentation analysis of the “southward migration 2”
segment, which was associated with a change in median speed from 1.7 ms-1 to 1.3 ms-1 (horizontal lines indicate median speed and dotted lines the respective first
and third quartiles).

https://doi.org/10.1371/journal.pone.0268355.g004
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2.1) than when the whale was presumably traveling with her calf (post-calving: 1.4 ms-1, Q25-
Q75: 1.0–1.7, Fig 4).

The mother-calf pair reached Mona Passage (between Puerto Rico and Hispanola) on April
21st and then moved between coastal areas of the Dominican Republic and the north coast of
Puerto Rico until April 28th (Fig 1). For ~ 3 days, the pair seemed to be resting (speed < 0.5
ms-1) but the end of southward migration (i.e., a breakpoint associated with a shift in mean
movement persistence) was only detected after the pair transited to Navidad Bank on May 1st

(Figs 1 and 3). They remained there until initiating the northward migration on May 17th. On
the northward migration, the mother-calf pair passed close to the Iceland coast but continued
moving north. The end of migration was detected on July 27th, south of the Barents Sea (73˚N,
9˚E, Figs 1 and 3). After ~3 months they proceeded towards the Norwegian coast (October
23rd), where they arrived in early November.

Using the bioenergetic model, we estimated the total cost of the round-trip migration (from
coastal Norway to the Barents Sea) to be 142 030 megajoule (MJ), 28 360 MJ allocated to cost
of transport and 113 670 MJ to maintenance metabolism (Table 2). This total estimate includes
energetic expenditure for 170 days (coastal Norway–Barents Sea), of which 139 days were
spent actively transiting (“migration south 1”, “migration south 2”, “migration north”) and 31
days stationary on stopovers in Iceland (14 days) and on the breeding ground in Navidad
Bank (17 days). We also present a theoretical cost at lower migration speeds (as reported in
previous studies, 0.9 m s-1 and 1.1 m s-1) in S2 Table in S1 File. The whale was likely lactating
for 124 out of the 170 days, given the putative calving date.

Discussion

We present the longest and first fully recorded round-trip migration of a humpback whale,
and the first satellite track of an individual from the Northeast Atlantic (NEA). While earlier
studies have provided key insights into humpback whale movement and migrations in many
other regions, these studies have only mapped migrations one way, due to the limited longevity
of tag deployments. Most studies tracked humpback whales from breeding grounds and in one
published case from feeding grounds [7, 19, 51–53]. We show connectivity between three
known NEA feeding grounds, describe the phenology of this migration, and provide new
detailed information on the movements of a mother-calf pair. We were also able to estimate

Table 2. Energetic cost of migration.

PARAMETER A) FULL MIGRATION
INCL. ICELAND AND BREEDING GROUNDS

B) NORTHWARD MIGRATION

DURATION (days) 170
(transiting: 139)

71

DISTANCE (km) 18 500 9 000

MEDIAN SWIM SPEED (ms-1± IQR) 1.3 ± 1.2
(transiting: 1.6 ± 0.7)

1.5 ± 0.8

E DAY-1 (MJ Day-1) 834 867

ECOT (MJ) 28 360 14 309

METABOLIC MAINTENANCE (MJ) 113 670 47 738

ETOTAL (MJ) 142 030 62 047

Energetic cost of migration for A) a full migration for a female traveling with a calf from Norway to West Indies, including a stopover in Iceland, B) values for the

northward migration, from West Indies breeding grounds to the start of foraging behavior south of Barents Sea feeding grounds. Values presented are migration days,

kilometers traveled (km, as measured along the track), the energetic cost of transport (ECOT), the cost per day, metabolic maintenance (total BMR expenditure) and the

total energetic cost (sum of ECOT and metabolic maintenance). Energetic costs are presented in megajoule (MJ).

https://doi.org/10.1371/journal.pone.0268355.t002
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the most likely location and timing of calving during the southward migration and show how
this affected the whale’s migration speed. This track provided unique empirical data to esti-
mate the energetic requirements of this migration route. It therefore allowed us to explore the
trade-offs associated with allocating time between feeding, breeding, and migration through-
out the annual cycle.

We demonstrate that humpback whales can use several NEA feeding grounds (the Barents
Sea, coastal northern Norway, Iceland) and migrate to the West Indies to give birth within the
same annual cycle. The connectivity between these feeding grounds in the NEA has been spo-
radically documented by photographic matches between Iceland and the Norwegian coast
[54], between the Barents Sea and Iceland [Broms, pers. communication], and between the
Barents Sea and the Norwegian coast [23]. Sequential use of these three areas within one
annual cycle had not been recorded prior to this study. The tracked individual foraged in
northern Norway until early February, and likely for two additional weeks in Iceland [12].
Humpback whale winter feeding aggregations have previously been described from Iceland
[55] and Alaska [56], and at least some of the observed individuals migrate at the end of this
feeding season. Only a fraction of the whales feeding in the Barents Sea are observed at the
coast of northern Norway in the winter [11, 23]. Many of these have been observed in several
seasons, suggesting there may be an individual preference for this feeding strategy [23]. The
remainder of the population may travel directly from the Barents Sea to breeding grounds, or
continue feeding offshore where they are less easily observed, as there is also high herring bio-
mass offshore in the winters.

The whale left Norway on February 7th, slightly later than other whales, as most leave
between December and late January [23]. In other regions, pregnant females also remain up to
two months longer on the feeding grounds compared to other groups [24–26], presumably to
cover the substantial additional cost of pregnancy and lactation [57, 58]. Females can maxi-
mize their calf’s chances of survival by providing sufficient energy and resources both during
pregnancy and subsequent lactation [59, 60]. This strategy may increase reproductive success
of the mother if it is successfully employed across years [24, 57, 61].

The female appeared to be able to partly compensate for the late departure from feeding
grounds by increasing its overall travel speed during transit, thus arriving towards the end of,
but still within, the breeding season of NEA humpback whales [15]. Whales from the NEA
exhibit a later breeding season in the West Indies (February–May) than whales from the
Northwest Atlantic. This may be due to their longer migratory distance [15, 62], or different
seasonality of feeding. Based on this difference in breeding season and their spatial use of the
West Indies, NEA humpback whales might form a behaviorally distinct population segment
[15]. Most NEA humpback whales are sighted in the east of the West Indies [15], but the
tracked individual frequented areas predominantly associated with Northwest Atlantic hump-
back whales further west (Dominican Republic, incl. Navidad Bank). Whale presence in the
Dominican Republic peaks in February and early March, with few sightings in April [63], but
our data substantiates recent evidence from acoustic monitoring that the season in this area
lasts until the end of May [64].

Calving occurred during the southward migration, ~35 days before the female reached the
breeding grounds. Calving is generally expected in calm, shallow coastal or bank waters [65–
69] and not in exposed oceanic waters. However, the observed changes in movement (i.e.,
from fast to very slow movement followed by a period of continuous movement at reduced
speed) are consistent with the behavior reported from earlier observations of calving events
[65, 66, 70]. Newborn calves have been documented outside of the described main breeding
grounds elsewhere [26, 71] and historical whaling records from Norway include records of
late-stage pregnancies in Norwegian waters during winter and spring [72], also indicating
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humpback whales from this region might give birth shortly after these observations were
made, likely outside breeding grounds [73]. This indicates that shallow waters are not crucial
for neonates immediately after birth, but that perhaps water temperatures may need to be
above some critical value [9]. It may also reflect that maximizing maternal energy intake in
productive waters is more important to calf survival than a birth in shallow, warm breeding
grounds.

The overall migration speed (1.5 ms-1) was faster than documented for humpback whale
migrations in most other regions and varied throughout the migration. Speed was highest dur-
ing pregnancy early in the migration (1.7–1.9 ms-1) and remained relatively high during nurs-
ing (1.4 ms-1). Previously reported average migration speeds obtained from satellite tracks
ranged between 0.9 ms-1 [7] and 1.63 ms-1 [52], the fastest being reported from the only other
available tracking study covering the migration from feeding to breeding grounds [52]. Whales
satellite tagged on the West Indies breeding ground and heading towards the NEA were also
slightly faster compared to those heading to western feeding grounds, presumably due to their
longer migration distance (1.25 ms-1 [19]). None of these studies accounted for ocean currents,
but speed was overall only slightly influenced by currents (mean absolute difference between
speed through water and speed over ground 0.07 ms-1, S2 Fig in S1 File). The fast migration
speed may be a response to time constraints in reaching the breeding grounds given 1) the
long distance between Norway and the West Indies, 2) the late departure from Norway at the
end of the winter and 3) the additional stopover in Iceland. Elephant seals for example also
increase migration speed to precisely time their arrival to breeding grounds where they give
birth [5], and our data indicate this may be the case in humpback whales.

While fast migration speeds may be expected for NEA humpback whales, nursing whales
are generally expected to migrate slower than those traveling without calves (0.86–1 ms-1 [6,
68, 74]). Although the present female adjusted her speed when traveling with the calf, the
migration speed still exceeded previous estimates of theoretical optimal migration speed esti-
mated for nursing humpback whales for similarly long migrations (1.1 ms-1 for ~ 8 500 km
one-way [6]). After the putative calving, swim speeds decreased, and more days were spent
resting. However, we identified fewer resting days compared to what has been previously
reported as optimal for energy conservation, calf growth and milk transfer rates (14% com-
pared to 27% [6]). Routine swim speeds for baleen whales, i.e., the speed at which animals
swim most efficiently based on physical adaptations, seem to converge around 2 ms-1 during
transiting movements on feeding grounds [75, 76]. Swim speeds slower than 2 ms-1 observed
from tracking data may therefore be due to resting periods between swimming bouts not
resolved at 6-hourly resolution.

In other regions, lactating humpback whale females choose migration routes close to coast-
lines and spend time in sheltered areas to rest and nurse [68, 77]. In contrast, the migration of
NEA whales occurs almost entirely on the high seas. Therefore, mother-calf pairs may have
different resting/energy conservation strategies. Reduced resting time and faster swim speeds
can lead to a loss of milk and increased energetic demands of the calf, increasing the energetic
cost to the mother beyond that solely caused by higher costs of transport at higher swim speed
[6]. Because we cannot reliably quantify this effect (but see [6]), we did not include the cost of
lactation and gestation. Therefore, the total energy expended by the mother during migration
will be higher than reported.

The fast migration speed and long distance resulted in a high energetic cost of this migra-
tion, compared to e.g., lactating females migrating 0.6 ms-1 slower and ~ half the distance from
Australia to the Southern Ocean [7]. However, the fast migration speed reduced the time
required to complete the distance (70 compared to a mean of 62 days reported by [7]). This
means that some of the additional cost caused by fast speeds was offset by reducing
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maintenance costs, compared to if the migration duration had been extended by slower swim
speed. If the whale in this study had migrated at a slower speed during the northward migra-
tion, e.g., the theoretical optimal migration speed reported by [6] (1.1 ms-1) or the average
swim speed of mother-calf pairs reported by [7] (0.9 ms-1), its arrival to the feeding ground
would have been delayed (24 or 45 days, respectively). While reducing the cost of transport,
this would have caused the whale to miss part of the feeding season and would have incurred
higher maintenance costs for each additional day of migration. Migration strategies available
to whales feeding throughout the winter in Norway may therefore be to 1) travel fast, spend
time on breeding grounds (as we observe), 2) travel slowly and reduce time on breeding
grounds or 3) travel slowly and start feeding later in the year (e.g., mid-August/mid-
September).

Obtaining reliable measurements of biomechanical parameters and travel speeds is chal-
lenging for large marine vertebrates, so bioenergetic models such as the one presented here,
rely on a range of assumptions and approximations [6, 78]. While parameter values in the
model are averages of estimates, true values are likely variable between individuals and over
time (due to differences in mass, condition, surface area, gaits, appendage morphometrics,
behavioral patterns). For example, we use a fixed value for the drag coefficient (Cd) which has
been estimated by previous studies. Substantial uncertainty exists around this value for most
species, including humpback whales ([6] but see [76] and [79]), and it also varies with many of
the same factors mentioned above. Similarly, BMR cannot be directly measured for large free-
ranging marine animals, and there is disagreement on the relationship between size and meta-
bolic cost for large animals [80, 81], so we rely on estimates based on allometry. Since both Cd

and BMR are central parameters in this model, our estimates are only rough indicators.
Importantly, changing the values for BMR and Cd in the bioenergetic model may lead to a
shift in the relative importance of maintenance cost vs. transport cost, i.e., the importance for a
whale to minimize metabolic cost (by decreasing the duration of migration) vs. minimizing
transport cost incurred from movement (by decreasing speed). By using the same parameters
as previous studies, we can ascertain that the relative cost of this migration is larger than that
reported previously [7], but the magnitude of the increase cannot be determined with
certainty.

Additional uncertainties exist regarding the energetic costs of mother-calf pair movement
and how these scale with speed, since calves swim directly at their mothers’ side, thereby
changing the mothers’ drag profile and their own [82]. While optimal swim speeds seem to be
largely independent of size across the range examined in a recent study (minke whales—blue
whales [75]), calves have less muscular power and lower lung capacity than adults [83]. There-
fore, calf requirements and swim speed likely determine resting periods and overall migration
speed. Furthermore, animals likely swim at a depth where additional wave drag produced at
the air/water interface is minimized (e.g., ~12 m for large baleen whales) [84]. Ocean current
speed at depth may differ to current speed at the surface. As the tag used in this study did not
collect dive information, we assumed that the whale swims at an optimized depth most of the
time, avoiding additional wave effects at the surface, and that the ocean current effects experi-
enced can be approximated by surface currents (0–5 meters depth).

