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Abstract

Discrete age-structured density dependent one-population models and discrete age-
structured density dependent prey-predator models are considered. Regarding the former,
we present formal proofs of the nature of bifurcations involved as well as presenting some
new results about the dynamics in unstable and chaotic parameter regions. Regarding the
latter, we show that increased predation may act both as a stabilizing and a destabilizing
effect. Moreover, we find that possible periodic dynamics of low period, either exact or
approximate, may not be generated by the predator, but it may be generated by the
prey. Finally, what is most interesting from the biological point of view, is that increased
predation is not capable of altering the periodicity of initial low periodic dynamics of the

prey in any substantial way, provided the populations are in unstable parameter regions.



1 Introduction

The use of nonlinear matrix models as a powerful tool in the description of various
properties of a population with non-overlapping generations (or stages) is well documented
in Caswell’s and Cushing’s books (Caswell 1989, Cushing 1998). Indeed, in consideration
of problems within population dynamics, Levin and Goodyear (1980) and later Levin
(1981) formulated and analysed their striped bass fishery model in terms of a density
dependent Leslie matrix. DeAngelis et al. (1980) and Bergh and Getz (1988) focused
on return paths and return times to the stable equilibrium after small perturbations. A
logistic matrix model was developed and presented by Liu and Cohen (1987) and applied
by Desharnais and Liu (1987) on the flour beetle Tribolium castaneum.

Other authors have from a more theoretical point of view paid attention to the quali-
tative behaviour of an age-structured population in unstable and chaotic parameter
regions, see f.ex. Guckenheimer et al. (1977), Silva and Hallam (1993), Wikan and Mjglhus
(1995, 1996) and Wikan (1997). Information on general ergodic properties of nonlinear
one-population matrix models may be obtained in Cushing (1988, 1989), and in Crowe
(1994), and most interesting, it has recently been demonstrated (Cushing et al. 1996,
Dennis et al. 1997, Costantino et al. 1997, Cushing et al. 1998) that 3 x 3 matrix mod-
els indeed may be used in order to predict nonstationary and even chaotic behaviour of
laboratory insect populations.

The purpose of this work is two-fold. In one direction we shall state and prove some
theorems concerning the nature of bifurcations involved (sub- or supercritical) in some
of the most frequently used age-structured one-population models quoted above, and
we shall also present new results about the possible dynamics beyond the bifurcation
thresholds. In another direction, the purpose of this work is to extend results from the
previously quoted papers on one-population models by considering a discrete nonlinear
age-structured prey-predator model formulated within the framework of Leslie matrices.
The main question which we consider here is to reveal what kind of qualitative dynami-

cal changes a discrete age-structured prey population may undergo as we increase its



interaction with an age-structured predator population. More specific; we have obtained

interesting results regarding the following questions:

(1) Given that the prey, in absence of the predator, exhibits almost periodic chaotic
oscillations, what effect (stabilizing or destabilizing) will interaction between the

populations have, and what about the periodicity?

(2) Is it possible to stabilize a “chaotic prey population” if the interaction becomes

sufficiently strong?

(3) The strength of the interaction between the populations is described by an inter-
action parameter 3. Are there qualitative differences of prey-predator cycles found
in case of 8 small (weak interaction) compared to the case where 3 is large (strong

interaction)?

The plan of the paper is as follows. In Section 2 we present the model. In Section 3
we state and prove theorems concerning the nature of bifurcations involved in the one-
population models as well as presenting and analyzing several examples (called Cases 1-4)
of age-structured prey-predator interactions. In the analysis we use density-dependent
survival probabilities as well as density-dependent fecundity elements. Finally, in Section

4, we discuss and unify results from the previous sections.

2 The Model
Consider the map
fRESR z- Az (1)

where the two-population vector Z = (z1, 29,1, v2)7. 71 and 5, y, and y, are the 2 age

classes of the prey and predator populations respectively. The 4 x 4 transition matrix A



is on block diagonal form

(A0
4= ( 0 A, ) @)
where each of the blocks have the structure of a Leslie matrix, cf. Caswell (1989) . We
define the prey block

A1:<f1 f2> (3)

and the predator block

(3 %)

where f; and g; are the fecundity (that is the number of daughters born per female)
elements for the prey and predator respectively, and p and ¢ denote the corresponding
year-to-year survival probabilities.

In its most general form, we assume that all the matrix elements may be functions of
the weighted sums of the age-classes involved, thus f; = f;(u,v), g; = ¢;(u,v) and so on,

where
U= a;T; + ATy v = by + bys (5)

Further, we impose the following restrictions

o 9J: iipk

<0 <0 < — <0
8:r]- - 83/] - al'j - ¢ ayJ -
_g:qizo agigo _aiz() QSO (6)
GIJ’ Byj an ByJ

0 =L g =1l %
which biologically means that intra specific competition (for example crowdening) leads
to a decrease of the fecundity and survival for both species, and that inter specific com-
petition (predation) leads to a decrease of the survival and fecundity of the prey and to
an increase of the survival and fecundity of the predator. Finally, in the absence of non-
linearities (self-regulation effects and prey-predator interactions), we have f; = F; (0,0),

p=P(0,0), 9; = G; (0,0), ¢ = Q (0,0), where capital letters indicate density independent
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elements, and we define the inherent net reproductive number of the prey and predator

respectively as F; + PF, and G + QG5 and we further assume that
F1+PF2>1 Gl+QGQ<1 (7)

Finally, using the notation T = (z1,22)7, ¥ = (y1y2)7, if ¥ = 0 we observe that map (1)

degenerates to the “prey” map
g RR-R T AT (8)

which has been extensively studied elsewhere in the literature, cf. the papers quoted in
the Introduction section. In the next section we shall deal with both (8) and the “full”

model (1).

3 Examples

Let us first consider some examples where the density dependence is in the fecundity
terms and not in the year-to-year survival probabilities, a choice which has often been
used in fishery models. This is based upon the fundamental assumption that most density
effects occur within the first year of life, cf. Levin and Goodyear (1980), Bergh and Getz
(1988).

