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1 Introduction

[n several papers on population dynamics the effect upon stability due to different delay
mechanisms has been explored. Turning to the continuous case, the basic model for such

considerations, in absence of migration, is the van Foerster equation

dn  On
== (1)

(0,2 = /000 b(-)n(t,a)da (2)

See Caswell [7] or Murray [26], where n(¢,a) is the age density function, p(-) and b(-)
are the density dependent death and birth rates respectively. For example, Cushing [14]
used this approach to study the impact on stability in age-structured populations caused
by varying gestation periods and age-specific reproductive rates, McNair [25] considered
the impact of varying the length of the juvenile period, Bence and Nisbet [3] showed the
importance of time delays in open systems and De Roos et al. [17] extended the model
(1), (2) by also incorporating size structure in their Daphnia study.

By a direct forward difference discretization of (1),(2), see for example Guckenheimer

et al. [20] or Caswell [7], we obtain the discrete analogue
X — Ax 2

where x = (z1,..,2,)7 is a n-dimensional population vector and A the Leslie matrix

s Jn

my s 0
0 : (4)
R Rk

with fecundity elements f; and year-to-year survival probabilities p;. Ergodic properties

of the map (3) in case of density independent matrix elements may be found in Cohen






[9]. In the nonlinear case the ergodic results obtained by Cushing [15,16] and Crowe [10]
provide a basic setting to consider stability and bifurcation in matrix models.

When studying the system (3),(4) the usual approach has been to include density
effects in the fecundity terms and not in the year-to-year survival probabilities. Especially
in fishery models this has often been motivated by the fundamental assumption that most
density effects occur within the first year of life, cf. Levin and Goodyear [23], Levin [22],
Fisher and Goh [18], Bergh and Getz [5], Silva and Hallam [28,29], Wikan and Mjglhus
[36], and again turning to delay considerations, it is in general demonstrated that a delay
in reproduction (or generation delay, a term introduced in [23]) acts destabilizing. Similar
conclusions have also been established in corresponding difference delay equation models

of the form

JhLl = LUtf(iEt—T) (5)

See for example Levin and May [24], Clark [8], Botsford [6], Le Page and Curry [21]. For
related models, cf. Nisbet and Onyiah [27], Tuljapurkar et al. [33].

Returning to the matrix model (3),(4), following Wikan and Mjglhus [35] and Wikan
|34], the dynamical consequences of incorporating density dependence in the year-to-
vear survival probabilities instead of the fecundities are much less explored although it
should be a fairly plausible assumption for may species. This brings us to the purpose of
this paper, namely the role of reproductive delay in Leslie matrix models with nonlinear
survival elements, and we shall ultimate impose the restriction f; = 0, i < n, f, # 0 in
(4). In many respects this is the same strategy as in [18], but we shall not focus on global
stability problems investigated in terms of Liapunov functions, instead our main concern
is the description of the qualitative behaviour of the population in unstable and chaotic
parameter regions, a strategy which is adopted by only a few of the papers quoted above.

Among our results are:

I. In case of two-age classes, using normal form calculations, see Guckenheimer and

Holmes [19], we prove rigorously for large classes of nonlinear survival probability






functions that the fixed point of (3),(4) in the generic case undergoes a supercritical
Hopf bifurcation at instability threshold. We also show that there exist parameter
values where the normal form also contains additional strong resonant terms, cf.
Arnold [2], which in turn implies that there are large parameter regions where the
dynamics beyond the bifurcation point has a strong resemblance of 3- or 4-cycles,
either exact or approximate, a qualitative finding which takes over to the chaotic

regime as well. This extends the results obtained in [34] and [35].

2. When n = 3 the tendency towards 4-periodically dynamics is even more pronounced.

3. We also demonstrate that for any n > 1 there exists a region in parameter space

where the fixed point is unstable at its creation. This is valid both for overcompen-
satory and compensatory survival probabilities, hence we support the result obtained
by [28] that the tendency for compensatory models to be stable does not always

occur. The dynamics which i1s found in this part of parameter space is stable cycles

of period 2% - n, cf. Cull and Vogt [11,12,13] and especially Allen [1].

