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Abbreviations 

ADL  aerobic dive limit 
CS  citrate synthase 
CO  carbon monoxide 
CV  coefficient of variance 
EC  enzyme commission number 
Hb  haemoglobin 
Hct  haematocrit 
HIF-1  hypoxia-inducible factor-1  
HOAD  β-hydroxyacyl coenzyme A dehydrogenase 
IU  international units for enzyme activity (µM/ml/min/g tissue) 
LD  Musculus longissimus dorsi  
LDH  lactate dehydrogenase 
Mb  myoglobin  
O2  oxygen 
RPM  revolutions per minute 
SSP  Musculus supraspinatus 
TBO  total body oxygen 
TP  total protein 
 

Abstract 

The hooded seal is a deep diving phocid seal in the North Atlantic Ocean, possessing the 

highest oxygen storing capacity and the shortest lactation period of any mammal hitherto 

reported. Pups are not born expert divers and have to develop relevant physiological 

adaptations quickly in order to forage independently. To investigate the early development 

of myoglobin (Mb), a key molecule for diving adaptation, muscles from weaned hooded seal 

pups were sampled for a period of three months. This revealed a rapid initial rise of Mb 

levels within the first month accounting for 50 % of the Mb development of the entire first 

year of life. This developmental pattern coincides with the increase of dive duration of free 

living hooded seal pups, suggesting that the Mb level influences their diving behavior.  

To investigate if activity regulates Mb production, the swimming muscle M. longissimus dorsi 

and flipper muscle M. supraspinatus were examined as well as key enzymes for muscular 

metabolism. This showed that active muscles develop faster and have higher Mb 

concentrations than idle muscles whereas there is no difference in muscles of similar activity.  

This suggests that activity rather than hypoxia is influencing the post natal increase of Mb in 

seals. 
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I. Introduction 

 

The marine world, especially in the Arctic, represents a challenging environment for 

mammals. To exploit the food resources of the seas, marine mammals have to spend 

considerable parts of their life underwater and hence are challenged with insufficient oxygen 

supply, or hypoxia (Ramirez et al., 2007), on a regular basis. Research over the last century 

has revealed many fascinating adaptations of marine mammals that allows them to cope with 

the challenges of underwater activity (for review see: Butler and Jones, 1997; Ramirez et al., 

2007; Folkow and Blix, 2010).  

The hooded seal (Cystophora cristata, Erxleben, 1777) is a deep diving phocid seal in arctic 

waters. It reaches depths of more than 1000 m, for durations up to one hour (Folkow and 

Blix, 1999). This requires extreme physiological adaptations and one of the most important 

one for diving mammals is the capacity to store large amounts of oxygen. The hooded seal in 

fact, possesses the largest oxygen stores per body mass hitherto reported in mammals 

(Burns et al., 2007).  

Not being born expert divers, newborn animals have to develop those adaptations in order 

to be able to forage independently and efficiently. This has to happen as fast as possible, 

especially for seals in the arctic, breeding on unstable ice floes, to minimize the costs for the 

mother and ensure survival of the pups. Here again the hooded seal is extreme; having the 

shortest lactation period of any mammal lasting only three to four days (Bowen et al., 1985) 

they cannot rely on maternal support while growing up; hence they have to become 

independent foragers within the shortest time. This requirement of fast maturation, in 

connection with their extreme diving behaviour, makes the hooded seal an excellent species 

to study the development of diving adaptations. 

 

Life history and development  

The hooded seal is an arctic pinniped species belonging to the family of true seals or earless 

seals (Phocidae). The average length and weight of adults is about 2 m and <200 kg for 

females and 2.5 m and <400 kg for males (Rasmussen, 1960; Folkow et al., 1996). Their 

distribution in the north Atlantic (fig 1.1) stretches from waters off Newfoundland in the 

south-west, to the waters around Svalbard in the north-east, including waters around  the 

west and east coasts of Greenland (Davis Strait, Greenland Sea) (Folkow et al., 1996).  
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Two main breeding stocks have been reported, one east of Newfoundland and one in the 

West-ice north-west of Jan Mayen (Reeves and Ling, 1980; Kovacs and Lavigne, 1986; 

Folkow et al., 1996). The following 

description accounts for the West-ice 

population, which has been the subject of 

study in the present project.  

Breeding takes place in late March / early 

April when females give birth on heavy pack-

ice to a single 20 േ 10 kg pup. Pups are 

extremely precocial (Bowen et al., 1985; 

Bowen et al., 1987). They are born with an 

insulating blubber layer and a short haired fur 

as they shed their lanugo fur already in utero 

(Blix and Steen, 1979; Kovacs and Lavigne, 

1986). This enables them to tolerate water 

contact right after birth. They are capable of 

coordinated motor control and can swim from the first day on (Kovacs and Lavigne, 1986). 

During the short lactation period the pup gains on average 7.2 kg per day (Bowen et al., 

1985) and hence more than doubles its weight. Most of the energy transferred from mother 

to pup is being stored in the pups blubber layer.  This provides it with an energy reservoir 

sufficient for an up to one month lasting post weaning fast (Bowen et al., 1985; Oftedal et al., 

1993). Right after weaning the mother abandons the pup and mating occurs followed by 

excursions into large areas for foraging  before they arrive at the moulting areas in the 

Denmark strait and north of Jan Mayen between late June and early August (Øritsland, 1959; 

Rasmussen, 1960; Folkow et al., 1996).  

Meanwhile, the newborn pups enter the water within a few days after weaning and start to 

dive (Folkow et al., 2010). The diving duration and depth increases rapidly, exceeding 

durations of 15 min and depths of 100 m within the first 3 weeks of life (Folkow et al., 2010). 

After approximately one month the pups leave the ice edge, following a similar migration 

pattern to the adult animals of the West-ice stock (Folkow et al., 2010). Hooded seals have 

their first moult at the age of ~14 months and are sexually mature between 2 and 9 years of 

age (Kovacs and Lavigne, 1986). 

The rapid development of diving behaviour in hooded seal pups suggests a similar rapid 

maturation of their corresponding physiological adaptations.  

Fig. 1.I Distribution of hooded seals in the north Atlantic
(lightly dotted) with breeding grounds (medium dotted) and
molting areas (densely dotted). Arrows indicate main
migration routes from breeding grounds to molting areas
(Folkow et al., 1996). Figure from Blix (2005). 
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Diving adaptations  

Kooyman and coworkers (1980) showed that the majority (~90 %) of dives in Weddell seals 

(Leptonychotes weddellii) lasted less than 20 min, while some dives lasted more than an hour. 

