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A B S T R A C T   

Heat exchangers (HEs) are often modeled using pinch point temperature difference (ΔTpinch) methods when 
optimizing systems with HEs. However, even small inaccuracies in model predictions of HEs will introduce 
numerical noise that can cause optimization algorithms to fail. A recent study of single HEs suggests that high- 
order interpolation methods can compute ΔTpinch much faster than conventional methods. However, the per
formance of such methods when optimizing HE systems have not previously been tested. 

Heat pumps with 2 and 3 HEs, with and without an ejector are optimized using different schemes. Results from 
these case studies show that non-linear constrained gradient-based optimization algorithms are more than 5 
times faster than particle swarm (PS), and that the conventional genetic algorithm (GA) should not be used. 
However, the main conclusion is that the case study optimizations are solved 5–10 times faster if ΔTpinch is 
calculated using hybrid high and low-order interpolation methods.   

1. Introduction 

Optimization of systems with multiple heat exchangers (HEs) is used 
in a large variety of disciplines (Kemp, 2007), e.g., to find the best heat 
exchanger network (HEN) with respect to minimization of HE area, 
capital expenses or energy efficiency of the whole system. The term 
‘HEN optimization’ is typically used for the mixed-integer problem 
arising when studying how to best transfer heat between hot and cold 
streams (Kim and Bagajewicz, 2016). In the present work, the heat 
streams are matched a priori using a fixed process design without a HE 
superstructure. Hence, a more classical process optimization is con
ducted, more closely related to the simultaneous heat integration (SHI) 
approach by Duran and Grossmann (1986). However, many of the 
methods investigated here, such as the HE models, can also be applied 
directly in HEN optimization. The review by Austbø et al. (2014) iden
tified 186 optimization articles just related to liquefied natural gas 
(LNG) refrigeration processes. The main idea is often that process al
ternatives are best compared if they are modelled using components 
with real equipment performance, and otherwise operated with optimal 
processes parameters such as optimal pressures and working fluid mix
tures. SHIs and HENs can be large systems only including HEs. However, 

such systems can also include other types of equipment (Allen et al., 
2009), where classical heat integration problems must be extended to 
include both heat and work (Fu and Gundersen, 2016). Heat pumps, 
refrigeration cycles and steam cycles can be considered as special cases 
of different SHIs where it is often possible to increase the energy effi
ciency by adding more HEs that improve heat integration between hot 
and cold streams (Brodal et al., 2019). 

The optimization of SHIs can be considered to consist of two main 
parts: the optimization algorithm that is used to find optimal process 
parameters; and the process model which is solved to find the relevant 
process performance indicators in each optimization step. Both parts can 
present complex problems in their implementation since many different 
optimization algorithms and numerical process models can be applied. 
Also, the performance of optimization algorithms can inter-depend on 
the accuracy of the process model, especially in systems with HEs which 
can be difficult to model accurately. Optimization studies have typically 
focused on finding optimal solutions, instead of investigating how such 
problems are best solved. However, it is important to identify fast 
optimization schemes since such problems require significant compu
tational effort, e.g., sensitivity studies can easily require a month of 
computer run time (Brodal et al., 2019). The main goal in this work is to 
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find efficient schemes for optimizing SHIs using pinch point temperature 
difference to model HE performance. 

Modeling HEs with increased accuracy generally requires increased 
computational work. When optimizing SHIs, however, this extra effort 
can reduce the required number of optimization steps and thereby 
improve the optimization scheme and the overall workload. Multiple HE 
models exist for different designs such as detailed plate-fin and shel
l‑and‑tube models. For example, the literature survey by Ayub et al. 
(2019) lists 22 different heat transfer models just for evaporation in 
plate HEs, and the review article by Eldeeb et al. (2016) describes 17 
evaporation and 8 condensation models for plate HEs. Such models can 
be used in optimization studies (Rao et al., 2020), but more often they 
are considered too complex and difficult to solve in this type of study. 
Simplified HE models, such as the pinch point temperature difference 
approach, exclude all information about HE geometry and materials, 
and have gained much attention since they require far less numerical 
computations. The pinch point is the HE region that operates with the 
smallest temperature difference. The pinch point region requires a large 
portion of the HE area since heat transfer is proportional to the tem
perature difference (ΔT). Hence, the main assumption in pinch analysis 
is that the size of ΔTpinch = min(ΔT) is directly related to total HE area 
and cost. However, this also indicates that pinch analysis can be highly 
inaccurate if the pinch point region has a similar temperature difference 
as in the rest of the HE. For HEs with smaller ΔTpinch, the pinch point is 
more likely to require a larger portion of the HE area. The theoretical 
best HE processes, with zero (heat transfer) entropy production at the 
pinch point, have ΔTpinch = 0. Note that such theoretical processes 
require infinite HE areas; and that this can exclusively be explained by 
the pinch point. A fast pinch point HE modeling approach is particularly 
convenient when solving optimization problems, since HE models must 
be solved in each optimization step. This is especially true when opti
mizing complex SHIs involving many process calculations and optimi
zation steps. Pinch analysis was introduced in the late 1970s (Linnhoff 
and Flower, 1978). Since then, a large variety different SHIs have been 
optimized using ΔTpinch models, e.g., the review article by Austbø et al. 
(2014) identified 15 different articles related to the LNG industry. Pinch 
analysis has also been used to model industrial heat pump processes 
(Allen et al., 2009), water-to-water heat pump systems (Murr et al., 
2011), CO2-based trans-critical and supercritical cycles (Ren, 2020), 
optimal fluid mixtures (Sarkar and Bhattacharyya 2009; Dai et al., 
2015), optimal waste heat utilization (He et al., 2015), to improve 
complex LNG value chains processes (Bouabidi et al., 2021) and find 
energy efficient and economical gas-steam combined cycles (Li et al., 
2022). Since a temperature cross in a HE is impossible, ΔTpinch = 0 can 
also be used to model theoretical best HE processes. Google Scholar 
identifies 3520 "pinch point temperature difference" documents, a 
doubling in only five years. However, this approach represents a highly 
simplified HE configuration, and is based on pure parallel flows. Pinch 
analysis is therefore not suitable for detailed (equipment level) design 
work but can be used to set the optimum starting point for this work. For 
example, Watson et al. (2015) used logarithmic mean temperature dif
ference (LMTD) to model HE area A, as an extension to the pinch 
analysis. Elias et al. (2019) have also combined ΔTpinch and LMTD 
modeling, and used this model to estimate HE area and cost. 

The conventional ΔTpinch approach is described in the book ’Pinch 
Analysis and Process Integration: A User Guide on Process Integration’ 
by Kemp (2007) and the book chapter ‘Pinch Point Analysis’ by Dimian 
et al. (2014). Neither of these books mention high-order inter
polation-based methods. To the authors knowledge, previous optimi
zation studies have only found ΔTpinch estimates based on the minimum 
temperature approach found using a fixed grid, i.e., without using any 
interpolation. It is perhaps natural to assume that there is no reason to 
solve simplified equipment models using numerical models with higher 
precision, however, ΔTpinch approximations introduce numerical noise 
that can cause optimizations to be inaccurate or increase the overall 

workload and run time. Hence, numerical approximations with higher 
accuracy can help to speed-up the optimization process, and also 
improve the results since it is also reasonable to assume that detailed 
equipment level design work is improved (on average) if they are based 
on better process parameters less affected by random numerical ap
proximations. Calculating ΔTpinch with high accuracy is particularly 
important in comparative and sensitivity analyses. High-order (spectral) 
interpolation methods have been used for decades (Hesthaven et al., 
2007) to solve partial differential problems (Trefethen 2000) and in
tegrals (Shampine 2008). To the author’s knowledge, high-order ΔTpinch 

modeling was first introduced in 2023 (Brodal et al., 2023). This study 
showed that high-order methods can be 15 times faster than the con
ventional methods. Such high-order ΔTpinch methods have previously 
only been applied to HEs with fixed inlet and outlet conditions, but not 
in SHI and HEN optimization studies. Hundreds of different HE tem
perature profiles are typically computed during an optimization, and the 
smoothness of these profiles depends on the accuracy of the fluid 
property packages. Since high-order methods are only successful when 
applied to smooth functions (Hesthaven et al., 2007), it is not obvious 
from the Brodal et al. (2023) study that such methods will improve 
optimization schemes. The aim of this study is to address this. Since the 
pinch point is typically identified by finding the minimum temperature 
approach ΔT at different grid points, the ΔTpinch approximations are 
always less or equal the real ΔTpinch value. That is, an unphysical ΔTpinch 

value less than 0 K can be estimated as e.g., 2 K by an inaccurate 
approximation. Hence, optimizations based on constraints using inac
curate ΔTpinch approximations will overestimate the HE performance, i. 
e., underestimate the entropy production during the heat transfer. There 
is also some randomness to the precision of the ΔTpinch approximation. 
For example, the approximation often becomes more accurate if one grid 
point is close to the actual pinch point. Such random noise can break 
down the search strategy used by optimization algorithms, e.g., making 
it difficult to compute numerical gradients. Also, optimization algo
rithms will eventually find unphysical improvements with as large 
ΔTpinch approximation errors as possible since this improves the HE 
performance. In the end, these methods are optimizing the ΔTpinch 

approximation error, i.e., finding a process where the constraints are 
violated the most. 

