Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Tore Lejon, Truls Ingebrigtsen and Lars Kr. Hansen*

Department of Chemistry, University of Tromsø, 9037 Tromsø, Norway

Correspondence e-mail: larsk@chem.uit.no

## Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
$R$ factor $=0.039$
$w R$ factor $=0.098$
Data-to-parameter ratio $=16.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

## 2-Chloro-2-phenylethylammonium chloride

The title compound, $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{ClN}^{+} \cdot \mathrm{Cl}^{-}$, has been obtained as an intermediate in the synthesis of 2-phenylaziridine. There are two molecules in the asymmetric unit and these are linked in the crystal structure by a network of intermolecular N $\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, plus an intermolecular $\mathrm{Cl} \cdots \mathrm{Cl}$ interaction.

## Comment

A number of aziridines have been studied as substrates in ring-opening reactions under neutral conditions. In this respect, 2-phenylaziridine was of interest as it is an analogue of, and exhibits similar properties to, mexiletine (De Luca et al., 2000, 2003). In this synthetic sequence, 2-chloro-2phenylethylaminium chloride, (I), was produced as an intermediate.

(I)

The title compound crystallizes in the monoclinic centrosymmetric space group $P 2_{1} / c$ with two molecules in the asymmetric unit (Fig. 1). The bond lengths are within the normal ranges (Allen et al., 1987). There are short intermolecular hydrogen bonds $(\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl})$ influencing the conformation of the two molecules (Taylor \& Kennard, 1982). Table 1 lists selected hydrogen bonds shorter than the van der Waals distance (Bondi, 1964). There is also a short intermolecular $\mathrm{Cl} \cdots \mathrm{Cl}$ contact $[\mathrm{Cl} 1 \cdots \mathrm{Cl} 4(1-x$, $\left.\left.\frac{1}{2}+y, \frac{3}{2}-z\right)\right]$ of $3.488(1) \AA$ with a $\mathrm{C} 12-\mathrm{Cl} 1 \cdots \mathrm{Cl} 4$ angle of 176.5 (1) ${ }^{\circ}$.

## Experimental

The title compound was synthesized following the procedure of Galindo et al. (1997) and crystals suitable for X-ray analysis were obtained by dissolving the compound in ethanol, followed by addition of diethyl ether until the solution was cloudy.

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{ClN}^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=192.08$
Monoclinic, $P 2_{1} / c$
$a=8.4813(13) \AA$
$b=20.409(5) \AA$
$c=10.939(2) \AA$
$\beta=90.719(13)^{\circ}$
$V=1893.3(6) \AA^{3}$
$Z=8$
$D_{x}=1.348 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=12-17^{\circ}$
$\mu=0.62 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.40 \times 0.20 \times 0.20 \mathrm{~mm}$

Received 13 January 2006
Accepted 17 January 2006

## Data collection

| Enraf-Nonius CAD-4 | 1320 reflections with $I>2 \sigma(I)$ |
| :--- | :--- |
| $\quad$ diffractometer | $R_{\text {int }}=0.031$ |
| $\omega-2 \theta$ scans | $\theta_{\max }=25.0^{\circ}$ |
| Absorption correction: $\psi$ scan | $h=0 \rightarrow 10$ |
| $(A B S C A L C$ in $O S C A I L ;$ | $k=0 \rightarrow 24$ |
| McArdle \& Daly, 1999; North et | $l=-12 \rightarrow 12$ |
| al., 1968) | 2 standard reflections |
| $T_{\min }=0.789, T_{\max }=0.886$ | frequency: 120 min |
| 3600 measured reflections | intensity decay: $1 \%$ |
| 3311 independent reflections |  |

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.098$
$S=0.87$
3311 reflections
201 parameters

H -atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0401 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.27 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$


Figure 1
The asymmetric unit of the title compound (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the $20 \%$ probability level.
(McArdle, 1993); software used to prepare material for publication: OSCAIL (McArdle, 2005).

## References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bondi, A. (1964). J. Chem. Phys. 68, 441-451.
De Luca, A., Natuzzi, F., Desaphy, J. F., Loni, G., Lentini, G., Franchini, C., Tortorella, V. \& Conte-Camerino, D. (2000). Mol. Pharmacol. 57, 268-277.
De Luca, A., Talon, S., De Bellis, S., Desaphy, J. F., Franchini, C., Lentini, G., Catalano, A., Corbo, F., Tortorella, V. \& Conte-Camerino, D. (2003). Naunyn-Schmiedeberg's Arch. Pharmacol. 367, 318-327.
Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Galindo, A., Orea, L. F., Gnecco, D., Enriquez, R. G., Toscano, R. A. \& Reynolds, W. F. (1997). Tetrahedron Asymmetry, 8, 2877-2879.
McArdle, P. (1993). J. Appl. Cryst. 26, 752.
McArdle, P. (2005). OSCAIL for Windows. Version 1.0.7. Crystallography Centre, Chemistry Department, NUI, Galway, Ireland.
McArdle, P. \& Daly, P. (1999). ABSCAL. PC version. National University of Ireland, Galway, Ireland.
McArdle, P. \& Higgins, T. (1995). XCAD. National University of Ireland, Galway, Ireland.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.

