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Abstract. Kubernetes default configurations do not always provide optimal se-
curity and performance for all clusters and IoT edge devices deployed, affect-
ing the scalability of a given workload and making them vulnerable to security
breaches and information leakage if misconfigured. We present an adaptive con-
troller to identify the type of misconfiguration and its consequence threat to op-
timize the system behavior. Our work differs from existing approaches as it is
fully automated and can diagnose various errors on the fly. The controller is eval-
uated in terms of quality and accuracy of identification. The results show that the
controller can identify around 90% of the total number of configuration values
with a reasonable average identification overhead.
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1 Introduction
Misconfiguration is an incorrect configuration(s) within the parameters of system com-
ponents (i.e., system clusters, IoT edge devices) that may lead to vulnerabilities and
affect system workload and performance at different levels. At the edge level, a mis-
configured edge device opens the potential for security breaches. For instance, if an
edge device runs with default privileges or the same privileges as the application, vul-
nerabilities in any system’s component can be accidental (e.g., remote SSH open) or
intentional (e.g., backdoor in component). At the application level, a misconfigured
container (e.g., network port open) allows an attacker to exploit the Docker API port
that escalates the attack to other containers and hosts. At the cluster level, misconfigu-
rations in core Kubernetes components (e.g., API server, Kubelet, Kube-proxy) lead to
the compromise of complete clusters that cause network latency overheads, CPU throt-
tling, or container to run out of memory. The management of configurations has been
explored in the literature [8], [10], [4], [15], [2]. However, the complexity of misconfig-
urations does not arise only from a large number of configuration parameters, but also
from their correlations and dependencies. The paper proposes a real-time misconfig-
uration identification controller based on the fine-grained configuration type category.
The paper is organized as follows. Section II provides a background of some concepts
used in the paper. Section III presents related research. Section IV provides examples
of misconfigurations that motivate the paperwork. Section V presents the methodology
followed to analyze misconfigurations and explains the identification of configuration
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errors and their threats as a consequence according to the identified configuration error
cases. Section VI evaluates the controller and discusses the reported results. Section VII
concludes the paper and presents the future direction of the work.

2 Background
Misconfigurations can lead to a variety of security threats and vulnerabilities. This sec-
tion gives an introduction to the configuration and Hidden Markov Model that can be
used to analyze the behaviors of the system components to identify potential threats.

2.1 Configurations

Configurations are a list of entries or parameters, in terms of key-value pairs, a list, and
a map, that define the configurations for an object (e.g., cluster, node, pod, container,
service, user) and manage its deployment. Configurations are stored in a configuration
file that contains basic information about a cluster, and are written in a user-friendly
YAML syntax format that is called ’manifest’. The configuration file is stored in ver-
sion control before being pushed to the cluster to simplify the rollback of a configura-
tion change, aids cluster re-creation and restoration. The configuration file has to con-
tain four main entries, which are apiVersion (i.e., used to create the Kubernetes object),
kind (e.g., Pod, Deployment, Service, Job, or DemonSets), metadata (unique properties
of an object such as name, namespace, and label entries), and spec (i.e., specification,
defines the operation of an object and depends upon the apiVersion). Kubernetes cluster
uses configuration files to create an object based on a set of defined configurations. By
concentrating on developing YAML configuration management, we can reduce config-
uration errors and vulnerabilities, resulting in improved cluster security and stability.

2.2 Hidden Markov Model

A Hidden Markov Model (HMM) is a statistical model that is used to describe a system
that evolves over time and generates observable data sequences. It is widely applied in
various fields, such as security. An HMM consists of two main components: (1) hidden
states, which are the underlying, unobservable states of the system that transition from
one state to another over time. The system is assumed to be in one of these hidden states
at any given time. (2) Observable emissions, which are the observable outcomes asso-
ciated with each hidden state. These observations are what we can measure or observe,
and they provide information about the underlying hidden states. HMMs are often used
for threat detection and anomaly detection to identify patterns of behavior that devi-
ate from normal or expected behavior, which could indicate potential threats or attacks.
Thus, utilizing the HMM-based detection system provides a comprehensive threat iden-
tification strategy specifically for attacks caused by configuration errors.

