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Abstract. In ice-melting process, motion of liquid-solid interface is complicated due to moving boundary, which is also 

called Stefan interface problem. Although the Stefan model has been widely utilized, it frequently overestimates the melting 

rate. In the present study, the net-sensible-heat of the phases are taken into account as an additional physical effect to the 

Stefan model for one-phase case and two-phase cases. The proposed model applied differential forms of energy 

conservations for each phase and the whole system with a practical or engineering approach. For the particular case of an 

ice-melting process in a vertical pipe, the results showed that, for the one-phase case, the migration of the interface of the 

proposed model was lowered by 18.5%, 12.0% and 4.3% compared to the Stefan model, Neumann solution and “modified 

Berggren Equation”, respectively, after a simulation period of 25 days. For the two-phase case, a similar trend of interface 

migration was achieved for the proposed and Stefan models. The former was approximately 11.4% lower than the latter 

after about 12 days, following this the difference between the models thereafter remains stable for the remainder of the 

simulation period. Additionally, the proposed model’s sensitivity is also examined by varying the inputs of surface 

temperature, initial temperature, and pipe-length change. It was observed that the coefficients of proportionality of the 

proposed models and relevant models have reasonable agreement. 
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1. Introduction 

Ice formation and melting problems are important considerations in Arctic regions, for instance in sea ice formation 

along Arctic shipping routes (Li et al. 2021) and thawing processes in seasonally frozen ground (Sveen et al. 2017). 

The Stefan equations have commonly been applied to calculate the rate of melting and freezing of ice (Fox 1992). The 

Stefan models and the Stefan free boundary problems were originally presented in 1889 by Josef Stefan. He 

contributed four significant papers on the kinetic theory of heat, these were on the heat conduction in fluids (Stefan 

1889a), diffusion in fluids (Stefan 1889b) ice formation (Stefan 1889c) and evaporation (Stefan 1889d). These papers 

present the mathematics and physical models of the time-moving interface (free boundary conditions and moving 

boundary problem). These models are often called the ‘’Stefan problem’’ and ‘’Stefan interface condition’’. 

The original Stefan problem treats the formation of ice in the polar seas (Stefan 1889c). The Stefan interface 

condition models consider a quantity of seawater which is cooled down to its freezing temperature. Thereafter the air 

temperature does not change, and the ice layer will grow as a function of time. According to this model the thickness 

of the ice layer is proportional to the square root of time. Nowadays, a large class of moving boundaries has been 

referred to as Stefan problems. For instance, the models are relevant for predicting the freezing front in water saturated 

porous materials (Berggren 1943) and the Stefan models are also frequently applied as an approach for predicting the 

thickness of the active layer in permafrost (Jumikis 1977, French 2007, Kurylyk 2015, Kurylyk et al. 2014, Changwei 

and Gough 2013, Hayashi et al. 2007). The Stefan interface conditions are based on the conservation of energy at the 

interface with the following assumptions: (i) the density of water and ice are the same, (ii) the moving boundary is 
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affected by heat flux of liquid for one-phase case and by net heat flux of liquid and solid phases in two-phase case. 

Therefore, the Stefan model can over-estimate the motion of the interface of phase change problems (Alexiades and 

Solomon, 1993). In efforts to improve the solution, additional physical parameters have been considered. For instance, 

the Neumann solution (Neumann 1860), known as analytical exact solution, has accounted for the sensible heat and 

the solution was implicit. Aldrich and Paynter (1953) accounted for the influence of sensible heat by a correction 

factor to the Stefan equations, which is also called the “Modified Berggren Equation”. In the study of Glass et al. 

(Glass et al. 1991), the authors have formulated and given numerical solutions to the hyperbolic Stefan problems with 

consideration of sensible heat. The Darcy-Stefan model was coupled with the porous elastic equation to investigate 

the thawing process (Deng et al. 2019). However, these studies were quite complicated, and applying them to practical 

problems has been challenging for engineers. Thus, based on the Neumann solution, Kurylyk and Hayashi (Kurylyk 

and Hayashi, 2016) have proposed new correction factor equations by fitting polynomial functions, which consider 

non-zero initial temperatures of the solid phase. In addition, the effects of volume change have been included in the 

model by adding the total thermal balance (Rodrıguez-Aleman et al., 2020). Their study has considered an important 

effect due to density difference to the migrating of the interface in PCM. Besides, the prediction of the moving 

interface also was examined with uniform volumetric energy generation (Chan and Hsu 1987, Crepeau and Siahpush 

2012, An and Su 2013). 

