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Abstract

In this paper we obtain the homogenization results for a system of partial differential equations
describing the transport of a N-component electrolyte in a dilute Newtonian solvent through a rigid
random disperse porous medium. We present a study of the nonlinear Poisson-Boltzmann equation
in a random medium, establish convergence of the stochastic homogenization procedure and prove
well-posedness of the two-scale homogenized equations. In addition, after separating scales, we prove
that the effective tensor satisfies the so-called Onsager properties, that is the tensor is symmetric and
positive definite. This result shows that the Onsager theory applies to random porous media. The
strong convergence of the fluxes is also established. In the periodic case homogenization results for
the mentioned system have been obtained in [7].

Keywords: Boltzmann-Poisson equation, homogenization, electro-osmosis, random porous media.

1 Introduction

The quasi-static electroosmotic phenomena in porous media are present in many problems of applied
interest. As examples we mention electromigration of solutes (see for instance Ottosen et al [43]), de-
watering (see Mahmoud et al [34]) and permeability reduction in concretes (see Cardenas & Struble
[16]).

We consider a porous material saturated by an N -component dilute electrolyte. The solid surfaces of
the porous skeleton are electrically charged, attract ions of the opposite charge and repel the ones of the
same charge. Simultaneously an external electrical field E and a body force f are applied, generating a
hydrodynamical flow, a migration of ions and creation of an electrical double layer (EDL).

The modeling of phenomena at the pore level is well understood (Lyklema [33], Karniadakis et al
[30]). The porous media are heterogeneous and have a pore structure consisting of a very large number of
pores. In studying flows generated by the electro-osmotic phenomena, the pore size is of the same order
as the size of the Debye layer (≈ 100 nanometers). Solving the partial differential equations of the model
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is a difficult task even for simple geometries and out of reach for realistic porous media with nanoscopic
pores. The remedy for the complexity of the problem is to homogenize or upscale the equations posed at
the pore scale and derive a new upscaled system valid at every point. The microscopic geometry would
influence the effective coefficients.

The homogenization approach allows finding out how close the solutions to upscaled model are to those
of the original physical equations, given at the pore scale. In the existing literature on the charged porous
media, the homogenization technique was mainly applied under the hypothesis of the periodic porous
media and for the so-called ideal model, i.e. with ions at infinite dilution. There are works which concern
the study and homogenization of the Nernst-Planck-Poisson system (see for instance Ray et al [44]-[45]
and Schmuck et al [46]-[49]). In the physical chemistry literature, its semi-linearized form, due to O’Brien
& White [42], replaces the full model from Lyklema [33] and Karniadakis et al [30]. Looker & Carnie
studied O’Brien’s model using the two-scale expansion in [32]. They derived constitutive laws linking
the effective fluxes with the pressure gradient and the gradient of the chemical potential. In addition,
the Onsager tensor, containing the effective coefficients, was obtained. The rigorous convergence result
for the homogenization process is due to Allaire et al [7], where the positive definiteness of the Onsager
tensor and its symmetry were proved too. A numerical and qualitative analysis of the effective coefficients
is in Allaire et al [9]. The results of Looker & Carnie [32] and Allaire et al [7], [9] support findings in
the earlier work of Adler et al [18], [35], [2] and [24], on the particular flows and the computation of the
effective coefficients forming Onsager’s tensor.

The electro-osmotic phenomena are important also in deformable porous media, like clays. For the
homogenization studies of the electro-osmosis with swelling, using two-scale expansions, we refer to the
series of articles by Moyne & Murad [36], [37], [38], [39] and [40]. A further reference is the work of
Dormieux et al [19]. A rigorous homogenization of the electro-osmotic flows in deformable porous media,
with a derivation of the Onsager relation and determination of the swelling pressure, was obtained in
Allaire et al [11].

We note that models that are more realistic involve electrolytes at finite dilution. Several complicated
mathematical models were developed to take into account the finite size of the ions. One of them is the
Mean Spherical Approximation (MSA) model (Dufrêche et al [20]). Its well-posedness and homogenization
was studied by Allaire et al [10].

Finally, the effects of nonlinearities were studied for equilibrium solution (Ern et al [21], Allaire et al
[8]).

The realistic materials have random geometric structures, and questions related to the upscaling of the
electro-osmotic flows in such materials were studied only through numerical simulations. We mention the
publications of Adler and al in [18], [35] and [2], where the electrokinetic flows through random packings
of spheres and ellipsoids were considered.

The goal of the present paper is to study upscaling of the ideal model describing the transport of a
dilute N -component electrolyte in a rigid random porous medium. We first briefly recall the dimensionless
equations, which were the starting point for the periodic homogenization in [7], [9] and [10]. Since the
modeling and derivation of the dimensionless form were undertaken in detail in these references (and
especially in [10]) we do not dwell on the subject and simply start with the dimensionless ideal model
equations from the above references.

The (dimensionless) equations are given on a typical realization of the porous medium G, the meaning
of the quantities used in these equations can be found below in Table 1. If ω takes values in the probability
space, we denote by Gεf (ω) a realization of the pore space, which is an open set filled with a fluid. Here
ε is a small positive parameter defined as the ratio between the pore size and the size the material area.
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The equations then read as follows:

ε2∆uε −∇pε = f∗ −
N∑
j=1

zjn
ε
j(x)∇Ψε in Gεf (ω), (1)

uε = 0 on ∂Gεf (ω), div uε = 0 in Gεf (ω), (2)

−ε2∆Ψε = β

N∑
j=1

zjn
ε
j(x) in Gεf (ω); (3)

ε∇Ψε · ν = −Nσσ on ∂Gεf (ω) \ ∂G, Ψε = −Ψext on ∂G, (4)

div
(
nεj∇ ln(nεje

Ψεzj )− Pejn
ε
ju

ε
)

= 0 in Gεf (ω), (5)

∇ ln(nεje
Ψεzj ) · ν = 0 on ∂Gεf (ω). (6)

System (1)-(6) is the dimensionless model that we will homogenize in the sequel. More precisely, we
will undertake study of its O’Brien’s semi-linearized form. We assume that all constants appearing in
(1)-(6) are independent of ε, namely Nσ and Pej are of order 1 with respect to ε.

For the comfort of the reader, we recall the meaning of the unknowns (which are dimensionless in our
equations) on Table 1.

SYMBOL QUANTITY
Pej is the Péclet number for jth electrolyte component
ni ith concentration
nci ∈ (0, 1) ith infinite dilution concentration
u fluid velocity
p fluid pressure
` pore size
λD Debye’s length

β = (`/λD)2 ratio of the pore scale to the Debye’s length
Nσ ratio of the pore scale to the Gouy length
zj ∈ Z j-th electrolyte valence
σ given surface charge density
f∗ given applied force
Ψ electrochemical potential
Ψext exterior potential

Table 1: Description of the parameters and the unknowns

In Section 2, we recall in subsection 2.1 the basic results on the stochastic two-scale convergence
technique, which will be used to prove convergence of the homogenization process in random geometry.
In subsection 2.2 their partial linearization in the spirit of the seminal work of O’Brien & White [42] is
given. The section is completed with subsection 2.3, where the well-posedness of the non-linear Poisson-
Boltzmann equation in a random geometry is studied (see Theorem 11). In Section 3, we undertake
stochastic homogenization of the linearized electrokinetic equations around equilibrium (Theorem 16).
The scale separation and derivation of Onsager’s relations, linking the ionic current, filtration velocity and
ionic fluxes with gradients of the electrical potential, pressure and ionic concentrations, are the subject
of Section 4. In Proposition 24 we prove that the full homogenized Onsager tensor is symmetric positive
definite for disperse random structures. The article is concluded with Section 5, where in Theorem 28 we
prove strong convergence of the velocities and the ionic fluxes.
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2 Description of the problem and of the results

In this section we give a precise formulation of our microscopic problem (the ε-problem) and of the results.
We start with defining the geometrical structure

2.1 The stochastic two-scale convergence in mean and a random porous
medium

Let (Ω, Ξ, P) denote a probability space, with probability measure P and sigma-algebra Ξ, the symbol E
stands for the corresponding expectation. In what follows L2(Ω) is supposed to be separable. We assume
that an ergodic dynamical system T with n-dimensional time is given on Ω, i.e. a family of invertible
measurable maps T (x) : Ω→ Ω, for each x ∈ Rn, such that

1. T (0) is the identity map on Ω and T (x1 + x2) = T (x1)T (x2) for all x1, x2 ∈ Rn;

2. ∀x ∈ Rn and ∀E ∈ Ξ,

P(T (x)−1(E)) = P(E), i.e. P is an invariant measure for T (endomorphism property).

3. ∀E ∈ Ξ the set {(x, ω) ∈ Rn×Ω : T (x)ω ∈ E} is an element of the sigma-algebra L×Ξ on Rn×Ω,
where L is the usual Lebesgue σ-algebra on Rn.

4. T is ergodic, i.e. any set E ∈ Ξ such that P
(
(T (x)E ∪ E) \ (T (x)E ∩ E)

)
= 0, ∀x ∈ Rn satisfies

either P(E) = 0 or P(E) = 1.

With the measurable dynamics introduced above we associate a n-parameters group of unitary operators
on L2(Ω) ≡ L2(Ω,Ξ,P), as follows

(U(x)f)(ω) = f(T (x)ω), f ∈ L1(Ω).

The map x→ U(x) is continuous in the strong operator topology, see for instance Jikov et al [29].
Next, let F ∈ Ξ be such that P(F) > 0 and P(Ω \ F) > 0. Starting from the set F , we define a

random pore structure F (ω) ⊂ Rn, ω ∈ Ω. It is obtained from F by setting

F (ω) = {x ∈ Rn : T (x)ω ∈ F}. (7)

In what follows we suppose that F (ω) is open and connected a.s. (for almost all ω ∈ Ω). In a comple-
mentary way, the random rigid skeleton structure M(ω) is introduced by setting

M = Ω \ F , M(ω) = Rn \ F (ω). (8)

We assume that a.s. M(ω) is a disperse medium, i.e. a union of mutually disjoint components, called
grains, satisfying the following conditions:

R1. A.s. M(ω) is a union of non-intersecting C2-smooth bounded domains.

R2. The curvature of the boundary of these domains admits a deterministic upper bound.

R3. The distance between any two domains is greater than a positive deterministic constant.