Additionally they found no elevated blood lactate concentration after those short dives, 

while blood lactate accumulated dramatically with increasing diving duration beyond ~20 min 

(Kooyman et al., 1980). Since lactate is a product of anaerobic metabolism, he reasoned that 

metabolism in short dives is primarily aerobic, while long dives require anaerobic ATP 

production. The time, up to which there is no increase in post dive blood lactate 

concentration, he described by the term ‘aerobic dive limit’ (ADL). 

It can take up to six times the duration of an anaerobic dive to metabolize accumulated 

lactate (Kooyman et al., 1980) but only a few breaths to renew depleted blood oxygen 

stores if no lactate build-up has occurred. Thus, the usual behaviour of many short dives 

within the ADL allows marine mammals to stay submerged for the longest possible time and 

hence forage more efficiently (Kooyman et al., 1980; Kooyman and Ponganis, 1998; Davis 

and Kanatous, 1999; Hindell et al., 2000).  

To be able to stay submerged for extended periods, marine mammals have various 

physiological adaptations. Those include altering of circulatory patterns (e.g. peripheral 

vasoconstriction), drop of body temperature and bradycardia, all leading to low metabolic 

rates which may be similar to resting metabolic rates or lower and resulting in a reduced 

oxygen consumption during dives (Scholander, 1940; Blix and Folkow, 1983; Castellini et al., 

1992; Ponganis et al., 1997; Hurley and Costa, 2001; Ramirez et al., 2007). Low oxygen 

consumption, however, is not sufficient to maintain prolonged diving; hence it is not 

surprising to find large oxygen stores in diving mammals. Those are not only generally higher 

than in terrestrial mammals, but also distinctively distributed.  

Generally, oxygen stores are found in the lung, blood, and muscle compartments. While the 

lungs are quite important oxygen stores for most terrestrial mammals, for marine mammals 

they represent just a fraction of the total body oxygen stores (TBO) (Scholander, 1940). In 

hooded seals they represent only 7 % of TBO (Burns et al., 2007). In addition the lungs 

collapse 25-50m below sea level in deep diving seals (Falke et al., 1985), decreasing the 

function as oxygen stores even further, but also reducing the risk of nitrogen narcosis and 

gas bubble formation due to decompression sickness or so called ‘diver’s sickness’ 

(Scholander, 1940; Kooyman and Ponganis, 1998).  

The blood with the oxygen binding molecule haemoglobin (Hb) serves as a far more 

important O2 storage. This is represented by increased Hb concentration and blood volume, 
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resulting in three to four times higher blood O2 stores (on ml/kg basis) in diving than in 

terrestrial mammals (Snyder, 1983; Ramirez et al., 2007). It composes 51 % of TBO in 

hooded seals (Burns et al., 2007). In hooded seal pups those stores are similar to adult 

values, indicating a development already in utero (Burns et al., 2007). 

Another hallmark of hypoxia defence in diving mammals is an elevated myoglobin (Mb) 

concentration in skeletal muscles, being 10-30 times higher concentrated in aquatic animals 

than in their terrestrial counterparts (Kendrew et al., 1954; Kooyman, 1989; Kooyman and 

Ponganis, 1998; Noren and Williams, 2000). 

Myoglobin is a cytoplasmatic haemoprotein in cardiac myocytes and skeletal muscles. Like 

haemoglobin it reversibly binds oxygen. Both molecules contain an iron-porphyrin complex 

known as the haem group, which actually combines with O2 (Kendrew et al., 1958; 

Wittenberg and Wittenberg, 2003). Unlike Hb, Mb contains only one haem group, which is 

responsible for the more hyperbolic O2 binding curve of the monomeric Mb vs. the sigmoid 

shaped binding curve of the tetrameric Hb (Collman et al., 2004; Ordway and Garry, 2004). 

The resulting higher affinity of Mb in muscular tissue supports the extraction of blood O2 

(Wittenberg, 1970). An increasing lactate level, as it occurs in anaerobic muscular tissue, 

facilitates O2 release from Mb (Giardina et al., 1996). It is classically seen as an oxygen 

storing molecule (Irving, 1939; Scholander, 1940; Scholander et al., 1942; Kooyman and 

Ponganis, 1998; Noren et al., 2005). Recent research, however, expands the function of Mb 

and it is suggested to facilitate oxygen diffusion from the blood to the mitochondria of 

muscle cells, and to serve as a buffer for O2 supply if blood O2 delivery decreases 

(Wittenberg, 1970; Brunori, 2001; Wittenberg and Wittenberg, 2003; Ordway and Garry, 

2004; Ponganis et al., 2008). 

Mb bound oxygen represents 42 % of TBO in hooded seals who have the highest  yet 

reported Mb concentration of all marine mammals (Burns et al., 2007). They have the 

highest Mb levels in the primary locomotory muscles, e.g. the M. longissimus dorsi (Lestyk et 

al., 2009), probably due to the high energy demand of those most active muscles. 

Mb concentrations in newborn animals, however, are less than 25 % of adult values, hence 

reducing their capacity of O2 storage in the muscles (Burns et al., 2007). The mechanisms 

and timing of development of those stores towards adult levels is the central theme of the 

present thesis, as further outlined below. 
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Hypotheses   

Despite the fact that Mb values in hooded seal pups are relatively low at birth, they display a 

rapid increase in diving duration and depth. A detailed inquiry of early Mb development in 

seals has, however, not been done so far.  

Since Mb levels are an important indicator of diving adaptation, the present thesis 

investigates the initial development of Mb levels in the skeletal muscles of hooded seal pups 

during the first three months after weaning.  

Furthermore this thesis addresses the question why those muscle oxygen stores are not as 

well developed as the blood O2 stores in newborn hooded seals. 

The development of the blood oxygen stores is mainly triggered by the hypoxia-inducible 

factor-1 (HIF-1), which regulates among others the expression of erythropoietin and hence 

the increase in [Hb] (Gassmann and Wenger, 1997).  Hooded seal pups may be already 

exposed to hypoxia in utero, e.g. when the mother dives. This might trigger the expression 

of HIF-1 sufficiently for the development of the blood O2 stores before birth.   

Mb expression, however, is regulated by calcium signaling which in turn is partly triggered by 

hypoxia, but only in combination with muscular exercise  (Kanatous et al., 2009; Wittenberg, 

2009). Since movement is quite restricted for the hooded seal foetus, muscular activity might 

be the missing trigger for Mb development in utero.  

Accordingly, this thesis examines if activity, rather than hypoxia, is the main trigger for 

postnatal Mb synthesis in hooded seal pups.  

