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Abstract

Discrete age-structured density dependent one-population models and discrete age

structured density dependent prey-predator models are considered. Regarding the former,

wc present formal proofs of the nature of bifurcations involved as well as presenting some

new results about the dynamics in unstable and chaotic parameter regions. Regarding the

latter, wc show that increased predation may act both as a stabilizing and a destabilizing

effect. Moreover, wc find that possible periodic dynamics of low period, either exact or

approximate, may not be generated by the predator, but it may be generated by the

prey. Finally, what is most interesting from the biological point of view, is that increased

predation is not capable of altering the periodicity of initial low periodic dynamics of the

prey in any substantial way, provided the populations are in unstable parameter regions.



3

1 Introduction

The use of nonlinear matrix models as a powerful tool in the description of various

properties of a population with non-overlapping generations (or stages) is well documented

in CaswelFs and Cushing's books (Caswell 1989, Cushing 1998). Indeed, in consideration

of problems within population dynamics, Levin and Goodyear (1980) and later Levin

(1981) formulated and analysed their striped bass fishery model in terms of a density

dependent Leslie matrix. DeAngelis et al. (1980) and Bergh and Getz (1988) focused

on return paths and return times to the stable equilibrium after small perturbations. A

logistic matrix model was developed and presented by Liv and Cohen (1987) and applied

by Desharnais and Liv (1987) on the flour beetle Tribolium castaneum.

Other authors have from a more theoretical point of view paid attention to the quali

tative behaviour of an age-structured population in unstable and chaotic parameter

regions, see f.ex. Guckenheimer et al. (1977), Silva and Hallam (1993). Wikan and Mjølhus

(1995, 1996) and Wikan (1997). Information on general ergodic properties of nonlinear

one-population matrix models may be obtained in Cushing (1988, 1989), and in Crowe

(1994), and most interesting, it has recently been demonstrated (Cushing et al. 1996,

Dennis et al. 1997, Costantino et al. 1997, Cushing et al. 1998) that 3x3 matrix mod

els indeed may be used in order to predict nonstationary and even chaotic behaviour of

laboratory insect populations.

The purpose of this work is two-fold. In one direction wc shall state and prove some

theorems concerning the nature of bifurcations involved (sub- or supercritical) in some

of the most frequently used age-structured one-population models quoted above, and

wc shall also present new results about the possible dynamics beyond the bifurcation

thresholds. In another direction, the purpose of this work is to extend results from the

previously quoted papers on one-population models by considering a discrete nonlinear

age-structured prey-predator model formulated within the framework of Leslie matrices.

The main question which wc consider heie is to reveal what kind of qualitative dynami

cal changes a discrete age-structured prey population may undergo as wc increase its
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interaction with an age-structured predator population. More specific; wc have obtained

interesting results regarding the following questions:

(1) Given that the prey, in absence of the predator, exhibits almost periodic chaotic

oscillations, what effect (stabilizing or destabilizing) will interaction between the

populations have, and what about the periodicity?

(2) Is it possible to stabilize a "chaotic prey population" if the interaction becomes

sufficiently strong?

(3) The strength of the interaction between the populations is described by an inter

action parameter (3. Are there qualitative differences of prey-predator cycles found

in case of j$ small (weak interaction) compared to the case where /3 is large (strong

interaction)?

The plan of the paper is as follows. In Section 2 wc present the model. In Section 3

wc state and prove theorems concerning the nature of bifurcations involved in the one

population models as well as presenting and analyzing several examples (called Cases 1-4)

of age-structured prey-predator interactions. In the analysis wc use density-dependent

survival probabilities as well as density-dependent fecundity elements. Finally, in Section

4, wc discuss and unify results from the previous sections.

2 The Model

Consider the map

(1)

where the two-population vector z = (xi,x2 ,y\,y2)T - X\ and x2) y\ and y 2 are the 2 age

classes of the prey and predator populations respectively. The 4x4 transition matrix A

/ :R4 -> R 4 i-> Az
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is on block diagonal form

(2)

where each of the blocks have the structure of a Leslie matrix, cf. Caswell (1989) . Wc

define the prey block

(3)

and the predator block

(4)

where fc and gi are the fecundity (that is the number of daughters born per female)

elements for the prey and predator respectively, and p and q denote the corresponding

year-to-year survival probabilities.

In its most general form, wc assume that all the matrix elements may be functions of

the weighted sums of the age-classes involved, thus fc = f^u^v), gi — gi(u,v) and so on,

where

(5)

Further, wc impose the following restrictions

(6)

which biologically means that intra specific competition (for example crowdening) leads

to a decrease of the fecundity and survival for both species, and that inter specific com

petition (predation) leads to a decrease of the survival and fecundity of the prey and to

an increase of the survival and fecundity of the predator. Finally, in the absence of non

linearities (self-regulation effects and prey-predator interactions), wc have f\ = F{ (0,0),

p = P (0,0), gi = Gi (0,0), q — Q (0,0), where capital letters indicate density independent

A=( Ai MV 0 A 2 )

1 V p o )

*-(??)

u = a\X\ + a 2X 2 v = bipi + 62^/2

|^<o |^<o |p<o
uXj oijj oxj oyj
doi do{ da da

oxj ' dijj ' dxj ' dijj '

i = 1,2 i = 1,2
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elements, and wc define the inherent net reproductive number of the prey and predator

respectively as F\ 4- PF2 and G\ + QG2 and wc further assume that

(7)

Finally, using the notation x = (xi,x2 )T , y = {yiV2)T , if 2/ =0 wc observe that map (1)

degenerates to the "prey" map

(8)

which has been extensively studied elsewhere in the literature, cf. the papers quoted in

the Introduction section. In the next section wc shall deal with both (8) and the "full"

model (1).

3 Examples

Let us first consider some examples where the density dependence is in the fecundity

terms and not in the year-to-year survival probabilities, a choice which has often been

used in fishery models. This is based upon the fundamental assumption that most density

effects occur within the first year of life, cf. Levin and Goodyear (1980), Bergh and Getz

(1988).