The behavioral choice observed in this study (i.e., longer feeding season and faster migra-
tion speed), and the resulting higher energetic cost, indicates a trade-off between benefits
incurred from spending time on the breeding grounds with the calf (e.g., optimized nursing
and growth, predator avoidance summarized in [27, 67]) and resting during migration, as well
as the need to return to high latitudes in time to feed and replenish energy reserves. However,
there is limited knowledge on the seasonality of humpback whale occurrence in the Barents
Sea, limited to periods of survey and observer effort in the area. A better understanding of this
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seasonality is required within the context of ongoing ecosystem changes [85]. It is unclear
whether the winter feeding in coastal Norway presents a supplemental nutritional opportunity
for whales or compensation for poor foraging success during the summer/autumn. Recent
growth in the NEA humpback whale population [11] and food-web changes in the Barents Sea
[86] may have led to a reduction in foraging success, which could be compensated for during
the winter, given the high herring biomass in Norwegian waters. Increased competition due to
changes in the prey base and concomitant whale population recovery has been proposed as a
cause for humpback whales to feed during winter in the Pacific [85, 87]. Low prey availability
on the main feeding grounds may also cause Southern Ocean humpback whales to seek out
supplemental feeding opportunities [53, 74], and ecosystem changes may have caused a reduc-
tion in foraging and reproductive success in Northwest Atlantic humpback whales [88].

Conclusion

We confirm that a successful breeding migration can take place after a winter feeding season
in Norwegian fjords within the same season, and that NEA feeding grounds can be used
sequentially throughout the year. Breeding humpback whale females can seemingly compen-
sate for the long feeding season by increasing migration speed, successfully balancing it with
the associated energetic costs, calf requirements and the phenology of feeding opportunities
throughout the annual cycle. These findings demonstrate how individual behavioral choices
can allow a whale to successfully balance energetic levels throughout the annual cycle, allowing
it to adjust its movements to local prey availability. A better understanding the energetic
requirements of this migration will allow researchers, managers, and policy makers to consider
the needs of these top predators in ecosystem-based fisheries management, and to assess the
potential impacts of increasing anthropogenic activities in the Arctic. Our results may facilitate
future studies on the sensitivity of this northern population to a rapidly changing Arctic eco-
system and provide new insights in humpback whale migration ecology in the NEA and in
general.
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Abstract
Migration patterns are fundamentally linked to the spatiotemporal distributions of prey. 1

How migrating animals can respond to changes in their prey distribution and 2

abundance remains largely unclear. During the last decade, humpback whales 3

(Megaptera novaeangliae) used specific winter foraging sites in fjords of northern 4

Norway, outside of their main summer foraging season, to feed on herring that started 5

overwintering in the area. We used photographic matching to show that whales sighted 6

during summer in the Barents Sea foraged in northern Norway from late October to 7

February, staying up to three months and showing high inter-annual return rates (up to 8

82%). The number of identified whales in northern Norway totaled 866 individuals by 9

2019. Genetic sexing and hormone profiling in both areas demonstrate a female bias in 10

northern Norway and suggests higher proportions of pregnancy in northern Norway. 11

This may indicate that the fjord-based winter feeding is important for pregnant females 12

before migration. Our results suggest that humpback whales can respond to foraging 13

opportunities along their migration pathways, in some cases by continuing their feeding 14

season well into winter. This provides an important reminder to implement dynamic 15

ecosystem management that can account for changes in the spatiotemporal distribution 16

of migrating marine mammals. 17
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Introduction 18

The spatiotemporal distribution of prey resources is considered foundational to 19

animal movement. Seasonal migrants, in particular, rely on predictably occurring 20

resources to fuel their year-round energy demands (Abrahms et al., 2019; Evans & 21

Bearhop, 2022). However, ecosystems undergo changes at multiple scales as a result of 22

natural variability, anthropogenic drivers, or a combination of these. For example, 23

cyclical changes can occur naturally on decadal scales or interannually (e.g. fluctuations 24

in ice cover and prey distributions), and anthropogenically caused alterations can be 25

sudden (e.g., construction projects), or gradual (e.g., climate change or pollution). Such 26

variability in the physical environment can cause changes that cascade through the food 27

web, resulting in shifts in the timing and spatial distribution of prey aggregations 28

important to seasonal predators (Descamps et al., 2017; Meredith et al., 2019; Pallin 29

et al., 2023; Shaw, 2016). In response to these types of environmental variability, 30

migratory species may have to modify their spatiotemporal distribution and movement 31

patterns, but the extent to which they can do so successfully is unclear (Davidson et al., 32

2020; Lascelles et al., 2014; Shaw, 2016). 33

Marine predators are generally experts in locating resources in patchy and dynamic 34

marine environments, so they might be able to respond to interannually changing prey 35

distributions (Benson et al., 2002; Neumann, 2001). However, animals undertaking 36

long-distance migrations rely on learned information to inform their movements and 37

time it to match resource peaks. Baleen whales, for example, show strong culturally 38

transmitted philopatry to foraging and breeding grounds (Barendse et al., 2013) and 39

likely base their movements on memory of past resource distributions (Abrahms et al., 40

2019). Both humpback whales (Megaptera novaeangliae) and fin whales (Balaenoptera 41

physalus) have changed the timing of their migrations in response to earlier sea ice 42

break up in the Gulf of St Lawrence over a 30-year period (Ramp et al., 2015). 43

Additionally, changes in the migratory timing of humpback, blue (Balaenoptera 44

musculus), and gray (Eschrichtius robustus) whales off California have been 45

hypothesized to be driven by local oceanography, regional upwelling, and basin-scale 46

climate conditions (Ingman et al., 2021). Some recovering baleen whale populations are 47

also re-populating historical foraging grounds decades after they had nearly been 48

extirpated from over-exploitation (Calderan et al., 2020; Keen et al., 2021). 49

When such changes in the phenology or distribution of migratory animals are 50

observed, secondary effects on other parts of the annual cycle of migratory animals are 51

expected (Davidson et al., 2020; Pendleton et al., 2022). However, these secondary 52

effects are difficult to detect and may impact population vital rates, so it is important 53

to consider them in context of the annual cycle to assess potential long-term effects 54

(Marra et al., 2015). Furthermore, dynamically changing spatiotemporal patterns of 55

movement pose challenges to the management and monitoring of highly mobile animals 56

(Lascelles et al., 2014). It is therefore essential to describe the habitat use of migratory 57

animals throughout the annual cycle and to integrate this knowledge into an ecosystem 58

management framework (Pendleton et al., 2022). This is particularly important where 59

sensitive parts of a population, such as pregnant or nursing females, aggregate and in 60

coastal regions where overlap with human activity is concentrated (Avila et al., 2018; 61

Bejder et al., 2019; Dunlop et al., 2021). 62

During the last decade, humpback whales in the North Atlantic have started to 63

aggregate in fjord systems of northern Norway during the winters (between November 64

and February), hereafter referred to as ’northern Norway’ (Jourdain & Vongraven, 65
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2017). Here, they forage extensively on Norwegian spring-spawning (NSS) herring that 66

shifted their wintering distribution into these areas (Aoki et al., 2021; ICES, 2019; Vogel 67

et al., 2021). This shift resulted in a dense and energy-rich prey resource along the 68

migratory path of humpback whales (Jourdain & Vongraven, 2017; Kettemer et al., 69

2022). NSS herring have shifted their wintering distribution regularly in the past 70

(Dragesund et al., 1997), a phenomenon thought to be related to the stock’s age 71

structure, potentially acting in conjunction with environmental changes (Huse et al., 72

2010; ICES, 2019). Northeast Atlantic humpback whales generally forage throughout 73

the Norwegian and Barents Seas during summer and autumn (Christensen et al., 1992; 74

Hamilton et al., 2021; Leonard & Øien, 2020) and migrate to breeding grounds in the 75

West Indies (Stevick et al., 2018) and Cape Verde Islands (Wenzel et al., 2020), where 76

most of them are observed in March - April and April - May, respectively. During the 77

era of commercial whaling in the Northeast Atlantic (1881 - 1904), humpback whales 78

were caught off northern Norway in areas occupied by forage fish during the winter 79

(Christensen et al., 1992; Ingebrigtsen, 1929; Kramvig et al., 2016). No substantial 80

numbers of humpback whales have been observed in the fjords since then, especially not 81

during wintertime, apart from occasional sightings of humpback whales by fishing and 82

whale watching vessels, which are common throughout Norwegian waters at most times 83

of the year. 84

This novel or re-established foraging site appears to represent additional foraging 85

opportunities for humpback whales after the presumed main summer foraging season, 86

before their long southward migration towards tropical breeding grounds. Recent 87

satellite tracking data and photographic matches have confirmed that animals observed 88

during winter in northern Norway can still migrate to the breeding grounds during the 89

same year (Kettemer et al., 2022; Wenzel et al., 2020). However, no studies have 90

quantified the connectivity between the Barents Sea and northern Norway, described 91

the duration and spatial distribution of the foraging aggregation in northern Norway, or 92

assessed whether the demographic composition in both feeding areas differs. The 93

importance of northern Norway as a foraging opportunity for various demographic 94

groups of humpback whales and the population should thus be explored in detail, given 95

that the foraging season in northern Norway occurs unusually late in the year compared 96

to the foraging seasons of humpback whales elsewhere. 97

In this study, we aimed to describe the foraging aggregation within the context of the 98

Northeast Atlantic humpback whales’ annual cycle, its demographic composition, and 99

spatiotemporal distribution. To this end, we used photographic ID matching to (1) 100

quantify the connectivity between the Barents Sea and northern Norway, (2) establish 101

the duration and geographic distribution of the foraging area in northern Norway, and 102

(3) to assess the return rate of individual whales that foraged in the fjords of northern 103

Norway both within and between years. Finally, we used genetic and hormone screening 104

of biopsy samples to (4) quantify the sex ratio and pregnancy rate of humpback whales 105

in the Barents Sea and northern Norway. 106

Materials and Methods 107

Study site and data collection 108

We collected photo-identification data and biopsies in several fjords of northern 109

Norway and waters of the Barents Sea surrounding the Svalbard Archipelago (Figure 1). 110

Northern Norway is not affected by sea ice during the winters, as it is characterized by 111

warm North Atlantic water. The sea ice edge occurred around the Svalbard Archipelago 112
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during the peak of sea ice coverage in April between 2005- 2018 (see e.g., (Hamilton 113

et al., 2021)), and the area is generally free of ice between June and December. The 114

North Norwegian Humpback Whale Catalogue (NNHWC) was established in 2010 when 115

humpback whales started aggregating in northern Norway during the late autumn and 116

winter. From hereon we refer to ’summer’ as the foraging season spanning June to 117

September, and ’winter’ as the foraging season from October to February. The study 118

sites included waters around Andøya (2010 to 2012), Kvaløya (2012 to 2017), and 119

Kvænangen (2017 to 2019) (Figure 1). Photographic sampling was conducted using 120

small vessels and was dictated by weather and light conditions. During the polar night 121

(December-January), sampling was usually restricted to a few hours around midday. 122

However, on some sampling trips, a flash system allowed sampling to continue in 123

low-light conditions. The sampling effort differed between years and study sites (Table 124

1). The public and other research organizations also submitted pictures, and an 125

interactive online web portal for the submission of fluke photographs was established in 126

2015 (hvalid.no) and active until 2017, after which data collection continued with the 127

existing network of contributors. 128

From the 3rd to the 11th of September 2018, a research cruise was conducted in 129

cooperation between the Institute of Marine Research (IMR, Bergen, Norway) and UiT - 130

The Arctic University of Norway (UiT, Tromsø, Norway), surveying the northern 131

Barents Sea, east of the Svalbard archipelago close to the island group of Kong Karls 132

Land (Figure 1). We chose the timing and area based on information on humpback 133

whale occurrence from prior annual joint Norwegian/Russian ecosystem surveys in the 134

Barents Sea and adjacent waters (IMR, Norway/PINRO, Russia). When humpback 135

whales were sighted, a small boat was launched to allow closer approaches. We took 136

fluke photographs from both the small boat and the larger research vessel using DSLR 137

cameras. In addition to this cruise, photographs from incidental humpback whale 138

encounters around Svalbard, and the Barents Sea were submitted by various 139

contributors (2012 to 2019), mostly nature-tourism expedition vessels that typically 140

spend multiple weeks around Svalbard and Franz Josef Land, and to a smaller extent 141

research cruises not targeted at marine mammals). 142

We took biopsies from either the fluke or flank of each individual from small open 143

boats (20-26ft) using an airgun (ARTS launching system, LKARTS-Norway) to deploy a 144

floating arrow with a 4 or 6 cm long sterile stainless steel biopsy tip (CetaDart, DK). 145

Depending on the shooting distance, usually about 4-20 meters, the shooting pressure 146

was between 6-10 bars. 147

Sampling procedures were approved by the Norwegian Food Safety Authorities 148

(Mattilsynet), under permits FOTS-ID 14135 and FOTS-ID 8165. We collected skin (N 149

= 169) and blubber samples (N = 112) from humpback whales between 2011 - 2019 in 150

the Troms area of northern Norway, and during September 2018 in the northern Barents 151

Sea. Samples were stored at -20°C in either tin foil or glass vials (blubber) or 96% 152

EtOH (skin). 153

Photo-identification 154

We identified individual humpback whales using the unique pigmentation pattern on 155

their ventral flukes (Katona & Whitehead, 1981) and created sighting histories from 156

re-identifications of photo-identified whales. Intervals between an individual’s first and 157

last sightings within a season indicate the minimum length of stay during the season. 158

We calculated the annual return rate, a measure of site fidelity on a population level, as 159
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Table 1. Table of effort-based photo ID sampling and non-effort-based data collection
for each location within the northern Norwegian fjords (2010/11 to 2018/19). Sampling
was mainly conducted by UiT and the founder of the NNHWC (effort-based). Other
records (non-effort-based) represent days in which various contributors submitted fluke
identification photographs. The period depicts the first and last humpback whale fluke
capture in a season, with days indicating the duration between them, indicative of
minimum season duration.