R4. The diameter of any domain is not greater than a positive deterministic constant.

R5. There exists r0 > 0 such that a.s. any ball of radius r0 in Rn has a nontrivial intersection with
M(ω).
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Under condition R1. the connected components of M(ω) can be enumerated, so that

M(ω) =

∞⋃
j=1

Mj(ω).

In connection with the random set M(ω) we introduce a homothetic structure Mε(ω), ω ∈ Ω, by

Mε(ω) = {x ∈ Rn : ε−1x ∈M(ω)}; (9)

For more details on the homogenization of linear PDEs in perforated random domains we refer to the
monograph Jikov et al [29].

Remark 1. The system considered in (1)–(6) is a rather complicated system of nonlinear equations that
requires essential technical work when obtaining a priori estimates and passing to the limit. Due to this
reason, in order to make the presentation clear, we preferred to consider random disperse media that
admit deterministic estimates of their geometric characteristics, such as the distance between inclusions
and their diameters. We strongly believe that, using the approaches developed in recent articles [25], [26]
and [27] (see also the earlier pioneer work [23]), one can consider a wider class of random geometries
and generalize the results of this work to the case of more general random perforated domains.

Here we provide several examples of random disperse media.

E1. Random perturbation of periodic structure. Let ζj , j ∈ Zn, be a collection of independent and
identically distributed (i.i.d.) random vectors in Rn taking on values in [− 1

4 ,
1
4 ]n. Denote by rj , j ∈ Zn,

a collection of i.i.d. random variables such that 1
3 ≤ r

j ≤ 2
3 , and by η a random vector that is uniformly

distributed on the cube [− 1
2 ,

1
2 ]n and independent with respect to ζj and rj . Taking for M(ω) the union

of balls centered at j + ζj + η of radius rj we obtain an example of random statistically homogeneous
disperse medium. In this case M = {ω : 0 ∈M(ω)}.
E2. Bernoulli spherical structure. Consider a collection of i.i.d. random variables ξj , j ∈ Zd, with values
0 and 1, and an independent vector η uniformly distributed on [− 1

2 ,
1
2 ]n. We say that a vertex j ∈ Zn is

open if ξj = 1, and closed if ξj = 0. We then define M(ω) by

M(ω) =
⋃

j is open

{
x ∈ Rn : |x− j − η| ≤ 1

2

}
∪

⋃
j is closed

{
x ∈ Rn : |x− j − η| ≤ 1

4

}
.

Then we set M = {ω : 0 ∈M(ω)}.
E3. Poisson spherical structure. Let P be a Poisson process in Rn with intensity one, the averaged
density of points is equal to one. By definition P is a random locally finite subset of Rn such that for
any bounded Borel set G ⊂ Rn the number of points in P ∩G has a Poisson distribution with intensity
|G|, and for any finite collection of bounded disjoint Borel sets G1, . . . , GN the random variables defined
as the number of points of P in each of these sets are independent.
Denote the points of P by zk, k = 1, 2 . . ., the cells of the Voronoi tessellation generated by {zk} are
denoted Ξk. Given r > 0 we choose those zk for which the ball of radius 2r centered at zk belongs to Ξk,
and for chosen zk denote the union of balls {x ∈ Rd : |x − zk| 6 r} by M(ω). Again, M = {ω : 0 ∈
M(ω)}. Notice that in this case all the inclusions are balls of radius r.

By construction the random domains M(ω) defined in the first two examples are stationary and
satisfy conditions [R1.]–[R5.] that is in both examples M(·) is a random disperse medium. To analyse
the ergodic properties of these media we consider for the sake of definiteness the second example and
introduce a probability space by setting Ω = {0, 1}Zn

and taking the cylindrical σ-algebra Ξ and the
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product measure P. It suffices to check the ergodicity for the integer shifts only. We then define T by
Tzω(·) = ω(· + z), z ∈ Zn. It is straightforward to show that this dynamical system is ergodic. Indeed,
if there exists a measurable invariant set A such that Tz(A) = A, then for any δ > 0 there exists a set
Aδ supported by a finite number of z ∈ Zn such that P(A∆Aδ) ≤ δ; here ∆ stands for the symmetric
difference. Since T preserves measure P, P(A∆Tz(Aδ)) ≤ δ for any z ∈ Zn. For sufficiently large z0 we
have P(A ∩ Tz0(A)) = P(A) and P(Aδ ∩ Tz0(Aδ)) = (P(Aδ))

2. Therefore, P(A) is equal to either 0 or 1.
The ergodicity of the medium in the first example can be checked in the same way.

The random medium introduced in the third example is stationary, ergodic and satisfies conditions
[R1.]–[R4.]; however, condition [R5.] fails to hold. Filling large empty areas with a regular grid of balls
one can rearrange this random medium to make condition [R5.] also hold.

Notice that in all the above examples the balls can be replaced with smooth bounded domains whose
geometry might be random and should satisfy a number of natural conditions. For more examples see
Bourgeat et al [15].

Let G be a smooth bounded domain in Rn. After having chosen the random structure in Rn, we set

Gε1 = {x ∈ G : dist(x, ∂G) ≥ ε}. (10)

The random fluid filled pore system in G given by

Gεf (ω) = G \ (
⋃

j∈J (ε)

εMj(ω)), (11)

where
J (ε) = {j ∈ Z+ : εMj(ω) ⊂ Gε1}.

Then, the random rigid solid skeleton part of G is defined as the complement of Gεf (ω) in G:

Gεm(ω) = G \Gεf (ω). (12)

Before giving the convergence results, we recall the definition and some properties of the stochastic
two-scale convergence in the mean (see Bourgeat et al [13] for more details).

Let Dj denote the infinitesimal generator in L2(Ω) of the one-parameter group of translations in xj ,
with the other coordinates held equal to zero. Dj is its respective domain of definition in L2(Ω), i.e. for
f ∈ Dj

(Djf)(ω) =
∂

∂xj
(U(x)f)(ω)|x=0 (13)

Then {
√
−1Dj , j = 1, . . . , n} are closed, densely–defined and self–adjoint operators which commute

pairwise on D(Ω) =
n⋂
j=1

Dj . D(Ω) is a Hilbert space with respect to the scalar product

(f, g)D(Ω) = (f, g)L2(Ω) +

n∑
j=1

(Djf,Djg)L2(Ω) (14)

After (13), the stochastic gradient {∇ωf}, divergence {divωf} and curl {curlωf}, read as follows
∇ωf = (D1f, . . . ,Dnf)
divωg =

∑
j

Djgj

curlωg = (Digj −Djgi), i 6= j, i, j = 1, . . . , n

(15)
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In addition, we use the following spaces:

V2
pot(Ω) = {f ∈ L2

pot(Ω), IE{f} = 0} (16)

V2
sol(Ω) = {f ∈ L2

sol(Ω), IE{f} = 0} (17)

where L2
pot(Ω) (respectively L2

sol(Ω)) is the set of all f ∈ (L2(Ω))n such that almost all realizations
f(T (x)ω) are potential (resp. solenoidal) in Rn; for more details see Jikov et al [29]. Notice that
L2

sol(Ω)) = L2
pot(Ω)⊥.

Remark 2. In the case of disperse media the functions from D(Ω) vanishing on M are dense in L2(F),
see [15, Remark 2.4]. In the terminology of [52], F is called T -open in Ω. Furthermore, due to connectivity
of F (ω), ∇ωψ = 0 in F implies that ψ does not depend on ω in F . Hypothesis R1.-R3. are sufficient
to make the assumptions on F in Proposition 4 below satisfied.

Next, following [13], we say that an element ψ ∈ L2(G× Ω) is admissible if the function

ψT : (x, ω) −→ ψ(x, T (x)ω), (x, ω) ∈ G× Ω,

defines an element of L2(G× Ω).
Examples of admissible two-scale functions are elements from C(G ; L∞(Ω)), and finite linear combination
of functions of the form

(x, ω) −→ f(x)g(ω), (x, ω) ∈ G× Ω, f ∈ L2(G), g ∈ L2(Ω),

(see Bourgeat et al [13]).
The notion of stochastic two–scale convergence in the mean was introduced in Bourgeat et al [13]. It

generalizes the two-scale convergence in the periodic setting introduced by Nguetseng in [41] and Allaire
in [5]. We recall it for comfort of the reader

Definition 3. A bounded sequence {uε} of functions from L2(G × Ω) is said to converge stochastically
two-scale in the mean (s.2-s.m.) towards u ∈ L2(G× Ω) if for any admissible ψ ∈ L2(G× Ω) we have

lim
ε→0

∫
G×Ω

uε(x, ω)ψ(x, T (
x

ε
)ω)dxdP =

∫
G×Ω

u(x, ω)ψ(x, ω)dxdP. (18)

Our functions are defined on Gεf (ω) and not on G. It is the well-known complication appearing in

homogenization of Neumann problem in perforated domains. Let X be the closure of the space V2
pot(Ω)

in L2(Ω \M)n. Motivated by Jikov et al [29] and Bourgeat et al [14], [15, Proposition 2.2] we have the
following 2−scale compactness result.

Proposition 4. Let {Φε} ⊂ H1(G) and {Ψε} ⊂ H1(G) be such sequences that{
‖Φε‖L2(G) + ‖∇Φε‖L2(Gε

f (ω)) ≤ C,

‖Ψε‖L2(G) + ε‖∇Ψε‖L2(Gε
f (ω)) ≤ C,

(19)

and assume that assumptions R1.–R4. are fulfilled.
Then there exist functions Φ0 ∈ H1(G), Ψ1 ∈ L2(G;D(Ω)), Ψ1 = 0 on M, and Φ1 ∈ L2(G; X),

Φ1 = 0 on M, such that, up to a subsequence,

χGε
f (ω)Φ

ε s.2-s.m.−→ χF (ω)Φ0(x), (20)

χGε
f (ω)Ψ

ε s.2-s.m.−→ Ψ1(x, ω), (21)

χGε
f (ω)∇Φε

s.2-s.m.−→ χF [∇xΦ0(x) + Φ1(x, ω)] (22)

εχGε
f (ω)∇Ψε s.2-s.m.−→ χF (ω)∇ωΨ1(x, ω); (23)
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here χF stands for the characteristic function of F .

Proof. As it was shown in [29], [52] and [53], under assumptions R1.–R4. the set of all functions
ψ ∈ D(Ω) such that ψ = 0 on M, is dense in L2(Ω \M), and whenever ∇ωψ = 0 in F , then ψ does not
depend on ω in F .