As muscle enzymes can be important indicators of the metabolic activity of the tissue they 

may tell us something about the activity levels of the muscles in hooded seal pups. Therefore 

this thesis examines the activity levels of key enzymes to underline the activity pattern in 

different muscles of hooded seal pups. 

Lactate dehydrogenase (LDH) is an enzyme which reduces pyruvate to lactate to support 

anaerobic ATP production via glycolysis (Kaplan, 1964). Additionally lactate is used for 

energy production in the muscle itself (Fuse, 1999). LDH is thus often used as an indicator 

for anaerobic metabolism in seals (Blix and From, 1971; Kooyman et al., 1980; Hochachka 

and Somero, 2002; Polasek et al., 2006; Kanatous et al., 2008; Prewitt et al., 2010). 

Citrate synthase (CS) is the first enzyme of the citric acid cycle and catalyzes the conversion 

from oxalacetate and Acetyl CoA to citrate. This step determines the flux through the citric 

acid cycle (Wiegand and Remington, 1986) and CS is frequently used as an indicator for 

aerobic metabolism (Hochachka and Somero, 2002; Polasek et al., 2006; Burns et al., 2010). 
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β-hydroxyacyl coenzyme A dehydrogenase (HOAD) is involved in the β-oxydation of fatty 

acids and often used as an indicator for the relative use of lipids for aerobic metabolism 

(Hochachka and Somero, 2002; Polasek et al., 2006; Burns et al., 2010; Prewitt et al., 2010). 

The ratio of LDH to CS gives information about the tendency to use a more anaerobic 

(higher LDH) or a more aerobic (higher CS) metabolism for ATP production (Polasek et al., 

2006; Burns et al., 2010; Prewitt et al., 2010).  

In general there is a higher oxidative enzyme activity in muscles used for sustained 

locomotion than in muscles with less sustained activity (Close, 1972; Pette and Staron, 

1990). A shift towards a more oxidative enzyme activity could therefore be an indication for 

higher muscular activity. Additionally, since Mb is important for oxygen delivery in skeletal 

muscles, a shift towards more oxidative metabolism could confirm Mb increase. 

The ratio of CS to HOAD gives information about the energy source for ATP production, 

being carbohydrates in the case of low HOAD levels in comparison to citrate synthase and 

vice versa (Polasek et al., 2006; Burns et al., 2010; Prewitt et al., 2010). 

Since working seal muscles rely mainly on aerobic lipid based metabolism for sustained 

activity (Reed et al., 1994; Polasek et al., 2006; Kanatous et al., 2008), a shift towards a more 

lipid based metabolism could be an additional hint towards higher activity. 
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II. Material and methods 

 

Design of Study 

To investigate Mb concentration and enzyme activities, muscle samples were collected at 

regular intervals from weaned hooded seal pups until they 

were three months old. To acquire more detailed 

information about the initial Mb increase, the sampling 

was more frequently performed at the beginning of the 

sampling period. 

To investigate the influence of activity and hypoxia on the 

development of Mb levels, two groups of animals were 

placed in different conditions: one group was kept in a 

pool and thus had swimming/diving activity while the 

other group was kept on land, to prevent 

swimming/diving activity.  

In addition, muscle samples were taken from two 

different locations; the main swimming muscle M. 

longissimus dorsi  (LD) and the flipper muscle M. 

supraspinatus (SSP) (fig 2.1).  

 

Animal handling  

Eight hooded seal pups (tab 2.1) were collected in the pack ice north-west of Jan Mayen 

(West-ice) during a research cruise with the R/V ‘Jan Mayen’ end of March 2010 under the 

permits from Norwegian and Greenland authorities. The animals collected were weaned and 

weighed ≥ 38.5 kg. The pups were brought to Tromsø/Norway where they were kept at the 

approved research animal facilities at the Arctic Biology building of the Department of Arctic 

and Marine Biology. They were held in two groups: four had access to a 40’000 L sea-water 

pool (pool group) and four on a snow covered outdoor area (land group). The land group 

got access to a second 40’000 L sea-water pool when, at the end of May (day 61 since the 

first sampling), the snow cover on which the animals were maintained had almost melted 

completely. The pools were equipped with a water cleaning system (650 l/min) and the 

Fig 2.1 Skeletal muscle anatomy of seals,
dorsal view, showing the two muscles
sampled for this thesis. From Howell (1929) 
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water temperature was kept at ~5°C.  A wooden platform in the pools allowed the seals to 

haul out of the water. 

 

Tab 2.1 Origin of the eight seal pups. All pups were weaned and hence already abandoned by the mother 

Seal ID Date of capture Position of capture Weight at capture [kg] Sex Group 

K1/10 26.03.10 71°53’N, 14°20’W 46.5 ♀ pool 

K2/10 26.03.10 71°51’N, 14°23’W 51.5 ♂ pool 

K3/10 27.03.10 71°40’N, 14°26’W 45.0 ♂ pool 

K4/10 27.03.10 71°34’N, 14°43’W 40.5 ♂ land 

K5/10 † 27.03.10 71°34’N, 14°38’W 44.5 ♂ land 

K6/10 27.03.10 71°34’N, 14°38’W 44.5 ♂ pool 

K7/10 23.03.10 71°39’N, 13°32’W 42.5 ♂ land 

K8/10 22.03.10 71°47’N, 13°58’W 38.5 ♂ land 

† animal deceased the 10th of Mai 2010 

 

Feeding started the 23rd day after the first sampling. The amount of food was kept low until 

all animals started to feed voluntarily and 

then gradually increased. From day 40 

onwards the amount of food was kept 

on a steady level (fig 2.2). The first food 

was small capelin (Mallotus villosus), later 

herring (Clupea harengus) (as soon as 

they could eat the bigger fish i.e. ~ from 

day 28 onwards) with vitamin and 

mineral supplement (Sea Tabs® II for 

marine mammals, Pacific Research Laboratories, CA, USA). All experiments were approved 

by the National Animal Research Authority of Norway (permit # 2402). 

Sample collection 

The sampling began the 27th of March 2010, which was set to day zero in this study. The 

hooded seal pups had an age of 5-10 days at that time. The sampling period for this study 

lasted from day 0 until day 87 when the animals were approximately three months old. 

Further sampling was performed until the animals were one year old to get an overview of 

the entire first year (not in the scope of this study). The initial sampling was done in 10 day 

Time [days]
0 20 40 60 80 100

Fo
od

 [
kg

]

0,0

0,5

1,0

1,5

2,0

2,5 all animals in poolsanimals in different treatments

Fig 2.2 Average amount of food consumed by the hooded seal 
pups (per animal). Day zero marks first sampling date and aprox. 
age of 5-10 days. 
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intervals to get a more detailed overview over that time period, i.e. until day 30. The 

following sampling was done on day 30, 44, 61 and 87 after the first sampling. 