SHIs are often complex optimization problems to solve as discussed 
by Rao et al. (2020), which is a review article presenting an overview of 
advanced optimization algorithms. Rao et al. (2020) concludes that 
traditional optimization techniques, such as derivative based, usually 
fail to solve large-scale non-linear problems with local minima. It 
therefore states that more advanced methods, such as genetic algorithm 
(GA) and particle swarm (PS), must be used to overcome these problems. 
However, there are also many studies of complex SHIs where 
gradient-based algorithms have been used successfully. For example, the 
review article by Austbø et al. (2014) identified 15 gradient-based 
sequential quadratic programming (sqp) articles among 186 LNG opti
mization articles, but this is much less than the 29 GA-based articles 
identified in the same study. Gradient-based optimization algorithms are 
particularly sensitive to noise. Statistically based optimization schemes 
can be used if deterministic solvers fail, but such approaches are also 
affected by noise. Like all other SHI optimization literature found by the 
authors, the review article by Rao et al. (2020) focuses on optimization 
algorithms to explain how to best optimize SHIs. How the optimization 
results are affected by the accuracy of the process model is not even 
mentioned. SHI studies typically focus on finding the optimal configu
ration, however, a few studies have compared performance of optimi
zation algorithms (Austbø et al., 2014; Rao et al., 2020), but neither of 
these studies investigated the best ΔTpinch approximation. The reason for 
this is perhaps that SHI problems are complex and time consuming to 
optimize, which makes it hard to compare different approaches. SHI 
problems related to non-smoothness have been earlier discussed when 
solving optimal heat integration problems with multi-stream HEs, where 
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HE designs are allowed to change during the optimization. That is, new 
streams can be added, or previous streams can be removed, creating 
non-smooth processes schemes. Such problems are more complex and 
often simplified using constant heat capacity assumptions. For example, 
Fahr et al. (2022) discussed difficulties using gradient-based solvers for 
such problems and compared different optimization algorithms, using 
non-smooth, smooth, and mixed-integer pinch analysis formulations. An 
approach that avoids non-smooth functions has been proposed, but such 
schemes require additional continuous optimization variables (Cassa
nello et al., 2020). However, studies investigating smoothness related to 
systems only modeling HE with two streams, i.e., a fixed design, have 
not been found, even though approximations of such processes also can 
result in non-smooth problems due to numerical noise. 

This study only looks at the modeling of HEs with two streams. To 
reduce complexity, HEs are modeled with the novel ΔTpinch schemes 
previously recommended (Brodal et al., 2023), and only optimization 
algorithms available in MATLAB (2020) are tested, which include al
gorithms developed by Nelder and Mead (1965), Shanno (1970), 
Spellucci (1998), Kennedy and Eberhart (1995), Byrd et al. (1999) and 
Powell (2006). The main performance parameters in this article are 
optimization accuracy, success-rate and run time. The aim is to identify 
the best optimization algorithm and the best ΔTpinch approximation 
method for optimizing heat pumps with 2 – 3 HEs, with or without an 
ejector. To the authors knowledge, this is the first optimization study to 
investigate high-order ΔTpinch approximations, and also the first to 
systematically search for the overall best scheme with respect to opti
mization algorithm and HE approximation. That is, finding the best 
ΔTpinch method and HE grid size. 

2. Method 

The method section includes a description of the heat pumps studied 
in this work. The details of the process and optimization models used are 
also explained, with the main focus being to describe the novel HE 
interpolation methods studied. 

2.1. Process modeling 

Models of SHIs include by definition heat exchangers, such as 
evaporators, condensers, and gas coolers, but can also include other 
components such as compressors, expansion valves and ejectors. Process 
models are calculated using fluid property packages, which include 
equation of state (EOS) models solved using numerical approximations. 
The fluid property package used in this article is named CoolProp (Bell 
et al., 2014), and implements a range of component specific EOSs with 
high accuracy, e.g., Span and Wagner (1996) for CO2, Lemmon et al. 
(2009) for propane, Gao et al. (2020) for ammonia and Tillner-Roth and 

Baehr (1994) for R134a. In the process model developed, the perfor
mance of compressors, turbines and expansion valves is calculated 
directly from values calculated by the fluid property packages. Ejector 
performance can be modelled using an iterative method to find a set if 
conditions that coincides with the performance of a given ejector design. 
However, such numerical approximations generate noise. Iterative 
solvers can also be very time-consuming, since calculations have to be 
repeated in each optimization step (Brodal and Jackson 2019). In opti
mization studies, ejector performance can also be implemented through 
optimization constraints by increasing the dimension of the original 
optimization problem, i.e., without introducing additional numerical 
process noise (Brodal and Eiksund 2020). HEs can also be modeled 
through optimization constraints, however, HE constraints introduce 
noise since they are based on numerical approximations. The text below 
describes the heat pump designs and the equipment models in more 
detail. 

2.1.1. Heat pump designs 
Three different types of single-stage heat pumps are studied, as 

illustrated in Fig. 1. Heat pump A represents the simplest process with 
only the basic components. Heat pump B is modified with an additional 
internal suction gas HE, while heat pump C is modified with an ejector. 
Different working fluids (here referred to as refrigerants) are modeled 
for each heat pump. The heat exchanger where feedwater is warmed is 
sometimes operating as a gas cooler and other times as a condenser, 
depending on refrigerant and operating conditions such as the feedwater 
temperature. 

2.1.2. Performance and equipment modelling 

COP =
Pheat

Pcomp
=

h2 − h3

h2 − h1
, (1) 

The coefficient of performance (COP) for heat pumps is defined as 
the ratio between the heating duty (Pheat) and the compressor duty 
(Pcomp): where h is specific enthalpy. The numbering convention in Fig. 1 
has been used. The refrigerant and feedwater mass flows (ṁR and 
ṁfeedwater) are calculated from the heating duty and process stream 
enthalpies: 

ṁR =
Pheat

h2 − h3
and ṁfeedwater =

Pheat

hb − ha
. (2) 

For a system with a given design and equipment items, the set of 
process parameters that results in the most energy efficient operation 
(COPoptimized) is found using optimization schemes, as explained in Sec
tion 2.2.3. Equipment is described through performance parameters. 
Compressor performance is modelled using the isentropic efficiency 
parameter: 

Fig. 1. Flow diagrams of heat pump A (left), heat pump B (middle) and heat pump C (right).  
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ηcomp =
Pcomp,is

Pcomp
=

h2,is − h1

h2 − h1
, (3)  

where Pcomp,is is the power consumption of an isentropic compression 
process from state 1 to pressure p2. The ejector is modeled using the 
ejector efficiency parameter introduced by Elbel and Hrnjak (2008), 
which compares the amount of work recovered by the ejector with the 
theoretical work that can be recovered with isentropic processes: 

ηejector∗ =
ṁ6
(
h8,is→p5 − h8

)

ṁ1
(
h3 − h3,is→p5

), (4)  

where h8,is→p5 and h3,is→p5 are enthalpies obtained by isentropic pro
cesses from point 8 and 3 to the ejector outlet pressure (p5). In optimi
zation studies, it is often useful to compare different processes operating 
with the same ejector efficiency (ηejector). An iterative search can be used 
to find a process pressure p5 where the ejector operates with efficiency 
ηejector∗ ≈ ηejector. However, this generates numerical noise, which can 
cause trouble for optimization algorithms. Finding p5 accurately in each 
optimization step requires much computational effort (Brodal and 
Jackson 2019). Therefore, the ejector efficiency is instead implemented 
through optimization constraints while implementing the compressor 
pressure ratio pr = p2/p5 as an optimization variable. The ejector effi
ciency (ηejector∗ ) for each optimization step process is calculated, and the 
ejector efficiency is implemented through optimization con
straint ηejector∗ ≤ ηejector (Brodal and Eiksund 2020). Optimized results 
have the most energy efficient processes, i.e., the best allowed ejector 
efficiency: ηejector∗ ≈ ηejector. 

2.1.3. Heat exchanger modeling 
HEs are typically the most time-consuming equipment to model since 

they must be calculated numerically using grid points and multiple fluid 
property evaluations. Implementing efficient HE models is therefore 
important in SHI and HEN optimization studies where the process model 
is evaluated in each step. The pinch point temperature difference is 
defined as ΔTpinch = min(ΔT), where the temperature profile is the in
ternal temperature differences between the warm heat source and the 
cold heat sink: ΔT = Tsource − Tsink. New high-order HE methods 
developed in the article Brodal et al. (2023) are applied. The tempera
ture pinch ΔTpinch is calculated for each HE, i.e., evaporator 
(ΔTpinch evaporator), gas cooler/condenser (ΔTpinch gas cooler) and IHE 
(ΔTpinch IHE). All HEs are assumed to operate in perfect counter current 
flow with zero pressure drop, which is a common simplification, e.g. 
used by Dai et al. (2015). To obtain a scheme where the temperature 
profile will be smooth functions, suitable for high-order interpolation 
methods, each HE is divided into sections (i) separated by internal 
bubble and dew points. The heating duty of HE section i is calculated: 
ΔPi=ṁsource

dot ⋅Δhsource,i, where Δhsource,i is the difference between the inlet and 
outlet enthalpies of the heat source in section i. The heating ratio ΔPi /P 
is used to distribute N grid points evenly over each of the different HE 
sections, and the number of grid points in section i is named Ngrid,i. An 
equidistant distributed grid is often used, but not well suited for 
high-order interpolation methods (Hesthaven et al., 2007), where grid 
points should cluster at the ends, such as the Chebyshev grid distribution 
(Trefethen 2000): 

xi(j) = − cos
(

π ⋅(j − 1)
Ngrid,i − 1

)

, for j = 1, …, Ngrid,i, (5) 

Internal enthalpies of the heat sink and heat source fluids in each HE 
section (i) are given by the linear transformations: 

hsource,i(j) =
(

xi(j) + 1
2

)

⋅
(

ΔPi

ṁsource

)

+ hsource,i,1 and hsink,i(j)

=

(
xi(j) + 1

2

)

⋅
(

ΔPi

ṁsink

)

+ hsink,i,1, (6)  

where the specific enthalpies hsource,1,1 and hsink,1,1 are calculated directly 
from the inlet conditions. The temperatures Tsource,i(j) and Tsink,i(j) are 
calculated using the properties package and the known pressures and 
enthalpies. The temperature profile is then found for the whole HE: 

ΔTi,j = Tsource,i(j) − Tsink,i(j). (7) 

The heating power related to each grid point is Pi(j) =

ṁsource ⋅(hsource,i(j) − h2). Conventionally, the pinch point is found using 
an approximation only based on the grid values: ΔTpinch=min(ΔTi,j). 
However, more accurate ΔTpinch approximations can be used, as 
explained below. 