In short, the advantage of the Stefan equations, their simplicity, should be maintained but the solution needs to be 

improved by including more physical parameters. In the present paper, the interface conditions are developed to 

include the net-sensible-heat of the phases in the differential conservation of energy equations. Particularly, the motion 

of the melt-front of the ice-melting process (ice-water) in a one-dimensional vertical pipe is investigated. In addition, 

they are compared with the Stefan models and other related studies. Finally, a sensitivity analysis, which varies input 

parameters (heat flux into the pipe in term of surface temperature, initial temperature, and pipe length), is performed 

on the models. 

2. Methodology 

In this section, the ice-melting process in a vertical pipe, whose length and cross section area are 𝑙 and 

𝐴 respectively (sketched in Figure 1), is investigated. The initial phase of ice-water inside the pipe is solid, at 

temperature 𝑇𝑖; for a semi-infinite pipe, this temperature is assumed to be equal to the temperature at the end of the 

pipe, 𝑇𝑙 . Then the pipe is heated from the top with a constant surface temperature of 𝑇0. 

 

Figure 1. Melting ice-water in a vertical pipe: (a) Initial condition, t = 0; (b) During melting process, t > 0. 



2.1 Stefan and related models for current scenario 

With the assumption that the pipe is well-insulated, and that the heat transfer mechanism of conduction is dominant 

in one-dimension, the conservation of energy of the Stefan model in a semi-infinite pipe for each phase can be derived 

as following (Alexiades and Solomon 1993, Cannon et al. 1980): 

 For the liquid region:   0≤ 𝑧 < 𝑍(𝑡), 𝑡 > 0: 

𝑍(𝑡)𝐴𝜌𝐿𝑐𝐿
𝜕𝑇(𝑧,𝑡)

𝜕𝑡
= −𝐴𝜆𝐿

𝜕𝑇(0,𝑡)

𝜕𝑧
+ 𝐴𝜆𝐿

𝜕𝑇(𝑍−,𝑡)

𝜕𝑧
                                                                           (1) 

 For the solid region:   𝑍(𝑡) < 𝑧 ≤ 𝑙, 𝑡 > 0 

(𝑙 − 𝑍(𝑡))𝐴𝜌𝑠𝑐𝑠
𝜕𝑇(𝑧,𝑡)

𝜕𝑡
= −𝐴𝜆𝑠

𝜕𝑇(𝑍+,𝑡)

𝜕𝑧
+ 𝐴𝜆𝑠

𝜕𝑇(𝑙,𝑡)

𝜕𝑧
                                                                  (2) 

 Initial conditions: 

𝑍(0) = 0          (3) 

𝑇(𝑧, 0) = 𝑇𝑖 < 𝑇𝑚         (4) 

 Boundary conditions: 

  At the top surface of the pipe: 𝑇(0, 𝑡) = 𝑇0 > 𝑇𝑚     (5) 

         At the bottom surface of the pipe:      𝑇𝑙 = 𝑇𝑖 , 𝑡 > 0     (6) 

 Interface conditions: 

 𝑇(𝑍, 𝑡) = 𝑇𝑚 , 𝑡 > 0        (7) 

At the control volume of the pipe as shown in Figure 1, the total enthalpy of ice-water at 𝑡 > 0, referred to the 

melting temperature 𝑇𝑚, is calculated by (Alexiades and Solomon 1993, Tao 1979): 

𝐻(𝑡) = 𝐴 [∫ [𝜌𝐿𝑐𝐿(𝑇(𝑧, 𝑡) − 𝑇𝑚) + 𝜌𝐿𝐿]𝑑𝑧 + ∫ 𝜌𝑠𝑐𝑠(𝑇(𝑧, 𝑡) − 𝑇𝑚)𝑑𝑧
𝑙

𝑍(𝑡)

𝑍(𝑡)

0
]   (8) 

By applying Leibniz integral rule (Alexiades and Solomon 1993), we obtain:  

𝜕𝐻(𝑡)

𝜕𝑡
= 𝐴 [

𝜌𝐿𝑐𝐿[𝑇(𝑍(𝑡), 𝑡) − 𝑇𝑚]
𝜕𝑍(𝑡)

