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ABSTRACT 

The climate changes in the last few years created a major need to integrate more renewable energy 

sources and other low-carbon technologies into the power system network. This causes to face 

more changes in the power system network, which are particularly visible in distribution power 

networks. A higher penetration of the distributed energy resources, installed at low- voltage and 

or medium-voltage levels, creates new challenges for distribution system operators. One of the 

important issues is to effectively manage the reactive power in a smart distribution network, as the 

mismatch of the reactive power in a power system network can cause voltage violations in the 

network.  

 

By timely predicting the reactive power, a distribution system operator can make better decisions 

to avoid any voltage violations. Several conventional techniques like optimal power flow (OPF) 

control and droop control are used, which are highly dependent on grid models. But machine 

learning (ML) is an effective approach due to its capability of handling multiple variable data sets 

and its performance is being independent of grid constraints. 

 

Therefore, in this thesis, we propose a machine learning-based approach for time series prediction 

of reactive power in a smart distribution network. After going through a literature review to find 

research gaps, a detailed methodology is discussed, highlighting tools used and how they impact 

on our objectives. Moving forward, a power flow analysis is performed to see the impact of 

reactive power on SDN. After acquiring all the data required for training algorithms, ML is 

implemented, and the results are also compared with the optimal power flow method. The results 

show that the predicted reactive power by the ML approach is very close to the OPF results. 

However, more improvements can be made by increasing the dataset and changing in the layers of 

ML algorithms. 
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1.     Introduction 

This chapter of the thesis will hover over background and motivation to work on this 

problem. There is an explanation of complete problem statement, a description of main objectives 

and scope of the thesis is discussed.  

 

1.1. Background and Motivation  

The population of world is growing at very fast pace and so does the energy needs. To 

overcome power shortage, there is a high-speed transition happening towards Renewable energy 

resources especially solar plants. There is huge injection of PV’s into our grid system taking place 

every day. These PV’s are attached with smart converters which have the ability to inject active or 

reactive power into our system. Since reactive power plays a very important role in mitigating 

voltage violations so it’s controlled injection can help us to stabilize our Distribution Networks. 

There have been various conventional methods used for keeping reactive power stabilized in DN, 

like using OPF or Droop control but these are highly grid model dependent. With the advent of 

machine learning (ML), computers tend to learn from data without being explicitly programmed. By 

employing experience (i.e., data) to learn patterns, correlations, and insights that can be applied to 

new situations, machine learning aims to provide computers with the ability to automatically 

improve their performance at a task over time. This field has been evolving since the 1980's. It 

emerged as an individual field of study when researchers started to investigate different dynamics 

of creating machines which could learn and interact like humans. ML research expanded, with a 

focus on more intricate and realistic situations. The spectrum of applications for machine learning 

was significantly increased in the 1990s and 2000s with the invention of support vector machines 

(SVMs) and boosting methods [52]. 

 

ML has been researched and used in the context of power networks to solve a variety of issues, 

including demand-side management, grid stability, and energy efficiency. The biggest problems in 

implementing ML in power systems are a lack of accountability and guarantee, which cannot be 

tolerated given the importance of a stable power supply to the entire population. Hence, it is best to 

begin with less complex problems that are less sensitive to accuracy, yet difficult to address using 

traditional techniques. 
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The main motivation to work on this research problem is that it is a fusion of the power sector and 

the ML community. ML being a highly emerging field can be a very good tool for Electrical 

Engineers to sort out different problems within power industry. Hence, it can be very helpful and 

good start for future work as well. 

 

1.2. Problem Statement  

In recent times, with high penetration of PV’s in our distributed networks, the management 

of reactive power is becoming a challenging task. High or low injection of reactive power into the 

distribution network can cause voltage violations, which results in huge power losses and 

breakdowns. Renewable energy sources generate power that is often variable and intermittent, 

leading to fluctuations in grid voltage and reactive power demand. So, reactive power compensation 

is very important to stabilize grid voltage and ensure optimal power flow.  Through the incorporation 

of sensors, communication systems, and sophisticated algorithms, smart distribution networks offer 

the opportunity for more advanced reactive power management. The creation of accurate forecasting 

models for RES generation, the optimization of reactive power compensation schemes, and the 

coordination of numerous devices and stakeholders are among the issues that still need to be 

resolved. To solve this problem, we can use the control feature of solar inverters to optimize voltage 

regulation using reactive power control. However, as there is a lot of uncertainty and variability of 

load, this can be a challenging task to do, especially when there is limited reactive power supply 

from the PV inverters. ML can be a good candidate to sort out this issue, as it allows algorithms to 

learn from the previous standard data without constraints of network parameters and then control 

can be implemented based on prediction made by ML algorithm.  The efficiency of ML in regulating 

reactive power in a decentralized network is determined by several parameters, but most important 

part is the availability of a big chunk of real time data and the learning algorithm that has been 

chosen. As a result, before implementing the ML-based control system in a real-world application, 

a comprehensive analysis and assessment of system performance and resilience is required. 

 

In this thesis we will see how the distribution network is impacted if there is high, low or no external 

injection of reactive power. Then we will implement a machine learning algorithm to predict time- 

series reactive power support from smart converters to mitigate the voltage violations in a 

distribution network which is our main objective.  
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1.3. Research Objectives  

This thesis covers the following objectives.  

• Literature survey of different machine learning approaches used in active and reactive power 

control.  

• Analyzing the impact of reactive power support on distribution network. 

• Time series forecasting of reactive power support from smart converters using the ML 

approach. 

• Comparison of the analysis obtained from the conventional approach for forecasting with 

the ML based method.  

 

1.4. Thesis Limitations 

 Here are some main limitations of this research work.  

• It only offers a time-series prediction of reactive power support from smart converter. 

Implementing control algorithm is out of the scope of this research. 

• Only 13 PV’s are used in the network for this analysis. The results may show variation when 

there is alteration in the number of PV penetration. 

• Algorithms are trained on a very limited data set. There are high chances of performance 

improvement when the data set is increased because of the more pattern availability to 

algorithms. 

• As real-time data sets were not available, so data generated by OPF analysis is used which 

is based on initial profile obtained by sensitivity analysis [16, 51].  
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1.5. Scope of thesis 

There are several sections in this thesis which cover both theoretical and experimental 

aspects.  

All these sections aim to cover the main objectives of this thesis. 

• Introduction: In this section, background and motivation of thesis is discussed along with 

problem statement. Moreover, the main objectives and scope of this thesis is also mentioned in 

the first section.  

• Literature review: This part covers a detailed overview about SDN’s, smart converters, 

machine learning background and its applications in the field of power systems. It also discusses 

existing work done in the domain of predictive analysis for reactive power support.  

• Methodology: It is one of the critical sections of this thesis and it covers the detailed process 

overview and tools used through which the objectives of the thesis are achieved. There is a flow 

diagram, as well as written details for process understanding.  

• Implementation of network and algorithms: This section is one of the most detailed portions 

in this thesis and covers two main objectives of the thesis which include implementations of ML 

algorithms for reactive power prediction and impact of reactive power support on SDN. Aspects 

like mathematical modeling and theoretical knowledge are also covered in this section.  

• Results and Discussion: This portion covers results obtained from different ML algorithms with 

explanations. The performance of each algorithm is analyzed in this section, and a 

comprehensive analysis has been done considering pros and cons of using conventional approach 

versus the ML algorithm for the reactive power support problem. 

• Conclusion: This section summarizes the whole thesis and discusses the main findings. Also 

there is a recommendation of future work that could be done on this research. 
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2.     Literature Review 

            This chapter will highlight some features of SDN, different types of smart converters and  

literature on machine learning, including some applications of machine learning in the power sector 

focusing on reactive power control and voltage regulation.  

 

The growing utilization of static power electronics converters in renewable energy sources within 

smart distribution networks (SDNs) has led to an increasing interest in using smart converters for 

providing reactive power support. In this context, the use of machine learning algorithms to address 

uncertain system dynamics in SDNs has become a high priority within the smart grid paradigm. 

Therefore, the time-series forecasting of reactive power support from smart converters in SDN using 

machine learning has gained significant attention in recent years. This approach involves the analysis 

of historical data to develop predictive models that can accurately forecast reactive power support, 

facilitating efficient and reliable operation of SDNs. 

 

2.1 Review on Smart Distribution Networks 

An advanced power grid system known as a "smart distribution network" (SDN) uses digital 

communication and control technology to improve the efficiency, dependability, and sustainability 

of electricity distribution. SDNs were created to enable bidirectional power flow, real-time 

monitoring and management of power flows, and the integration and optimization of diverse 

distributed energy resources (DERs) like solar panels, wind turbines, energy storage systems, and 

electric vehicles [25]. In addition to enabling new business models and consumer engagement 

methods, the incorporation of SDN technology can enhance power quality, lower energy losses, and 

boost the overall flexibility and resilience of the distribution system. But in order to successfully 

adopt SDNs, extensive planning and coordination are necessary, as well as resolving several 

difficulties like cybersecurity, interoperability, and legal concerns. The research in [12] stress the 

necessity for more study on SDN optimization and control strategies and the significance of creating 

thorough and adaptable frameworks for SDN planning and management. 
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2.1.1. Features of SDN  

      There are many advantages of using smart distribution networks but here are presented 

some of the key benefits.  

• Improved monitoring and control: SDN enables utilities to monitor and control the 

distribution network in real-time, allowing them to swiftly identify and address problems like 

voltage fluctuations, overloading, and faults that can result in power losses. 

• Predictive maintenance: SDN can also make it possible for utilities to perform predictive 

maintenance by giving those insights into the state of their network's assets and spotting potential 

problems before they arise. This can reduce downtime and increase the network's overall 

dependability [4]. 

• Load balancing: By balancing loads across the network, SDN can improve power distribution 

and reduce the risk of overloading and other problems that could result in power losses. 

• Integration of distributed energy resources: SDN can aid in the integration of distributed 

energy sources into the grid, reducing the amount of power that must be transported over long 

distances and, in turn, lowering power losses. Examples of such distributed energy sources are 

solar panels and wind turbines. 

• Minimal Impact of Fault on Customers: Due to immediate recognition of fault location, 

appropriate decisions, system restoration of healthy sections, and system recovery to normal 

condition in the smart grid, the impact of faults on customers was minimized [5]. 

 

In summary, smart distribution networks (SDNs) are a cutting-edge response to the problems that 

traditional electricity distribution networks are currently experiencing. To guarantee the effective 

and dependable management of electricity grids, they integrate a variety of contemporary 

technology. Effective demand response management is made possible using SDN, which also 

increases the stability and resilience of the power system, lowers power losses, and enhances power 

quality. 
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2.2. Review on Power/Smart Converters 

    A smart converter, often referred to as a power electronic converter, is an equipment that 

changes the form in which electrical power is supplied. In electrical power systems, it is primarily 

used to convert DC (direct current) to AC (alternating current) or the other way around. Smart 

converters can control the flow of power and enhance the stability and effectiveness of power 

systems thanks to their sophisticated control and communication features. They are a crucial part of 

"smart grids," as AC and DC are synchronized in a smart grid, a multi-function converter is needed 

to transport electricity between the two grids [15]. The converters can function as uninterruptible 

power systems (UPS) to supply both DC and AC loads in the event of an AC grid failure [14]. 

There are several different types of power converters available today, but we will discuss some of 

the main types.  

 

2.2.1 Grid Forming Power Converters: 

             Electrical devices known as grid forming power converters can provide an isolated grid or 

micro grid with a stable and regulated voltage and frequency, allowing it to function apart from the 

main grid. Grid forming power converters, in contrast to conventional grid-tied power converters, 

can produce a steady AC voltage and frequency on their own, enabling them to support the power 

system in the event of a blackout or grid outage. In isolated grids or micro grids, these converters 

are very helpful for incorporating renewable energy sources and energy storage systems. These 

converters are considered as current control voltage source converters [19, 20] because of their 

ability to adjust active and reactive powers, maintain the state of charge (SOC) of an energy storing 

unit (ESU) thus enhancing the power quality [19]. 

 

2.2.2 Grid Following Converters 

            Power electronic devices known as "grid-following converters" are developed to maintain a 

constant output voltage or current that follows the grid voltage or current, respectively. In order to 

transform the DC output of solar photovoltaic (PV) panels or wind turbines into AC power that can 

be synchronized with the utility grid, these converters are frequently employed in renewable energy 

systems, such as solar photovoltaic (PV) and wind power systems. Grid following converters can 

operate in current control mode (CCM) or power control mode [28].  These modes achieve active 

and reactive power control (for AC sub-grid) and current or power control (for DC sub-grid). 



20 

 

Grid-following converters have the benefit of operating in parallel with the grid without the 

requirement of synchronization equipment and by supporting the grid with reactive power [19]. In 

summary, grid forming power converters are essential components in current power systems because 

they offer grid support services that promote the stability and dependability of the grid. 

 

2.2.3 Interlinking Power Converters: 

  In order to create the AC/DC MG, the interlinking power converter (IPC) is typically 

employed to connect the DC and AC sub-grids. Based on the power surpluses on a specific sub-grid, 

these converters can operate in both directions. It has three different operating modes: inversion, 

rectification, and stop mode. The IPCs can connect to many grids as a result of recent improvements 

in power converters. Numerous studies have suggested that IPCs can potentially serve as power 

converters that construct and support grids [33]. However, the literature [29] highlighted some 

serious problems, including 1) non-linear load behavior when transferring power from an AC sub-

grid to a DC sub-grid, 2) current circulation between parallel-operated IPCs, and 3) re-

synchronization problems following the removal of faults. Additionally, by restricting the power 

exchange across sub-grids, the usage of IPCs for ancillary services like power quality enhancement 

may lower the maximum RES utilization, which lowers system efficiency. As a result, the 

effectiveness of system and conversion quality must be traded off. 