Case 1

Wc start with the prey map

(9)

where the fecundities are of the Deriso-Schnute form (Bergh and Getz 1988, Tuljapurkar

et al. 1994) and 7 < 0. Note that 7 -> 0 gives the well-known Ricker case Fie~X2 1 7 = -1

gives the Beverton and Holt case Fi/(1 +x 2). In (9) only the second age class contributes

to density effects. The more general situation will be considered later. For the map (9)

wc have the following:

FY -f PF2 > 1 G x + QG2 < 1

g: R 2->• R 2 x->

(xv x2 ) -> (Fi(l - 7x2 ) 1/7 a;i +F2 (l -7x2)^0:2, Pan)
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Theorem 1

Consider the map (9) which fixed point is

(10)

Then, for fixed values of 7, a and P, (xj,:^) will undergo a supercritical Hopf bifur

cation at the threshold

(")

Proof:

See Appendix B.

From Theorem 1 \ve conclude that in case of F\ > Fh, \F\ — Fh\ small, there exists an

attracting invariant curve surrounding the unstable fixed point (a:J,a;J). Now, following

Guckenheimer and Holmes (1990), on that curve (9) is topological equivalent to a circle

map

(12)

where c = | arg A|, (A is the dominant eigenvalue computed from the eigenvalue equation

of the linearized map), gives asymptotic information of the rotation number associated

with the circle map. Now, at our bifurcation threshold (11) the eigenvalue equation may

be written as

(13)

with solution

(*l.*S)=(^*S. Fi + 7])

Suppose -(1 4- crP)/(l + 2aP) < 7 < 0 where F2= aFv

F W ! fl L 1 + 2gPl ' /7

9 —> 0-f c + br2 4- higher order terms

A2 -—i-A + l=O1 +aP

x = WT7F){ l±^l + u}
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Unless a 1 the location of the eigenvalues clearly suggests that there will be no fre

quency locking into an exact periodic orbit. If a 1, Ais located close to the imaginary

axis but unlike the situation discussed in Wikan and Mjølhus (1995) where Re A < 0 wc

have found no tendency towards 4-periodic dynamics here. Hence, the only outcome in

the unstable parameter region is a quasistationary orbit.

This is exomplified in Figures la and lb where wc have shown the dynamics beyond

the bifurcation threshold for the map

(cf. (9)) for different choices of the fecundity F\. In Figure la (Fi = 2.5) wc see the

invariant curve just beyond the bifurcation threshold, in Figure lb (F2 = 5.0) wc show

the attractor in the chaotic regime and wc have found no example of periodic orbits.

Our next goal is to investigate what kind of qualitative dynamical changes the prey

population may undergo as wc introduce the interaction with the predator population

into the model. In order to do so wc consider the map:

(15)

that is, wc consider the case where both species consist of 2 age-classes and that both

species have intra specific interactions of the Ricker type. Moreover, the model expresses

that the prey is exposed to predation from the second age-class of the predator (y2 )

and that the fecundity of the predator is related to the second age-class of the prey.

Both species have constant year-to-year survival probabilities. Finally, there are two non

negative parameters @i and j32 which will be referred to as the coupling or the interaction

parameters and obviously if f}x = fi2 = 0, (15) degenerates to the pure prey map (14).

The unique nontrivial fixed point of (15) is

(16)

where

(17)

(Xli x2 ) -> (F.e-^x, + F2e-X*x2 , Pxx ) (14)

(x l ,x2 ,yuy2 ) -* (Fl e-{xM^x l + F2 e- (X2+x2 , Pxi

1 + &Z 21 + /?2^2 /

v^ij^j 2/i»2/2) — I ~5 xn x2-> 7T 2/2' 2/2 J

Vi =£- [ln(F, + PF2 ) -4]
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and x 2 ls uniquely determined by

(18)

Note that in the case fr = fr = P —> 0, then xj > ln(Fi 4- PF2 ) which implies that

y*2 is negative. Biologically this simply means that there exists a threshold )3E which (5

must exceed in order for the predator to survive so in the following \ve shall assume that

P>Pb.

Using standard linearization techniques, the eigenvalue equation may, after some

algebra, be east in the form

(19)

where

By use of the Jury criteria (Murray 1993) it is straightforward to show that the flxed

point (16) will never undergo a saddle node or a flip bifurcation at instability threshold

since the expressions

(20a)

(20b)

both are positive. Thus stability or oscillations due to a Hopf bifurcation are the only

possible outcomes, so in some respects wc do not expect substantial changes of the

dynamics in model (15) compared to what was found in the "pure" prey model (14).

*- to(F' +p*)=ftin L^,^

A 4 +aiA3 + a 2A 2 4- a3 A +a4 = 0

= __J\ Gi
Gl Fi + PF2 d + QG2

• PF2 QG2 Fl G l
«2 x2 +y 2 Fi + PF2 Gl +QG2 + (FI +PF2 )(GI +QG2 )

_Gi^____^_ PF2 Gl + FI QG2
°3 G!+QG2 F1+ PF2 + (F1 + PF2 )(GI +QG2 )

, , PF2y\ QG2 x*2 PQF2 G2 y*2
«4 x 2y2 + pF2 Gi + QG, 2 + (Fi + pF2)(Gi + gG2) +« ! + Ax*

y*
I+ai+a +2 a3 + a 4 = x\y\ +ft }—-1 4- p2 a: 2

/ ri _ Qr< \
1-ai + a2 -a3 +04= ( 1 + 2/J + * 2 rr;\ tri+ V(jr 2 /

+ V Fl + PF2 ) J^ (Ft + PFMGi + QG2 ) +Pl 1 + ftxj
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Now, in order to examine this closer wc apply the following strategy. Wc adjust the

prey parameters Fi, F 2and P in such a way that the prey in absence of the predator

exhibits chaotic oscillations. Then wc start to increase the coupling parameter p = Pi =

P2(the case j3\ /32 will be considered later) which in turn leads to an increase of the

eqtiilibrium population of the predator (since the result of (18) inserted in (17) gives that

yl is an increasing function of/?), and search for qualitative changes of the prey dynamics.

For small values of/?, the system is still in the chaotic regime and the chaotic attractor

is qualitatively similar to the one shown in Figure lb, but as (3 is further enlarged this

attractor disappears and the dynamics found is a quasiperiodic orbit restricted on an

invariant curve. This is exemplified in Figure 2a. (Parameter values jF\ = 3, F2= 5,

P = 0.6, Gi = G2= 2, Q = 0.9, (3 = 0.40.)