Case 1

We start with the prey map
(I],ﬂfg) — (F1(1 = "/232)1/7!131 -1 Fg(l — ’}’.’132)1/712, P.Tl) (9)

where the fecundities are of the Deriso-Schnute form (Bergh and Getz 1988, Tuljapurkar
et al. 1994) and v < 0. Note that v — 0 gives the well-known Ricker case Fie™®2, v = —1
gives the Beverton and Holt case F1/(1+z,). In (9) only the second age class contributes
to density effects. The more general situation will be considered later. For the map (9)

we have the following:



Theorem 1

Consider the map (9) which fixed point is

1 1 b
7
Suppose —(1+ oP)/(1 +20P) < v <0 where Fy = o F}.
Then, for fixed values of v, ¢ and P, (z7,z3) will undergo a supercritical Hopf bifur-

cation at the threshold

(11)

1 - 1+20P] Y7
K 1+0P

Proof:

See Appendix B.

From Theorem 1 we conclude that in case of Fy > Fy, |Fi — Fg| small, there exists an
attracting invariant curve surrounding the unstable fixed point (z],z}). Now, following
Guckenheimer and Holmes (1990), on that curve (9) is topological equivalent to a circle

map
§ — 6 + c + br® + higher order terms (12)

where ¢ = | arg A|, (A is the dominant eigenvalue computed from the eigenvalue equation
of the linearized map), gives asymptotic information of the rotation number associated
with the circle map. Now, at our bifurcation threshold (11) the eigenvalue equation may

be written as

1
s A+1= 13
1+ 0P i . ( )

with solution

1 —




Unless ¢ > 1 the location of the eigenvalues clearly suggests that there will be no fre-
quency locking into an exact periodic orbit. If o > 1, ) is located close to the imaginary
axis but unlike the situation discussed in Wikan and Mjglhus (1995) where Re A < 0 we
have found no tendency towards 4-periodic dynamics here. Hence, the only outcome in
the unstable parameter region is a quasistationary orbit.

This is exemplified in Figures 1a and 1b where we have shown the dynamics beyond

the bifurcation threshold for the map
(@i o Fes 2y - o a2, N P ) (14)

(cf. (9)) for different choices of the fecundity Fj. In Figure 1a (F; = 2.5) we see the
invariant curve just beyond the bifurcation threshold, in Figure 1b (F; = 5.0) we show
the attractor in the chaotic regime and we have found no example of periodic orbits.
Our next goal is to investigate what kind of qualitative dynamical changes the prey
population may undergo as we introduce the interaction with the predator population

into the model. In order to do so we consider the map:

(z1, T2, 91, Y2) = (Fle_(x2+ﬂly2)if1 + Fe~(@thwlg, P,

B Bazo Yo, Q?Jl)

_ _ (15)
G1€ ’“————y1+Gge b2
that is, we consider the case where both species consist of 2 age-classes and that both

T2
1+ Boxo 1+ Boxo

species have intra specific interactions of the Ricker type. Moreover, the model expresses
that the prey is exposed to predation from the second age-class of the predator (ys)
and that the fecundity of the predator is related to the second age-class of the prey.
Both species have constant year-to-year survival probabilities. Finally, there are two non-
negative parameters 3, and (3, which will be referred to as the coupling or the interaction
parameters and obviously if 8, = 3, = 0, (15) degenerates to the pure prey map (14).

The unique nontrivial fixed point of (15) is

* * * * 1 * * 1 * *
(21, 25,91, 95) = (‘}5327%7'@%)%) (16)

where

1
Yo = — [In(Fy + PFy) — x}) (17)
1



and z3 is uniquely determined by

1+ [32.’13;
Gaz3(G1 + QGy)

Note that in the case §; = , = § — 0, then 2} > In(F} + PF;) which implies that

fIZ;—ln(Fl-FPFQ):ﬁl In [ (18)

v, 1s negative. Biologically this simply means that there exists a threshold g which g
must exceed in order for the predator to survive so in the following we shall assume that
BENoE

Using standard linearization techniques, the eigenvalue equation may, after some

algebra, be cast in the form

Mia¥+a i+ar+a,=0 (19)
where
R e
NE TR +PR G+ QG
gy PP QG B
Fi+PF, G +QGy (F1+ PEK)(G,+QG,)

a5 = — Ctins B Fly; PF,G, + F1QG,

G +QGy Fi+PF,  (Fi+PF)(G) +QG))
01— gty - PP QG PQFGy o 4

Fi+PF, G +QGy, (F1+ PE)(G,+QG,) 1+ Bz}

By use of the Jury criteria (Murray 1993) it is straightforward to show that the fixed
point (16) will never undergo a saddle node or a flip bifurcation at instability threshold

since the expressions

- Ya
1 + =l e 20
+ a4+ a2 + az + a4 = Ty, + B 1+ 52:1:; ( a>
G, — QG,
1—a+a — = {14y + 222213
ay +ax; —az + aq < +y2+G1+QG2 z
F, — PF, 4F G Ya
1+ ==y + == 20b
( Fi+ PF2> Gt RTPR)G 106y P Th oy O

both are positive. Thus stability or oscillations due to a Hopf bifurcation are the only
possible outcomes, so in some respects we do not expect substantial changes of the

dynamics in model (15) compared to what was found in the “pure” prey model (14).

g



Now, in order to examine this closer we apply the following strategy. We adjust the

prey parameters F;, F, and P in such a way that the prey in absence of the predator
exhibits chaotic oscillations. Then we start to increase the coupling parameter § = 3, =
B2 (the case 3 # [, will be considered later) which in turn leads to an increase of the
equilibrium population of the predator (since the result of (18) inserted in (17) gives that
Y5 is an increasing function of 3), and search for qualitative changes of the prey dynamics.

For small values of 3, the system is still in the chaotic regime and the chaotic attractor
is qualitatively similar to the one shown in Figure 1b, but as § is further enlarged this
attractor disappears and the dynamics found is a quasiperiodic orbit restricted on an
invariant curve. This is exemplified in Figure 2a. (Parameter values F} = 3, Fp = 5,
JE i C = (O = e e L

Keeping the other parameters fixed, our finding is that the fixed point (16) becomes
stable when 3 is increased to a threshold §; so what our analysis demonstrates is that in
this part of parameter space, an increase of the interaction parameter 3 acts as a stabilizing
effect. (Using the parameter values above we find that §; = 0.42 with corresponding
modulus 1 eigenvalues A = 0.2486 + 0.97401.)