The first sampling was done on board R/V Jan Mayen in the field; the remaining sampling was 

performed in Tromsø/Norway at the research animal facilities at the Arctic Biology building 

of the Department of Arctic and Marine Biology, University of Tromsø (UiT).  

Prior to sampling the animals were sedated with an intra muscular injection of Zoletil Forte 

Vet (1-1.5 mg/kg; tiletamin-zolazepam, Virbac, Carros Cedex, FR). The sedated animals were 

then transported to the laboratory/operation room, weighed (model 235 suspended weight; 

Salter, UK), and the locations for the biopsies cleaned and disinfected with Klorhexidin (5%, 

Fresenius Fabi, NO). 

Blood samples were collected with a central venous catheter (Secalon T, 16G/1.7x160mm, 

Becton Dickinson, SG) from the extradural intravertebral vein, 30-40 cm above the tail of 

the animals. The catheter was also used for additional intra venous injections of the sedative 

(0.5-0.7 mg/kg) when the previous dose wore off. The blood was centrifuged in haematocrit 

(Hct) glass capillaries (Brand, GER) using a EBA 12 Hct centrifuge (Hettich, GER) for Hct 

measurement (10k RPM for 15 min) and in heparinised vials  (BD vacutainer, UK) using a vial 

centrifuge (KS-8000, Kubota, JP) for plasma collection (3k RPM for 10 min). The plasma 

(supernatant) was frozen subsequently at -80°C for future analyzing (not in the scope of this 

thesis).  

Muscle biopsies were collected from the LD and SSP under local anaesthesia (subcutaneous) 

with ~3 ml Xylocaine (10mg/ml; Astra Zeneca Södertälje, SE). A small incision was made 

with a scalpel (blade No. 11) to be able to penetrate the subcutaneous blubber layer. The 

sample was then collected using a sterile one way 6 mm biopsy punch (Miltex, PA, USA). A 

slight vacuum was applied with a 10 ml syringe to the punch to ensure effective sampling. 

The samples had a volume of 1-2 µl and were immediately frozen at -80°C. Thereafter the 

incision wounds were closed, using resorbable endo stitch type sutures (polysorb lactomer 

9-1, Tyco, USA). 

For the sake of sterility the sterile biopsy punches, catheters and needles were only used 

once. All other tools were disinfected with 95% ethanol prior to use. 
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During all handling (incl. everyday feeding) the animals behaviour was routinely observed. 

Until day 40 the general behaviour and activity level was observed every day for at least 30 

min and a summary was noted. 

 

Biochemistry and analyses 

Analysis 

All muscle sample analyzes were performed during a scientific visit in J.M. Burns laboratory 

in Anchorage, AK at the facilities of the department of biology at the University of 

Anchorage, Alaska (UAA), USA. Besides enzyme and Mb analyzes, total protein (TP) content 

was measured to normalize the results in the case of age related increase of tissue TP (Burns 

et al., 2010). 

Frozen muscle samples were thawed, cleaned from connective tissue and blood and then 

sonicated (Fisher Scientific, Sonic Dismembrator model 500, NJ, US) in ice-cold buffer 

(description below) until no chunks were left in the solution.  

For Mb and TP analyzes a 0.04 M phosphate buffer (19.25 ml/g tissue, pH 6.6) was used as 

described previously (Lestyk et al., 2009). 

For the more sensitive enzyme assays muscle samples were initially homogenized in an 

imidazole homogenization buffer (50 mM imidazole hydrochloride, 1 mM EDTA, 2 mM 

MgCl2, pH 7.0 at 37°C) as described previously (Polasek et al., 2006; Prewitt et al., 2010).  

This buffer was also used for additional Mb and TP analyses from the same muscle samples. 

The different buffers give the same results for Mb (Richmond, 2004) as well as for TP (Lestyk 

K., personal communication). Paired t-tests on the results of this study confirmed (r = 0.88, 

p < 0.001) that both buffers give the same results for Mb and TP.  

The samples were then centrifuged (Marathon 3200R, Fisher Scientific, NJ, US) at 10’000 

RPM for 5min at 4°C and the supernatant used for Mb, TP and enzyme assays. The assays 

(described in detail below) were read at various wavelengths using a plate reader (Spectra 

Max 340PC, Molecular Devices, CA, USA). 
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Myoglobin 

Myoglobin (Mb) concentration was determined as described by Reynafarje (1963) and Lestyk 

et al. (2009): the supernatant (from both initial buffers, see above) was transferred to a 96 

well flat bottom immuno plate (Nalge Nunc int., Rochester, NY, USA) and diluted further to 

a total volume of 110 μl in 0.04 M phosphate buffer (pH 6.6) to adjust for appropriate optical 

density (i.e. an OD within the reading range of the plate reader). The plate was then placed 

in a vacuum chamber which was first gassed with CO (99.5 %) for 30 sec, then filled with 

CO for 15 sec and closed. After 20 min of CO incubation 10 μl of 10 % sodium dithionite 

solution was added and the plate vortexed to ensure full reduction of Mb for correct 

absorption measurement. After an additional 5 min of CO incubation the OD was read at λ 

538 nm and 568 nm (see below). Assays were run in triplicates and each run included 

lyophilized horse standards and tissue controls from an adult harbour seal (Phoca vitulina) 

with known Mb levels (Burns et al., 2007) to validate the results. To estimate the variance 

within the muscles, three samples from the sampling locations of both the LD and SSP were 

collected from the deceased animal K5/10 (tab 2.1) and analyzed. The precision of the assay 

was estimated from the tissue control. 

Mb concentration was then calculated following the established Reynafarje method 

(Reynafarje, 1963; Polasek et al., 2006; Burns et al., 2007; Lestyk et al., 2009). 

It is assumed that the supernatant from blood perfused muscular tissue contains both HbCO 

and MbCO as pigments, if treated with pure CO as described above. Such a supernatant has 

two absorption peaks, one at 538 nm and one at 568 nm (Reynafarje, 1963). The following 

equation describes the signal intensity difference at 538 nm and 568 nm between Hb and Mb 

ODହଷ଼ െ ODହ଺଼ ൌ ൫εହଷ଼,ୌୠେ୓  െ εହ଺଼,ୌୠେ୓ ൯ ∗ Cୌୠେ୓ ൅ ൫εହଷ଼,୑ୠେ୓  െ εହ଺଼,୑ୠେ୓൯ ∗ C୑ୠେ୓   (Eq. 1) 

Where OD = optical density, ε = extinction coefficient and CHbCO and CMbCO are the 

concentration of HbCO and MbCO respectively (mol/L). 