𝜕𝑡
+ ∫ 𝜌𝐿𝑐𝐿

𝜕𝑇(𝑧,𝑡)

𝜕𝑡
𝑑𝑧

𝑍(𝑡)

0

                      + 𝜌𝐿𝐿
𝜕𝑍(𝑡)

𝜕𝑡
+ ∫ 𝜌𝑠𝑐𝑠

𝜕𝑇(𝑧,𝑡)

𝜕𝑡
𝑑𝑧 − 𝜌𝑠𝑐𝑠[𝑇(𝑍(𝑡), 𝑡) − 𝑇𝑚]

𝜕𝑍(𝑡)

𝜕𝑡

𝑙

𝑍(𝑡)

]    (9) 

By imposing 𝑇(𝑍, 𝑡) = 𝑇𝑚 from Eq. (7), the terms 𝜌𝐿𝑐𝐿[𝑇(𝑍(𝑡), 𝑡) − 𝑇𝑚]
𝜕𝑍(𝑡)

𝜕𝑡
 and 𝜌𝑠𝑐𝑠[𝑇(𝑍(𝑡), 𝑡) − 𝑇𝑚]

𝜕𝑍(𝑡)

𝜕𝑡
 are 

omitted. Hence, Eq. (9) can be reduced to:   

𝜕𝐻(𝑡)

𝜕𝑡
= 𝐴 [∫ 𝜌𝐿𝑐𝐿

𝜕𝑇(𝑧,𝑡)

𝜕𝑡
𝑑𝑧 + 𝜌𝐿𝐿

𝜕𝑍(𝑡)

𝜕𝑡
+ ∫ 𝜌𝑠𝑐𝑠

𝜕𝑇(𝑧,𝑡)

𝜕𝑡
𝑑𝑧

𝑙

𝑍(𝑡)

𝑍(𝑡)

0
]    (10)  

By substituting the heat conduction model for each phase Eqs. (1) – (2) into Eq. (10), it becomes: 

 
𝜕𝐻(𝑡)

𝜕𝑡
= 𝐴 [[−𝜆𝐿

𝜕𝑇𝐿(0,𝑡)

𝜕𝑧
+ 𝜆𝐿

𝜕𝑇𝐿(𝑍−,𝑡)

𝜕𝑧
] + 𝜌𝐿𝐿

𝜕𝑍(𝑡)

𝜕𝑡
+ [−𝜆𝑠

𝜕𝑇(𝑍+,𝑡)

𝜕𝑧
+ 𝜆𝑠

𝜕𝑇(𝑙,𝑡)

𝜕𝑧
]]  (11)  

On the other hand, the rate of change for energy in the whole pipe is balanced with the net heat flux into and 

leaving the pipe (Alexiades and Solomon 1993, Charach and Rubinstein 1991): 

  
𝜕𝐻(𝑡)

𝜕𝑡
= 𝐴 [−𝜆𝐿

𝜕𝑇𝐿(0,𝑡)

𝜕𝑧
+ 𝜆𝑠

𝜕𝑇(𝑙,𝑡)

𝜕𝑧
]       (12)  

By substituting Eq. (12) into Eq. (11), we obtain the interface condition as heat is transferred in both phases (liquid 

and solid), which is herein referred to as the two-phase Stefan interface condition: 



  𝜌𝐿𝐿
𝜕𝑍

𝜕𝑡
= −𝜆𝐿

𝜕𝑇

𝜕𝑧
|

𝑍−
+ 𝜆𝑠

𝜕𝑇

𝜕𝑧
|

𝑍+
      (13) 

When there is no-heat flux into the solid phase, which is herein referred to as the one-phase Stefan interface 

condition, Eq. (13) reduces to: 

                                           𝜌𝐿𝐿
𝜕𝑍

𝜕𝑡
= −𝜆𝐿

𝜕𝑇

𝜕𝑧
|

𝑍−
                              (14)                                 

  

By integrating Eq. (14), it yields the interface condition of one-phase Stefan: 

∫ 𝑧𝑑𝑧
𝑍(𝑡)

0

=
𝜆𝐿(𝑇0 − 𝑇𝑚)

𝜌𝐿𝐿
∫ 𝑑𝑡

𝑡

0

→ 𝑍2(𝑡) =
2𝜆𝐿(𝑇0 − 𝑇𝑚)

