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Summary

The subject of this thesis is self-organization, chaos and stochastic dynamics in laboratory
plasmas, the magnetosphere, and in the Earth’s climate system. For each of these sys-
tems we pose the question whether the global dynamics can be described by a set of a few
variables governed by the same small number of deterministic equations. This problem
is not trivial, because low-dimensional deterministic systems may exhibit chaotic dynam-
ics where the solutions are sensitive to the initial conditions, and in most respects are
indistinguishable from stochastic, noise-like dynamics.

A number of data analysis methods for time series are employed and adapted to the
problems at hand. Among these methods are time-delay phase space reconstruction,
correlation-dimension estimation of strange attractors, recurrence plots, empirical mode
decomposition, wavelet decomposition, estimation of predictability and long-range mem-
ory, estimation of low-dimensional determinism of the dynamics, and principal value de-
composition.

The analysis is complemented by numerical simulations of simple dynamic-stochastic
model systems. Some of these have solutions with known properties, some low-dimensional
and chaotic, and some are realizations of well-known stochastic processes. These are used
to benchmark the analysis methods. Other models are designed to provide solutions with
statistical properties very similar to those of the observational signals, and hence can be
considered as minimal models for the phenomenon at hand.

The thesis consists of an introductory part and four journal papers. The former briefly
reviews the basics of low-dimensional dynamical systems and the reconstruction of the
phase-space attractor from experimental time series, long-memory stochastic processes,
and critical phenomena with emphasis on self-organized critical dynamics. We also review
the data analysis methods employed in this work, and finally we give an introduction to,
and some examples from, the particular plasma laboratory and geospace systems which are
studied in more detail in the papers. This part ends with a section where some of the anal-
ysis methods are employed to climate data. This section has been included because climate
dynamics appears to be a promising field for application of these concepts and methods,
although this author has not published or submittet journal papers on this application yet.

Paper I and Paper II deal with the detection of low-dimensional chaotic dynamics on
time scales longer than those of the turbulent plasma dynamics in the laboratory Helimak
configuration, and estimation of the largest Lyapunov exponent and the fractal dimension
of the phase-space attractor. These estimates give us the degree of unpredictability and
indicate how many equations we need to describe the chaotic dynamics.

In Paper III and Paper IV we estimate the degree of predictability and the organization
of a deterministic component in the global magnetosphere during magnetic storms and
substorms, respectively. These are accompanied by simultaneous estimations of solar wind
parameters which are known to influence magnetospheric dynamics. From these results one
may draw conclusions about the causal relationship between perturbations in the solar wind
and in the magnetosphere, and infer that the organization of the magnetosphere during
these events are internal processes and not imposed by an organization of the solar wind.
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nikada niste protivili mojim snovima.

Tanja

iii



iv



Contents

Summary i

Acknowledgments iii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Structure of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Publication summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3.2 Other publications and presentations . . . . . . . . . . . . . . . . . 4

2 Complex systems 7
2.1 Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Critical phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Methods 19
3.1 Recurrence plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 EMD analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Wavelet analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Test of determinism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 PVD analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Applications 29
4.1 Laboratory plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Magnetosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Climate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Paper 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Paper 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6 Paper 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.7 Paper 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Bibliography 89

v



vi



Chapter 1

Introduction

1.1 Motivation

In the 1960s the theoretical meteorologist Edward Lorenz introduced a reduced set of non-
linear ordinary differential equations describing thermal convection in a fluid. By exploring
different parameter regimes of these equations, he discovered that their solutions are very
sensitive to the initial conditions. Unlike what was normally assumed, two solutions with
almost the same initial conditions can diverge exponentially from each other as time pro-
gresses. After this discovery, the term temporal chaos was coined. Even more surprising,
Lorenz was able to demonstrate that chaos can be produced from as few as three ordinary
differential equations, and hence that the solutions of very simple, low-dimensional systems
can be impossible to predict, even though existence and uniqueness of these solutions can
be mathematically proven. This fact had been known to a handful of mathematicians,
and proven by Henri Poncaré, but not recognized widely by the scientific community un-
til the invention of digital computers made it clear to everybody who cares to know that
low-dimensional chaos is real and ubiquitous.

Before Lorenz nobody would question that detailed prediction may be impossible in
nonlinear systems of many degrees of freedom. After all, this unpredictability is the basis
for the development of field of statistical physics. But the discovery of chaos in Lorenz’
equations raised an important question: what is the difference between stochastic systems
and low-dimensional, chaotic systems, since the outcome of both is impossible to predict
on longer time scales? The answer to this question is not as simple in practice, since
the microscopic description of most physical systems, including Lorenz’ convecting fluids,
involves an enormous number of degrees of freedom. Lorenz’ derivation of his equations was
a standard example of physical modeling where the high-dimensional microsopic description
is reduced to a low-dimensional one through a critical sequence of approximations. The
final justification of this reduction is that the reduced equations exhibit parameter regimes
where the solutions are regular, periodic motion which can be observed in experiments.
It is not difficult to conclude that such regular motion is low-dimensional. The difficulty
arises when Nature presents us with dynamics that appear random and unpredictable. Is
it high-dimensional, or is it low-dimensional and chaotic? The distinction is important,
because in the former case the description must be statistical (stochastic). In the latter
we may hope to describe the system by a small number of equations that can easily be
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1.2. STRUCTURE OF THESIS CHAPTER 1. INTRODUCTION

explored on a laptop. This problem is the main subject of this thesis.
The first part of my thesis is focused on detection of low-dimensional chaos in laboratory

plasma. Here I apply several methods to discern the existence of low-dimensional chaos and
then the dynamics revealed are interpreted according to known physics of the system under
study. The plasma experiments are set up with the intention to study particular physics,
and hence these systems are to some extent controlled. The chaos discovered occurs on
slow time scales where the plasma interaction with the external circuit is important, and
hence it can be influenced by the experimenter. Control theory is an example of an area
where the understanding of chaotic dynamics is of immense practical importance.

The second part of my thesis is concerned with systems that are beyond human con-
trol: the magnetosphere and the climate. Each of these systems is highly dimensional,
and their spatial structure is unpredictable over long distances, just like the temporal
behavior. These systems confront us with spatiotemporal chaos, and complex-system ap-
proaches comes into focus. The theory of complexity is less developed than the theory of
chaotic systems and concepts like turbulence, phase transitions, and self-organized critical-
ity are unavoidable. Again the central issue in my work is to distinguish stochastic from
low-dimensional dynamics, but now we do not only deal with the problem of detection
of low-dimensional dynamics, but also the process of self-organization that produces such
dynamics spontaneously or as a result of changes in external forcing. The coexistence of
stochastic and low-dimensional dynamics is also an issue, and simple dynamic-stochastic
models that encapsulate both are discussed.

1.2 Structure of thesis

Chapter 2 gives an introduction to some of the complex-system concepts and approaches
employed in this thesis: chaos, stochastic processes, phase transitions and self-organized
criticality. Chapter 3 reviews the methods employed in the data analysis. Chapter 4 shows
results from plasma laboratory experiments, solar wind-magnetosphere interaction, and
Earth’s climate. This chapter concludes with a collection of four published and submitted
research articles on these subjects.

1.3 Publication summary

1.3.1 Articles

Paper 1: Živković, T., and K. Rypdal, Evidence of low dimensional chaos in magne-
tized plasma turbulence, Eur. Phys. J. Special Topics 164, 157, doi: 10.1140/epjst/e2008-
00841-5, 2008

Abstract: We analyze probe data obtained from a toroidal magnetized plasma configura-
tion suitable for studies of low-frequency gradient-driven instabilities. These instabilities
give rise to field-aligned convection rolls analogous to Rayleigh-Benard cells in neutral
fluids, and may theoretically develop similar routes to chaos. When using mean-field di-
mension analysis, we observe low dimensionality, but this could originate from either low-
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dimensional chaos, periodicity or quasi-periodicity. Therefore, we apply recurrence plot
analysis as well as estimation of the largest Lyapunov exponent. These analyses provide
evidence of low-dimensional chaos, in agreement with theoretical predictions. Our results
can be applied to other magnetized plasma configurations, where gradient-driven instabil-
ities dominate the dynamics of the system.

Paper 2: Živković, T., and K. Rypdal, Experimental evidence of low dimensional
chaotic convection dynamics in a toroidal magnetized plasma, Phys. Rev. E 77,
doi: 10.1103/PhysRevE.77.037401, 2008.

Abstract: In a toroidal plasma confined by a purely toroidal magnetic field with a weak
vertical field superimposed a system of convection cells are generated spontaneously, in-
teracting with a background electron density gradient. The dynamics of this interaction
is low-dimensional, chaotic, and consistent with solutions of the Lorenz equations in the
diffusionless limit.

Paper 3: Živković, T., and K. Rypdal, Low-dimensionality and predictability of so-
lar wind and global magnetosphere during magnetic storms, submitted to Journal
of Geophysical Research.

Abstract: The storm indices Dst and SYM-H and the solar wind velocity v and interplan-
etary magnetic field Bz show no signatures of low-dimensional dynamics in quiet periods,
but tests for determinism in the time series indicate that SYM-H exhibits a significant low-
dimensional component during storm time, suggesting that self-organization takes place
during magnetic storms. Even though our analysis yields no discernible change in de-
terminism during magnetic storms for the solar wind parameters, there are significant
enhancement of the predictability and exponents measuring persistence. Thus, magnetic
storms are typically preceded by an increase in the persistence of the solar wind dynamics,
and this increase is reflected in the magnetospheric response to the solar wind.

Paper 4: Živković, T., and K. Rypdal, Organization of the magnetosphere during
substorms, submitted to Journal of Geophysical Research.

Abstract: The change in degree of organization of the magnetosphere during substorms is
investigated by analyzing various geomagnetic indices, as well as interplanetary magnetic
field z-component and solar wind flow speed. We conclude that the magnetosphere self-
organizes globally during substorms, but neither the magnetosphere nor the solar wind
become more predictable in the course of a substorm. This conclusion is based on analysis
of five hundred substorms in the period from 2000 to 2002. A minimal dynamic-stochastic
model of the driven magnetosphere that reproduces many statistical features of substorm
indices is discussed.
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1.3.2 Other publications and presentations

As first author:

1. Živković, T., and K. Rypdal, On the dynamics of the magnetosphere during geo-
magnetic storms and substorms. Poster at American Geophysical Union Fall meeting, San
Francisco, December 2010.

2. Živković, T., and K. Rypdal, Recurrence plot techniques applied to solar wind- mag-
netosphere interaction. Oral presentation at The Birkeland Workshop, Tromsø, May 2010.