Finally we should stress that the analysis in this paper is pure theoretical and not
related to any concrete species. Nevertheless, it is tempting to suggest that our results
may apply to small rodent populations. For such species there are several examples of
cycles comparable to our findings (Stenseth and Ims [32]) and there is a lack of pure
density dependent models in the literature (Stenseth and Antonsen [30,31]).

The plan of the paper is as follows: In section 2 we present the model and describe
equilibria and stability. In section 3 and 4 we present a detailed analysis of the dynamics

in 2 and 3 dimensions respectively. In section 5 we extend results to higher dimensions.

2  Equilibria and Stability

Consider the map f : IR®™ — IR™

X — Ax (6)






where x is a n-dimensional population vector and A a n x n Leslie matrix of the form

0 ()
e 0

Ao Ty 0 (7)
0 0 pid

Here the capital F' indicates density independent fecundity and we assume the same

density-dependent survival probability p = p(y) between any two-age classes where

y = Zaixi (8)
=il

Further we require p'(y) < 0, thus except for depensatory effect [7] a rather general
situation is under consideration.

Ll
==

Assuming p(0) > F, ", at equilibrium

vit = <F_Tl> (9)

and the unique nontrivial fixed point of (6) is given by

* * * y* * y* n—1 * y*
105 @By ots = y )=, ... — 1
(21,235, T3) <A” Py )T o Py )K> (10)

where K = 3"  a;p'~}(y*) (Silva and Hallam [29]). Using standard linearization tech-

niques (see |7] or [23]|) the eigenvalue equation may after some algebra be cast in the

form

N il <7ZL aipi_2> ¢>\n—1 i iaipi—Q ¢/\n—‘2
=2 =il

i#2

n =1
iyl Zaipi_Z Gr)/\n—3++ (Z%Pi_2> ¢: (11)
=il =
i#3 A
where the (positive!) parameter ¢ which will be our bifurcation parameter, is defined as
g oy =plais (12)

The fixed point is locally stable as long as the spectral radius of (11) is less than unity.






3 Two-Age Classes

Let n = 2 in (6). Then we are left with the map
[iR2— R (21,25) — (Foaa, p(y)z1) (13)
and (11) reduces to
M+ apr+aFap—1=0 (14)

By applying the Jury criteria [26] the conditions for (z7,z3) to be locally stable are easily

found to be

¢(C¥1F2 4= Ot-g) > 0 (15&)
Cb(QlFZ“CYQ) > 0 (15b)
2—a1F9 >0 (I5e)

First we consider the case I, < a;/ay. Then from (15b) there will be no stable
equilibrium. Since (15b) is associated with the possibility of (z7,z}) to undergo a flip

bifurcation it is natural to search for (stable) cycles of order 2. Hence, consider the

W G ) 0 T1 )
< ) >t+2 it ( O F‘Zp(yt—H) ) ( L2 )t (16)

Clearly, one possibility is Fop(y:) = Fop(ys41) = 1 which in turn implies y; = yiy; = y* =

second iterate:

p~'(1/F,). Thus the 2-cycle is the trivial one where the unstable equilibrium is the only
point in the cycle.
Another possibility is to assume a 2-cycle of the form (1, 22) = (A,0) or (0, B). Then

from (16) we find that the system oscillates between the points

(zrw/m.0). (o S /m) (17

[n order to investigate stability we have computed the Jacobian of (16), used (17), and

found the real eigenvalues to be

p1 =14+ Fop ' (1/F)p (ys) (18a)

H2 = F2P(yt+1) (18b)

6
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Since Fop(ye) = 1, yey1 = (/1 F2)ye > yi = p(ye41) < plye) = 1/F;. Consequently,
0 < py < 1 and for F; sufficiently close to 1, |u1]| < 1. Hence (17) is a stable 2-cycle for
F, small.