Andøya Kvaløya Kvænangen
Winter
season

Survey effort
(days)

Other records
(days)

Survey effort
(days)

Other records
(days)

Survey effort
(days)

Other records
(days) Period Days

2010/11 2 1 27 Dec- 19 Jan 23
2011/12 1 3 2 06 Dec- 29 Jan 54
2012/13 15 19 25 03 Nov- 11 Feb 100
2013/14 33 22 35 07 Nov- 06 Feb 91
2014/15 14 39 44 28 Oct- 15 Feb 110
2015/16 12 29 51 29 Oct- 24 Feb 118
2016/17 18 27 5 23 Oct- 24 Jan 93
2017/18 10 5 10 Nov- 13 Jan 64
2018/19 28 26 26 Oct- 28 Jan 94
Total 3 78 129 182 38 36 747
Mean 1.5 13 21.5 36.4 19 12 83

the number of photographically recaptured individuals in a given year divided by the 160

total number of individuals sighted in that year (Clapham et al., 1993). 161

Individual sighting histories for this study relied on 3677 sightings of 1169 unique 162

humpback whales documented in the NNHWC between 2010 and 2019. The catalog 163

covers a latitudinal range from 67º to 80º N. It contains sighting records of individual 164

humpback whales throughout the year, with summer sightings mainly from the Barents 165

Sea and winter sightings from northern Norway (Figure 1). In northern Norway, we 166

collected fluke photographs of 866 individual humpback whales, 856 (98.9%) of these 167

during the winter. Most (54.7%) photographs were collected during dedicated sampling 168

conducted between October and February, while remaining photos were contributed by 169

third parties, including all summer sightings (1%). 170

Over nine years of study, we conducted 170 days of dedicated photo-identification 171

survey effort, with considerably less effort during the first two winters (Table 1). The 172

average annual sampling effort across all winter seasons was 17 days (± 13.1) and 23.6 173

days (± 9.4), excluding the first two seasons. We identified 342 individual whales in the 174

Barents Sea, with most identification photographs (95%) obtained during a research 175

cruise in September 2018. Other collaborators submitted fluke photographs from 176

incidental humpback whale encounters between 2012 and 2019. 177

Sex determination 178

We determined the sex of individuals using skin samples (Bérubé & Palsbøll, 1996), 179

using the odontocete oligonucleotide primer set, ZFYX0582F, ZFY0767R and 180

ZFX0923R, which showed clear bands on the gel electrophoresis. As a control, samples 181

from four killer whales (Orcinus orca) of known sex (two males and two females) were 182

used in every PCR reaction. After initial testing, primer concentrations were optimized 183

to 1 µl of 10 µM for the Y primer-set (ZFYX0582F/ZFY0767R) and 0.5 µl of 5 µM for 184

the X primer-set (ZFYX0582F/ZFX0923R). 185

Resampling rate in biopsy material 186

To estimate the within-season recapture rate in our dataset, we conducted a 187

relatedness analysis on a subset of the samples for which genetic sequences were 188
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available (N= 107). We used NGSrelate v2 (Hanghøj et al., 2019) to calculate the 189

coefficients of relatedness, based on genotype likelihoods calculated with ANGSD 190

v.v0.935-53-gf475f10 (Korneliussen et al., 2014). See S2 Text in supporting information 191

for more details. 192

Progesterone concentrations and pregnancy status 193

We used progesterone concentrations as a proxy for pregnancy status and extracted 194

the progesterone from blubber samples as described in (Kershaw et al., 2020; Pallin 195

et al., 2018), with minor adjustments to the method. See S1 Text and S3 Table in 196

supporting information for more details. Progesterone was measured in 82 female 197

blubber samples and 19 male control samples. Blubber samples taken from flukes were 198

excluded since they usually do not contain enough blubber to conduct the analysis and 199

may have different fat and hormone profiles leading to potential misclassifications. 200

We quantified progesterone concentrations using two commercially available 201

progesterone enzyme immunoassays (EIA; Enzo Life Sciences, kit ADI-900-011, and 202

ELISA; DRG International Inc. EIA-1561), see S1 Text and S3 Table in supporting 203

information for more details on the difference between the two methods. The dried 204

hormone extract was re-suspended in 1ml phosphate buffered saline (pH 7.5) containing 205

1% bovine serum albumin, vortexed, and then kept samples at -20°C. The EIA and 206

ELISA kits we used have 100% reactivity with progesterone; the detection limit is 207

between 15 - 500 pg ml1 and 0 - 40 ng ml1, respectively, based on the standard curves. 208

Two additional standard dilutions were added to lower the detection limit of the EIA 209

standard curve to 3.81 pg ml1. We ran samples blind and in duplicate and re-ran 210

samples that fell outside the detection limit at varying dilutions. The progesterone 211

EIA’s inter-assay coefficient of variation (COV) and intra-assay COV ranged from 2.7 - 212

8.3% and 4.9 - 7.6%, respectively. The mean inter-assay COV was 14.7% for the EI, and 213

the mean intra-assay COV was 5.2% for the ELISA. Progesterone values are reported as 214

nanograms per gram of blubber (ng g1). We repeated the extraction and measurements 215

for a subset of the blubber samples, in which case we report the averaged resulting 216

progesterone level and ran multiple samples at several dilutions. 217

We assigned pregnancy status based on blubber progesterone concentrations using 218

previously established models developed from female humpback whales of known 219

pregnancy status from the Gulf of Maine and the Gulf of St Lawrence (Kershaw et al., 220

2020; Pallin et al., 2018). Previous studies successfully applied this modeling approach 221

to other populations (e.g., Western Antarctic Peninsula (Pallin et al., 2018), Oceania 222

(Riekkola et al., 2018)). Pregnancy rates were determined as the number of pregnant 223

females divided by the total number of assayed females for years in which at least five 224

samples were available, i.e., in which sample size allowed for reasonably robust 225

estimation. 226

Statistical analysis 227

We checked whether the sex ratio deviated significantly from parity (1:1) for each 228

region (northern Norway in winter, Barents Sea in summer) using a two-tailed exact 229

binomial test for the Barents Sea, and one-tailed test for Norway. We then tested 230

whether the pregnancy rate differed between the summer (samples obtained in June and 231

September) and winter season (samples obtained between October and February in 232

northern Norway), using a Chi-squared test of independence. Quasi-binomial 233

Generalised Linear Models (GLMs) were used to investigate variation in annual 234
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pregnancy rates between 2011 and 2018, and over the feeding season between June and 235

February, using a “logit” link function to take into account overdispersion in the 236

pregnancy rate data. Given the limited and variable biopsy sample sizes and the 237

variability in pregnancy rate estimates, it was important to consider these data in the 238

context of their power to detect significant changes over time. The power of the GLMs 239

was estimated using the pwr.f2.test function in the pwr package (R version 3.6.2 (R 240

Core Team, 2019)). The power to detect a trend in the pregnancy rate over the 8-year 241

study period was 17.4%, and the power to detect a trend through the feeding season 242

was 6.08%. Thus, the variability in pregnancy rate estimates makes the detection of 243

significant temporal trends unlikely. A significance threshold of p <0.05 was used to 244

determine significance in all statistical tests. Results are presented as mean ± standard 245

deviation, unless otherwise noted. 246
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Results 247

Photographic collections 248

In northern Norway, the total number of photo-identified humpback whales per 249

winter season ranged from a minimum of six individuals in the first year off Andøya 250

(2010) to a maximum of 408 individuals in the 2015/16 season off Kvaløya (Figure 3 and 251

S1 Table in supporting information). The peak in sightings occurred between November 252

and January. The cumulative curve of identifications began to plateau after the winter 253

of 2015/16 but showed a slight increase in 2018/19 in Kvænangen (Figure 3). In the 254

Barents Sea, we registered humpback whale sightings from May to September, although 255

most were photographed in September 2018. In total, we found five between-season 256

re-sightings in the Barents Sea. 257

Figure 1. Left panel shows the Svalbard Archipelago with black dots close to Kong
Karls Land representing GPS locations of photographic records of humpback whales
(Megaptera novaeangliae). The inset shows the three main locations (Andøya, Kvaløya,
and Kvænangen fjord) of the northern Norwegian foraging area. Not all pictures were
submitted with GPS locations, those without are not included in the figures.

Connectivity between Barents Sea and Norway 258

We matched 39 individual humpback whales sighted during summer in the Barents 259

Sea to northern Norway during the winter (Figure 2). One individual was photographed 260

in two different summers in the Barents Sea and subsequently re-sighted off northern 261

Norway during winter both these years. 17 matches of 16 individuals occurred within 262

the same year (Figure 2), showing that individuals transitioned between Barents Sea 263

and northern Norway in the succession of one foraging season. Most of the re-sightings 264

were first recorded in northern Norway in the end of November (S2 Table in supporting 265

information). 266
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Figure 2. Map of the sampling area in the Barents Sea (in grey and orange) with the
number of identified individuals in the Barents Sea (including the Svalbard Archipelago)
and northern Norway, respectively, and the number of within-season matches between
those two areas. The beginning of grey lines indicate first sighting locations within the
Barents Sea of the individuals that were subsequently re-sighted in northern Norway.
86% of all humpback whale IDs in the Barents Sea were collected in the orange-shaded
area.

Site fidelity in northern Norway 267

Between the winter of 2010/11 and 2018/19, we photo-identified 866 individual 268

humpback whales in northern Norway (Figure 3). The majority (53.4%, N = 457) 269

returned in two or more winters. Most of these whales were seen in two (N = 202), 270

three (N = 131) or four (N = 83) different years. The longest period over which an 271

individual was re-sighted was seven years. Re-sightings between seasons occurred most 272

frequently in sequential years (69.4%), followed by two-year intervals (20.6%) (Figure 4). 273

Until the winter of 2013/14, new fluke captures accounted for more than 70% of the 274

total number of whales identified in a season. In all following winters, the number of 275

re-sightings was higher than first captures, on average 70.9% (± 10.5) (Figure 3). 276
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The annual return rate, a measure of population-level site-fidelity, progressively 277

increased until a peak in the 2016/17 season (the final winter season off Kvaløya, 81.8%; 278

Figure 4), decreasing to 70 and 79% during the following two winter seasons (2017/18, 279

2018/19) in Kvænangen. 43.2% of the whales were seen more than once within a season. 280

The time interval between within-season re-sightings ranged from a minimum of 2 days 281

to a maximum of 15 weeks, on average 27.5 days (± 11.5; Figure 3). More than half the 282

whales identified across the nine years of study were re-sighted, with 27% returning to 283

feed for more than three years, most often in sequential years. In the winter of 2016/17, 284

considerably fewer humpback whales were encountered around Kvaløya, and the first 285

individuals were sighted in Kvænangen fjord. In the consecutive winter, the fjords 286

around Kvaløya were deserted, and the feeding activity had shifted to Kvænangen fjord. 287

Figure 3. Upper panel: Total number of individual humpback whales (Megaptera
novaeangliae) photo-identified each winter season in northern Norway between 2010 and
2019. Light grey shading indicates newly identified individuals, and dark grey shading
indicates re-sights of previously identified individuals. Lower panel: Discovery curve
illustrating the trend in the cumulative number of individual photo-identified humpback
whales during winter in northern Norway (2010/11 -2018/19).
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Figure 4. Upper panel: (a) Between season re-sighting intervals (b) within-season
re-sighting intervals of humpback whales (Megaptera novaeangliae) in northern Norway
(2012/13 to 2018/19). Lower panel: Annual return rate of humpback whales to northern
Norway (2010/11 to 2018/19).