3. Živković, T., and K. Rypdal, Dynamics of the Auroral Electrojet Index Time Series.
Poster at American Geophysical Union Fall Meeting, San Francisco, USA, December 2008.

4. Živković, T., L. Østvand, K. Rypdal, On the connection between the multifractal-
ity and the predictability from the auroral index time series. Poster presentation at 24rd
Summer School and International Symposium on the Physics of Ionized Gases, Novi Sad,
Serbia, August 2008. Published in Publications of the Astronomical Observatory of Bel-
grade, vol. 84, pp. 511-514, 2008.

5. Živković, T., and K. Rypdal, Low-dimensional dynamics in magnetized plasma tur-
bulence. Poster presentation at Recurrence plot workshop, Sienna, Italy, September 2007.

6. Živković, T., and K. Rypdal, Routes to chaos in Helimak device. Oral presentation
at Biannual meeting of the Norwegian Physical Society, Tromsø, August, 2007.

7. Živković, T., and K. Rypdal, Low dimensional chaos in experimental data from
Helimak device. Poster presentation at Chaos, Complexity and Transport: Theory and
Application, Marseille, France, June, 2007.

8. Živković, T., and K. Rypdal, Langevin approach to SOC. Oral presentation at Work-
shop on Complexity in Plasma and Geospace systems in Geilo, Norway, March, 2007.

9. Živković, T., and K. Rypdal, Indication of low dimensional dynamics in geomagnetic
time series. Oral presentation at Annual meeting of the Norwegian Geophysical Society,
Geilo, Norway, September, 2006.

As coauthor:

1. Rypdal, K., M. Rypdal, B. Kozelov, T. Živković, L. Østvand, Stochastic modeling
of fluctuations in large-scale properties of the Solar wind or the magnetosphere-ionosphere
system. Poster at American Geophysical Union Fall meeting, San Francisco, Desember
2008.

2. Rypdal, K.,and T. Živković, Burst statistics of fluctuations in a simple magnetized
torus configuration. Oral presentation at EFTSOMP workshop, Heraklion, Greece, June
2008.
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3. Rypdal, K., M. Rypdal, B. Kozelov, S. Servidio, T. Živković, Complexity in astro-
and geospace systems: the turbulence versus SOC controversy, AIP Conference Proceedings,
Volume 932, pp. 203-208, 2007.

5



1.3. PUBLICATION SUMMARY CHAPTER 1. INTRODUCTION

6



Chapter 2

Complex systems

This thesis deals with analysis and modeling of physical systems: laboratory plasmas,
Earth’s magnetosphere, and climate, which have little in common when it comes to the
microscopic physics. Nevertheless, the methods used for analysis are essentially the same
for all systems, and the conceptual and stochastic models employed have a lot in common.
This is possible due to the choice of a scientific approach, the complex-system approach,
which is focused on structure rather than detail [1]. This choice does not necessarily im-
ply subscription to a belief that this approach is “better” or more “truthful” than the
reductionist approach based on first physical principles. However, the trend in scientific
communities is towards increasing recognition that the two approaches complement each
other and that complex-system approaches are becoming an integral part of modern sci-
ence. This chapter will give a brief review of some fundamental themes and concepts that
are central in complex-system science and central to the results reported in the journal
articles presented in chapter 4.

2.1 Chaos

The concept of deterministic chaos has its root in the mathematics of dynamical systems
[2]. The mathematical structure is often explored via discrete dynamical systems (maps),
but in physical applications continuous formulations in the form of autonomous systems
of ordinary differential equations are often more relevant. Such a system has the general
form:

dx

dt
= f(x), (2.1)

where x(t) is an n-dimensional vector representing the physical state of the system. The
term autonomous means that the flow field f(x) does not depend explicitly on time. This
implies that the entire trajectory x(t) for −∞ < t <∞ is uniquely given if the position x
at a given time (the initial condition) is known. This is what we mean when we state that
dynamical systems are deterministic. The basic microscopic laws of classical physics can
be formulated as dynamical systems, and hence they are deterministic. The n-dimensional
space hosting the state vector x is called the phase space, and the evolution of the system
constitutes a trajectory in this space. The family of all these trajectories is called a flow,
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2.1. CHAOS CHAPTER 2. COMPLEX SYSTEMS

and the set of points enclosed by a closed surface in phase space that moves with the flow
can be thought of as a volume of the phase-space fluid.

If a dynamical system is in equilibrium f(xp) = 0, or xp is a fixed point of the system.
In linear systems, there is exactly one xp, while nonlinear systems can have none, one, or
many fixed points. Further, xp can be either stable or unstable, depending whether nearby
initial conditions are attracted or repelled from it. Unstable fixed points for which some
trajectories in phase space are attracted to xp, while others are repelled are called a saddle
points. These are often involved in producing the conditions for chaos, since they may
provide stretching and folding of trajectories in the phase space. Saddle points are also the
most common type of equilibrium in high-dimensional systems.

Only dissipative systems have attractors in phase space. A physical system is called
dissipative if its energy is dissipated into a heat. This action contracts the volume of fluid
elements in the phase-space fluid as time progresses. Strange attractors are fractal objects
whose dimension is not an integer number. They are transitive (the dynamics of any
point on the attractor will take us arbitrarily close to any other point on the attractor);
they are structurally stable (any addition of small terms in the equations or a change
in parameters should not change the attractor); they are usually sensitive to the initial
conditions, meaning that two nearby initial conditions should separate exponentially on
average. This is the most striking property of low-dimensional chaotic systems, since it
implies that prediction is impossible on time scale longer than the characteristic time scale
of this exponential growth. The exponential growth rate is determined by the largest
Lyapunov exponent of the system, and is a quantity that is possible to compute from
time-series of quantities that measure the evolution of the state of the system.

In figure 2.1 we show an example of the Lorenz attractor, which emanates from the
dynamical system:

dx/dt = a(y − x)

dy/dt = −xz + cx− y (2.2)

dz/dt = xy − bz,
where a = 10, b = 8/3 and c = 28. Here, the attractor resembles a butterfly. Chaos
is produced by random sweeping of the trajectory from one “wing” of the butterfly to
another. In a discrete systems (maps) chaos can occur in one and two dimensions, while
for continuous flows chaos is possible only in three dimensions or higher, since trajectories in
the phase space are not allowed to cross each other [3]. With two-dimensional, continuous
flows, trajectories can only approach a fixed point or limit cycle, or go to infinity.

Hamiltonian chaos can take place in physical systems where energy is conserved. This
conservation implies that phase-space volumes are preserved as time progresses. The mech-
anism of Hamiltonian chaos is overlap between regions of periodic motion in phase space
(resonance overlap). These systems do not have phase-space attractors and different initial
conditions can give rise to different dynamics (chaos, periodic motion, etc.).

In low-dimensional dynamical systems transient behavior is followed by asymptotic
motion converging to the attractor, covering it densely as time evolves. We will be interested
in determining geometrical properties of the attractor. Is it a fixed point, a limit cycle,
quasi-periodic motion, or a strange attractor. And in the latter case, what is the fractal
dimension of the attractor?
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Figure 2.1: Lorenz attractor

If the dynamics is very complex or if the system is high-dimensional, statistical and ther-
modynamical descriptions like invariant measures are more useful than exploration of geo-
metrical structure of attractors. One approach to understanding turbulence is by modelling
as high-dimensional dynamical systems [4]. However, distinguishing high-dimensional, de-
terministic and chaotic systems from stochastic systems is notoriously difficult. In principle
one could study how sample paths with almost identical initial conditions diverge with time.
It is known that while chaotic paths diverge exponentialy, stochatic paths diverge like a
power-law. An even more important difference is that while two chaotic paths starting out
at nearby points in phase space will move in the same direction for some tome before they
separate, stochastic paths will move in arbitrary and different directions. The latter prop-
erty will be used in Papers III and IV in this thesis to distinguish low-dimensional, chaotic
motion from stochastic. Unfortunately the method does not work for high-dimensional
systems because we are not able to reconstruct from time-series data a state vector that
represents the full state of the system in n-dimensional phase space. The best we can hope
for is to reconstruct a projection of this vector onto a low-dimensional space, and then
two reconstructed vectors which are close in the reconstructed space may represent two
states that are widely separated in the full phase space. The implication is that evolution
that appears stochastic from analysis of reconstructed state vectors may well be a result of
high-dimensional deterministic dynamics.

This brings us over to the subject of how to reconstruct a phase space from the method
of time-delay embedding.

2.2 Embedding

The concept of phase space was first introduced in the field of theoretical and statistical
mechanics, where generalized coordinates and momenta (qi, pi), i = 1, . . . , N are introduced
and N is the number of degrees of freedom. In this case the phase space has dimension
n = 2N . If the output of an experiment or the observation of a natural system has the
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2.2. EMBEDDING CHAPTER 2. COMPLEX SYSTEMS

form of a time series s(t) we may attempt to reconstruct a phase space of lower dimension
m in which the attractor of the dynamics is topologically (continuously and one-to-one)
embedded. The most common reconstruction method is the time-delay embedding [5],
but also differential embedding, Hilbert transform embeddings as well as Singular Value
Decomposition embedding [6]. In all approaches, it is assumed that embedding creates a
diffeomorphism between the underlying, experimental attractor and embedded, or recon-
structed, chaotic attractor. If the underlying dynamic, which we can not measure directly,
in its original phase space can be explained by a trajectory x(t) = f t(x(0)), and if there is
a measurement function h, such that s(t) = h(x(t)), then the reconstruction according to
the time-delay embedding is obtained as:

F (x) = [h(x), h(f τ (x)), h(f 2τ (x)), . . . , h(f (m−1)τ (x))] (2.3)

where τ is a time-delay, chosen to be bigger than the sampling rate and smaller than the
decorrelation time of the time series s(t). However, this reconstruction is valid only for
autonomous systems. If there is a driver in the system, not only output time series s(t) is
enough, but also input time series I(t) is needed [7]. The reconstruction is then as follows:

(ITt , s
T
t ) = (2.4)

(It, It+τ , ..., It+(mi−1)τ , st, st+τ , ...st+(mo−1)τ ),

which found application in driven-dynamical systems as we demonstrate on the example of
laboratory plasma in Paper I. The estimate for the embedding dimension m was given in [8],
and represented the number of eigenvalues over the noise level, if obtained from the singular
system analysis. Another estimate for m can be obtained from the following contemplation:
If the attractor is properly reconstructed, its dimension is not dependent of further increase
of m. On the other hand, for stochastic systems, the phase space attractor has infinite
dimension, and with the increase of the embedding dimension, distances between the points
and the dimension of the attractor continue to increase. The reason for this behavior is that
for lower m, the attractor of the dynamics projects to the lower dimension and points that
are far apart might appear closer. However, when the embedding dimension is appropriate,
all trajectories are “unfolded” and with a further increase of m, attractors dimension does
not change.