[t is further clear from (18a) that in the case ay > a4, an increase of F3 will eventually
lead to a flip bifurcation creating a cycle of period 4. We emphasize that the form of the
4-cycle as well as the form of successive cycles of period 2%, k£ > 2, which is the outcome
of a further enlargement of F3, has the same structure as the 2-cycle, a qualitative result
which also takes over to the chaotic regime. Thus we have demonstrated numerically that
the dynamics goes to the axes whenever Fy < ay/a.

Since we shall meet cycles like (17) also in models with more age classes it is convenient
at this stage to define (17) as the 2-age class extinguishing cycle, and more generally, the
cycle (4,0,...,0), (0, B,0,...,0),...,(0,...,0, N) in a model with n-age classes as the n-age

class extinguishing cycle.
o

Next, consider the case [, > ay/a;. Then from (15¢), ¢(y*) < 2/a; F, ensures that
(r7,23) 1s locally stable. Thus the only way for the nontrivial fixed point to become

unstable is through a Hopf bifurcation at the threshold

9

) = — (19)

where the corresponding modulus 1 solutions of the eigenvalue equation (14) are

(0 1
ang (lng

A= —

We shall now prove that outside the strongly resonant cases Fy = 2as/a; or a; = 0,
the Hopt bifurcation is of the supercritical type (i.e. that there exists a stable attracting
invariant curve surrounding (z7, z3) for ¢ > 2/a Fy, |¢p — ¢.| small where ¢. is the ¢ value
defined in (19)) for a large number of survival probability functions p(y). The results will

be stated as theorems, proofs of which may be found in the appendix.

-~
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Theorem 1.
Consider the map f : IR? — IR?
(Erhg) (inr:z, Pl 79)1/7 $1) (21)

under the restrictions Fy # 2as/a1, ay # 0.
Assume Fy > ay/a;. Then, for v > —a; F5/2(oq F 4+ a3) the fixed point (z7,z3) of

(21) will undergo a supercritical Hopf bifurcation at the threshold (19).

Theorem 2.

Consider the map f : IR? — IR?

P
(ZL'l,(EQ) s <F2;E2_, 7 +1yu ;1;1) (22)

under the restrictions Fy # 203/ aq, ay # 0.
Assume F, > ay/c;. Then, for @ > 2 the fixed point (z7, z3) of (22) will undergo a

supercritical Hopf bifurcation at the threshold (19).

Note that the strongly resonant cases Fy = 2a3/a; or a; = 0 correspond to eigen-
values of third or fourth root of unity and that these cases require special treatment, see
Arnold [2]. The survival probability defined in (21) is sometimes (especially in the fishery
literature) referred to as a Deriso—Schnute relation [5,33], and the probability function in
(22) is called a Shepard relation [5]. The classical overcompensatory Ricker relation is
contained in (21) (y — 0), and the compensatory Beverton and Holt relation is contained
m both (21) and (22) (y =1, a = 1}).

Our next goal is to discuss the dynamics beyond the bifurcation threshold, and in doing
so we shall frequently refer to the survival probability functions in theorems 1 and 2.

We start with the interval 0 < a; < ;. Then from the theorems we know that (z7, z3)
will undergo a supercritical Hopf bifurcation and by following Guckenheimer and Holmes

[19], the dynamics on the invariant curve may be described by the rotation map

6’—>9+c—b—du (23)
a

8






where b and ¢ = arg A give asymptotic information on rotation numbers, ;1 = bifurcation
parameter, a is defined in appendix A and d = d/du|(A(0))].