The Reynafarje method further assumes an identical Hb extinction coefficient at 538 nm and 

568 nm, so the first term on the right cancels. Also it assumes for Mb an extinction 

coefficient of 14.7*103 cm-1M-1 at 538 nm and 11.8*103 cm-1M-1 at 568 nm. This leads to the 

following calculation which was used to calculate Mb concentration (mol/L): 

ெ௕஼ைܥ ൌ  
୓ୈఱయఴି୓ୈఱలఴ

ଵସ.଻∗ଵ଴యିଵଵ.଼∗ଵ଴య
ൌ ሺܱܦହଷ଼ െ ହ଺଼ሻܦܱ ∗ 3.45 ∗ 10

ିସ   (Eq. 2) 
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Enzymes 

Enzyme in vitro activities were measured at 37°C for citrate synthase (CS), β-hydroxyacyl 

coenzyme A dehydrogenase (HOAD) and lactate dehydrogenase (LDH) under substrate 

saturating conditions, following previously described methods (Polasek et al., 2006; Burns et 

al., 2010; Prewitt et al., 2010). The assay mix formulae were as following:  

For CS (EC 4.1.3.1): 0.25 mM 5,5’-dithio-bis(2-nitrobencoic acid), 0.4 mM acetyl CoA, 0.5 

mM oxalacetate, 50 mM imidazole buffer pH 7.5 at 37°C, ∆ A412, millimolar extinction 

coefficient ε 412=13.6.  

For HOAD (EC 1.1.1.35): 0.3 mM NADH, 1 mM ethylenediaminetetra-acetic acid (EDTA), 

0.2 mM acetoacetyl CoA (trisodium salt), 50 mM imidazole buffer pH 7.0 at 37°C, ∆ A340, 

millimolar extinction coefficient ε 340=6.22. 

For LDH (EC 1.1.1.27): 0.3 mM NADH, 1 mM pyruvate, 50 mM imidazole buffer pH 7.0 at 

37°C, ∆ A340, millimolar extinction coefficient ε 340=6.22.  

Each assay mix was prepared in aluminium foil wrapped flasks just prior to analyzing; the 

supernatants were diluted with imidazole buffer (pH 7 for CS, pH 7.5 for LDH and HOAD) 

to the appropriate concentrations to produce an optimal reaction (see below) and 10 μl of 

each sample dilution were put in 4 wells of a pre-heated (37°C) 96 well plate. The assay mix 

was then quickly heated to 37°C and 150 μl of it were added to the wells with the diluted 

supernatant. The plate was then instantly read for 180 sec in 5 sec intervals in the pre-

heated (37°C) plate reader (Spectra Max 340PC, Molecular Devices, CA, USA). Absolute 

activities were calculated from the change in absorbance at the maximal linear slope of the 

assay reaction (Lineweaver and Burk, 1934; Burns et al., 2010). Harbour seal tissue of known 

enzyme activities  (Burns and Lestyk, unpublished data; Prewitt et al., 2010) was used as 

tissue control. The assay run was accepted if the enzyme activity produced a maximal linear 

slope, the tissue control was within the expected activity range and the results had a CV of 

less than 10 % (based on a triplicate run).  Precision of the assays was calculated from the 

tissue control values.  

Total Protein 

Total protein (TP) content was determined using the Pierce Coomassie Blue ‘The Better 

Bradford’ Total Protein Assay (Pierce Chemicals, Rockford, IL, USA). 10 μl of the initial 

supernatant was diluted to the concentration range of the assay in 0.04 M pH 6.6 phosphate 

buffer.  10 μl of the resulting ~300x dilution was pipetted onto a 96 well plate and mixed 

with 300 μl dye. After 10 min incubation the OD was read at λ 595 nm. TP levels were 
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calculated from plate specific standard curves derived from bovine serum albumin standards. 

A tissue control of an adult harbour seal with known TP levels (as determined by the same 

Bradford kit) was included in every run, and runs only accepted if the standards had a 

precision >98 %. 

Data handling and statistics 

The data for the different age classes of this project is coming from repeated measurements 

of the same animals and is hence not independent while the data for each age class in itself is 

independent. To take care of those properties a linear mixed model approach was used and 

a p-value of 0.05 (95% confidence level) was set as threshold for significance. For all analyses 

the data was graphically screened (histogram) for equal distribution. For the analyzes on the 

effect of group location, only the data until sample day 60 was used since after that day the 

land group  got access to a pool. 

To determine the effect of muscle type, group location and time of the development of Mb, 

Enzymes, Hct and TP, each was tested in a full model including all parameters as fixed 

factors. If the muscle type had a significant effect, i.e. there was a significant difference 

between the muscle types, the data was split and analyzed for both types separately. If the 

group location had a significant effect, the file was split further and analyzed for each group 

to determine the effect of time in the model, as well as performing a pair-wise comparison 

of the different age classes. To determine the effect of group location for each age class the 

data was split to analyze each separately. If a parameter had no significance, it was removed 

from the model. Pairwise comparisons were adjusted for multiple comparisons with the 

Bonferroni method. Values are given in mean ± standard deviation unless otherwise noted. 

All statistical analyses were made using SPSS v.19.0 (SPSS inc, Chicago, IL). 
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III. Results 

General data 

Body mass  

Body mass of the hooded seal pups decreased during the fasting period from 44.2 ±3.8 kg at 

day 0, by approximately 30 % to 32.3 ±2.2 kg at day 30 and rose after feeding start again to 

39.4 ±1.7 kg at day 87 (fig 3.1). The animals from the pool group tended to be slightly 

heavier at the beginning (5.3 ±1.3 kg at day 0) and their body mass tended to increase faster 

after the feeding started than the body mass of the land group. From sampling day 61 (pool – 

land = 1.4 ±1.0 kg) on both groups tended to have the same body mass.  

Observed behaviour 

The pool group had an overall higher activity than the land group and the animals were 

diving frequently.  

There was no sleep apnea (Castellini, 1996) observed for neither group, which, however, 

cannot be excluded entirely, since no data for hooded seal pups is available. 

The animals on land were propelling themselves mostly by undulating body movements. 

Moreover the flippers were not used as much as expected for movement on land, the 

undulating movement seemed to be employed often exclusively.  