A sufficient condition is m ≥ 2d + 1 where d is the dimension of the attractor of the
dynamics, since then trajectories should not intersect in the embedded space [9]. In order to
compute d, a common method is to calculate correlation integral developed by Grassberger
and Proccacia (1983) [10], which is given by the following formula:

C(r) =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

Θ(r − ‖x(i)− x(j)‖), (2.5)

where Θ(a) = 1 if a ≥ 0 and Θ(a) = 0 otherwise. Here r is radius of the ball in the phase
space. If there is an attractor in phase space C(r) ∼ rd, and the correlation dimension
can be defined as D = log(C(r))/ log(r). If the dynamics is periodic or quasi-periodic the
correlation dimension D is equal to the topological dimension d of the attractor, while for
a chaotic systems we have a strange attractor and then the fractal dimension D is usually

10
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not an integer. It was shown by Osborne and Provenzale (1989) [11] that a time series with
strong time correlations can also produce low correlation dimension, even if it is otherwise
a linear, high-dimensional (stochastic) system. This will be discussed in more details in
section 4.1.

In the case of experimental time series, different types of noise are present, which destroy
the smoothness of the phase space attractor. In these computations, mean-field dimensional
analysis is useful. This method is explained in detail in Paper I. The limitations of the
time-delay embedding are that short or oversampled time series can produce artificially
smaller correlation dimension. In addition, a presence of noise can distort trajectories and
artificial intersection between trajectories can occur. Also, stochastic time series with time
correlations (as mentioned) can produce low correlation dimension which is due to long
memory in the signal rather than deterministic dynamics.

When the reduced phase space is reconstructed, we can measure the evolution of nearby
trajectory segments by computation of Lyapunov exponents, which for a one-dimensional
map xn+1 = f(xn) is defined as follows:

λ = lim
N→∞

1

N

N−1∑
i=0

ln |f ′(xi)|, (2.6)

For a continous flow in higher dimension n the definition is generalized, and there will be n
Lyapunov exponents. But the equation above gives the idea and shows that the (largest)
Lyapunov exponent is a measure of the average exponential rate of separation of two nearby
initial conditions. If the system is periodic, it is enough to average over only one period
once the orbit has reached the attractor. In a dissipative chaotic system, the sum of all
Lyapunov exponents is negative implying the phase space contraction. Hamiltonian systems
are time-reversible, and sum of Lyapunov exponents goes to zero. However, at least one of
these Lyapunov exponents is positive if chaos present. Also, one of Lyapunov exponents
has to be zero, which corresponds to the direction of the flow [12]. An example is Lorenz
attractor which consists of three equations and hence, has three Lyapunov exponents:
λ ' 0.9065, 0,−14.5723. If all Lyapunov exponent are zero the dynamics is continuous
and predictable than randomly fluctuating. If the correlation dimension grows with the
embedding dimension, negative Lyapunov exponents should not be obtained. White noise
can only be reconstructed in an infinite-dimensional phase space and only then will its
Lyapunov exponent be zero [13]. Since there is no algorithm for computing Lyapunov
exponents which allow embedding dimension go to infinity, algorithms usually give positive
Lyapunov exponents when applied to white noise. Too high embedding dimension in the
computation of Lyapunov exponents may give incorrect results because noise, being infinite
dimensional, may corrupt the data. All positive Lyapunov exponents give the estimate of
the average rate at which predictability is lost.

2.3 Stochastic processes

A primary goal in this thesis is to devise methods to distinguish from data between deter-
ministic and chaotic dynamics on one hand, and stochastic dynamics on the other. However,
high-dimensional chaotic systems have many of the same statistical properties as time series

11
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from stochastic processes. Therefore, many different tests have to be employed in order to
disentangle stochastic and deterministic system properties from time-series data. By time
series, we mean a sequence of numerical values xi. Often we can think of the time series as
a discrete sampling of a continuous stochastic process {x(t)}, such that xi = x(i∆t), where
typically t is interpreted as the time variable.

For long, stationary time series it is meaningful to divide the data record into a number
of subrecords of length T . Each subrecord is then Fourier transformed to yield x̃(f), the
power x̃(f)2 is formed, and then averaged over the ensemble of subrecords to yield the
spectral density function (SDF) S(f) = 〈|x̃(f)|2〉. The frequency resolution of the discrete
Fourier transform is ∆f = 1/T and the maximum (Nyquist) frequency is fN = 1/(2∆t).
Let var{·} denote the variance and σ2 = var{xi}. Since the process {xi} is assumed to be
stationary σ2 and σ2

i do not depend on the index i. For such a process the autocorrelation
function (ACF)

C(k∆t) = E{xixi+k}/σ2 (2.7)

can also be given as the Fourier transform of S(f)/σ2 in the interval −T/2 < τ < T/2 with
time resolution ∆t. Here E{·} denotes the expectation value.

A standard method for studying the correlation structure on different time scales is to
divide the time-series containing N data points into subrecords of lengths m = 2n data
points, where n = 0, 1, 2, ...,M , and 2M is much smaller than the total record length.
For each value of n the value of the data points in each subrecord are averaged to produce
new coarse grained time series. In practice the increasingly coarse grained time series are
generated iteratively by generating the series corresponding to n = 1 from the original
series (n = 0) by taking the mean of the first and second data point, the mean of third
and the fourth data point, and so on until a series containing N/2 data points has been
generated. Then a series (n = 2) containing N/4 points is constructed from performing
the same operation on the n = 1 series, and so on up to n = M . If the original time-
series is a realization of a stationary stochastic process xi, where i = 1, 2, ..., N , and xi
are independent random variables, the variance σ2

m of the coarse grained time-series varies
asymptotically as m−1 when m → ∞. If the the random variables are not independent,
the expression for σ2

m can be written

σ2
m = var{m−1

m−1∑
k=0

xi+k} ≈ [1 + 2
m−1∑
k=0

C(kδt)] (2.8)

The asymptotic dependence σ2
m ∼ m−1 remains unchanged in the presence of correlations

if the integral over the ACF is finite, i.e. if
∑∞

k=0C(k∆t) < ∞. However, if the integral
diverges, as is the case if there exist real constants a > 0 and 0 < α < 1 such that
limτ→∞C(τ)α = a we rather find the asymptotic dependence σ2

m ∼ m−α as m→∞. This
result can be written in the form

lim
τ→∞

m1−Hσm = c, (2.9)

where c is a constant and we have introduced the Hurst exponent H = 1 − α/2. If a
stationary time series satisfies condition (2.9) with 1/2 < H < 1, it is said to exhibit long
range dependence [14].

12
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An equivalent definition of long range dependence in a stationary time series is that
there exist real constants b > 0 and 0 < β < 1 such that

lim
f→0

S(f)fβ = b. (2.10)

Here, the exponents α, β, and H are related through

α = 2− 2H, β = 2H − 1, (2.11)

and hence α+β = 1. While the Hurst exponent expresses increasing long-range dependence
as H increases from 1/2 to 1, for an important class of stochastic processes it also is
called the selfsimilarity parameter [15]. A continuous stochastic process y(t) is statistically
selfsimilar if the rescaled process λ−Hy(λt) is equal in distribution to the original process
y(t) for any positive stretching factor λ. This means that for any sequence of time points
t1, ..., tk and any positive constant λ, the random variables λ−H(y(λt1), ..., y(λtk)) have the
same joint distribution function as (y(t1), ..., y(tk)). The process yi = y(i∆t) is selfsimilar
in the continuous limit if the increment process xi = yi − yi−1 is stationary and consists of
independent random variables or exhibits long-range dependence.

The equivalence of the selfsimilarity parameter for the process yi and the Hurst exponent
for the increment process xi defined by equation (2.9) is seen as follows: If xi are stationary
increments of a self-affine process yi the sample mean can be written

x̄m = m−1(ym − y0)
d
= m−1mH(y1 − y0) = mH−1x1, (2.12)

where
d
= denotes identity in distribution and H is the self-similarity parameter. From this

we find that
σ2
m = var{x̄m} = σ2m2H−2, (2.13)

which is equivalent to equation (2.9).
One tool for computing the Hurst exponent from a stationary time series {xi} is to

construct the cumulative sum yi =
∑i

j=1 xj and to compute the variogram

γm =
1

(N −m)

N−m∑
i=1

(yi+m − yi)2. (2.14)

γm is an estimate of var{mx̄m}, and hence if {yi} is selfsimilar with selfsimilarity parameter
H we have from equation (2.13) that

γm ∼ m2H . (2.15)

It is easy to show that if the stationary process {x(t)} has a power-law SDF S(f) ∼ f−β,
the integrated non-stationary process {y(t)} = {∫ t

x(t′) dt} also has a power-law SDF with
spectral index β′ = β + 2. For instance, if {x(t)} is a Gaussian white noise we have β = 0,
and H = (β + 1)/2 = 0.5. However, the non-stationary process {y(t)} has selfsimilarity
exponent H = 0.5 and spectral index β′ = 2, and is called a Brownian motion. For
0 < H < 1 the stationary process {x(t)} is called a fractional Gaussian noise (fGn) if it is

13
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Figure 2.2: Variogram and power spectral density for Ornstein-Uhlenbeck process; blue is
for original signal, red is for cumulative sum. a) Variograms. b) Power spectral densities.