 

In general, power systems need smart converters for several reasons. First, they make it possible to 

integrate renewable energy sources such as solar and wind power into the grid in a reliable and 

efficient manner. Second, by controlling voltage and frequency, lowering harmonic distortion, and 

providing reactive power assistance, they also improve power quality. Third, they improve grid 

resilience and stability by minimizing grid disturbances and providing quick and precise control 

over power flow. Fourth, they make it possible to monitor and communicate in an advanced manner, 

which improves the management and coordination of dispersed energy resources. 
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2.3 Introduction to Machine Learning 

A growing requirement for decision-support technologies is a direct result of the explosion 

in data available over the past few decades. Machine learning is one such technology; it is a branch 

of AI that allows machines to learn from experience and examples without being explicitly 

programmed. This involves feeding data to an algorithm to build a model, which can then be used 

to make predictions or uncover patterns. The fields of healthcare, finance, media industry, image 

and video processing [22], are just a few examples of the numerous fields that can benefit from 

machine learning. This article provides an overview of the basics of machine learning, its algorithms, 

and its uses in various fields [1]. 

 

Supervised type of learning [22] involves having both input and output variables, and an algorithm 

can derive a function that maps the input to the output. It is used frequently when data is already 

available for the target output [42]. Separate sets of data, known as training and test data, are used 

by the algorithm to learn a predictive or classifying function.  

 

 

Figure 1 Example of Supervised Learning 

 

Unsupervised form of learning [22] involves only having input variables, with unlabeled data that 

is utilized by algorithms to identify patterns of interest. The algorithms learn the features 

independently, and when new data is presented, they use the previously learned features to group 

the data accordingly [27]. It is like having questions without correct answers to match them with. 

This type of learning is used primarily for clustering and association problems [2]. 

 

 

 

 

 

 

 

5,6 

11 

Logic Algorithm 

Training with training data 

 
  

2,4 6 Logic 

Predicting with new data 



22 

 

 

 

Figure 2 Unsupervised learning model 

   

 

2.3.1. Machine Learning Approaches 

In the realm of power systems, reactive power control is a critical task that ensures power 

quality and system stability. With the rise of smart distribution networks, several machine learning 

approaches can be employed for reactive power control. These approaches include Deep Learning, 

support vector machines, Decision Trees, Random Forests, and Gradient Boosting methods [27]. 

 

Artificial Neural Networks 

Support Vector Machines 

Decision Trees 

Random Forest Algorithm 

Deep Learning Algorithms 

Gradient Boosting 

 

Artificial Neural Networks 

By analyzing past data and taking into account other aspects of the system, artificial neural networks 

(ANNs) can be put to use in reactive power control. Artificial neural networks (ANNs) are a class 

of machine learning algorithms that, through training, can discover previously unseen patterns and 

relationships in data [34]. It is up to the designer to decide on the ANN's architecture, which includes 

the number of input nodes, hidden layers, and output nodes. The level of detail and complexity of 

the system might inform the design [27]. By changing the weights and biases of the nodes, training 
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the ANN using historical data allows for the error between predicted and actual reactive power 

values to be minimized. 

 

Support Vector Machines  

Support Vector Machines (SVMs) can be used in reactive power control to predict the reactive power 

requirements based on historical data and system parameters. For both classification and regression, 

SVMs are a useful machine learning technique. [17]. Designing the SVM model entails choosing 

the kernel function and fine-tuning the hyper-parameters. The decision boundary's form is 

determined by the kernel function, which can be linear, polynomial, or a radial basis function (RBF) 

[17]. After determining the best hyperplane for categorizing the reactive power data, the SVM is 

then trained using the historical data. Good empirical results and strong theoretical foundations are 

offered by support vector machines. Applications include text classification, object recognition, and 

recognition of handwritten digits [7]. 

 

Decision Trees  

Decision trees can be used in reactive power control forecasting to analyze power system data and 

build a model that predicts the reactive power requirements [37]. The decision tree algorithm 

segments information into subsets determined by the input variables values, modeling choices and 

their outcomes in a tree structure [27, 37].  Steps for Implementing DT’s in reactive power control 

are almost similar to those support vector machines although computational power of both 

algorithms are different. 

 

Random Forest   

Random Forest can be used to forecast reactive power demand based on historical data. The 

algorithm functions by first constructing several decision trees, each based on a unique subset of the 

training data, and then averaging the predictions from these trees. This helps to increase prediction 

accuracy by lowering the likelihood of overfitting [27]. 

To use Random Forest for the forecasting of reactive power support, historical data on reactive 

power demand, weather conditions, and other relevant factors can be collected. The reactive power 

demand can be predicted by using these data sets to train a Random Forest model. Reactive power 
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generation and consumption can be optimized with this knowledge, leading to greater system 

stability [37]. 

Overall, Random Forest is a useful tool for reactive power forecasting in power systems. It can help 

to improve the accuracy of predictions and optimize the control of reactive power generation and 

consumption for better system stability. 

  

Gradient Boosting    

In reactive power control forecasting, Gradient Boosting can be used to predict reactive power 

demand based on historical data, weather conditions, and other relevant factors. The algorithm works 

by iteratively adding weak models to the ensemble, and each model attempting to correct the errors 

of the previous models. This process continues until the ensemble can accurately predict the reactive 

power demand [38]. 

 

Compared to Random Forest, Gradient Boosting can be more computationally intensive and requires 

more tuning of hyper-parameters. However, it often achieves higher prediction accuracy and is more 

resistant to overfitting. 

 

To use Gradient Boosting for reactive power control forecasting, historical data on reactive power 

demand, weather conditions, and other relevant factors can be collected. The Gradient boosting 

model, which may predict future reactive power consumption, can be trained using these data sets. 

Similar to Random Forest, Gradient Boosting can be used to determine which attributes have the 

greatest impact on reactive power consumption. System stability can be enhanced by employing this 

data to fine-tune the regulation of reactive power generation and consumption [38]. 

In summary, Gradient Boosting is an effective method for anticipating reactive power regulation in 

power systems. It can help to optimize reactive power generation and consumption, leading to 

greater system stability and improved prediction accuracy. 
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Deep Learning   

Reactive power forecasting is an important problem in the operation and planning of power systems. 

Deep learning methods have been successfully applied to this problem and have shown promising 

results. 

This task is often accomplished by employing a recurrent neural network (RNN), such as a Long 

Short-Term Memory (LSTM) network. These networks are particularly useful for time-series 

forecasting problems, and have been used to represent the dynamic behavior of power systems. 

LSTM networks can learn long-term dependencies and capture complex patterns in the input data 

[39]. 

 

To achieve the same end of feature extraction from raw data, convolutional neural networks (CNNs) 

are another viable option. By representing the series as a 1-dimensional image, convolutional neural 

networks (CNNs) can be applied to time series data, just as they have been successful in image and 

speech recognition applications. A fully connected neural network (FCNN) can be trained with the 

CNN's output to make more accurate predictions [40]. 

 

Reactive power forecasting has also been explored with other deep learning techniques, such as deep 

belief networks (DBNs) and auto encoders. The reactive power generated by wind turbines has been 

accurately predicted using DBNs because of their ability to learn hierarchical representations of the 

input data. In order to lessen the burden on the computer's processing power, auto encoders can be 

utilized for feature extraction and dimensionality reduction [39]. 

 

Types of Methods in Deep Learning  

 

Recurrent Neural Networks (RNNs) 

Recurrent neural networks (RNNs) are a type of neural network that excels at time series forecasting. 

The Long Short-Term Memory (LSTM) network is a common type of RNN that has found 

widespread application in time series forecasting. Long short-term memory (LSTM) networks are 

able to learn long-term dependencies and can effectively capture complicated patterns in the 

incoming data. By feeding historical data into the network, the LSTM can predict future reactive 

power output based on past behavior [41]. 
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Convolutional Neural Networks  

Although CNNs are most often employed for image identification applications, they can also be 

used for time series data. When making predictions using reactive power, it is helpful to think of the 

input data as a 1-dimensional image, with the time series serving as the horizontal axis and the input 

variables providing the vertical axis. For more precise predictions, one can use the CNN's output to 

train a fully connected neural network [42]. 

 

Deep Belief Networks   

Unlike traditional neural networks, DBNs are capable of learning tree-like representations of their 

inputs. They excel in reactive power forecasting and other tasks where high-dimensional, noisy input 

data is present. One study found encouraging results when using DBNs to predict wind turbine 

reactive power output [39]. 

 

Auto encoders   

When it comes to feature extraction and dimensionality reduction, neural networks such as auto 

encoders come in handy. In order to function, they reduce the dimensionality of the incoming data 

and then use this representation to recreate the original data. This can be helpful in finding the most 

crucial input variables and minimizing the computational complexity of the forecasting model [43]. 

 

2.4 Applications of Machine Learning in power systems 

          There are several different areas in power systems where machine learning is very useful and 

currently making quite an impact. Some of those are discussed below with a focus on reactive power 

control. 

 

2.4.1. Power System Protection Based on Machine Learning 

To overcome the difficulty of validating deep learning methods for power system protection, 

a new adaptive protection approach based on probabilistic machine learning is being used, 

specifically Gaussian discriminant analysis, for inverse-time relays. This method uses power system 

data to generate operation curves that can be used to verify and validate protection decisions. It 

demonstrates the effectiveness of the approach for fault detection, localization, relay coordination, 
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optimization, and protection management by specifying minimal communication requirements for 

adapting relays. It applies the method to the CIGRE medium voltage grid to show its effectiveness 

under different operating conditions, including islanded grid-connected modes, radial and mesh 

topology, and distributed generation [44]. 

 

2.4.2. Networks Intrusion Detection Systems  

           Data transfer via networks has increased as technology and the Internet have spread. This is 

unfortunate since it raises the possibility of malicious assaults leading to security breaches and data 

corruption. Many intrusion detection technologies, such as Network Intrusion Detection 

technologies (NIDS), have been created to counteract this. It is common practice to apply machine 

learning and deep learning algorithms for developing secure NIDS. The deep learning algorithms 

deliver top-notch precision and efficiency [39]. The use of machine learning and deep learning 

algorithms, focus on the KDD Cup'99 dataset. It evaluates the accuracy of various methods and 

identifies problems and obstacles in NIDS [8].  

As data becomes more widespread and accessible, cybersecurity has become increasingly important. 

Hackers and intruders are always looking to infiltrate the data, which makes network intrusion 

detection systems crucial. Different techniques for network intrusion detection systems highlight the 

importance of feature selection in machine learning algorithms. Machine learning algorithms require 

an additional process for feature selection, whereas deep learning algorithms include feature 

selection in their layers [45]. This is why deep learning algorithms tend to outperform machine 

learning algorithms. It concludes that deep learning tools are becoming the trend in the building of 

NIDS. However, deep learning requires more computations and GPUs, and there is still room for 

improvement in real-time detection. The literature review shows that deep learning methods are 

more accurate than machine learning methods, with better runtime complexity, but efficiency for 

real-time detection still needs improvement [8]. 

 

2.4.3. Voltage/VAR Control Strategy 

    A technique used in power systems to control and sustain voltage and reactive power flow 

in the transmission and distribution networks is called voltage and VAR (Volt-Ampere Reactive) 

control strategy. To keep the voltage within reasonable bounds and reduce power losses, it entails 

adjusting the magnitude of the voltage and injecting reactive power at various locations in the 
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system. Volt-VAR control can be done in a variety of ways, including manually, time-based, and 

automatically using cutting-edge technologies like artificial intelligence (AI) [9] and machine 

learning (ML). Artificial intelligence (AI) techniques have intelligence features that traditional 

methods lack. As a result, reactive voltage control applications of AI techniques have received 

considerable attention, and several authors have found significant success in this area. The 

advancement of new automatic intelligent Volt/VAR control systems made possible by artificial 

intelligence (AI) technology will help to reduce the negative effects of the human factor and the 

inadequacies of conventional control systems [11, 51]. These methods can help the power system 

run more efficiently, cut energy costs, boost the reliability and stability of the grid, and increase the 

quality of the power. 

 

2.4.4. MARL for Active Voltage Control  

Due to the growing prevalence of de-carbonization, this research explores the application of 

multi-agent reinforcement learning (MARL) to address the challenge of active voltage management 

in power distribution networks. In this research, we present a Dec-POMDP (Decentralized Partially 

Observable Markov Decision Process) framework for modeling decision-making in multi-agent 

systems, and apply it to the active voltage control problem [10]. 

 

To facilitate collaboration between the power and MARL communities, the paper presents an open-

source environment that can be used to simulate power distribution networks and test different 

control strategies. This environment provides a common platform for researchers to evaluate their 

approaches and share their results, which can accelerate progress in this area. 

The paper also examines the challenges of using MARL for this problem, such as interpretability. 

Since MARL involves multiple agents learning and interacting with each other, it can be difficult to 

understand how each agent is making decisions and what factors are influencing its behavior. The 

paper suggests that interpretability techniques such as attention mechanisms and visualization tools 

can help address this challenge. 

Finally, the research compares the performance of MARL to traditional control methods for active 

voltage control. The results show that MARL can achieve better performance than traditional 

methods, especially in complex scenarios with multiple agents and changing conditions [23, 31]. 
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2.4.5. Forecasting of Reactive Power Consumption using ANN  

Power factor polarization in individual phases is a problem for many energy consumers, 

especially small and medium-sized businesses. Because of the inductive and capacitive power factor 

variations between phases, conventional 3-phase reactive power compensators are difficult to install. 