Keeping the other parameters fixed, our finding is that the fixed point (16) becomes

stable when 0 is increased to a threshold pi so what our analysis demonstrates is that in

this part of parameter space, an increase of the interaction parameter 0 acts as a stabilizing

effect. (Using the parameter values above wc find that 0L = 0.42 with corresponding

modulus 1 eigenvalues A = 0.2486 ± 0.9740i)

The fixed point (16) is stable on an interval 0L < P < Ph, but as 0 —> Øh the

magnitude of the dominant eigenvalues starts to increase again which signals that wc have

now entered a part of parameter space where an increase of 0 acts as a destabilizing effect.

At ØHi (16) undergoes a new Hopf bifurcation so whenever (3 > Ph, \P — Ph\ small, the

dynamics is once again restricted on an invariant curve and wc have found no example

of periodic or almost periodic orbits on that curve. This is shown in Figure 2b where

P = 1.32. (With our choice of parameter values, pH = 1.30 and A = 0.733183±0.681146i)

A summary of the dynamics presented above is given in a bifurcation diagram, cf. Figure 3.

Case 2

Consider the map,
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G^'y TTTr * + G* e~" TT7T *< ««")1 + p2x 1 -f p2 x )
(21)

Note that the only difference between (21) and (15) is that the fecundity functions in (21)

depend on the total populations x=x\ + x 2 and y=yi + y2 -> not on x 2 and y2only. As

it will become clear this difference has substantial dynamical consequences.

In case of no predation, map (21) degenerates to the well-known one-population model

the Ricker case, with the restriction F\ = F2= F. The reason behind this restriction is

that the dynamics found in the case F\ <C F 2differs substantially from the cases F\ « F 2

and Fi > F 2(Wikan and Mjølhus 1996), so in order to limit the number of cases to discuss

wc consider here the case F\ = F 2only.

Map (22) is a special case of

(xu x2) -> (F(l -7z) 1/7 *i +F(1 - 7x) lh x2 , PXI ) (23)

and in consideration of the latter wc have the following:

Theorem 2

Consider the map (23) which equilibrium solution is given by

(24)

where

(25)

Then:

supercritical flip bifurcation at the threshold

(26)

{xv x2 ) -» (Fe-Xx l + Fe~xx2 , Pxx ) (22)

v*»**) - \l +P*'i + p x )

x* = -[l-(P + PF)-i]

(A) For a fixed P, O<P < | and a fixed 7 > — 1(1 — P), (xj,^) will undergo a

i r 2 Vh
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(B) For a fixed P, \ < P < 1 and a fixed 7 > -P/(l + 2P), (x\,x*2 ) will undergo a

supercritical Hopf bifurcation at the threshold

(27)

Proof:

Cf. Appendix A.

—o—

In consideration of (22), the impact of Theorem 2 is that the fixed point of (22) will

undergo a supercritical flip bifurcation at the threshold

(28a)

and a supercritical Hopf bifurcation at the threshold

(28b)

A detailed analysis of the dynamics in the parameter regions beyond Fp and Fh may be

obtained in Guckenheimer et al. (1977), Levin (1981) and in Wikan and Mjølhus (1996).

Here, wc shall only mention that an increase of F beyond the threshold FF (0 < P < \)

leads to stable orbits with period 2*, k = 1,2,... and in case of large values of F, even

in the chaotic regime a certain kind of periodicity is preserved since the strange attractor

consists of 4 separate subsets each of which is visited once every 4th iteration, cf. Wikan

and Mjølhus (1996).

On the other hand, in case of P close to unity and F > FHi \F - FH \ small, there

exists a stable almost 3-periodic, small amplitude orbit restricted to an invariant curve

which is due to the fact that the eigenvalues are close to third root of unity at bifurcation

threshold (28b). (If P=l, A = e±(27r /3)t ) por higher values of F there exists an exact

large amplitude 3-period orbit which is followed by other periodic orbits of period 2 k •3,

k= 1, 2, ... as Fis increased. Eventually, for even larger F values, the dynamics becomes

p ! fi L. i±2Pl 1/7A — I _i_ /-w

F=FF = e"(-» o<F<l

F= FH = —L- eWV \<P<\
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chaotic and in Figure 4a wc show what the attractor looks like. Each of the three branches

of the attractor are visited only once every 3rd iteration so clearly there is a certain kind

of 3-periodicity present in the chaotic regime as well.

Now, in order to reveal what kind of dynamical changes the system will undergo as

wc introduce the predator wc return to map (21).

The relation between x* and y* and the numerical value of x* may be found by letting

x 2 —x* and y2 = y* in (17) and (18) respectively.

The coefficients in the eigenvalue equation (19) now becomes

(30)

Obviously, as in Case 1 the fixed point (29) will not undergo a saddle node

since (cf. (20a))

bifurcation

(31)

The criterion for (29) not to undergo a flip bifurcation is

(32)

At equilibrium

W.**,*) = (t^x-, t^,-, rl_.-, (29)

. , , f\ Gi
01 -*i + Fl + pf2 Gl + qg2

G2=Fa:t+Q2/:+^(I+A _2___)
Fiy{ + PF2 G x x\ + QG2 F\Gi
F, + PF2 G l +QG2 (F1 + PF2 )(GI +QG2 )

(PGi + QG2 )x\ PG1 F2 + QFl G2
Gi + QG2 + (FT + PF2)(Gl + QG2 )

PQG2x\ PQF2 G2
Gi + QG2 (Fx + PF2 )(Gl + QG2 )

1+ 0! +a2+ a3 -ha4 = x*y* 1+ fa > 0
x* (l + /32x ).

,(1-Q)f ,(1-P)[ 1 1 2F, 1
V(1 + Q)\ (I+P) L PV(l+ft**)J Fl +PF2 j >

2Gi [(1-P) . 2Ft 1
G, + QG2 1(1+ P) X F, + PF2 J
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and here one may observe the following: First, suppose that P —> 0, o\, 02 are small and

Fi is large. Then x* is large and y* is small, and clearly, the implication of this is that the

inequality sign in (32) is reversed. On the other hand, suppose that 0\ and 02 becomes

larger which in turn implies that x* becomes smaller and y* larger. Then it is easy to

see that the left hand side of (32) is greater than the right hand side. This demonstrates

that in case of small values of P (29) may undergo a flip bifurcation for sufficiently large

values of 0\ and 02 .