Gaussian, and {y(t)} is a fractional Brownian motion (fBm). If {w(t)} is a white Gaussian
noise the Langevin equation

dy

dt
= −νy +

√
Dw(t) (2.16)

generates the so-called Ornstein-Uhlenbeck (O-U) process. Here ν is damping, and D is
diffusion coefficient. The discrete version of this equation is a difference equation generating
the AR(1) process. On time scales τ � ν−1 the O-U process is non-stationary and identical
to a Brownian motion, but on time scales τ � ν−1 it becomes stationary and behaves like
a white noise process. This is reflected in the SDF for the process, which by Fourier
transforming equation is easily found to be a Lorentzian

S(f) ∼ 1

(2πf)2 + ν2
. (2.17)

Above we have defined the Hurst exponent for stationary processes from the power-law
behavior of the ACF C(τ) in the limit of τ → ∞ or of the SDF S(f) in the limit f → 0.
We have also seen that it can be estimated from the power-law behaviour of the variogram
γm in the limit m→∞ of the cumulative sum yi =

∑i
j=1 xj. However, for the O-U process

we observed that power-law scaling properties may also exist in restricted regimes of time
scales, and not only in the asymptotic limit of infinite time scales. The definition of H from
the asymptotic properties of the autocorrelation function makes sense only for stationary
processes for which 0 < H < 1. In the literature, however, it is not uncommon to see Hurst
exponents outside this range (as in Paper III). In those cases one should really consider this
exponent as an extension of the definition of H based on its relation to the spectral index
given by equation (2.11), i.e. H ≡ (β + 1)/2. With this definition, we would for instance
have that the Hurst exponent for a Brownian motion (β = 2) would be H = 1.5, while
the selfsimilarity exponent for this non-stationary process is h = 0.5. Thus, for motion we
would have the relation

H = h+ 1. (2.18)
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Figure 2.3: Atlantic Multidecadal Oscillation.

In figure 2.2 a) the red curve is the variogram of the cumulative sum of the O-U process
in a log-log plot. On time scales m∆t � ν−1 the process is a Brownian motion and we
should have H = 1.5. Since the scaling γm ∼ m2H implies that log γm = 2H logm+ const
the slope of the curve for m∆t � ν−1 should be 3. However, the slope in the figure is 2,
demonstrating that the variogram does not work when applied to the cumulative sum of
non-stationary processes (for which H > 1). However, for such processes the variogram can
be applied to the process itself, as done in the blue curve in figure 2.2 a). In this case we find
the self-similarity exponent h from the relation slope=2h. Since the slope for m∆t� ν−1

is 1 we find that h = 0.5 and hence that H = h+ 1 = 1.5. On time scales m∆t� ν−1 the
O-U process is a white noise. However, for noises (stationary processes) the variogram of
the process itself is flat, and does not provide information about the Hurst exponent. To
obtain information about the Hurst exponent in those cases where the variogram does not
work, an alternative is to estimate the SDF and identify power-law regimes in the spectrum
from log-log plots. This is done for the O-U process in figure 2.2 b) for the original signal
and the cumulative sum. Since H = 1.5 in the short time-scale regime (large f) the slopes
in the figure confirm the relations β′ = β+ 2 and β = 2H − 1. In the low-frequency regime
the process is white noise and the slope of the blue curve should be 0, while on the red
curve it should be 2. This is not perfect in this figure because the Fourier transform has
been estimated on too short time windows.

The property that a signal is a non-stationary process (a motion) on short time scales,
and stationary (a noise) on longer time scales is a property shared by a very large class
of experimental and observational signals. The motion is not always Brownian, however,
and the noise does not have to be white. The signals often exhibit long-range memory,
and they are often non-Gaussian. Examples of such signals are discussed in all the journal
articles included in this thesis.

As an example of a signal where it can be of interest to compute the Hurst exponent, we
show in figure 2.3 the Atlantic Multidecadal Oscillation (AMO) index, which is spatially
averaged sea surface temperature anomaly in the North Atlantic.

In figure 2.4 we show the variogram for the cumulative sum yi =
∑i

j=1 xj of the AMO
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Figure 2.4: Variogram for cumulative sum of AMO.

signal. The slope is 2H = 1.74, and hence H = 0.87 and the spectral index is β =
2H − 1 = 0.74. This indicates that the AMO signal is fractional Gaussian noise on the
scales less than 300 months (∼ 25 years), while on the longer scales it behaves as a white
noise. This example, however, also illustrates one of the pitfalls of uncritical application of
variogram and spectral analysis. Visual inspection of the AMO signal immediately reveals
the existence of a slow oscillation with period of approximately 60 years, so the cumulative
sum of the signal is obviously not completely self-similar. By removing this oscillatory trend
(for instance by subtracting a low-pass filtered version of the signal) and the performing
the variogram or spectral analysis one finds a somewhat lower Hurst exponent, but still
there is a clear persistence (H > 0.5).

In contrast, variogram analysis for the x-component of the numerical solution of the
Lorenz equations yields H = 1 on time scales τ � λ−1

1 , where λ1 is the largest Lyapunov
exponent. This indicates that the solution is deterministic and predictable on this time
scale. On time scales τ � λ−1

1 , however, the variogram of the cumulative sum yields
H = 0.5, and the SDF yields β = 0, demonstrating the lack of correlations and the white
noise character of the chaotic signal on these time scales.

2.4 Critical phenomena

In thermodynamics, a phase transition represents the transformation of a system from one
phase to another. By phase is meant a set of states of a macroscopic physical system which
have relatively uniform chemical composition and physical properties such as density, index
of refraction, etc. Some phase transitions either need supply of or release of energy during
the process of transition and these are coined first order phase transition. During the energy
transfer mixed-phase regimes are encountered, where some parts of the system have ended
the transition and some have not. The most common example of the first order transitions
are ice -to water- to vapor transition.

When there is no energy change between the phases, second order phase transitions take
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place. These transitions are continuous and the ferromagnetic transition is one example.
The phenomena associated with second order phase transitions are also called critical phe-
nomena, since they can be characterized by parameters known as critical exponents. Close
to criticality, these transitions exhibit power law behavior. For example, in some thermo-
dynamic system, if all variables are kept constant except temperature, then close to the
critical temperature Tc, heat capacity C of the system behaves as C ∼ |Tc−T |−α, where α
is the critical exponent. A remarkable fact about these transitions is that different systems
can still have the same set of critical exponents. This phenomenon is known as universality.
For example, the critical exponents at the liquid-gas critical point are independent of the
chemical composition of the fluid [16].

A particular class of critical phenomena which has been proposed as a mechanism to
explain the ubiquity of power-laws in Nature is the paradigm of self-organized criticality
(SOC). This concept was first introduced by Per Bak et al. (1987) [17] who developed
a discrete cellular automaton model, in order to illustrate how a sand pile responds to
randomly added sand grains. In this case, grains of sand are dropped on the sand pile until
its slope reaches some critical angle of repose. One might expect that additional sand drops
in the critical state of slope would just slide down the slope. However, what really happens
in an SOC system, is that an additional grain, when the critical state is approached, causes
avalanches of various sizes with power-law distributed size and duration. On average, the
number of added drops balances the number of drops that slide down the sand pile, but the
actual number of grains fluctuates continuously. Experimental sand piles do not behave as
SOC systems [18], so the term “sandpile model” should be understood as a class of cellular
automata, not as a model for how real piles of sand behave.

SOC can be defined as a specific state of a slowly driven many-body (many grains)
system characterized by an intermittent scale-free response to external perturbations, and
marginal stability, implying the ability of the system to adjust to driving rate changes
without losing its signatures of critical dynamics [19]. From the simple analogy with a
sand pile, we can also conclude that the basic interactions in an SOC state are local,
but long-range interactions develop due to the formation of a scale free distribution of
avalanches near the critical state. Contrary to second order phase transitions near the
critical point, SOC is shown to be robust and to arise spontaneously without tuning of
system parameters, although it also can be argued that the limit of vanishing driving rate
is also some sort of tuning [20]. Also, second-order phase transitions have at least one more
class of critical exponents that relates the input parameters of the system (temperature) to
its output (magnetization or density). The introduction of models that exibit self-organized
criticality has been a major advance in extending concepts of chaos to higher order systems,
i.e. by increasing number of degrees of freedom in the system, the transition from low
dimensional chaos to self organized criticality can be studied [21]. In an SOC model, there
is always a slow time-scale for the driver and a fast time-scale for the dissipation of the
avalanches. For example, stress in the tectonic plates can be accumulated for years, and
then relived in seconds in the form of earthquakes. SOC has become explanation for various
systems, like earthquakes [22], plasma transport [23], stock prices [24], wars [25], etc.
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Chapter 3

Methods

3.1 Recurrence plots

Recurrence plot (RP) analysis is one of the central tools employed throughout this PhD
thesis. Their most obvious attractive feature is that direct visual interpretation is possible,
and periodic, quasiperiodic/ chaotic, and noisy systems can be distinguished by eye. In RP
different measures of complexity can be defined and some of them can be used as indicators
of changes in the system’s dynamics ([26], [27]). A particular advantage of RPs is that they
can be applied to non-stationary and short time series as well as to systems with underlying
nonlinear dynamics.

Recurrence is a fundamental characteristics of conservative and dissipative dynamical
systems, reflecting that the phase-space orbit is dense on the attractor. This property,
however, does not tell how long time it takes for a recurrence to occur, and this period
can be very long for high-dimensional dynamical systems. RP is a plot of a matrix Ri,j

where in every matrix element two states at discrete time i and time j are compared. If
these states are similar (i.e. their separation in phase space is small) Ri,j = 1, otherwise
Ri,j = 0. Matrix elements for which Ri,j = 1 are plotted as black dots, while elements
for which Ri,j = 0 are plotted as white dots. In figure 3.1 B) we show for illustration an
RP for the Rössler system (in figure 3.1 A)), which is a chaotic system described by three,
nonlinearly coupled, first order ordinary differential equations [28].

Formally, for a phase-space orbit described by the time series of vectors ~xi, i = 1, 2, . . .,
in a proper embedding space, the RP matrix can be defined from the expression:

Ri,j(ε) = Θ(ε− ‖~xi − ~xj‖), (3.1)

where Θ is the Heaviside function. From this definition, we see that the RP has always a
black main diagonal, since Ri,i ≡ 1. The threshold ε can be chosen as e.g. a few per cent
of the maximum phase space diameter, or as a few standard deviation of the observational
noise in the data. Patterns in RPs can be classified as follows:

• Homogeneous: Typical for stationary systems, where time spanned by the RP is
longer than the typical scales of the system.

• Diagonal lines: Segments of trajectory recur and run together for some time, which
is determined by the length of the diagonal line.
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Fig. 3. (A) Segment of the phase space trajectory of the Rössler system, Eqs. (A.5), with a = 0.15, b = 0.20, c = 10, by using its three components
and (B) its corresponding recurrence plot. A phase space vector at j which falls into the neighbourhood (grey circle in (A)) of a given phase space
vector at i is considered as a recurrence point (black point on the trajectory in (A)). This is marked with a black point in the RP at the position (i, j).
A phase space vector outside the neighbourhood (empty circle in (A)) leads to a white point in the RP. The radius of the neighbourhood for the RP
is ε = 5; L2-norm is used.

phase space has to be reconstructed [43,44]. A frequently used method for the reconstruction is the time delay method:

�̂xi =
m∑

j=1

ui+(j−1)
 �ej , (9)

where m is the embedding dimension and 
 is the time delay. The vectors �ei are unit vectors and span an orthogonal
coordinate system (�ei · �ej =�i,j ). If m�2D2 +1, where D2 is the correlation dimension of the attractor, Takens’ theorem
and several extensions of it, guarantee the existence of a diffeomorphism between the original and the reconstructed
attractor [44,45]. This means that both attractors can be considered to represent the same dynamical system in different
coordinate systems.