Therefore, consumers pay more when their power factors exceed than those specified in their 

contracts. Reactive power forecasting using artificial neural networks is one solution to this problem. 

The research used a Nonlinear Autoregressive (NAR) neural network to forecast reactive power 

generation, and studied it with different input vector sizes and hidden layer neuron counts. The 

simulation results were compared to actual measurements, and the findings suggest that it is possible 

to forecast the trend of reactive power, allowing optimal planning of reactive power compensation 

strategies [24]. 

 

Figure 3 Two Layer Neural Network in MATLAB [24]. 

 

2.4.6. Droop Control Using Machine Learning   

   Using machine learning techniques like artificial neural networks (ANN) and fuzzy logic, 

this article discusses a droop control strategy for inverter-based micro-grids. In terms of frequency 

regulation and load sharing, the proposed method is found to perform better than conventional droop 

control methods. Artificial neural network-based controllers are used to build a droop control 

strategy for grid-connected inverters. Training data from simulations and experimental results are 

used to refine the proposed controller. The results show that the proposed controller performs better 

than traditional droop control methods in terms of transient response and steady-state performance 

[20, 21]. 
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2.4.6.1 Application of Droop Control  

Active and reactive power sharing across numerous dispersed generators can be 

accomplished with droop control. Systems with high inductive line impedances can benefit from the 

conventional droop approach, whereas systems with high resistive line impedances can benefit from 

the inverse droop method. The inverse droop control is commonly employed in primary controllers 

of low-voltage micro grids with predominantly resistive line parameters to accomplish decentralized 

power sharing. Because of the high resistance of the network, the inverse droop control has been 

used in many low-voltage micro-grid studies. 

 

The suggested technique estimates the voltage and frequency trajectories of the next time step using 

droop constants and ideally predicted powers. This method's key benefit is that it is simple to apply 

and does not necessitate fine-tuning any parameters in the supplementary control layer. In addition, 

it does not require complex estimating methods or time-consuming model calculations. It is 

important to note that PI controllers are not used in the hierarchical control layers that are the focus 

of this method. Both theoretical analysis and empirical data show that this approach is superior to 

PI-based controllers in terms of response and efficiency. It has been demonstrated that the controller 

is reliable, has fast dynamic feedback, and can successfully reestablish voltage stability [21]. 

 

2.5. Concluding Literature Review 

         As of today, grids have Integrated Distribution Systems (IDS) which refer to the combination 

of various energy sources, loads, and distribution systems into a unified power grid. Reactive power 

control is an essential aspect of IDS management, as it helps to maintain grid stability and reliability 

by regulating voltage levels. Machine Learning (ML) algorithms can be used to enhance the 

effectiveness of reactive power control in IDS. 

After reviewing the literature on this topic, it can be concluded that in terms of active power control 

there is ample amount of work already done in that domain, but reactive power control is not that 

much explored field. There is huge potential to work on this topic. Efficient algorithms like CNN, 

LSTM and Neural Prophet are still open to be used. The architecture of these algorithms can produce 

highly reliable results for time series prediction of reactive power. By analyzing real-time data and 

developing optimized control strategies, ML-based systems can enhance grid stability and 

reliability, reduce energy losses, and minimize system downtime. 



31 

 

3.  Methodology  

       This chapter will cover the process and the tools which were used to achieve the objectives. 

3.1 Flow Chart 

Figure 4: Methodology Flowchart depicts the methodology used to develop a model for 

reactive power prediction in a power system using Machine Learning (ML) as the main tool. The 

methodology starts with identifying the problem, reviewing the related literature, moving forward 

towards the preparation of suitable tools for implementation of main components for analysis, 

including CIGRE Network topology, Power Flow analysis, and Optimal Power flow analysis. 

Finally, the methodology involves the analysis of the impact caused by reactive power on SDN, data 

generation for ML, training and testing of the ML models, and generation of results. 

 

Figure 4: Methodology Flowchart 
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3.2 Details about Methodology 

 

3.2.1. Problem Statement Identification 

The first step of the methodology is to identify the problem statement, which involves 

defining the research question and the objectives. This step is crucial for setting the direction of the 

research and ensuring that the research addresses a relevant problem. 

 

3.2.2. Review of Literature 

          After identifying the problem statement, the next step is to review the literature related to the 

particular use case. This step involves identifying the key theories, concepts, and research gaps 

related to the problem statement and determining their relevance to it. 

 

3.2.3. Tool Preparation 

          Once the literature review is complete, the methodology progresses to the preparation of 

suitable tools for implementation. The tools selected for this study include Panda Power, Jupyter 

Notebook and Google Colab for ML. These tools are essential for implementing the main 

components of the analysis. 

 

3.2.4. Implementation of Main Components 

          The next step of the methodology is the implementation of the main components for analysis, 

which includes CIGRE network topology, power flow analysis, and optimal power flow analysis 

(Mathematical Modeling and objective function development). These components are crucial for 

the analysis of the power system and the development of the reactive power prediction model. 

 

3.2.5. Analysis of Reactive Power Impact on SDN 

          This step-in methodology involves the analysis of the impact of reactive power on SDN. 

Power flow analysis is used as a tool which helps to determine voltage profile and loadings of each 

bus giving the changes in the SDN due to reactive power flow and its impact on the performance of 

the power system.  
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3.2.6. Data Generation for ML Algorithm 

          The next step is to generate data for the ML algorithm. Optimal power flow analysis is done 

to obtain a standardized set of data on which training of algorithms is possible. The OPF gives 

estimated reactive power needs to be injected into the system from each DER in order to mitigate 

voltage violations in the system. Hence, that data is used for training, testing and comparison 

purposes.  

 

3.2.7. Training and Testing of Model 

          After data generation is complete, the methodology progresses to the training and testing of 

the models. This step involves using the ML algorithms to train the models and evaluate their 

performances through testing. 

 

3.2.8. Results Generation 

           Finally, the methodology involves the generation of results. This step includes analyzing the 

performance of the reactive power prediction model and presenting the findings in a clear and 

concise manner. 

 

3.3 Tools Used 

         To achieve best results and match with standard work that is being used by the research 

community it is very important to choose the tools wisely to conduct research. In this research some 

standard tools have been used and this part will depict the main aspects of those.  

 

3.3.1.  CIGRE Network 

The development of CIGRE-Networks by the CIGRE Task Force C6.04.02 [36] provides a 

platform for stakeholders in the energy sector to collaborate and share knowledge and experiences, 

leading to a better understanding of the challenges and opportunities presented by DER integration. 

Our work utilizes CIGRE networks to support the analysis and verification of novel methodologies 

and techniques aimed at promoting the economic, resilient, and eco-friendly integration of DER. 

This section discusses the various aspects of CIGRE networks that make them an ideal choice for 

our work. 
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CIGRE Network is chosen in our work because of the following aspects [52]:  

• Platform for Collaboration: CIGRE networks provide a platform for stakeholders in the energy 

sector to collaborate and share knowledge and experiences. This is particularly important for 

promoting the integration of DER, which requires the input of multiple parties, including 

utilities, regulators, and technology providers. 

• Expertise: CIGRE networks are developed by experts from a wide range of fields within the 

energy sector. This expertise is invaluable for supporting the analysis and verification of novel 

methodologies and techniques aimed at promoting the economic, resilient, and eco-friendly 

integration of DER. 

• Best Practices: CIGRE networks develop and promote best practices for the integration of DER. 

This ensures that our work is based on the latest industry standards and guidelines and is 

therefore more likely to be widely accepted and adopted. 

• International Perspective: CIGRE networks have a global reach, which provides an 

international perspective on the integration of DER. This is particularly important given the 

increasingly interconnected nature of the energy sector and the global nature of the DER market. 

• Focus on Research and Development: CIGRE networks have a strong focus on research and 

development, which aligns well with our goals of promoting the economic, resilient, and eco-

friendly integration of DER. This ensures that our work is based on the latest research and 

cutting-edge technologies in the field. 

 

In this work we have used a medium voltage network with all DER which is a type of CIGRE 

network. This standardized network contains additional 15 distributed energy resources compared 

to medium voltage distribution network [36]. 

 

• 8 photovoltaic generators 

• 1 wind turbine 

• 2 Batteries 

• 2 residential fuel cells 
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• 1 CHP diesel 

• 1 CHP fuel cell 

 

 

Figure 5 CIGRE Medium Voltage Distribution Network [36] 

 

Figure 5 CIGRE Medium Voltage Distribution Network shows a network diagram of the CIGRE 

medium-voltage distribution network with distributed energy resources (DER) integrated. The nodes 

represent different components of the network and the arrows represent the flow of electricity. The 

thickness of the arrows represents the magnitude of the electricity flow, and the colors represent 

different voltage levels. This shows the behavior of the network with DER integration and helped 

us for planning and optimizing the network. 
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In our work, we have used the modified CIGRE network with DER integration as a basis for 

simulating and analyzing the behavior of the network under different scenarios. We have utilized 

the modified network to test and verify novel methodologies and techniques aimed at promoting the 

economic, resilient, and eco-friendly integration of DER. 

 

The CIGRE network diagram provides a realistic representation of a medium voltage distribution 

network with DER integration. It allows us to simulate the behavior of the network under different 

scenarios, such as changes in load demand or changes in the availability of renewable energy 

sources. This helps us to evaluate the effectiveness of our proposed methodologies and techniques 

in promoting the economic, resilient, and eco-friendly integration of DER [35]. 

 

3.3.2 Google Colab & Visual Studio:   

    Google Colab and Visual Studio are two popular tools used in machine learning 

development. Although they serve different purposes and offer unique benefits, they have both been 

utilized in this thesis to take advantage of their respective strengths. 

 

Google Colab is a cloud-based Jupyter notebook environment that allows users to execute Python 

code, create and share documents, and incorporate text, code, and visualizations [52]. Its popularity 

among machine learning professionals is due to several advantages, such as: 

 

• Free access to resources: Colab provides free use of high performance processing tools such as 

GPUs and TPUs, which are essential for deep learning model training [13]. This saves money 

compared to building a machine learning system, as no actual hardware is required. 

• Sharing and collaboration: Colab enables groups to work together on machine learning tasks 

by allowing multiple users to access the same notebook simultaneously. 

• Pre-installed libraries: Colab comes with pre-installed libraries like TensorFlow and PyTorch, 

making it simple to get started with machine learning [13]. 
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On the other hand, Visual Studio is an integrated development environment (IDE) that provides 

various tools for software creation, including an add-on for machine learning named Visual Studio 

Tools for AI [6]. This tool offers advantages such as: 

 

• Debugging and benchmarking tools: These tools can be used to analyze and improve ML 

models. 

• Refactoring and code completion: Visual Studio has robust features for code completion and 

refactoring that can help make your code more effective and efficient. 

• Azure integration: Visual Studio seamlessly integrates with Microsoft Azure, making it easy 

to manage and execute different machine learning models on the cloud [6]. 

 

In conclusion, Visual Studio is better suited for more complex machine learning projects that require 

advanced debugging and optimization tools, while Google Colab is ideal for quick prototyping and 

experimentation. Therefore, in this thesis, we have used both tools to take advantage of their unique 

aspects and benefits. 

 

3.3.3 Panda Power 

Panda Power has been used in our work for power flow analysis because it is a versatile and 

customizable tool that provides flexibility in power system modeling and analysis. It allowed quick 

modification in the power flow algorithms to suit various power system models and situations, which 

is essential in analyzing the economic, resilient, and eco-friendly integration of DER. Moreover, 

Panda Power is easy to integrate with other well-known Python tools, making data analysis and 

visualization for power systems simpler [46]. 
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Figure 6 Panda Power Features [46] 

 

The Figure 6 Panda Power Features depicts the different features of Panda Power and how it can be 

useful in planning and analyzing power systems. By using Panda Power, we were able to customize 

and adapt our power flow algorithms to suit various power system models and situations, enabling 

us to perform power flow simulations more efficiently. 
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4. Implementation of Networks and Algorithms  

After selecting the appropriate tools for conducting research and experiments, the main 

portion of the thesis focuses on the implementation of networks, power flow analysis, and machine 

learning (ML) algorithms. In this section, we will cover the following objectives: 

1. Investigating the impact of reactive power support on smart distribution networks. 

2. Collection of data using the Optimal Power Flow (OPF) method. 

3. Time series prediction of reactive power support using CNN, Neural Prophet and Long Short-

Term Memory (LSTM) models. 

 

4.1 CIGRE Network 

        In order to conduct comprehensive studies on power flows, it is essential to implement an 

appropriate network topology. In this thesis, we utilized a medium voltage distribution network with 

all distributed energy resources (DER) which is a type of CIGRE network. This choice of network 

topology allowed us to explore and analyze the impacts of reactive power support on smart 

distribution networks in a realistic and practical setting. 