Under that same assumptions R1.–R4. the tensor A0
N associated to the homogenized Neumann

problem and defined by

ξ · A0
Nξ = inf

v∈X

∫
Ω\M

|ξ + v|2dP, ξ ∈ IRn, (24)

is positive definite. Using the above a priori estimates and the stochastic two-scale in the mean compact-
ness theorem from Bourgeat et al [13], we conclude that, after taking a proper subsequence, the sequences
{Φε}, {χGε

f (ω)∇Φε}, {Ψε} and {εχGε
f (ω)∇Ψε} have stochastic two-scale limits. We have then:

� Φε
s.2-s.m.−→ Φ0(x, ω)

� χGε
f (ω)∇Φε

s.2-s.m.−→ ξ0(x, ω)

� Ψε s.2-s.m.−→ Ψ1(x, ω)

� εχGε
m(ω)∇Ψε s.2-s.m.−→ z0(x, ω)

We should find relations between Φ0, ξ0, v and z0.
Concerning the relation between ξ0 and Φ0, it was considered in [15, Proposition 2.1], and it was

proved that
ξ0 = 0 on G×M and ξ0(x, ω)−∇xΦ0(x) ∈ L2(G;X)n.

It remains to identify z0 .
Taking into account the ergodicity of the dynamical system and connectivity of the solid skeleton, by

the same arguments as in Bourgeat et al [13], Bourgeat et al [15] and Wright [52], we conclude

z0(x, ω) = 0 on G×M and z0(x, ω) = χFΨ1(x, ω) ∈ D(Ω).

Remark 5. It should be noted that A0
N is always positive definite in the periodic case if the solid part is

connected.

2.2 Linearization

In this subsection we follow the lead of O’Brien & White [42] and proceed with semi-linearization of
system (1)-(6). The static electric potential Ψext(x) and the applied fluid force f∗(x) are assumed to be
sufficiently small. No smallness condition is imposed on Nσσ and the Poisson-Boltzmann equation (3)
remains non-linear.

After O’Brien & White [42], we write the electrokinetic unknowns as

nεi (x) = n0,ε
i (x) + δnεi (x), Ψε(x) = Ψ0,ε(x) + δΨε(x),

uε(x) = u0,ε(x) + δuε(x), pε(x) = p0,ε(x) + δpε(x),

where n0,ε
i ,Ψ0,ε,u0,ε, p0,ε are the equilibrium quantities, corresponding to f∗ = 0 and Ψext = 0. The δ

prefix indicates the size of perturbation.
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At zero order, corresponding to f∗ = 0 and Ψext = 0, we search for an equilibrium solution of the
form

u0,ε = 0 , p0,ε =

N∑
j=1

ncj exp{−zjΨ0,ε} ,

n0,ε
j (x) = ncj exp{−zjΨ0,ε(x)} , (25)

where Ψ0,ε solves the Poisson-Boltzmann equation −ε
2∆Ψ0,ε = β

N∑
j=1

zjn
c
je
−zjΨ0,ε

in Gεf (ω),

ε∇Ψ0,ε · ν = −Nσσ on ∂Gεf (ω) \ ∂G, Ψ0,ε = 0 on ∂G.

(26)

Furthermore, we assume that all valences zj are different and

z1 < z2 < ... < zN , z1 < 0 < zN . (27)

It should be noted that the second relation here is crucial while the strict inequalities in the first one can
be assumed without loss of generality. Indeed, if for two species the valencies were the same we could
relabel them as the same specie. We denote by j+ and j− the sets of positive and negative valencies.

Our goal is to show that problem (26) is well posed, and that its solution admits uniform a priori
estimates and two-scale converges in G to a statistically homogeneous function being a solution to problem
(37) below. To prove this we consider an auxiliary problem (38) and obtain L∞ estimates for its solution.
With the help of these estimates, using auxiliary variational problems in (45)–(46), we derive L∞ estimates
for the solution of (26). After that, we exploit the standard two-scale compactness arguments.

We note that problem (26) is equivalent to the following minimization problem:

inf
ϕ∈Wε

Jε(ϕ), (28)

with Wε = {z ∈ H1(Gεf (ω)) | z = 0 on ∂G} and

Jε(ϕ) =
ε2

2

∫
Gε

f (ω)

|∇ϕ|2 dx+ β

N∑
j=1

∫
Gε

f (ω)

ncje
−zjϕ dx+ εNσ

∫
∂Gε

f (ω)

σϕ dS.

The functional Jε is strictly convex, which gives the uniqueness of the minimizer. Nevertheless, for
arbitrary non-negative β, ncj and Nσ, Jε may be not coercive on Wε if all zj ’s have the same sign.
Indeed, in the case σ = 0 it suffices to take as ϕ constants of the same sign as z1 and zN ’s and tending
to infinity. Following the literature, this degeneracy is handled by imposing the bulk electroneutrality
condition

N∑
j=1

zjn
c
j = 0, (29)

which guarantees that for σ = 0, the unique solution is Ψ0,ε = 0.
The second difficulty is that Jε is not defined on Wε, but rather on Wε ∩ L∞(Gεf (ω)).

Remark 6. The bulk electroneutrality condition (29) is not a restriction. Actually, all our results hold
under the much weaker assumption that all valences zj do not have the same sign. We refer to [9] for
the argument how to reduce the general case to (29).
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Remark 7. Assume that the electroneutrality condition (29) holds true and σ be a smooth bounded
function. Then, in the deterministic setting, it was proved in Allaire et al [8] that problem (28) has a
unique solution Ψ0,ε ∈Wε ∩ L∞(Gεf (ω)).

Motivated by the computation of n0,ε
i , having the form of the Boltzmann equilibrium distribution, we

follow again lead of [42] and introduce the so-called ionic potential Φεi which is defined in terms of nεi by

nεi = nci exp{−zi(Ψε + Φεi + Ψext)}. (30)

After linearization (30) leads to

δnεi (x) = −zin0,ε
i (x)(δΨε(x) + Φεi (x) + Ψext,∗(x)). (31)

Introducing (31) into (1)-(5) and linearizing yields the following system

ε2∆uε −∇P ε = f∗ −
N∑
j=1

zjn
0,ε
j (x)(∇Φεj + E∗) in Gεf (ω), (32)

divuε = 0 in Gεf (ω), uε = 0 on ∂Gεf (ω), (33)

div

(
n0,ε
j (x)

(
∇Φεj + E∗ +

Pej
zj

uε
))

= 0 in Gεf (ω), j = 1, . . . , N, (34)

(∇Φεj + E∗) · ν = 0 on ∂Gεf (ω) \ ∂G, Φεj = 0 on ∂G, j = 1, . . . , N, (35)

where
E∗(x) = ∇Ψext,∗(x),

the perturbed velocity is actually equal to the overall velocity and, for convenience, we introduced a
global pressure P ε

δuε = uε , P ε = δpε +

N∑
j=1

zjn
0,ε
j

(
δΨε + Φεj + Ψext,∗) . (36)

For the choice of the boundary conditions on ∂G, we have followed O’Brien & White [42]. It is important
to remark that, after the global pressure P ε has been introduced, δΨε does not enter equations (32)-(35)
and thus is decoupled from the main unknowns uε, P ε and Φεi .

2.3 Poisson-Boltzmann equation in the random geometry

Rescaling of the Poisson-Boltzmann equation in (26) yields its form valid in F (ω) :
−∆yΨ0 = β

N∑
j=1

zjn
c
je
−zjΨ0

= −βnH(Ψ0) in F (ω),

∇yΨ0 · ν = −Nσσ(T (y)ω) on ∂F (ω),

Ψ0 is statistically homogeneous.

(37)

Here and in what follows we assume that σ(y) = σ(y, ω) = σ(T (y)ω) with σ ∈ D(Ω) ∩ L∞(ω). Problem
(37) does not have boundary conditions at infinity. They are hidden in the statistical homogeneity of
a solution. This means that there exists a function Ψ0 ∈ L2(F) such that Ψ0(y, ω) = Ψ0(T (y)ω). We
recall that in the periodic case, one can search for globally bounded smooth solution in the space and it
turns out that they are necessarily the periodic ones.
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We will show below that problem (37) is well-posed and has a unique solution and that the solution
Ψ0,ε of problem (26) stochastically two-scale converges as ε → 0 to the function χG(x)Ψ0(ω) with Ψ0

being a solution of (37).
Clearly, the function Ψ0

(
x
ε

)
= Ψ0

(
T (x/ε)ω) satisfies a.s. the Poisson-Boltzmann equation and Neu-

mann’s boundary condition in (26). Since we are interested in the effective bulk behavior of the potential,
Ψ0
(
x
ε

)
is in fact the desired approximation to be used in the concentration coefficients n0,ε

j of the equations
(32) and (34).

In order to derive L∞-bounds for problem (26), we first handle the non-homogeneous Neumann
condition and study the following ε-problem

−∆yV
ε + V ε = 0 in Gf (ω) =

1

ε
Gεf (ω),

∇yV ε · ν = −Nσσ(y) on
1

ε
∂Gεm(ω) =

⋃
j∈J (ε)

∂Mj(ω),

V ε = 0 on 1
ε ∂G.

(38)

Proposition 8. Let σ be a bounded function such that ‖σ‖L∞(∂F (ω)) ≤ C0 a.s. and assume that conditions
R1.–R3. are fulfilled. Then a.s. there exist constants Vm and VM , independent of ε, such that

Vm ≤ V ε(y, ω)) ≤ VM a.e. on F (ω). (39)

Proof. First, we recall that problem (38) has a unique solution V ε ∈ H1(Gf (ω), V ε = 0 on ∂G/ε. We
search a L∞-bound independent of ε.

Under conditions R1.–R3., results from Gilbarg & Trudinger [22, Appendix 14.6] yield that the
distance d is an element of C2(Γk), with Γk = { x ∈ F (ω) | d(x) = dist(x, ∂F (ω)) ≤ 2k} and 1/k bounds
the positive curvature of ∂F (ω). We assume that 2k < min

{
1, r3

}
, where r3 is a deterministic lower

bound in condition R3.
Let h ∈ C2[0,+∞) be a nonnegative function such that h(t) = 0 for t ≥ k and h′(0) = Nσ||σ||L∞(∂F (ω)) =

C0. Then there is a constant Ĉ , independent of ε, such that the function

âε =

{
h(d(x)), if dist(x, ε−1∂Gεm(ω)) ≤ 2k,
0, otherwise

satisfies

0 ≤ âε ≤ Ĉ in F (ω), |∆âε| < Ĉ in F (ω), ∇yâε · ν = h′(0) = C0 on
⋃

j∈J (ε)

∂Mj(ω).