According to Wikan [34], see also the relations (A.9),(A.11) in appendix A, in case
of v <0, 2 < a <3 (which is the most interesting parameter intervals for the functions
in theorem 1 and 2), Fy is a large number at the bifurcation. Consequently, from (20),
arg A &~ 7/2, thus on the invariant curve, close to the bifurcation, the rotation number
o ~ 1/4. Hence the dynamics in the interval 0 < a; < a5, must be qualitative similar to
the special case a; = ay which was extensively studied in [34]. There it was found large
fecundity intervals where the dynamics was 4-periodical, either exact or approximate.
In Figure 1 we show an exact 4-periodical orbit and in Figure 2 we demonstrate the
I-periodical structure in the chaotic regime. For further reading, cf. [34] and [35].

Theorem 1 and 2 do not apply in the strongly resonant case a; = 0, but from our
analysis above it 1s nevertheless natural to expect some kind of 4-periodical behaviour.
Indeed, numerical simulations suggest that as the fixed point (z7, z3}) fails to be stable, a

stable 4-cycle on the form
(A4,p(C)C), (A,p(A)A) (C,p(A)A) (C,p(C)C) (24)

is created. We shall now demonstrate that for specific choices of p(y), A and C' may
actually be computed. To this end, following the method of Levin [22] with p(y) =

Py exp(—y), we first observe that (13) implies

fl — FgPle_‘“CC

(25)
= szle_alAA
Now define x = A/C. Then from (25)
L L @+)/e-1) 2%
E:Mﬂzﬁw (26)
i

The graph of A(z) is shown in Figure 3 and once z is found it is easy to compute A and

C from (25).






Finally, z = 1 implies A = C which means that the 4-cycle degenerates to only one

point in this case. Further by L’hopital’s rule:

Jidses
limh(z) = — € Em A/ () =0 (
i | 1 T—>1

(3]
N

where (1/P;)e* is recognized as the F, value where (z7,z3) goes unstable. Thus we
have shown that the stable small amplitude 4-cycle evolves directly from the point where
(x7,23) bifurcates. Although the bifurcation described here clearly should not be called
supercritical it is definitely of local nature in contrast to the strongly resonant cases
discussed in [20], [22] and [36].

Finally, let us turn to the qualitative behaviour when a; < a;. We deal separately

with the cases

(AY oe) = d'= 1" d'small
Bl enlon—=dd ) dlarge

Considering (A), Eq. (20) implies that the difference arg A — (7 /2) becomes large, thus the
4-periodicity vanishes. Consequently, in accordance with simulation results, quasiperiodic
orbits is the only outcome in the unstable parameter regions. The route to chaos also
differs from the previous case. For sufficiently large values of F, we first experience that
the invariant curve becomes kinked and then it breaks up into a number of separate
clouds, a situation somewhat akin to the description of the Dubois and Bergé model in
[7]. An example of the chaotic attractor is given in Figure 4.

Whenever d is large, (B), at bifurcation, the difference F; — 2a5/a; becomes small,
thus we are close to the second strong resonance A\*> = 1. From [20], [22] and [36] we
know that this opens for multiple attractors in a certain interval F, < Fy < F}. Indeed,
it Iy = F, we have by adopting the same technique as in [36] verified numerically for
selected values of different survival probabilities, that the third iterate ¢ = fo fo f
undergoes a saddle node bifurcation, creating 3 branches of stable and 3 branches of
unstable equilibria. Hence, whenever F, < F, < F. where F. is the F, value implicitly

defined in (19), the stable large amplitude 3-cycle and (z7,z3) coexists. Further from

10






theorem 1 and 2 it must also exist an interval F. < F, < F) where the coexistence is
between the 3-cycle and the invariant curve emerged from (z7, z3). This is exemplified in
Figure 5. At [, = F} there is a global bifurcation which makes the stable invariant curve
vanish, leaving the stable 3-cycle as the only stable attractor. The bifurcation occurs as
the 3 branches of unstable equilibria of ¢ “hit” the invariant curve. Numerically we have
shown this by finding the point z on the invariant curve where = takes its maximum value
and verified that ¢g(z) = 2.