3 Related Work
Configuration error analysis is crucial for maintaining the stability, performance, and
security of a system. Current frameworks have not focused sufficiently on the essential
aspect of effectively handling misconfigurations in edge devices and clusters [4], [22].
Since most tools work with predefined constraint templates, unlike our work, the fol-
lowing techniques lack of an adaptive misconfiguration identification that works with
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different types of errors, which makes configuration management a challenging task, es-
pecially when considering heterogeneous hardware and software stacks in cluster and
edge environments.

To optimize and manage the configurations of containers running in a Kuber-
netes cluster, configuration framework solutions with a focus on performance are
presented [23], [2]. These solutions focused on detecting configuration errors by
analyzing the source code and generating the configuration check code. Maintenance
overhead can occur with large data sets and can be time-consuming in multicomponent
applications, especially in scale and load-balance environments. In such complex
environments, there are often multiple layers of configuration, including their config-
uration parameters and interactions, leading to more complexity [23]. For example,
configuring network policies involves defining how pods communicate with each other
and other endpoints. An incorrect combination of policies can inadvertently block
traffic or create security vulnerabilities.

In addition, misconfigurations can have detrimental effects in scenarios where load
balancing and resource allocation are critical. For example, setting too high memory or
CPU limits for a particular service might cause contention for resources among different
services running on the same infrastructure [1]. Incorrect configurations can lead to bot-
tlenecks in data traffic at the network level and open suspicious flows in the system [10].
Rules-based security techniques are used to detect misconfigurations and optimize sys-
tem performance [5], [9], however, checking every constraint is time-consuming and
can lead to more errors. An analysis of misconfiguration helps to detect which parts
of the system are associated with configuration parameters. This could be achieved by
deriving the specification of the configurations by designing a custom control and data
flow analysis targeting the configuration-based code [24], [6], based rule [20], or based
inference [25]. However, those ways are highly specialized, as some of them only fo-
cus on security, they are not simple to write and maintain, and they are geared towards
a host only instead of container images and edge devices, which might result in the
occurrence of false positives or false negatives.

4 Motivation Examples
Any configuration error (Misconfiguration) can lead to privilege escalation, containers
running as root, and other critical vulnerability issues that have negative consequences
on security, efficiency, reliability, and performance. For example, some wireless access
points may have outdated or insecure wireless security services enabled (e.g., WEP
or WPS) by default. Such standards could allow attackers within range of the device to
gain access to the network. Since data are also often transmitted via an insecure protocol
(e.g., FTP, HTTP, etc.) by default, some of it may be exposed to an attacker with such
access. If credentials or encryption keys are captured, the initial access gained through
these default settings could lead to further access to systems within the network or the
ability to read encrypted data. For example, suppose that we have a cluster with three
nodes that do not act as host control planes. Cluster nodes have some pods and a set of
deployed containers with privilege and access control settings, such as privilege access
(e.g., allowPrivilegeEscalation), as shown in Figure 1. This setting controls whether
a process can gain more privileges than its parent process, and it is always true when
the container is run as privileged, or has CAP SYS ADMIN. Here, a user root inside a
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Fig. 1. Setting-Value Dependency Cascading Failure in YAML

container will have the same access as the root on the host system, allowing an attacker
with root access in the container to gain access to the nodes, steal the secrets of their
running containers, and exploit flaws in the cluster. The severity of the attack is highly
rated with a score of 7.0 according to the level of severity of the CVE.

In addition, any incorrect value might create a failure that can be cascaded if the
failure in one component or resource setting impacts other dependent components or
resources. For example, as shown in Figure 1, the service should reference the Deploy-
ment with the selector field, specifying the labels that correspond to the deployment
pod. However, the selector field is given an incorrect value. The selector field is set to
app: app in the Service, which does not match the value of the label app: myapp used
in the Deployment. This wrong value enables Service to incorrectly target deployment
pods. Such settings cause service discovery and routing failures as the service cannot
correctly track the deployment pod to establish dependency between the two resources.

To identify the type of misconfiguration, we extracted the configuration error set-
tings of the anomalous component only to reduce the complexity of identification, as
shown next.

5 The Proposed Approach
This section extends the controller misconfiguration analysis phases (monitor, detec-
tion) to identify the type of misconfigurations and their threat consequence based on
the output of the detection phase in [17].

5.1 Methodology of Misconfigurations Analysis

To analyze misconfigurations, the controller has 4 main phases, which are monitor,
detection [17], identification, and recovery [18]. This paper aims to introduce the iden-
tification phase.