Furthermore
−∆(âε + Ĉ) + (âε + Ĉ) > 0,

∂

∂ν
âε ≥ Nσσ and âε = 0 on ε−1∂G. By the maximum principle

V ε ≤ âε + Ĉ ≤ 2Ĉ.

In the same way one can show that −2Ĉ ≤ V ε ≤ 2Ĉ and the solution V ε of problem (38) satisfies
(39).
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Remark 9. Let us suppose, in addition, that σ is bounded in C1(∂F (ω)). The function V ε, solving
problem (38), is in fact the solution for the variational problem

Find V ε ∈ H1(Gf (ω)), V ε = 0 on
1

ε
∂G such that∫

Gf (ω)

(∇yV ε · ∇yϕ+ V εϕ) dy = −Nσ
∑

j∈J (ε)

∫
∂Mj(ω)

σϕ dSy = −Nσ
∑

j∈J (ε)

∫
∂Mj(ω)

σ∇d · νϕ dSy =

−Nσ
∫
Gf (ω)

( σ
C0
h(d) ∇yd · ∇yϕ+

σ

C0
h(d) ∆d ϕ+

σ

C0
h′(d) |∇yd|2ϕ+

∇yσ
C0
· ∇yd h(d)ϕ

)
dy. (40)

In addition to estimate (39), we have∫
Gf (ω)

(|∇yV ε|2 + |V ε|2) dy ≤ C|Gf (ω)|, (a.s.) in ω; (41)

here and later on the notation |B| is used for the volume of a set B ⊂ Rn. Estimates (39) and (41) allow
passing to the limit ε→ 0 of the sequence {V ε}.

Having L∞-bounds for the solution of auxiliary problem (38) allows proving existence of a bounded
solution to problem (37).

We start with the ε-problem:
−∆yΨε = β

N∑
j=1

zjn
c
je
−zjΨε

= −βnH(Ψε) in Gf (ω),

∇yΨε · ν = −Nσσ(y) on
1

ε
∂Gεm(ω),

Ψε = 0 on 1
ε ∂G.

(42)

Theorem 10. Under the electroneutrality condition (29) and hypotheses R1.–R4., a.s., there exists a
unique solution Ψε ∈ H1(Gf (ω)) ∩ L∞(Gf (ω)) of problem (42), such that∫

Gf (ω)

(|∇yΨε|2 + |Ψε|2) dy ≤ C|Gf (ω)|, (43)

||Ψε||L∞(Gf (ω)) ≤ C, (44)

where C is a deterministic constant, independent of ε.

Proof.

Step 1.

Let L > 0 be a sufficiently large constant to be specified later on. We introduce the cut-off nonlinearity
n
HL

by

n
HL

(z) =

 nH(z) for |z| ≤ L;
nH(L) + z − L for z > L;
nH(−N) + z + L for z < −L.

(45)

The cut-off functional is defined by

JL(ϕ) =
1

2

∫
Gf (ω)

|∇yϕ|2 dy + β

∫
Gf (ω)

ΓL(ϕ) dy −
∫
Gf (ω)

(V εϕ+∇yV ε · ∇yϕ) dy,

12



where

ΓL(z) =



∑
j∈j+∪j−

nj(z)−
∑

j∈j−∪j+
nj(0) for |z| ≤ L;∑

j∈j+∪j−
nj(L) + nH(L)(z − L) +

1

2
(z − L)2 −

∑
j∈j−∪j+

nj(0) for z > L;∑
j∈j+∪j−

nj(−L) + nH(−L)(z + L) +
1

2
(z + L)2 −

∑
j∈j−∪j+

nj(0) for z < −L.

Then the problem
min
ϕ∈W

JL(ϕ) (46)

where W = { ϕ ∈ H1(Gf (ω)) | ϕ = 0 on ∂G/ε }, has a unique solution ϕL. Furthermore

||∇yϕL||2L2(Gf (ω))n + ||ϕL||2L2(Gf (ω)) ≤ C|Gf (ω)|, (47)

where C does not depend on L and ε. The latter inequality follows from the evident fact that min
ϕ∈W

JL(ϕ) ≤

0 and the lower bound ΓL(z) ≥ c̃|z|2 with a constant c̃ > 0 that does not depend on L.
Step 2.
Our next goal is to establish L∞ estimates for ϕL, independent of L and ε. We begin with the

variational problem∫
Gf (ω)

∇y(ϕL − V ε) · ∇yφ dy + β

∫
Gf (ω)

n
HL

(ϕL)φ dy =

∫
Gf (ω)

V εφ dy, (48)

for all φ ∈ H1(Gf (ω)), φ = 0 on ∂G/ε. We take φ = (ϕL − V ε + Cm)−, where

Cm = VM +
1

zN
log

(
− (Vm + z1

∑
j∈j−

ncj)−/(zNn
c
N ) + 1

)
;

we recall that z1 and zN are valences that satisfy relations (27). Inserting this particular test function
into equation (48) and using that |V ε − Cm| ≤ L, yield∫

Gf (ω)

|∇y(ϕL − V ε + Cm)−|2 dy + β

∫
Gf (ω)

(
n
HL

(ϕL)− nH(V ε − Cm)
)

(ϕL − V ε + Cm)−︸ ︷︷ ︸
=0 if ϕL≥L

dy =

∫
Gf (ω)

(V ε − nH(V ε − Cm))(ϕL − V ε + Cm)− dy. (49)

Next

V ε − nH(V ε − Cm) = V ε +
∑
j

zjn
c
je
−zj(V ε−Cm) ≥ Vm + zNn

c
Ne
−zN (VM−Cm) + z1

∑
j∈j−

ncj

≥ 0 for Cm = VM +
1

zN
log

(
− (Vm + z1

∑
j∈j−

ncj)−/(zNn
c
N ) + 1

)
and we conclude that, under a proper choice of L,

ϕL(y) ≥ Vm − VM +
1

zN
log

(
− (Vm + z1

∑
j∈j−

ncj)−/(zNn
c
N ) + 1

)
> −L.
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The upper bound is analogous.
Step3.
With a priori bounds (47) and the uniform L∞-bounds, there exists a subsequence of ϕL, again

denoted by the same subscript, and ϕε ∈W ∩ L∞(Gf (ω)), such that
∇ϕL ⇀ ∇ϕε weakly in L2(Gf (ω))n;
ϕL ⇀ ϕε weakly in L2(Gf (ω));
ϕL ⇀ ϕε weak-* in L∞(Gf (ω));
ϕL → ϕε strongly in L2(Gf (ω)),

(50)

as L→ +∞. Next
lim inf

L→+∞
JL(ϕL) = lim inf

L→+∞
J(ϕL) ≥ J(ϕε)

and
J(g) ≥ JL(g)(g) ≥ JL(g)(ϕL(g)) ≥ J(ϕε), ∀g ∈W, Γ(g) ∈ L1(Gf (ω)).

Hence ϕε solves variational problem (42) and provides the minimum in the corresponding minimization
problem. The strict convexity implies uniqueness and ϕε = Ψε.

It remains passing to the limit in problem (42) as ε→ 0.
We are interested in homogenization of a problem posed in Gεf (ω). We set

Ψ0,ε(x) = Ψε(
x

ε
), x ∈ G. (51)

Estimates (43)-(44) then read ∫
Gε

f (ω)

(|ε∇Ψ0,ε|2 + |Ψ0,ε|2) dx ≤ C, (52)

||Ψ0,ε||L∞(Gε
f (ω)) ≤ C, (53)

where C is a deterministic constant, independent of ε.

Theorem 11. Let Ψ0,ε be defined by (51). Then there exists Ψ0 ∈ L2(G,D(Ω)) ∩ L∞(Ω×G) such that

Ψ0,ε s.2−s.m.−−−−−−→ Ψ0(x, ω), (54)

ε∇Ψ0,ε s.2−s.m.−−−−−−→ ∇ωΨ0(x, ω), (55)

The limit function Ψ0 is the unique solution to the variational equation∫
F
∇ωΨ0 · ∇ωg dP + β

∫
F
nH(Ψ0)g dP = −Nσ

∫
F

( σ

C0
h(d(ω))∇ωd(ω) · ∇ωg+

σ

C0
h(d(ω))∆ωd(ω)g +

σ

C0
h′(d(ω))|∇ωd|2g +

∇ωσ
C0
· ∇ωdh(d)g

)
dP, ∀g ∈ D(Ω) ∩ L∞(Ω). (56)

Proof. Using a priori estimates (52)-(53) and the stochastic two-scale convergence in the mean compact-
ness theorem 3.7 from [13] and Proposition 4, we conclude that, after taking a proper subsequence, the
sequences {Ψ0,ε} and {ε∇Ψ0,ε} have stochastic two-scale limits in the mean Ψ0 and ∇ωΨ0. Furthermore,
χGε

f (ω) converges in stochastic two-scale in the mean toward χF .