Next, suppose that P —> 1, then (roughly!) (32) may be written as

which is valid unless y* becomes very large. (If Q —> 1 (33) is obviously valid.) Hence wc

do not expect (29) to go through a flip bifurcation for large values of P, so what these

findings indicate is that in case of P is small, the transfer from stability to instability goes

through a flip bifurcation and in case of P large stability or nonstationarity dynamics due

to a (supercritical) Hopf bifurcation are the typical outcomes.

In order to examine this closer wc apply the same strategy as in Case 1. Hence,

consider the fixed parameter set F = F\ — F2= 18.5, P = 0.9, G\ — G2— G = 5.0,

Q = 0.5. If 0 = Øi = 02 = 0 there is no predation, the prey dynamics is chaotic but

still almost 3-periodic as displayed in Figure 4a. For small values of 0 the structure of

the attractor remains unchanged. In Figure 4b wc show the situation for the predator

in the case 0 = 0.08, showing that the predator has been forced into the same kind of

periodicity as the prey, cf. the discussion in Boonstra et al. (1998). Further increase of 0

actsstabilizingsince the dynamics now becomes periodic with period 3-2k , k = ...,3,2, 1,0,

thus an increase of 0 leads to the flip bifurcation sequence in the opposite direction.

An exact 3-periodic orbit for both the prey and the predator is shown in Figures sa,b

(0 = 0.26). Stability of the fixed point is achieved when 0 — Øl — 0-29 where the root

of (19) is A = -0.5407 ± 0.8462z. The fixed point (29) is stable whenever 0 £ {OL,0L ,0H\-

With our choice of parameters; Øh = 2.38 with corresponding modulus 1 eigenvalues

Å = 0.4978 ± 0.8655 zso evidently there is another Hopf bifurcation at the threshold

1-Q 2G t
TTQ y <G, + QG2 (33)
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Ph- In case of (3 > Ph, \P — Ph\ small, there is a quasiperiodic orbit with no sign of any

periodicity. This is exemplified in Figure 6. For higher values of p the populations reenter

a chaotic regime.

Starting from zero, numerical simulations show that an increase of P in the case of P

small gives in many respects much of the same qualitative picture as in the case P large.

For small values of p the prey is still in the chaotic regime, and the predator is forced

into a chaotic almost 4-period orbit. Further enlargement of the coupling parameter leads

also here to the flip bifurcation sequence in the opposite direction giving birth to stable

orbits of period 2 fc , k = ...,3,2,1. At j3L stability is gained and X L — — 1. Stability

is maintained in [Pl, Ph}- At the threshold Ph there is a Hopf bifurcation which leads

to quasiperiodic behaviour, and eventually the dynamics becomes chaotic. A numerical

example: Suppose F = 58.5, P = 0.2, G = 5, Q = 5. Then pL = 0.93, (AL = -1),

pH = 2.41, XH = 0.2510 ± 0.9673z.

Case 3

Note that the only difference between the model in Case 2 and the one here is that the prey

dependent part in the predator's fecundity terms has been changed. Instead of repeating

the same detailed analysis as in Case 2, wc shall here summarize the results obtained

from (34) in the bifurcation diagram presented in Figure 7 where the parameter values

P = 0.9, F} = F2= 20, Q = 0.9, G x =G2 = 4 have been used.

Referring to Figure 7; for small values of J3= ft = p 2 the prey (and the predator)

is still in the chaotic regime and wc have verified that the attractor is similar to the one

shown in Figure sa. As /3 is increased stability properties are improved and our analysis

Consider the map / :R4 -> R 4

(34)
Gl e~y(l - e~^x )yi + G2e^(l - e~^)y2 , Qyx )
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shows that the only stable attractor is a large amplitude exact 3-cycle which is generated

by the map k — f o / o / (cf. (34)). This is followed by a 0 interval where the 3-cycle

coexists with an invariant curve whenever 0 G [0.244, 0.26] and with the stable fixed point

{x\,x*2 iyl,yl) in [0.26, 0.31]. Wc have computed numerically that 0 = Øl = 0.26 as the

Jury expression (Murray 1993)

(1 - a\)2 - (g3 - a4 ai)| - |(1 - a\){a2 - a 4a 2 ) - (a3 - a4 ai)(ai - a 4a3 )| (35)

changes sign and becomes positive. {a\...a^ are the coefficients in the linearization of

(34).) The corresponding modulus 1 eigenvalue is Xl = — 0.5625 ±0.8343zand since Xl is

close to third root of unity the dynamics on the invariant curve has a strong resemblance

of 3-cycles.

Returning to the large amplitude 3-cycle, it is created at the value 0 = 0.31 as k

undegoes a saddle node bifurcation. (This is verified by substituting a corresponding fixed

point (xi I x2,yi,y2) of k into the Jacobian Dk and then observe that the (numerically)

computed eigenvalue u « 1.) The invariant curve disappears when 0 = 0.244 as it is

"hit" by the three branches of unstable equilibria generated by k. Note that k has seven

nontrivial fixed points, cf. Wikan and Mjølhus (1996).

When 0 — 1.1 further enlargement acts as a destabilizing effect and at the value

ØH — 1-86, (35) again turns negative which means that (x^x^y^yi) undergoes another

Hopf bifurcation (Å# = 0.4253±0.9062z). Beyond 0# the dynamics occurs on an invariant

curve whenever \0 — Øn\ is small and there is no sign of any periodicity. For higher values

of 0 numerical simulations show that the dynamics once again becomes chaotic.

If wc repeat the analysis above, using small values of P, the same qualitative picture

as in the corresponding situation in Case 2 emerges, so instead of presenting details wc

just mention that there also here exists a stable parameter region {Øl,Øh) and that the

eigenvalue at Øl, \l — —1. At Øh the expression (35) fails to be positive, A# is found to

be complex with Re \H >0.
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In the next cases wc shall give some results about the dynamics found in models where

the density dependence is restricted to the survival probabilities.