High-Order ΔTpinch Model 
High-order (spectral) interpolations are here based on a Chebyshev 

grid distribution xi, which is used to calculate the derivate of ΔT with 
respect to the heat transfer: 

ai,j =

(
d ΔT

dP

)

i,j
=

(
dx
dP

⋅
dΔT
dx

)

i,j
≈

(
xi
(
Ngrid,i

)
− xi(1)

Pi
(
Ngrid,i

)
− Pi(1)

)

⋅Di,iΔTi,j, (8)  

where xi(Ngrid,i) − xi(1) = 2 from Eq. (5). The MATLAB function 
‘gallery’ is used to calculate the (Ngrid,i ×Ngrid,i) spectral differentiation 
matrix D, which can be calculated directly from an analytical expression 
derived from the behavior of Chebyshev polynomials (Trefethen 2000; 
Hesthaven et al., 2007). Pinch points are located at HE inlets and outlets, 
or internally at extremal points where the derivate of ΔT is zero. Such 
points are found using the cubic MATLAB function ‘spline’ to create a 
continuous polynomial function of the spectral derivative: bi =

spline(P
⇀

i, a→i), while the extremal values Pi,ex are found by solving 
bi(Pi,ex) = 0 using the MATLAB function ‘roots’ and the ′coefs′ and 
‘breaks’ values created by the spline function: 

P→i,ex = roots(bi ⋅coefs(j − 1, :)) + bi ⋅breaks(j − 1), for j = 2, …, Ngrid,i.

(9) 

To reduce run time, only regions where the derivative (ai) is 
changing signs are investigated. Specific enthalpies hi,ex are calculated 
using Eq. (6), and CoolProp then finds Tsource,i,ex and Tsink,i,ex, using hi,ex 

and pressure as inputs. Finally, the pinch point is calculated as 
ΔTpinch=min(ΔTi,j, ΔTi,ex), where ΔTi,ex = Tsource,i,ex − Tsink,i,ex. This high- 
order approach was developed in (Brodal et al., 2023), where it was 
shown to be more stable and to obtain better precision than schemes 
based on pure high-order polynomial approximations. 

Low-Order ΔTpinch Model (‘Quad’) 
A 1st-order approximation of the derivative can also be used to 

localize the pinch point. This approach is developed based on 2nd-order 
polynomial approximations for each set of three neighboring nodes 
values (j − 1, j, j+ 1), for all HE section (i) using the MATLAB function 
‘polyfit’. Extremal points (Pi,ex) are roots of the derivative of these 
polynomial approximations, and are calculated using the MATLAB 
functions ‘roots’ and ‘polyder’. ΔTi,ex is found from Pi,ex, as explained 
above. This approach is named ‘Quad’. A standard equidistant 

Fig. 2. ΔTpinch errors using different HE models and grid sizes (N). (Data from 
Brodal et al. (2023).). 
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distributed grid is best for low-order methods based on neighboring grid 
points, such as ‘Quad’. The HE study by Brodal et al. (2023) showed that 
quadratic optimization required larger grids (N), see Fig. 2, and more 
run time than high-order ΔTpinch methods to obtain similar precision. 

Hybrid ΔTpinch Model (Base Case) 
Since ΔTi,ex are calculated directly from Pi,ex, adding more points to 

the original grid ΔTi,j can only improve the accuracy of ΔTpinch, i.e., 
within the limits of the fluid property package. The method named 
‘Hybrid’ combines low and high-order methods using Chebyshev grids; 
by first calculating ΔTi,ex,Quad using ‘Quad’ and ΔTi,ex,High using ‘High- 
order’. These new points (ΔTi,ex,Quad and ΔTi,ex,High) are added to the 
original Chebyshev grid ΔTi, before ‘Quad’ is performed a second time to 
this new grid, calculating ΔTi,ex,Quad2. Brodal et al. (2023) recommends 
the ‘Hybrid’ ΔTpinch approximation, ΔTpinch=min(ΔTi,j, ΔTi,ex,Quad,

ΔTi,ex,High, ΔTi,ex,Quad2), since high-order methods are less accurate if the 
HE temperature profile is unsmooth, e.g., if fluid property packages 
introduce a lot of numerical noise or struggle to find dew and bubble 
points. However, such problems were only observed for HE with 
refrigerant mixtures, and not pure refrigerants which are studied here. 
Results from Brodal et al. (2023) are illustrated in Fig. 2, which illus
trates the error in different ΔTpinch approximations when modeling a 
single HE. Fig. 2 shows that ‘Hybrid’ and ‘High-order’ methods need 
significantly less grid points to obtain accurate results compared to the 
conventional ‘Grid only’ method. However, performance of these 
methods has not yet been studied and compared when solving SHI and 
HEN optimization problems, which is a main goal in this article. 

2.2. Optimization and SHI modeling 

The optimization schemes used for heat pump A, B and C are 
explained below. 

2.2.1. Optimization algorithms 
The goal is to find the best optimization algorithm for solving basic 

SHIs. However, this work only investigates algorithms available in the 
MATLAB (2020) Optimization Toolbox, which includes a large variety of 
popular optimization algorithms. The methods investigated here are 
Fminsearch, Fmincon, Fminunc, genetic algorithm (GA) and particle 
swarm (PS). Fminsearch is unconstrained, and uses a deterministic 
simplex algorithm developed by Nelder and Mead (1965). Fmincon is 
also deterministic and can solve non-linear constrained problems using a 
gradient-based approach. The default Fmincon optimization algorithm 
is the interior-point method (Byrd et al., 1999), but other options such as 
sequential quadratic programming (sqp) exist (Spellucci 1998; Powell 
2006). Fmincon estimates gradients numerically, using either forward or 
central finite difference schemes. The central scheme requires twice as 
many function evaluations, but the increased number of calculations can 
result in better accuracy. Fminunc is an unconstrained deterministic 
gradient-based method and includes different optimization methods 
such as the default Quasi-Newton method (Shanno 1970). Both GA and 
PS are stochastic algorithms. PS is unconstrained, where the swarm 
members move and velocities are changed in each optimization step, 
depending on both the best location of close neighbors and the whole 
swarm, as described by Kennedy and Eberhart (1995). GA is inspired by 
genetics (Levy 1991), and uses population members to create the next 
generation, and includes strategies such as survival of the fittest, mu
tations and mixture of parents genes. Process modeling noise creates 
problems for the optimization algorithms. For example, optimization 
searches are likely to find a local minimum where the ΔTpinch approxi
mation error is the greatest, since a large ΔTpinch error increases the 
objective function (COP). Numerical noise generated by the fluid 
property packages is typically small, but also effects the objective 
function (COP). Even a small amount of noise can affect optimization 
algorithms, e.g., creating an artificial local minimum at a point where 
the ΔTpinch error is large due to grid point distribution in the numerical 

work. The region in which an optimization algorithm is affected by such 
a noise generated local minimum is tiny, and the region is further 
reduced by improving the accuracy of the ΔTpinch approximation, 
making it almost random if such numerical noise will affect the opti
mization at all. Hence, a re-optimization where the first step is not 
identical to the last step in the previous optimization can be used to find 
real improvements. Sequential optimization schemes, where an old so
lution is reoptimized, can therefore be used to find improvements by 
slightly changing optimization parameters, such as step size, or using 
totally different optimization algorithms. 

The 10 different optimization schemes, listed in Table 1, are 
compared in this study. Default MATLAB optimization values are used 
unless otherwise stated, i.e., function tolerance and constraint violation 
tolerance are set to 1E-6. GA is modeled with default population size of 
50, named ‘GA(50)’, Particle swarm is computed with 10 swarm mem
bers, named ‘PS(10)’, and with 50 swarm members, named ‘PS(50)’; 
Fmincon is studied with both interior-point and sqp algorithms, while 
using either forward or central finite differences schemes. These are 
named ‘Fmincon(sqp,forward)’, ‘Fmincon(sqp,central)’, ‘Fmincon(inte
rior,forward)’ and ‘Fmincon(interior,central)’. A sequence based opti
mization search, named ‘Fmincon(All)’, is also investigated. This 
approach first calls ‘Fmincon(sqp,forward)’ and ‘Fmincon(interior,cen
tral)’. The best solution is then used as an initial guess in ‘Fmincon 
(interior,forward)’, and the solution is used as an initial guess in a final 
‘Fmincon(sqp,central)’ optimization. Different Fmincon(All) sequences 
were tested. The spq algorithm was usually best, but this method 
sometimes found incorrect solutions, which were difficult to reoptimize. 
The success rate improved slightly by also doing an interior search from 
the original initial point, and then reoptimize the best solution obtained 
from the two approaches. 

2.2.2. Equipment modeling with optimization constraints 
Ejector and HE performance are implemented through optimization 

constraints. This article focuses on the performance of different 
ΔTpinch approximations, and for simplicity, the same minimum allowed 
temperature approach (ΔTmin) is used for all the HEs. Ejectors are 
modeled with a maximum allowed ejector efficiency (ηejector). The 
different optimization constraints for each heat pump design (A, B and 
C) are shown in Table 2. Note that instead of using ‘=’ on all the per
formance constraints, less strict ‘≤’ or ‘≥’ constraints have been used to 
make it easier for the optimization algorithm to find the path to the 
optimized result. That is, it is not necessary to enforce that these 
equipment performance parameters cannot be worse during the opti
mization, since the final optimized results obtain the best performance 
values, e.g., ηejector∗ ≈ ηejector and ΔTpinch IHE ≈ ΔTmin. 

Other constraints, not directly related to component performance, 
are also applied to avoid impossible heat pump processes. That is, a 
constraint requiring that the pressure cannot increase in the expansion 
valve (Δpvalve < 0), and a constraint for systems with an internal suction 

Table 1 
Optimization schemes compared.  

‘Fminsearch’ ‘Fmincon(sqp,forward)’ 
‘Fminunc’ ‘Fmincon(sqp,central)’ 
‘PS(10)’ ‘Fmincon(interior,forward)’ 
‘PS(50)’ ‘Fmincon(interior,central)’ 
‘GA(50)’ ‘Fmincon(All)’  

Table 2 
Equipment constraints in the ΔTpinch based optimization.  

Heat pump A (Case 1 & 4) Heat pump B (Case 2 & 5) Heat pump C (Case 3 & 6) 

ΔTpinch evaporator ≥ ΔTmin ΔTpinch evaporator ≥ ΔTmin ΔTpinch evaporator ≥ ΔTmin 

ΔTpinch gas cooler ≥ ΔTmin ΔTpinch gas cooler ≥ ΔTmin ΔTpinch gas cooler ≥ ΔTmin  

ΔTpinch IHE ≥ ΔTmin ηejector∗ ≤ ηejector  
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gas HE to ensure that the inlet compressor temperature is increased (T1 
− T1∗ > 0). Systems with ejectors are modeled with additional con
straints requiring the different refrigerant mas flows to be positive. 