We ran the controller on a set of manifest YAML files to inspect configuration errors
in edge devices and clusters and sent a warning message for any deviations from the
configuration settings; more details are given in [17]. The YAML manifest files were
inspected on the basis of Kind and APIVersion keys using Kubernetes utilities. We
received warning messages for configuration parameters violating specified rules with
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approximately 36,709 configuration errors containing around 2090 unique errors from
3000 apps. Many of those errors were simple misconfigurations that could be avoided
by developers, such as edge device default settings (e.g., accounts passwords) were
not changed, or sensitive medical data being leaked due to the enabling of privilege
escalation. We also found several errors which have serious consequences such as the
port of the etcd server (Kubernetes database) not encrypted and accessible via plain
HTTP, the failure to update software patches, the system network as KubePi was not
configured properly or the pod was constantly crashing in an endless loop. Only 1087
apps, among the apps studied, had no configuration errors.

Based on that, we identified the categories of misconfigurations in the manifests and
the sensors that were on our device by getting a reference to the sensor service to list
all the sensors on the device of type. We focus on analyzing the configurations defined
in the application manifest file, including components, enforced permissions, exported
attribute values, and intent filters. We focus on the most common misconfigurations that
negatively impact system components’ workload and cause performance degradation on
performance metrics (application domain metrics and system-specific metrics).

The metrics are kept within acceptable limits using dynamic thresholds to avoid
degradation of system performance and maintain continuous delivery [19]. We col-
lected data from the metrics into a two-dimensional matrix which formed our data set;
the columns refer to the metrics, and the rows refer to the components. Then we de-
rived the relationship between the performance of the components, the workload, and
the misconfigurations to detect the misconfigurations for the applications deployed in
the hierarchical system settings [17]. The controller detects the hierarchical path(s) that
show anomalous behavior (e.g., overload) and tracks the misconfigured components
under the constraints of the extracted configurations. We checked the configuration se-
curity settings and detected misconfigurations in the vulnerable path. For edge devices,
the configuration check was performed on authorized devices that had legal access to
the system and were assigned to authorized participants. The detection is based on sta-
tistical learning that can detect misconfigurations based on the learned configuration
settings and can be used for real-time misconfiguration detection to quickly reduce the
negative imprint on the system. The following represents the steps of misconfiguration
detection [17] and identification by the controller:

Training phase: During the training phase, the configurations are collected in terms
of labeled training sets to train the controller. The controller learns the patterns and re-
lationships between various configuration settings and their corresponding outcomes
to characterize correct and incorrect configurations. For example, if a certain setting is
known to cause conflicts or performance issues, the controller learns to identify such
patterns. Feature extraction: Relevant settings are extracted from the configuration
data, such as specific settings, parameters, or dependencies. These features provide the
input for the controller. Model training: The controller is trained using the extracted
features to identify the patterns and rules associated with the correct configurations and
detect deviations that can indicate errors. Real-time detection: Once the controller is
trained, it can monitor and analyze the new configuration settings in real time. When
a new configuration is encountered, the controller evaluates it against the learned rules
and patterns to detect any misconfiguration; more details are given in [17]. Prompt er-



6 Areeg Samir and Håvard Dagenborg

ror detection and mitigation: When a configuration error or anomaly is detected, an
alert is generated to prompt corrective action as our proposed recovery process in [18].
Continuous learning and improvement: The controller continues to learn from new
configurations and adapts to changing settings or emerging errors to improve its detec-
tion capabilities and accuracy over time. The result of the detection is used to identify
the type of misconfiguration to locate its root cause through the configuration error-
failure cases and the identification phase, as shown in the following sections. The phase
aims to track the dependency between misconfigurations in edge devices and clusters
of the system to show its impact on performance and workload, and to demonstrate the
impact of misconfigurations on resource vulnerability.

5.2 Configuration Error-Failure Cases
To identify the type of misconfigurations, we focused on identifying common secu-
rity misconfigurations (Errors) in Kubernetes, Azure, and Docker Swarm that nega-
tively cause anomalous workload (Fault) and dramatically saturate monitoring metrics
(Failure) of system components. We achieved this by focusing on misconfigurations re-
ported in 2023 and 2022 by the CVE, NIST, OWASP, Fairwinds, ENSA, CIS Docker,
and Kubernetes benchmarks. We targeted those benchmarks, as they provide a system-
atic analysis that addresses key architectural vulnerabilities and platform dependencies
of such tools. The benchmark used artifacts reported by DevOps, Azure, Kubernetes,
Google Kubernetes Engine, Docker Swarm, Amazon Elastic Kubernetes Service, Ora-
cle, Google Cloud, Microsoft, and Alibaba practitioners. The benchmarks go through
two stages of consensus review and evaluation of the results of security misconfigu-
rations that alter the dependability, security, and cost of more than 150,000 workloads
from hundreds of businesses.