The basic "prey" map is

where z = a\X\ + 0.2X2- Thus, wc consider the case where the fecundity is constant and

restricted to the last age class only, and wc further assume that the survival probability

depends of the weighted sum of the two age classes x\ and x\.

Theorem 3

Consider the map (36) under the restrictions F2/ 2a2 /a\, «2 7^ 0. Assume F2> a2 /a\.

Then for 7> —aiF2 /2(aiF2 + a 2) the fixed point (x\,x2 ) of map (36) will undergo a

supercritical Hopf bifurcation at the threshold

(37)

Proof:

SeeWikan (1997).

Note that if 7 —» 0, (36) and (37) may be written as

(38)

p — _L e2(aiF2 +02)/(aiF2 ) /gg\
F 2

Following Wikan and Mjølhus (1995), assuming ai = a 2, the solution of the eigenvalue

equation of the linearized map of (38) at bifurcation threshold (39) is

(40)

/:R2-> R 2 (xu x2 ) -> (F2z2 , P(l - izf^x,) (36)

1 / 2jalFt + at)\ lh
F 2\ ' «iF2 }

{xv x2 ) -> (F2x2j Pc zxx )

A±= -i ± Åv/^TTi
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and since F 2is a large number at the threshold (39), X± are located very close to the

imaginary axis. Hence, whenever F2> F2B , I^2 — F2B \ small (where F2b is the F 2value

which satisfies (39) for a given P), the rotation number a w 1/4 (cf. the discussion just

after Theorem 1), thus the dynamics has a strong resemblance of 4-cycles, either exact or

approximate.

In somewhat more detail wc find that whenever F2— F2b small there exists an almost

4-periodic orbit restricted to an invariant curve, as F 2is increased wc obtain an exact 4

period orbit through frequency locking, further enlargement results in the flip bifurcation

sequence giving births to orbits of period 4 • 2 k , k= 1, 2, ... and beyond the accumulation

point for the flip bifurcation sequence the dynamics becomes chaotic. This is shown

in Figure 8 and evidently, even in the chaotic regime a certain kind of 4-periodicity is

preserved.

If F2« 2cv2 /q;i, oliJcxx large, A is close to third root of unity at instability threshold

(39), a æ 1/3 so in case of F2> F2b, in accord with Wikan (1997) the dynamics this time

has a strong resemblance of 3-cycles.

Our next goal is to reveal to what extent the inclusion of a predator is capable of

altering the periodical behaviour found in the prey models (36) and (38).

Case 4

Consider the map

(41)

Hence, wc assume that the fecundities for both species are constant and restricted to the

second age classes only and that the survival probabilities for both populations depend

on the total prey as well as the total predator populations. The equilibrium solution of

(41) is:

(n,*», lft.tt) -» (f25,, Pe-^^*»)*!, G2j/2 , Y^^2")

Fi 1 Gi 1
x>-rr^ x*-i+F2 x y'-i + G2 y V2 ~t+gl v { '
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where

(43)

Observe that /?i = /?2 = 0 implies that (41) degenerates to the prey map (38) (ai = 0:2 =

The coefficients in the 4th order eigenvalue equation (19) are

(44)

and clearly there will be no transfer from stability to instability through a saddle node or

flip bifurcation since

(45)

Hence, stability or dynamics governed by Hopf bifurcations are the only possible outcomes.

Starting with /?i,/% = 0 and prey parameters as in Figure 9 (P = 0.6, F2— 25), the

results here are similar to what was found in Cases 2 and 3. An increase of the coupling

parameters acts as a stabilizing effect but as long as the populations are in the unstable

parameter region the initial 4-periodic behaviour is not altered in any substantial way.

In Figure 9 wc show an exact 4-periodic orbit for both species. (If F2* 2a2/ai,

y' = jMPF2 ) - x'}
, u + Ju2 + 4f}2vT =

2ft

u= h ln(PF2 ) +(1 - QG2 )P1 p2 - 1 v= \n(PF2 ) + A

x\ y{
1 F 2G2 {\+y*)

a x*-2+ y*1 + X*lV*1 . faiV*
2 x 1+ y* F 2G 2 (1 + y*) """ F 2G 2x*(l + /32x*)

g? Ag?2/r Pixlvl yl
3"" F2+ F2x*(l + fox*) + G2x*(l + Ax*) G2 (l +r)

. x*y*

1 x* {I + /32x*) I+y* 1+?/*

(I "?!g; G2)^[^rf^) + w]>° <«>
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large, we find 3-periodic orbits.) Stability is achieved at a threshold (Hopf!) where the

Jury relation (35) becomes positive. The fixed point (2:*, 2:2, 2/* > 2/5) remains stable as long

as (35) is positive and

(47)

but when ft,ft ls increased to a level where the inequality sign in (47) is reversed the

fixed point undergoes a new Hopf bifurcation and in all cases investigated the location

of the eigenvalues at the threshold given by (47) is very different from the location at

the threshold given by (35). Consequently, the low-periodic behaviour found in case of

P\,p2 small is not found in case of larger values of the coupling parameters. (A numerical

example: A = -0.03058 db 0.99934* where (35) becomes positive, A = 0.77621 ± 0.63334i

at the threshold (47).) If we continue to increase (3\ and ($2 the populations reenter a

chaotic regime. In a bifurcation diagram, Figure 10, we summarize the results presented

above.

In order to close Case 4 let us just briefly mention that the results just presented do

not seem to depend upon the functions we use in the description of the survival of the

predator in map (41). For example we may replace the 4th component

by

(48)

and still obtain qualitatively the same results as above.

—0—

Finally, if we return to the prey map (39), assuming F2 « 2a2 /ai, «2/0:1 large,

which means that it is x2 which primarily contributes to density efTects, we have already

mentioned that 3-periodic behaviour is the outcome beyond the instability threshold.

Yl ØIØ2QG2XI -(1 - *I)(1 + fax*)2

Q fa*
I+ij 1 -f /32x

V2"> Qe~ y (1 - e~^x) Yl
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This is strongly related to the fact that the eigenvalues of linearized map of (39) at the

threshold (40)

(49)

are close to third root of unity.