2.2.3. The optimization scheme 
Modeling work consists of two parts: the process model and the 

optimization search. The process model is used in each optimization step 
and calculates process values such as the objective function (COP) and 
the optimization constraints (ejector efficiency and ΔTpinch) from 
nonlinear algebraic equations. However, calculating the ΔTpinch value is 
special since it is based on approximations that requires significantly 
more numerical computations than the other performance parameters. 
The process model requires inputs related directly to the case study, but 
also the optimization variables (x). For example, x = [T1, T3, p2] for heat 
pump A. Table 3 shows the initial points (x0) used for all cases. A small 
random noise is also added using the MATLAB function ‘rand’ to avoid 
identical optimization results for systems modeled with accurate HE 
schemes. The lower and upper bounds in Table 3 are only used by GA 
and PS, and the search region is large to allow efficient modeling of all 
the relevant systems using optimization sequences. That is, to speed up 
GA and PS algorithms the MATLAB settings ’InitialPopulationMatrix’ 
and ’InitialSwarmMatrix’ are used, respectively, with a shotgun algo
rithm that distributes the initial points randomly around the initial guess 
x0 in the region: [x0 ⋅0.95, x0 ⋅1.05]. Due to the large upper and lower 
boundaries, a solution can be found even if the initial guess x0 is bad. 
After relatively few optimization steps, all GA and PS points typically 
end up in a small region around the best point. Hence, it is often better to 
distribute the points around a smaller region that is assumed to be a 
good initial guess, than in a large region where most of the points will 
have unphysical values because they violate optimization constraints 

and therefore have large penalties. Compressor efficiency (ηcomp) is 
implemented directly in the process model, while the HEs and ejector 
equipment performance parameters (ΔTmin, and ηejector) are imple
mented through optimization constraints (see Table 2). Inputs and 
outputs of process and optimization schemes are summarized in Tables 4 
and 5. More details are also given in the article (Brodal and Eiksund 
2020). 

The most energy efficient heat pump has the greatest COP. Since 
optimization algorithms find a minimum, the objective function to be 
minimized is therefore: 

COPoptimized = min(− COP), (10)  

for optimization algorithms that can implement the non-linear con
straints in Table 2 directly. Of the optimization methods investigated 
here, only the Fmincon function has a direct (non-penalty based) 
implementation of the non-linear constraints. To solve unconstrained 
optimization algorithms, the constraints listed in Table 2 are added to 
Eq. (10) through penalty terms. The GA function in MATLAB already 
includes a penalty-based method, however, many prefer to make their 
own (Ding et al., 2017). For consistency, GA is here solved with the same 
penalty terms as the other unconstrained methods (Fminsearch, Fmi
nunc, and PS). That is, for heat pump A with two HEs, the optimization 
problem has additional penalty terms for each HE: 

COPoptimized = min
(
− COP+ k2 ⋅

[
max

(
0,ΔTmin − ΔTpinch evaporator

)]2

+ k3⋅
[
max

(
0,ΔTmin − ΔTpinch gas cooler

)]2
)
,

(11)  

where ki are penalty factors, and ΔTmin is the minimum allowed tem
perature approach in HEs. A squared penalty term is used. This approach 
generates a penalty term with a continuous derivative, however, other 
terms can be applied such as the penalty formula used by Ding et al. 
(2017). ΔTpinch evaporator and ΔTpinch gas cooler are approximations of the 
pinch point temperature difference in the evaporator and gas cooler, 
respectively. Heat pump B also includes an internal HE, which is 
modeled by adding k4 ⋅[max(0,ΔTmin − ΔTpinch IHE)]

2 as a new penalty 
term to Eq. (11). Heat pump C is forced to operate with a given ejector 
efficiency (ηejector) by calculating a process ejector efficiency (ηejector∗), 

and adding k5 ⋅[max(0, ηejector∗ − ηejector)]
2 to the optimization problem 

described in Eq. (11). The best optimization parameters (xoptimized) are 
found using Eq. (11), and finally COPoptimized is computed from the 
xoptimized using Eq. (1), i.e., the final results are computed without pen
alty terms. All penalty factors are set to ki = 1000. Large ki factors are 
used to obtain optimization results with small constraint violations. 
Reducing the penalty factors will make it easier to solve Eq. (11), but the 
results are more likely to violate the constraints. 

Constraint violations can indicate that an optimization was unsuc
cessful. To remove potentially bad solutions, only optimization results 
with constraint violations less than 0.001 for ejector efficiency, 0.001 K 
for temperature pinches are considered as successful optimization. That 
is, assuming that results with larger constraint violations should be 
reoptimized using a different initial guess. 

Table 3 
Process variables being optimized, initial starting point x0, lower bound LB and upper bound UB.  

Heat pump A Heat pump B Heat pump C Initial optimization guess x0 LB UB 

T1 T1 T8 273.15K⋅(1 − 0.01 ⋅(0.5 − rand)) 0 K 500 K 
T3 T3 T3 223.15K⋅(1 − 0.01⋅(0.5 − rand)) 0 K 500 K 
p2 p2 p2 95bar ⋅(1 − 0.01 ⋅(0.5 − rand)) 1 bar 1000 bar 
– T1∗ – 15∘C ⋅(1 − 0.01 ⋅(0.5 − rand)) 1E-6 ◦C 100 ◦C 
– – pr 4 ⋅(1 − 0.01⋅(0.5 − rand)) 1 45  

Table 4 
Input parameters for the different heat pump designs. Initial guess values (x0) 
are listed in Table 3.  

Heat 
pump 

Inputs process scheme Inputs optimization 
scheme 

A Pgas cooler, R, Ta, Tb, Tc, Td, T1, T3, p2 and 
ηcomp 

ΔTmin and x0 

B Pgas cooler, R, Ta, Tb, Tc, Td, T1, T3, T1∗ , p2 

and ηcomp 

ΔTmin and x0 

C Pgas cooler, R, Ta, Tb, Tc, Td, T8, T3, p2, 
pr and ηcomp 

ΔTmin, ηejector and x0  

Table 5 
Output parameters for different heat pump designs. Optimization parameters x 
are listed in Table 3.  

Heat 
pump 

Outputs process scheme Outputs optimization 
scheme 

A ΔTpinch evaporator, ΔTpinch gas cooler and COP COPoptimized and 
xoptimized 

B ΔTpinch evaporator, ΔTpinch gas cooler, ΔTpinch IHE 

and COP 
COPoptimized and 
xoptimized 

C ΔTpinch evaporator, ΔTpinch gas cooler, 
ηejector∗ and COP 

COPoptimized and 
xoptimized  
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2.3. Error estimates and run time 

Analytical solutions are not available, hence the optimal value 
(COPbest) must be estimated from the optimized results obtained with 
accurate HE schemes with large N. In this work, COPbest is found from 10 
different optimization approaches using ‘Hybrid’ interpolation schemes 
with grid points N = 46 and 47, i.e.: 

COPbest = max
(

COPFminsearch
optimized,N=46, …, COPPS(10)

optimized, N=47,COPFmincon(All)
optimized,N=47

)
,

(12) 

The error of a Fminsearch optimization with grid size N is defined as: 

COP error = abs

(
COPbest − COPFminsearch

optimized,N

COPbest

)

⋅100%. (13) 

The computer run time depends on the number of calculations, but 
also the computer hardware. However, run time is an inaccurate mea
surement of optimization workload since it also depends on programs 
running in the background. The results in this study are generated using 
a machine with Intel(R) Xeon(R) W-2123 CPU @ 3.60GHz processor and 
32 GB RAM. 

2.4. Success rates and mean run times 

Success rates (s) and mean run times are used to describe optimiza
tion scheme performance. In this study, s is defined as the percentage of 
successful optimizations with respect to the total number of optimiza
tions and the mean run time is calculated the average run time. Success 
rates (s) and mean run times are obtained for different HE grid intervals. 
Two different criteria for optimization success are studied, i.e., COP 
error < 0.01%, and COP error < 1%. The random starting point, defined 
in Table 3, is also an important factor implemented in s. The success rate 
of n different optimizations with a success rate s, is modeled statistically 
as the success rate where at least one of the n optimizations is successful: 

stot(n) = (1 − (1 − s)n
), (14)  

where (1 − s)n is probability that all n optimizations failed. 

2.5. Definition of case 1–6 

The three heat pump designs A, B and C, as illustrated in Fig. 1, are 
modeled with different heating demand and refrigerants (R). The feed 
water is warmed from Ta = 15 ◦C to Tb, which is either 35 or 70 ◦C 
depending on the case as explained in Table 6. The heating duty is al
ways assumed to be Pheat= 10 kW. In heat pump C, which has an ejector, 
refrigerant exits the evaporator at its dewpoint. Four refrigerants (car
bon dioxide, propane, ammonia and R134a) are modeled. The water 
used as a heat source is cooled in the evaporator from Tc = 10 ◦C to Td =

5 ◦C. Different equipment performances are modeled individually, i.e., 
with compressor efficiency ηcomp = 0.75, ejector efficiency ηejector =

0.17, and minimum allowed temperature approach ΔTmin = 2.0 K for all 
HEs. 

2.6. Model validation 

Since an analytical solution does not exist for optimized SHI prob
lems, optimization is validated by calculating the same problem multi
ple times using different optimization algorithms, starting values (x0), 
HE schemes and number of grid points N. Convergence between the 
results obtained with different schemes, as N increases, is illustrated in 
Figs. 6 and A1. Grid sizes with N ≥ 20 typically generate a large number 
of results that deviate less than 0.001% from the COPbest for all the 
systems modeled, indicating that an accurate optimization has been 
found in all cases. The novel ‘Hybrid’ ΔTpinch approximation was also 
validated against the conventional ‘Grid only’ method. For example, 
Figs. 4 and 5 show that optimizations with ‘Grid only’ converge to the 
same COP value as the base case (‘Hybrid’) for large N, and that the 
difference in COP is less than 0.01% for ‘Grid only’ approximations with 
N ≥ 100. Novel ‘Hybrid’ approximations have also been validated 
against ‘Grid only’ in a larger convergence study of ΔTpinch for single HEs 
in schemes, where the difference in ΔTpinch was found to be less than 
0.0001% for schemes with N ≥ 1000 (Brodal et al., 2023). 