The fixed point (16) is stable on an interval 8, < < fy, but as § — By the
magnitude of the dominant eigenvalues starts to increase again which signals that we have
now entered a part of parameter space where an increase of 3 acts as a destabilizing effect.
At By, (16) undergoes a new Hopf bifurcation so whenever 3 > Sy, |8 — By| small, the
dynamics is once again restricted on an invariant curve and we have found no example
of periodic or almost periodic orbits on that curve. This is shown in Figure 2b where
f = 1.32. (With our choice of parameter values, fg = 1.30 and A = 0.733183+0.681146.)

A summary of the dynamics presented above is given in a bifurcation diagram, cf. Figure 3.

Case 2

Consider the map,

10



(T1,T2, Y1, Y2) — (Fle_(ﬁﬂly)xl + Fye~=tAt g, Pry,

_y Doz _, [forx
Ge y1+252$ Y1 + Gae yl—:ﬁ;;y% Qu

Note that the only difference between (21) and (15) is that the fecundity functions in (21)

(21)

depend on the total populations £ = 1 + 22 and y = y; + y2, not on x5 and ¥y, only. As
it will become clear this difference has substantial dynamical consequences.

In case of no predation, map (21) degenerates to the well-known one-population model
(21,29) = (Fe ™%z, + F e *xq, Pxy) (22)

the Ricker case, with the restriction F; = F, = F. The reason behind this restriction is
that the dynamics found in the case F} < F, differs substantially from the cases F; =~ F5
and F; > F, (Wikan and Mjglhus 1996), so in order to limit the number of cases to discuss
we consider here the case F} = F; only.

Map (22) is a special case of
(z1,22) = (F(1 = v2)" 2, + F(1 — y2)"/7 x5, Pxy) (23)
and in consideration of the latter we have the following:
Theorem 2

Consider the map (23) which equilibrium solution is given by

1 P
* * = * * 24
et = (135 TP (24

where

= l/ [1 - (P + PF)™] (25)

Then:

(A) For a fixed P, 0 < P < ; and a fixed ¥ > —%(1 — P), (z},z3) will undergo a

supercritical flip bifurcation at the threshold

F

2 1/
Zm[”%_p] &)

11



(B) For a fixed P, ; < P <1 and a fixed v > —P/(1 + 2P), (z},z3) will undergo a

supercritical Hopf bifurcation at the threshold

(27)

1 14 2PV
1+ P P

Proof:

Cf. Appendix A.

In consideration of (22), the impact of Theorem 2 is that the fixed point of (22) will

undergo a supercritical flip bifurcation at the threshold

1 1

F=Fp=——=¢/0"P) (< P<= 28
e > (28a)
and a supercritical Hopf bifurcation at the threshold
T asepyp 1
F=Fyp=——e¢ —<P<1 (28b)

“1+P 2

A detailed analysis of the dynamics in the parameter regions beyond Fr and Fy may be
obtained in Guckenheimer et al. (1977), Levin (1981) and in Wikan and Mjglhus (1996).

Here, we shall only mention that an increase of F' beyond the threshold Fr (0 < P < 3)
leads to stable orbits with period 2%, k = 1,2,... and in case of large values of F, even
in the chaotic regime a certain kind of periodicity is preserved since the strange attractor
consists of 4 separate subsets each of which is visited once every 4th iteration, cf. Wikan
and Mjglhus (1996).

On the other hand, in case of P close to unity and F > Fy, |F — Fy| small, there
exists a stable almost 3-periodic, small amplitude orbit restricted to an invariant curve
which is due to the fact that the eigenvalues are close to third root of unity at bifurcation
threshold (28b). (If P = 1, A = ¢*?7/3)¢)) For higher values of F there exists an exact
large amplitude 3-period orbit which is followed by other periodic orbits of period 2* - 3,

k=1,2,...as F is increased. Eventually, for even larger F' values, the dynamics becomes

12



chaotic and in Figure 4a we show what the attractor looks like. Each of the three branches
of the attractor are visited only once every 3rd iteration so clearly there is a certain kind
of 3-periodicity present in the chaotic regime as well.

Now, in order to reveal what kind of dynamical changes the system will undergo as
we introduce the predator we return to map (21).

At equilibrium

(* * * *) 1 2 P = 1 ~ Q * (29)
T = an 2 1
1T2, Y1, Y9 1+ P ’1+P$’1+QJ’1+Qy

The relation between 2* and y* and the numerical value of z* may be found by letting

zy =z* and y; = y* in (17) and (18) respectively.

The coefficients in the eigenvalue equation (19) now becomes

g = 1 — L — G
N T e
* * * * l
ap = Pz} + Qi + z7y) <1+51m>
_ Flyf—i—PFQ G11T+QG2 F1G1

F+PF, Gi+QGy ' (Fi+PF)(G: +QG,)

- 1 (PFo + QFy)y;

= 1 _

o = nyi(P+@Q) [ + 6 z*(1 +ﬁ2x*)] F, + PF, (30)
_ (PG1 + QGQ).IT PG1F2 -+ QF1G2
G1 + QGQ (Fl + PFQ)(Gl + QGQ)
1 PQFy;

= POz*v* | 1 —

@4 Qziy] < + b z*(1 + ﬁﬂ“)) F\ + PF,

_ PQGQII PQF2G2
G+ QG, (Fi+ PF)(G) + QG,)

Obviously, as in Case 1 the fixed point (29) will not undergo a saddle node bifurcation
since (cf. (20a))

1
z*(1 + Brz*)

The criterion for (29) not to undergo a flip bifurcation is

SO =) 1 2F

Y 1+0) {‘” (1+P) [l+ﬁlx*(1+ﬁgz*)}_F1+PF2}>
°G,  ((1-P) . oOF,

GI+QG2{(1+P)$ “F1+PF2}

1+a1+a2+ag+a4:x‘y*[l+ﬂl >0 (31)

13



and here one may observe the following: First, suppose that P — 0, 31, #, are small and
F} is large. Then z* is large and y* is small, and clearly, the implication of this is that the
inequality sign in (32) is reversed. On the other hand, suppose that 5, and 3, becomes
larger which in turn implies that z* becomes smaller and y* larger. Then it is easy to
see that the left hand side of (32) is greater than the right hand side. This demonstrates
that in case of small values of P (29) may undergo a flip bifurcation for sufficiently large
values of 3; and (.