 

We used Panda Power to implement the CIGRE Medium voltage network topology, which consists 

of 14 buses. The benchmark topology was modified to consider different types of cases while 

testing power flows. The Figure 7 Modified Layout of CIGRE MV Network with Loads and DER’s 

[16, 30] below shows the topology of the CIGRE network we used in our thesis.  
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Figure 7 Modified Layout of CIGRE MV Network with Loads and DER’s [16, 30] 

 

The CIGRE Medium Voltage distribution network that we have implemented in this thesis consists 

of a total of 14 buses. Within this network, there are 9 DER's (Distributed Energy Resources), 10 

residential loads, 8 industrial loads, and 2 transformers. These components have been carefully 

chosen to represent a real-world scenario of a smart distribution network with a mix of different load 

types and distributed energy resources [16]. 
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             Figure 8 CIGRE Implementation in Panda Power 

 

 

For the implementation of the CIGRE network in Panda Power, the network structure and parameters 

of each load and bus were added. Figure 8 CIGRE Implementation in Panda Power depicts the 

structure of the network after implementation, including the modified parameters. Specifically, some 

parameters were changed, which are detailed below: 

 

Transformer parameters:  

Transformer parameters were adjusted according to our problem and the table below is attached 

which clearly shows the modified parameters.  
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Table 1 Modified Transformer Parameters [35] 

 Name Std_ 

type 

HV

_ 

bus 

LV

_ 

bus 

Sn_ 

MVA 

Vn_ 

Hv_kv 

Vn_ 

Lv_kv 

Vk_ 

% 

Vkr 

% 

Pfe_ 

kw 

I0 

% 

Tap_ 

side 

0 Trafo 

0-1 

None 0 1 25.0 110.0 20.0 12.0010 0.41 14 0.07 HV 

1 Trafo 

0-12 

None 1 12 25.0 110.0 20.0 12.0010 0.41 14 0.07 HV 

  

Here in Table 1 Modified Transformer Parameters [35], we can observe that Tapping was introduced 

on the HV side, and the position of the transformer was adjusted at bus 1 and bus 12, as compared 

to the benchmark parameters. These standards are taken from study in paper [35]. 

 

Load Parameters:  

Load parameters were modified to observe the impact of under and over injection of reactive 

power from DERs. 

 

Table 2 Modified Load Parameters [51, 30] 

 Name  Bus  P_MW Q_MVAR Sn_MVA Scaling In Service  Type  

0 Load R1 1 19.83900 4.637136 20.400 1.0 True  Wye 

1 Load R3 2 0.50170 0.208882 0.550 1.0 True  Wye 

2 Load R4 3 0.43165 0.108182 0.445 1.0 True  Wye 

3 Load R5 4 0.72750 0.182329 0.750 1.0 True  Wye 

4 Load R6 5 0.54805 0.137354 0.565 1.0 True  Wye 

5 Load R8 6 0.58685 0.147078 0.605 1.0 True  Wye 

6 Load R10 7 0.54330 0.161264 0.570 1.0 True  Wye 

7 Load R11 8 0.32980 0.082656 0.340 1.0 True  Wye 

8 Load R12 9 20.0100 4.693341 20.580 1.0 True  Wye 

9 Load R14 10 0.54005 0.257713 0.605 1.0 True  Wye 

12 Load C17 11 0.07650 0.047410  0.090 1.0 True  Wye 

13 Load Cl9 12 0.57375 0.355578 0.675 1.0 True  Wye 

14 Load Cl13 13 0.03400 0.021071 0.040 1.0 True  Wye 
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In Table 2 Modified Load Parameters [51, 30], residential loads are represented by loads with R 

series, while commercial loads are represented by loads with C series. In industries, both resistive 

and inductive loads are common, making this configuration suitable for a wide range of scenarios. 

The load parameters are presented in Table 2 Modified Load Parameters [51, 30], which lists the 

values of active power (P), reactive power (Q), and voltage (V) for each load. 

 

4.2. Impact of Reactive Power Support on SDN 

        This part covers one of the main objectives of our thesis which is to analyze the impact of 

reactive power support on SDN and implementation of CIGRE Network was prerequisite to proceed 

with this. 

  

4.2.1 Power Flow analysis 

     An electrical power system's power flow is investigated using a technique called load flow 

analysis, also referred to as power flow analysis [52]. A group of nonlinear equations known as the 

power flow equations are used to model the system's power movement.  

Complex power, of which active power is the real portion and reactive power the imaginary part, 

can be used to express the power flow equations. Considering a system with “n” buses. For each bus 

i, the power flow formulae can be expressed as follows: 

 

𝑃𝑖 = 𝑉𝑖 ∑ (𝐺𝑖𝑗𝑉𝑗𝑐𝑜𝑠(𝛩𝑖  − 𝛩𝑗)  +  𝐵𝑖𝑗𝑉𝑗𝑠𝑖𝑛(𝛩𝑖  − 𝛩𝑗)) 

𝑄𝑖 = 𝑉𝑖 ∑ (𝐺𝑖𝑗𝑉𝑗𝑠𝑖𝑛(𝛩𝑖  − 𝛩𝑗)  −  𝐵𝑖𝑗𝑉𝑗𝑐𝑜𝑠(𝛩𝑖  − 𝛩𝑗)) 

 

In this case, 𝑃𝑖  and 𝑄𝑖 stand for bus “i” active and reactive powers, respectively. The voltage level 

and phase angle at bus i, respectively, are 𝑉𝑖 and 𝛩𝑖. The conductance and susceptance between bus 

i and j, respectively, are 𝐺𝑖𝑗 and 𝐵𝑖𝑗. 
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The equations explain how active and reactive power are distributed among the buses. A bus active 

power injection equals its active power consumption plus its active power transmission to other 

buses. A bus reactive power consumption plus its reactive power transmission to other buses equals 

the reactive power that is pumped into the bus. 

 

These equations can be solved using a variety of numerical approaches, including the Newton 

Raphson and Gauss Seidel methods. Important information about the network, such as the active 

and reactive power flowing through each line of the system and the amplitude and phase angle of 

the voltage at each bus, can be derived by solving these equations. 

Panda power has been used to solve this power flow system and simulations are done in order to 

observe how SDN behaves when there is a different range of reactive power support available. The 

code for this analysis is shown in Appendix 2: OPF Code 

 

4.2.2 Results of power flow Analysis 

Three different cases have been studied as shown below.  

 

1.  SDN with No Reactive power support 

To see the impact on our network without any external support of reactive power providing 

devices, all DER’s are removed and power flow analysis is done on the CIGRE network. 

Following results were obtained.  

 

   Figure 9 Voltage Profile with no Reactive Power Support 
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Figure 10 Loading Percentage with no reactive power support 

 

Voltage Instability  

Figure 9 Voltage Profile with no Reactive Power Support shows the voltage profile of the 

network. The acceptable voltage range is between 0.95 PU to 1.05 PU. In this case there are 

many buses where under voltage can be observed. Reason is that, in the Network there are 

heavy industrial loads mounted in which many components are of inductive load. So, with 

no reactive power support, network stability gets disturbed. Voltage fluctuations and voltage 

instability arise in the absence of reactive power supply. Due to this instability, the network 

may fail, resulting in data loss and downtime. 

 

High loading of Network   

Figure 10 Loading Percentage with no reactive power support shows the loading percentage 

of buses. Although loading percentages are below 100% but still very high on some buses. 

This is happening because of no external reactive power support which is causing voltage 

fluctuations and resulting in high loadings of buses. Without support of reactive power, the 

network's components function at greater currents, which could eventually overload them 

and cause failure. Increased power losses, decreased efficiency, and greater operational 

expenses can result from overloading. 
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2. SDN under Normal DER’s injection:  

In this case all DER’s are attached to the network and their active and reactive power support 

is supplied via smart inverters. Each DER is providing 0.2 MVAR of reactive power support. 

This is the case with Normal injection of PV’s in which reactive power is set to be not very 

high for the network.  

 

 

Figure 11 Voltage Profile with Normal DER Injection 

 

 

Figure 12 Loading Percentage with Normal DER Injection 
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Increased Voltage Stability  

Figure 11 Voltage Profile with Normal DER Injection shows that voltage profile of network 

is within range i.e. 0.95 PU to 1.05 PU. DER reactive power supply aids in maintaining 

network voltage stability. The DER also assists in controlling the voltage at the point of 

connection and lowering voltage fluctuations by supplying reactive power which is needed, 

keeping the power factor within range. Also, the injection of DER’s in the network can 

enhance performance, and the chance of downtime and data loss can be decreased. 

Increased Network Efficiency  

Figure 12 Loading Percentage with Normal DER Injection shows loading percentage of each 

bus. Here it can be observed that the loading percentage as compared to case 1 is very less 

on each bus. Reactive power assistance from DER aids in reducing power losses and 

enhancing network performance. The DER also reduces the amount of reactive power that 

must be transferred over long distances by providing reactive power close to the load, 

lowering losses and improving efficiency. 

 

3. SDN under High DER’s injection: 

As the concept of solar power is very popular these days, a lot of rooftop PV’s are being 

mounted every day. This case covers this aspect of the impact that will be produced on our 

SDN without an external control mechanism for smart inverters.  

Each PV is set to be providing 0.5MVAR of reactive power support mimicking high 

injection of PV’s in SDN.  After running power flow analysis following results were 

observed.  
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Figure 13 Voltage Profile with High DER Injection 

 

 

Figure 14 Loading Percentage under high DER Injection 

Over Voltage  

By observing Figure 13 Voltage Profile with High DER Injection showing voltage profile of 

buses under high PV injection following results can be deduced. Overvoltage and voltage 

instability can result from injecting the network with extremely high quantities of reactive 

power. It not only disturbs the power factor but also causes capacitor switching transients 

which leads to voltage spikes as well. Overvoltage can harm equipment and lower the level 

of service that users receive.  
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Extremely High Loading   

Figure 14 Loading Percentage under high DER Injection shows that under this case there is 

huge overloading on most of the buses. As there are a lot of voltage fluctuations under high 

injection, the loading of the bus is also not stable. High loading results in very high losses, 

burning and damaging of equipment.  

 

Conclusion    

From all the three cases discussed above, it can be clearly observed that reactive power support is 

very important for the Distribution network in order to have stable voltage profile throughout the 

network but at the same point if there is too much injection of reactive power then rather benefiting 

the system it results in over voltages causing damage to the network. So, there should be proper 

control methodology defined to have bounded reactive power support from DER’s as per 

requirement.  

 

4.3. OPF implementation for Data Collection  

To train a machine learning model it is important to have a good amount of controlled dataset. 

We will use optimal power flow analysis to acquire the amount of active and reactive powers which 

needs to be injected into the system in order to have smooth voltage profile and least loadings on 

the bus. Also, at this point total 13 PV’s (Appendix 1: DER’s rating [16, 30]) are attached to show 

high PV injection in the network which will be balanced by OPF. Appendix 2: OPF Code shows the 

code for OPF developed using panda power as main tool. 

 

4.3.1 OPF Details 

The optimum reactive power injection from DERs, such as solar photovoltaic (PV) systems, 

wind turbines, and energy storage systems, can be determined using OPF. Voltage stability and 

voltage failure in the power system are both prevented by reactive power injection. 

 

To calculate reactive power injection from DER using OPF following steps have been taken.  
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• System Model Defining: In our case CIGRE Network has been defined in the previous section. 

All network constraints such as voltage limits and transmission line capacity limits are also 

included.  

 

● Adding DER’s into System: In this step DER’s and external generators are added into the 

system. In our case we have 13 DER’s as external sources of reactive power. Their capacities 

and reactive power capability is attached in Appendix 1: DER’s rating [16, 30].  

 

● Formulation of objective Function: This is one of the critical steps in OPF in which overall 

system cost is reduced while satisfying the operational constraints. 

 

4.3.2 Mathematical Modelling for OPF 

         In this thesis the objective function 𝐹(𝑝, 𝑢) is formulated by using External penalty function 

[16]. Constrained issues are converted to unconstrained problems using the arbitrary penalty 

function. The objective function is converted to an unconstrained objective function by using the 

EPF to integrate bus voltage constraints [30]. 

 

                                    Equation A: 

𝑚𝑖𝑛𝑝 𝐹(𝑝, 𝑢) =  𝑓(𝑝) + 𝑔(𝑝 , 𝑢)           

 

Equation A shows the objective function for our OPF problem which is linear combination of 𝑓(𝑝) 

and the penalty function 𝑔(𝑝 , 𝑢).  

 

The primary goal of solving this OPF problem is to determine the DER’s reactive power set points. 

Variable “p” in the equation B shows the vector of reactive power obtained from NDER’s. 

            Equation B: 

                              𝑝 = [𝑄𝐷𝐸𝑅1 + 𝑄𝐷𝐸𝑅2 . . . . . . . . . . . . . . 𝑄𝐷𝐸𝑅𝑁] 𝑇     

 

For the reactive power output from DER, there is a limit defined to keep it between certain limits. 

Limits are applied to apparent power (𝑆𝐷𝐸𝑅𝑘) and active power (𝑃𝐷𝐸𝑅𝑘) of DER’s.  Equation C 

shows these bounds. 
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                                    Equation C: 

                                               𝑄𝐷𝐸𝑅𝑘 ≤ ±√(𝑆𝐷𝐸𝑅𝑘)2 − (𝑃𝐷𝐸𝑅𝐾)2      ∀ 𝑘 =  1, . . . . . , 𝑁𝐷𝐸𝑅       

 

The second part of objective function is 𝑔(𝑝 , 𝑢)  which shows the penalty function. There will be a 

penalty charged to the system if the voltages go beyond  𝑉𝑚𝑖𝑛  𝑎𝑛𝑑 𝑉𝑚𝑎𝑥 range. There are many rules 

for setting this range in the Distribution Network. In our case we can define these limits in the code 

and if there is violation then the penalty variable will carry a value.  