3. Results 

Optimized heat pump processes for CO2 are illustrated in Fig. 3 for 
the different cases defined in Table 6. With CO2 as the working fluid, 
Case 1–3 are transcritical processes with gas cooler pressure around 100 
bar, while Case 4–6 are subcritical processes with condenser pressures 
around 70 bar, just below critical pressure of CO2. Optimized processes 
with propane, ammonia and R134a are subcritical processes with 
condenser pressures much less than critical pressure. Although this work 
focuses only on optimization, a detailed sensitivity study of heat pump 
A, B and C is presented by Brodal et al. (2019). 

Table 6 
Definition of cases 1 – 6 with refrigerant (R).   

Case 1 
(R) 

Case 2 
(R) 

Case 3 
(R) 

Case 4 
(R) 

Case 5 
(R) 

Case 6 
(R) 

Heat 
pump 

A B C A B C 

Tb 70 ◦C 70 ◦C 70 ◦C 35 ◦C 35 ◦C 35 ◦C  

Fig. 3. Pressure-enthalpy (p-h) diagrams of optimized CO2 processes.  
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Fig. 4. ‘Fmincon(All)’ optimized COP errors and computer run times based on ΔTpinch HE modeling. The ‘*’ symbol indicates that the ‘Grid only’ method is applied 
instead of the ‘Hybrid’ (base case) method. 
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3.1. Choice of ΔTpinch scheme 

Optimization errors solving the three transcritical and the three 
subcritical CO2 cases are illustrated in Fig. 4, where ΔTpinch is modeled 
with either the novel ‘Hybrid’ (base case) method using Chebyshev 
grids, or the conventional ‘Grid only’ method using equidistant grid 
distribution. Fig. 4 shows that the ‘Hybrid’ method typically needs far 
fewer HE grid point evaluations and less optimization run time to obtain 
similar results. For example, the ‘Hybrid’ method only requires N ≥ 4 
grid points (run time ≈ 20 s) to obtain results with COP error < 0.01%, 
while ‘Grid only’ needs about N ≈ 60 (run time ≈ 100 s) to obtain 
similar accuracy. For Case 2 with CO2 the ‘Grid only’ method requires 
N ≈ 100 (run time ≈ 250 s). Note that, there are no ‘Fmincon(All)’ re
sults for Case 5 with COP error < 0.01%. Since the optimization 

accuracy is not improved using more accurate ΔTpinch approximation 
with large N, the Case 5 optimizations must be limited by other factors 
than the accuracy of the HE approximation. Fig. 5 illustrates that PS(50) 
is successful a few times for Case 5 for both ‘Grid only’ and ‘Hybrid’ HE 
approximations, but COP error < 0.01% only occur in less than 20% of 
the optimizations. The ‘Grid only’ approximations only require N ≈ 30 
to obtain similar results as the ‘Hybrid’ PS optimizations, however, such 
optimizations are slow (around 1000s). Performance of ‘Grid only’ and 
‘Hybrid’ HE approximations in optimization problems are summarized 
in Table 7. Since the ‘Hybrid’ outperformed the conventional ‘Grid only’ 
approach, ‘Hybrid’ approximations are used when comparing different 
optimization algorithms in Section 3.2. Note that the run time for most 
optimization methods increases with N, but not all. This clearly illus
trates that optimizations based on inaccurate and fast ΔTpinch schemes 
with few grid points (N) sometimes will require more run time, which 
probably indicates that more optimization steps are required to find the 
solution due to the numerical noise. 

3.2. Choice of optimization algorithm 

The HE approximations, the numerical noise in fluid property 
packages and the optimization algorithm are all important for the 
overall success of optimization scheme. This section investigates how 
the grid size used in the ΔTpinch approximation affects different opti
mization algorithms, in order to identify the best optimization scheme. 
Optimization schemes are modeled using the ‘Hybrid’ ΔTpinch approxi
mation, because Section 3.1 showed that this approach was better than 

Fig. 5. COP errors in optimizations, where the ‘*’ symbol is used for schemes where the ‘Grid only’ method is applied instead of the ‘Hybrid’ (base case) method.  

Table 7 
Grid points N needed by ‘Grid only’ to obtain the ‘Hybrid’ scheme accuracy with 
N = 5, 10 and 15.  

ΔTpinch error estimates in single 
HEs (See Fig. 2) 

COP error estimates using Fmincon(All) (See  
Fig. 4) 

‘Hybrid’ ‘Grid only’ ‘Hybrid’ ‘Grid only’ (Increased run time) 

N ≈ 5 N ≥ 20 N ≈ 5 N ≈ 100* (500 – 1000%) 
N ≈ 10 N ≥ 150 N ≈ 10 N≫100* (More than 500%) 
N ≈ 15 N > 300** N ≈ 15 N≫100* (More than 500%)  

* N ≈ 30 if Particle swarm is used (see Fig. 5). 
** Estimate based on figures in Brodal et al. (2023). 

Fig. 6. Errors in optimized COP for Case 1 – 3 (CO2) with respect to the number of HE grid points N.  
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‘Grid only’. COP optimization errors obtained in Cases 1 – 6 were solved 
using Fmincon(All) and nine other optimization searches for systems 
with CO2, propane, ammonia and R134a. How the accuracy of the 
different optimization methods depends on grid size N, is illustrated for 
transcritical CO2 processes in Fig. 6. Fig. A1, in the appendix, shows the 
optimalization run time for each grid size. Cases modeled with propane, 
ammonia and R134a are subcritical processes, where ΔTpinch is located 

at bubble and dew points. Since these points always are calculated prior 
to the interpolation, there is no gain in accuracy by increasing the grid 
size or use interpolation, as shown in Fig. A1. The variation of these 
results is therefore directly related to the random initial guess (see 
Table 3). However, not all subcritical processes have a pinch point 
located at the bubble and dew points. For example, Figs. 4 and A1 show 
that the grid size and the interpolation method are vital when 

Fig. 7. Success rate (s) of optimized problems with respect to mean run time, using different optimization methods and HE grid sizes. Top: error COP < 1%. Bottom: 
error COP < 0.01%. 

Fig. 8. Percentage of optimized problems that failed by violating default MATLAB optimization tolerances or the user defined constraint tolerances.  
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optimizing the subcritical CO2 processes (Cases 4–6). 
Fig. 7 shows the optimization success rate for different HE grids and 

is created from the data presented in Figs. 6 and A1, as explained in the 
method Section 2.4. Since two cases are modeled for each heat pump (A, 
B and C) using four different refrigerants (CO2, propane, R134a and 
NH3), and each grid interval presented consists of five simulations, the 
percentages presented in Fig. 7 are based on 2 • 4 • 5 = 40 different 
optimizations for each heat pump design. Fig. 7 shows that PS(50) in 
average requires about 10–40 times longer run time than Fmincon(sqp), 
and 5–10 times longer than Fmincon(All). However, Fmincon(sqp) is 
less successful in its optimization of the more complex heat pump pro
cesses (B and C). Figs. 4–6 show that the accuracy of the ΔTpinch 
approximation is important for the optimization, until a certain preci
sion is achieved, where other factors are limiting the optimization suc
cess. In general, Fig. 7 shows that improving the HE model resolution 
from 20 < N ≤ 25 to 25 < N ≤ 30 does not improve the optimization 
results, except for the unconstrained gradient method named Fminunc. 
However, for some of the optimization algorithms there is not a clear 
trend between N and the average success rate, which indicates that the 
ΔTpinch approximation is not always the limiting factor. Numerical noise 
generated in fluid property packages and the methods used by the 
optimization algorithm itself are also important factors. Fig. 8 shows 
that the success rates in Fig. 7 are also influenced by cases where the 
optimization failed to find an acceptable solution, i.e., solutions where 
the solver itself identified problems, or solutions having ΔTpinch estimate 
errors larger than 0.001 K. Such failed cases are detectable and can 
therefore be reoptimized. All the other failed cases in Fig. 7 were due to 
optimization inaccuracies, i.e., obtaining solutions where the global 
optimum was not found even though the MATLAB solvers reported 
‘minimization succeeded’. Note that such inaccurate solutions can only 
be detected by comparing results from multiple optimizations. 

Table 8 lists the best optimization schemes for the different heat 
pumps, based on the results in Fig. 7. Table 8 shows that Fmincon is the 
best optimization algorithm for all the systems. Multiple optimizations 
based on different random initial guesses can be used if the success rate 
is insufficient (see Eq. (14)). Note that, even though PS(50) has a slightly 
better success rate than Fmincon(All) for heat pump B, it is not statis
tically better with respect to run time since it requires more computa
tions. About 95% of the PS(50) calls and 82% of the Fmincon(All) calls 
with 5 < N ≤ 10 are successful (see Fig. 7). Statistically, see Eq. (14), 
only two Fmincon(All) optimizations with 82% success rate are required 
to obtain a (1 − (1 − 0.82)2

)⋅100 % ≈ 97 % success rate, which is better 
than a single PS(50). 

4. Discussion 

The central problem that is addressed in this work is that even small 
inaccuracies in the model predictions for HEs will introduce numerical 
noise that can cause optimization algorithms to fail. The results pre
sented above for optimization success rates with respect to HE grid size 
and computer run time are discussed below for different HE schemes and 
optimization algorithms. 

4.1. Required accuracy 

A 1% COP modeling accuracy is often sufficient for existing SHIs 
since equipment such as flow and temperature gage often have less 
precision. In optimization studies, it can even be interesting to obtain a 
higher numerical accuracy than the physical precision of the simplified 
equipment models, since they aim to set the optimum starting point for 
detailed (equipment level) design work. That is, finding an improvement 
of 1% by adjusting the optimization parameters can be useful, even if 
COP is calculated with an accuracy beyond the physical modeling pre
cision. That is, one should not terminate the optimization when a 1% 
accuracy is reached or introduce unnecessary numerical approximations 
in the process model. The importance of accurate optimization is dis
cussed in the LNG sensitivity study by Brodal et al. (2019), where several 
mixed fluid cascade (MFC) processes were optimized. In this study it was 
difficult to identify optimal refrigerant mixtures even though the opti
mization errors were relatively small. That is, for COP errors less than 
0.3%, optimized mixtures had component fractions that variated 
randomly between 13 and 30%. A high optimization accuracy is also 
vital for creating smooth sensitivity plots, which is required to under
stand trends and design benefits. Based on experience from the study of 
similar heat pump processes (Brodal and Eiksund 2020), it is believed 
that a COP optimization error of less than 0.01% is sufficient in sensi
tivity studies. An accuracy of 0.01% can also give performance advan
tages during the design work, since it is reasonable to assume that 
processes can be slightly improved (on average) if they are based on 
better parameters. Despite setting the upper allowed constraint violation 
limit in the optimization to 0.001 K, the actual violation can be much 
higher if the ΔTpinch estimation is inaccurate, e.g., as much as 10 K for a 
low-order N = 2 scheme (Brodal et al., 2023). That is, solutions based 
on low-order approximations can be unphysical with an actual ΔTpinch 

value less than 0 K. Low-order schemes can often be solved quickly due 
to less computations, but it is difficult to use such solutions as initial 
guesses in more accurate optimization schemes because they may 
violate constraints if the ΔTpinch approximations are improved. In our 
experience, it is typically better to use the initial points defined in 
Table 3 directly than to reoptimize a solution found with a less accurate 
optimization scheme. 