Resampling rate in biopsy material 288

A relatedness analysis based on a subset of the samples for which genetic sequences 289

were available (107 individuals) indicated that no individuals were biopsied repeatedly 290

within the same season (coefficients of relatedness <1; S4 Table in supporting 291

information). 292

Sex ratio 293

The sex ratio in the Barents Sea was 1.4 (18M:13F, N= 31) and in northern Norway 294

0.6 (48M:76F, N= 124). No significant deviation from parity was found for the Barents 295

Sea sample (p = 0.473), but the sex ratio differed significantly from parity in northern 296

Norway with a bias in favor of females (p = 0.007). The sex ratio in northern Norway 297

differed significantly between years in our sample (X2 = 12.9, p = 0.019). In years with 298

low sample sizes (2011/12, 2017/18) the ratio of males in the sample was higher. The 299

sex ratio did not differ significantly between months throughout the winter season (X2 300

= 3.2, p = 0.571; S1 Figure in supporting information). 301
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Pregnancy rate 302

All but three of the females for which blubber samples were available (N= 82) were 303

successfully assigned a reproductive status (i.e., pregnant or non-pregnant) by the 304

reference model (with 99.9% confidence), and all male controls (N= 19) were correctly 305

classified as non-pregnant. 306

Table 2. Numbers of female humpback whales assessed for progesterone levels and
pregnancy rates in the Barents Sea and northern Norway by area and season. The
pregnancy rate (pregnant females/all assayed females) is reported for months with at
least five samples.
Area Season Females Pregnant Not pregnant Pregnancy rate (%)
northern Norway June 2011 2 1 1 -

June 2012 7 1 6 14
Barents Sea September 2018 10 2 8 20
northern Norway Winter 2013 / 2014 7 2 5 29

Winter 2015 / 2016 12 1 11 8
Winter 2016 / 2017 9 5 4 56
Winter 2017 / 2018 2 0 2 -
Winter 2018 / 2019 30 14 16 47

Total 79 26 53

All progesterone concentrations are reported in S3 Table in supporting information. 307

The pregnancy rate was low in the summer (22% northern Norway in June, 20% 308

Barents Sea in September 2018) and higher (median = 38%, 25th quantile = 24%, 75th 309

quantile = 49%) during winter in northern Norway when pooled over all years (Table 2). 310

However, the difference between the Barents Sea and northern Norway in 2018/19 (20% 311

vs. 47%) was not statistically significant (X2 = 2, p = 1). Rates in winter varied across 312

years between 8 - 56% (Table 2). During the winter season, the pregnancy rate declined 313

after a peak in December (73%), to 26% in January and 17% in February (Table 3). 314

Due to the limited sample size and high variance, the power to detect a relationship in 315

the pregnancy rate over winters in the eight-year study period was low (17.4%), and 316

over the months during the feeding season even lower (6.1%). Thus, the variability in 317

pregnancy rate estimates makes the detection of significant temporal trends unlikely. 318

Table 3. Numbers of female humpback whales assessed for progesterone levels and
pregnancy rates in the Barents Sea and northern Norway by area and month. The
pregnancy rate (pregnant females/all assayed females) is reported for months with at
least five samples.
Area Month Females Pregnant Not pregnant Pregnancy rate (%)
Northern Norway June 9 2 7 22
Barents Sea September 10 2 8 20
Northern Norway October 2 0 2 -

November 14 6 8 43
December 11 8 3 73
January 27 7 20 26
February 6 1 5 17

Total 79 26 53
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Discussion 319

Within-season matches between the Barents Sea and northern Norway confirm that 320

some Northeast Atlantic humpback whales continued their foraging season in fjord 321

systems of northern Norway. Studies on other humpback whale feeding grounds have 322

shown that females generally leave feeding grounds later than males resulting in a 323

female bias late in the foraging season (Barendse et al., 2013; Dawbin, 1966; Pallin 324

et al., 2018), consistent with our observation of a female bias in northern Norway but 325

not the Barents Sea. Per our expectations, the pregnancy rate estimated during winter 326

in northern Norway was higher than in June and September, indicating that pregnant 327

animals may indeed be more likely than the general population to maximize their 328

energy intake by continuing their foraging season in northern Norway. An increase in 329

pregnancy rates in the temporal progression of the foraging season was also observed in 330

other areas (Pallin et al., 2018); summer 59%, autumn 72%), a pattern consistent with 331

knowledge obtained from whaling data (Dawbin, 1966). 332

The establishment of the foraging site in northern Norway coincided with dense 333

herring concentrations in the area since 2010 (documented in detail since 2015 by e.g., 334

(ICES, 2019)). During the overwintering period between October and February, the 335

NSS-herring spawning stock can use separate areas concurrently including near and 336

offshore waters (Huse et al., 2010), and fishing vessels reported that individual 337

humpback whales foraged further offshore in previous years. Before 2010, the 338

overwintering distribution of this herring stock was concentrated in fjords further south, 339

and humpback whales were not present at this site (Jourdain & Vongraven, 2017). 340

Shifts in NSS-herring overwintering distribution have occurred repeatedly and are most 341

likely related to changes in the stock’s age structure mediated by oceanographic 342

conditions and fishing pressure (Dragesund et al., 1997; Huse et al., 2010). Since 343

humpback whales established the northern Norway winter foraging aggregation in 2010, 344

NSS-herring slightly shifted their distribution northward within the fjord systems until 345

2019, followed by a corresponding shift in whale distribution. The high annual return 346

rate, comparable to main feeding grounds in other areas (Calambokidis et al., 1996; 347

Clapham et al., 1993; Ramp et al., 2010), indicates that foraging in northern Norway 348

has become an important part of the annual routine for some Northeast Atlantic 349

humpback whales. Since the feeding activity is coupled to herring overwintering 350

distribution, future shifts in the whales’ winter distribution can be expected as the 351

herring stock changes its migration patterns and overwintering areas. 352

Information on the migration phenology of Northeast Atlantic humpback whales 353

remains sparse due to the logistic challenges involved in surveying the Barents Sea 354

region. Therefore, the duration of the summer foraging season is unknown. Our sighting 355

data from the Barents Sea confirm that the area east of the Svalbard archipelago is an 356

important foraging ground for humpback whales in late summer/autumn. This supports 357

previous evidence from annual ecosystem surveys, whaling records, and tracking data 358

(Hamilton et al., 2021; Nøttestad et al., 2015; van der Meeren & Prozorkevich, 2018). 359

Tracking data from 2018 indicates that whales initiated migration from the Barents Sea 360

between October and December in 2018, the same year most sightings and all biopsies 361

were collected in the Barents Sea (Hamilton et al., 2021). 362

Within-season resighting patterns in northern Norway show that most whales stayed 363

longer than two weeks, many for about one month and some up to three months. This 364

should be considered a minimum estimate, as whales might arrive before their first 365

sighting or stay after the last recorded sighting. In the North Pacific, groups of 366

humpback whales have also been observed foraging on herring during some periods of 367
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the winter, however, this seems to be representing smaller numbers of whales than in 368

the present study (Straley et al., 1995; Straley et al., 2018). In Iceland, humpback 369

whales have also been reported throughout the year (Magnúsdóttir & Lim, 2019). The 370

humpback whale aggregation in northern Norway is to our knowledge the largest, 371

longest-lasting, and most stable documented winter foraging aggregation. 372

Photographic matching to the breeding grounds in the West Indies (Stevick et al., 373

2018), along with a recently recorded round-trip migration by a female humpback whale 374

(Kettemer et al., 2022) and unpublished tracking data show that many animals migrate 375

to breeding areas after foraging in northern Norway during the winter. However, 376

pregnant females delaying their migration until late in the season may give birth along 377

the migration route despite increasing their migration speed (Kettemer et al., 2022), 378

indicating carry-over effects from the long foraging season into the next stages of 379

migration 380

Our results provide a first indication that pregnant females might preferentially visit 381

northern Norway as a continuation of the feeding season in the Barents Sea. When we 382

restricted the analysis to the one year for which we had sampled the Barents Sea and 383

northern Norway, small sample sizes however meant that our analysis lacked statistical 384

power to conclude this with certainty. We could not confirm that pregnant females 385

remained the longest in northern Norway. However, the statistical power to detect 386

temporal trends in our data was low. One explanation for the lower pregnancy rates at 387

the end of the season (January/February) may be that not all humpback whales 388

complete migrations every year. Juvenile individuals and resting females for whom the 389

cost and risks outweigh the benefits of migration may therefore dominate the sample 390

towards the end of the season. This might contribute to lower pregnancy rates among 391

females sampled, as well as an increase in the proportion of males in February. 392

Monitoring pregnancy rates over time can indicate population health and growth 393

rates, provided that the sample sizes are sufficient (Kershaw et al., 2020; Pallin et al., 394

2018). Our estimate of the variation in pregnancy rate between years is likely not 395

sufficiently robust to infer trends in reproductive rates, due to the low number of 396

samples in some years. Overall, the pregnancy rate in summer and winter was lower 397

than those reported on other foraging grounds. On other humpback whale feeding 398

grounds, pregnancy rates were reported to be higher, for example, 57% in the Southern 399

Ocean (Riekkola et al., 2018), 58% (36-86%) in the Western Antarctic Peninsula (Pallin 400

et al., 2018), 19 - 48% in the North Pacific (Clark et al., 2016), and 25% - 63% in the 401

northwest Atlantic (Kershaw et al., 2020). Previous pregnancy rate assessments in 402

North Atlantic humpback whales did not detect an increase in blubber progesterone 403

concentrations between females sampled early and late in the season (Kershaw et al., 404

2020; Aoki et al, 2021), so this is likely not the sole driver of the increase. The 405

variability between years reported here was similarly high in those other studies. 406

Pregnancy rate estimates present a minimum of true rates, as they usually include 407

immature females. Pregnancy rates sampled at different times of the gestation period 408

may vary, e.g., be inflated by subsequently aborted/reabsorbed pregnancies when 409

sampled early (Pallin et al., 2018; Riekkola et al., 2018). However, the large effect size of 410

the difference in pregnancy rates during summer vs. winter in our results was indicative 411

of a true difference. Recent work shows that pregnancy rates are tightly linked to 412

fluctuations in prey availability in the Antarctic, North Pacific and North Atlantic 413

(Cartwright et al., 2019; Gabriele et al., 2022; Kershaw et al., 2020; Pallin et al., 2023). 414

Further studies should assess whether low pregnancy rates here may indicate slowing 415

population growth following recovery from exploitation (Leonard & Øien, 2020) and 416

resulting population density effects in a recovering population of Northeast Atlantic 417
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humpback whales foraging in the Barents Sea, or poor nutritional status due to 418

changing environmental conditions and prey availability as is the case for humpback 419

whales in other areas (Cartwright et al., 2019; Gabriele et al., 2022; Pallin et al., 2023). 420

Rapid and fundamental ecosystem changes in the Barents Sea associated with 421

warming, sea ice loss, and increased inflow of Atlantic waters have impacted a core 422

foraging habitat of humpback whales (Hamilton et al., 2021; Johannesen et al., 2012). 423

Further south in the Norwegian Sea, sightings of humpback whales have been less 424

common during summers in 2009 - 2012 in contrast to the years 2006 - 2007, indicating 425

a northward shift of foraging activity or changing migration timing on their northward 426

journeys (Nøttestad et al., 2015). In general, humpback whale populations have shown 427

remarkable recovery after historical exploitation (Cartwright et al., 2019; Pallin et al., 428

2018; Straley et al., 2009; Zerbini et al., 2019). Yet, their reproductive success is tightly 429

coupled to prey availability (Pallin et al., 2023), and humpback whale populations in 430

the Northwest Atlantic and North Pacific have been experiencing declining calving rates, 431

likely due to ecosystem shifts mediated by climate change (Cartwright et al., 2019; 432

Kershaw et al., 2020). 433

In the case of Northeast Atlantic humpback whales, herring superabundance events 434

inside fjord systems provided a feeding opportunity outside of the presumed core feeding 435

season, but along whales’ distributional range or migratory paths. The recent shift of 436

herring distribution may have made this resource more accessible to whales since it now 437

occurs closer to migratory routes (Kettemer et al., 2022) and might be more densely 438

aggregated in fjord systems, in contrast to wintering areas herring occupied during the 439

last decades (Huse et al., 2010; ICES, 2019). Northern Norway could be considered a 440

spatial continuation of the foraging area in the Barents Sea, potentially extending the 441

duration of the foraging season, or a stopover after the commencement of southward 442

migration from the Barents Sea. As Northeast Atlantic humpback whales recover to 443

historical abundance (Leonard & Øien, 2020), density-dependent resource competition 444

in the Barents Sea might play a role in changed distribution patterns. Increased whale 445

abundances, potentially in conjunction with ecosystem changes, might lead to increased 446

resource competition and more exploratory foraging movements outside of the main 447

foraging areas. 448

As generalist predators, humpback whales are thought to be adaptable to changes in 449

their prey distribution and abundance, relative to other baleen whale species. However, 450

they certainly will not be able to respond to all kinds of changes in the structure of prey 451

fields, as has been documented in other areas (Gabriele et al., 2022; Kershaw et al., 452

2020; Pallin et al., 2023). It is further unclear how late-season foraging, as documented 453

in this study, affects the annual cycle of Northeast Atlantic humpback whales. Since 454

migratory species rely on habitats that are spread over vast distances and multiple 455

jurisdictions, managing these habitats becomes an international responsibility. Dynamic 456

management of ocean and coastal ecosystems that can account for changes in 457

spatiotemporal distributions is a challenging but necessary task for the future that 458

requires concerted efforts from multiple actors and potential protection during 459

migration in areas beyond national jurisdiction (Lascelles et al., 2014). Climate change 460

is projected to severely impact population vital rates and alter distributions of top 461

predators on longer time scales (Descamps et al., 2017; Meyer-Gutbrod et al., 2015; 462

Moore et al., 2019; Seyboth et al., 2016). Therefore, continued monitoring of the 463

pregnancy or calving rate in this population is warranted as the ecosystems of the 464

Barents and Norwegian seas shifts to a new ecological state (Hamilton et al., 2021; 465

Johannesen et al., 2012). Knowledge of year-round distributions and critical habitat, 466
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especially during potentially vulnerable periods such as pregnancy, are essential for 467

mitigating adverse effects of human activities on top predators (Lascelles et al., 2014). 468

Conclusion 469

Our results suggest that winter foraging on fjord-based herring is a strategy that is 470

preferentially used by female humpback whales in northern Norway. Our findings 471

suggest that this strategy has become an important annual event for humpback whales, 472

contingent on herring overwintering in these fjords. The population of humpback whales 473

in the Northeast Atlantic is recovering from historical exploitation, while the ecosystem 474

in which they forage is undergoing rapid changes. The establishment of this foraging 475

site is evidence of humpback whales’ ability to respond flexibly to prey resources along 476

their migratory pathways, with potential effects on their migration timing that need 477

further investigation. Monitoring the potential anthropogenic impacts on migratory 478

species as their distributions respond to changing environmental conditions, with special 479

attention to core foraging areas, will be important to ensure adverse impacts can be 480

recognized and addressed. In particular, if many of the whales visiting northern Norway 481

during winter are either pregnant or are part of the endangered population segment that 482

migrates to the Cape Verde breeding ground, potential impacts of the shipping and 483

fishing industries should be priorities for ecosystem management. Future work should 484

also aim to understand how this additional foraging opportunity impacts the overall 485

reproductive performance and annual schedules of individual whales, and how this 486

ultimately may affect population dynamics. 487
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Supporting Information

Figure S1 Sex ratio by month. Sex ratio among humpback whales (Megaptera novaeangliae)
sampled in the Barents Sea and northern Norway.