We classified the types of misconfiguration into cases and we linked hidden settings
of configuration errors and their faults in the system under observation to their observed
failures, which are sequences of observations emitted by system resources. The type of
misconfiguration falls under three main error failure cases: (1) IoT edge failure is due
to a device failure that occurred during run-time or during provision and deployment.
Edge device misconfigurations were classified as impaired communications, indicating
limited communication between the device and the service, or non-sensor data, indi-
cating that a device has communication with the service but only reports partial sensor
data. (2) application failure is due to a pod or container failure, and (3) node or cluster
failure relates to a core component failure. We used the IEEE Standard Classification for
Software Anomalies [7] to analyze observed failures in multiple dimensions: Failure ID
(unique identifier for the failure type and its category), Failure Description (describe an
observed behavior), Failure Analysis (describe and analyze failure’s root-cause), and
Failure Severity (in percentage) relating to the system performance and reliability in
terms of the objectives that were not met by the observed metrics and benchmarks. We
used Key Performance Indicators (KPIs) to determine whether the motoring metrics
met the maintenance goals and the system’s performance (e.g., resource utilization, la-
tency, response time, network congestion, throughput). The higher the value, the more
severe the impact on system performance will be [21], [3].

The following cases refer to observed failures that are either emitted by an admin-
istrative operation internal to Kubernetes, Azure, and Docker Swarm or emitted by a
trigger external to them as follows:
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IoT Edge Cases It refers to IoT edge failure that occurs during run time or during
provision and deployment such as:

Case 1: Sudden stop of the edge device. Failure ID: ConfEC1. Failure Description: The
edge device stopped for a specific period (e.g., minutes) after running successfully. The
logs indicated that the device failed to connect to the IoT hub via AMQP or WebSocket
and that the edge device existed. Failure Analysis: A misconfiguration of the host net-
work prevented the edge agent from reaching the network. The agent attempted to con-
nect over AMQP (port 5671) or WebSockets (port 443) as the edge device runtime set
up a network for each module to communicate, either using a bridge network or NAT.
Failure Severity: 70%.

Case 2: Empty Configuration File. Failure ID: ConfEC2. Failure Description: The de-
vice has trouble starting the modules defined in the deployment. Only the edge agent
is running, but it continually reports empty configuration files. Failure Analysis: The
device may have trouble with the resolution of the DNS server name within the private
network. Failure Severity: 20%∼30%.

Case 3: Edge Hub Failure. Failure ID: ConfEC3. Failure Description: The Edge Hub
module does not start. Failure Analysis: Some process on the host machine has bound
a port to which the edge hub module is trying to bind. The Edge hub maps ports 443,
5671, and 8883 for use in gateway scenarios. The module fails to start if another process
has already bound one of those ports. Failure Severity: 20%∼30%.

Case 4: Default Credentials. Failure ID: ConfEC4. Failure Description: The default
accounts/passwords of the edge device are not changed. Failure Analysis: Using vendor-
supplied defaults for accounts and passwords could allow attackers to brute-force and
gain unauthorized access to the system. Failure Severity: 98%∼99%.

Application Cases It refers to the occurrence of failure due to the failure of a pod or
container as follows:

Case 1: Privilege Escalation Flaw and Redeployment Fail. Failure ID: ConfAC1. Fail-
ure Description: Sensitive medical data was leaked. Failure Analysis: An Azure func-
tion (e.g., SCM RUN FROM PACKAGE) gave access to the remapped root and al-
lowed privilege escalation to the root level. Failure Severity: 80%∼90%.

Case 2: Privilege Escalation Flaw. Failure ID: ConfAC2. Failure Description: Sensitive
medical data was leaked. Failure Analysis: A docker engine function option (e.g., users-
remap) gives access to the remapped root and allows privilege escalation to the root
level. Failure Severity: 80%∼90%.