Because of the lower-semicontinuity with respect to the stochastic two-scale convergence in the mean
of the Lq-norms, 1 < q < +∞, and estimate (53), the Lq(G × F)-norms of Ψ0 are bounded uniformly
with respect to q. Hence, Ψ0 ∈ L∞(Ω×G), with the same constant as in the bound (53).
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Let now ζ ∈ C∞0 (G) and g ∈ D(Ω) ∩ L∞(Ω) . Let gε(x, ω) = g(T (xε )ω)ζ(x), σε(x, ω) = σ(T (xε )ω)
and dε(x, ω) = d(T (xε )ω). Using Minty’s lemma we write the scaled back problem (42) in the equivalent
form ∫

Ω

∫
G

εχGε
f (ω)∇gε · ε∇(gε −Ψ0,ε) dxdP + β

∫
Ω

∫
G

χGε
f (ω)nH(gε)(gε −Ψ0,ε) dxdP+

Nσ

∫
Ω

∫
G

( σε
C0
h(dε)ε∇dε · ε∇(gε −Ψ0,ε) +

σε

C0
(h(dε)ε2∆dε + h′(dε)|ε∇dε|2)(gε −Ψ0,ε)+

ε∇σε

C0
· ε∇dεh(dε)(gε −Ψ0,ε)

)
dxdP ≥ 0, ∀g ∈ D(Ω) ∩ L∞(Ω), ζ ∈ C∞0 (G). (57)

Passing to the limit ε→ 0 is now straightforward (see for instance [14] and [15]). It yields∫
G

∫
F
∇ωg(ω)ζ(x) · ∇ω(g(ω)ζ(x)−Ψ0) dxdP + β

∫
G

∫
F
nH(g(ω)ζ(x))(g(ω)ζ(x)−Ψ0) dxdP+

Nσ

∫
G

∫
F

(σ(ω)

C0
h(d(ω))∇ωd(ω) · ∇ω(g(ω)ζ(x)−Ψ0)+

σ(ω)

C0
(h(d(ω))∆ωd(ω) + h′(d(ω))|∇ωd(ω)|2)(g(ω)ζ(x)−Ψ0)+

∇ωσ(ω)

C0
· ∇ωd(ω)h(d(ω))(g(ω)ζ(x)−Ψ0)

)
dxdP ≥ 0, ∀g ∈ D(Ω) ∩ L∞(Ω), ζ ∈ C∞0 (G).′ (58)

Using again Minty’s lemma we obtain that Ψ0 satisfies problem (56). Due to the strict convexity, Ψ0 is
unique and the whole sequence converges. Moreover, Ψ0 does not depend on x, and, by construction,
the function Ψ0

(
T (y)ω

)
satisfies a.s. the Poisson-Boltzmann equation and the Neumann condition in

(37).

Remark 12. For passing to the stochastic 2-scale limits for more complicated problems with convex
structure, we refer to Hudson et al [28].

3 Homogenization

In Subsection 2.3 we solved the nonlinear Poisson-Boltzmann equation, for the equilibrium potential
Ψ0,ε(x). It allowed computation of the equilibrium concentrations n0,ε

j (x) = ncj exp{−zjΨ0,ε(x)}. Fur-

thermore, we established that, as ε→ 0, Ψ0,ε(x) converges stochastically two-scales to Ψ0(ω), the unique
solution of the variational problem (56). Since the goal of this section is to homogenize the system of
linearized equations (32)-(35) and of Section 4 to establish Onsager’s relationship between the fluxes and
the gradients of potentials in the bulk, we make a further simplification of the original system and replace
in the linearized system the function n0,ε

j with njε(x) = ncj exp{−zjΨ0
(
T (x/ε)ω

)
}.

The formal two-scale asymptotic expansion method follows the periodic case (see Looker & Carnie
[32]). The fast variable is now y = T (x/ε)ω and the expansion of the solutions of (32)-(35) now reads

uε(x) = u0(x, y) + εu1(x, y) + . . . ,
P ε(x) = p0(x) + εp1(x, y) + . . . ,
Φεj(x) = Φ0

j (x) + εΦ1
j (x, y) + . . . .

We do not dwell on formal expansions and start by introducing the functional spaces related to the
velocity field and the ionic potentials:

Hε = {z ∈ H1
0 (Gεf (ω))n, div z = 0 in Gεf (ω)}, W ε = {z ∈ H1(Gεf (ω)), z = 0 on ∂G}.
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Then, summing the variational formulation of (34)-(35) with that of (32)-(33) (weighted by z2
j /Pej) yields

a.s in ω the variational formulation for the coupled problem that reads

Find uε ∈ Hε and {Φεj}j=1,...,N ∈ (W ε)N such that

a
(
(uε, {Φεj}), (ξ, {φj})

)
= 〈L, (ξ, {φj})〉 (59)

for any test functions ξ ∈ Hε and {φj}j=1,...,N ∈ (W ε)N ; here

a
(
(uε, {Φεj}), (ξ, {φj})

)
:= ε2

∫
Gε

f (ω)

∇uε : ∇ξ dx+

N∑
j=1

zj

∫
Gε

f (ω)

(
uε · ∇φj − ξ · ∇Φεj

)
njε dx+

N∑
j=1

z2
j

Pej

∫
Gε

f (ω)

njε∇Φεj · ∇φj dx

and

〈L, (ξ, {φj})〉 :=

N∑
j=1

zj

∫
Gε

f (ω)

njεE
∗ ·
(
ξ − zj

Pej
∇φj

)
dx−

∫
Gε

f (ω)

f∗ · ξ dx.

We recall that the concentrations n0,ε
j are replaced with the statistically homogeneous concentrations njε.

Before studying problem (59), we briefly discuss Poincaré inequality in Gεf (ω). For a general class of
random domains, it was studied in Beliaev & Kozlov [12].

With assumptions R1.–R5., the proof of this inequality is analogous to that in the periodic case (see
Allaire [4, Sec 3.1.3, Lemma 1.6]):

Lemma 13. Under assumptions R1.–R5. a.s. in ω,

||ξ||L2(Gε
f (ω))n ≤ Cε||∇ξ||L2(Gε

f (ω))n2 , ∀ξ ∈ H1
0 (Gεf (ω))n, (60)

where C is a deterministic constant.

Proof. First, we rescale ξ(x) to ξ̃ being defined on ε−1G Next, we extend ξ(x) by zero to the complement
of Gf (ω). Let Fj(ω) be a subset of F (ω) contained the points having Mj(ω) as the closest fluid block.
This way we obtain a tessellation of the whole space. Now we have Poincaré inequality for every domain
Fj(ω)∪M j(ω), with a deterministic constant independent of j. Hence, we have Poincaré’s inequality for
all j ∈ J (ε). Next we add the complement of the closure of the union of all domains Fj(ω)∪M j(ω), with

j ∈ J (ε), in ε−1G. It yields Poincaré’s inequality in ε−1G for ξ̃, with deterministic constant independent
of ε. Rescaling back with respect to ε, gives inequality (60).

Proposition 14. Let us assume R1.–R5. and let E= ∇Ψext and f∗ be given elements of L2(G)n. Then
variational problem (59) admits a unique solution (uε, {Φεj}1≤j≤N ) ∈ Hε × (W ε)N . Furthermore, there
exists a deterministic constant C, which does not depend on ε, nor on f∗ and E∗, such that the solution
satisfies the following a priori estimates

||uε||L2(Gε
f (ω))n + ε||∇uε||L2(Gε

f (ω))n2 ≤ C
(
||E∗||L2(G)n + ||f∗||L2(G)n

)
(61)

max
1≤j≤N

||Φεj ||H1(Gε
f (ω)) ≤ C

(
||E∗||L2(G)n + ||f∗||L2(G)n

)
. (62)
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Proof. The Cauchy-Schwartz inequality yields continuity of the bilinear form a and the linear form
L on Hε × (H1(Gεf (ω))/R)N . Furthermore for ξ = uε and φj = Φεj , we find out that the second

integral (the cross-term) in the definition of a cancels. Next, because of the L∞-bounds on Φ0,ε, njε ≥
C > 0, for a deterministic constant C, and the bilinear form a((uε, {Φεj}1≤j≤N ), (uε, {Φεj}1≤j≤N )) is

Hε×(H1(Gεf (ω))/R)N -elliptic. Now, the Lax-Milgram lemma implies existence and uniqueness of solution
of problem (59).

The a priori estimates (61)-(62) follow by testing the problem (59) by the solution, using the L∞-
estimate for Ψ0 and using Poincaré’s inequality (60).

As in Subsection 2.3, to simplify the presentation we use an extension operator from the perforated
domain Gεf (ω) into Ω (although it is not necessary). Using hypothesis R1.-R4., in analogy with the
periodic case, (studied for instance in Acerbi et al [1], Cionarescu & Saint-Jean-Paulin [17] and Jikov et
al [29]), there exists an extension operator T ε from H1(Gεf (ω)) in H1(G) satisfying T εφ|Gε

f (ω) = φ and

the inequalities
‖T εφ‖L2(G) ≤ C‖φ‖L2(Gε

f (ω)), ‖∇(T εφ)‖L2(G) ≤ C‖∇φ‖L2(Gε
f (ω))

with a deterministic constant C independent of ε, for any φ ∈ H1(Gεf (ω)). We keep for the extended
function T εΦεj the same notation Φεj .

We extend uε by zero in G\Gεf (ω). It is well known that extension by zero preserves Lq and W 1,q
0

norms for 1 < q <∞. Therefore, we can replace Gεf (ω) by G in estimate (61).
The pressure field P ε is reconstructed using de Rham’s theorem, see Temam [51]. It is thus unique

up to an additive constant. The a priori estimates for the pressure are not easy to obtain and in the
case of periodic porous media require Tartar’s construction from [50] (see also Allaire [3] or Allaire [4,
Sec 3.1.3]). Here we deal with a random porous medium and the pressure extension was constructed
only for checkerboard type random domains in Beliaev & Kozlov [12]. Nevertheless, assumptions R1.-
R4. allow to construct a ”security domain” Yj(ω) of the fixed deterministic size surrounding every
Mj(ω), j ∈ J (ε). It is such that its distance to neighboring solid inclusions M` is bigger than a strictly
positive deterministic constant. For instance, one can choose Yj(ω) to be the k-neighbourhood of Mj(ω):
Yj(ω) = {x ∈ F (ω) : dist(x,Mj(ω)) < k}, where k is a constant defined in the proof of Proposition 8.

Then we repeat Tartar’s construction of the restriction operator, developed originally for periodic
porous media (see Allaire [4]), for every j ∈ J (ε). Next, by gluing all the pieces, the restriction operator
is defined as a continuous operator R : H1

0 ( 1
εG)n → H1

0 (Gf (ω))n. Note that if div ϕ = 0 in G/ε, then
div (Rεϕ) = 0 in Gf (ω). Rescaling in exactly the same way as in the periodic case yields the restriction
operator Rε : H1

0 (G)n → H1
0 (Gεf (ω))n, such that div ϕ = 0 in G implies div (Rεϕ) = 0 in Gεf (ω). ∇P ε is

then extended using duality, as in the periodic case, and an extended pressure is P̃ ε is obtained and the
following estimate holds

|〈∇P̃ ε, ϕ〉H−1(G),H1
0 (G)| ≤ (||ϕ||L2(G)n + ε||∇ϕ||L2(G)n2 ), ∀ϕ ∈ H1

0 (G). (63)

Furthermore, a slight modification of the argument from Avellaneda & Lipton [31] gives that the pressure
extension P̃ ε is given by

P̃ ε =


P ε in Gεf (ω),

1

|εYi(ω)|

∫
εYi(ω)

P ε in εMi(ω),
(64)

for each i ∈ J (ε). The results are summarized in
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Lemma 15. Let P̃ ε be defined by (64). Then (a.s.) in ω it satisfies the estimates

‖P̃ ε − 1

|G|

∫
G

P̃ εdx‖L2(G) ≤ C
(
||E∗||L2(G)n + ||f∗||L2(G)n

)
,

‖∇P̃ ε‖H−1(G)n ≤ C
(
||E∗||L2(G)n + ||f∗||L2(G)n

)
.