Next, suppose that P — 1, then (roughly!) (32) may be written as

1-Q . __ 2
1+07 S &+ 06,

(33)

which is valid unless y* becomes very large. (If @ — 1 (33) is obviously valid.) Hence we
do not expect (29) to go through a flip bifurcation for large values of P, so what these
findings indicate is that in case of P is small, the transfer from stability to instability goes
through a flip bifurcation and in case of P large stability or nonstationarity dynamics due
to a (supercritical) Hopf bifurcation are the typical outcomes.

In order to examine this closer we apply the same strategy as in Case 1. Hence,
consider the fixed parameter set FF = F; = F5, = 185, P =09, G; = G, = G = 5.0,
Q =05 If 8 =0 = [ =0 there is no predation, the prey dynamics is chaotic but
still almost 3-periodic as displayed in Figure 4a. For small values of 3 the structure of
the attractor remains unchanged. In Figure 4b we show the situation for the predator
in the case # = 0.08, showing that the predator has been forced into the same kind of
periodicity as the prey, cf. the discussion in Boonstra et al. (1998). Further increase of 3
acts stabilizing since the dynamics now becomes periodic with period 3-2%, k = ..., 3,2,1,0,
thus an increase of § leads to the flip bifurcation sequence in the opposite direction.
An exact 3-periodic orbit for both the prey and the predator is shown in Figures 5a,b
(B = 0.26). Stability of the fixed point is achieved when 3 = 4, = 0.29 where the root
of (19) is A = —0.5407 & 0.8462:. The fixed point (29) is stable whenever 8 € (8., Ou].
With our choice of parameters; 3y = 2.38 with corresponding modulus 1 eigenvalues

A = 0.4978 £ 0.8655¢ so evidently there is another Hopf bifurcation at the threshold

14



Bg. In case of B > By, |6 — Bu| small, there is a quasiperiodic orbit with no sign of any
periodicity. This is exemplified in Figure 6. For higher values of 3 the populations reenter

a chaotic regime.

Starting from zero, numerical simulations show that an increase of 3 in the case of P
small gives in many respects much of the same qualitative picture as in the case P large.
For small values of 3 the prey is still in the chaotic regime, and the predator is forced
into a chaotic almost 4-period orbit. Further enlargement of the coupling parameter leads
also here to the flip bifurcation sequence in the opposite direction giving birth to stable
orbits of period 2%, k = ...,3,2,1. At (. stability is gained and A\, = —1. Stability
is maintained in [3L, fy]. At the threshold Sy there is a Hopf bifurcation which leads
to quasiperiodic behaviour, and eventually the dynamics becomes chaotic. A numerical
example: Suppose F' = 585, P = 0.2, G = 5, @ = 5. Then 5, = 0.93, (\, = -1),
B = 2.41, Ay = 0.2510 + 0.9673s.

Case 3

Consider the map f : R* —» R*

(21, T2, Y1, Y2) — (Fle_(z+ﬁly)$l + Foe~ A, pry,

Gre7¥(1 — e P%)y; + Gae V(1 — e ™)y, Qy1) oy
Note that the only difference between the model in Case 2 and the one here is that the prey
dependent part in the predator’s fecundity terms has been changed. Instead of repeating
the same detailed analysis as in Case 2, we shall here summarize the results obtained
from (34) in the bifurcation diagram presented in Figure 7 where the parameter values

P=09, Fi=F,=20,Q =0.9, G; = Gy = 4 have been used.
Referring to Figure 7; for small values of 8 = f; = [, the prey (and the predator)

is still in the chaotic regime and we have verified that the attractor is similar to the one

shown in Figure 5a. As ( is increased stability properties are improved and our analysis

15



shows that the only stable attractor is a large amplitude exact 3-cycle which is generated

by the map k = fo fo f (cf. (34)). This is followed by a [ interval where the 3-cycle
coexists with an invariant curve whenever § € [0.244, 0.26] and with the stable fixed point
(z3,25,v7,vys) in [0.26, 0.31]. We have computed numerically that 8 = 3, = 0.26 as the
Jury expression (Murray 1993)

(1 — a})® — (a3 — aga1)| — [(1 — af) (a2 — asa2) — (a3 — agar)(ar — aqas)|  (35)

changes sign and becomes positive. (a;...aq are the coefficients in the linearization of
(34).) The corresponding modulus 1 eigenvalue is A, = —0.5625 £ 0.83437 and since A, is
close to third root of unity the dynamics on the invariant curve has a strong resemblance
of 3-cycles.

Returning to the large amplitude 3-cycle, it is created at the value 8 = 0.31 as &
undegoes a saddle node bifurcation. (This is verified by substituting a corresponding fixed
point (Ty,T2,7,,7,) of k into the Jacobian Dk and then observe that the (numerically)
computed eigenvalue u =~ 1.) The invariant curve disappears when § = 0.244 as it is
“hit” by the three branches of unstable equilibria generated by k. Note that & has seven
nontrivial fixed points, cf. Wikan and Mjglhus (1996).

When # = 1.1 further enlargement acts as a destabilizing effect and at the value
Br = 1.86, (35) again turns negative which means that (z}, 23, y7,v;) undergoes another
Hopf bifurcation (Ay = 0.4253+£0.9062:). Beyond [y the dynamics occurs on an invariant
curve whenever |3 — (x| is small and there is no sign of any periodicity. For higher values

of @ numerical simulations show that the dynamics once again becomes chaotic.