Case 3: Unauthenticated Connection. Failure ID: ConfAC3. Failure Description: Kuber-
netes labels are not validated or incorrectly typed. Failure Analysis: Privilege access to
Kubelet, which allows unexpected routing from service target selectors. Failure Sever-
ity: 40%∼60%.

Case 4: Outdated Package and Flow Unpatched. Failure ID: ConfAC4. Failure Descrip-
tion: The software is outdated and flaws are unpatched. Failure Analysis: Failure to up-
date software patches as part of the software management process, allowing attackers
to inject malicious code into the application. Failure Severity: 80%∼90%.
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Case 5: Loop Crash. Failure ID: ConfAC5. Failure Description: The pod is constantly
crashing in an endless loop and cannot be started. Failure Analysis: A server cannot
load the configuration file due to a typo in a configuration file system. Failure Severity:
80%∼90%.

Core Components Cases It indicates the occurrence of a failure at a node or cluster
level.

Case 1: Spike Traffic Received by System. Failure ID: ConfCC1. Failure Description:
System services do not work properly and its resources are excessively saturated. Fail-
ure Analysis: Distributed Denial of Service (DDOS) attack prevents access to the sys-
tem network, as KubePi is not configured correctly. Failure Severity: 98%∼99%.

Case 2: Data Leakage. Failure ID: ConfCC2. Failure Description: Sensitive medical
data was leaked. Failure Analysis: The deployment of highly sophisticated malware
leads to compromise of sensitive medical data. Ingress allowed unauthorized users to
access and update all secrets in the cluster. Failure Severity: 98%∼99%.

Case 3: Anonymous Authentication. Failure ID: ConfCC3. Failure Description: Unau-
thenticated requests can be sent to Kubelet, as its configuration is not set properly, which
saturated the system resources. Failure Analysis: The misconfigured Kubernetes core
component gave unauthorized access to the entire cluster. Failure Severity: 80%∼99%.

Case 4: Non-Secure Cluster Transmittance. Failure ID: ConfCC4. Failure description:
The etcd server port (Kubernetes database) is unencrypted and accessible over plain
HTTP. Failure Analysis: The etcd process on the master node exhausts all memory, as
the etcd cluster is left without authentication, allowing a DDOS attack to gain unautho-
rized access to a system. Failure Severity: 80%∼99%.

At the end of this step, misconfiguration description profiles for the cases are created
and stored to be used in the identification phase along with the output of the detection
phase, which provides the path of the hierarchical anomalous misconfigured compo-
nents that are affected by specific components.

5.3 Misconfiguration Identification Phase
The controller uses the output of the detection phase as input for the identification
phase. For example, AnomalousPath = {Cluster > Node22 > Node23 >Container33 >
Service43} is a hierarchy anomalous path that is affected by Node23 with the vertical
level index 2 and horizontal level index 3 in the graph, respectively. On the basis of that,
we initialized a model with the configuration settings of the anomalous states and ob-
servations obtained. The model is created with a graph length of states Con f Leng =
(Con fi j, ..,Con fN j) and the length of observations FLeng = {F1, ..,FT}, which are
stored in a matrix Con f Mat[Con f Leng,FLeng]. To show the dependency between mis-
configurations, each Con fi j represents the misconfigured settings that belong to the
anomalous state that has vertical i and horizontal j levels. For each Con fi j, as shown in
Figure 2, we checked the type of misconfiguration, which is hidden from the observer
considering the state level in the defined failure-error cases (Con fEC,Con fAC,Con fCC).

The configuration settings (key-value pairs) were extracted from the manifest of
the anomalous state based on the Kind and API version objects. A state check function
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Fig. 2. Misconfigurations and Threats Identification Type

denoted SC checks the misconfigured settings against centrally managed correct config-
uration settings stored in Knowledge storage. We iterated through the manifest settings
to check the key-value pairs. For each pair, we calculated the confidence score taking
into account the type of key with (p-value⩽0.05) to validate our hypothesis against the
difference between manifests. A low confidence score indicates a difference between
the configuration settings for the anomalous state. The difference between the config-
uration obtained from the anomalous state (actual state) and the correct configuration
(desired state) represents the incorrectly configured state that is likely to be targeted for
exploitation by attackers. For the desired state, management data from the configuration
settings were recorded, such as privilege, default accounts and their passwords, unnec-
essary ports, certificates, unpublished URLs, validation rules, default namespace, and
version (e.g., deprecated API).