The route to chaos is not through period doublings, as in the above quoted papers.
Rather, by computing the eigenvalues of the Jacobian of g, we have found numerical
evidence that there exists a critical £, > Fj where the fixed points of ¢ to through a Hopf
bifurcation establishing 3 invariant curves which are visited once every third iteration.
This is exemplified in Figure 6. Hence, in sharp contrast to the case a; < ay, we have
demonstrated that a; > o leads to a qualitative finding of 3-cycles, either exact or

approximate in a large parameter region.

4 Three-Age Classes

By an ultimate application of the Jury criteria, see Murray [26], p. 704, on the eigenvalue
equation (11) (n = 3), it is clear that the fixed point (z7, z3, z3) will be stable whenever

1
d(y™) < — (28a)
(%)
9
i e e (28b)
ay + pay

: * ay + pag — 2p*a
(al—p2a3)¢(y)<p( 1 T pQy P 3)
a1 + pas

(28c)

(p = py™)). First assume o + pas = p*az. Then (28a),(28¢c) may be written as

* P e P
Y el = — BN e
JEEE = (@] JUFO s == (0

respectively. Thus the equilibrium is unstable at its creation in this case, a result which

easily may be extended to the parameter region
a + pay < plag (29)

11






Assuming (29), in case of F3 small, the only stable attractor found through numerical

experiments, is the age class extinguishing cycle
(A0, 01 (008, 00 (00 (30)

but in contrast to the two-age class study, A, B and C' must be computed by means of
numerical methods. For the possibility of period doubling and chaotic dynamics, we have

found the same qualitative behaviour as in the two-dimensional analysis.
— 000
Next, consider the parameter region
oy + pay > p2ag (31)

Then there exists a stable fixed point for ¢(y*) sufficiently small. If oy < a9, (27,23, 23)

undergoes a (supercritical) flip bifurcation at the threshold

el = — (32a)

otherwise, the fixed point goes through a (supercritical) Hopf at the threshold

P(al A D0 — 2P2043)
(a1 + pag)(a; — p*as)

P(y") = (32b)

Considering the latter situation first, the complex modulus 1 solutions of the eigenvalue

equations may be expressed as

2 4 )
AI,ZZ_&i\/l—(&i (33)

oy + pay a1 + pas)?
Assuming az # 0 (the strongly resonant case), it is clear from (33) that there exists a
large parameter region where \; 5 are located close to the imaginary axis, thus there is also
here a strong indication of 4-periodical dynamics. In fact, several numerical simulations
suggest that the 4-periodicity is even more pronounced here than in the two-age class
model. For example, it is possible to find frequency locking into an exact 4-periodic orbit

also in the case a; < @y < az. This is shown in Figure 7.

12






Unlike the corresponding two-age class case, the route to chaos does not go through
period doublings, cf. [35]. Here we have shown numerically by computing the Jacobian of
the fourth iterated map h = fo fo fo f that h undergoes a Hopf bifurcation as the exact
4-cycle fails to be stable. This extends the result in the simpler model studied by Wikan
[34]. Consequently, there exists a region in parameter space where the stable attractor
consists of 4 disjoint “circles” which are visited once in each “topological” 4-cycle. This

is exemplified in Figure 8.
—000—

If a3 = 0, A = £ at bifurcation threshold. Numerically, we have verified that as
(7, x5, x3) fails to be stable, an exact small amplitude 4-periodical orbit is introduced.
Hence, the qualitative behaviour here is in many respects similar to what was found in
the corresponding strongly resonant case in the previous section. However, a computation
of the points in the cycle is out of reach.

Finally, in case of «, large, the instability threshold is given by (32a). Thus there
exists a parameter region where a 2-cycle is the only stable attractor. However, this
region 1s very small since the composite g = f o f almost immediately undergoes a Hopf
bifurcation giving birth to 2 disjoint “circles”. This is shown in Figure 9.