4.1.1. Optimization tolerance settings 
All optimizations use MATLAB’s default termination tolerance, 

which is 1e-6. Such a high modeling precision of the objective function 
(COP) is not relevant for a real system, and optimizations are often 
terminated due to other criteria. For example, the results presented in 
Figs. 6 and A1, show that COP errors are often much larger than 1e-6. 
MATLAB’s default finite difference step size setting is used in both 
Fminunc and Fmincon. There are different sources of errors in optimized 
schemes. The results presented here have neglectable equipment per
formance errors, since results with equipment constraint violations 
above certain thresholds are removed. That is, results with constraint 
violations larger than 0.001 for ejector efficiencies and 0.001 K for pinch 
points are removed, since optimizations terminated with even small 
constraint violations can indicate that the optimization has failed. 
However, the actual pinch point violation in solutions of inaccurate 
schemes can be much bigger than 0.001 K (Brodal et al., 2023). Fmincon 
is the only method in this study not using penalty terms to implement 
constraints. Relatively large penalty factors (ki=1000) has been used to 
obtain accurate results with only small equipment constraints violations. 
That is, to avoid generating unphysical results significantly better that 
the optimal process. In this study, COP errors due to constraint viola
tions are typically much less than 0.01 %. Note that, COP errors due to 
penalty factors are typically much greater than the 1e-6 default 
constraint violation tolerance used by Fmincon, which the uncon
strained methods are being compared with. The optimization settings 
and penalty factors used in this study are based on experience from a 

Table 8 
Recommended optimization schemes for heat pumps.  

Heat pump COP error less than Best optimization scheme   

Algorithm HE grid size 

A 1.00% Fmincon(sqp) 5 < N ≤ 10 
B 1.00% Fmincon(All) 5 < N ≤ 10 
C 1.00% Fmincon(All) 5 < N ≤ 10 
A 0.01% Fmincon(sqp) 10 < N ≤ 15 
B 0.01% Fmincon(All) 5 < N ≤ 20 
C 0.01% Fmincon(All) 5 < N ≤ 10  
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previous study (Brodal and Eiksund 2020), where penalty factors to 
some extend were adjusted to obtain accurate results generating smooth 
sensitivity plots. If the requirement is only a COP error less than 1%, the 
penalty factors can be reduced to improve computational speed. How
ever, to compare unconstrained and constrained optimization algo
rithms fairly, the Fmincon constraint tolerance should also be modified. 
Finding solutions with such small constraint violations is relatively easy, 
as illustrated by continuous lines in Fig. 6, even in inaccurate optimi
zations where COP errors are larger than 10%. The default Fmincon 
constraint optimization tolerances in MATLAB are much greater than 
the user defined constraint tolerances, and Fig. 8 shows that only the 
Fmincon search failed to find heat pump A and B solutions within the 
optimization tolerance. However, Fig. 8 also shows that optimization 
tolerances problems were avoided when using the optimization 
sequence Fmincon(All), and that all optimization algorithms except GA 
and Fmincon(All) sometimes failed to solve heat pump C. 

4.2. Choice of ΔTpinch approximation and number of nodes 

The performance of optimization schemes depends strongly on the 
HE approximations applied. The conventional temperature pinch 
method, here named ‘Grid only’, is simply finding the minimum grid 
value ΔTi(j) using an equidistant distributed grid and Eq.(7). High-order 
interpolation methods have previously only been applied to single HEs 
(Brodal et al., 2023), which recommended hybrid high and low-order 
schemes since they were less sensitive to noise created by fluid prop
erty packages. 

4.2.1. Conventional versus novel ΔTpinch schemes 
The novel optimization results of HE networks are discussed below, 

and compared with the single HE modeling results presented by Brodal 
et al. (2023). 

Modeling of Single HEs 
Fig. 2, which is created from data from a previous study of single HEs 

(Brodal et al., 2023), illustrates the accuracy of different ΔTpinch 
approximation methods and that it is difficult to obtain accurate results 
with the ‘Grid only’ method. The 1st-order pinch point interpolation 
method (‘Quad’) is less accurate than the novel ‘High-order’ method for 
a given grid size N, but is much more accurate than ‘Grid only’. 
Low-order approximations are less affected by numerical noise, and 
Brodal et al. (2023) identified the ‘Hybrid’ method, which combines 
‘Quad’ and ‘High-order’, to be the most accurate method for a given grid 
size N. However, the ‘Hybrid’ method is a little more time consuming 
since it requires three additional grid point evaluations. Fig. 2 shows 
that the conventional ‘Grid only’ approximation need more than N >>

140 grid points to obtain similar ΔTpinch accuracy as the ‘Hybrid’ method 
with N ≈ 10 (see Section 4.2.2). Fig. 2 shows that ΔTpinch errors are less 
than 0.002% in such schemes. When modeling a single HE, the run time 
is almost linear with the number grid points (Brodal et al., 2023). Hence, 
the ‘Hybrid’ method is approximately 15 times faster than the ‘Grid 
only’ method to find ΔTpinch with errors less than 0.06% (see Fig. 2). 

Optimization Modeling SHIs 
When solving SHI optimization problems, which is the novel aspect 

of this work, the run time gain realized by replacing ‘Grid only’ with 
‘Hybrid’ is found to be slightly less than for modeling single HEs, as 
illustrated in Figs. 4 and 5. The results summarized in Table 7 shows that 
the ‘Hybrid’ method requires significantly less grid point evaluations 
and computer run time. To obtain Fmincon(All) optimized results with 
an COP error < 0.01%, the ‘Hybrid’ method requires a grid size N ≈ 5, 
while ‘Grid only’ requires N ≈ 100. Fig. 4 shows that ‘Hybrid’ is 5 – 10 
times faster than the conventional ‘Grid only’ method when Fmincon 
(All) is used to obtain accurate results with COP error < 0.01%, which is 
a practical accuracy (see Section 4.1). If less accuracy is needed, the 
difference is less. Fig. 4 also shows that ‘Hybrid’ is only slightly better to 
produce optimizations with COP errors ≈ 1%, which requires N ≈ 5 

instead of N ≈ 10. Note that the optimization method is also important 
when comparing different ΔTpinch approximations. For example, Fig. 5 
shows that ‘Grid only’ schemes only require N ≈ 30 to generate similar 
results as ‘Hybrid’ schemes with N = 5 when using PS(50). However, the 
‘Grid only’ PS(50) run time is still about 400% larger than the ‘Hybrid’ 
PS(50) run time. 

4.2.2. Optimal grid size for hybrid ΔTpinch schemes 
The best ΔTpinch approximation, i.e., the ‘Hybrid’ method (see Sec

tion 4.2.1), is used when comparing the different optimalization algo
rithms. The importance of the ΔTpinch approximations accuracy is 
illustrated in Fig. 7. About 8% of the Fmincon(all) optimizations have 
COP errors larger than 1% for N ≤ 5, and some of these solutions are far 
from optimal, e.g., having 10–50% COP errors (see Figs. 4 and 6). For 
larger grids 5 < N ≤ 10, where ΔTpinch is calculated more accurately, 
Fmincon(all) produce only results with COP errors less than 1% (see 
Fig. 7). 

The HE models applied in this study always calculate bubble or dew 
points, and then divide HEs into sections with smooth ΔT functions (see 
Section 2.1.3). That is, for subcritical processes where the pinch point is 
located at the bubble or dew point, there is no accuracy gained by 
introducing additional grid points. As illustrated in Fig. A1, such addi
tional grid point evaluations only increase run time. For transcritical 
processes (see Fig. 6), and subcritical processes where the pinch point is 
not located at bubble or dew points (see Fig. 4), the grid size is very 
important. Fig. 2 shows that N = 5 and N = 15 correspond to ΔTpinch 

errors less than 1% and 1e-3%, respectively. Fig. 7 shows that optimi
zation accuracy improves if the HE grid size (N) increases, but that there 
is typically not much gained by increasing the grid size above 10. Fig. 7 
shows that N = 10 is a relatively optimal ‘Hybrid’ grid size for all SHIs. 
The required grid size depends slightly on the design, and Table 8 shows 
that 5 < N ≤ 20 grid points can be recommended when optimizing SHIs 
with two HEs, three HEs and an ejector. That is, larger grids 10 < N ≤ 20 
are typical required to obtain accurate results of complex SHIs with 
three HEs, while 5 < N ≤ 15 is optimal for SHIs with only two HEs. For 
SHIs with an ejector, a smaller grid size is sufficient (5 < N ≤ 10) for 
Fmincon(all). 

4.3. Choice of optimization algorithm 

The purpose of this optimization study is to determine the best 
optimization scheme for simple SHIs (heat pump A, B and C) using 
different refrigerants and heating scenarios (Case 1–6). The optimized 
SHI results show that the success rate depends on the optimization al
gorithm and the heat exchanger scheme. However, the results also 
depend on other factors such as the process complexity, the size of the 
penalty factors ki and the initial guess x0. The results presented in Figs. 6 
and A1 show that, for all cases, there is always more than one optimi
zation algorithm that is able to find COP within a 0.01% error. PS(50) 
obtained such accurate results for all the cases modeled, while Fmincon 
(All) only failed obtaining such accuracy for Case 5 with CO2. However, 
Fig. 7 illustrate that Fmincon(All) has a much better success rate than PS 
(50) for SHIs with an ejector. Fig. 7 also shows that Fminsearch, Fmi
nunc and GA often fail. Using an unconstrained algorithm for a con
strained problem is typically not ideal. Note that, other methods could 
be tested. For example, ‘feasible path’ optimization is widely used in 
large-sale nonlinear process modeling. However, a feasible path opti
mization algorithms can also fail as discussed by Ma et al. (2020), who 
suggested new methods to improve such algorithms. 