In case the misconfiguration is not defined within the cases, the controller records
the new characteristics of the misconfiguration type and assigns unique identifiers (i.e.,
Failure ID, Label, component relationship information, and case type) to the selected
items. The identification result is stored in the knowledge storage to enhance the iden-
tification process.

5.4 Threat Type Identification Under Misconfiguration
We are mainly concerned with threats that occur due to misconfiguration and cause data
breaches and information leakages, such as botnets, ransomware, amplification, flood-
ing, and protocol exploration. We created description profiles for each type of threat that
include information about the threat (type, description, source, technique, configuration
setting relation, and mitigation). We considered that the types of threats are hidden;
thus, we employed the Hidden Markov Model (HMM) [16] to predict hidden threats
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because of its ability (1) to capture dynamic patterns by allowing the hidden states to
transition between different states, reflecting changes in threat behavior. (2) to establish
a baseline of normal behavior and then identify deviations from this baseline as poten-
tial threats. (3) update the model in the future to adapt to changing threat landscapes.
(4) to incorporate data from multiple sources.

The controller maps the anomalous path obtained from the detection phase
(Cluster > Node22 > Node23 > Container33 > Service43) to a set of states
(St1 > St2 > St3 > St4 > St5) to be fed to the model. Then, it adds a start state
St0 and an end state StEnd to the abnormal path (St0 > St1 > · · · > St5 > StEnd) to
capture the entire information flow within that path. The controller checks the existence
of a threat Ae using the SC function. If a threat exists, the model checks its type Ai
according to the observations emitted (A1: botnet, A2: flood, A3: amplification, A4:
protocol exploit, A5: ransomware). For each threat A, we initialize the parameters of
the state of the model Ai and the observations F{1,···,T} through a graph length of the
threat states APN and observation length T to track the duration of the threat states and
identify them in a timely manner.

The probability of Ai is calculated assuming that a threat starts in the initial state
St1 and might spread from one state to another. The probabilities of Ai and observations
F{1,···,T} are stored in matrix AT I. We calculate the probability F by summing the previ-
ous forward path probability of the previous time step t−1, weighted by their transition
probabilities AprobA′ ,A, and multiplying by the observation probability F probA(Ft). We
sum the probabilities of all possible threats {Ai, · · · ,AN} that could generate the observa-
tion sequence F{1,t+1,···,T}. Each A represents the probability of being in Ai after seeing
the first Ft observations, as shown in Algorithm 1.

Algorithm 1 Identify The Type of Threat
APS: Get abnormal path states APS()
APSprop: Get portability of abnormal path states APSprop()
APN: Threat states length
Store portability of A at time T in matrix AT I[A,T ]
for each state aps from 1 to APSlength do

for each portability apsprop from 1 to APSproplength do
if SC is Threat then

for each state A from 1 to APN do
AT I[A,1]← πA×FA(F1)

end for
for each time step t from 2 to T do

for each state A from 1 to APN do
AT I[A, t]← ∑

APN
A′=1

AT I[A
′
, t−1]×AprobA′ ,A×F probA(Ft)

end for
AT I prob← ∑

APN
A=1 AT I[A,T ]

end for
return AT I prob

end if
end for

end for
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Table 1. Misconfiguration and Threat Identification

Abnormal Flow Path St1 > St2 > St3 > St4 > St5
Vulnerable Component St2
Misconfigured Component N23
Misconfiguration Type ConfCC3
Threat Type A1

Transition probabilities equal to 0 are omitted since not all previous states con-
tributed to the forward probability of the current state. Each St has a probability value
reflecting the probability of a given abnormal behavior. The assumption is that a suffi-
ciently low probability (abnormal flow) value indicates a potential threat. The decision
is made by calculating a threat score T hreatScore for each St and the whole abnormal
path (St1 > St2 > St3 > St4 > St5). As shown in (1)–(3), the T hreatScore for St is de-
rived from the probability values returned by the detection model ℘ associated with
St. The threat score value is calculated using a weighted sum ∑

w
St=1. The weight ω

associated with the model is represented by ωRPV , while MRPV is the probability value
returned by the model. The probability MRPV is subtracted from 1 (1−MRPV ) because a
value close to zero indicates a threat that should produce a high threat score. The weight
ω is calculated considering the state transition probability of the type of hidden threat
Aprobi j and the observation probability F probt . The highest threat score is stored, and
then the threshold is set to an adjustable percentage higher than the maximum score ob-
tained, so that a user can adjust the sensitivity of the state check in terms of the number
of false positives and the expected detection accuracy. The state is marked as vulnerable
when T hreatScore exceeds a predefined threshold. Once we identify the type of threat,
the model transits to the next state to check the existence and type of potential threat for
that state (if any); otherwise, the model returns to the state check SC to check the next
state.