Hence, to summarize: Compared with the two-age class study, the tendency towards 4-
periodical dynamics is even more pronounced here in 3 dimensions. The main difference is
the behaviour in case of large values of ;. In the two-age class model we found 3-periodical
dynamics either exact or approximate. Here the dynamics has a strong resemblance of

2 cycles.

5 Discussion

[n chapter 3 and 4 we showed that there exist parameter regions where the equilibrium is
unstable at its creation. Instead we found the stable age class extinguishing 2-cycle (17)
in case of n = 2 and the corresponding cycle (A, 0,0), (0, B,0), (0,0,C) in case of n = 3.

We shall now extend these results.

13






First, assume that n is even. Then by applying the Jury criterion (—1)P(A = —1) > 0,
where P is the eigenvalue polynomial defined in (11), it is straightforward to show that

(z7,...,x) always is unstable at its creation in the region

n

il
1)]—1pj—2aj S pm—‘)an (34)
=1

(5

Assuming n = 4, Eq. (34) does not necessarily imply that the age class extinguishing
4-cycle (A,0,0,0),...,(0,0,0, D) is the only stable attractor in case of small Fy values.
Indeed a 4-cycle of the form (A, B,0,0),...,(0,0,C, D) is definitely also a possibility, but
this cycle as well as the other possibilities have all by means of numerical experiments
been found to be unstable, leaving the age class extinguishing cycle as the only stable
attractor. For a more thorough discussion of such cycles we refer to [36] where density
dependent fecundity and density independent survival terms are considered.

Next, assume n odd, Clearly ¢ = 0 implies that all solutions Ay = €%, ¢ = 27k/n,
k=0,1,...n—1of (11) are located on the unit circle. Further, in case of ¢ > 0, ¢ small,
assume the expansion

A=lo+ dh 4

This yields

n n =1l
Il e sh . e ik
= 1=

=
172

Now, regarding the complex numbers Ao, A; as two-dimensional vectors Xo and /\417 the

sign of the product

P b MANEES G ‘ 35
0 A1 (o + nz Zakp cos J (35)
k#]

where * denotes complex conjugation) will decide whether an eigenvalue will leave the

unit circle or not as the parameter ¢ is increased.

14






Now, assume (cf. (29))
=1 :
Z'[)]"Za] < p7‘_2an (36)
j=1

Our goal is to show that the right hand side of (35) is positive under the restriction (36).
To this end suppose
R

(6%}

= il

Then (35) becomes

n

o TG g ﬂ ¢ n—1 L - g1l 185
Nt e i = e 2m ZCObJLp Zm COS]L,O:|

El[oh (cos p —m)(1 — m") }
p (1 — mcos )2 + (msin )2

whieh' clearlyis positave i Henee “thie Sixed poumt (@ 0w

T

) 1s also here unstable at its
creation. Again, this does not actually prove that the age class extinguishing attractor
(A,0,...,0),...(0,...,0, N) is the only stable cycle under the restriction (36), but as in the

case of n odd, such a cycle is the only one found through numerical simulations.
—

In the rest of this section we shall deal exclusively with the dynamics outside the
parameter regions defined in (34) and (36).

One of our most significant results obtained from our two- and three-dimensional
analyses was that there exist large parameter regions where the dynamics is 4-periodical,
either exact or approximate. This is due to the fact that the eigenvalues cross the unit
circle close to the imaginary axis at bifurcation. Hence, we are close to the strong reso-
nance A = £ which occurs when a; = 0, a; # 0 in the 2-dimensional case, and a3 = 0,
ay,ay # 0, in the 3-dimensional case.