Note, however, that if x2 exclusively contributes to density efFects, map (39) becomes

(50)

and for this particular map we have the following: The fixed point of (50)

is always unstable and from the eigenvalue equation A 2 4- fli A4- a2 — oit is straightforward

to conclude that it is the flip condition 1 -a\ +a2 > 0 which fails. Hence, it is natural

to search for a stable 2-cycle.

The 2nd iterate of (50) may be expressed as

Here, one possibility is x2<t = %2,t+i — ln(PF2 ) which gives nothing but the trivial cycle

where (51) is the repeating point. Another possibility is to search for a 2-cycle of the form

(i4,0), (0,B). Thenfrom (52)

(53)

but by use of these values we find that the eigenvalues u of the linearized map of (52)

must satisfy

(54)

Hence, the 2-cycle {A,O), (0, B) is also unstable. In fact, the only dynamics found from

map (50) is a divergent sequence of points ((,4i,0), (0, Bi)), ((v42,0), (0, jB2 )), ..., where

Aj > Aj-i, Bj > Bj_\.

\ = --^±-^J(a1 F2y-a*ia\F2 <y.\F2 v

(x 1 ,x2)->(F2x2 , Pc"12*!)

(xlx*2 ) = (F2 \n(PF2)MPF2 )) (51)

Xi,t+2 = PF2 e~x^xu
(52)

x2 ,t+2 = PF2e-x^x2 ,t

A = 2 ) 2 B = \n{PF2 ) 2

(U -PF2)(U -^r)=o
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Now, if wc include a predator, for example through the models:

(55)

or

(56)

wc obtain qualitatively the same results: In case of sufficiently large values of the inter

action parameters it is possible to obtain a stable 2-cycle of the form (A\, 0, Bi,^),

(0,A2 ,B3 ,B4 ), but it is not possible to obtain a stable fixed point (xj, xj, 2/1,2/2 )•

4 Discussion

In the previous section wc have analysed a selected number of 4-dimensional prey-predator

models. Focus has been on the dynamical properties and the role of the predator in

unstable parameter regions. Despite the fact that wc consider 2-age classes for both

species only, the parameter space is huge so care should be tåken with respect of drawing

too strong conclusions, but before wc try to unify parts of the results found in the previous

section, let us first examine the consequence(s) of using only one coupling parameter

0 — Pi = 02 instead of dealing with the more general case 0\

Thus, reconsider Case 1, map (15) and Case 2, map (21) (where wc use the same

parameters Fj, Gt-, P and Qas before (P = 0.9 in Case 2)) and let 0\ >Ølbe a fixed

number. The result of increasing fy (starting with fy = 0) is that the fixed point of

maps (15) and (21) becomes stable at a certain threshold /?L2- In Table 1 wc show some

fixed values of A, together with the "new" instability threshold pL2 and the corresponding

eigenvalues of map (15). (The last row in the table is the "old" situation Øl = Pil — 02L-)

In Table 2 wc consider map (21).

(xu x2 ,yu y2 ) -> (f2x2 , Pc'{xa+Mxu G 2y2l YT^ yi)

(si,*2,Vi,V2) -> (fø, Pc-^+ft^an, (G12/1 +G 2y2)e~y jfj^, Qv^j
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Table 1

Table 2

Hence, whenever Øi > (3L (fa fixed) the threshold (32l is smaller than the "old"

threshold Øl. On the other hand, the locations of the eigenvalues at bifurcation threshold

are almost identical. Thus, on the whole, whenever fa < 02L the dynamics must be

qualitative similar to what was found in Case 1 and Case 2, the main difference is the

"speed" in which stability is achieved. Biologically, this måkes sense. If ft is large, then

the predator has great impact on the prey also at small predator densities, hence one

should expect a faster reduction of the size of the prey population which again indicates

that stability is gained at a lower threshold.

If wc continue to increase fa above the threshold fai (keeping fa fixed) the only

dynamics found is the stable fixed point (arj, xj, yj, 2/s)> wc d° no^ nc^ a second Hopf

bifurcation threshold fajj. However, from a biological point of view, it is an open question

if it måkes sense to consider fa > Øi (although wc have discussed j3\ and fa not in terms

of any units, fa > (3\ suggests that in this part of parameter space, the predator gains

more from the prey than the prey is able to offer), so in the following wc shall deal with

the case (3 = /3\ = fa exclusively.

Let us now turn to the dynamics and the role of the predator in case of 0 small. In

all the cases discussed in the previous section wc found that an increase of the coupling

parameter acts as a stabilizing effect. In fact, it is tempting to conjecture that an increase

A 02L A

1.00 0.29 0.2488±0.971187i
0.75 0.31 0.2487±0.97849i
0.50 0.38 0.2484±0.9795i
0.42 0.42 0.2486±0.9740i

A p2L A

1.00 0.07 -0.5570±0.84347z
0.75 0.09 -0.5507±0.8442i
0.50 0.11 -0.5510±0.8440z
0.29 0.29 -0.5407±0.8462i
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of 0 (0 small) in the "prey-predator" maps (15), (21), (34), (41), (48) acts qualitatively

more or less in the same way as a decrease of the fecundity F in the "prey" maps (14), (22),

(23) and (36). In order to support such a conjecture one has to show that the eigenvalues

of the linearized "prey-predator" maps cross the unit circle (roughly!) at the same place

as the eigenvalues of the linearized "prey" maps.

Now, at bifurcation threshold Fx = [1/(1 + aP)] exp[(l + 2aP)/(l +<rP)], (F2 = aFi),

the eigenvalues of the linearized map of (14) may be written as

and in Table 3 wc show some numerical values of the eigenvalues at bifurcation threshold

of the linearized map of (15) in case of P = 0.6 and clearly, the eigenvalues shown in

Table 3 and the values of (57) in the cases P = 0.6, o = 1, 5/3, 2 are very close.

Similar conclusions may be obtained by comparing the "prey" maps (22) and (38) with

the corresponding "prey-predator" maps (21) and (41). For example: The eigenvalues of

the linearized map of (22) at bifurcation threshold are

(58)

w —0.555 db 0.83Hin the special case P = 0.9, and as mentioned the modulus 1 solution

of (30) at bifurcation threshold Øl = 0.29 is A = —0.541 ± 0.846i. Hence, our conjecture

is supported.