Table S1 Overview of photographic identification for each winter season in coastal
Norway. Individuals identified, cumulative identifications, new individuals, re-sighted individuals,
annual return rate and within-season re-sightings.

Year 2010/11 2011/12 2012/13 2013/14 2014/15 2015/16 2016/17 2017/18 2018/19

Total no. of
identified
individuals/year

6 13 194 325 394 408 143 111 146

Cumulative
identifications

6 19 210 448 613 768 794 817 856

No. of new
individuals/year

6 13 191 238 165 155 26 23 39

No. of
re-sighted
individuals/year

0 0 3 87 229 253 117 88 107

Annual return
(%)

0 0 2 27 58 62 82 79 73

No. of
within-season
re-sights

0 0 51 117 192 180 71 45 83



Table S2 Re-sighted individuals between the Barents Sea and northern Norway.
Sightings-ID, sighting locations and dates for individuals sighted both in the Barents Sea and
Norway.

ID summer feeding
location

summer
sighting date
(m/d/y)

winter
feeding
location

winter first
sighting

winter last
sighting

NNHWC-117 NE-Svalbard 7/19/12 Kvaløya 12/9/12 1/2/13

NNHWC-138 NE-Svalbard 8/25/12 Kvaøya 12/24/12 12/4/12

NNHWC-139 NE-Svalbard 8/25/12 Kvaøya 11/27/12

NNHWC-156 NE-Svalbard 9/8/18 Skjervøy 10/28/18 12/19/18

NNHWC-193 Hinlopen Strait 7/12/13 Kvaløya 12/2/13

NNHWC-286 NE-Svalbard 9/8/18 Skjervøy 11/13/18 1/4/19

NNHWC-286 Border to Russia 8/8/15 Kvaløya 11/17/15

NNHWC-295 Hinlopen Strait 7/7/14 Kvaløya 11/16/14 01.12.1014

NNHWC-344 NE-Svalbard 9/5/18 Skjervøy 12/17/18

NNHWC-387 Hinlopen Strait 7/7/14 Kvaløya 12/21/14

NNHWC-471 Hornsund 8/28/18 Skjervøy 1/9/19

NNHWC-567 Border to Russia 8/8/15 Kvaløya 11/30/15 12/2/15

NNHWC-609 NE-Svalbard 9/5/18 Skjervøy 12/18/18 1/9/19

NNHWC-698 NE-Svalbard 9/3/18 Skjervøy 11/16/18 12/11/18

T2-73 NE-Svalbard 9/5/18 Skjervøy 11/14/18 11/15/18

T3-18 NE-Svalbard 9/4/18 Skjervøy 12/21/18

TT2-29 NE-Svalbard 9/9/18 Skjervøy 12/31/18

Table S3 All progesterone values and model results. Model results and progesterone levels
for all samples run, including results of the subset of samples extracted with both methods for
comparison.
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Text S1 Details and comparison of extraction methods. Details on the methods and
differences between the two different extractions used for progesterone analysis.

We thawed frozen blubber samples at room temperature and homogenized them seven

times for 40 sec at 5000 rpm, using a Precellys 24 tissue homogenizer, and cooled samples on

ice between intervals. We rinsed the resulting homogenates using a series of solvent washes,

removed tissue debris, collected the supernatants, and evaporated the samples using

pressurized air. We stopped evaporation when a thin solvent coating was left to prevent

complete desiccation and potential oxidation of the residue. A subset of samples was

homogenized manually before the same tissue debris removal, and solvent washes and

extracts were dried down under nitrogen.

We pooled results from two slightly different extraction and quantification methods, so

we confirmed that the results were comparable by repeating extraction and pregnancy

assignment of a subset of samples (N = 13) using both methods. While progesterone levels

differed, the same pregnancy status was assigned for all 13 of these individuals, and therefore

we included all samples in the pregnancy rate analyses. We repeated the extraction and

measurements for a subset of the blubber samples, in which case we report the averaged

resulting progesterone level, and ran multiple samples at several dilutions.

The mean progesterone concentration for pregnant individuals was 224.4 ± 173.6

nanogram per gram of blubber (ng g⁻¹ P4) (NO 221.7 ± 182.2; BS 194.7 ± 7), ranging between

79.6 (194.7 BS) and 872.5 (303.8 BS). Using the other method (marked as “Scotland” in Table

S3), pregnant female concentrations were 20.6 on average and ranged from 10.5-30.8. The

mean concentration for non-pregnant females was 0.7 ± 0.3 ng.g-1 (NO 0.7 ± 0.3; BS 0.52 ±

0.3), ranging between 0.3 and 6.8 (0.2 - 1.1 BS); and 3.3 on average with a range from 2.6-4.9.

Text S2 Relatedness methods. Detailed methods for within-season re-sampling assessment
using rxy

To look for potential re-sampling individuals within sampling season, 107 genomes were

sequenced at low coverage using an Illumina HiSeq4000 platform (Novogene, Hong Kong). The

1,781,057,402 paired-end reads obtained were mapped to the available humpback whale

reference genome (GenBank assembly accession: GCA_004329385.1). NGSRelate v2 which

allows to calculate pairwise relatedness (r) between two individuals x and y using identity by

descent have been used. As input for NGSrelate, genotype likelihoods (GL) of the dataset were

calculated from the mapped bam files using ANGSD v0.935-53-gf475f10. The following filtering

options were used: minimum mapping and base quality of 15 (-minmapQ and -minQ 15);



calculate genotype likelihoods using model from SAMtools (-GL 1); output binary genotype

likelihoods (-doGlf 3); infer major and minor alleles using GL (-doMajorMinor 1); calculate per

site frequencies using a fixed major and minor allele (-doMaf 1); only include SNPs with a

p-value less than 1 × 10–6 (-SNP_pval 1e-6), and a minimum minor allele frequency of 0.01

(-minmaf 0.01). The number of sites used between pairwise comparisons to calculate

relatedness (rxy) ranged from 14829 to 28014.
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Abstract 33 
Humpback whales (Megaptera novaeangliae) occur in all ocean basins and have shown 34 

remarkable recovery across most of their range after the end of industrial whaling. However, a lack 35 

of comprehensive understanding regarding their movement patterns across ocean basins hinders 36 

population viability assessments and our understanding of their responses to climate change and 37 

anthropogenic threats. In the North Atlantic, humpback whales migrate vastly disparate distances 38 

between northern and polar foraging grounds in the eastern and western basin to tropical breeding 39 

ground. In this study, we compiled over two decades of satellite telemetry data from >200 individual 40 

humpback whales across the North Atlantic. We assessed spatiotemporal movement patterns on 41 

major foraging grounds and the main breeding ground and during the migrations. We identified six 42 

migratory strategies based on migration pace (speed and tortuosity) and phenology (the timing of 43 

migration departure and arrival). Migration distance only explained 23% of the observed variation in 44 

migratory strategies, suggesting that whales migrating from the same foraging ground latitude 45 

employ different strategies. Some whales that occupied northern Norway during the winter 46 

returned early from breeding grounds or initiated a return migration before reaching the core 47 

breeding area. This indicates that long winter foraging seasons might affect the following migration 48 

phases in humpback whales, or that stays on the breeding ground are not a required stage of the 49 

annual cycle. Our results will facilitate basin-wide assessments of the North Atlantic population of 50 

humpback whales, provide essential information for ecosystem management and will guide research 51 

efforts in the future.  52 

  53 
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Introduction  54 
Populations of large whales are recovering from industrial whaling. At the same time, they 55 

are facing new challenges from increasing anthropogenic impacts; including ship strikes, 56 

entanglement in fishing gear, noise pollution and climate change (Tulloch et al., 2019; Nelms et al., 57 

2021). Due to their highly mobile and long-lived lifestyles, many of the large whales use a wide range 58 

of habitats across ocean basins. This makes them notoriously difficult to monitor, while knowledge 59 

on their spatiotemporal movement patterns is fragmented in most areas and mostly stems from 60 

whaling data, photographic identifications (photo-ID) and sighting surveys. A lack of baseline 61 

knowledge on large whale migration ecology still impedes our understanding of how large whales 62 

might respond to climatic changes and anthropogenic threats, in particularly if they inhabit areas 63 

that are far from coastlines or in remote regions, or during their offshore migrations (Lascelles et al., 64 

2014; Silber et al., 2017). 65 

Humpback whales (Megaptera novaeangliae) occur in all ocean basins worldwide, and like 66 

many baleen whales they undertake annual migrations between summer high latitude feeding 67 

grounds and tropical breeding areas during winter and spring (Clapham and Mead, 1999). In their 68 

foraging areas, they are subject to sometimes rapidly changing ecosystems, and during migration 69 

they cross vast expanses of the high seas (Stevick et al., 2006; Kettemer, Rikardsen, et al., 2022; 70 

Pallin et al., 2023). After the end of industrial whaling, humpback whales have shown remarkable 71 

recovery across most of their range, including in the Southern Ocean (Pallin et al., 2018), the North 72 

Pacific and the North Atlantic (Stevick et al., 2003; Leonard and Øien, 2020). However, recent 73 

evidence indicates that ecosystem shifts on some foraging grounds are now negatively affecting 74 

reproductive success, for example in the western North Atlantic(Kershaw et al., 2020), and North 75 

Pacific populations (Cartwright et al., 2019; Gabriele et al., 2022). Several studies have also reported 76 

changes in the migration timing of this species, but the outcome of these changes on the population 77 

are unknown (Ramp et al., 2015; Avila et al., 2020; Gosby et al., 2022; Pendleton et al., 2022).  78 

In the North Atlantic, photo-ID studies have shown that humpback whales migrate from 79 

several largely discrete feeding grounds to a common tropical breeding ground in the West Indies 80 

(Stevick et al., 2006). Some individuals in the eastern basin also migrate to a smaller breeding 81 

ground in the Cape Verde islands (Wenzel et al., 2020). Knowledge of humpback whale movements 82 

is traditionally obtained from whaling data, sighting surveys and photographic matching of their 83 

fluke patterns (Chittleborough, 1965; Clapham and Mayo, 1987; Øien, 2009). In the last two 84 

decades, local satellite telemetry efforts have provided data and insights into movements on 85 

foraging grounds of this species in the North Atlantic (Dietz et al., 2002; Robbins et al., 2013; Heide-86 

Jørgensen and Laidre, 2015; Hamilton et al., 2021) and to a lesser extent in the West Indies breeding 87 
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area (Kennedy et al., 2014). However, there is a limited understanding of the connectivity between 88 

foraging grounds (Ryan et al., 2016; Kettemer, Ramm, et al., 2022; Kettemer, Rikardsen, et al., 2022) 89 

and a definite lack of data detailing the migrations to breeding grounds.  90 

Migration distances between breeding and feeding areas vary greatly for humpback whales 91 

from different foraging grounds in Greenland, Canada, the Gulf of Maine, Iceland and Norway, 92 

ranging between 2.500 and 9.000 km one way. In the last decade, humpback whales also established 93 

a winter foraging ground in fjord systems of northern Norway, highlighting that whales can respond 94 

to changes in local food distribution by modulating their migration and feeding patterns (Kettemer, 95 

Ramm, et al., 2022). These differences in migration timing and distances could mean that animals 96 

from different sides of the basin have different energetic costs and risks associated with migration 97 

(Riekkola et al., 2020). Such risks include differential exposure to pollutant levels, risks of ship strikes 98 

or bycatch risk (Elfes et al., 2010; Hitchcock et al., 2019; Stepanuk, 2021). Differences in migration 99 

patterns can reflect variations in trade-offs associated with costs and risks or different 100 

environmental conditions that affect how an individual can optimize the fitness outcome of 101 

migration (Alerstam, 2011; Braithwaite, Meeuwig and Hipsey, 2015). These differences may also be 102 

linked to potentially distinct population segments if behaviors are consistently different and lead to 103 

a lack of spatiotemporal overlap on the breeding ground (Stevick et al., 2018; Wenzel et al., 2020). 104 

Generally, demographic variations in terms of migration characteristics, such as departure 105 

timing and route selection are well known for many baleen whale species, based on photo-ID and 106 

sighting surveys, genetic profiling and whaling data (Chittleborough, 1965; Dawbin, 1966; Craig and 107 