If we repeat the analysis above, using small values of P, the same qualitative picture
as in the corresponding situation in Case 2 emerges, so instead of presenting details we
just mention that there also here exists a stable parameter region (4, By) and that the
eigenvalue at 0, A\, = —1. At (g the expression (35) fails to be positive, Ay is found to

be complex with Re Ay > 0.
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In the next cases we shall give some results about the dynamics found in models where
the density dependence is restricted to the survival probabilities.

The basic “prey” map is
f:R? 5 R? (1, T9) — (FQ:L'Q, P(1— 7z)1/7x1) (36)

where z = a1 + aszo. Thus, we consider the case where the fecundity is constant and
restricted to the last age class only, and we further assume that the survival probability

depends of the weighted sum of the two age classes z; and z;.
Theorem 3

Consider the map (36) under the restrictions Fy # 2as/ary, ag # 0. Assume Fy > as/a;.
Then for v > —a;Fy/2(a1Fy + a3) the fixed point (z},z5) of map (36) will undergo a
supercritical Hopf bifurcation at the threshold

1 Q(ChFQ + 052) Al
RN S L e :
- ( Ll ) (37)

Proof:

See Wikan (1997).

Note that if v — 0, (36) and (37) may be written as

(z1,22) — (Fozo, Pe™"xy) (38)
L o Fatan)/(en )

Following Wikan and Mjglhus (1995), assuming a; = ay, the solution of the eigenvalue

equation of the linearized map of (38) at bifurcation threshold (39) is

Ade=——+—1/F2-1i (40)




and since F, is a large number at the threshold (39), A; are located very close to the

imaginary axis. Hence, whenever Fy > Fyp, |F; — Fop| small (where Fyp is the F; value
which satisfies (39) for a given P), the rotation number o & 1/4 (cf. the discussion just
after Theorem 1), thus the dynamics has a strong resemblance of 4-cycles, either exact or
approximate.

In somewhat more detail we find that whenever F, — Fy5 small there exists an almost
4-periodic orbit restricted to an invariant curve, as F5 is increased we obtain an exact 4-
period orbit through frequency locking, further enlargement results in the flip bifurcation
sequence giving births to orbits of period 4- 2% k =1,2,... and beyond the accumulation
point for the flip bifurcation sequence the dynamics becomes chaotic. This is shown
in Figure 8 and evidently, even in the chaotic regime a certain kind of 4-periodicity is
preserved.

If Fy =~ 209/, oy large, A is close to third root of unity at instability threshold
(39), 0 = 1/3 so in case of F, > Fyp, in accord with Wikan (1997) the dynamics this time
has a strong resemblance of 3-cycles.

Our next goal is to reveal to what extent the inclusion of a predator is capable of

altering the periodical behaviour found in the prey models (36) and (38).

Case 4

Consider the map

- Pox
1, T2, Y1, Y2) = | Faza, Pe~ @%@ ,—Q— 41
(z1, 22,51, 92) (22 1, G2l 1+y1+523:y1 (41)

Hence, we assume that the fecundities for both species are constant and restricted to the
second age classes only and that the survival probabilities for both populations depend
on the total prey as well as the total predator populations. The equilibrium solution of

(41) is:

* * * * 2 * * 1 *
T Ty = x Yy = 2y Z/2:]+G2y (42)
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where

Y = —1—[1n(PF2) — :c*]
B (43)
o u+ u? + 4,321)
B 20,

UZHQIH(PFQ)'*‘(l-‘QGQ)ﬁlﬁQ—“l v :ln(PF2)+ﬁ1

Observe that #; = f, = 0 implies that (41) degenerates to the prey map (38) (ay = ap =
1).

The coefficients in the 4th order eigenvalue equation (19) are

P %
F, Gy(1+y7)
=l — 24+ YU T1Yi hraiyi
1+y FGy(1+y*)  FoGox*(1 4+ foz)

=4 Priyi BTy W (44)

Fy  Fur*(1+ faz*)  Goz*(14 foz*)  Go(1+y*)

iy T1Y;
F(1+y*)  Go(1+y*)
Biziy] Yi T1Y1

ag=1—2a2] + =
! Vi (14 Boxt) 14y 149

and clearly there will be no transfer from stability to instability through a saddle node or

flip bifurcation since

(1+ F)(1+Gy) [ o} 1 ]
1 = *ur > O 45
+a1+(12+a3+a4 F2G2 ‘rlyl _x*(1+ﬁ2:r*)+1+y*_ ( )
(] - FQ)(] - GQ) i ,31 1 1
1— - = : >0 46
a1 +ay —az+ay 7,G, Y, (1 + Boz) + T+ ] (46)

Hence, stability or dynamics governed by Hopf bifurcations are the only possible outcomes.

Starting with §;, f, = 0 and prey parameters as in Figure 9 (P = 0.6, F;, = 25), the
results here are similar to what was found in Cases 2 and 3. An increase of the coupling
parameters acts as a stabilizing effect but as long as the populations are in the unstable
parameter region the initial 4-periodic behaviour is not altered in any substantial way.

In Figure 9 we show an exact 4-periodic orbit for both species. (If Fy = 2ay/ay, ay/a
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large, we find 3-periodic orbits.) Stability is achieved at a threshold (Hopf!) where the

Jury relation (35) becomes positive. The fixed point (x7},z3, ¥}, y3) remains stable as long

as (35) is positive and

ﬁQQGQII$*(1 IF ﬁzl“)
B132QGaz; — (1 — 27)(1 + foz*)?

hn < (47)

but when f1, 3, is increased to a level where the inequality sign in (47) is reversed the
fixed point undergoes a new Hopf bifurcation and in all cases investigated the location
of the eigenvalues at the threshold given by (47) is very different from the location at
the threshold given by (35). Consequently, the low-periodic behaviour found in case of
B1, B2 small is not found in case of larger values of the coupling parameters. (A numerical
example: A = —0.03058 + 0.999347 where (35) becomes positive, A = 0.77621 + 0.63334:
at the threshold (47).) If we continue to increase ; and 5, the populations reenter a
chaotic regime. In a bifurcation diagram, Figure 10, we summarize the results presented
above.