 

                           Equation D: 

       𝑔(𝑝 , 𝑢) =  𝐾𝑝 [∑𝑁𝑏𝑢𝑠
𝑠=1 𝑀𝑠(𝑝)]        

 

Where Kp is the penalty multiplier. It makes the value of objective function go very high in case 

there is voltage violation during the optimization process. In panda power this can be observed by 

non-convergence of OPF. The penalization functions are further defined by Equation E.  [30] 

 

           Equation E: 

 

𝑀𝑠(𝑝) = {0, 𝑉𝑠
𝑚𝑖𝑛 ≤  |𝑉𝑠| ≤  𝑉𝑠

𝑚𝑎𝑥   &       1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }   ∀ 𝑠 =  1,2, . . . . . 𝑁𝑏𝑢𝑠𝑒𝑠    

 

In summary Equation A shows our objective function and Equation C shows the constraints for 

optimization.  
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4.3.3 Results and discussion  

Following Results were obtained after running OPF on our network. 

 

Figure 15 Reactive Profile of all PV’s 

  

   

Figure 16 Voltage Profile of CIGRE Network for all Buses  

It can be observed from Figure 16 Voltage Profile of CIGRE Network for all Buses that the voltage 

profile of all the buses is lying within constraints because the OPF problem [30] which we 

formulated earlier has optimized the injection of reactive power in the grid in order to keep a stable 

voltage throughout the network. From Figure 15 Reactive Profile of all PV’s we can see that there 
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is a lot of variation between reactive power profiles of each PV ranging from +200 KVAR to -

200KVAR .The reason is at some points PV’s are injecting reactive power into the Network and at 

some points reactive power is being absorbed to keep the voltage profile of the whole network 

between the ranges of 0.95 PU to 1.05 PU. 

 

The initial data used for this simulation is obtained by sensitivity analysis as discussed in the research 

paper [16]. Furthermore, changes in the load profile helped to generate more data for training our 

ML algorithms which will be discussed in upcoming sections.  

 

4.4     ML Algorithm Implementations  

Reactive power plays a critical role in power system operations, as it is required to maintain 

voltage levels and ensure stable and efficient energy transfer. Accurate prediction of reactive 

power is essential for the optimal control and management of power systems. Traditional methods 

for predicting reactive power often rely on mathematical models based on power system 

parameters, which can be complex and computationally intensive. In recent years, machine 

learning techniques have shown promising results for time series prediction, offering a more 

efficient and accurate alternative to traditional methods. In this thesis, we explore the use of three 

machine learning models - Convolutional Neural Network (CNN), Facebook Prophet, and Long 

Short-Term Memory (LSTM) - for reactive power prediction and compare their performance to 

traditional models. 

 

Overview 

The main objective of this thesis is to evaluate the performance of different machine learning 

models for reactive power prediction. In the first section, we provide an overview of the process 

we followed to implement these models. This includes data acquisition, preprocessing, feature 

selection, model development, and evaluation. We then present three machine learning models - 

CNN, Neural Prophet, and LSTM - and describe their mathematical modeling and how they are 

typically used in machine learning. For each model, we explain how we adapted it to predict 

reactive power and any modifications made to the model architecture or parameters. We also 

provide details about the input data used in each model and how it was preprocessed. In the final 

section, we present the results of our analysis and discuss the strengths and weaknesses of each 
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model. We also compare the performance of the machine learning models to traditional models 

and highlight any interesting or unexpected findings. Overall, this thesis contributes to the 

development of more efficient and accurate methods for reactive power prediction, which can aid 

in the optimal control and management of power systems. 

 

Data acquisition 

The initial data set was obtained through sensitivity analysis, a method that involves varying input 

variables within a defined range and observing the resulting changes in a mathematical model's 

output. Once the initial data set was acquired by sensitivity analysis [16], optimal power flow 

analysis was performed to obtain additional data. Optimal power flow analysis is a method used 

in power systems engineering to optimize the operation of a power system and involves solving 

an optimization problem to determine the optimal values for the system's control variables. 

Together, these two methods were used to acquire the data needed for this project. 

 

Preprocessing 

The preprocessing steps in this process involve converting Load P and Q values into MVAR and 

concatenating all inputs into a single array, which includes Loads Active Power, Loads Reactive 

Power, and PVs reactive power. These steps are necessary to ensure that the input data is in the 

correct format for use in the machine learning model. 

 

Feature Selection 

The output values in this process are scaled by subtracting their means and dividing by a specific 

standard deviation. This step is important for feature selection, as it helps to ensure that the 

machine learning model can converge easily. By scaling the output values, the model can more 

effectively identify which features are most relevant to predicting the output. 

 

In summary, the preprocessing steps involve converting Load P and Q values and concatenating 

inputs, while the feature selection step involves scaling output values to facilitate the machine 

learning model's convergence and effective feature selection. 
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4.4.1 Convolutional Neural Networks 

      Convolutional Neural Networks (CNNs) have gained widespread popularity in recent 

years, especially in image recognition tasks. However, they have also demonstrated their 

effectiveness in processing sequential data such as time series. In this work, we explore the use of 

CNNs to predict reactive power in power systems. 

 

The working operation behind a CNN is to extract features from the input data using convolutional 

layers. In the case of time series, the input is a sequence of data points over time. The convolutional 

layers apply filters to the sequence, which perform a local convolution operation, capturing local 

patterns from the sequence. By applying multiple filters with different weights, the convolutional 

layer can extract a variety of features from the input sequence. 

The output from the convolutional layers is then passed through one or more fully connected 

layers, which perform classification or regression, based on the extracted features. In our case, the 

output is a predicted value of the reactive power. 

 

The entire network is trained using backpropagation to minimize the loss function, which measures 

the difference between the predicted output and the true output. By iteratively adjusting the weights 

of the network, the model learns to accurately predict the reactive power [42]. 

Our motivation for using CNNs in this work is the fact that real-world time series often exhibit 

local patterns and dependencies that can be captured by convolutional layers. This has led to the 

development of a variety of CNN architectures for time series, including 1D and 2D CNNs, as well 

as more complex architectures such as Wave Net and TCN. 

 

The CNN architecture which we used in our use case consists of 3 hidden layers with a total 7 

layers in it. Where the activation functions used are sigmoid. The reason to choose the sigmoid in 

this scenario is because sometimes it gives very consistent results as per our use case. The Neurons 

we selected are following: 

• 32 in first layer of CNN. 

• 26 in second layer of CNN. 

• 13 in the last hidden layer. 
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Table 3 Implemented Multi-Layer Perceptron (MLP) Architecture 

Layer   Input             In Size K      S      Activation  Nodes Output Size 

Dense-1 Input Array        39x1  -        -          sigmoid 39 32x1 

Dropout-1 

(50%) 

Dense-1             32x1  -        -               - - 32x1 

Dense-2 Dropout-1          32x1   -        -          sigmoid 26 26x1 

Dropout-2 

(50%) 

Dense-2             26x1   -        -               - - 26x1 

Dense-3 Dropout-2          26x1   -        -          sigmoid 18 18x1 

Dropout-3 

(50%) 

Dense-3             18x1   -        -               - - 18x1 

Dense-4 Dropout-3          18x1   -        -               - 13 13x1 

 

Input Array size is 39 because we have concatenated data of 13 PV’s Reactive power at each time 

step with load active and reactive powers values. As loads are attached to only 13 buses just like 

PV’s, so total array size becomes 39 which is our input size.   

 

 

Figure 17 CNN Basic Architecture [50] 
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Figure 17 CNN Basic Architecture [50] shows the architecture of the CNN, which clearly represents 

the working of CNN architecture. In our use case, the input consists of time series data and then it 

goes for feature engineering and then passed to the fully connected layer for performing the 

operation of forecasting the future results [50]. 

 

Mathematical Modeling: 

• Input data representation 

In time series analysis, the input data is usually a sequence of data points over time. These data 

points can be represented as a one-dimensional array or matrix, depending on the type of CNN 

architecture used. 

• Convolution operation 

The convolution operation involves sliding a filter over the input data and computing the dot 

product between the filter and the input at each position. Mathematically, this can be expressed 

as [42]: 

𝑂𝑢𝑡𝑝𝑢𝑡𝑖  =  𝑆𝑢𝑚𝑗 (𝐼𝑛𝑝𝑢𝑡(𝑖+𝑗) ×  𝐹𝑖𝑙𝑡𝑒𝑟𝑗) 

Where Output is the output of the convolution operation, Input is the input data, Filter is the 

filter being applied, and i and j are the indices of the output and filter, respectively. 

• Activation function  

After the convolution operation, an activation function is applied to the output to introduce 

nonlinearity into the model. Common activation functions used in CNNs for time series include 

ReLU (Rectified Linear Unit), Tanh (Hyperbolic Tangent), and Sigmoid [52]. 

• Pooling operation  

The pooling operation involves reducing the dimensionality of the output by aggregating nearby 

values. Common pooling operations used in CNNs for time series include Max pooling and 

Average pooling. 
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• Fully connected layer 

The collected features are then used for classification or regression in one or more fully 

connected layers that follow the convolutional and pooling layers [42]. Fully-connected layers 

have an output that is calculated as: 

 

           𝑂𝑢𝑡𝑝𝑢𝑡 =  𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑊𝑥 +  𝑏) 

 

Where W is the weight matrix, x is the input vector, b is the bias vector, and the activation 

function is usually a nonlinear function such as Re LU or Sigmoid. 

• Loss function 

The loss function measures the difference between the predicted output and the true output. 

Common loss functions used in CNNs for time series include Mean Squared Error (MSE) and 

Cross-Entropy loss. 

• Backpropagation  

Backpropagation is used to train the entire network by calculating the loss function's gradients 

with regard to the network's weights and biases. Stochastic Gradient Descent (SGD) and Adam 

are two examples of optimization algorithms that can be used to update the weights and biases 

based on these gradients. 

 

Evaluation on the use of CNN in our work: 

In our use case the problem of reactive power forecasting in power systems is a critical task that 

helps in maintaining the stability and reliability of the grid. CNNs have been used for this task due 

to their ability to capture local patterns and dependencies in time series data. The input to the CNN 

is usually a sequence of historical data, and the output is the predicted reactive power at a future 

time step. The CNN consists of several layers, including convolutional layers, activation layers, 

pooling layers, and fully connected layers.  

 

The total evaluation of our CNN is bit better for several reasons due to the flexible functionality of 

the handling the time series data but when it comes towards the Power Sector it has many aspects of 
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continuity for the sake of argument, we say the continuous voltage which is a best analogy for CNN 

to solve in order to get the better results. The other reason is to work efficiently is that it is little 

better than the conventional methods of the time series data like the other choices like ARIMA and 

SARIMA in relevant use cases of Reactive Power. 

 

4.4.2 Deep Neural Prophet 

In this work, we have used the Deep Neural Prophet model to predict reactive power. This 

model is an advanced version of the Neural Prophet time-series forecasting model that incorporates 

deep learning techniques to improve the forecasting accuracy of time-series data. The Deep Neural 

Prophet model builds upon the architecture of the original Neural Prophet model and extends it to 

include multiple hidden layers with many neurons.  

 

The model architecture is composed of three main components: an input layer, a sequence-to-

sequence RNN layer, and a feedforward neural network (FNN) output layer. 

The input layer receives the time-series data of reactive power and converts it into a format that can 

be processed by the RNN layer. The RNN layer captures the temporal dependencies in the time-

series data and generates a sequence of hidden states, which are then passed to the FNN output layer. 

The FNN output layer predicts the future values of reactive power based on the hidden states 

generated by the RNN layer. 

One of the strengths of the Deep Neural Prophet model is its ability to handle multiple seasonality 

and trend change points in reactive power data. The model achieves this by using a combination of 

Fourier series and linear regression to model seasonality, and by incorporating a piecewise linear 

function to capture trend change points [52]. This makes the Deep Neural Prophet model well-suited 

for predicting reactive power in dynamic systems with complex and changing patterns. 
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Figure 18 Basic Structure on DNP model [48] 

 

Figure 18 Basic Structure on DNP model shows the basic working of Deep Neural Prophet model 

that we have used in our work for predicting the reactive power. 

 

The model is defined as follows: 

 

𝑌(𝑡)  =  𝑓(𝑌(𝑡 − 1), 𝑌(𝑡 − 2), . . . , 𝑌(𝑡 − 𝑛), 𝑋(𝑡), 𝑋(𝑡 − 1), . . . , 𝑋(𝑡 − 𝑚)) 

 

where Y(t) is the target variable at time t, Y(t-1), Y(t-2), ..., Y(t-n) are lagged values of the target 

variable, X(t) is the input variable at time t, and X(t-1), ..., X(t-m) are lagged values of the input 

variable. The function f represents the neural network architecture that maps [48]. 

 

Reactive power forecasting is a critical component in maintaining the stability and efficiency of 

Smart Distribution Networks (SDN). In recent years, machine learning techniques have emerged as 

a powerful tool for forecasting reactive power in SDN networks.  

 

Evaluation: 

The main reason for using the neural prophet is its splendid property of handling the multivariate 

use cases especially like the Reactive Power Forecasting. The Performance is mostly better than the 
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CNN results due to several aspects but the main issue with the Neural Prophet is that it works 

accurately when we give it more and large data batches so in some cases it gives lower performance 

than the other ML Methodologies. 

 

The Neural Prophet model is a deep learning-based model that can capture complex temporal 

patterns in time-series data. Using this model, we were able to forecast the reactive power in SDN 

networks by considering the various parameters that affect it, such as voltage, current, and power 

factor. The results of this study demonstrate that the Neural Prophet model is an effective and 

efficient tool for reactive power forecasting in SDN networks and can contribute significantly to the 

overall stability and efficiency of the network. 

 

4.4.3    Long Short-Term Memory (LSTM) Model 

Time-series forecasting is a common use of LSTM (Long Short-Term Memory), a form of 

recurrent neural network (RNN). To overcome the difficulty that conventional RNNs have in 

learning long-term dependencies in time-series data, LSTM was developed. The input gate, forget 

gate, and output gate that make up LSTM's architecture provide the model the ability to learn and 

forget information selectively over time. 