𝜌𝐿𝐿
𝑡 

   → 𝑍(𝑡) = √
2𝜆𝐿(𝑇0−𝑇𝑚)

𝜌𝐿𝐿
√𝑡      (15) 

For the two-phase Stefan model, in which heat conduction in solid phase is considered, the pipe-length parameters, 

𝛽, is introduced and defined: 

   𝑙 − 𝑍(𝑡) = 𝛽𝑍(𝑡), 𝛽 ∈ 𝑅                                              (16)                                                      

By replacing 𝛽 and integrating Eq. (13), the interface condition is achieved: 

∫ 𝛽𝑧𝑑𝑧
𝑍(𝑡)

0

=
𝛽𝜆𝐿(𝑇0 − 𝑇𝑚) − 𝜆𝑠(𝑇𝑚 − 𝑇𝑙)

𝜌𝐿𝐿
∫ 𝑑𝑡

𝑡

0

→ 𝑍2(𝑡) =
2[𝛽𝜆𝐿(𝑇0 − 𝑇𝑚) − 𝜆𝑠(𝑇𝑚 − 𝑇𝑙)]

𝛽𝜌𝐿𝐿
𝑡 

→ 𝑍(𝑡) = √
2[𝛽𝜆𝐿(𝑇0−𝑇𝑚)−𝜆𝑠(𝑇𝑚−𝑇𝑙)]

𝛽𝜌𝐿𝐿
√𝑡        (17a) 

Eq. (17a) is the solution to evaluate the migration of the interface of two-phase Stefan model. 

Effects of thermodynamic equilibrium due to volume change in phase change  

Beside the energy conservation equation as the above, Rodrıguez-Aleman et al. (2020) includes the effects of the 

thermodynamic equilibrium due to volume change during phase transition or density difference of the phases. In 

comparison to the solution of interface of the above Eq. (17a), the equilibrium interface position is achieved as: 

 

𝑍𝑒𝑞(𝑡) = 𝑍(𝑡) + (
1

𝜌𝐿
−

1

𝜌𝑠
)

𝛥𝑈

𝐿
        (17b) 

where 𝛥𝑈 = 𝜌𝐿𝑐𝐿 ∫ (𝑇(𝑧, 𝑡) − 𝑇𝑚)𝑑𝑧 − 𝜌𝑠𝑐𝑠 ∫ (𝑇(𝑧, 𝑡) − 𝑇𝑚)𝑑𝑧
𝑙

𝑍(𝑡)

𝑍(𝑡)

0
 is the total change of the internal energy 

between the state of the system at interface position  𝑍(𝑡) as in Eq. (17a) and at thermodynamic equilibrium. 

 

2.2 Proposed model. 

In the present study, similar to the above Stefan model for a semi-infinite pipe, the total enthalpy of the model at 

time 𝑡, Eq. (8), can be simply rewritten as: 

 𝐻(𝑡) = 𝑐𝐿𝑚𝐿(𝑡)𝛥𝑇𝐿(𝑡) + 𝑚𝐿(𝑡)𝐿 + 𝑐𝑠𝑚𝑠(𝑡)𝛥𝑇𝑠(𝑡)      (18)  

However, instead of using the Leibniz integral rules to solve Eq. (8) as in Stefan’s model, the differential equation 

of the conservation of energy for a control volume is used in the proposed model. The rate of change for 𝐻(𝑡) in the 

pipe is: 

 
𝜕𝐻

𝜕𝑡
=

𝜕(𝑐𝐿𝑚𝐿∆𝑇𝐿)

𝜕𝑡
 +

𝜕(𝑚𝐿𝐿)

𝜕𝑡
+

𝜕(𝑐𝑠𝑚𝑠∆𝑇𝑠)

𝜕𝑡
  



          = 𝑐𝐿
𝜕𝑚𝐿

𝜕𝑡
𝛥𝑇𝐿 + 𝑐𝐿𝑚𝐿

𝜕𝛥𝑇𝐿

𝜕𝑡
+

𝜕𝑚𝐿

𝜕𝑡
𝐿 + 𝑐𝑠

𝜕𝑚𝑠

𝜕𝑡
𝛥𝑇𝑠 + 𝑐𝑠𝑚𝑠

𝜕𝛥𝑇𝑠

𝜕𝑡
     (19) 

Taking the cross-section area 𝐴 out from the right-hand side, Eq. (19) becomes: 