For the analysis of time series, both embedding parameters, the dimension m and the delay 
, have to be chosen
appropriately. Different approaches for the estimation of the smallest sufficient embedding dimension (e.g. the false
nearest-neighbours algorithm [46]), as well as for an appropriate time delay 
 (e.g. the auto-correlation function, the
mutual information function; cf. [47,46]) have been proposed.

Recurrences take place in a systems phase space. In order to analyse (univariate) time series by RPs, Eq. (1), we will
reconstruct in the following the phase space by delay embedding, if not stated otherwise.

3.2. Recurrence plot (RP)

3.2.1. Definition
As our focus is on recurrences of states of a dynamical system, we define now the tool which measures recurrences

of a trajectory �xi ∈ Rd in phase space: the recurrence plot, Eq. (1) [2]. The RP efficiently visualises recurrences
(Fig. 3A) and can be formally expressed by the matrix

Ri,j (ε) = 	(ε − ‖�xi − �xj‖), i, j = 1, . . . , N , (10)

where N is the number of measured points �xi , ε is a threshold distance, 	(·) the Heaviside function (i.e. 	(x) = 0, if
x < 0, and 	(x)=1 otherwise) and ‖·‖ is a norm. For ε-recurrent states, i.e. for states which are in an ε-neighbourhood,

Figure 3.1: A) Rössler attractor, B) RP for Rössler system demonstrates recurrences of the
trajectories

• Vertical and horizontal lines: Some states do not change or change slowly; indication
of laminar states.

• White bands: Non-stationary data, transitions may have occurred, extreme events.

• Single isolated points: Strong fluctuations, uncorrelated random or anti-correlated
process.

• Fading to the upper left and lower right corner: Non-stationary data; the process
contains a trend.

One RP can exhibit many of the mentioned patterns simultaneously. For example, a chaotic
system gives rise to single, isolated points as well as diagonal lines. Quasi-periodic systems,
where ratios between frequencies in the system are irrational, can also have RPs that are
indistinguishable from chaotic systems. In this case, the largest Lyapunov exponent should
be computed, and if it is positive the system is chaotic. Periodic systems produce uninter-
rupted, diagonal lines and the distance between diagonal lines gives the period. In the case
of noise or random processes RPs consist of mostly isolated, uniformly distributed points
whose distances are also uniformly distributed, indicating that there is no predominant
time scale in the system.

Generalizations, like cross-recurrence plots (CRP) can be defined [29], where the recur-
rences between the trajectories of two systems in the same phase space are considered:

CR~x,~y
i,j (ε) = Θ(ε− ‖~xi − ~yj‖). (3.2)

Also, joint-recurrence plot (JRP) can be used to compare the recurrences of the trajectory
of two different systems in their respective phase spaces [30]:

JR~x,~y
i,j (εx, εy) = Θ(εx − ‖~xi − ~xj‖)Θ(εy − ‖~yi − ~yj‖), (3.3)

where εx and εy are thresholds in two different phase spaces. The advantage of JR over CR
is that it can be applied to physically different systems, whose phase spaces have different
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dimensions, or where phase spaces are obtained from different physical variables. We have
used both JR and CR to visualize correlations between plasma potential and electron
density in Paper I.

Measures of complexity in RP

A number of complexity measures can be introduced, which quantify the small scale struc-
ture in RP. To see how these measures vary as a function of time, one can compute them
in small windows (sub-matrices) and then move these windows along the main diagonal of
the RP. A detailed review on RP quantification analysis can be found in Marwan et al.
(2007) [31]. The recurrence rate measures the density of the recurrence points in the RP:

RR(ε) =
1

N2

∑
i,j=1

Ri,j(ε), (3.4)

and in the limit N →∞, RR is the probability that the state recurs to its ε-neighborhood in
phase space. This definition corresponds to the correlation sum, as observed from equation
(2.5). Diagonal measures are based on the histogram P (ε, l) of diagonal lines of length l:

P (l) =
N∑

i,j=1

(1−Ri−1,j−1)(1−Ri+l,j+l))
l−1∏
k=0

Ri+k,j+k.

RP measures can be computed for every diagonal line separately, with distance τ from
the main diagonal, for example, τ -recurrence rate can be obtained. This measure can be
interpreted as a probability that a state recurs to its ε-neighborhood after τ time steps:

RRτ =
1

N − τ
N−τ∑
i=1

Ri,i+τ , (3.5)

and can be considered as a generalized auto-correlation function. It contains information
about the full phase-space orbit and not only for a single component of the system’s tra-
jectory. Also, a trend in the data can be defined as a linear regression coefficient over the
τ -recurrence rate as a function of τ .

In Paper III we suggest that the average inverse of diagonal line lengths:

Γ ≡ 〈l−1〉 =
∑
l

l−1P (l)/
∑
l

P (l), (3.6)

can be used as a proxy for the largest Lyapunov exponent in deterministic systems, and
this is demonstrated for the Lorenz system. There we also demonstrate that for a signal
which is predominantly a fractional Brownian motion, Γ is related to the inverse of the
selfsimilarity exponent h. Therefore, we can conclude that Γ is a universal measure of
predictability: in a chaotic system, it is related to the largest Lyapunov exponent, while in
a stochastic system it is related to the long-range memory effects.

As mentioned, there are a multitude of RP quantification measures that are beyond the
scope of this thesis. For instance, from the RP correlation entropy, correlation dimension
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and generalized mutual information can be defined if the system is ergodic, and these
measures are not dependent on the embedding dimension if this dimension is sufficient
to unfold the attractor. We also mention that various studies have shown that vertical
structures in the RP can detect chaos-chaos transitions as well as intermittency and laminar
states [32].

3.2 EMD analysis

Empirical mode decomposition (EMD) was developed by Huang et al. (1998) [33] and is
based on the local scale separation of time series. The essence of the method is to identify
the intrinsic oscillatory modes by their characteristic time scales in the data empirically,
and then decompose the data accordingly. At every moment in time each mode has an
instantaneous frequency, and to define this frequency the time series has to be decomposed
into signals whose mean is close to zero, and equal (or differ at most by one) number of
zero crossing and extrema [34]. When a time series exhibits these properties it is called
an intrinsic mode function (IF), which is a pure oscillatory mode that bears amplitude
and frequency modulations. IFs can be obtained through the sifting process, which is an
adaptive process derived from the data and is explained in Paper III. The higher modes
have fewer oscillations and the IF with highest mode number is called the residual R, which
is usually a monotonic function. This residual does not have the characteristics of the other
IFs, since the mean is usually not zero, and represents the trend in a data with nonzero
mean.

By the above definitions, IFs are complete in the sense that their summation gives the
original time series: s(t) =

∑M
j=1 hj(t) + R(t), where hj(t) represent the IFs. The number

M of IFs for a time series of N data points is close to log2N . IF components should
be orthogonal, since they are defined from the difference between the signal and its local
mean. However, the mean is defined through the maximal and minimal envelopes and it is
not a mean of the signal itself. Therefore, some leakage exist, but it should be small [33].
EMD for the AMO signal shown in figure 2.3 is shown in figure 3.2, where higher IFs show
periodicity on ∼ 20 and ∼ 60 years. When inspecting these plots it is important to notice
the vertical scales to get the correct impression. The three lowest modes are plotted within
a range of ±0.5, while the higher modes are plotted in the range ±0.2. This means that the
fluctuations on annual scales and shorter, are substantial. A benefit of EMD method is that
a mean is not required, and the only criteria needed are the locations of the local extrema.
Without the need of the mean, EMD is spared of a troublesome step of removing the mean
values for the large DC term in data with non-zero mean. Instantaneous frequencies for a
particular IF hj(t) can be computed from the Hilbert transform of the IF:

Yj(t) =
1

π
P

∫ ∞

−∞

hj(t
′)

t− t′ dt
′, (3.7)

where P indicates the Cauchy principal value. From the conjugate pair hj(t) and Yj(t) we
form an analytical signal Z(jt) whose amplitude and phase can be defined from the Euler
formula: Zj(t) = hj(t) + iYj(t) = aj(t)e

iθj(t), where a is the amplitude of IF mode. The

instantaneous frequency can be defined as ωj = dθj/dt ⇒ θj(t) =
∫ t
ωj(t

′) dt′, and the
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Figure 3.2: EMD for AMO signal.

energy of each IF is given as Hj =
∫ t
aj(t

′)2dt′. It should be mentioned that the imaginary
part Yj(t) could be produced with other methods than the Hilbert transform, but this
transform defines imaginary part in such way that Zj(t) is an analytic function. We can
now write the original signal as:

s(t) =
M∑
j=1

hj(t) = Re
M∑
j=1

(hj(t) + iYj(t)) = Re
M∑
j=1

aj(t)e
i

R
ωj(t)dt, (3.8)

where residual R is not included. The same data expanded in the Fourier representation
would be

s(t) = Re
M∑
j=1

aje
iωjt. (3.9)

Since, for each time t there exist an instantaneous energy Hj(t) = aj(t)
2 and an instanta-

neous frequency ωj(t), one can define Hilbert energy

Hj(ω, t) = Hj(t)δ(ω − ωj(t)) (3.10)

In figure 3.3 a) we have plotted such spectra for all IFs of the AMO signal as curves for
ωj(t) which are color coded to give the magnitude of Hj(t) for each t.

Application of an adaptive basis, as done in EMD, has advantages over a priori chosen
basis, since it does not introduce spurious harmonics to represent nonlinear waveforms.
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3.3 Wavelet analysis

The wavelet analysis can be considered as an adjustable window Fourier analysis. The
wavelet coefficients of a signal X(t) are defined by the convolution integral

W (a, b;X,ψ) = |a|−1/2

∫ ∞

−∞
X(t)ψ?(

t− b
a

)dt, (3.11)

where ψ? is a wavelet function, a is the time scale of a wavelet function, and b is the
translation of its origin. Hence, b is the temporal location of the event, and 1/a is a
frequency scale. Although one can make the wavelet orthogonal by selecting a discrete
set of a, this discrete wavelet analysis will miss signals which have scales different from
the selected discrete set of a. Wavelets for continuous a are not orthogonal. Wavelets are
useful when there is a gradual frequency change in the data. In order to spot a change that
occurred locally, one must look for the result in the high-frequency range, for the higher
the frequency the more localized the basic wavelet will be. If a local event occurs only in
the low-frequency range, one will still be forced to look for its effects in the high-frequency
range. The other drawback compared to EMD analysis is the non-adaptive wavelet basis
where the analyzing wavelet is chosen in advance. In this thesis, we use Mexican hat
wavelet, which is from the class of continuous wavelets and is a second derivative of a
Gaussian function.