In order to close Case 4 let us just briefly mention that the results just presented do
not seem to depend upon the functions we use in the description of the survival of the

predator in map (41). For example we may replace the 4th component

Yo — Q Bex y
2 Ty 1+ Box ]
by
y2 = Qe™V (1 —e™™%) y, (48)

and still obtain qualitatively the same results as above.

Finally, if we return to the prey map (39), assuming F, ~ 2ay/ay, as/ay large,
which means that it is 2o which primarily contributes to density effects, we have already

mentioned that 3-periodic behaviour is the outcome beyond the instability threshold.
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This is strongly related to the fact that the eigenvalues of linearized map of (39) at the

threshold (40)

1
= 2

(a1 F2)? — o i (49)

aFy o by
are close to third root of unity.

Note, however, that if z, exclusively contributes to density effects, map (39) becomes
(21, 22) = (Fax2, Pe™"11) (50)

and for this particular map we have the following: The fixed point of (50)
(z1,23) = (FR In(PF,),In(PF,)) (51)

is always unstable and from the eigenvalue equation A\* +a; A +a, = 0 it is straightforward
to conclude that it is the flip condition 1 — a; + a, > 0 which fails. Hence, it is natural
to search for a stable 2-cycle.

The 2nd iterate of (50) may be expressed as

Ty 42 = PFye™txy
(52)
Toppo = PFoe™ ™y,
Here, one possibility is z2: = z9.41 = In(PF,) which gives nothing but the trivial cycle
where (51) is the repeating point. Another possibility is to search for a 2-cycle of the form

(A,0), (0,B). Then from (52)
A %m(PFQ)2 B = In(PF,)? (53)

but by use of these values we find that the eigenvalues u of the linearized map of (52)

must satisfy

(u— PF) <u = PlFQ) = (54)

Hence, the 2-cycle (A,0), (0, B) is also unstable. In fact, the only dynamics found from
map (50) is a divergent sequence of points ((Ay,0), (0, B1)), ((A2,0), (0, By)), ..., where
Aj > Aj——h BJ' > B_j—1~
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Now, if we include a predator, for example through the models:

_ Q Box -
Bomg, Pe Sitoid) o S 55
(151,12,211,112) - ( 2l2, 7€ Z1, GaYa, T+y 1+ foz 51 ( )
or
_ _, DBz
(33171'279171/2) = <F21’2> Fe (Z2+ﬁly)371, (Glyl + Gays)e™ T Qu (56)
2

we obtain qualitatively the same results: In case of sufficiently large values of the inter-
action parameters it is possible to obtain a stable 2-cycle of the form (A;,0, By, By),

(0, Ag, B3, By), but it is not possible to obtain a stable fixed point (z3, x5, y7,y3).

4 Discussion

In the previous section we have analysed a selected number of 4-dimensional prey—predator
models. Focus has been on the dynamical properties and the role of the predator in
unstable parameter regions. Despite the fact that we consider 2-age classes for both
species only, the parameter space is huge so care should be taken with respect of drawing
too strong conclusions, but before we try to unify parts of the results found in the previous
section, let us first examine the consequence(s) of using only one coupling parameter
B = ;1 = B2 instead of dealing with the more general case 3, # (3.

Thus, reconsider Case 1, map (15) and Case 2, map (21) (where we use the same
parameters F;, G;, P and @) as before (P = 0.9 in Case 2)) and let §; > [, be a fixed
number. The result of increasing f, (starting with #, = 0) is that the fixed point of
maps (15) and (21) becomes stable at a certain threshold f2. In Table 1 we show some
fixed values of 3, together with the “new” instability threshold 3, and the corresponding
eigenvalues of map (15). (The last row in the table is the “old” situation G, = i = Bar.)

In Table 2 we consider map (21).
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Table 1
B Bar A

1.00 0.29 0.2488+0.9711871
0.75 0.31 0.2487+0.97849%
0.50 0.38 0.2484+0.9795:
0.42 0.42 0.2486+0.9740:

Table 2
B Bar A

1.00 0.07 ~0.557040.84347:
0.75 0.09 -0.5507+0.8442:
0.50 0.11 -0.5510+0.8440:
0.29 0.29 —-0.5407+0.8462¢

Hence, whenever #; > (. (f; fixed) the threshold (5, is smaller than the “old”
threshold .. On the other hand, the locations of the eigenvalues at bifurcation threshold
are almost identical. Thus, on the whole, whenever 3, < (y; the dynamics must be
qualitative similar to what was found in Case 1 and Case 2, the main difference is the
“speed” in which stability is achieved. Biologically, this makes sense. If 3; is large, then
the predator has great impact on the prey also at small predator densities, hence one
should expect a faster reduction of the size of the prey population which again indicates
that stability is gained at a lower threshold.

If we continue to increase [J, above the threshold f; (keeping (3, fixed) the only
dynamics found is the stable fixed point (z7, 3, y7,v3), we do not find a second Hopf
bifurcation threshold ;5. However, from a biological point of view, it is an open question
if it makes sense to consider 8, > 3; (although we have discussed f; and 3, not in terms
of any units, f» > [ suggests that in this part of parameter space, the predator gains
more from the prey than the prey is able to offer), so in the following we shall deal with
the case § = [3; = (3, exclusively.

Let us now turn to the dynamics and the role of the predator in case of # small. In
all the cases discussed in the previous section we found that an increase of the coupling

parameter acts as a stabilizing effect. In fact, it is tempting to conjecture that an increase
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of B (B small) in the “prey—predator” maps (15), (21), (34), (41), (48) acts qualitatively

more or less in the same way as a decrease of the fecundity F in the “prey” maps (14), (22),
(23) and (36). In order to support such a conjecture one has to show that the eigenvalues
of the linearized “prey—predator” maps cross the unit circle (roughly!) at the same place
as the eigenvalues of the linearized “prey” maps.