 

By modeling the data's temporal dependencies, LSTM may produce reliable forecasts of 

future values for time-series analysis. The model accepts a series of historical data as input and 

produces a series of forecasts. For time-series forecasting, where the length of the time-series may 

vary, LSTM's capacity to handle variable-length sequences is crucial. 

 

Time-series forecasting tasks such as predicting stock prices, energy demand, and the weather 

forecasting, have all benefited from the use of LSTM. Time-series forecasting methods like ARIMA 

and exponential smoothing have been demonstrated to be inferior to this method. On the other hand, 

LSTM is computationally demanding, especially for large datasets, and requires careful tuning of 

hyper parameters. Even yet, LSTM continues to be a well-liked and efficient option for many time-

series forecasting applications, especially in light of the expanding availability of computational 

resources and the ever-increasing demand for precise time-series forecasting. 

. 
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Figure 19 Mathematical Model of LSTM [53] 

 

Mathematically as shown in Figure 19 Mathematical Model of LSTM [53], an LSTM network 

consists of a sequence of cells, each with a hidden state ℎ𝑡 and a cell state  𝐶𝑡 [47]. The cell state is 

updated using a combination of three gates: the input gate 𝑖𝑡, the forget gate  𝑓𝑡, and the output gate 

𝑂𝑡. These gates are responsible for controlling the flow of information into and out of the cell. 

 

The input gate 𝑖𝑡 determines how much of the new input 𝑥𝑡 should be added to the cell state. It is 

computed as: 

 

𝑖𝑡  =  𝜎(𝑊𝑖 [ℎ{𝑡−1}, 𝑥𝑡]  +  𝑏𝑖) 

Where 𝑊𝑖 and 𝑏𝑖 are learnable weights and biases, and σ is the sigmoid activation function. 

 

The forget gate 𝑓𝑡 determines how much of the previous cell state 𝐶𝑡−1 should be retained. It is 

computed as: 

 

𝑓𝑡  =  𝜎(𝑊𝑓 [[ℎ{𝑡−1}, 𝑥𝑡]  +  𝑏𝑓) 

The output gate 𝑜𝑡 determines how much of the cell state should be used to compute the hidden state 

ℎ𝑡. It is computed as: 
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𝑂𝑡  =  𝜎(𝑊𝑜 [ℎ{𝑡−1}, 𝑥𝑡]  + 𝑏𝑜) 

The new cell state 𝑐𝑡 is computed as a combination of the input and forget gates and the previous 

cell state [47]: 

 

𝐶𝑡  =  𝑓𝑡  ×  𝐶{𝑡−1}  + 𝑖𝑡  ×  𝑡𝑎𝑛ℎ(𝑊𝑐 [ℎ{𝑡−1}, 𝑥𝑡] +  𝑏𝑐)  

Where 𝑊𝑐 and 𝑏𝑐  are learnable weights and biases, and tanh is the hyperbolic tangent activation 

function. 

 

Finally, the new hidden state ℎ𝑡 is computed as a combination of the output gate and the updated 

cell state: 

 

ℎ𝑡   =  ℎ𝑡   ×  𝑡𝑎𝑛ℎ(𝑐𝑡 ) 

LSTM's gating mechanism allows it to selectively retain and forget information over time [53], 

making it well-suited for time-series forecasting tasks where long-term dependencies are important. 

I proposed a machine learning approach based on the LSTM (Long Short-Term Memory) neural 

network model for reactive power forecasting in SDN networks. The proposed model considers the 

various parameters that affect reactive power, such as voltage, current, and power factor, and 

captures the temporal dependencies in the time-series data. 

 

Evaluation 

The LSTM model was trained on historical data of reactive power consumption and the 

corresponding parameters. The trained model was then used to forecast the reactive power 

consumption for future time periods. The results of the study showed that the LSTM model was able 

to accurately forecast reactive power consumption in SDN networks with a high degree of accuracy. 

 

The LSTM in our use case consists of the following architecture. It consists of two layers because 

the data was not too much which can complete the need of LSTM true potential so in such cases, we 

must merge very few numbers of Layers in it. The Neurons are 50 which are fine for our use case 

so it can work properly for our forecasting results with the 50 epochs in its training because this 

number of epochs are sufficient in such cases. 
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Compared to traditional statistical methods such as ARIMA and exponential smoothing, the 

proposed LSTM-based approach showed superior performance, especially in cases where the 

reactive power consumption is highly variable over time. The results of this study demonstrate the 

potential of machine learning models such as LSTM for reactive power forecasting. 
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5. Results and Discussions  

      This chapter presents all the results obtained after implementation of ML algorithms for 

prediction of reactive power. There is a section highlighting key points deduced from results and in 

last there is a comparative analysis of ML versus conventional approach used for forecasting which 

covers final objective of thesis. 

 

5.1 CNN Results 

       Results obtained after implementing Computational neural network algorithm are shown 

below. Figure 20 and 21 represent predicted vs actual reactive powers for 13 PV’s which are 

available in our network. Figure 22 CNN Training and validation loss represents total model loss of 

CNN showing efficiency for this data set. Code for this algorithm is shown in Appendix 3: CNN 

Code 

 

 

Figure 20  Predicted vs Actual Reactive Powers for PV 1 to 6 by CNN 
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Figure 21 Predicted vs Actual Reactive Powers for PV 7 to 13 by CNN 

 

Figure 22 CNN Training and validation loss  
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5.2 LSTM Results 

       The results of applying the LSTM algorithm to our dataset are displayed below. Predicted vs 

actual reactive powers for 13 PVs that are accessible in our network are shown in Figure 23 Predicted 

and Actual Reactive Powers for PV 1 to 13 by LSTM. Figure 24: LSTM training and validation loss 

shows the LSTM's overall model loss and efficiency for the given data set. Code for this algorithm 

is shown in Appendix 5: LSTM Code 
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Figure 23 Predicted and Actual Reactive Powers for PV 1 to 13 by LSTM 

 

 

Figure 24: LSTM training and validation loss  
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5.3 Neural Prophet 

        Finally Neural prophet Algorithm is implemented and the results from this algorithm are 

shown below.  Predicted vs. actual reactive powers for 13 PVs that are accessible in our network are 

shown in Figure 25 Predicted and Actual Reactive Powers for PVs by Neural Prophet. Figure 26 

shows training loss of this algorithm. Code for this algorithm is shown in Appendix 4: Neural 

Prophet Code 
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Figure 25 Predicted and Actual Reactive Powers for PVs by Neural Prophet 

 

 

Figure 26 Training and Loss of Neural Prophet 
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5.4 Performance Comparison of Algorithms 

Table 4: Overview of Algorithms Performance shows the combined performance of all 

Algorithms. There are some important terms to note here i.e. MAE showing mean absolute error, 

MSE showing mean square root error and RMSE depicting root mean square root error. It can be 

observed that LSTM outperforms all other algorithms. More details are given in next section 

 

Table 4: Overview of Algorithms Performance 

Model MAE MSE RMSE 

CNN 0.31  0.00033 ~0.0078 

LSTM 0.011  0.00002 ~0.0004 

Neural  

Prophet 

1.06 1.139 1.067 

 

 

 

5.5 Result Discussions  

       Figure 20 till 25 (excluding figure 22 and 24) shows results for all three algorithms depicting 

Predicted and actual reactive powers for all 13 PV’s. The actual reactive power profile is basically 

the data which was generated from optimal power flow analysis and on top of that predictive profile 

is shown with different color.  

 

CNN and LSTM results show similarities in their pattern because despite of having some 

fundamental differences both algorithms are good for processing sequential data. In the thesis we 

have used 288-time steps data with 5 minutes interval in each step mimicking one day. Data for a 

month has been generated for this study. If we observe figures, there are some spikes in predicted 

values for each PV’s reactive power and there is no perfect overfitting. The main reason to that is 

we have very small data set and to observe best training results years of data is required. It was not 

practical to generate this big chunk of data for this thesis so simulations resulting on small data 

shows variations. 
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Figure 27 Actual vs Predicted Reactive Power of 3rd PV 

 

Another careful result which can be deduced by observing negative spike from the 3rd PV predicted 

value in Figure 27 Actual vs Predicted Reactive Power of 3rd PV is that it is not only important to 

have big size of data availability but also Normalization of input data is very important for CNN and 

LSTM. As we see that there is sudden pattern change in Actual reactive power data i.e., first reactive 

power was being absorbed and suddenly PV started to deliver Reactive power. In such cases of sharp 

shifts if the input data is not properly normalized to have mean of zero and standard deviation of one 

then there will be spikes on swift changes in values. In our case LSTM outperforms CNN because 

LSTM architecture is very compatible with time series data where CNN is mostly suitable for image 

processing, object detection and some other similar applications.  

 

Performance of CNN and LTSM algorithms can be seen in Figure 22 CNN Training and validation 

loss and Figure 24: LSTM training and validation loss. Two important terms to interpret these figures 

are training loss and validation loss.  

 

5.5.1 Training Loss: 

         The model's performance on the training set of data is measured by the training loss. With 

the aim of minimizing the training loss, the model's parameters are modified during training in 
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response to the training data. At the end of each training period or batch, the training loss can be 

determined, and the average training loss for the whole training process is often provided. 

 

5.5.2 Validation Loss: 

         On the other side, the validation loss measures how effectively the model generalizes to 

fresh, untried data. A subset of the data is kept aside during training as a validation set; this set is 

not utilized for training but is instead used to assess how well the model performs on data that has 

not yet been seen. In order to identify overfitting, the validation loss is routinely tracked throughout 

training. It is calculated using the validation set. 

 

In our case LTSM perform betters and show minimum training and validation loss. The reason is 

the architecture of LTSM suits our type of application which is time series prediction as discussed 

above.  

 

Now we address the results of neural prophet. Keeping it separate from other two algorithms is since 

its working architecture is totally different from those two.  Figure 25 Predicted and Actual Reactive 

Powers for PVs by Neural Prophet shows results obtained from neural prophet Algorithm. Now this 

algorithm does not perform very well although it is specifically designed to work for time series 

forecasting models. The model works by using a combination of Fourier series and linear regression 

to model seasonality, and by incorporating a piecewise linear function to capture trend change points 

It can capture seasonal patterns, trends, and other time-dependent properties because it is specifically 

made to handle time-series data. The main reason for low performance in our case is limited data 

availability. Large batches of data can significantly impact on these results and can be tried in future 

work. Still it can be observed that for Neural prophet there are no sharp spikes in results indicating 

its power of computation and efficiency. 

 

5.5.3 Overall Performance comparison: 

Table 4: Overview of Algorithms Performance shows the performance of individual 

algorithms when tested for predicted values as compared to the Actual data set. In table there are 

three parameters given to detect the performance. Each one of those have its pro’s and con’s. MAE 

is the absolute error so it does not account for negative values so even if there is some negative error 
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coming, it will take its absolute value and also it is less sensitive to higher error values. On contrary 

MSE (mean square root error) is highly sensitive to large error values and accounts for both positive 

and negative values. So among all of those parameters RMSE (root mean square root error) is best 

to judge the performance of any algorithm because it does not only accounts for positive or negative 

values but is less biased in case of high values [52].  

According to results obtained, LSTM is best performing algorithm among all others and CNN shows 

slightly lower performance than LSTM because it has lot of architecture similarity with LSTM. 

Although theoretically neural prophet is more suitable to this application due to its internal layering 

structure. The main reason for this low performance by neural prophet is due to less data availability. 

LSTM has the capability to show good performance even at low available data by finding patterns 

in the data giving good predictions. It is highly recommended that in future work Neural prophet is 

again used with big chunk of training data to see its actual potential which we were not able to do 

due to time constraints. 

 

5.6 Machine Learning Versus Conventional Approach 

In recent years, machine learning (ML) algorithms have been applied to forecast reactive 

power in power systems. In this section, we compare the performance of three ML algorithms - 

LSTM, CNN, and Neural Prophet - with respect to forecasting reactive power, in comparison to the 

conventional methods of Optimal power Flow Analysis (OPF), Droop Control and power factor 

correction techniques etc. 

 

CNN (Convolutional Neural Network) is a type of neural network that is widely used for image and 

signal processing applications. In recent years, CNNs have been applied to time series forecasting 

problems as well. In our study, we applied a 1D CNN model to the reactive power data and compared 

its performance with the OPF method. The CNN model showed comparable performance to the OPF 

method. 

 

LSTM (Long Short-Term Memory) is a type of recurrent neural network (RNN) that has been 

successfully applied to sequence modeling and time series forecasting. LSTM models can capture 

long-term dependencies in time series data and are widely used for forecasting applications. In our 
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study, we trained an LSTM model on the reactive power data and evaluated its performance on a 

test dataset. The LSTM model outperformed CNN in terms of accuracy. 

 

Neural Prophet is a recently developed time series forecasting library that is based on the popular 

Facebook Prophet forecasting algorithm. Neural Prophet extends Prophet by incorporating neural 

networks for improved forecasting accuracy. In our study, we used the Neural Prophet library to 

forecast reactive power and compared its performance with the OPF method. Overall performance 

of Neural Prophet was lower than other algorithms due to small dataset but model outperformed 

other methods in terms of accuracy in several aspects such as consistency, convenience etc. 

 

Overall, our results indicate that ML algorithms, such as LSTM, CNN, and Neural Prophet, can be 

effectively used for reactive power forecasting in power systems. In particular, LSTM and CNN 

models showed similar performance compared to the conventional OPF method, while the Neural 

Prophet model showed comparable performance. The ability of ML algorithms to capture 

nonlinearities and complex patterns in time series data makes them a promising alternative to 

conventional methods for reactive power forecasting. 