Since the systems being optimized are very different, the initial guess 
is often far from the optimized results. Even optimization methods that 
fail, can often be able to find a better solution than the initial guess. 
Optimization algorithms that find slightly better solutions, can therefore 
be successful if used multiple times in a sequence continuously 
improving the result. That is, the best solution from the previous opti
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mizations is used as a basis for the initial guess in next optimization, 
either directly using it is an initial optimization guess, or indirectly by 
searching in the neighborhood. However, such schemes can be 
extremely time-consuming if they are based on optimization algorithms 
which are not well suited for a given problem. It is possible to include 
different optimization algorithms in the search, as done by the Fmincon 
(All) sequential optimization scheme. Fig. 7 shows that heat pump C 
success rates are 5–90% for single Fmincon optimizations, and 100% for 
Fmincon(All). The authors have previously used sequential based opti
mization schemes to find accurate solutions (Brodal and Jackson 2019; 
Brodal et al., 2019; Brodal and Eiksund 2020). Using the previous 
non-optimal solution as initial guess for the next optimization is the 
equivalent of increasing the number of iterations of the first optimiza
tion process, i.e., if the same optimization algorithm and optimization 
parameters are applied. However, random noise generated by fluid 
property packages and ΔTpinch approximations can have a significant 
effect in optimizations, since this noise is sensitive to even microscopic 
changes irrelevant for the real physical process. This is illustrated by the 
Fmincon(All) results, which show that the solution can be improved in 
optimization sequences using different methods, i.e., spq/interior and 
forward and central finite difference methods. 

If constrained gradient-based algorithms fail to optimize a certain 
SHI, the results show that PS is likely to be the best approach. Stochastic 
methods like PS and GA are often claimed to be better at finding the 
global minimum (Rao et al., 2020). GA is perhaps the most used method 
for SHI optimization, e.g., Austbø et al. (2014) identified 29 GA articles 
and only 2 PS articles. GA is often used to study complex process, such as 
industrial heat pump processes (Allen et al., 2009), but it is also used to 
model less complex systems, e.g. water-to-water heat pump systems 
(Murr et al., 2011) and CO2-based transcritical cycles (Ren 2020). Li 
et al. (2022) states that GA has been widely used and has achieved good 
results. However, for the systems optimized here, PS is found to be the 
best stochastic approach. PS is overall the most accurate optimization 
method for heat pump A and B, but it is not particularly effective for heat 
pump C with an ejector. However, PS is not recommended since it is 
about 500–1000% more time consuming than Fmincon schemes (see 
Fig. 7). The conventional GA approach, on the other hand, is both slow 
and highly inaccurate. GA has a 0–20% success rate, which is low 
compared to PS(50) and Fmincon(All) success rates between 70 and 
100%. GA should therefore probably never be used to optimize SHIs, 
even though long GA sequences can find an accurate result. For example, 
long sequences with more than 10 individual GA calls have earlier been 
used to optimize heat pump with five HEs (Brodal and Jackson 2019). 
However, Fig. 7 shows that the run time of 10 different GA(50) opti
mizations is more than 25,000% larger than the run time of a single 
Fmincon(spq), which has a 100% success rate for heat pump A. The 
authors have also experienced that it is difficult to optimize more 
complex HE systems, e.g., in the optimization study of a modified MFC 
process Brodal et al. (2019), the refrigerant process had 16 equipment 
constraints and 16 optimization parameters. However, more research is 
needed to investigate how GA and other optimization algorithms handle 
such complex systems. 

Stochastic solvers struggle because the penalty term will ‘blow up’ 
for a point with even a small constraint violation. Additionally, the 
probability of picking a random point that has a better objective func
tion (COP) is often significantly greater than the probability for this 
point not violating any of the ΔTpinch constraints, especially in systems 
with many HEs. Therefore, PS and GA are probably not operating as 
intended, and all the points quickly end up in a tiny region around the 
best point, which is a point not violating the constraints. These methods 
are then typically only able to finds small improvements, since there is a 
higher probability of finding a point not violating the constraints close to 
another point not violating the constraints. Note that all the points 
recognized as good in GA and PS are not violating the constraints, while 
the optimal solution to some extent is hidden behind the boundary 
created by large artificial penalty terms. The GA method is inefficient 

since better genes/points are hidden by large penalty terms, even if a 
new improved point is found. PS on the other hand is more successful 
since finding a new improved point favors the other swarm members/ 
points to move in this direction, and beyond. PS is therefore likely to 
explore a region further towards the optimal point during the next 
optimization steps. The size of the penalty constraint factors is important 
for unconstrained schemes such as PS and GA. Such schemes typically 
find the optimal solution much faster if penalty factors are reduced. 
However, if the penalty constraint factors are reduced, the optimal so
lutions will have greater constraint violations. These solutions are 
therefore likely to be identified as bad points if the penalty constraint 
factors are increased, making it very difficult to use such points to find a 
more optimal solution in a sequential search. Even though large penalty 
factors are used in unconstrained optimizations, constraint violations in 
Fmincon is often less, due to the 1e-6 constraint violation tolerance used 
by Fmincon. The best swarm size for PS was investigated by studying 
performance of swarms with 10 and 50 members, named PS(10) and PS 
(50), respectively. The results in Fig. 7 shows that PS(10) is typically 3 
times faster than PS(50), which is the default swarm size in MATLAB. 
However, PS(10) is often less successful than PS(50). The success rate 
and run time of both these schemes could probably be improved by 
modifying the default MATLAB settings, such as the maximum allowed 
iterations and maximum allowed iterations without finding a better 
point, which are 200 and 20 respectively. More work is needed to find 
optimal swarm size and stopping criteria for SHIs. 

Numerical noise affects fminunc and fmincon algorithms differently. 
However, for all noise levels, the results show the penalty approach 
implemented for the fminunc is far less efficient than the spq/interior 
point approaches implemented in the fmincon algorithm. Both Fmincon 
and Fminunc are gradient-based algorithms, but Fminunc can only 
implement non-linear constraints through penalty terms. Fig. 7 illus
trates that Fminunc always fails for small grids (N ≤ 10), and that a 5% 
success rate was obtained for larger grids (25 < N ≤ 30). Implementing 
constraints through penalty terms in gradient-based algorithms, such as 
Fmincon and Fminunc, create problems due to the numerical noise 
generated by the ΔTpinch approximations. That is, the penalty term, 
which includes HE approximation, is added directly to the parameter 
being optimized (COP), and such noise affects the finite-difference ap
proximations. HE noise is reduced if more accurate ΔTpinch approxima
tions are applied, however, even highly accurate ‘Hybrid’ HE schemes 
with N ≈ 30 is insufficient for Fminunc. Note that penalty terms can also 
be used by Fmincon, instead of using the default constrained methods 
available in Fmincon. However, such Fmincon optimizations were not 
included in this study since they, like Fminunc, were highly 
unsuccessful. 

Fminsearch is relatively successful at finding a rough estimate of the 
simplest heat pump (A), but if a HE is added (heat pump B), the success 
rate is reduced from approximately 60% to less than 5%, and if an 
ejector is added the success rate is 0%. Fig. 7 shows that Fminsearch 
success rate is always less than all the different Fmincon methods, while 
the Fminsearch run time is typically three times longer than Fmincon. 
Hence, Fmincon is much better than Fminsearch for the problems 
studied here. However, Fminsearch is less affected by noise since is 
doesn’t compute gradients and could be better than Fmincon if inac
curate process models or fluid packages are applied (see discussion in 
Section 4.5). Also note that Fminsearch to some extent is able to obtain 
better results, it is therefore often possible to improve the success rate by 
using an optimization sequence, such as in Fmincon(All), or calling 
Fminsearch multiple times using the ‘GlobalSearch’ function in 
MATLAB. 

Fmincon is the only optimization algorithm in this study that can 
implement non-linear constrains directly. Fmincon is typically 5 – 10 
times faster than the PS(50). Fig. 7 shows that forward and central finite 
difference methods overall have similar success rates and run time. The 
optimization algorithm applied, i.e., sqp or interior, has a much larger 
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impact on the success rate and run time. The sqp method is often the 
best, i.e., both faster and more accurate. In general, the interior 
approach is less efficient finding accurate solutions with COP error <
0.01%. Fig. 7 shows that Fmincon(sqp) is the best optimization method 
for the most simple heat pumps (heat pump A), however, if the 
complexity of the heat pump is increased with either an additional in
ternal HE or an ejector, the sequence based Fmincon(All) method is 
better. A more detailed discussion of the best optimization schemes is 
given in Section 4.4. 

4.4. Recommendations 

Recommended optimization schemes, based on optimization run 
time and success rates are presented in Table 8. The results shows that 
Fmincon based optimizations are recommended for all the SHIs. That is, 
Fmincon obtain the best success rate with respect to run time, as dis
cussed below. Fig. 7 shows that Fmincon(sqp) is the best optimization 
method for the simplest heat pump designs with two HEs, where it ob
tains a 100% success rate for N > 10. Fmincon(sqp) is about 3 times 
faster than Fmincon(All), and more than 10 times faster than PS(50). 

4.4.1. Adding a heat exchanger (Heat pump B) 
Fig. 7 shows that the sequence based Fmincon(All) is the best 

approach for heat pumps with three HEs, especially when less accurate 
optimizations are required. Fmincon(All) is about 5 times faster than PS 
(50). Fmincon(All) has a 100% success rate finding solutions with COP 
error less than 0.1% for 5 < N ≤ 10. HE grid size 15 < N ≤ 20 is most 
successful when generating more accurate results with COP error <
0.01%, but such Fmincon(All) shemes have a success rate less than 90%. 
The low success rate, compared to the other heat pumps designs where 
Fmincon(All) obtains a 100% success rate, perhaps indicates that a 
slightly larger Fmincon sequences, i.e. more than four Fmincon calls, 
could be used for heat pump B. The low success rate can be explained by 
difficulties optimizing Case 5 with CO2, where only 5% of Fmincon(sqp) 
and less than 20% of PS(50) were successful. Fig. 7 illustrates that 
adding a HE reduces the optimization success rate for a single Fmincon 
(sqp). However, the sequence based search Fmincon(All) is less affected 
by a third HE. Also note that if a third HE is added, PS(50) run time 
increase with 104%, while Fmincon(All) run time only increase with 
68%. This perhaps indicates that using larger sequences is the best 
optimization approach for systems with even more HEs. 