In general, if more quantitative results are desired, the Hilbert energy spectrum pre-
sentation is better. If more qualitative results are desired, a wavelet presentation is better.
In figure 3.3 a) we show Hilbert spectrum for AMO signal, while in figure 3.3 b) we plot
mexican-hat wavelet coefficients for the same signal. We observe that both wavelet and
Hilbert spectrum show increase in energy every 30 years or so, which is in agreement with
the periodicity of the AMO signal. It also appears that the Hilbert spectrum gives more
detailed information on the exact frequencies and times of the extremes in the AMO signal.

3.4 Test of determinism

This test was developed by Kaplan and Glass (1992) [35] and is extensively used in Paper
III and Paper IV. It is based on the property of deterministic dynamical systems that
the tangent to the trajectory is uniquely determined by the state vector, i.e. that phase
space orbits in a properly chosen embedding space do not intersect. The embedded space is
divided into boxes and a tangent vector is estimated as the difference between the embedded
state vector at the exit and entrance of the box. If a trajectory recurs to the same box, its
tangent is parallel to other tangents from the same box. The orientation vector for the kth
pass through box j is the unit tangent vector uk,j = ∆xk,j(t)/|∆xk,j(t)|. The estimated
averaged displacement vector in the box is

Vj =
1

nj

nj∑
k=1

uk,j, (3.12)

where nj is the number of passes of the trajectory through box j. If the embedding di-
mension is sufficiently high and in the limit of vanishingly small box size, the trajectory
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Figure 3.3: a) Hilbert spectrum for AMO, b) wavelet spectrum for AMO.
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directions should be aligned and Vj ≡ |Vj| = 1. For a stochastic system the tangents
inside a box have arbitrarily orientations and their Vj → 0 in the limit nj →∞. When the
trajectory passages nj through the box is finite, Vj ≈ 1 for a properly embedded determin-

istic system, while Vj ∼ n
−1/2
j for Brownian motion. This means that the dependence of

Vj on nj can be used to distinguish stochastic from deterministic dynamics. The qualifier
properly embedded is important here. If the system is deterministic, but high-dimensional,
we cannot in practice find an embedding space that spans the high-dimensional attractor,
and then a box in embedding space can contain states that are far separated in the actual
phase space. This makes the orientation vectors in a box have arbitrary directions and Vj
versus nj behaves more like a stochastic process. Thus this test of determinism is really a
test of deterministic and low-dimensional dynamics against high-dimensional or stochastic
dynamics. Model examples of systems generating such dynamics are the Lorenz system
and the stochastic equation for the fractional Ornstein-Uhlenbeck process, respectively.
These models are discussed in Paper III. An example of a high-dimensional system, whose
attractor can be low-dimensional for certain parameters, is discussed in Paper IV.

Another measure to distinguish these classes of dynamics is to define a measure Λ which
shows the deviation of V from the value it takes for a Brownian motion (as in Paper III).
For a random signal, Λ decreases rapidly with increasing time-delay τ employed in the
phase-space reconstruction in a random signal, but remains more or less constant with τ
for a deterministic low-dimensional signal.

Yet another technique is to compare the measures Vj(nj) and Λ(τ) to the corresponding
measures for a surrogate signal created by randomizing the phases of Fourier coefficients of
the original time series. This works as a test for nonlinearity and low-dimensionality, since
the measures will change significantly if the dynamics is low-dimensional and nonlinear.
High-dimensional or stochastic dynamics does not seem to be sensitive to randomization
of phases, and for fractional Brownian motions this is easily proven.

In Paper III and IV we have also studied different solar wind parameters and geomag-
netic indices as well as some simple model systems. For instance, we have concluded that
if Vj and/or Λ for a given signal is reduced after randomization of phases, the dynamics
of the original signal has a low-dimensional and nonlinear component. Systems that we
study in those papers are predominantly stochastic and therefore sometimes data have to
be mildly low-pass filtered before application of the test. Otherwise the test may not be
able to discern the low-dimensional component. Some examples of Λ(τ) will be shown in
chapter 4.

3.5 PVD analysis

The principal value decomposition (PVD) analysis method is also known as empirical
orthogonal function expansion [36]. Here, the basis is not a priori prescribed. First, we
form the covariance matrix R = F tF , where F is a matrix where variable changes in both
time (along the rows) and space (along the columns). Further, we solve the eigenvalue
problem RC = CΛ. Here Λ is a diagonal matrix containing the eigenvalues λi of R, while
the columns of C are the eigenvectors ~ci of R. Each of these eigenvectors can be regarded as
a map. This transformation is defined in such a way that the first eigenvector has as high
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a variance as possible, i.e. it accounts for as much of the variability in the data as possible.
Each succeeding component in turn has the highest variance possible under the constraint
that it has to be orthogonal to the preceding components. Also, CtC = CCt = I, meaning
that eigenvectors are uncorrelated over space. Further, we can obtain the time evolution of
the eigenvector ~ai = F~ci, which is also called a principal component time series. As ~ci are
uncorrelated in space, ~ai are uncorrelated in time. A disadvantage of this method is that
it only gives the distribution of the variance in the eigenmodes, but it does not suggest
scales of frequency content of the signal. The method is often used in climate studies as the
data is a function of both space and time. This is demonstrated in chapter 4. In Paper I
singular value decomposition (SVD) is also used, which is similar to PVD, but unlike PVD
which is applied to the ensemble of measurements, SVD is applied to a single set.
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Chapter 4

Applications

In this chapter concepts and methods described in the previous chapters are employed to
analyze data from a plasma Helimak experiment, where low-dimensional chaos is observed
(in Paper I and Paper II ), and for the magnetosphere, where dynamics is analyzed during
geomagnetic storms and substorms (Paper III and Paper IV). In addition, we analyze
data from a laboratory plasma in the simple magnetized torus configuration and compare
dynamics on different time scales. Finally, some climate indices are analyzed and the results
are discussed from a complex-system perspective.

4.1 Laboratory plasma

In Paper I and Paper II plasma potential and electron density fluctuations from the Blaa-
mann device in Helimak configuration are examined. As pointed out in [37] the Helimak is
a device suitable for studies of low-frequency gradient driven instabilities and their routes
to turbulence in the presence of magnetic field curvature. Also, it is the simplest toroidal
plasma configuration that permits a magnetohydrodynamic equilibrium. Plasma with a
confining magnetic field in the toroidal direction is not in equilibrium since charge depen-
dent gradient B and curvature drifts lead to an electric field which further produces E×B
drift. However, when a small vertical magnetic field is imposed, as in the case of Heli-
mak configuration, short-circuiting currents are produce that limit the electric field [38].
When the magnetic field in Helimak configuration is increased the plasma approaches a
turbulent regime at low frequencies, perhaps through a period-doubling route. By mea-
suring cross coherence and cross phase as a function of vertical displacement, flute modes
are discovered on the low field side of the electron density profile [37]. The flute mode
number locks itself to a single mode which further indicates that the wave field could be
represented by a low-dimensional set of autonomous differential equations. Paper I exam-
ines the existence of low-dimensional chaotic component in signals from plasma potential
and electron density. These signals are smoothed by a moving average filter in order to
study the global oscillations of the background plasma. We show by means of mean-field
dimensional method [39] that the correlated database of filtered plasma potential and elec-
tron density is low-dimensional, and that the largest Lyapunov exponents for both signals
are positive, implying low-dimensional chaos. Recurrence plots, cross recurrence plots,
and joint recurrence plots are also used and they all suggest chaotic behavior inside entire
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plasma chamber.

Paper II shows similarities in the time evolution of the filtered electron density and
diffusionless Lorenz equations. Filtered electron density is used in order to study the dy-
namics of the background plasma and ignore simple E×B dynamics of the convection cells.
An animation of filtered electron density shows standing wave with random phase shifts.
Power spectra, recurrence plots, and Lyapunov exponents are compared for diffusionless
Lorenz equation and filtered electron density, and these properties are shown to be very
similar in both cases, implying that low-dimensional chaos in the plasma device could be
described by the diffusionless Lorenz equation.

Below, we present some findings from the Blaamann device in the simple magnetized
torus configuration. Here the plasma is generated by a hot filament discharge in a plasma
torus with a purely toroidal magnetic field (no poloidal or vertical field component). On
the low-field side (LFS) of the torus cross section the electron pressure gradient is directed
in the opposite direction of the radius of curvature vector of the magnetic field, and the
plasma is unstable to the electrostatic flute interchange instability here. Since hot electrons
are injected through the filament in the center of the torus cross section there will be a
potential minimum in the center, and this makes the plasma rotate poloidally by E × B
drift (see figure 4.1). This rotation velocity increases with decreasing neutral gas pressure,
and for low neutral pressures the lowest poloidal mode number dominates to give a well
defined peak in the power spectrum of signals. The frequency of this peak corresponds
to the rotation frequency frot. For high neutral pressure the rotation frequency is smaller
than the characteristic time for growth and nonlinear cascading of the flute modes, so this
“turbulent” regime can be observed for f ≥ frot. The spectrum for f � frot is associated
with global fluctuations of the plasma state, and can be considered as nonlinear oscillations
in an electric circuit where the plasma plays the role of a strongly nonlinear circuit element.
Fluctuations in plasma potential and electron density measured by electrostatic probes in
the middle of the pressure slope on the LFS are shown in figure 4.2. The signals are
sampled at 100 kHz, i.e. the sampling time is ∆t = 10 µs. The plasma rotation period of
2 ms thus corresponds to 200∆t and is seen as a weak bump at 0.5 kHz on the potential
power spectrum in figure 4.3, and as a stronger bump on the electron density spectrum.
The most prominent feature observed by direct examination of the signals in figure 4.2 is
the prominant spikes occuring with interspike intervals ranging from 20 − 200 ∆t. This
time range corresponds to the plateaus observed in the frequency range 0.5 − 5 kHz in
figure 4.3. The spikes are very peaked, with width < 20∆t. These time scales correspond
to the power-law tail S(f) ∼ fβ of the spectra for f > 5 kHz, with β ≈ 2.5. The flat
plateaus in the spectra in the frequency range 0.5− 5 kHz reflect the white-noise character
of the distribution of the spikes, and are similar for potential and density. In fact, the
larger potential and density peaks are correlated, positive density spikes are associated
with negative potential spikes, as they should for flute modes. For frequencies below 1 kHz
the electron density spectrum (apart from the rotation hump) has a more or less flat white
noise like spectrum, whereas the potential has a power-law range for 0.1 < f < 1 kHz
with β ≈ 1.4, which is indicative of a strongly antipersistent self-affine motion. Since these
low-frequency fluctuations are not present in the electron density spectrum, and are on
frequencies below the plasma rotation frequency, they are not associated with flute-mode
turbulence, but rather to global oscillations, as mentioned above. For frequencies below 0.1
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Figure 4.1: Left: potential profile through a poloidal cross-section of the torus. The plasma
flows by E×B-drift along the equipotential lines, Right: electron density profile. Because
of the toroidal magnetic field curvature electrostatic flute modes are unstable on the low-
field side, i.e. on the outer slope of this profile (in the right half of the figure on the low
right).

kHz this spectrum becomes flat, indicating a white-noise like process with complete loss of
temporal correlation on time scales longer than 10 ms (1000∆t).