Motivated by this, turning to 4-age classes, it is natural to search for a possible strong
resonance under the restriction ay = 0, a; # 0, 1 < 4. The corresponding eigenvalue

equation may now be cast in the more simple form
M+ aX’ +a )’ +azd+ay =0 (37)
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where the coefficients a;, 7 < 4 may be obtained from (11). One of the Jury criteria which

must be satisfied in order to ensure that (z7,...,z}) is locally stable, is
(1 — aﬁ)z — (a3 — aqay)| > |(1 — aﬁ)(ag — aqay) — (a3 — aqaq)(a; — aqas)| (38)

cf. Murray [26], and by applying this on (37) we obtain ¢ < 0 which actually excludes the
possibility of a stable fixed point as well as a strong resonance.

From this we conclude that the tendency towards 4-periodical dynamics must be much
less pronounced here than in the 2- and 3-dimensional cases. Further, since (38) is a Hopf
criterion (it is easy to show (Jury) that the real solutions of (37) in case of ¢ > 0, @
small, have modulus less than unity) the only possible dynamics in case of ¢ small is
quasiperiodic orbits. This is exemplified in Figure 10.

For other values of the weight factors it is still possible to obtain a stable equilibrium.
For example, if @y = ay = a3 = a4 = «, we obtain from (38) that the fixed point is stable

whenever

1+ bp + 5p® + bp® — /1 + 12p + 14p® + p* — 4p° + 4p©
G

ad(y”) < (39)

but the real part of the corresponding modulus 1 eigenvalues at bifurcation is now positive
which clearly is different from the cases n = 2, n = 3, and again there is no sign of orbits

of finite period.
—000—

To investigate the case n > 4 we may by assuming ¢ small use the same technique as
at the beginning of this section and once again appeal to formula (35).
Now, considering 5-age classes (n = 5), assuming k£ = 2, (35) may be written as
o= ‘é {i (1 o \/§> <ia’1 +P2€Y4> i % (1 i \/%> (a2 + pas) — p’as

J

(40)

and in case of a; &~ «; and p sufficiently small, U S Hence, the destabilizing effect

due to generation delay, cf. [23], [28], [29], [35] and [36] has now become so severe that
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there is no stable equilibrium which is in contrast to the corresponding case in the 4-age
class model, cf. (39). Again, we find that the dynamics is quasiperiodic in case of ¢ small.

Thus, what these findings indicate is that outside the age class extinguishing parameter
regions (34),(36), orbits of finite periods, especially orbits of period 4, are restricted to two-
and three-generation models. Further we have demonstrated that the parameter region
which permits a stable fixed point shrinks as n is increased and finally that as n exceeds

3 the outcome is quasistationary behaviour in larger and larger parameter intervals.
o
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Appendix A

In this appendix we shall prove theorem 1 and theorem 2 in the main text.

First we consider the general map (13). From the main text, the eigenvalues

of the linearized map at bifurcation may be expressed as

e ai’;Q - allFQ bi (A.1)
where b = \/(a; Fy)? — a3.
Next, define the matrix
e 00
T (A2)
1 0

which columns are the real and imaginary parts of the eigenvectors belonging to
(A1)
Then, after expanding the second component of (13) up to third order, apply-
ing the change of coordinates (Z1,%2) = (21 — 23, z2 — z5) (in order to translate

the bifurcation to the origin) together with the transformations

(el el ST )
65) v v i)
(13) may be cast into standard form at the bifurcation as

e L O
u o1l a1 Fy U iy .
) e Glee il o

iAo
a1 Fp ar

where the nonlinear terms are

¢ 2b b? . L b b
flu,v) = — a—zp/(yx)uv iyl P p"(y*)uv® + — Bv®
aq aq 2 o) (e%]
9(u,v) = == f(u,v)
with
gl ) 1 -y
‘1:])(}/)— B:—p//y*—_
Fop'(y~) 2 &) 3 Fap'(yr)






Following Guckenheimer and Holmes [19] (theorem 3.5.2) defining

620 = é [(fuu T fm; + 2guv) i Z(guu = Ghm 2fuv)]

Ell = i [(fuu ar fvv) T Z(guu 5 gvv)]