The process is repeated until we reach the end of the abnormal path St5. Then the
model progresses to the end state StEnd , ending the threat identification process. The
derived hidden types of misconfiguration and threat are shown in Table 1.

T hreatScore =
w

∑
St=1

ωRPV ×℘ (1)

ω = ∑
RPV∈AImodels

F probt ×Aprobi j (2)

℘= (1−MRPV ) (3)

6 Evaluations and Results Analysis

This section evaluates the identification of the controller, focusing on measuring its
performance in terms of quality and accuracy.

6.1 Environment Settings Description
The controller ran on a virtual machine equipped with Linux OS (Ubuntu 18.10 ver-
sion), a VCPU, and 2GB of VRAM. The virtual platform is allocated to a physical PC
equipped with Windows 11, Intel Core i7-1260P 2.10 GHz, and 32GB of RAM. A set
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of agents was installed to collect data on CPU, memory, network, and changes in the file
system (i.e., no flow issued to the component). The agent adds a data interval function
to determine the time interval to which the collected data belong. The Datadog tool is
used to obtain a live data stream for the running components and to capture the request-
response tuples and associated metadata. Prometheus is used to group the collected data
and store them in a time series database using Timescale-DB. The size of our generated
data set was approximately 10 MB with a period of 6 months. We selected a subset
of the data set of around 4.3 MB mainly related to the types of misconfiguration men-
tioned in Misconfiguration Scenarios to train the models and provide more targeted and
specialized training data sets. Data are divided into 70% training data and 30% testing
data. More details about environment evaluation settings can be found in [17].

6.2 Misconfiguration Scenarios
We trained our models during the evaluation on some of the types of misconfigura-
tion identified that allow privilege escalation at IoT edge device level [12] and at the
container cluster level [13], [11], [14]. These types of errors excessively consume the
usage of system resources (CPU, memory, network) as they dramatically increase the
request latency and decline the request rate. The configuration files of the components
are stored in GitOps version control to simplify the rollback of configuration changes.

6.3 Threat and Workload Scenarios
The threat scenario is based on the misconfiguration scenarios that lead to vulnerabil-
ity in IoT edge devices and Kubernetes. The aim is to simulate the attack that could
occur due to misconfiguration. The controller performance was tested in hybrid traf-
fic, combining attack data generated by the tools at different levels. At the edge level,
the IoT-Flock tool is used to generate normal and abnormal flow (threat) of IoT edge
devices in a real-time network. At the container level, a Distributed Internet Traffic
Generator (D-ITG) tool is used to generate normal and abnormal flow at the network,
transport, and application layers with various packet sizes and a variety of probabil-
ity distributions. We used OWASP-ZAP to simulate an attacker’s attempt at vulnerable
containers.

6.4 Identification Assessment
Assessment1: Identification Quality and Accuracy We extracted around 2090 real-
world Kubernetes configuration files from version control repositories such as GitLab
and GitHub, with 550 and 1540 files, respectively. The settings of the extracted files
were valid in terms of format and syntax. We focus on the types of misconfiguration
related to the misconfiguration cases mentioned in the paper that lead to system perfor-
mance degradation, which were 279 and 1016 true positive configuration errors from
GitLab and GitHub, respectively, identified by the controller. The controller reported
other configuration errors; however, in this evaluation, we focused only on errors due
to privilege escalation. Around 181 configuration errors in the true positives reported
were due to privilege escalation, 109 from GitHub, and 72 from GitLab. The controller
reported 16 false alarms, which occurred due to incorrectly skipping conditional instruc-
tions affected by the configuration value such as non-existent paths (e.g. invalid image
repository path), unreachable IP addresses, or referencing a non-existent-configmap.
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Hence, to measure the quality of the identification process, we split the normal behav-
ior sequences into correct configurations using a sliding window and then further learn
the controller. For testing, the first step is to split the test sequence into small segments
and to calculate the probability under normal behavior. We analyzed the results with
different window sizes (in hours) and state transitions by computing the Configuration
Error Rate (CER), which divides the total number of unequal key-value pairs of data
elements by the total number of data elements from one component to quantify the
number identification error made by the controller with respect to the actual values.
The total CER was approximately 10%, indicating that the model incorrectly identified
10% of the total elements.