Haematocrit  

Generally the levels remained stable over the whole sampling period, ranging around 59 % 

(meanpool= 58.561 ±0.333 %, meanland= 59.815 ± 0.358 %) (fig 3.2). The haematocrit (Hct) 

level was statistically significant higher in the land group than in the pool group (F1, 70= 

16.713, p < 0.001), that difference is, however, rather small (average Hctland-Hctpool= 1.253 ± 

0.489 %). Time had a significant influence on the mean Hct of both groups (pool: F5, 42= 

2.534, p = 0.043; land: F5, 40= 17.176, p < 0.001). Even though the values tended to stay on 

the same levels; eyeballing reveals a slight rise in Hct for the land group at the beginning, 

later the values returned to initial levels. The pool group showed almost no variation.   

Total protein  

The values (mean = 117.97 ± 20.88 mg protein/g tissue) show no significant change over 

time (F6,78= 1.585, p = 0.163) and neither a significant difference between the groups (pool, 

land) (F1,78= 0.700, p = 0.405) or the muscles (LD, SSP) (F1,78= 2.494, p = 0.118) (fig 3.3). 
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Fig 3.3 Mean total protein (TP) contend of the muscles, including all animals and 
muscles. Mean values ± 1 SD. No significant change over time. Numbers give n. 
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Fig 3.2 Comparison of haematocrit (Hct) of the different groups. Mean values ± 1 SD. 
The land group had a higher mean Hct than the pool group (F1, 70= 16.713, p < 0.001). 
The values tend to stay at the same level. Numbers give n. 
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Fig 3.1 Mean Body mass vs time ± 1 SD. For all animals the Body mass 
decreases during post weaning fast (PWF). After feeding-start the Body mass 
increases again. Numbers give n. 
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Myoglobin 

The results showed a significant difference in mean myoglobin levels between M. longissimus 

dorsi and M. supraspinatus in both groups (pool: F1,35= 23.883, p < 0.001, land: F1,34= 4.434, p 

= 0.043). The average difference was higher in the pool group than in the land group (pool: 

LD-SSP = 7.952 േ 1.627 mg Mb/g tissue, land: LD-SSP = 3.585 േ1.702 mg Mb/g tissue).  

M. longissimus dorsi  

There was a significant difference between the groups at LD (F1,35= 10.9,  p = 0.002, mean 

difference pool-land = 5.912 േ 1.791) i.e. the mean Mb levels were higher in the animals 

which were staying in the pool. Time was a significant factor for both groups at the LD 

(pool: F5,18=6.878, p = 0.001; land: F5,17=4.912, p = 0.006). Especially the beginning was 

marked by a strong rise of Mb levels, supported by pair-wise comparison (tabs 3.1&3.2). In 

the pool group the rise continued until the 30th sample day, whereas the development 

tended to generally level out at the later sampling dates (> day 30), even though a small peak 

was visible at sampling day 61. In the land group, the rise was only visible until sampling day 

19, followed by a similar general levelling out of Mb levels and a peak value at sampling day 

44 (fig 3.4). 

M. supraspinatus  

There was no statistically significant difference between the two groups at the SSP. Fig 3.5 

confirms this for the first three sampling dates. Later on, however, the pool group had a 

tendency towards higher Mb levels than the land group. Looking at the groups separately 

reveals, that time had a significant influence only on the Mb values on the SSP of the pool 

(F6,17= 4.077, p = 0.013, see tab 3.3 for pair-wise comparison). Similar to the LD, Mb levels 

tended to steadily rise at the beginning of the sampling period, followed by a levelling out.  

 

Estimated variation within the muscles: CVLD= 5.7 %, CVSSP= 6.1 %. Estimated precision of 

the assays: 95 %.  
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Tab 3.1 All statistically significant pair-wise comparisons between the sampling days for M. longissimus dorsi of the pool 
group 

day - day mean difference  

[mg Mb/ g tissue] 

SD df Sig.a 

0 30 -16.831 4.629 21 0.032 

 61 -25.022 4.629 21 0.000 

 87 -23.291 4.629 21 0.001 

10 61 -18.305 4.629 21 0.015 

 87 -16.574 4.629 21 0.037 

a: Adjustment for multiple comparisons: Bonferroni, SD: Standart deviation, df: degrees of freedom, mean difference=day 

from left column – day from right column. 

 

Tab 3.2 All statistically significant pair-wise comparisons between the sampling days for M. longissimus dorsi of the land 
group 

day - day mean difference  

[mg Mb/ g tissue] 

SD df Sig.a 

0 44 -18.322 4.009 19 0.004 

10 44 -18.305 4.009 19 0.045 

a: Adjustment for multiple comparisons: Bonferroni, SD: Standart deviation, df: degrees of freedom, mean difference=day 

from left column – day from right column. 

 

 

Tab 3.3 All statistically significant pair-wise comparisons between the sampling days for M. supraspinatus of the pool group 

day - day mean difference  

[mg Mb/ g tissue] 

SD df Sig.a 

0 44 -10.893 3.115 20 0.048 

 87 -15.598 3.115 20 0.001 

10 87 -13.410 3.115 20 0.003 

19 87 -10.761 3.115 20 0.028 

a: Adjustment for multiple comparisons: Bonferroni, SD: Standart deviation, df: degrees of freedom, mean difference=day 

from left column – day from right column. 
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Fig 3.5 Myoglobin development over time at M. supraspinatus. Mean values ± 1 SD. No statistically significant difference 
between the groups, even though the pool group tended to have slightly higher values than the land group. For pair-
wise comparison between days see tab 3.3. Numbers give n. 
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Fig 3.4 Myoglobin development over time at M. longissimus dorsi. Mean values ± 1 SD. The animals from the pool goup 
showed significantly higher mean values than the animals from land group (F1,35= 10.9,  p = 0.002). Steady increase until 
day 30 followed by more or less steady levels. The land group had a steady increase of Mb levels the first 20 days, 
followed by changing levels. Asterisk marks pair-wise significant difference (post-hoc comparison). For pair-wise 
comparison between days see tabs 3.1&3.2. Numbers give n. 
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Enzyme activities 

The activity levels citrate synthase (CS), lactate dehydrogenase (LDH) and β-hydroxyacyl 

coenzyme A dehydrogenase (HOAD) had varying levels with no relevant significant influence 

of muscle (LD, SSP), group (pool, land) or time on the activity (see attachment 2). The 

overall means for day 0 (i.e. weaned pups) was as follows: 

CS: 34.02 ±5.5 IU/g tissue, LDH: 537.11 ±121.7 IU/g tissue, HOAD: 51.86 ±14.0 IU/g tissue. 