Fig. A1 shows that one Fmincon(sqp, central) and one Fmincon(sqp, 
forward) runs with 10 < N ≤ 30 managed to optimized Case 5 with CO2 
with COP error < 0.01%, and that the computer run time were 15 and 
25 s, respectively. That is, 90 different Fmincon(spq) runs are required 
to obtain a statistical success rate of (1 − (1 − 0.05)90

) ⋅100 % ≈ 99 %, 
with an overall run time of approximately 1800s. Fig. 5 shows that PS 
(50) requires around 400 s run time to obtain a 20% success rate. That is, 
21 different PS(50), with overall run time around 8400 s, are required to 
obtain a statistical success rate of (1 − (1 − 0.20)21

) ⋅100 % ≈ 99 %. 
Hence, PS(50) requires around 5 times more run time than Fmincon 
optimization to obtain a 99% success rate. The random starting points, 
defined in Table 3, are also important. Since both Fmincon(sqp, central) 
and Fmincon(sqp, forward) produced successful results, there must also 
be starting points where Fmincon(All) is successful. Fig. 5 shows that all 
Fmincon(All) optimizations of Case 5 with CO2 were relatively well 
optimized for N > 5, i.e. obtaining a 100% success rate for finding so
lutions with COP error < 0.1%. Also note that the optimizations of Case 
5 with CO2 represent 12.5% of the 40 cases optimized with 15 
< N ≤ 20, hence, the Fmincon(All) success rate for heat pump B is 100% 
for all optimizations other than Case 5 with CO2 (see Fig. 7). 

4.4.2. Adding an ejector (Heat pump C) 
Fmincon(All) is the best approach and obtains a 100% success rate 

for 5 < N ≤ 10, even when finding accurate solutions with COP error <

0.01% (see Fig. 7). PS(50) and GA often obtain inaccurate results with 
COP error > 1% that are far from optimized. For systems with an ejector, 
Fmincon(sqp) is much better than Fmincon(interior), however the suc
cess rate with Fmincon(All) is typically the best. The statistically based 
methods (PS and GA) require about 10 times as much run time than 
Fmincon(All), while the success rate is less than 80%. Note that if an 
ejector is added, PS(50) run time increase with 250%, while the Fmin
con(All) run time only increase with 33%. 

4.4.3. Optimization of complex SHIs 
Fig. 7 illustrates that the run time increases significantly if a third HE 

or an ejector is added, showing the importance of using efficient 
schemes for more complex SHIs. The most complex system modeled here 
has only 4 optimization variables and 3 equipment constraints, while e. 
g., Fahr et al. (2022) used 91 optimization variables for a regenerative 
Rankine cycle. More complex systems with additional HEs, refrigerant 
mixtures and optimal heat integration of multi-streams HEs can deal 
with different potential sources of numerical noise which are difficult to 
quantify. The review by Rao et al. (2020) concluded that traditional 
optimization techniques, such as gradient-based methods, usually fail to 
solve large-scale non-linear SHI problems with local minima. However, 
Fmincon methods such as sqp have been used to model complex SHIs 
(Espatolero et al., 2014), and are also found to be the best approach for 
the simpler SHIs modeled here. The trend discovered, is that the Fmin
con(All) run time is significantly less affected by additional equipment. 
For example, the results show that the Fmincon(All) run time only in
crease with 68% when adding a HE and 33% when adding an ejector, 
while the PS(50) run time increase with 104% and 250%, respectively. 
This trend could indicate that nonlinear-constrained gradient-based 
optimization sequences, such as Fmincon(All), also will be the best 
approach for more complex SHIs. However, more research is needed to 
determine if heat pumps with two or three HEs are representative of 
‘systems with multiple heat exchangers’ in general, or if it is possible to 
extrapolate observations from such simple processes to systems with 
more HEs. 

4.5. Process modeling precision versus optimization success 

In this study, the process value being optimized (COP) is calculated 
directly without using equipment approximation, instead such approx
imations are introduced through optimization constraints. Unlike the 
ejector efficiency constraints, the HE performance constraints introduce 
numerical noise, due to numerical ΔTpinch approximations. Determin
istic solvers use a fixed strategy, where the whole optimization search 
can fail if only one single improvement is missed due to numerical noise. 
However, the HE accuracy is also important for stochastic optimization 
algorithms, as illustrated in Fig. 7. It is important to find the ΔTpinch and 
COP accuracy level required by different optimization algorithms. 
Optimization algorithms based on gradient calculations are highly sen
sitive to noise. Fig. 7 shows that Fminunc is the least successful method, 
due to the penalty-noise problem that derives for unconstrained 
gradient-based methods. Fmincon was also tested using penalty terms 
instead of non-linear constrains, however, this unconstrained gradient- 
based approach was also highly unsuccessful and therefore not investi
gated further. The finite difference step-size used by Fmincon and 
Fminunc can be increased to make them less sensitive to noise, but such 
schemes will require more optimization steps since gradient approxi
mations will be less accurate. 

4.5.1. Numerical noise generated by fluid property packages 
The noise in the COP and ΔTpinch values are directly related to the 

numerical approximations implemented in the fluid property package. 
In this work only SHIs with pure refrigerants are studied using CoolProp. 
For gradient methods, it is important to avoid unnecessary numerical 
noise in the objective function (COP). Hence, the great success of 
Fmincon indicates that the numerical noise introduced by CoolProp is 
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Fig. A1. Errors in optimized COP values with respect to computer run time for schemes with N = 2, 3, …, 30.  
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relatively small. However, fluid properties of pure refrigerants are easier 
to compute accurately than refrigerant mixtures (Brodal et al., 2023), 
but Fmincon can also handle refrigerant mixture problems. For example, 
Fmincon has previously been applied when modeling mixed refrigerants 
SHIs used the fluid property package TREND (Brodal and Eiksund 2020). 

4.5.2. Numerical noise generated by equipment models 
In this study the main source of numerical noise is generated by the 

HE approximations, while the other process parameters, such as COP, 
are calculated accurately from fluid property package values. Some 
effort was put into modeling COP with as little noise as possible, e.g., 
modeling the ejector performance through optimization constraints. 
However, conventional process modeling programs primally designed to 
solve complex processes that do not involve optimization, such as 
HYSYS, are often calculating process parameter with a precision rele
vant for engineers to save computational time, e.g., using fast iterative 
solvers that calculate COP with only an 0.1% accuracy (Brodal et al., 
2019). However, such a low precision can make gradient approxima
tions useless, and can also cause problems for other optimizations 
schemes such as Fminsearch and PS (Brodal et al., 2019). More work is 
needed to investigate the optimal modeling accuracy for different 
optimization algorithms. 

5. Conclusion 

The accuracy of the process model affects the optimization results 
and the optimization run time. The ΔTpinch HE constraints introduce 
numerical approximations in the optimization problem, which can be a 
dominant source of noise causing optimization algorithms to fail or be 
inefficient. Calculating ΔTpinch accurately requires extra computational 
work, but this extra effort can reduce the overall workload in optimi
zations. HE approximations are time-consuming, hence, finding a fast 
ΔTpinch scheme is important. A novel hybrid ΔTpinch approximation, that 
combines low and high-order interpolation methods, is compared with 
the conventional ‘Grid only’ approach which does not involve any 
interpolation. The main finding is that the ‘Hybrid’ method is much 
better than conventional schemes when optimizing SHIs. Fig. 4 and 
Table 8 show that the novel ‘Hybrid’ method is 5 – 10 times faster than 
conventional ‘Grid only’ method to obtain accurate results that can be 
used in sensitivity studies and in detailed equipment level design work. 
Fig. 7 shows that the optimal number of grid points for the ‘Hybrid’ 
method is 5 < N ≤ 20, however, N ≈ 10 is a relatively efficient grid size 
for all the different SHI designs. 

Fmincon, which is a gradient-based method that can solve non-linear 
constrained optimization problems directly, is found to be the best 
optimization method for all the SHIs modeled here. Fmincon(spq) 
typically optimizes simple SHIs, with only two HE, accurately and is 
more than 10 times faster than PS, which is the best stochastically 
method identified. Single Fmincon optimizations are less successful for 
more complex SHIs with three HEs or an ejector. However, the Fmincon 
(All) sequence is still successful, and is about 5–10 times faster than PS 
(50). Fig. 7 shows that GA, which is perhaps the most popular SHI 
optimization method (Austbø et al., 2014), is both slow and inaccurate. 
For example, a sequence based Fmincon optimization using a ‘Hybrid’ 
ΔTpinch model can potentially be 25 – 100 times faster than a PS scheme 
using ‘Grid only’ approximations, and perhaps more than 250 times 
faster than a conventional GA scheme using ‘Grid only’, since GA 
schemes must be called numerous times to obtain a sufficient success 
rate. That is, a sensitivity study that takes weeks to compute with con
ventional stochastic methods, such as Brodal and Jackson (2019), can be 
executed in hours with ‘Hybrid’ Fmincon based schemes. 

It has often been argued, e.g., by Rao et al. (2020), that methods such 
as PS and GA must be used to solve large-scale SHI problems with local 
minima. However, this is not obvious from the results presented here. 
That is, PS is highly successful for SHIs without ejectors but requires 

much more computation time than Fmincon. The results also show that 
when the system complexity increases, adding a HE or an ejector, the 
run time increases more for PS than for Fmincon(all). This could indicate 
that sequences of non-linear constrained gradient-based optimization 
schemes also are the best alternative for more complex SHIs. The results 
also show that a single Fmincon(spq) can optimize the simplest system 
(heat pump A), while it is necessary to use a sequence multiple Fmincon 
calls to optimize the more complex systems (heat pump B and C). This 
could indicate that longer optimization sequences, than the four used by 
Fmincon(All), should be applied when studying SHIs with higher 
complexity. The methods recommended for the SHI modeling can 
perhaps be generalized for solving semi-infinite programs. It is also 
reasonable to assume that the findings are relevant for other applica
tions such as HEN optimization, path constraints in dynamic optimiza
tion, and temperature constraints in plug flow reactors. However, more 
research is needed to answer such questions. 
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