(A.4)
602 = é [(fuu i fvu i 291}.1}) e Z‘(guu — Guwv i zfuv)]
621 = 11_6 [(fuuu + fuvv + GJuuv + gvvu) + i(guuu + Guvv — fuuv i fv'uv)]
the bifurcation will be of the supercritical type whenever
L A8y > 0 (A.5)
e :

and that the stability coefficient
e (1 2A ) N e 2 2 5\ A
@ = —IRe 1————611520 lfn' |€02|° + Re(Aé21) (A.6)
in the normal form of (A.3) is negative. Clearly, from (14) and (19):
d 3 1
sl IS e e

Hence, the eigenvalues leave the unit circle at bifurcation.

Further, from (A.3), (A.4) may (at bifurcation) be expressed as

o = = 7o (%4 + adp) + dand(4 - )]
i = f(i [b+ 10

PR ﬁ (824 — a2p) + iaab(A4 + 5]

a1 = — 1660[1 [agb(p" —6B) +1(a3p” + 6623)}

and finally, by substituting into (A.6), we have after some algebra

2 4
7= ———(b ) [61)2 AT
1602

60° B e ab*p’ A
o
F, ar Fy 4+ ay
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We are now ready to prove theorem 1 and theorem 2 in the main text.

We start with theorem 1 and consider the survival probability function

p(y) = Pi(1 —yy)!”

Now, in order to have a Hopf bifurcation at all, it follows from (19) that

a; F
T G o
Further, at bifurcation
e 1 1 2((11F2+O[2) 1/7_ 1l 1/~
R e Y (A9)

and by using this expression in the computations of p’, A and B the stability
coefhicient becomes
D,
@ = —1—6{6 (29 + D)(v + 1) + az [ar — y(en Fa — 02)]} (A.10)

which clearly is negative under the restriction (A.8). Hence, theorem 1 is proved.
—000—

Repeating the analysis above for the function

P

— a>0
p(y) Toris

in theorem 2 it 1s clear from (19) (see also Wikan [34]) that the Hopf bifurcation is
restricted to o > 2, and that the relation between the parameters at bifurcation

S

1 aay Fy 1
B == = —G A1l
: FQ (Q—Z)alpz_:zaﬁ F2 ( )
The stability coefficient now becomes
g

where






V = (a—-1)0?G[(a—2)G + 3q]
W = aay(G—1)[(aay + a1 Fy — a2)G — aoq F]

V > 0for any a > 2. W > 0 for any (finite) a > 2 if d = F, — az/; is sufficiently
small. Thus in this case a is clearly negative. W may become negative for large

values of d, but then, b > ayF5 = V > |W| = a < 0. This completes the proof

of theorem 2.
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Figure Captions

Figure 1. An exact 4-periodical orbit in the two-generation case. «a; = ao,

v = —0.45, p(y) = Pi(1 — yy)".

Figure 2. The “4-periodical” attractor in the chaotic regime. v = —0.10. a; =

) 18
Figure 3. The sraph B —h(wi— (1 BV ERiee 1)
Figure 4. The map (21) in the chaotic regime. a; < ay.

Figure 5. Coexisting attractors in the case oy < ay. Depending on the initial
condition the ultimate fate of an orbit is either a large amplitude exact

3-cycle or an almost 3-periodical orbit restricted on a small invariant curve.

Figure 6. 3 invariant curves which are visited once every third iteration. The
third iterate g of (21) has gone through a (supercritical) Hopf bifurcation.

(0% S @)
Figure 7. An exact 4-periodical orbit in the 3-generation case a; < ay < as.

Figure 8. The map (z1,z2,23) — (F3z3,p(y)x1,p(y)z2) after the secondary

Hopf bifurcation. a3 < ay < as.
Figure 9. 2-periodical dynamics in the 3-age class model. a; < ay.

Figure 10. A quasiperiodic orbit in the 4-generation case a; = 1, ay = az =

Qy = 0.
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