Using the a priori estimates and the notion of two-scale convergence, we are able to prove our main
convergence result.

Theorem 16. Let us assume R1.–R5. Let n0
j = ncj exp{−zjΨ0} and {uε, {Φεj}j=1,...,N} be the vari-

ational solution of (59). We extend the velocity uε by zero in G \ Gεf (ω) and the pressure P ε by P̃ ε,

given by (64) and normalized by
∫
G\Gε

f (ω)
P̃ ε = 0. Then there exist limits (u0, P 0) ∈ V × L2

0(G) and

{Φ0
j ,Φ

1
j}j=1,...,N ∈

(
H1

0 (G)× L2(G;X)
)N

such that the following convergences hold

uε → u0(x, ω) in the stochastic two-scale sense (65)

ε∇uε → ∇ωu0(x, ω) in the stochastic two-scale sense (66)

P̃ ε → P 0(x) strongly in L2
0(G), (a.s.) in ω, (67)

Φεj → Φ0
j (x) in the stochastic two-scale sense (68)

χGε
f (ω)∇Φεj → χF (ω){∇xΦ0

j (x) + Φ1
j (x, ω)} in the stochastic two-scale sense. (69)

In addition, for j = 1, . . . , N ,

χM(ω)Φ1
j (x, ω) = 0, χM(ω)u0(x, ω) = 0 and P 0(x, ω) = P 0(x) a.e. on G× Ω. (70)

Furthermore, (u0, P 0, {Φ0
j ,Φ

1
j}j=1,...,N ) is the unique solution of the two-scale homogenized problem

−∆ωu0(x, ω) +∇ωp1(x, ω) = −∇xP 0(x)− f∗(x)

+

N∑
j=1

zjn
0
j (ω)(∇xΦ0

j (x) + Φ1
j (x, ω) + E∗(x)) in G×F , (71)

divωu0(x, ω) = 0 in G×F , u0(x, ω) = 0 on G×M, (72)

divx
(
E(u0)

)
= 0 in G, E∗(u0) · ν = 0 and Φ0

j = 0 on ∂G, (73)

−divω

(
n0
j (ω)

(
Φ1
j (x, ω) +∇xΦ0

j (x) + E∗(x) +
Pej
zj

u0
))

= 0 in G×F , (74)

curlω Φ1
j = 0 in G×F , (75)

n0
j (ω)(Φ1

j +∇xΦ0
j + E∗) = 0 in G×M, (76)

−divxE(n0
j

(
Φ1
j +∇xΦ0

j + E∗(x) +
Pej
zj

u0
)
) = 0 in G, (77)

for j = 1, . . . , N .

Remark 17. Following the terminology of Allaire [4], the limit problem introduced in Theorem 16 is
called the two-scale, two-pressure homogenized problem. It is well posed because the two incompressibil-
ity constraints (72) and (73) are exactly dual to the two pressures P 0(x) and p1(x, ω) which are their
corresponding Lagrange multipliers.

The separation of scales from the above two-scale limit problem and extracting the purely macroscopic
homogenized problem will be done later in Proposition 24, Section 4.
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The proof of Theorem 16 will follow from several auxiliary lemmas.
We start by rewriting the variational formulation (59) with a velocity test function which is not

divergence-free, so we can still take into account the pressure

ε2

∫
Gε

f (ω)

∇uε : ∇ξ dx−
∫
Gε

f (ω)

P ε div ξ dx+

N∑
j=1

∫
Gε

f (ω)

zj
(
− ξ · ∇Φεj + uε · ∇φj

)
njε dx+

N∑
j=1

z2
j

Pej

∫
Gε

f (ω)

njε∇Φεj · ∇φj dx = −
N∑
j=1

z2
j

Pej

∫
Gε

f (ω)

njεE
∗ · ∇φj dx

+

N∑
j=1

∫
Gε

f (ω)

zjn
ε
jE
∗ · ξ dx−

∫
Gε

f (ω)

f∗ · ξ dx, (78)

for any test functions ξ ∈ H1
0 (Gεf (ω)) and φj ∈ W ε, 1 ≤ j ≤ N . Of course, one keeps the divergence

constraint divuε = 0 in Gεf (ω). Next we define the two-scale test functions:

ξε(x) = ξ(x, T (
x

ε
ω)), ξ ∈ C∞0 (G;D(Ω)n), ξ = 0 on G×M, divωξ(x, ω) = 0 on G×F , (79)

φεj = ϕj(x) + εγj(x, T (
x

ε
)ω), ϕj ∈ C∞0 (G), γj ∈ C∞0 (G;D(Ω)), j = 1, . . . N. (80)

Lemma 18. Let us suppose the assumptions of Theorem 16 and convergences (65)-(69). Then any
cluster point {u0, P 0} satisfies (70).

Proof. If we take ξ which is with support in M, then passing to the two-scale limit immediately gives
χM(ω)u0(x, ω) = 0. Next we take as test function ξε = εξ(x, T (xεω)), where ξ is given by (79) and
φj = 0, for each j, then passing to the two-scale limit gives

0 =

∫
G

∫
Ω

P 0divω ξ(x, ω) dPdx.

Remark 2 and the ergodicity assumption on F yields P 0(x, ω) = P 0(x) a.e. on G× Ω. For a detailed
computation see Wright [52, Lemma 2.4].

Lemma 19. Let us suppose the assumptions of Theorem 16 and convergences (65)-(69). Then any
cluster point {u0, P 0, {Φ0

j ,Φ
1
j}j=1,...N} satisfies incompressibility constraints (72)-(73) and the variational

equation ∫
G×F

∇ωu0(x, ω) : ∇ωξ dxdP−
∫
G×F

P 0(x) divxξ dxdP+

N∑
j=1

∫
G×F

zjn
0
j (ω)

(
− ξ(x, ω) · (∇xΦ0

j (x) + Φ1
j (x, ω)) + u0(x, ω) · (∇xϕj(x) + gj(x, ω))

)
dxdP

+

N∑
j=1

z2
j

Pej

∫
G×F

n0
j (ω)(∇xΦ0

j (x) + Φ1
j (x, ω)) · (∇xϕj + gj) dxdP =

−
N∑
j=1

z2
j

Pej

∫
G×F

n0
j (ω)E(x) · (∇xϕj(x) + gj(x, ω)) dxdP +

N∑
j=1

∫
G×F

zjn
0
j (ω)E∗(x) · ξ dxdP

−
∫
G×F

f∗(x) · ξ(x, ω) dxdP, (81)
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for any test functions ξ given by (79) and φj given by (80). Notice that ∇ωγj was replaced with the
element from the corresponding closed subspace: gj ∈ L2(G;X) .

Proof. If we multiply div uε = 0 by ξε, integrate over Gεf (ω) × F and pass to the two-scale limit,
incompressibility constraint (72) follows immediately.

The incompressibility constraint (73) follows analogously, but with a choice of test function E(ξε) and
φεj = 0 for each j.

Using convergences (65)-(69) and by recalling that njε = n0
j (T (x/ε)ω) we pass to the two-scale limit

in equation (78) without difficulty.

The next step is to prove the well-posedness of variational equation (81), which by uniqueness of the
limit automatically implies that the entire sequence (uε, P ε, {Φεj}1≤j≤N ) converges.

Let the functional space for the velocity u0 be given by

V = {z0(x, ω) ∈ L2 (G;D(Ω)n) satisfying (72)− (73)},

Lemma 20. Let η ∈ L2
0(G). Then there exists Θ ∈ V such that

divxE{Θ} = η in G, E{Θ} · ν = 0 on ∂G. (82)

Proof. Let W be the Hilbert space given by

W = { z ∈ D(Ω)n | divωz = 0 in F and z = 0 on M}. (83)

We define the random variables qi ∈ W, i = 1, . . . , n by∫
F
∇ωqi : ∇ωψ dP +

∫
F

qi · ψ dP =

∫
F
ψi dP, ∀ψ ∈ W. (84)

Then we have

E{qji } =

∫
F
∇ωqi : ∇ωqj dP +

∫
F

qi · qj dP = E{qij}

and for all λ ∈ Rn

n∑
i,j=1

λiλjE{qji } =

∫
F
|∇ω(

n∑
i=1

λiq
i)|2 dP +

∫
F
|
n∑
i=1

λiq
i|2 dP.

Hence the matrix Kq =

[
E{qji }

]
i,j=1,...,n

is symmetric positive definite.

Now we set Θ =

n∑
i=1

qi(ω)
∂q

∂xi
(x), where q ∈ H1(G)R solves the problem

divx{Kq∇xq} = η in G, Kq∇xq · ν = 0 on ∂G. (85)

As E{Θ} = Kq∇xq, the Lemma is proved.
We notice the analogy with Allaire [4, Section 3.1.2].

Proposition 21. Problem (81) with incompressibility constraints (72) and (73) has a unique solution

(u0, P 0, {Φ0
j ,Φ

1
j}j=1,...,N ) ∈ V × L2

0(G)× (H1
0 (G)× L2(G;X))N .
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Proof. We study variational problem (81) with ξ ∈ V , ϕj ∈ H1(G)/R and with ∇ωγj , j = 1, . . . , N ,

replaced by arbitrary element of L2(G;X). We notice that for ξ ∈ V ,

∫
G×F

P 0(x) divxξ dxdP = 0.