Now, at bifurcation threshold F; = [1/(1 + oP)]exp[(14+20P)/(1+0P))], (F» = 0 F1),

the eigenvalues of the linearized map of (14) may be written as

)\:m:l;—P—)[l:t\/él(lnLoP)Q—li} (57)

and in Table 3 we show some numerical values of the eigenvalues at bifurcation threshold
of the linearized map of (15) in case of P = 0.6 and clearly, the eigenvalues shown in

Table 3 and the values of (57) in the cases P = 0.6, 0 =1, 5/3, 2 are very close.

Table 3
=4 o=1 Gi=Gy=5 Q=05 =026  \=0.294£0.958
HE=—3 =2 Gi=Gy=2 Q=09 =042  )=0.249+0.974
=3 0=2 G1=3Gy=4 Q=07 =029 X=0.221+0.977

Similar conclusions may be obtained by comparing the “prey” maps (22) and (38) with
the corresponding “prey-predator” maps (21) and (41). For example: The eigenvalues of
the linearized map of (22) at bifurcation threshold are

11
A= —— 4+ —/2P?— 1
5P © 2P ! 5

~ —0.555 +0.831¢ in the special case P = 0.9, and as mentioned the modulus 1 solution
of (30) at bifurcation threshold f;, = 0.29 is A = —0.541 + 0.846:¢. Hence, our conjecture
is supported.

Let us now turn to the question of periodicity. In the “prey” maps (22), (36) and (38) we
found several examples of periodic dynamics of low period (either exact or approximate)
in large parameter regions, the chaotic regime included. (In consideration of (36); if
v — —ay Fy/2(ay Fy + o) (cf. Theorem 3), the 4-periodicity is even more pronounced

than in the case v — 0 which was discussed in Case 4, cf. Wikan (1997).)
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One of the most significant results obtained from the previous section was that the

inclusion of the predator does not seem to be capable of altering the periodicity of the
prey as long as both species are in the unstable parameter region 3 < ;. In fact, what
we find is that the prey periodicity is reflected in similar cycles of the predator, a result
which seems to be unaffected by the type of functions we use in the description of the
predator. It is interesting to notice that such phenomena have indeed been observed
in nature, especially among vole and lemming species, cf. Stenseth and Ims (1993) and
references therein.

Another aspect which also should be mentioned is that the growth of the prey (not the
predator!) is low during the low phase of the cycle, cf. Figure 10. It is an open question
what prevents population growth during the low phase, see Boonstra et al. (1998). A
comparison between 4-cycles generated by the “prey” map (38) and 4-cycles generated
by the “prey-predator” map (41) (cf. Figure 9), indicates that the predator to a certain
extent may damp the growth of the prey during the low phase, but the effect seems to be
too small in order to explain why the growth is so low as observed.

Finally, let us turn to the dynamics and the role of the predator in case of 3 large.
Except for the last map (map (50)) under Case 4, one of our main findings from Section
3 was that there exists a value s € [G1, Bx] such that an increase of 3 beyond (s acts
as a destabilizing effect. All the maps also share the common feature that their unique
nontrivial fixed point (z7, x5, y7,y5) undergoes a (supercritical) Hopf bifurcation at the
threshold fy. Hence, for § > fy, |#— Gy | small, the dynamics is restricted on an invariant
curve. We have verified through simulations that the last result remains valid also in cases
where we adjust the prey parameter Fj, F5 and P such that the prey possesses a stable
fixed point in absence of the predator, cf. Theorem 1, 2 and 3.

When [ (3 > () is further increased the populations reenter the chaotic regime. On
the route to chaos (which may differ from case to case, although the Curry and Yorke
route seems to be the most common, see Caswell (1989)), we have found a few examples
of periodic dynamics (Case 4) but in contrast to § < f the period this time is large,

typically 12 or 14. The generic case is that there is no periodicity.



Appendix A
Proof of Theorem 2 in the main text

Using the abbreviation f = F(1 — vz)Y/7 (evaluated at equilibrium!) the eigenvalue

equation of the linearized map may be written as
N—(fz"+ f)A=P(flz+ f) =0 (A1)
and by use of the Jury criteria

1—a1+a2>0 (AQ)

cf. Murray (1993), where a; = —(f'z*+ f) and ay = —P(f'z* + f), it is straightforward to

show that the flip governs the dynamics whenever 0 < P < % and that the corresponding

1

Hopf interval is ; < P < 1. Further the critical parameter values in the flip and Hopf

cases respectively are easily found to be

1+2P)'"
2 (A9

1 9 1/ 1
PR SO || O gy
) 1+P{+71—P] " 1+P{+7 P

So what remains to prove is that the bifurcations are of the supercritical type.

1 __1_
— P 1I-P
(v T

which columns are the eigenvectors corresponding to the real eigenvalues of (A1) in

(A) Define the matrix

the flip case.

Then, after expanding the first component of the map (23) up to third order,
applying the change of coordinates (%1, Z,) = (21— 7, To—x3}) in order to transform

the bifurcation to the origin, together with the transformations
Tg v v T
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the map may be cast into standard form as

(u,v) — (—u + g(u,v), — ] fp v — g(u,v)) (A5)
where
g — A [(1 — PPu+ PQ’U]2 + B [(l — P)2u + PQU}3
and
A= ! 1) B=- ! {2}
- P(2P-1)1-P) - P2(2P-1)(1 - P)?
and

{1} — fl+ %fﬂxt {2} = fl/+ flll *

The next step involves the restriction of (A5) to the center manifold. To do this we

first seek the center manifold as a graph
v = i(u) = Ku® + Lu? (A6)

and by inserting this expression into (A5) the center manifold (up to third order)

may be found from the relation

i(—u+g(u,i(u))) 7 fP i(u) + g(u,i(u)) =0
from which we obtain
K=-(1-P)y°4 L=(1-P)"[B+24*1-P)(1-2P)] (A7)

and finally by substituting (A6) (together with (A7)) into the first component of

(A5) we obtain the restricted map
u — p(u) = —u+ A(1 — PY*u? + (1 - P)’[B — 24*°P*(1 - P)]<? (A8)

Now according to theorem 3.5.1 in Guckenheimer and Holmes (1990) the bifurcation

will be supercritical if the relations

op 0p o’p  Op &p ( D 9%p

e 9 s lise B e

5F 0u’ T “5udF _ OF 5u’  \ou da0F 7 © (A9)
1 (/0% p
3 <a—> 3 (z?) ()

27



holds at the bifurcation.