Herman, 2000; Pallin et al., 2018). However, an individual’s migration strategy emerges from a set of 108 

migration characteristics through the annual cycle (Alerstam, 2011). This can only be assessed with 109 

continuous information from the same individual, for example as can be gained from satellite 110 

telemetry (Phillips et al., 2017; Abrahms et al., 2018). Optimal migration theory (Alerstam, 2011) 111 

posits that individuals optimize their migration strategies in regard to their energetic balance and 112 

resource use, and these strategies are known to mediate the survival success of an individual 113 

depending on environmental conditions (Abrahms et al., 2018; Torres et al., 2022). Variation of 114 

migration strategies on a population level provides resilience to environmental changes by spreading 115 

the risk of mismatched movements (Freshwater et al., 2019). 116 

Here we use 20 years of satellite telemetry data from humpback whales in the North 117 

Atlantic basin to document their movement patterns and their seasonal use of the oceanscape. We 118 

(i) aimed to assess whether animals from different foraging grounds use distinct migration strategies 119 

related to the large variation in migration distances they must cover, and (ii) to explore the 120 
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variability of strategies among individuals from the same feeding area. Finally, we aimed to (iii) 121 

update information on the spatiotemporal distribution and movements within different foraging 122 

grounds, as well as the connectivity between these different areas, and movements in the West 123 

Indies breeding ground based on two decades of satellite telemetry campaigns. 124 

 125 

Methods 126 

We use satellite telemetry data of humpback whales instrumented around the North 127 

Atlantic (Table 1), including the five known distinct foraging grounds; the Gulf of Maine in the United 128 

States and Canada, Atlantic Canada including the Gulf of St. Lawrence and Newfoundland/Labrador, 129 

the west coast of Greenland, Iceland, summer feeding grounds in the Barents Sea and winter feeding 130 

grounds in fjord systems in northern Norway. Additionally, we also used telemetry data from one of 131 

the breeding grounds, the Greater and Lesser Antilles of the West Indies Island chain (Table 1). In 132 

total, we used satellite telemetry data collected from 206 individual humpback whales over a 20-133 

year period between 2002 and 2021. The deployments documented 24 southward migration tracks, 134 

defined as when the whales left the known feeding grounds and had a directed southward 135 

movement towards the breeding grounds (Table 2). Eight of these were also tracked when returning 136 

northward after spending time on the breeding grounds. In addition, 11 northward tracks from tags 137 

deployed in the West Indies were available in addition to the documented northward movements of 138 

animals instrumented on foraging grounds. 139 

Most campaigns used subdermal Argos tags (SPOT303, SPOT305 or SPLASH, www. 140 

wildlifecomputers.com), deployed via air-powered rifles from small boats. In some earlier years, 141 

experimental tag types were deployed, specifically, SPLASH SWING tags in Greenland, for details see 142 

(Dietz et al., 2002; Laidre et al., 2010; Heide-Jørgensen and Laidre, 2015), and the tag types have 143 

been slightly modified over the duration of some telemetry campaigns, e.g., in the Gulf of Maine and 144 

Greenland. Some contributors collected information on the sex of tracked individuals, either from 145 

long-term observations (Gulf of Maine) or from genetic profiling of biopsy samples (Kettemer, 146 

Ramm, et al., 2022). In some cases, pregnancy or other reproductive status was assessed with a 147 

progesterone level analysis, see details in Kettemer et al. (2022). Known pregnancy status is 148 

indicated in Table 2. 149 

 150 
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Telemetry data   151 

All analyses were conducted in R v. 4.2.1 (R Core Team, 2020). We removed Argos- classified 152 

Z locations (those for which the location process failed) and employed a filter on speed (max 8 ms-1) 153 

and spikes in turning angles using the argosfilter package (Freitas et al., 2008). We removed 154 

locations individual outliers not captured in that process manually, for example, where large gaps (> 155 

48 hours) occurred within the first 5 and last 5 locations of the track, respectively since these cause 156 

model fitting problems (for more information on data quality see in supporting material Figures S1 157 

and S2).  158 

From the filtered raw locations, we estimated a most likely path using a random walk using 159 

the aniMotum package (Jonsen and Patterson, 2020), accounting for the Argos quality classification 160 

(lc) of each location (either lc quality or error ellipses, estimated by CLS- Argos). As this is required 161 

for the model fitting, we projected the locations to an azimuthal equidistant projection centered on 162 

the middle of the North Atlantic (45°N, 20°W). We then sampled a set of locations along each 163 

animal’s path at 6-hour intervals. We removed individuals with fewer than 15 locations (N= 5) and 164 

obtained converged models for 196 individuals. To represent distribution data from all individuals, 165 

we established a grid of hexagonal cells for each of the deployment areas (defined by a 100% 166 

minimum convex polygon) and counted the number of filtered locations per cell (~ 10km2). For 167 

converged tracks, we then estimated a movement persistence parameter based on the 168 

autocorrelation of speed and turning angles between subsequent location intervals (aniMotum 169 

package). Movement persistence is continuous and varies between 0 and 1: a value of 0 indicates 170 

localized, area-restricted searching movements, while a value of 1 indicates transiting movements.  171 

 In total, we successfully reconstructed tracks of 196 humpback whales, from the five feeding 172 

areas and one breeding ground over 17 years of satellite telemetry deployments (Figure 1A). The 173 

spatial distribution of all locations collected within the foraging grounds and in the breeding ground, 174 

including locations of 10 animals for which tracks were not successfully modeled (206) are shown in 175 

Figure 1 B. The median track duration for modeled tracks varied between 20 and 48 days (between 176 

the different deployment locations, Table 1).  177 

  178 
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 179 
Table 1 Summary of deployments for each deployment region. 180 

 181 

 182 
Migration characteristics 183 

To identify tracks that captured migratory movements, we selected individuals with 184 

locations on the high seas (i.e., outside of any exclusive economic zone (EEZ), or that showed a 185 

continuous and persistent change in latitude, because telemetry campaigns usually operate in 186 

nearshore areas within EEZs, and thus can be used to distinguish between animals that remained 187 

locally around deployment areas and those that left these areas. EEZ and high seas regions were 188 

obtained from shape files provided by Marine Regions (https://www.marineregions.org/eez). To 189 

estimate departure timing, we first established a kernel density 90% home range contour for each of 190 

the feeding ground areas using the adehabitatHR package (Calenge, 2006), based on locations of 191 

animals that did not show migration behavior. For each individual identified as a migratory whale, 192 

we then identified the first location outside of this area that was followed by at least 5 locations 193 

outside of this range. In cases where animals were foraging outside of this core area, we manually 194 

confirmed the last time they left the area and used the first location outside of the area as the 195 

estimated departure time if it was followed by persistent change in latitude. 196 

We estimated movement speed by calculating the geodesic distance between relocations 197 

sampled along the reconstructed path. To estimate arrival dates for individuals whose migration was 198 

not fully captured (i.e., those whose tags ceased operating) we multiplied the average speed during 199 

the observed track with the distance traveled from the last available location’s latitude, on average 200 

by the other animals successfully tracked to the breeding ground (defined as reaching 19°N) from 201 

the same deployment area. When animals did not reach 19°N but northward movement was 202 

captured in the data, the date of the southernmost location was considered the arrival date. 203 

Migration characteristics estimated based on incomplete tracks are italicized in Table 2 and 204 

individuals marked with an asterisk. 205 
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The tortuosity of each path was calculated as the sum of distances between relocations 206 

(path length) divided by the Euclidean distance between the start and end of the migration (i.e., the 207 

first and last locations estimated during the migration track). Where tracks contained gaps in the 208 

raw data larger than 2 days during migration, we estimated departure timing and speed based on 209 

the reconstructed track: in this case, we used interpolated locations along a straight line between 210 

the last observed locations before the track was interrupted and the locations received once data 211 

transmission was re-established.  212 

 213 

Migration strategies 214 

To assess the presence of distinct migration strategies, we conducted a principal 215 

components analysis (PCA) based on the following characteristics: departure time (as day of the 216 

year, centered on the summer solstice (June 21st as day 1) to ensure that December and January 217 

departure times are treated as similar in the analysis), observed or projected arrival time (as day of 218 

the year), median movement speed (in ms-1), variation in movement speed (as the interquartile 219 

range of speed), resting locations relative to migration locations (the number of relocations with 220 

speed < 0.5 ms-1 divided by the number of collected locations during migration), and tortuosity of 221 

the migration path. We removed from the PCA analysis individuals with large gaps (> 2 days) during 222 

the migration that affected tortuosity and speed estimates, resulting in 21 individuals being included 223 

in the PCA. PCA is a commonly used dimension reduction method for multivariate datasets with a 224 

range of potentially correlated predictor variables. During the process, new axes (principal 225 

components) are constructed such that each new axis explains successively less of the overall 226 

variation in the dataset. Based on this PCA, we used a cluster analysis (k-means) to identify groups of 227 

individuals that exhibited similar characteristics and then assessed whether variability in the first 228 

two principal components corresponded to different migration distances with a linear model 229 

(migration distance ~ PCA1 + PCA2). 230 

 231 

Results 232 

We were able to track the southward breeding migration of 24 whales instrumented at the 233 

foraging grounds. Of these, 10 tracks represented full migrations, meaning that they were tracked all 234 

the way from deployment locations at their feeding area and all the way to the breeding area. Of the 235 

24 whales, 6 (2 full migrations) were instrumented in the northern Barents Sea, 11 (5 full migrations) 236 

animals in the fjords of northern Norway, 5 (1 full migration) animals off Iceland, and one each from 237 
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the Gulf of Maine and Canada (both full migrations) (Figure 1A). For whales instrumented at the 238 

breeding grounds, the northward migration was documented for 11 individuals, representing two 239 

deployment locations in the West Indies breeding ground (Figure 1A). For animals instrumented in 240 

the West Indies, destinations could not be conclusively determined. Additionally, we were also able 241 

to track the northward migration of 8 individuals instrumented on the feeding grounds, reached the 242 

West Indies breeding grounds and initiated their northward migration before the tag was lost. 243 

 244 
  245 
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Table 2 Migration characteristics for 24 individuals tracked on their southward migration towards tropical 246 
waters. First latitude denotes the latitude at which the tag was deployed, Departure date is the day on which an 247 
animal was considered to have left the foraging area; Arrival date is the day on which an animal was considered 248 
to have arrived to the West Indies breeding ground, either observed or projected; Resting is the number of 249 
locations where speed < 0.5 ms-1 relative to the number of observed migration days tracked for this individual, 250 
and Tortuosity is the tortuosity of the track as the length of the track divided by the Euclidean distance between 251 
the start and end of migration. Characteristics inferred for incomplete tracks are italicized, and these individuals 252 
are marked with an asterisk. Animals that began their northward migration before reaching the breeding ground 253 
area, or spent less than a day there, are shaded in gray. Females assessed for pregnancy by hormonal screening 254 
are marked with either + (pregnant) or - (not-pregnant). Cluster indicates which migration strategy cluster the 255 
individual was assigned to in the k-means clustering on the PCA, individuals removed from the PCA for data 256 
quality reasons are marked with -. 257 

PTT  First 
Latitude  

Departure 
date  

Med. 
speed  

IQR 
speed  Resting  Tortuosit

y  
Arrival 
date  

Migration 
days  

Incomplete 
track  

Sex 
(preg.) 

Cluster 

Gulf of Maine   

111869  43 09-Jan  1.87  0.54  0.00  1.08  25-Jan 15.83   f 2 

Canada   

175037  48 29-Aug  -  0.73  - - 18-Feb -  *  - 

Iceland   

50687  64 02-Feb  1.89  0.24  0.03  1.01  06-Jun 124.16  *  5 

60007  66 30-Jan  1.59  0.95  0.00  1.09  01-Jun 121.42  *  3 

60012  66 12-Jan  1.65  1.26  0.00  1.02  02-May 110.10  *  3 

93117  66 25-Dec  1.31  1.09  0.19  1.17  26-Feb 63.00    1 

37282  66 19-Nov  1.46  0.37  0.00  1.03  16-Feb 88.63  *  2 

mean 65.60  1.58 0.78 0.04 1.06  101.46    

Norway   

110822  69 27-Jan  1.06  1.39  0.28  1.09  01-May 95.23  *  6 

166142  70 23-Jan  1.00  0.86  0.52  1.28  30-Apr 96.88   m 4 

166143  70 08-Jan  1.01  0.64  0.70  1.14  17-Apr 99.24  * f - 4 

166148  70 28-Jan  1.72  0.51  0.00  1.04  20-Jun 143.04  * f + 5 

166149  70 20-Feb  1.43  1.30  0.17  1.25  21-May 90.35  * f - 6 

166150  70 19-Jan  1.05  0.71  0.74  1.28  02-May 103.25   f + 4 

47598  70 22-Feb  1.66  0.99  0.06  1.10  18-Apr 55.62   f - 3 

83274  70 30-Dec  1.94  0.61  0.02  1.11  24-Feb 55.74  * m 1 

83278  70 09-Feb  1.45  0.97  0.10  1.11  20-Apr 70.50   f + 3 

83287  70 23-Jan  1.65  0.81  0.06  1.07  24-Mar 60.25   f + 1 

83271  70 25-Jan  1.85  0.57  0.00  1.11  23-Mar 56.58  * m 1 

mean 69.91  1.44 0.85 0.24 1.14  84.24    

Barents Sea            

110820  76 24-Nov  1.50  1.01  0.06  1.32  06-Mar 102.98  *  4 

140099  77 17-Sep  1.02  0.82  0.19  1.29  06-Jan 111.52  *  - 

47570  77 10-Dec  1.10  0.98  3.14  1.18  16-Mar 96.25   m 4 

167844  79 11-Jan  1.29  0.99  0.12  1.25  11-Apr 90.63  * f + - 

47597  79 16-Nov  1.06  1.10  2.22  1.21  23-Feb 98.92  *  4 

47599  79 17-Jan  1.60  0.90  0.05  1.12  19-Mar 61.25   m 1 

mean 77.83  1.26 0.97 0.96 1.23  93.59    
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Migration strategies 258 
The migration characteristics of 24 individuals are summarized in Table 2, asterisks denote an 259 

incomplete track, and characteristics estimated based on those are italicized. All characteristics are 260 

based on regularly sampled locations along reconstructed paths at 6-hour intervals. Departure 261 

timing from foraging areas varied from August to the end of February, while the arrival timing to the 262 