𝜕𝐻(𝑡)

𝜕𝑡
= 𝐴 [

𝑐𝐿𝜌𝐿
𝜕𝑍(𝑡)

𝜕𝑡
𝛥𝑇𝐿 + 𝑐𝐿𝜌𝐿𝑍(𝑡)

𝜕𝛥𝑇𝐿

𝜕𝑡
|

𝑧:0→𝑍−

           + 𝜌𝐿
𝜕𝑍(𝑡)

𝜕𝑡
𝐿 + 𝑐𝑠𝜌𝑠

𝜕(𝑙−𝑍(𝑡))

𝜕𝑡
𝛥𝑇𝑠 + 𝑐𝑠𝜌𝑠(𝑙 − 𝑍(𝑡))

𝜕𝛥𝑇𝑠

𝜕𝑡
|

𝑧:𝑍+→𝑙

]   (20)  

By substituting the heat conduction models Eqs. (1) and (2), for each phase into Eq. (20), we obtain:                                                                                                                                     

𝜕𝐻(𝑡)

𝜕𝑡
= 𝐴 [

𝑐𝐿𝜌𝐿
𝜕𝑍(𝑡)

𝜕𝑡
𝛥𝑇𝐿 − 𝜆𝐿

𝜕𝑇(0,𝑡)

𝜕𝑧
+ 𝜆𝐿

𝜕𝑇(𝑍−,𝑡)

𝜕𝑧

                     + 𝜌𝐿
𝜕𝑍(𝑡)

𝜕𝑡
𝐿 − 𝑐𝑠𝜌𝑠

𝜕𝑍(𝑡)

𝜕𝑡
𝛥𝑇𝑠 − 𝜆𝑠

𝜕𝑇(𝑍+,𝑡)

𝜕𝑧
+ 𝜆𝑠

𝜕𝑇(𝑙,𝑡)

𝜕𝑧

]   (21)    

Equation (21) includes the term 𝑐𝐿𝜌𝐿
𝜕𝑍(𝑡)

𝜕𝑡
𝛥𝑇𝐿 and    𝑐𝑠𝜌𝑠

𝜕𝑍(𝑡)

𝜕𝑡
𝛥𝑇𝑠 which are representative of  rate of sensible heat 

of liquid and solid phases, respectively; while they are omitted in Eq. (11). 

After substituting Eq. (12) into Eq. (21) and rearranging we obtain:        

𝑐𝐿𝜌𝐿
𝜕𝑍(𝑡)

𝜕𝑡
𝛥𝑇𝐿 + 𝜌𝐿

𝜕𝑍(𝑡)

𝜕𝑡
𝐿 − 𝑐𝑠𝜌𝑠

𝜕𝑍(𝑡)

𝜕𝑡
𝛥𝑇𝑠 = −𝜆𝐿

𝜕𝑇(𝑍−,𝑡)

𝜕𝑧
+ 𝜆𝑠

𝜕𝑇(𝑍+,𝑡)

𝜕𝑧
    (22) 

Similarly, for the one-phase case when there is no-heat flux into the solid phase, 𝜆𝑠 𝑇𝑧=𝑍(𝑡)+
′ = 0, and it also has 

no sensible heat in the solid phase. For this case, Eq. (22) reduces to: 

 𝑐𝐿𝜌𝐿
𝜕𝑍(𝑡)

𝜕𝑡
𝛥𝑇𝐿 + 𝜌𝐿

𝜕𝑍(𝑡)

𝜕𝑡
𝐿𝑠 = −𝜆𝐿

𝜕𝑇(𝑍−,𝑡)

𝜕𝑧
      (23) 

Then, integrating yields the following: 

∫ 𝑧𝑑𝑧
𝑍(𝑡)

0

=
𝜆𝐿(𝑇0 − 𝑇𝑚)

𝜌𝐿𝐿 + 𝑐𝐿𝜌𝐿𝛥𝑇𝐿

∫ 𝑑𝑡
𝑡

0

→ 𝑍2(𝑡) =
2𝜆𝐿(𝑇0 − 𝑇𝑚)

𝜌𝐿𝐿 + 𝑐𝐿𝜌𝐿𝛥𝑇𝐿

𝑡 

   → 𝑍(𝑡) = √
2𝜆𝐿(𝑇0−𝑇𝑚)