There was no significant difference between the pool group and the land group in regard to 

the LDH:CS ratio (Fig 3.6).  However, between the muscle types, there was a significant 

difference (F1,68= 88.253, p < 0.001), i.e. the LD had a significantly lower mean CS:LDH ratio 

than the SSP.  

In the LD time had no statistically significant influence on the ratio, even though it tended to 

increase at day 10 and return afterwards to previous levels before it tended to increase from 

day 60 on again. Time had a statistically significant influence on the ratio in the SSP (F5,33= 

6.731, p < 0.001). At first it tended to increase, later on the ratio tended to remain more or 

less stable. In a pair-wise comparison day 0 had a significantly lower CS:LDH ratio than day 

61, underlining the increase of the ratio.  

The CS:HOAD ratio (fig 3.7) was below one throughout the sampling period. There was no 

statistical significance between the groups, but a significantly lower mean CS:HOAD ratio in 

the LD compared to the SSP (F1,63= 4.245,  p = 0.044). In neither muscle was a statistically 

significant change over time.  

Estimated precision of the assays: CS = 95.9 %, LDH = 92.2 %, HOAD = 90.9 %.   
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Fig 3.7 Development of the ratio between citrate synthase (CS) and β-
hydroxyacyl coenzyme A dehydrogenase (HOAD). Mean values ± 1 SD. No 
significant influence of time but a significantly higher mean ratio at  M. 
supraspinatus (SSP) compared to M. longissimus dorsi (LD) (F1,63= 4.245,  p = 
0.044). Asterisk marks significant difference between LD and SSP (pair-wise 

comparison). Numbers give n. 
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 Fig 3.6 Development of the ratio between lactate dehydrogenase (LDH) 
and citrate synthase (CS). Mean values ± 1 SD, The mean ratio is more on 
the side of CS in the M. longissimus dorsi (LD) in comparison to M. 
supraspinatus (SSP) (F1,68= 88.253, p < 0.001). No statistically significant 
influence of  time in LD. Statistically significant influence of time in SSP 
(F5,33= 6.731, p < 0.001), the ratio tends to change towards higher LDH 
activity until day 30. Asterisks mark significant difference between LD and 
SSP (pair-wise comparison). Numbers give n. 
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IV. Discussion 

 

General physiology  

The body mass development of the animals in this study (fig 3.1) follows the expected 

pattern: a constant decline during the post weaning fast, indicating the use of endogenous 

energy deposits, followed by a constant rise after feeding start. The extend and timing of 

change in body mass concurred with previously published values (Bowen et al., 1987), 

indicating that the pups in this study had a similar food availability as pups in the wild. The 

fact that there were only minor individual differences in body mass development, underlines 

that the present study was conducted with a fairly homogenous and healthy group of 

animals. 

The haematocrit (Hct) values (fig 3.2) indicate that the hooded seal pups have already quite 

developed blood oxygen stores as already shown for this species (Burns et al., 2007). This is 

also supported by the stable values over the whole sampling period. The measured 

differences are probably artefacts since Hct values are influenced by the level of arousal and 

accompanying contraction/relaxation of the spleen. In addition this influence is unusually 

large in seals where the spleen serves as a temporary store of erythrocytes (Cabanac et al., 

1997), and the sampled animals had a quite different personality influencing the level of 

arousal.    

The total protein levels (fig 3.3) concur with previously published values as well (Burns et al., 

2010). The fact that the total protein content of the samples remained at the same levels 

during the entire sampling period, suggests that protein catabolism played no significant role 

during the initial fasting period. Therefore stable TP levels supports the Mb results since 

muscle degradation due to protein catabolism could influence the Mb levels relative to 

muscle weight. 

Myoglobin development 

This study showed for the first time that there is a rapid initial increase of Mb levels in the 

muscles of hooded seal pups within their first month of life. In that short period of time, the 

Mb levels in the swimming muscle M. longissimus dorsi (fig 3.4) rose from less than 25 % to 

over 50 % of adult values (Lestyk et al., 2009; Burns et al., 2010). In addition the data suggest 

that further Mb production occurred at a much slower pace, also considering that they need 
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the following 11 months after the initial increase to reach ~75 % of adult values (Lestyk et 

al., 2009). The presented pattern of a rapid initial increase of Mb within the first month of life 

seems to be present in all sampled muscles (figs 3.4&3.5) and coincides with the rapid early 

increase in diving duration of free living hooded seal pups of the West-ice population (figs 

4.1&4.2).                                                              

 

This similarity in development may suggest that the development of Mb levels, and hence the 

development of muscular oxygen storage, is influencing the early diving behaviour of hooded 

seal pups.  

There might be one factor responsible for this halt in Mb development after the rapid initial 

rise. A very important ingredient for the production of Mb is iron. Since the most obvious 

rise in Mb levels occurs within the fasting period, all the iron for the production of Mb must 

originate from endogenous iron reserves. The presented data can be interpreted to suggest 

that those endogenous reserves are depleted after approximately one month. It probably 

takes some time until the iron supply due to feeding is sufficient for further Mb production 

due to the learning process to hunt fish and the development/maturing of iron absorption 

mechanisms. Therefore depleted iron stores could be responsible for the halt in Mb level 

increase.  

A follow up study to investigate iron stores in hooded seal pups is already in progress.  
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Fig 4.1 Development of diving duration from hooded seal 
(Cystophora christata) pups. Modified after Folkow et al. 
(2010). IDUR= diving duration index. Day 0 corresponds to 
27th of March (various years) being also the first sampling 
date in this study. The diving duration increases rapidly 
the first 40 days before the duration levels off. 
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Fig. 4.2 Myoglobin development over time. Overall mean ± 
1 sd, from all animals, regardless of group or muscle. The 
general Mb level tends to increase rapidly within the first 40 
days before the values level off.  
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Muscular activity 

Muscular metabolism 

The activity level of all the investigated enzymes were below previously published values of 

the same species (Burns et al., 2010). One possible explanation could be differences in the 

breeding stocks, since the previously sampled animals came from the Newfoundland stock 

and not from the West-ice like the animals of this study. The ratio, however, of LDH:CS as 

well as CS:HOAD concurs with the literature (Burns et al., 2010). Furthermore the enzyme 

activity showed no relevant significant change, while the ratios seemed to be connected to 

muscular activity as well as Mb levels. 