Hence we apply the Lax- Milgram lemma to prove the existence and uniqueness of (u0, {Φ0
j ,Φ

1
j}) in

V × (H1
0 (G)× L2(G;X))N . The only point which requires to be checked is the coercivity of the bilinear

form. We take ξ = u0, ϕj = Φ0
j and gj = Φ1

j as the test functions in (81). Using the incompressibility
constraints (73) and the anti-symmetry of the third integral in (81), we obtain the quadratic form∫

G×F
|∇ωu0(x, ω)|2 dxdP +

N∑
j=1

z2
j

Pej

∫
G×F

n0
j (ω)|∇xΦ0

j (x) + Φ1
j (x, ω)|2 dxdP. (86)

Recalling from Lemma 7 that n0
j (ω) ≥ C > 0 in F , it is easy to check that each term in the sum on the

second line of (86) is bounded from below by

C

(∫
G

|∇xΦ0
j (x)|2 dx+

∫
G×F

|Φ1
j (x, y)|2 dxdP

)
,

which proves the coerciveness of the bilinear form in the required space.
It remains to prove uniqueness of the pressure P 0. It is sufficient to prove that for the homogeneous

data, P 0 = 0 in L2
0(G).

By the above result and using equation (81), we have

0 =

∫
G×F

P 0(x) divxξ dxdP =

∫
G

P 0(x)E{divx ξ} dx.

Hence, by Lemma 20, P 0 is orthogonal to all elements of L2
0(G) and, as such, equal to zero.

Remark 22. In analogy with Allaire [6] (see also Allaire [4, Section 3.1.2]), the space V is orthogonal
in L2 (G;D(Ω)n) to the space of gradients of the form ∇xq(x) +∇ωq1(x, ω) with q(x) ∈ H1(G)/R and
q1(x, ω) ∈ L2 (G×F).

Proof of Theorem 16:
By virtue of the a priori estimates in Lemmas 14 and 15, and using the compactness of Proposition

4 and Lemma 18, there exist a subsequence, still denoted by ε, and limits (u0, P 0, {Φ0
j ,Φ

1
j}1≤j≤N ) ∈

V ×L2
0(G)×(H1

0 (G)×L2(G;X))N such that the convergences in Theorem 16 are satisfied. Using Lemma
19 we pass to the two-scale limit in (78) we get that the limit (u0, P 0, {Φ0

j ,Φ
1
j}1≤j≤N ) satisfy the two-scale

variational formulation (81).
According to Proposition 21, the limit system has a unique solution and the whole sequence converges.
It remains to recover the two-scale homogenized system (71)-(77) from the variational formulation

(81). In order to get the Stokes equations (71) we choose ϕj = 0 and γj = 0 in (81). Using Corollary 2.7
from [52] we deduce the existence of a pressure field p1(x, ω) in L2(G× Ω) such that

−∆ωu0 +∇ωp1 = −∇xP 0 − f∗ +

N∑
j=1

zjn
0
j (∇xΦ0

j + Φ1
j + E∗) in G×F .

The incompressibility constraints (72) and (73) are simple consequences of passing to the two-scale limit
in the equation divuε = 0 in Gεf (ω). To obtain the cell convection-diffusion equation (74) we now choose
ξ = 0 and ϕj = 0 in (81) while the macroscopic convection-diffusion equation (77) is obtained by taking
ξ = 0 and γj = 0. This finishes the proof of Theorem 16.
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4 Scale separation and Onsager’s relations

The limit problem obtained in Theorem 16 contains the two-scales and a large set if unknowns. Further-
more, it is a system of PDEs in a random geometry. For the practical purposes (which are overall the
computational ones), it is important to extract from (71)-(77) the macroscopic homogenized problem, if
possible. It requires to separate the slow (x-) and fast (ω-) scale. This was undertaken in Looker & Carnie
[32] for periodic porous media. In Allaire et al [7] their analysis was simplified and Onsager properties for
the effective fluxes were established. In addition, the scale separation results allowed establishing further
qualitative properties of the effective coefficients and eliminating the fast scale. In this article, our goal
is to generalize results from Allaire et al [7] to stochastic porous media.

The main idea is identifying in two-scale homogenized problem (71)-(77) the two different sets of
macroscopic fluxes, namely (∇xP 0(x) + f∗(x)) and {∇xΦ0

j (x) + E∗(x)}1≤j≤N . Therefore, we introduce
two families of random geometry problems, indexed by k ∈ {1, ..., n} for each component of these fluxes.
We denote by {ek}1≤k≤n the canonical basis of Rn.

Recalling the definition of the space W in (83) and the space X that is given just after Definition 3,
the first family of random geometry problem, corresponding to the macroscopic pressure gradient, is

Find {v0,k,Θ0,k
j } ∈ W ×X, j = 1, . . . , N, such that∫

F
∇ωv0,k(ω) : ∇ωξ(ω) dP−

N∑
j=1

∫
F
zjn

0
j (ω)Θ0,k

j (ω) · ξ(ω) dP =

∫
F

ek · ξ(ω) dP,∫
F
n0
j (ω)Θ0,k

j (ω) · zj
Pej

ζj(ω) dP +

∫
F
n0
j (ω)v0,k(ω) · ζj(ω) dP = 0 (87)

for all ξ ∈ W and ζj ∈ X, j = 1, . . . , N.

The second family of random geometry problem, corresponding to the macroscopic diffusive flux, is for
each species i ∈ {1, ..., N}

Find {vi,k,Θi,k
j } ∈ W ×X, j = 1, . . . , N, such that∫

F
∇ωvi,k(ω) : ∇ωξ(ω) dP−

N∑
j=1

∫
F
zjn

0
j (ω)Θi,k

j (ω) · ξ(ω) dP = zi

∫
F
n0
i (ω)ek · ξ(ω) dP,

−
∫
F
n0
j (ω)

(
Θi,k
j (ω) · zj

Pej
ζj(ω) + vi,k(ω) · ζj(ω)

)
dP = −δij

∫
F
n0
j (ω)ek · zj

Pei
ζj(ω) dP, (88)

for all ξ ∈ W and ζj ∈ X, j = 1, . . . , N ;

here δij is the Kronecker symbol. These two problems can be rewritten as follows:

Find {v0,k,Θ0,k
j } ∈ W ×X, j = 1, . . . , N, such that∫

F
∇ωv0,k(ω) : ∇ωξ(ω) dP−

N∑
j=1

∫
F
zjn

0
j (ω)Θ0,k

j (ω) · (ξ(ω)− zj
Pej

ζj(ω)) dP

+

N∑
j=1

zj

∫
F
n0
j (ω)v0,k(ω) · ζj(ω) dP =

∫
F

ek · ξ(ω) dP, ∀ξ ∈ W, ζj ∈ X, j = 1, . . . , N. (89)
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and

Find {vi,k,Θi,k
j } ∈ W ×X, j = 1, . . . , N, such that∫

F
∇ωvi,k(ω) : ∇ωξ(ω) dP−

N∑
j=1

∫
F
zjn

0
j (ω)

(
Θi,k
j (ω) · (ξ(ω)− zj

Pej
ζj(ω))− vi,k(ω) · ζj(ω)

)
dP

= zi

∫
F
n0
i (ω)ek · (ξ(ω)− zi

Pei
ζi(ω)) dP, ∀ξ ∈ W, ζj ∈ X, j = 1, . . . , N. (90)

Lemma 23. Problems (89) and (90) admit a unique solution.

Then, denoting the components of E∗ by E∗k we can decompose the solution of (71)-(77) as

u0(x, ω) =

n∑
k=1

(
−v0,k(ω)

(
∂P 0

∂xk
+ f∗k

)
(x) +

N∑
i=1

vi,k(ω)

(
E∗k +

∂Φ0
i

∂xk

)
(x)

)
(91)

Φ1
j (x, ω) =

n∑
k=1

(
−Θ0,k

j (ω)

(
∂P 0

∂xk
+ f∗k

)
(x) +

N∑
i=1

Θi,k
j (ω)

(
E∗k +

∂Φ0
i

∂xk

)
(x)

)
. (92)

We average (91)-(92) in order to get a purely macroscopic homogenized problem. We introduce the the
total electrochemical potential µεj of the linearized system as

µεj = −zj(Φεj + Ψext,∗)

and the ionic flux of the jth species

jεj =
zj

Pej
nεj

(
∇Φεj + E∗ +

Pej
zj

uε
)
.

The corresponding homogenized quantities are defined as

µj(x) = −zj(Φ0
j (x) + Ψext,∗(x)),

jj(x) =
zj

Pej
E
{
n0
j (ω)(∇xΦ0

j (x) + E∗ + Φ1
j (x, ω) +

Pej
zj

u0(x, ω))

}
, u(x) = E{u0}.

From (91)-(92) we deduce the homogenized or upscaled equations for the above effective fields.

Proposition 24. Introducing the flux J (x) = (u, {jj}1≤j≤N ) and the gradient F(x) = (∇xP 0, {∇xµj}1≤j≤N ),
the macroscopic equations are

divxJ = 0 in G, (93)

J = −BF − B(f∗, {0}) (94)

with a symmetric positive definite B, defined by

B =



K
J1

z1
. . .

JN
zN

L1
D11

z1
· · · D1N

zN
...

...
. . .

...

LN
DN1

z1
· · · DNN

zN


, (95)
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and complemented with the boundary conditions for P 0 and {Φ0
j}1≤j≤N . The matrices Ji, K, Dji and Lj

are defined by their entries

{Ji}lk = E{vi,k · el}, {K}lk = E{v0,k · el},

{Dji}lk = E{n0
j (v

i,k +
zj

Pej

(
δije

k + Θi,k
j

)
) · el}, {Lj}lk = E{n0

j (v
0,k +

zj
Pej

Θ0,k
j ) · el}.

Remark 25. The tensor K is called permeability tensor, Dji are the electrodiffusion tensors. The sym-
metry of the tensor B is equivalent to the famous Onsager’s reciprocal relations. In the periodic case the
symmetry of B was proved in [32] and its positive definiteness in [7]. It is essential in order to state that
(93)-(94) is an elliptic system which admits a unique solution.

Proof of Proposition 24. The relation in (93) is an immediate consequence of (73) and (77). Taking the
expectation on the left- and right-hand sides of equalities (91) and (92) and considering the definitions of
the homogenized functions {µj} and {jj} and of the entries of the matrix B, after elementary computations
we arrive at (94).

In order to justify positive definiteness of B we fix an arbitrary vector η =
(
η0, η1, . . . , ηN

)
, ηj ∈ Rd,

and denote by vη and Θη
j the following functions:

vη =

d∑
l=1

{
η0
l v

0,l(ω) +

N∑
i=1

ηilv
i,l(ω)

}
,

Θη
j =

d∑
l=1

{
η0
l Θ0,l

j (ω) +

N∑
i=1

ηilΘ
i,l
j (ω)

}
.