West Indies varied between January 07 and May 02 (up to May 31 for incomplete tracks) (Table 2). 263 

Median migration speed varied among individuals (1 -1.9 ms-1), as did the inter quartile range of 264 

speed (IQR speed: 0.2 – 1.5). The duration of the migration was shortest for one individual from the 265 

Gulf of Maine (16 days) and varied from 55 to 103 (143 for incomplete tracks) for whales from the 266 

eastern basin (Table 2). The migration track tortuosity varied between 1.01 and 1.32.  267 

Whales instrumented in Iceland departed at various times between November 19th and February 268 

2nd and migrated on average for 101 days at 1.58 ms-1. The only complete trajectory reached the 269 

breeding ground in mid-February and incomplete tracks were projected to arrive between mid-270 

February and early June. Individuals from Norway did not migrate before December 30th but 271 

generally later (January 8th – February 22nd), as they were instrumented during the winter. These 272 

animals only arrived at the breeding ground after April 17th, one individual was projected to arrive 273 

not until June 20th. Migration speed was 1.44 ms-1 and 84 migration days on average from Norway. 274 

From the Barents Sea, individuals departed between September 17th and January 17th, most after 275 

mid-November. Arrival time to the breeding ground was observed in mid-March for two individuals 276 

and projected to occur between February 23rd and April 11th for incomplete trajectories. The mean 277 

migration duration was 94 days at 1.26 ms-1. 278 

Whales from the eastern foraging grounds used a broad area for migration, spanning the entire 279 

width of the basin above ~ 56°N, and between 51°W and 19°W at around 45°N, converging slightly 280 

as whales approached the West Indies (Figure 1). Multiple individuals exhibited periods of localized 281 

ARS movements also after departing from foraging grounds, as evidenced by short sections of lower 282 

values of movement persistence during migration and increased track tortuosity (Figure 1 and Figure 283 

3). This occurred mainly in coastal areas, along the Norwegian coast, around Iceland, and close to 284 

the Scottish Outer Hebrides, but also in one instance in open waters north of the Azores (Figure 3). 285 

At least four individuals initiated their northward return migrations before reaching the breeding 286 

grounds or returned almost immediately upon their arrival to the breeding area; one additional 287 

individual also started moving northward but the data transmission ceased soon after (Figure 1, 288 

Table 2). The migration speed of these whales varied between 1 and 1.7 ms-1, departure timing from 289 

the foraging ground was between December 10 and February 22, and arrival to the general breeding 290 
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ground area (or the initiation of northward movement) occurred between March 16 and May 02. 291 

Three of these individuals were assigned to cluster 4, and one into cluster 3 (Table 2). This included 292 

two males, one pregnant and one non-pregnant female, all migrating from Norway or the Barents 293 

Sea (Table 2). 294 

In the PCA on southward migration characteristics, the first two principal components explained 295 

89% of the observed variance among the 6 included migration characteristics from 21 individuals 296 

(Table 3). The first principal component explained 71% and mainly represented variation in median 297 

speed (0.52), relative resting (-0.49), and tortuosity (-0.45). The second principal component 298 

explained 19%, mainly representing arrival date (0.62) as well as departure day (0.50) (Figure 4, 299 

panel B). We identified six distinct clusters in this PCA (Figure 4, panel C). Departure dates and arrival 300 

dates were highly positively correlated but neither appeared to influence migration speed 301 

substantially (Figure 4, panels A and B). As expected, median speed was negatively correlated with 302 

track tortuosity and the relative number of resting days (Figure 4, panels A and B).  303 

To understand whether whales from the same breeding ground were grouped together in our 304 

clustering, we ran a linear model to predict migration distance using the first and second principal 305 

components (cluster assignment also shown in Table 2). We found that migration distance (as first 306 

latitude of the track, i.e., the foraging ground origin) explained 23% (adjusted R2) of the variation in 307 

the first and second principal components and therefore migration strategies. Accordingly, the 308 

clusters did not closely correspond to foraging ground origin (Table 2). The mean characteristics for 309 

each identified strategy varied between the clusters as shown in Table 4. 310 

Table 3 Results of the principal component analysis (PCA) of migration strategies for 21 individuals for which 311 
sufficient data were available (see Table 2). The columns show loadings of each variable on the first two 312 
principal components. 313 

                       PC1          PC2  

Arrival yday 0.243 0.618 

Departure 
Yday 

0.381 0.497 

Median 
Speed 

0.521 -0.376 

IQR speed -0.278 0.429 

Relative 
resting 

-0.493 -0.118 

Tortuosity -0.453 0.181 
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Table 4 Average migration characteristics for each of the identified migration clusters based on a k-means 314 
cluster analysis of PCA results (component 1 and 2). 315 

Cluster First 
Latitude  

Departure date 
(first, last) 

 Med. 
speed  

IQR 
speed  

Resting  Tortuosity  Arrival date 
(first, last) 

Migration 
days  

Sex 
(preg.) 

1 71 25 Dec, 25 Jan 1.67 0.80 0.064 1.116 24-Feb, 24 Mar 59.36 m, f + 

2 54.5 9 Jan, 19 Nov 1.67 0.46 0 1.055 25 Jan, 16 Feb 52.23 f 

3 68 12 Jan, 22 Feb 1.59 1.04 0.04 1.08 18 Apr, 1 Jun 89.41 f-, f+ 

4 73.6 24 Nov, 23 Jan 1.12 0.88 1.23 1.235 23 Feb, 2 May 99.59 m, f+, 
f- 

5 67 28 Jan, 2 Feb 1.80 0.38 0.02 1.03 6 Jun, 20 Jun 133.6 f + 

6 69.5 27 Jan, 20 Feb 1.25 1.35 0.22 1.17 1 May, 21 May 92.79 f - 

 316 
Movement within distinct feeding and breeding grounds  317 

Whales instrumented in Greenland foraged mainly off the west coast of Greenland between 318 

June and November (2002 – 2013, Figure 2). The distribution shifted to the south-east as the season 319 

progressed, and the observed low movement persistence in both areas is consistent with foraging 320 

along the coast (Figure 3). One animal returned northward to Disko Bay (69°N 52°W) in November. 321 

Another individual transited to the Baffin Island coast of Canada and then returned to Greenlandic 322 

waters. Two individuals left the Greenlandic coast and transited to Canadian waters at the end of 323 

June and end of August, respectively.  324 

In Canadian waters, whales were tracked within a region just north of Newfoundland between 325 

July and January (2018 – 2019). In the Gulf of Maine, whales were tracked between July and January 326 

(2009 – 2018). As the season progressed, animals in the Gulf of Maine moved northward, some into 327 

the Bay of Fundy, and in one case into the Gulf of St. Lawrence, and south of Nova Scotia (Figure 1). 328 

The spatial distribution of the movement persistence parameter indicated distinct locations of 329 

foraging, and also revealed transiting behavior between these apparent core foraging areas (Figure 330 

3). 331 

In the fjords of northern Norway, animals were present between late October and early 332 

February (2011 – 2019, Figure 2). The distribution shifted northward from year to year (2017- 2019). 333 

In 2017, whales occupied both more southern and northern fjords of Troms. In 2018 and 2019 most 334 

of the activity occurred in the more northerly fjord system. Nine individuals continued foraging just 335 

off the Norwegian coast, as far south as 67°N, after leaving the fjords for their southward migration 336 

to the tropics (Figure 3).  337 

Animals instrumented in the northern Barents Sea remained in the area between July and 338 

January. One individual ventured as far north as 82°N, and another moved eastward towards 339 
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Russian waters in December and January (72°N 46°E). Some individuals appeared to transition 340 

towards coastal Norway as the season progressed (October and November, Figure 2 and Figure 3).  341 

Whales instrumented in Iceland foraged in local waters around Iceland between June and 342 

January (2003 - 2019). In 2019 and 2021, four individuals were instrumented on the northwest coast 343 

of Iceland and transited to the east coast of Greenland (around 71°N 21°W and 68°N 22°W, Figure 344 

1), where they spent multiple days in July, September, and October. Movement persistence was 345 

lower in these coastal areas than during the rest of migration, indicating ARS type movements 346 

indicative of prey searching, foraging or socializing. Another whale instrumented in the Barents Sea 347 

also utilized this area during September and October 2013, and also exhibited low movement 348 

persistence. Three whales transitioned from the northern to the southern coast of Iceland as the 349 

season progressed (October and November, Figure 2). Six whales instrumented in the Barents Sea 350 

and coastal Norway also spent time in Icelandic waters between November and March, during their 351 

southward migration. These individuals visited either the eastern or western coast of Iceland, 352 

respectively (Figure 2). One individual transited through Icelandic waters in July during its northward 353 

migration to the Barents Sea.  354 

Whales instrumented in two locations in the Greater and Lesser Antilles in the West Indies 355 

breeding ground remained in the area for various periods of time between January and May (2008 – 356 

2019, Figure 2). The departure time from breeding grounds varied between individuals, from 357 

February 2 to May 19. Whales instrumented in breeding grounds spent up to 3.5 weeks post- 358 

deployment within the West Indies.  359 

 360 
  361 
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Discussion 362 
This study presents the first comprehensive overview of humpback whale migratory movements 363 

in the North Atlantic, as documented by satellite telemetry. Novel information on the movement 364 

patterns on all known foraging grounds, and in the common breeding ground in the West Indies. 365 

Humpback whales spent between 19 days migrating from the Gulf of Maine and between 55 and 366 

104 days migrating from eastern basin foraging grounds. Departure time varied between August and 367 

February, and arrival timing to the West Indies was between January and May. Large variability in 368 

migration timing meant that while some animals were on their southward migration, others were 369 

already moving northward after their stay on breeding grounds. The area used for migration 370 

spanned the entire North Atlantic basin.  371 

Six different migration strategies were characterized by differences in migration pace (speed and 372 

tortuosity) and phenology (migration departure and arrival time). Latitude of foraging only explained 373 

23% of the variability in these two principal components, indicating that animals from the same 374 

foraging grounds use a wide variety of migration strategies. After foraging in Norway during the 375 

winter, multiple individuals did not reach the West Indies breeding ground or spent only few hours 376 

there before initiating their northward migration. Among these were pregnant females, non-377 

pregnant females, and male. This indicates that either the individual circumstances did not make a 378 

stay in the breeding area a beneficial strategy, or that time constraints led animals to prioritize a 379 

timely return to foraging areas. 380 

Movement patterns documented on the different foraging grounds generally confirmed 381 

previous documentations from photo-ID studies and sighting surveys. Frequently, individual whales 382 

moved between apparent foraging hotspots within distinct foraging sites, but we also highly that 383 

many transited between sites. For example, one individual instrumented in the Gulf of Maine 384 

transited into Canadian waters of the Bay of Fundy and three individuals instrumented in Iceland 385 

and the Barents Sea foraged on the Greenlandic shelf.  386 

Movement on feeding and breeding grounds 387 

Animals in all general foraging regions moved between different core foraging areas throughout 388 

the season. In Greenland, for example, animals moved southward along the coast. In the Gulf of 389 

Maine, animals moved northward into the Bay of Fundy, or, in one case, offshore. The spatial 390 

distribution of the movement persistence parameter on the foraging grounds identified areas of 391 

core foraging activity and areas within the foraging grounds that might represent movement 392 

corridors between food patches. This was most distinct in the Gulf of Maine. Such switches between 393 

core foraging sites most likely represents a response to ephemeral prey fields. We also documented 394 
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exchanges between several distinct feeding sites by individuals from multiple areas. Examples 395 

included whales from Norway that passed by and used habitat in the east and west of Iceland, 396 

central-Norwegian and British waters, and Icelandic whales that used habitat along the eastern coast 397 

of Greenland. Whales from the western Greenland coast in some cases visited Canadian waters 398 

either during the foraging season, or possibly after initiating their southward migrations. There was 399 

also some exchange between the Gulf of Maine and Canadian waters up to the Nova Scotian coast 400 

and into the Gulf of St. Lawrence. This is consistent with previous evidence from photo-ID studies 401 

(Clapham et al., 2003), and telemetry data adds detailed information on when this occurs. This type 402 

of dynamic information about individual movements and core foraging activity sites provides a 403 

valuable complement to traditional sighting and survey data, which generally only provide a 404 

snapshot at a specific time point. For example, some whales exhibited local movements with low 405 

movement persistence after leaving Norwegian fjords on their southward migrations. This highlights 406 

potentially important areas that were previously not described as key foraging areas. The time at 407 

which this occurred also reveals that whales continued foraging after the presumed end of the 408 

foraging season documented based on photo-ID (Kettemer, Ramm, et al., 2022).  409 

All individuals migrated to or toward the well-documented breeding ground in the West Indies. 410 