 

One advantage of using ML algorithms for reactive power forecasting is their ability to handle non-

linear relationships between input features and output variables. In contrast, conventional methods 

such as OPF rely on linear approximations and require accurate knowledge of the system parameters, 

which can be challenging to obtain in practice. 

 

Another advantage of ML algorithms is their ability to adapt to changing system conditions and 

dynamics. This is particularly important in power systems, where the operating conditions can 

change rapidly due to changes in load demand and renewable generation. In contrast, conventional 

methods such as OPF is highly grid model dependent and cannot adapt to changes in the system 

dynamics. 

 

However, ML algorithms require large amounts of data for training and can be computationally 

expensive. In addition, the accuracy of ML algorithms is highly dependent on the quality and 

quantity of the data used for training. On the other hand, conventional methods such as OPF have 
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been widely used in power systems for decades and have a well-established theoretical foundation. 

In addition, they can be computationally efficient and do not require large amounts of data for 

training. 

 

5.6.1 Performance 

The use of machine learning algorithms in the control of power systems has shown 

encouraging outcomes. Some common machine learning algorithms used for controlling power 

systems are Long Short-Term Memory, Convolutional Neural Networks, and Neural Prophet. These 

algorithms can optimize power flow, manage demand response programs, and even predict voltage 

and frequency in power networks. Using objective functions, machine learning algorithms can 

optimize control actions in response to dynamic changes in the system's environment.. 

 

Compared to traditional control methods such as OPF and droop control, machine learning 

algorithms can handle uncertainties and dynamic system conditions more effectively. Droop control 

assumes that all distributed generators have the same droop coefficient, which may not be the case 

in practice. In contrast, machine learning algorithms can learn from diverse data sources and adapt 

to changing system conditions, resulting in better performance. 

 

5.6.2 Interpretability 

Machine learning algorithms suffer from a lack of interpretability, which is one of its 

drawbacks. The decision-making process behind machine learning algorithms is opaque, therefore 

it is difficult to understand the final product. In contrast, power system engineers get a clear picture 

of the reasoning behind OPF and droop control's decisions. 

 

Recent studies have focused on building explainable machine learning approaches that provide 

insight into the decision-making process of machine learning algorithms, as interpretability is crucial 

in power system control applications. The LSTM and CNN architectures, for example, have been 

tweaked to incorporate attention techniques that focus on the most crucial aspects for the output 

[52]. 
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5.6.3 Data Requirements 

         Machine learning algorithms require large amounts of data to train and optimize the model. 

In the context of power system control, data can come from various sources such as historical power 

system data, real-time sensor data, and weather data. However, data collection and management can 

be a challenge in power system control applications, especially in distributed power systems. 

 

In contrast, traditional control methods such as OPF and droop control require less data and can be 

more easily implemented in a distributed power system. OPF only requires information about the 

topology of the power system and operational constraints, while droop control only requires 

information about the output of distributed generators. However, the performance of these traditional 

control methods may be limited by their inability to adapt to changing system conditions. 

 

5.6.4 Accuracy 

         Machine learning algorithms have shown high accuracy in power system control 

applications. For example, LSTM and CNN models have been used to forecast reactive power in 

power systems with high accuracy. Neural Prophet is another machine learning algorithm that has 

shown promising results in power system control applications. 

 

In comparison, OPF and droop control can have limited accuracy in dynamic and uncertain 

conditions. OPF is highly dependent on grid models, making it difficult to redesign for larger grid 

models. Droop control assumes a constant droop coefficient for all distributed generators, which 

may not hold true in practice. Machine learning algorithms can adapt to changing system conditions 

and provide accurate predictions, making them a valuable addition to power system control 

applications. 

 

5.6.5 Robustness 

         Machine learning algorithms can be robust to uncertainties and disturbances in power 

systems. For example, LSTM and CNN models have been used to predict voltage and frequency in 

power systems with high accuracy under various disturbances. Neural Prophet can handle missing 

data and noise in the input data, making it robust to uncertainties. 
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In comparison, traditional control methods such as OPF and droop control may not be as robust to 

uncertainties and disturbances. OPF is highly dependent on grid models and may not perform well 

under uncertain conditions.  

 

5.6.6 Computational Complexity 

         In power system control applications, where judgments must be made fast, the computational 

complexity of machine learning methods might be a barrier. The training and optimization of deep 

learning algorithms, such as convolutional neural networks (CNN) and long short-term memory 

(LSTM) networks, can include millions of parameters and substantial processing resources [52]. 

 

In contrast, time-tested techniques OPF and droop control are both computationally light and 

amenable to real-time implementations. Simple proportional-integral (PI) controllers can be used 

for droop control, while linear programming techniques can be used to solve OPF. 

 

The development of more effective machine learning algorithms for use in power system control 

applications has been the focus of current research. In a neural network, for instance, hardware 

acceleration may speeds up computation while pruning techniques can minimize the number of 

parameters. 
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6. Conclusion & Future Scope 

 This section concludes the whole thesis discussing different aspects of study and main 

results obtained from the experiments and simulations. Moreover, some light has been thrown on 

possible future work that could continue this research.  

 

The dissertation includes basics of Machine learning algorithms, its applications in power systems 

focusing on reactive power prediction and implementations of ML algorithms for time series 

prediction.  

Focusing on reactive power prediction, this thesis covers Introduction, related literature work, power 

flow analysis of CIGRE networks and implementing three Algorithms i.e. CNN (Convolution 

Neural Network), LSTM (Long Short-Term Memory) and Neural Prophet.    

 

Power flow analysis is done to see the impact of reactive power on SDN and from the results it can 

be observed that reactive power play’s huge role in voltage regulation in power systems. Then 

optimal power flow analysis is carried out to get the appropriate data for training ML algorithms 

because OPF is one of the best conventional approaches used in power industry. Finally, ML 

algorithms are trained on this data and then predicted output is compared with the standard data. It 

can be observed that ML can be a very useful tool in predicting reactive power and it can be a very 

good alternative to traditional approaches like droop control or Optimal power flow analysis which 

are highly grid models dependent and are not that much flexible. Among all the algorithms 

implemented LSTM performs the best, although neural prophet was best suited for this application 

but due to less available data LSTM outperforms. Though ML has vast scope of applications in 

different fields, but this study provides solid grounds that ML is worth trying to solve problems 

related to power industry and can be very effective in prediction of reactive power in smart 

distribution network. The work contributes to the prediction of reactive power support in smart 

distribution networks utilizing machine learning. This will assist the operators to take timely 

decisions in order to avoid any instability in the network.  

 

Implementing control system on top of predicted output by ML could be a good step ahead for future 

work. Furthermore, if we use larger portions of data there is a bright possibility that the neural 

prophet algorithm will outperform all other algorithms increasing accuracy and efficiency.   
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Appendix 1: DER’s rating [16, 30] 

Rating of all DER’s considered in this research 

 

Name Of  DER P ( KW) Q (KVAR) 

DER1  690.00 303.00 

DER2 690.00 303.00 

DER3 690.00 303.00 

DER4 680.00 300.00 

DER5 680.00 300.00 

DER6 680.00 300.00 

DER7 680.00 300.00 

DER8 680.00 300.00 

DER9 740.00 325.00 

DER10 740.00 325.00 

DER 11 740.00 325.00 

DER 12 740.00 325.00 

DER 13 740.00 325.00 
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Appendix 2: OPF Code 

In this appendix Important sectors of Code for Optimal Power Flow analysis is shown which is summarised 

version of actual code  

 

# Taking data for 13 PVs  

OPF_PV_P_cigre = np.transpose(OPF_PV_P_cigre)[:,:13] 

PV_Q_cigre = np.transpose(PV_Q_cigre)[:,:13] 

# Importing Few PandaPower Libraries for Making CIGRE Network other Functions like OPF 

import pandapower 

import pandapower.networks 

import pandapower.topology 

import pandapower.plotting 

import pandapower.converter 

import pandapower.estimation 

import pandapower.test 

from pandapower.plotting.plotly import simple_plotly 

from pandapower.networks import mv_oberrhein 

import pandapower.networks as pn 

import pandapower as pp 

############### Reading all the load profiles directory paths from single phase load data 

directory ############## 

import numpy as np 

import pandas as pd 

import glob 

 

import pandapower.control as control 

import pandapower.networks as nw 

import pandapower.timeseries as timeseries 

from pandapower.timeseries.data_sources.frame_data import DFData 

Loading the p_mw and q_var data from the excel data for loads 

load_data_P_values_df = pd.read_csv("{}single phase load 

data/load_profile_1_PQ.csv".format(directory_path)) 

load_data_P_values_df.rename(columns={'P': 'P_1'}, inplace=True) 

load_data_P_values_df = load_data_P_values_df[['B1','P_1']] 

###Changing the Power Factor Values of all loads ### 

updated_pf_values = [0.98, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.98, 0.97, 0.95, 0.85, 

0.85, 0.85, 0.85, 0.95, 0.85,0.85] 

for i, tmp_pf in enumerate(updated_pf_values): 

  net.load.iat[i,7] = tmp_pf 

################ Setting Transformer Parameters ############## 

net.trafo.pfe_kw = 14 

net.trafo.i0_percent = 0.07 

net.trafo.shift_degree = 0 
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net.trafo.tap_neutral = 0 

net.trafo.vkr_percent= 0.41 

net.trafo.tap_min  = 0.9 

net.trafo.tap_max= 1.1 

net.trafo.tap_step_percent= 1.5 

net.trafo.tap_step_degree= 0 

net.trafo.tap_side  = "hv" 

net.trafo.parallel    = 1 

Net.trafo 

########## Runing the OPF One time for the Values set for the complete network  

net.line["max_loading_percent"] = 70 

pp.runopp(net, delta=1e-16) 

# create the data source from sgen active and reactive power dataframe and defining Constant 

Controller ############## 

df_PV_P = pd.DataFrame(OPF_PV_P_cigre, columns = ['PV_1','PV_2','PV_3', 'PV_4','PV_5','PV_6', 

'PV_7','PV_8','PV_9','PV_10', 'PV_11','PV_12','PV_13' ] 

ds_PV_active_power = DFData(df_PV_P) 

PV_P_prof_names = ['PV_1','PV_2','PV_3', 'PV_4','PV_5','PV_6', 'PV_7','PV_8','PV_9','PV_10', 

'PV_11','PV_12','PV_13' ] 

] 

df_PV_Q = pd.DataFrame(PV_Q_cigre, columns = ['PV_1','PV_2','PV_3', 'PV_4','PV_5','PV_6', 

'PV_7','PV_8','PV_9','PV_10', 'PV_11','PV_12','PV_13' ] 

]) 

ds_PV_reactive_power = DFData(df_PV_Q) 

PV_Q_prof_names =['PV_1','PV_2','PV_3', 'PV_4','PV_5','PV_6', 'PV_7','PV_8','PV_9','PV_10', 

'PV_11','PV_12','PV_13' ] 

# starting the timeseries simulation for one day -> 288 5 min values. 

timeseries.run_timeseries(net, verbose=True, continue_on_divergence=True) 
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Appendix 3: CNN Code 

This appendix shows main sections of code for implementing CNN Algorithm  

 

# Importing data for PV’s obtained after running OPF 

import numpy as np 

OPF_Bus_Vmag_cigre = np.load("Cigre_data_revised/OPF_Bus_Vmag_cigre.npy")  

OPF_PV_P_cigre = np.load("Cigre_data_revised/OPF_PV_P_cigre.npy") 

PV_Q_cigre = np.load("Cigre_data_revised/PV_Q_cigre.npy") 

print ("Showing the shape of Revised CIGRE Data Provided: ", OPF_Bus_Vmag_cigre.shape, 

OPF_PV_P_cigre.shape, PV_Q_cigre.shape ) 

##################### Installing Machine Learning Libraries #################### 

import tensorflow as tf 

from tensorflow.keras import Sequential 

from tensorflow.keras.layers import Flatten, Dense, Dropout, BatchNormalization 

from tensorflow.keras.layers import Conv2D, MaxPool2D 

from tensorflow.keras.optimizers import Adam 

print(tf.__version__) 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler, LabelEncoder 

!pip install pydrive  

from pydrive.auth import GoogleAuth  

from pydrive.drive import GoogleDrive 

Loading and arranging the p_mw and QVar data for loads ## 

Load_data_P_values_df = pd.read_csv("{}single phase load 

data/load_profile_1_PQ.csv".format(directory_path)) 

load_data_P_values_df.rename(columns={'P': 'P_1'}, inplace=True) 

# load_data_P_values_df = load_data_P_values_df[['B1','P_1']] 

load_data_P_values_df = load_data_P_values_df[['P_1']] 

# for i in range (total_loads-1): 

for i in range (12): 

  # load your timeseries from a file (here csv file) 

  df_tmp = pd.read_csv("{}single phase load data/load_profile_{}_PQ.csv".format(directory_path, 

(i+2))) 

  df_tmp.rename(columns={'P': 'P_{}'.format(i+2)}, inplace=True) 

  # Place the DataFrames side by side 

  tmp_horizontal_stack = pd.concat([load_data_P_values_df, df_tmp[['P_{}'.format(i+2)]]], axis=1) 

  load_data_P_values_df = tmp_horizontal_stack 

load_data_Q_values_df = pd.read_csv("{}single phase load 

data/load_profile_1_PQ.csv".format(directory_path)) 

load_data_Q_values_df.rename(columns={'Q': 'Q_1'}, inplace=True) 