Let us now turn to the question of periodicity. In the "prey" maps (22), (36) and (38) wc

found several examples of periodic dynamics of low period (either exact or approximate)

in large parameter regions, the chaotic regime included. (In consideration of (36); if

7—> —aiF2 /2(aiF2 + a 2) (cf. Theorem 3), the 4-periodicity is even more pronounced

than in the case 7-^0 which was discussed in Case 4, cf. Wikan (1997).)

A = 2(rbntI±V4(l+ffP)S " li] (57)

Table 3

js\ = 4 a= l Gi =G2 = 5 0 = 0.5 (5 = 0.26 A = 0.294±0.958i
Fi = 3 (7 = | Gi =G2 = 2 Q = 0.9 0 = 0.42 A = 0.249±0.974i
Fi = 3 a= 2 Gi =3, G2= 4 Q = 0.7 (5 = 0.29 A = 0.221±0.977i

A = -i±^/4P^fi
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One of the most significant results obtained from the previous section was that the

inclusion of the predator does not seem to be capable of altering the periodicity of the

prey as long as both species are in the unstable parameter region P < Pl- In fact, what

wc find is that the prey periodicity is reflected in similar cycles of the predator, a result

which seems to be unaffected by the type of functions wc use in the description of the

predator. It is interesting to notice that such phenomena have indeed been observed

in nature, especially among vole and lemming species, cf. Stenseth and Ims (1993) and

references therein.

Another aspect which also should be mentioned is that the growth of the prey (not the

predator!) is low during the low phase of the cycle, cf. Figure 10. It is an open question

what prevents population growth during the low phase, see Boonstra et al. (1998). A

comparison between 4-cycles generated by the "prey" map (38) and 4-cycles generated

by the "prey-predator" map (41) (cf. Figure 9), indicates that the predator to a certain

extent may damp the growth of the prey during the low phase, but the effect seems to be

too small in order to explain why the growth is so low as observed.

Finally, let us turn to the dynamics and the role of the predator in case of (3 large.

Except for the last map (map (50)) under Case 4, one of our main findings from Section

3 was that there exists a value ps € [Pl, Ph] such that an increase of p beyond ps acts

as a destabilizing effect. All the maps also share the common feature that their unique

nontrivial fixed point (xj,^, yl^vl) undergoes a (supercritical) Hopf bifurcation at the

threshold Ph- Hence, for p > Ph, \P~Ph\ small, the dynamics is restricted on an invariant

curve. Wc have verified through simulations that the last result remains valid also in cases

where wc adjust the prey parameter Fls F 2and P such that the prey possesses a stable

fixed point in absence of the predator, cf. Theorem 1, 2 and 3.

When p (p > Ph) is further increased the populations reenter the chaotic regime. On

the route to chaos (which may differ from case to case, although the Curry and Yorke

route seems to be the most common, see Caswell (1989)), wc have found a few examples

of periodic dynamics (Case 4) but in contrast to p < Pl the period this time is large,

typically 12 or 14. The generic case is that there is no periodicity.
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Appendix A
Proof of Theorem 2 in the main text

Using the abbreviation / = F(l — 7a:) 1 /7 (evaluated at equilibrium!) the eigenvalue

equation of the linearized map may be written as

(Al)

and by use of the Jury criteria

(A2)

(A3)

cf. Murray (1993), where a! = — (f'x* +f) and a2 = — P(/'x* + /), it is straightforward to

show that the flip governs the dynamics whenever 0< P < and that the corresponding

Hopf interval is \ < P < 1. Further the critical parameter values in the flip and Hopf

cases respectively are easily found to be

So what remains to prove is that the bifurcations are of the supercritical type.

(A) Define the matrix

which columns are the eigenvectors corresponding to the real eigenvalues of (Al) in

the flip case.

Then, after expanding the first component of the map (23) up to third order,

applyingthe change of coordinates (f1,0:2) = (x\— x{, x2 — £2) m order to transform

the bifurcation to the origin, together with the transformations

(£)-'(:) (:)-r'(i)

A 2 - (fx* + /)A - P(/V +/) = 0

1 — ai + a2> 0

l-|a2 l >0

i r 2 i l/7 ir i + 2Pi 1/7
*> = rbHrb] f» = ttp[l+^J (A4)

/ -i. L_ \
T = \ p l~ p 1
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the map may be east into standard form as

(A5)

where

and

and

The next step involves the restriction of (A5) to the center manifold. To do this wc

first seek the center manifold as a graph

and by inserting this expression into (A5) the center manifold (up to third order)

may be found from the relation

and finally by substituting (A6) (together with (A7)) into the first component of

(A5) wc obtain the restricted map

Now according to theorem 3.5.1 in Guckenheimer and Holmes (1990) the bifurcation

will be supercritical if the relations

dp d2p d2p _ dp_ cPp _ tdp_ _ \ d2p
dF du2 dudF "dF du2 " \du ) dudF

l(ØY\\l(Pp\ >0
2 \ou2 J 3 \ou6 )

(A9)

(A10)

(u,v) -> (-u + g{u,v), - YZ~p v ~ 9(u > v)j

g = A[(l- Pfu + P2 v] 2 + B [(1 - Pfu + P2v) 3

A P(2P-1)(1-P)^ B P2 (2P-1)(1-P)2^

w = f+\f"x' m = \f"+\fmx'

v = i(u) = Ku2 + Lus (A6)

p
i (-u + g(u, i(u))) + i(w) + p(w, i(u)) - 0

from which wc obtain

K = -(1 - PfA L = (l- P) 7 [B + 2A2 (1 - P)(l - 2P)] (A7)

u-> p(u) =-u + A(l - F)V 4- (1 - P) 6 [B - 2/l2 P2 (l - P)]w3 (A8)
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holds at the bifurcation.

To this end it is easy to show that the left hand side of the nongeneracy condition

(A9) may be written as

which is clearly nonzero whenever 7 > —(1 — P)/2 and 0 < P < 1/2. The left hand

side of (A10) may be expressed as

and since 7 > -1/2 ensures that 7 > -(1 - P)/2 holds for all P, 0 < P < 1/2, the

parenthesis { } > P2+ (1/4)P> 0. Hence, the left hand side of (A10) is positive

and part (A) of Theorem 1 is proved.