The time spent in the breeding area varied extensively between animals, while some spent no time 411 

or only a few hours in this area, others spent up to 3.5 weeks within the West Indies Island chain. 412 

The observed timing of the breeding season confirms acoustic monitoring data from the area, which 413 

had recently established humpback whale presence over longer time frames than previously 414 

documented from photo-ID (Heenehan et al., 2019). This is not surprising given the temporal bias in 415 

research effort in the region, which historically tended to concentrate on the peak months of the 416 

winter breeding season (Stevick et al., 2006; Kennedy and Clapham, 2017). The movements 417 

described here generally confirmed previous knowledge but highlighted the diversity in timing of the 418 

breeding season, and some movements between different areas within the breeding ground, for 419 

example between the Lesser Antilles and the Greater Antilles, confirming information gathered from 420 

photo-ID surveys (MacKay et al., 2019). The high diversity in timing of the season and movements 421 

within the breeding ground likely contribute to maintaining gene flow between whales of the east 422 

and western basin, even as their core breeding seasons appear to differ in space and time. 423 

Collectively, whales utilized the waters of 14 different countries in the breeding grounds, often in 424 

succession throughout the season.  425 

A high proportion of individuals from the Norwegian and Barents Sea feeding grounds are 426 

known from photo-ID to migrate to the Cape Verde Islands breeding grounds at least in some years 427 

(Broms, 2015; Wenzel et al., 2020). There is so far no telemetry data from whales migrating to or 428 
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from the Cape Verdes breeding ground. This distinct population segment has a much smaller 429 

estimated population and there is limited information on their migration routes or strategies 430 

(Wenzel et al., 2020). These Cape Verde whales are considered to form a distinct breeding segment 431 

under the U.S. Endangered Species Act, and the small number of whales using this area are 432 

considered potentially sensitive and important to the overall population (Wenzel et al., 2020). 433 

Future studies could use the range of migration characteristics from this study to inform simulations 434 

designed to infer possible migration routes and annual schedules of individuals migrating to the 435 

Cape Verde Islands until telemetry data have been collected that can provide detailed information 436 

about migrations to this smaller breeding ground. 437 

Migration strategies. 438 

Humpback whales exhibited a broad range of migration strategies in the North Atlantic. Using a 439 

principal component analysis, we identified six clusters of distinct migration strategies that were 440 

mostly explained by differences in migration pace (speed and tortuosity) and phenology (migration 441 

departure and arrival time). Latitude of the foraging ground, and therefore migration distance, only 442 

explained a small amount of the variability in the first two principal components. This highlights that 443 

animals from the same foraging grounds use a wide variety of migration strategies and that 444 

migration strategies might not primarily be constrained by migration distance. We provide new 445 

evidence that humpback whales can adopt a wide range of annual schedules, i.e., their migration 446 

timing south and north, and length of stay on the breeding and feeding grounds. For example, our 447 

results show that whales foraging in the Barents Sea can complete migrations to breeding grounds 448 

and back after a foraging season that lasted in some cases into January, much longer than previously 449 

documented. In cases where animals continued foraging in Norway in the winter before their 450 

southward migration, migration speed was not generally higher than for animals that left earlier, 451 

despite having to cover some of the longest migration distances of any humpback whales globally 452 

(Rasmussen et al., 2007; Riekkola et al., 2018; Modest et al., 2021). 453 

It is of particular interest to note that four animals from the Barents Sea/coastal Norway 454 

foraging grounds, for which we had complete trajectories including northward movement, remained 455 

in the breeding ground area less than a day or started their northward migration before even 456 

reaching the known breeding areas. All these individuals departed later than mid-December from 457 

the foraging ground; three migrated at a relatively slow speed of around 1 ms-1, and only one 458 

migrated at a faster speed of 1.7 ms-1. These individuals did not form a distinct cluster in our cluster 459 

analysis, likely because the duration of breeding ground attendance and northward migration were 460 

not included in the PCA. This behavior was observed in two males as well as a pregnant and a non-461 
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pregnant female. It is possible that a pregnancy detected from hormone analysis of samples 462 

collected prior to migration was aborted during migration, or that calves were born en-route but did 463 

not survive, potentially making a stay in breeding grounds no longer a beneficial strategy even for 464 

pregnant females. We did not assess age, and thus cannot exclude the possibility that the individuals 465 

were immature. Kettemer et al. (2022) provided a detailed account of the migration of one of the 466 

individuals included here, a pregnant female (id = 83278), that foraged in Norway during the winter 467 

and then in Iceland. This individual likely gave birth en-route and despite the extensive feeding 468 

season also spent time in the breeding grounds.  469 

It further seems likely that males might encounter breeding opportunities on their migration as 470 

they approach breeding grounds, or that returning to foraging grounds is a greater priority than 471 

increasing breeding opportunities by spending more time in breeding grounds. For instance, animals 472 

in poor condition or juveniles could be expected to prioritize increased feeding opportunities and 473 

postpone breeding. To our knowledge, such patterns of delayed departure from feeding grounds, 474 

coupled with very short or no time spent at breeding grounds is not commonly observed in other 475 

migratory species. This observation raises questions about the definition of a breeding ground, as 476 

experienced by a whale, and might inform future studies into the reasons for baleen whale 477 

migrations. Overall, this might indicate that the migration schedule is constrained by a long foraging 478 

season, which can be offset by high migration speeds in some cases, see also Kettemer et al. (2022). 479 

One important question that arises is to what extent such variations in migration phenology are 480 

linked to reproductive status and body energy reserves.  481 

Such carry-over effects, where conditions in one season affect the following season, are known 482 

to affect the survival of migratory animals (Bengtson Nash et al., 2018; Imlay, Mann and Taylor, 483 

2021). Such effects are thought to be an important determinant of the fitness of migrating animals 484 

(Norris et al., 2004; Marra et al., 2015; Gómez et al., 2017). Carry-over effects are, however, difficult 485 

to observe and quantify. We provide some initial insights into how one migration characteristic 486 

(such as late departure timing from foraging grounds) might affect subsequent migratory phases 487 

(e.g., time on breeding grounds or increasing swim speed) in a baleen whale. There is very little 488 

published information on the migrations of humpback whales to breeding grounds (Modest et al., 489 

2021) and our study therefore fills an important knowledge gap for a substantial part of the North 490 

Atlantic humpback whale population. Unfortunately, insufficient migration data were available from 491 

the western foraging areas to compare migration strategies between the west and east of the North 492 

Atlantic basin in detail. Because of the large difference in migration distances, this is an important 493 

research topic that requires further attention. Nonetheless, insights from this study can be helpful in 494 

calibrating future research that requires information on the physiological and energetic envelope 495 
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within which baleen whales undertake their migration, which will define their potential for 496 

adaptation. This kind of information is required in models that assess the effects of disturbance and 497 

climate change on migrating animals (Pirotta et al., 2021; Pirotta, 2022). 498 

Variations in migration timing is to be expected on a population level, and we show the broad 499 

range of migration timing in this system. Notably, migrations towards tropical waters by some 500 

whales occur at the same time as northward migrations by others. This difference in migratory 501 

timing likely emerges as a consequence of interactions between abiotic environmental cues 502 

(Freshwater et al., 2019; Burnside et al., 2021) and biotic factors, such as prey availability (Jones et 503 

al., 2014) and internal state, including fat reserves and life history stage (Chittleborough, 1965; 504 

Gómez et al., 2017). For humpback whales, sex and reproductive state influence migration strategy, 505 

with pregnant females remaining on foraging grounds longest and nursing whales choosing different 506 

routes to optimize calf survival (Craig and Herman, 2000; Félix and Guzmán, 2014; Pallin et al., 2018; 507 

Modest et al., 2021). While humpback whales generally show a high degree of fidelity to foraging 508 

grounds, some individuals may choose to vary their migration routes from year to year (Stevick et 509 

al., 2016). Although this seems to be a rare occurrence, one individual in our study was first tracked 510 

from the foraging grounds in Canada but headed farther east than expected on its northward 511 

migration, possibly towards one of the eastern Atlantic foraging sites before the tag stopped 512 

transmitting. Diversity in migration strategies, particularly in phenology, can be an important factor 513 

in determining the resilience of a population to disturbance and ecosystem changes, as it provides 514 

the basis for a variety of responses to disturbance and the potential for adaptation to changing 515 

conditions (Armstrong et al., 2016; Freshwater et al., 2019).  516 

If animals undertake migrations over vastly different distances (as occurs in the North Atlantic), 517 

this might make migrations more costly and result in potentially riskier migratory decisions. While it 518 

was previously documented that some humpback whales forage during the winter in Norway 519 

(Jourdain and Vongraven, 2017; Mul, 2020; Kettemer, Rikardsen, et al., 2022), the variation in 520 

migration strategies as classified in our PCA was only explained to a small degree by migratory 521 

distance. Often, linear relationships between individually observed migration characteristics are 522 

reported and assessed because obtaining a larger set of characteristics is often logistically 523 

impossible, e.g., migratory distance vs. migration speed (Riekkola et al., 2020; Modest et al., 2021). 524 

These correlations often fail to identify clear relationships, possibly because they omit to account for 525 

preceding migratory decisions. Our results highlight that migratory scheduling and pace emerge 526 

from a complex set of migratory characteristics and showcase the large variability of strategies even 527 

within foraging grounds. However, the availability of data also constrained our analysis, e.g., we 528 

projected arrival dates based on the previously documented swim speed for trajectories that ceased 529 
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to transmit before arrival to the breeding grounds. This introduced additional uncertainty into the 530 

analysis of migration strategies if animals are expected to increase movement speed as they 531 

approach breeding grounds.  532 

Different migration distances have been shown to result in different energetic outcomes for 533 

humpback whales in other regions and there is some evidence that longer migration distances cause 534 

animals to migrate at higher speeds to maintain migration duration (Braithwaite, Meeuwig and 535 

Hipsey, 2015; Riekkola et al., 2020; Gough, 2022). Further work is needed to investigate the relative 536 

importance of daily maintenance costs vs. the cost of increasing swim speeds (Kettemer, Rikardsen, 537 

et al., 2022). For example, during years of poor forage, animals with tighter restrictions on 538 

phenology due to long migration distances might experience potentially more dangerous outcomes 539 

of changing conditions on foraging grounds, or poor foraging conditions during specific individual 540 

years (Gough, 2022). This might render parts of the population generally more susceptible to 541 

disturbance of any kind. Further, modeling based on information on the range of possible migration 542 

strategies collated here could provide insights for areas in which migration telemetry data are 543 

currently limited or unavailable (i.e., Gulf of Maine, Greenland, Canada, and the route from Norway 544 

to the Cape Verde Islands). 545 

Conclusion  546 

 In this study, we present evidence revealing a high diversity in migration strategies among 547 

humpback whales in the North Atlantic, both between and within foraging areas. The substantial 548 

variation in migratory timing, utilization of various jurisdictions throughout the year, and extensive 549 

time spent on the high seas underscore the importance of considering spatial connectivity and the 550 

variability in spatiotemporal distributions of these highly mobile baleen whales. We also present 551 

novel information on humpback whales' space utilization in the Northeast Atlantic during the 552 

foraging and breeding season. Our findings provide evidence of foraging activity occurring outside of 553 

the core foraging areas, particularly southward of Norwegian fjord systems during the winter 554 

months. Moreover, movement patterns indicate the potential use of high-seas areas for breeding. It 555 

will be important to incorporate these factors into dynamic management frameworks and policy 556 

considerations to support efficient ecosystem management. Additionally, our work provides a 557 

valuable assessment of the available tracking data and the distribution of research efforts across the 558 

ocean basin. This evaluation should guide future deployments and research endeavors, ensuring 559 

effective allocation of resources and advancing our understanding of humpback whale behavior. 560 

  561 
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Figures 776 

 777 
Figure 1 A Map of successfully modeled humpback whale tracks (N= 196) data across the North Atlantic over two decades, deployed in the West 778 
Indies, Iceland, Norway, Greenland, Atlantic Canada and the Gulf of Maine, colored by deployment area. The tracks represent paths 779 
reconstructed using a state space model. B Geographic distribution of 201 humpback whale locations in a hexagonal grid of the 100% minimum 780 
convex polygon area for each area in which tags were deployed. The colors indicate the number of locations in each hexagonal grid of ca. 50 km2 781 
on a logarithmic scale.782 
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 783 

 784 
Figure 2 Upper panel Seasonal distribution of humpback whale movements based on modeled tracks, 785 
split by month of the year. Colors indicate the area in which the tag was deployed. Grey lines indicate 786 
country EEZs. Lower panel Migratory movements throughout the year as the change in latitude over 787 
time (as day of the year, with day 0 = January 1st), colored by the area in which the tag was deployed.788 
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 789 
 790 

 791 
Figure 3 The color scale shows the movement persistence estimated for each predicted location along 792 
the modeled tracks, ranging from 0 (light blue) indicating meandering movements to 1 (dark blue) 793 
indicating directed movements. 794 
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 796 
 797 

 798 
Figure 4 Panel A shows the correlation matrix for the scaled variables included in the principal component analysis of migration strategies. Panel 799 
B shows the variable loadings on the first (x-axis) and second (y-axis) principal components. The migration strategies are indicated by departure 800 
timing (year day centered on the summer solstice), median speed, the variance of speed, (projected) arrival date, and resting locations (relative to 801 
total locations) during migration. Panel C shows the resulting cluster analysis with the ids from the 21 animals included in the PCA.802 
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