Assessment2: Identification Overhead We measured the controller’s performance
baseline metrics (e.g., throughput, latency, CPU, memory, response time) under normal
settings without configuration errors, workload, and without a configuration error de-
tection mechanism enabled. The normal settings were approximately 70% and 35% for
CPU and memory, respectively, the average response time was between 100 and 170
microseconds per request, 100 transactions/second of throughput, and 130 milliseconds
of latency. We created the configuration error [13] at the container cluster level, which
severely saturated the system resources to be 95% and 76% for CPU and memory, re-
spectively, the average response time of 600 microseconds, the transaction per second
of throughput, and the latency of 500 milliseconds. We measured the identification over-
head as the time needed to identify the misconfigurations by measuring the execution
time before and after the controller invocation. The average identification time taken by
the controller was 301.8 milliseconds, which returned to the network and file-related
checks.

6.5 Misconfiguration Identification Accuracy Under Threats
We measured the accuracy of the model identification under different misconfigura-
tions (Test1 [13], Test2 [14], and Test3 [12]), threat and workload test scenarios, and
under various window sizes during the learning process. We calculate the threat ratio
(TR) to count the number of components identified as compromised due to miscon-
figuration during time intervals to the total number of components of the system and
report the result as a percentage. As shown in Table 2, the TR under different tests rep-
resents a specific diversity. When the size of the sliding window is greater than 6, the
TR improves, but the relationship between the size of the data set and the threat ratio
is not always linear. Hence, to ensure accurate and unbiased identification, we mea-
sured TR under different model transitions along the test scenarios. For each transition,
we applied the same data set used in the baseline transition to analyze the changes in
the TR between the baseline transition and the other model’s transitions. As shown in
Table 3, the model transitions significantly indicate a change in identification effective-
ness, which indicates an improvement in threat identification performance. To confirm
the reported results, we further evaluated the unbiased performance of the model tran-
sitions based on the number of true positives, false positives, and false negatives of
identification to measure precision, recall, and F1-score. The identification precision,
recall, and F1-score were 0.950, 0.932, and 0.974 respectively. The recall gives an in-
teresting insight into the performance of the controller in relation to the number of false
identifications. It is important to note that the reported results were delivered according
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Table 2. Threat Ratio with Different Windows Size in Hours

Windows Size 3 6 9 12
TR of Test1 8.17 5.49 3.07 0.21
TR of Test2 74.31 65.03 52.01 54.24
TR of Test3 43.09 54.29 45.24 35.09

Table 3. Threat Ratio Under Model Transitions

Transition Model Baseline-Transition Transition 1 Transition 2
TR of Test1 31.39 5.49 5.93
TR of Test2 74.01 54.88 55.93
TR of Test3 64.79 43.65 40.03

to the type of test scenarios for misconfiguration, threat, and workload, and the data set
used to learn the model.

7 Conclusions and Future Work
The paper presented a controller for analyzing misconfigurations of container-based
clusters and edge devices in a hierarchical computing environment. The aim is to pro-
pose the identification mechanism of the controller by defining a set of configuration
error cases that result in the emission of failures observed through system performance
metrics. The controller identifies the root cause of the configuration error and its con-
sequence threats to optimize the system’s behavior to update configurations and pre-
vent their future occurrences. The paper evaluated the performance of the controller,
focusing on accuracy and quality. The results show that the controller can deliver a
performance improvement under different transitions with 0.950 precision.

In the future, we will provide technical details on the collection criteria, quality,
and diversity of the data set as the scope of this paper is to present the identification
phase mechanism. We plan to conduct comprehensive security assessments to evalu-
ate the proposed controller and compare its performance against existing mechanisms
under various types of configuration errors. We aim to integrate the controller into the
Kubernetes workflow and CI/CD pipeline to catch invalid configurations and potential
security vulnerabilities before deployment to maintain secure and reliable Kubernetes-
based applications. Implement a control strategy to track configuration changes and
validate configurations before applying changes to production clusters to improve clus-
ter security and stability. Combine multiple metrics to improve the accuracy of threat
identification.
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