# load_data_Q_values_df = load_data_Q_values_df[['B1','Q_1']] 

load_data_Q_values_df = load_data_Q_values_df[['Q_1']] 

# for i in range (total_loads-1): 
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for i in range (12): 

  # load your timeseries from a file (here csv file) 

  df_tmp = pd.read_csv("{}single phase load data/load_profile_{}_PQ.csv".format(directory_path, 

(i+2))) 

  df_tmp.rename(columns={'Q': 'Q_{}'.format(i+2)}, inplace=True) 

  # Place the DataFrames side by side 

  tmp_horizontal_stack = pd.concat([load_data_Q_values_df, df_tmp[['Q_{}'.format(i+2)]]], axis=1) 

  load_data_Q_values_df = tmp_horizontal_stack 

##Concatenating all inputs into 1 Array i.e. Loads Active Power, Loads Reactive and PVs Active Power 

load_data_P_Q_values = pd.concat([load_data_P_values_df,load_data_Q_values_df], axis=1) 

load_P_Q_and_PV_P= pd.DataFrame(np.column_stack([load_data_P_Q_values, OPF_PV_P_cigre]))   

######## Showing Concatenated Input ################## 

load_P_Q_and_PV_P 

########### Scaling the input values by subtrating its means and with a specific standard deviation, 

So, that the ML Model can learn Easily ################# 

scaler_input = StandardScaler() 

scaled_load_P_Q_and_PV_P = scaler_input.fit_transform(load_P_Q_and_PV_P) 

######### Showing scaled input Values ################# 

print(scaled_load_P_Q_and_PV_P.shape, scaled_load_P_Q_and_PV_P) 

print("Showing the mean of scaled values:", scaler_input.mean_ ) 

########### Scaling the output values by subtrating its means and with a specific standard deviation, 

So, that the ML Model can Converge Easily ################# 

scaler_output = StandardScaler() 

scaled_PV_Q_cigre = scaler_output.fit_transform(PV_Q_cigre) 

########### Showing Scaled Output Values ################### 

print(scaled_PV_Q_cigre.shape, scaled_PV_Q_cigre) 

print("Showing the mean of scaled Q values:", scaler_output.mean_ ) 

######################## Spliting the Data into Training and Testing Sets ################## 

X_train, X_test, y_train, y_test = train_test_split(scaled_load_P_Q_and_PV_P, scaled_PV_Q_cigre, 

test_size = 0.2) 

############################ Initializing MLP Model Architecture ######################## 

model = Sequential() 

model.add(Dense(32, activation = 'sigmoid', input_shape = X_train[0].shape)) 

model.add(Dense(26, activation = 'sigmoid')) 

# model.add(Dropout(0.5)) 

model.add(Dense(18, activation = 'sigmoid')) 

model.add(Dense(13)) 

## Showing the MLP Model Architecture Summary  

print(model.summary()) 

# Training the MLP Model with the Training and Validation Data # 

history = model.fit(X_train, y_train, epochs = 70, validation_data= (X_test, y_test), verbose=1) 

################### Finding the Predictions from Saved Model ################## 

from mlxtend.plotting import plot_confusion_matrix 

from sklearn.metrics import confusion_matrix 

from tensorflow.keras.utils import to_categorical 

y_pred = model.predict(scaled_load_P_Q_and_PV_P) 

# Inverse Scaling the Predicted Reactive Power By MLP and Given Reactive power for training ########## 

PV_Q_cigre_after = scaler_output.inverse_transform(scaled_PV_Q_cigre) 



91 

 

Appendix 4: Neural Prophet Code 

!pip install neuralprophet 

 # Importing required libraries 

import neuralprophet 

import numpy as np 

import pandas as pd 

Merges multiple data frames 

merged_df = pd.read_csv('single phase load data/load_profile_1_PQ.csv') 

 

for i in range(2, 14): 

    filename = f"single phase load data/load_profile_{i}_PQ.csv" 

    df = pd.read_csv(filename) 

     

    # Concatenate the DataFrame horizontally 

    merged_df = pd.concat([merged_df, df[['P', 'Q']]], axis=1) 

 

# Data preprocessing 

merged_df = merged_df.rename({"B1": "timestamp"}, axis=True) 

base_date = pd.to_timedelta('00:00:00') 

merged_df['timestamp'] = base_date + pd.to_timedelta(merged_df['timestamp'], unit='minute') 

 

timedelta_col = pd.to_timedelta(merged_df['timestamp'], unit='m') 

merged_df['timestamp'] = timedelta_col.apply(lambda x: str(x).split()[-1]) 

def outlier_detector(data): 

    # Define the window size for rolling statistics 

    window_size = 12 

 

    # Calculate rolling mean and standard deviation for each column 

    rolling_mean = data.rolling(window_size).mean() 

    rolling_std = data.rolling(window_size).std() 

 

    # Calculate z-scores for each data point based on rolling statistics 

    z_scores = np.abs((data - rolling_mean) / rolling_std) 

 

    # Define the threshold for outliers 

    threshold = 3 

 

    # Identify outliers 

    outliers = np.where(z_scores > threshold) 

 

    # Print the outliers 

    print("Outliers:") 

    print(data.iloc[outliers]) 

# Merging data into single frame 

df1_cols = merged_df.iloc[:, :3] 

df2_cols = PV_P_df.iloc[:, :1].rename(columns={'0': 'PV_P'}) 
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df2_cols = df2_cols.rename(columns={0: 'PV_P'}) 

df3_cols = PV_Q.iloc[:, :1].rename(columns={'0': 'PV_Q'}) 

df3_cols = df3_cols.rename(columns={0: 'y'}) 

PV1_df = pd.concat([df1_cols, df2_cols, df3_cols], axis=1) 

# Training data 

train_data = merged_df.iloc[:250, 1:] 

test_data = merged_df.iloc[250:, 1:] 

 

# Evaluation Functions 

def evaluate(y_true, y_pred): 

    mae = round(mean_absolute_error(y_true, y_pred), 3) 

    mse = round(mean_squared_error(y_true, y_pred), 3) 

    rmse = round(np.sqrt(mse),3) 

    mape = round(np.mean(np.abs((y_true - y_pred) / y_true)) * 100,3) 

    smape = round(np.mean(2 * np.abs(y_true - y_pred) / (np.abs(y_true) + np.abs(y_pred))) * 100,3) 

     

    return {"MAE": mae, "MSE": mse, "RMSE": rmse, "MAPE": mape, "SMAPE": smape} 

from neuralprophet import NeuralProphet 

 

# Load the data 

data = merged_df.iloc[:, :3] 

 

# Format the data 

data = data.rename(columns={"timestamp": "ds", "Q_1": "y"}) 

data["ds"] = pd.to_datetime(data["ds"]) 

# data = data.set_index("ds") 

 

# Create the model 

model_np_1 = NeuralProphet( 

    n_changepoints=100, 

    changepoints_range=0.8, 

    n_lags=10, 

    yearly_seasonality=False, 

    weekly_seasonality=False, 

) 

model_np_1.add_lagged_regressor('P_1') 

# Train the model 

metrics = model_np_1.fit(data, freq="5min", metrics=["MSE", "MAE", "RMSE"]) 

# Make predictions 

future = model_np_1.make_future_dataframe(data, periods=24*60//5, n_historic_predictions=len(data)) 

forecast = model_np_1.predict(future) 

 

# Plot the predictions 

fig = model_np_1.plot(forecast) 

plt.show() 
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Appendix 5: LSTM Code  

import zipfile 

 

# specify the path to the zip file 

zip_path = '/content/files.zip' 

 

# specify the path to the directory where you want to extract the contents of the zip file 

extract_path = '/content/extracted_files/' 

 

# create a ZipFile object 

with zipfile.ZipFile(zip_path, 'r') as zip_ref: 

    # extract all contents to the specified directory 

    zip_ref.extractall(extract_path) 

##################### Installing Machine Learning Libraries #################### 

import tensorflow as tf 

from tensorflow.keras import Sequential 

from tensorflow.keras.layers import Flatten, Dense, Dropout, BatchNormalization 

# from tensorflow.keras.layers import Conv2D, MaxPool2D 

from tensorflow.keras.layers import LSTM 

 

from tensorflow.keras.optimizers import Adam 

print(tf.__version__) 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler, LabelEncoder 

!pip install pydrive  

from pydrive.auth import GoogleAuth  

from pydrive.drive import GoogleDrive 

############## Reading all the load profiles directory paths from single phase load data directory 

############## 

import numpy as np 

import pandas as pd 

import glob 

 

import pandapower.control as control 

import pandapower.networks as nw 

import pandapower.timeseries as timeseries 

from pandapower.timeseries.data_sources.frame_data import DFData 

 

# number of time steps 

n_ts = 288 

 

all_loads_directory_path = "/content/extracted_files/single phase load data/" 

all_load_profiles_paths = glob.glob('{}/*.csv'.format(all_loads_directory_path)) 
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total_loads = len(all_load_profiles_paths) 

# Load the P values from the first file 

load_data_P_values_df = pd.read_csv("/content/extracted_files/single phase load 

data/load_profile_1_PQ.csv") 

load_data_P_values_df.rename(columns={'P': 'P_1'}, inplace=True) 

load_data_P_values_df = load_data_P_values_df[['P_1']] 

 

# Load the P values from the remaining files 

for i in range(12): 

    # Load the timeseries data from a CSV file 

    df_tmp = pd.read_csv("/content/extracted_files/single phase load 

data/load_profile_{}_PQ.csv".format(i+2)) 

    df_tmp.rename(columns={'P': 'P_{}'.format(i+2)}, inplace=True) 

    # Place the DataFrames side by side 

    tmp_horizontal_stack = pd.concat([load_data_P_values_df, df_tmp[['P_{}'.format(i+2)]]], axis=1) 

    load_data_P_values_df = tmp_horizontal_stack.copy() 

# View the resulting DataFrame 

print(load_data_P_values_df.head()) 

# Load the Q values from the first file 

load_data_Q_values_df = pd.read_csv("/content/extracted_files/single phase load 

data/load_profile_1_PQ.csv") 

load_data_Q_values_df.rename(columns={'Q': 'Q_1'}, inplace=True) 

load_data_Q_values_df = load_data_Q_values_df[['Q_1']] 

 

# Load the Q values from the remaining files 

for i in range(12): 

    # Load the timeseries data from a CSV file 

    df_tmp = pd.read_csv("/content/extracted_files/single phase load 

data/load_profile_{}_PQ.csv".format(i+2)) 

    df_tmp.rename(columns={'Q': 'Q_{}'.format(i+2)}, inplace=True) 

    # Place the DataFrames side by side 

    tmp_horizontal_stack = pd.concat([load_data_Q_values_df, df_tmp[['Q_{}'.format(i+2)]]], axis=1) 

    load_data_Q_values_df = tmp_horizontal_stack.copy() 

 

# View the resulting DataFrame 

print(load_data_Q_values_df.head()) 

##################### Concatenating all inputs into 1 Array i.e. Loads Active Power, Loads Reactive 

Power and PVs Active Power #################### 

 

load_data_P_Q_values = pd.concat([load_data_P_values_df,load_data_Q_values_df], axis=1) 

 

load_P_Q_and_PV_P= pd.DataFrame(np.column_stack([load_data_P_Q_values, OPF_PV_P_cigre]))  # this 

should be reactive power right not active ??? 

 

######## Showing Concatenated Input ################## 

load_P_Q_and_PV_P 

########### Scaling the input values by subtrating its means and with a specific standard deviation, 

So, that the ML Model can learn Easily ################# 
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scaler_input = StandardScaler() 

scaled_load_P_Q_and_PV_P = scaler_input.fit_transform(load_P_Q_and_PV_P) 

######### Showing scaled input Values ################# 

print(scaled_load_P_Q_and_PV_P.shape, scaled_load_P_Q_and_PV_P) 

print("Showing the mean of scaled values:", scaler_input.mean_ ) merged_df = pd.read_csv('single 

phase load data/load_profile_1_PQ.csv') 

for i in range(2, 14): 

    filename = f"single phase load data/load_profile_{i}_PQ.csv" 

    df = pd.read_csv(filename) 

    # Concatenate the DataFrame horizontally 

    merged_df = pd.concat([merged_df, df[['P', 'Q']]], axis=1) 

df = merged_df.set_index('timestamp') 

fig, axs = plt.subplots(13, 1, figsize=(10, 30)) 

axs = axs.flatten() 

for i in range(13): 

    ax = axs[i] 

    p_col = 'P_' + str(i+1) 

    q_col = 'Q_' + str(i+1) 

    ax.plot(df.index, df[p_col], label=p_col) 

    ax.plot(df.index, df[q_col], label=q_col) 

     

    tick_values = ax.get_xticks()[::12] 

    ax.set_xticks(tick_values) 

    ax.tick_params(axis='x', labelrotation=45) 

    ax.legend() 

    ax.set_title(p_col + ' and ' + q_col) 

plt.tight_layout() 

plt.show() 

############################ Initializing LSTM Model Architecture ######################## 

model = Sequential() 

model.add(Dense(128, activation = 'sigmoid', input_shape = X_train[0].shape)) 

model.add(Dense(64, activation = 'sigmoid')) 

model.add(Dense(32, activation = 'sigmoid')) 

# model.add(Dropout(0.5)) 

model.add(Dense(26, activation = 'sigmoid')) 

# model.add(Dropout(0.5)) 

model.add(Dense(18, activation = 'sigmoid')) 

# model.add(Dropout(0.5)) 

# model.add(Dense(13, activation = 'tanh')) 

model.add(Dense(13)) 

################ Showing the LSTM Model Architecture Summary ################## 

print(model.summary()) 

 

 

 