From (89) we derive that
{vη,Θη

j } ∈ W ×X, j = 1, . . . , N,

and ∫
F
∇ωvη(ω) : ∇ωξ(ω) dP−

N∑
j=1

∫
F
zjn

0
j (ω)Θη

j (ω) · (ξ(ω)− zj
Pej

ζj(ω)) dP

+

N∑
j=1

zj

∫
F
n0
j (ω)vη(ω) · ζj(ω) dP +

N∑
j=1

∫
F
zjn

0
j (ω)

(
ηj · ξ(ω)− ηj · 1

Pej
ζ(ω)

)
dP

=

∫
F
η0 · ξ(ω) dP, ∀ξ ∈ W, ζj ∈ X, j = 1, . . . , N.

(96)

Substituting vη for ξ and Θη
j for ζj in this integral relation yields

∫
F
|∇ωvη(ω)|2 dP +

N∑
j=1

∫
F

z2
j

Pej
n0
j (ω)|Θη

j (ω)|2 dP

=

∫
F
η0 · vη(ω) dP +

N∑
j=1

∫
F
n0
j (ω)ηj ·

(
zjv

η(ω)− z2
i

Pej
Θη
j (ω)

)
dP;

here the quadratic form on the left-hand side have been obtained in the same way as the quadratic form
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in (86). This implies the following relation:∫
F
|∇ωvη(ω)|2 dP +

N∑
j=1

∫
F

z2
j

Pej
n0
j (ω)|Θη

j (ω) + ηj |2 dP

=

∫
F
η0 · vη(ω) dP +

N∑
j=1

∫
F
n0
j (ω)ηj ·

(
zjv

η(ω) +
z2
i

Pej

(
Θη
j (ω) + ηj

))
dP,

= Kη0 · η0 +

N∑
j=1

Jjηj · η0 +

N∑
i, j=1

Jjηj · η0ziη
i · Dijηj +

N∑
j=1

zjη
j · Ljη0

= B
(
η0, zjη

j
)T · (η0, zjη

j
)T
,

which in turn yields the desired positive definiteness.
In order to show that B is symmetric we consider vη̌ and Θη̌

j with another set of vectors η̌0, {η̌j}Nj=1

in Rd. Then we substitute vη̌ and 0 for ξ and ζj , respectively, in (96). In a similar integral relation
corresponding to η̌0, {η̌j}Nj=1 we substitute 0 for ξ and Θλ

j for ζj . Summing up the resulting relations we
get ∫

F

(
∇ωvη · ∇ωvη̌ +

N∑
j=1

n0
j (ω)Θη

j (ω) ·Θη̌
j (ω)

)
dP

=

∫
F
η0 · ∇ωvη̌ dP +

N∑
j=1

∫
F
zjn

0
j (ω)

(
ηj · vη̌ − zj

Pej
η̌ ·Θη

j (ω)
)
dP.

Exchanging η and η̌ and considering the symmetry of the integral on the left-hand side we obtain∫
F
η0 · ∇ωvη̌ dP +

N∑
j=1

∫
F
zjn

0
j (ω)

(
ηj · vη̌ +

zj
Pej

η ·Θη̌
j (ω)

)
dP

=

∫
F
η̌0 · ∇ωvη dP +

N∑
j=1

∫
F
zjn

0
j (ω)

(
η̌j · vη +

zj
Pej

η̌ ·Θη
j (ω)

)
dP.

This implies the following equality

η0 ·Kη̌0 +

N∑
j=1

η0 · Jj η̌j +

N∑
i=1

ziη
i ·
(
Liη̌0 +

N∑
j=1

Dij η̌j
)

= η̌0 ·Kη0 +

N∑
j=1

η̌0 · Jjηj +

N∑
i=1

ziη̌
i ·
(
Liη0 +

N∑
j=1

Dijηj
)
.

Therefore,

B
(
η0, z1η

1, . . . , zNη
N
)t · (η̌0, z1η̌

1, . . . , zN η̌
N
)t

= B
(
η̌0, z1η̌

1, . . . , zN η̌
N
)t · (η0, z1η

1, . . . , zNη
N
)t

This yields the desired symmetry of the matrix B.

Corollary 26. The homogenized equations in Proposition 24 form a symmetric elliptic system

divx{K(∇xP 0 + f∗) +

N∑
i=1

Ji(∇xΦ0
i + E∗)} = 0 in G,

divx{Lj(∇xP 0 + f∗) +

N∑
i=1

Dji(∇xΦ0
i + E∗)} = 0 in G,
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with boundary conditions (73). In particular, E∗ and f∗ ∈ H1(G)n, with σ ∈ C1(∂F (ω)) bounded, imply
that the pressure field P 0 ∈ H2(G).

5 Strong convergence and correctors

Besides the stochastic two-scale convergence of the microscopic fluxes and pressures to the effective ones,
we also prove convergences of the energies.

First, we recall that the L2-norm squared is lower semi continuous with respect to the stochastic
two-scale convergence. In our situation, where after Corollary 26 the limit functions are smooth, it can
be seen through a simple direct argument. First, we notice that the formulas of scale separations (91)
and (92) imply that the functions u0(x, T (xε )ω) and Φ1

j (x, T (xε )ω) are admissible. Hence from

ε2

∫
Ω

∫
G

|∇uε|2 dxdP ≥ ε2

∫
Ω

∫
G

|∇u0(x, T (
x

ε
)ω)|2 dxdP+

2

∫
Ω

∫
G

ε∇u0(x, T (
x

ε
)ω) · ε∇

(
uε − u0(x, T (

x

ε
)ω)
)
dxdP

and passing to the limit ε→ 0 gives

lim
ε→0

ε2

∫
Ω

∫
G

|∇uε|2 dxdP ≥
∫

Ω×F
|∇ωu0(x, ω)|2 dPdx.

Similarly,

lim
ε→0

∫
Ω

∫
Gε

f (ω)

njε|∇Φεj |2 dxdP ≥
∫

Ω×F
n0
j (ω)|∇xΦ0

j (x) + Φ1
j (x, ω)|2 dxdP.

A stronger result is

Proposition 27. We have the for j = 1, . . . , N ,

lim
ε→0

ε2

∫
Ω

∫
G

|∇uε|2 dxdP =

∫
Ω×F

|∇ωu0(x, ω)|2 dPdx, (97)

lim
ε→0

∫
Ω

∫
Gε

f (ω)

njε|∇Φεj |2 dxdP =

∫
Ω×F

n0
j (ω)|∇xΦ0

j (x) + Φ1
j (x, ω)|2 dxdP. (98)

Proof. We follow the proof from the periodic case (Allaire [5, Theorem 2.6] and Allaire et al [7, Sec 5]).
We start from the energy equality corresponding to the variational equation (59):

ε2

∫
G

|∇uε|2 dx+

N∑
j=1

z2
j

Pej

∫
Gε

f (ω)

njε|∇Φεj |2 dx = −
N∑
j=1

z2
j

Pej

∫
Gε

f (ω)

njεE
∗ · ∇Φεj dx+

N∑
j=1

zj

∫
Gε

f (ω)

nεjE
∗ · uε dx−

∫
Gε

f (ω)

f∗ · uε dx. (99)

For the homogenized variational problem (81) the energy equality reads∫
Ω×F

|∇ωu0|2 dxdP +

N∑
j=1

z2
j

Pej

∫
Ω×F

n0
j (ω)|∇xΦ0

j (x) + Φ1
j (x, ω)|2 dxdP = −

N∑
j=1

z2
j

Pej

∫
Ω×F

n0
j (ω)E∗·

·(∇xΦ0
j (x) + Φ1

j (x, ω)) dxdP +

N∑
j=1

zj

∫
Ω×F

n0
j (ω)E∗ · u0(x, ω) dxdP−

∫
Ω×F

f∗ · u0(x, ω) dxdω. (100)
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In (99) we observe the convergence of the right-hand side to the right-hand side of (100). Next we use
the lower semicontinuity, with respect to the stochastic two-scale convergence, of the left-hand side and
the equality (100) to conclude (97)-(98).

Theorem 28. Under the assumptions of Section 3, the following strong two-scale convergences hold

lim
ε→0

∫
Ω

∫
G

∣∣∣uε(x)− u0(x, T (
x

ε
)ω))

∣∣∣2 dxdP = 0 (101)

and

lim
ε→0

∫
Ω

∫
Gε

f (ω)

∣∣∣∇ (Φεj(x)− Φ0
j (x)

)
− Φ1

j (x, T (
x

ε
)ω)
∣∣∣2 dxdP = 0. (102)

Proof. We have∫
Ω

∫
G

ε2|∇[u0(x, T (
x

ε
)ω)]−∇uε(x)|2 dxdP =

∫
Ω

∫
G

|[∇yu0](x, T (
x

ε
)ω)|2 dxdP

+

∫
Ω

∫
G

ε2|∇uε(x)|2 dxdP− 2

∫
Ω

∫
G

ε[∇yu0](x, T (
x

ε
)ω) · ∇uε(x) dxdP +O(ε). (103)

Using Proposition 27 for the second term in the right-hand side of (103) and passing to the two-scale
limit in the third term in the right-hand side of (103), we deduce

lim
ε→0

∫
Ω

∫
G

ε2
∣∣∣∇(uε(x)− u0(x, T (

x

ε
)ω)
)∣∣∣2 dxdP = 0

Now application of Poincaré inequality (60) in Gεf (ω) yields (101).
On the other hand, by virtue of Theorem 10, nεj is uniformly positive, i.e., there exists a constant

C > 0, which does not depend on ε, such that∫
Ω

∫
Gε

f (ω)

∫ ∣∣∣∇ (Φεj(x)− Φ0
j (x)

)
− Φ1

j (x, T (
x

ε
)ω)
∣∣∣2 dxdP ≤ C∫

Ω

∫
Gε

f (ω)

nεj

∣∣∣∇ (Φεj(x)− Φ0
j (x)

)
− Φ1

j (x, T (
x

ε
)ω)
∣∣∣2 dxdP. (104)

Developing the right-hand side of (104) as we just did for the velocity and using the fact that njε(x) =
n0
j (T (xε )ω) is a two-scale test function, we easily deduce (102).
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