To this end it is easy to show that the left hand side of the nongeneracy condition

(A9) may be written as

) 2y oy 1-(1/7) (1 _ P)?
1-P 1-2P

which is clearly nonzero whenever v > —(1— P)/2 and 0 < P < 1/2. The left hand

side of (A10) may be expressed as

2y ? 2(1 — P)? , 1
[1_1—1’5“} P2(1+P)(1—2P){(P_7) +6(1"7)(47_3P“)}

and since v > —1/2 ensures that v > —(1 — P)/2 holds for all P, 0 < P < 1/2, the
parenthesis { } > P?+ (1/4)P > 0. Hence, the left hand side of (A10) is positive

and part (A) of Theorem 1 is proved.

To prove part (B), that the Hopf is supercritical, we first argue along the same line
as in (A) but the matrix 7 now consists of the real and imaginary parts of the
eigenvectors as columns. Hence,

1 b

T 2p? T 2p?

=
1 0

where b = v/4P? — 1. The corresponding map to (A5) now becomes

()l ) G)elen) o

b L
2P 2P

where

g(u,v) = A[(2P* — 1)u — bv]2 +B[(2P* - 1)u— bv]3

and
1 1

A=—gptlh B=-gmid

where {1} and {2} are defined through formulae (A5).
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Following Guckenheimer and Holmes (1990) (theorem 3.5.2), the bifurcation is of

the supercritical type if
4 a>0 (A12)
F

at bifurcation (which ensures that the eigenvalues leave the unit circle at bifurcation)
and that the quantity

= 2/\)/\
1—

a = —Re

fnfm} — = €11 = |€02)® + Re(X &) (A13)

is negative at the bifurcation. Here

1 .
520 = g [Qqu St l(guu - gvv)]
1
fll — Z [guu + gvv]
1
502 - g [ 25’1“; + 7/(guu gvv)]
and
1
621 - 6 [Juuv + v + Z(Juuu ot guvv)}
Now, at our bifurcation
P RN
A -
=5 |1+

which is clearly positive.

Further

1 | 1E2P
162P+ )1+ P2 |

where
h(y) = (3P +2)[1 —y(1+2P) + (2P + 1)(1 4+ P)(1 —~) [P — 1 + 2¢(1 + 2P)]

To complete the proof we must show that h(y) > 0 whenever 1/2 < P < 1.

P\ ) o
h<—1+2P>"}“"(1+P)>0 0=l =2 P FEP RPN

Al




and clearly h; > hs.

Further
W(y)=(1+42P)[-P*—6P -1+ (12P* + 14P)y] < 0

Hence, h > 0 and consequently a < 0.
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Appendix B
Proof of Theorem 1 in the main text

The proof of Theorem 1 follows the same pattern as the proof of part (B) of Theorem 2
(cf. Appendix A). By applying the Jury criteria on the eigenvalue equation

ocP

o =
1+0P

A+ F/(1+0oP)'z; — (B1)

—1+0P

it is straightforward to show that the Hopf instability threshold is given by (11) in the
main text. The “standard form” of (9) (cf. (A11)) now becomes

1 b

(L) () + () (B2)

2(140P)  2(140P)

where

b=+/A4(1+0oP)’ 1

1
9(u,v) = Au® + f'uv + Bu® + o[t

1 111
A=—l/+2P(+oP){1)]  B=—1 |5/ +2P(+0P){2)
e R L o
{1}—Uf+2f T2 {2}—20f +6f 5 %2

and f', f”, ... are the derivatives of f(zy) = Fy(1 — vx5)Y" evaluated at equilibrium.
Now, the Hopf bifurcation is of the supercritical type whenever
4 Al >0 (B3)
dF;
at bifurcation and that the “stability coefficient” a defined through (A13) is negative at
bifurcation. For the problem at hand, (12) and (B1) gives

>0

1+ 20P710/
ol ]

d 1
= 1
aF Al =35 +oP)[ +7
and, using the abbreviation w =1+ (1 +20P)/(1 4+ ¢P) > 0, a may be expressed as
a=V+7 (B4)
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where

Aw
and
7= e {0? + 6*(1 — 7) [0?P% + 27(1 + oP)?]
160%(1 + oP)?

+3[oP — y(1+oP)(1+20P))*}

Here we may notice that V' < 0 since the parenthesis { } in V is positive (b* > 3) and

A:—ﬁEw[oP—’y(l+aP)(l+20P)]<O

Z is negative unless + is close to —1 but in this case |V| > |Z|, thus a = V + 7 is negative

also here, hence a < 0 everywhere and we conclude that the bifurcation is supercritical.
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Figure Captions

Figure 1. The dynamics of (14) beyond the bifurcation threshold. Parameter values: (a)
F, =25, P =06 (b) F; =5.0, P = 0.6.

Figure 2 Stable attractors of the map (15). Parameter values: Fy =3, F, =5, P = 0.6,
G =G,=2,0Q=09. (a) 3=0.40; (b) f=1,32.

Figure 3. The bifurcation diagram generated by map (15).
Figure 4a. The strange attractor in the case (P, F') = (0.90, 18.50).

Figure 4b. The predator in the chaotic regime. Each of the 3 branches are visited once

every 3rd iteration. (§ = 0.08).
Figure 5. An exact 3-periodic obit. § = 0.26. (a) The prey. (b) The predator.
Figure 6. The prey dynamics beyond Sy, |3 — By| small.
Figure 7. The bifurcation diagram generated by map (34).

Figure 8. The map (38) in the chaotic regime. The strange attractor has been divided
into 4 disjoint subsets which are visited once in each cycle. The dynamics goes

clockwise. (P = 0.6, F, = 25).

Figure 9. An exact 4-periodic orbit (map (41)). The “upper” orbit belongs to the prey,
the “lower” to the predator. (P =@ = 0.6, F» = 25, G, =12, f = 3, = (3, = 0.20).

Figure 10. The bifurcation diagram generated by map (41).
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