The probability density functions (PDFs) of differences in potential and density sepa-
rated by a time interval τ is shown for varying τ in figure 4.4 a) and figure 4.4 c). Both
distributions are leptokurtic for small τ , but while the electron density rapidly converges
towards a near-gaussian shape (which has kurtosis K = 3), the plasma potential converges
to a leptokurtic distribution with K ≈ 10, as shown in figure 4.5 a). The increasing kurtosis
at small scales is a fundamental statistical signature of intermittency.

On the long time scales, where the signals have a stationary character, it makes more
sense to consider the PDFs of the coarse grained signals [40]. Such signals are made
by running averages over intervals of length τ . PDFs for increasing degrees of coarse-
graining are shown in figure 4.4 b) and figure 4.4 d), and show a near-gaussian distributions
for density, while the potential maintains a leptokurtic and strongly skewed distribution
throughout the scales corresponding to frequencies f > 0.1 kHz. These PDFs maintain
relatively constant shape through the scales corresponding to the power-law frequency range
0.1 < f < 1 kHz, and hence the signals have a self-affine character in this range. In the
range f < 0.1 kHz the signals are more gaussian-like, and have the character of gaussian
white noise.

The rapid fall of kurtosis in figure 4.5 a) occurs over time scales τ < 25, corresponding
to frequencies in the power-law tail of the spectrum. This is the time scale of the peaks of
the spikes, and thus the drop of the kurtosis (intermittency) is a property that characterizes
the shape and distribution of these spikes.

So far, what we know about the low-frequency fluctuations is that they are uncorrelated
and near-gaussian. It would be interesting to know if they should be considered as stochas-
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Figure 4.2: Upper trace (red) is the time series of electron density fluctuations. Lower
trace (blue) is the same for (sign-inverted) plasma potential. Units are arbitrary, and the
plasma potential has an arbitrary zero potential.
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Figure 4.3: Log-log power spectra for electron density (lower red curve) and for plasma
potential (upper blue curve).
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potential averaged over interval τ , where red is τ = 28, blue is τ = 211 and black is τ = 214;
c) differences in the plasma density, where red is τ = 20, blue is τ = 23 and black is τ = 26

(larger scales are the same as τ = 26); d) coarse-grained electron density, where red is
τ = 28, blue is τ = 211 and black is τ = 214. Time τ is in units of ∆t.
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Figure 4.5: a) Kurtosis for differences in plasma potential separated by time τ (dotted line)
and for differences in electron density (open circles). b) Kurtosis for coarse-grained plasma
potential averaged over interval τ (dotted line), and for coarse-grained electron density
(open circles).
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Figure 4.6: Chaotic characteristics of the filtered plasma potential: a) Recurrence plot, b)
Lyapunov exponent.

Figure 4.7: Log-log plot of correlation integrals C(r) for embedding dimensionD = 2, 3, 4, 5.
The full lines are linear fits to the curves, which all have slopes ν ≈ 1.6.
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tic, or if they may be a result of low-dimensional chaotic dynamics. For this purpose we
apply a mexican hat wavelet filter on the plasma potential in order to extract the dynamics
on scales larger than the poloidal rotation time, and hence wavelet coefficients correspond-
ing to frequencies larger than the rotational frequency are set to zero by the filter. We
have not done the same analysis for the electron density, since its spectral power is very
low on the largest scales. Prior to the following analysis, the phase space is reconstructed
by time-delay embedding (equation 2.3). Time-delay τ should be large enough such that
reconstructed vectors do not depend on each other, and contain a new piece of information
each. However, since chaotic systems are intrinsically unstable, if τ is too large, it may
happen that vectors will become random in respect to each other and independent in sta-
tistical sense. In our analysis, τ is estimated from the first minimum of the average mutual
information function [41], which is the most optimal method for the time-delay calculation
in the time series whose underlying dynamics might be nonlinear.

For the low-pass filtered plasma potential we compute the largest Lyapunov exponent
λ for the embedding dimension M = 6 and τ = 5. In figure 4.6 b), the largest Lyapunov
exponent is plotted as a function of time, and converges to λ(t) ∼ 2×10−3 s−1. However, it
has been shown in [42] that stochastic time series can also give positive Lyapunov exponents
when calculated numerically. Therefore, we apply RP analysis in order to visualize the
phase space, for the embedding dimension M = 6 and τ = 5. In figure 4.6 a), we see that
the low-pass filtered plasma potential fluctuations exibit chaotic signatures.

In order to determine the correlation dimension of the chaotic attractor, we first calcu-
late the modified correlation integral

C(r,W ) =
2

N2

N∑
n=W

N−n∑
i=1

H(r − |xi+n − xi|)

introduced in [43]. Here W is approximately equal to the autocorrelation time τ of the
time series. When W = 1, the modified integral reduces to the Grassberger- Procaccia
correlation integral, introduced in equation (2.5). Here, C(r,W ) is used in order to discard
the influence of the time correlations in the correlation integral. It has been shown in
[44] that the time series with a signature of a colored noise can also give low correlation
dimension. On the other hand, when W > τ , points close in time are removed from the
correlation integral. We, further, calculate the correlation dimension ν from C(r,W ) = rν

for various r < A. Here, A is the maximum radius of the underlying strange attractor. For
the low-pass filtered potential, we make a log-log plot of C(r,W ) vs. r for the embedding
dimensions M = 2, 3, 4 and 5 in figure 4.7. As one can see, the correlation dimension
changes very little for different M , which further implies that the unfolding of the phase
space does not influence the dimension of the attractor in the phase space. The natural
conclusion is that the trajectories all lay on the strange attractor, which has a fractal
dimension ν ≈ 1.6, and hence the low-pass filtered potential has low-dimensional, chaotic
dynamics.
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Fig. 16. The 3-D system of electric currents in the magnetosphere during a magnetic storm.

in the same direction, but their intensity is an order of mag-
nitude weaker. The TC in the CPS is in the dawn-dusk di-
rection. At midnight the near-Earth boundaries of plasma
(b2e) and current (b2i) sheets coincide. At the dusk merid-
ian b2i is closer to the Earth than b2e. The closure of the
TC is attributed to currents on the magnetopause which ex-
ist not only on the nightside, as well established, but on the
dayside as well. In Fig. 16 the TC in the equatorial plane of
the magnetosphere is indicated by two vectors. At midnight
one of them is located in the innermost part of the current
sheet, the other along its boundary. Their continuation on the
magnetopause can be seen. However, the first remains in the
tail and the second reaches the dayside of the magnetopause
where the directions of the CF and TC are opposite, as seen
in Fig. 16. Since CF currents are always more intense than
TC closure currents, the resulting current on the dayside is
always eastward.

The FAC flowing into and out of the ionosphere in the
vicinity of the PE are located on the CU surface. In Fig. 16
PE FAC are indicated by two green lines (not vectors) along
the magnetic field. The PE FAC direction is not shown, since
it is controlled by the IMFBy component: underBy>0 nT
(By<0 nT) the current flows into (out of) the ionosphere
along the cusp inner surface and out of (into) it along its
outer surface. The ionospheric closure of the inflowing and
outflowing PE FAC is by Pedersen current. Its direction in
the ionosphere is identical with the direction of the solar
wind electric field componentV ×By , i.e. underBy>0 nT
(By<0 nT) the electric field in the cusp is poleward (equator-
ward) at ionosphere altitudes. In the cusp the Hall current in
the form of the PE, spreading in the ionosphere (out of the

cusp) is generated by this electric field. The PE is eastward
(westward) underBy>0 nT (By<0 nT).

The Region 1 FAC in the dusk sector is usually believed to
be mapped magnetically from the ionosphere to the LLBL,
i.e. to the periphery of the magnetosphere, in the vicinity of
its boundary with the solar wind. Such a pattern is valid for
Region 1 FAC during day-time hours only and is shown by a
current arrow, resting against the LLBL. During the dusk and
before midnight hours, where Region 1 FAC is located at AO
latitudes, FACs inflow to the CPS, i.e. into the deep magne-
tosphere. In Fig. 16 the second current arrow of the Region
1 FAC crosses the equatorial cross section of the magneto-
sphere in the dusk sector of the CPS behind the TC vector
that depicts the current along the TC boundary.

The Region 2 FAC flows into the ionosphere from the
Alfv én layer periphery where the PRC is located. In Fig. 16
Region 2 FACs are indicated by three vectors for day, dusk
and night hours. It is generally believed that the Region
2 FAC is located in the inner magnetosphere and is a part
of the single current system with the EE and PRC. As seen in
Fig. 16 the Region 2 FAC flowing into the ionosphere during
evening hours is located in the magnetosphere atL∼4. In
the early afternoon sector, where the EE adjoins the PE, the
Region 2 FAC in the equatorial plane of the magnetosphere
is near the LLBL.

The RC and PRC are formed by westward drifting (around
the Earth) energetic ions. In the RC-region ions circulate
many times around the Earth. In the PRC-region the drift is
interrupted before a full rotation and the ions depart the mag-
netosphere, either precipitating into the ionosphere or reach-
ing the magnetopause around noon. The main loss of ions is
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Figure 4.8: Magnetospheric currents (picture is taken from Feldstein et al. (2006) [45]. )

4.2 Magnetosphere

The solar wind is a flow of magnetized plasma originating on the Sun. It flows with a
speed of about 400 kms−1, and carries a magnetic field of about 5 nT. When the solar
wind “collides” with the dipole magnetic field of the Earth, the elongated magnetospheric
cavity is formed as shown in figure 4.8. This cartoon depicts the electric current systems
in the magnetosphere, which is a result of the solar wind-magnetosphere interaction, some
of which are closed via currents flowing in the partly ionized ionosphere.