This study showed that there was a significantly lower LDH:CS ratio in the LD than in the 

SSP (fig 3.6), presumably reflecting a higher reliance on aerobic in relation to anaerobic 

metabolism in LD than SPP. This could be due to the higher Mb levels in LD, providing more 

oxygen for aerobic metabolism. Furthermore this is supported by the early shift towards 

higher LDH:CS ratios (day 10) and could be explained by the faster growing oxygen demand 

and the insufficient oxygen supply due to still low Mb levels. That pattern is especially 

expressed in the SSP. In the LD the ratio tends to follow that patter as well, to a lesser 

extent though, which is probably due to faster growing Mb levels (see second sampling point 

i.e. day 10 in figs 3.4, 3.5 and 3.6). At day 19, the metabolism switched towards a more 

aerobic metabolism in the LD while at the same time the Mb levels increased, a tendency 

which reversed towards day 87, when the Mb production slowed down. In the SSP the 

metabolism tended more towards an anaerobic metabolism (high LDH:CS ratio), which 

might be explained by the rather low Mb levels in the SSP (compare figs 3.4, 3.5 and 3.6). 

An additional explanation for those differences could be the generally higher oxidative 

enzyme activity in muscles used for sustained locomotion than in muscles not used for 

sustained locomotion as discussed below. 

Energy source for metabolism 

Since CS and HOAD levels are proportional to the maximal flux through the citric acid and 

β-oxidation cycle, a CS:HOAD ratio below one indicates a oxidation of fatty acids to 

produce acetyl-CoA for oxidative metabolism  close to the ability of the citric acid cycle to 

consume it (Winder et al., 1974; Stanley et al., 2005). This study  suggest that this is the case 

throughout the sampling period, since the CS:HOAD is never above 1, which is in 

accordance with previous findings (Burns et al., 2010). In comparison with the CS:HOAD 

ratio of ~7 in the locomotory muscles of dogs (Canis familiaris) (Polasek et al., 2006) the 
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extremely low ratio indicates an almost exclusive reliance on fat metabolism, which could be 

the reason that there is no significant change during the sampling time.   

There is, however, a tendency for the CS:HOAD ratio to decrease towards day 30 (fig 3.7). 

Considering the dependency on endogenous blubber reserves for energy production in 

hooded seal pups during the fasting period, it is not surprising that the ratio seems to go 

towards a maximum dependency on fatty acids during the fasting period. Therefore the 

tendency of an increasing CS:HOAD ratio towards day 87, especially after the feeding start, 

is an indicator of beginning protein metabolism due to food intake.  

Taken together, the presented enzyme ratio can be used to estimate the activity level of the 

muscles. Since working seal muscles rely mainly on aerobic lipid based metabolism for 

sustained activity (Reed et al., 1994; Polasek et al., 2006; Kanatous et al., 2008) the higher 

HOAD activity in the LD compared to the SSP indicates a higher activity in the LD, keeping 

in mind the above suggested higher aerobic metabolism in the LD. 

Influence of muscular activity on Mb development 

The results showed significantly higher Mb levels in the more active swimming muscles M. 

longissimus dorsi (LD) than in the less active flipper muscles M. supraspinatus (SSP) (figs 

3.4&3.5). In the pool group this might be due to the fact that the LD was used for swimming, 

and hence obviously more active than the SSP which was used for steering under water. 

Even though the muscles were differently used by the land group, they had a more active LD 

than SSP as well, since, for their undulating moving behaviour the animals on land must have 

used the back muscles, including LD. In addition, the function of the SSP is just to pull the 

flippers towards the front, a considerably less forceful movement than the LD triggers by 

setting the whole body into undulating motion.  

The pool group was generally much more active and had a more sustained, continuous 

activity in the LD due to swimming than the land group. Therefore the difference in muscular 

activity could account for the more rapid rise in Mb levels in the LD of the pool group 

compared to the land group. The flippers were used to approximately the same extend by 

both groups which could account for the similar Mb values and development. 

Alternatively, the hypoxia exposure due to the diving behaviour of the pool group could 

have contributed to their generally higher Mb levels. However, the fact, that the Mb levels 

increased at a similar rate in the SSP, but at a different rate in the LD of the two groups, 

supports that activity had a stronger influence on Mb production than hypoxia. If hypoxia 

would be the critical trigger, both the LD and SSP should show different development of Mb 

levels. 
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V. Conclusion 

The data of this study supports the hypothesis that sustained muscular activity is an 

important trigger for post-natal production of myoglobin (Mb) and hence the development 

of muscular oxygen stores in young hooded seal pups. The activity pattern, as indicated by 

the different behaviour of the two groups (pool and land), the muscle types and the different 

enzyme activities, suggests that those muscles that were most active had significantly higher 

Mb levels/production than muscles with less activity. 

Furthermore this study showed that the Mb levels in the swimming muscle M. longissimus 

dorsi of hooded seal pups increased from less than 25 % to more that 50 % of adult values 

within only one month. Considering that Mb levels reach ~75 % after one year, it means that 

more than half of the Mb production of the entire first year happens within the first month 

in hooded seal pups. This suggests that a postnatal trigger for Mb production, such as the 

onset of activity, is responsible for the initial increase rather than general maturation. The 

question remains, where the pups got the ingredients, e.g. iron, for the Mb production from, 

since most of the initial Mb production happens within the post weaning fast. This suggests 

that some endogenous store of iron must be present. Therefore the cease in the rapid initial 

Mb increase after one month could be explained by the depletion of such stores.  
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Attachments 

 

 

Attachment 1: List of chemicals 

Imidazole hydrochloride (Sigma-Aldrich CO, St Louis, MO, USA) 

EDTA (Fisher Scientific, NJ, USA) 

MgCl2 (Fisher Scientific, NJ, USA) 

5,5’-dithio-bis(2-nitrobencoic acid) (Sigma-Aldrich CO, St Louis, MO, USA) 

Acetyl CoA, 0.5 mM oxalacetate (Sigma-Aldrich CO, St Louis, MO, USA) 

NADH (MP Biomedicals, Solon, OH, USA) 

Ethylenediaminetetra-acetic acid (EDTA) (Sigma-Aldrich CO, St Louis, MO, USA) 

Acetoacetyl CoA (trisodium salt) (Crystal Chem inc, IL, USA) 

Pyruvate (Acros Organics, NJ, USA) 
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Attachment 2: Enzyme activities 
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Fig A.3 Overall mean of lactate dehydrogenase (LDH) activity, including all animals and 
muscles. Mean ± 1 SD. No significant change over time. Numbers give n. 
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Fig A.2 Overall mean of citrate synthase (CS) activity, including all animals and muscles. Mean 
values ± 1 SD. No significant change over time. Numbers give n. 
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Fig A.1 Overall mean of lactate dehydrogenase (LDH),  including all animals and muscles. 
Mean values ± 1 SD. No significant change over time. Numbers give n. 
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