To prove part (B), that the Hopf is supercritical, wc first argue along the same line

as in (A) but the matrix T now consists of the real and imaginary parts of the

eigenvectors as columns. Hence,

/ 2P2 2P2 \

Ti . « )

(All)

where

and

A ~~2bpl {l} B ~ 4bP* {2]

where {1} and {2} are defined through formulae (A5).

r 27 i-d/7) (1 _ P) ,
2 [l -P +1J 1-2P

[2l+ il —^1! /(p_ 7)2 + I(!_ 7)(47 _3P + i)\

where b = a/4P2 - 1. The corresponding map to (A5) now becomes

(»)~m r i)(«) + (pk«))\ 2P 2P /
g{u,v) = A [(2P2 - l)u - by] 2 + B [(2P2 - l)u - by] 3



Following Guckenheimer and Holmes (1990) (theorem 3.5.2), the bifurcation is of

the supercritical type if

d
Ål >0 (Al2)dF

at bifurcation (which ensures that the eigenvalues leave the unit circle at bifurcation)

and that the quantity

(Al3)

and

Now, at our bifurcation

which is clearly positive.

Further

where

To complete the proof wc must show that /i(7) > 0 whenever 1/2 <P< 1.

2
a = _Re (l_i^L6160 _I|?li p_|?02 |2 + Re(Ae21 )

is negative at the bifurcation. Here

f2O = T [%9uv + i{9uu - 9vv)]o
1

61 = jH9uu + gw\

£o2= q {-2gUv + i{9uu - 9vv))o

6l = Jq Iduuv + 9vvv + i(9uuu + Ptiw)]

d I.M- p ri l -, i+2pi (7" l)/7dF W ~ 2 [I+7 P \

i r U2P] 2
a -~16(2P + l)(l + P) 2[I+7 P \ h[l)

/i(7) = (3P +2)[l - 7 (1 + 2P)] 2 + (2P + 1)(1 4- P)(l -7)[P - 1 + 27 (1 + 2P)]

h(- z-Apb) =hi=(l+ Pf > 0 /i(0) =h2 = 2P3 +P2+P - 1 > 0

29
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and clearly hi > h 2.

Further

h\i) =(1 + 2P) [-P2-6P-1 + (12P2 + 14P)7] < 0

Hence, h > 0 and consequently a < 0.
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Appendix B
Proof of Theorem 1 in the main text

The proof of Theorem 1 follows the same pattern as the proof of part (B) of Theorem 2

(cf. Appendix A). By applying the Jury criteria on the eigenvalue equation

(Bl)

it is straightforward to show that the Hopf instability threshold is given by (11) in the

main text. The "standard form" of (9) (cf. (All)) now becomes

(B2)

where

and /', /", ... are the derivatives of f(x2 ) = F\(l - 7X2 ) 1/7 evaluated at equilibrium.

Now, the Hopf bifurcation is of the supercritical type whenever

(B3)

at bifurcation and that the "stability coefficient" a defined through (Al3) is negative at

bifurcation. For the problem at hand, (12) and (Bl) gives

(B4)

a2 -TT^ a + 1 +

/u \ ( 2< l+1'p> " 2 < l+*p> \fu\ f 0 \

\ 2{l+aP) 2(l+(7P) /

b= a/4(1 + aP) 2 - 1

g(u, v) - Au2 + fuv + Bu3 + -f"u2 vdå

A = -i[/' + 2P(l+<rP){l}] B= -i I/'' + 2P(I + aF){2}

{i} = °r + \f"^*i {2} = + i/'»i±^

ik w>o

d 1 f 1 4- 2aP~] 1-(1/7)
Jh A| = I (l+<tP) [I+7 l±^] >0

and, using the abbreviation w — 1 4- 7(1 + 2aP)/(l + aP) > 0, a may be expressed as

a=V + Z
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where

Here wc may notice that V < 0 since the parenthesis { } in V is positive (62 > 3) and

Zis negative unless 7is close to —1 but in this case |V| |Z|, thus a=V+ Z is negative

also here, hence a < 0 everywhere and wc conclude that the bifurcation is supercritical.

Acknowledgement: I thank E. Mjølhus for valuable suggestions.

Am
V = 64ft(l + aPf { + UP) - 3ffPJ + 7(1 + °P) f (3 + 6<JP)(I " 62) " 262 J}

and

z = - v»*+ «py V +^ ~7) Vp2 + 27(1 + aPf
+ 3 [aP - 7 (1 + aP)(l + 2aP)}2 }

A = ~ 6(1 + oP) W [aP ~ 7(1 + aP)i} + 2gP)l < °
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Figure Captions

Figure 1. The dynamics of (14) beyond the bifurcation threshold. Parameter values: (a)

Fi = 2.5, P = 0.6; (b) Fx = 5.0, P = 0.6.

Figure 2 Stable attractors of the map (15). Parameter values: F\ = 3, F2= 5, P = 0.6,

G l =G2 = 2, Q = 0.9. (a) (3 = 0.40; (b) (3 = 1, 32.

Figure 3. The bifurcation diagram generated by map (15).

Figure 4b. The predator in the chaotic regime. Each of the 3 branches are visited once

every 3rd iteration. (0 = 0.08).

Figure 5. An exact 3-periodic obit. (3 = 0.26. (a) The prey. (b) The predator.

Figure 6. The prey dynamics beyond /?# , \(3 — (3h\ small.

Figure 7. The bifurcation diagram generated by map (34).

Figure 8. The map (38) in the chaotic regime. The strange attractor has been divided

into 4 disjoint subsets which are visited once in each cycle. The dynamics goes

clockwise. (P = 0.6, F2= 25).

Figure 9. An exact 4-periodic orbit (map (41)). The "upper" orbit belongs to the prey,

the "lower" to the predator. (P = Q = 0.6, F2= 25, G2= 12, j3=ft =ft = 0.20).

Figure 10. The bifurcation diagram generated by map (41).

Figure 4a. The strange attractor in the case (P: F) = (0.90, 18.50).
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