Both the solar wind and the magnetosphere are subject to considerable variability, and
both are bursty in nature. These bursts can crudely be divided into two main classes: mag-
netic storms (analyzed in Paper III) and substorms (analyzed in Paper IV). A substorm
is an abrupt increase in nightside hemispheric auroral power [46], and the event occurs
across the entire width of the magnetotail. This process requires major topological recon-
figurations. The visual consequence of the substorm is the polar aurora, which appears
due to enhanced electron and proton preciptation along the magnetic field lines, which are
related to enhanced currents in the Earth’s ionosphere, for instance the auroral electrojet
currents. During the substorm event also field aligned currents are formed or intensified.
The duration of substorms are at most a few hour, while magnetic storms can last for days.
Storms are often directly correlated to identifiable eruptions on the Sun and they typically
activate other current systems of the magnetosphere, like the equatorial ring current [47].
This implies that different geomagnetic indices are sensitive to substorms and storms.

The conjecture that the magnetosphere-ionosphere system resides in an SOC state has
been inferred from the satellite measurements in the inner plasma sheet [48], from geo-
magnetic indices (whose reliability is discussed in [49]), from the measurements seen by
UVI auroral imagers on satellites [50] or from ground-based all-sky cameras [51]. This
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Figure 4.9: Λ(τ): blue squares are derived from the AE index, red triangles from the same
signal after randomization of phases of the Fourier coefficients.

illustrates how data from widely different souces can be analyzed and synthesized to form
a global picture of the dynamics of the magnetosphere. Chapman et al. (1998) [52] have
preposed a model where SOC dominates internal dynamics of the magnetosphere, whereas
energy dissipated on the systemwide scales (during substorm events) follows a probability
distribution with a well defined mean. A characteristic feature of the magnetosphere is the
abundance of physical mechanisms operating on widely different time scales. For instance,
the time it takes to load energy into the magnetosphere tail is 10-20 minutes. On the other
hand, the substorm onset time is of the order one minute and is determined by the Alfvén
bounce time to the ionosphere. This wide separation of scales, and the power-law distri-
bution between them, is often taken as a support of SOC dynamics in the magnetotail, as
dicussed in Angelopoulos et al. (1999) [48]. Also in [48], signatures of intermittent turbu-
lence were observed, which gave support to the interpretation that the physical mechanism
behind SOC is the cross-tail intermittent turbulence which transfers momentum and mass
when a certain threshold is exceeded.

However, it was pointed out by Consolini and Chang (2001) [53] that in the case of classi-
cal SOC the critical state is resilient with respect to variations of the external driving, while
the Earth’s magnetosphere seems to be rather sensitive to such variations. That is why,
according to the same authors, the observed criticality in the magnetosphere could have
been “forced” and not always “self-organized” criticality. Another conjecture for explaining
the magnetospheric complexity was proposed by Sitnov et al. (2001) [54], who suggested
that the magnetosphere undergoes a first order phase transition during substorms, and that
the general scale invariance can be explained by assuming that the magnetosphere resides
close to the critical point of a second order phase transition.

In Paper IV we test for changes in determinism of magnetospheric dynamics during sub-
storms. There we compute Vj(nj) for the auroral electrojet (AE) index and its randomized
version, and the result suggests that the AE index exhibits a low-dimensional, nonlinear
component. Similar is shown in figure 4.9 for Λ versus time-delay τ . This observation has
been made also by other authors (for example, [55], [56]), but here we obtain this result
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without relying on any filtering procedure. Further, our analysis presents evidence that
low-dimensionality is common also for other geomagnetic indices under substorm condi-
tions. A similar study is made in Paper III for magnetic storms, where we are able to
demonstrate that the magnetosphere becomes more low-dimensional and nonlinear during
individual magnetic storms.

The main difference between magnetic substorms and storms revealed by these studies
seems to be increased predictability in both solar wind and magnetosphere during storms,
which is not observed during substorm conditions.

The obvious interpretation of these results is that global instabilities of the magneto-
sphere makes it more organized since the effective degrees of freedom decreases because
of the collective behavior. In Paper III and Paper IV no corresponding organization is
seen in the solar wind parameters, which means that magnetosphere self-organizes during
magnetic disturbances.

In Paper IV a simple stochastic equation is proposed as a minimal model for the global
dynamics the magnetosphere. This equation has a nonlinear damping and multiplicative
noise term, which makes it one-dimensional and nonlinear when the noise is filtered out.
Test of determinism gives very similar results for low-pass filtered output of this equa-
tion and for filtered AE index. Also, power spectra of the AE index and the output of
this equation are rather similar, demonstrating that simple dynamic-stochastic models can
reproduce some of the essential statistical properties of global magnetospheric dynamics
including substorm activity. However, in order to produce observed characteristics of the
geomagnetic indices, more refined models need to be made. Interesting discussion on mod-
els for magnetospheric dynamics can be found in Watkins et al. (2001) [57].

4.3 Climate

In this section, we discuss some stochastic equations that have been used to describe differ-
ent climate processes. Towards the end, we perform a test of determinism to some climatic
indices and discuss the results.

Sea surface temperature (SST) is the most important characteristic of oceans. It is
governed by both atmospheric (wind speed, air temperature, cloudiness, and humidity) and
oceanic (heat transport by currents, vertical mixing, and boundary layer depth) processes.
SST variability can be described through the stochastic climate model paradigm, where
ocean temperature anomalies are forced by random atmospheric variability, i.e. the ocean
layer integrates the white noise atmospheric forcing to yield a red noise SST response [58].
Therefore, the persistence of SST anomalies is limited to the timescale associated with
thermal inertia of the ocean layer and slow SST variations may be induced by random
atmospheric forcing simply due to the thermal inertia associated with the ocean.

The spatial structures of large-scale patterns (e.g. the North-Atlantic oscillation) of
extratropical atmospheric circulation variability are driven by processes intrinsic to the
atmosphere and require no external forcing to exist. The temporal evolution of these
atmospheric circulation patterns is generally consistent with a stochastic first-order au-
toregressive process (see [59]). In contrast to the extratropics, large-scale patterns of at-
mospheric variability in the tropics result primarily from interaction with the ocean as in
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Figure 4.10: a): The first PVD component of SST, b): Time series of the first PVD
component (temperature is in degrees Celsius).

the case of the El Niño Southern Oscillation (ENSO).
The leading PVD component of monthly SST anomalies over the globe is the ENSO

mode, which causes large temperature variations in the tropical Eastern Pacific ocean
and air surface pressure changes in tropical Western Pacific in the winter period. ENSO
intensifies every 3-7 years, and can last as such between nine months to two years. It causes
floods, droughts and other weather disturbances in many regions over the globe. In figure
4.10 a) we plot the leading PVD of the SST in period between 1980-2008. The SST data
set is downloaded from http://badc.nerc.ac.uk/data/hadisst/; it is in situ/satellite
data, collected monthly and with a 1◦ × 1◦ resolution. It appears that the highest SST is
along the coast of Peru, corresponding to the ENSO mode. Also, in figure 4.10 b) we show
a principal component time series for the leading PVD. The increase in SST can be seen
around 1983 and 1998, which are the years of strong ENSO events. This means that the
greatest variability in the SST over the globe is due to the ENSO event.

SSTs in the North Atlantic undergo slow variations with a period on the order of 65-80
years, which is coined the Atlantic multidecadal oscillation (AMO), which we analyzed
in section 2.3. The AMO is associated with large-scale precipation changes and with
a frequency of severe Atlantic hurricanes. Modeling studies indicate that this mode is
intrinsic to the ocean and stochastically forced by the atmosphere [60]. A delay differential
equation which has been very successful in describing the nature of the ENSO was proposed
by Ghil et al. (2008) [61]:

dh(t)

dt
= −a tanh[kh(t− τ)] + b cos(2πωt). (4.1)

Here h(t) represents the thermocline depth deviation from the annual mean in the Eastern
Pacific . The delayed negative feedback does not let a solution fade away or be unstable,
and creates an internal oscillator with period depending on the delay. However, a delayed
oscillator typically has periodic solutions with well defined periods, while the occurrence
of ENSO event is irregular. Also, phase-locking during the winter cannot be explained by
a purely internal delayed oscillator. These discrepancies can be removed by considering
nonlinear sigmoid type of interactions between the internal oscillator and the external
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Figure 4.11: Λ(τ): a) filtered AMO, b) filtered temperature, c) NiNO3. Blue squares are
derived from the original time series, red triangles from the same signal after randomization
of phases of the Fourier coefficients.
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periodic forcing by the seasonal cycle [62]. The increase of solution complexity from periodic
to chaotic is caused by the increase of the atmosphere-ocean coupling parameter.

We compute Λ(τ) for low-pass filtered AMO, global temperature, and NiNO3 data.
The latter measures the strength of an ENSO event and is defined as the SST anomaly
averaged over the eastern equatorial Pacific. It was shown in [63] that Λ(τ) as a function of
embedding dimension m does not increase for linear, stochastic systems, while it increases
otherwise. We use relatively high embedding dimension m = 10 in order to obtain greater
difference in Λ(τ) for the index and its randomized version. Since these indices are available
since late 19th century and have only monthly resolution, the number of data points is
around two thousand. Hence, further increase of m would give us bad statistics. Results
are plotted in figure 4.11. We see that Λ(τ) for all indices is elevated compared to their
randomized versions, implying that there is a low-dimensional, nonlinear component in each
of these processes, even though in AMO and the global temperature it is obvious only after
filtering. We observe that these two indices overlap with their randomized versions for some
time periods, which might indicate a dominance of stochastic forcing or bad statistics. A
more detailed study of AMO and global temperature is needed to make further conclusions.

That ENSO is elevated above its randomized version without the need of filtering indi-
cates that it is a highly deterministic process that could be possibly described by equation
(4.1). However, during intense ENSO episodes, which repeat on the average every 6 years,
its deterministic nature decreases. This indicates that some stochastic, atmospheric forcing
might be dominant on these time scales. Therefore, equation 4.1 should also contain some
stochastic terms. The difference of Λ(τ) between ENSO and its randomized version also
indicates that ENSO can not be explained as a linear, stochastic model.

This section has given wide range of possible studies of climate that we will examine in
more details in the future.
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