𝜌𝐿𝐿+𝑐𝐿𝜌𝐿𝛥𝑇𝐿
√𝑡     (24) 

Eq. (24) is the proposed interface condition for estimating melt-front migration in one-phase with the given 

scenario. For two-phase case, interface condition is estimated as follow:  

∫ 𝛽𝑧𝑑𝑧
𝑍(𝑡)

0

=
𝛽𝜆𝐿(𝑇0 − 𝑇𝑚) − 𝜆𝑠(𝑇𝑚 − 𝑇𝑙)

𝜌𝐿𝐿 + 𝑐𝐿𝜌𝐿𝛥𝑇𝐿 − 𝑐𝑠𝜌𝑠𝛥𝑇𝑠

∫ 𝑑𝑡
𝑡

0

→ 𝑍2(𝑡) =
2[𝛽𝜆𝐿(𝑇0 − 𝑇𝑚) − 𝜆𝑠(𝑇𝑚 − 𝑇𝑙)]

𝛽(𝜌𝐿𝐿 + 𝑐𝐿𝜌𝐿𝛥𝑇𝐿 − 𝑐𝑠𝜌𝑠𝛥𝑇)
𝑡 

 → 𝑍(𝑡) = √
2[𝛽𝜆𝐿(𝑇0−𝑇𝑚)−𝜆𝑠(𝑇𝑚−𝑇𝑙)]

𝛽(𝜌𝐿𝐿+𝑐𝐿𝜌𝐿𝛥𝑇𝐿−𝑐𝑠𝜌𝑠𝛥𝑇𝑠)
√𝑡       (25) 

3. RESULTS AND DISCUSSIONS 

In order to validate the interface conditions using the proposed methodology, we compare the results with those 

of previous related studies which are applicable for the given scenario for both one-phase and two-phase cases. For 

the one-phase case, beside Stefan the one-phase case, the Neumann solution and the “Modified Berggren Equation” 

are used as comparisons. On the other hand, for the two-phase case, the method proposed by Kurylyk and Hayashi 



(Kurylyk and Hayashi, 2016) with non-zero initial ice temperature case and the effects of density difference to the 

migration of the interface (Rodrıguez-Aleman et al., 2020), are compared. 

3.1. Results 

The model of a vertical pipe in Figure 1 with length 𝑙 of 1.0 m is used. With the intention of simulating sensible 

heat in both solid and liquid phases, the initial temperature of the ice is  𝑇𝑖 = 𝑇𝑙 = −10℃ and it is then heated from 

the top to maintain the top surface temperature of 𝑇0 = 40℃, which is used to boost the melting process. In this 

calculation, for simplification, it is assumed that:  

(i) the initial conditions or first step of the two-phase cases is the same as those of the one-phase cases 

for Stefan model and the proposed model.  

(ii) The increase in temperature: 𝛥𝑇𝐿 = 𝑇0 − 𝑇𝑚, 𝛥𝑇𝑠 = 𝑇𝑚 − 𝑇𝑙  

(iii) The thermal properties of ice-water are unchanged; values are in Table 1. 

 

TABLE 1.  Thermal properties of ice and water [Cengel et al. 2006] 

Thermal properties Ice at temperature 𝟎℃ Water at temperature 𝟎℃ 

Density ρs = 920 kg m3 ⁄  ρL = 1000 kg m3⁄  

Specific heat cs = 2040 J/ kg ∙ K cL = 4217 J/ kg ∙ K 
Thermal conductivity λs = 1.88 W/ m ∙ K λL = 0.569  W/ m ∙ K 

Latent heat L = 333 700 J/kg 

Melting temperature Tm = 0℃ 

3.1.1. One-phase models 

Figure 2 shows the results for the one-phase interface condition from different models to estimate the melt-front 

migration. Similar to previous studies, one of the findings of the proposed method is the linear relationship between 

melt-front depth and square root of time, as in Figure 2a. With the same period of time, the estimated migration of the 

melt front from the proposed method is compared with those of the Stefan model, Neumann solution and “modified 

Berggren Equation”. At all the time steps the proposed model has a slower thaw front migration than the comparative 

models, by 18.5%, 12.0% and 4.3%; respectively.  

In Figure 2b, for the given scenario, with the given 1-meter vertical pipe heated at top surface with a constant 

temperature of 40℃, after 25 days the depth of the melt front reaches 54.3 cm, 50.3 cm, and 46.2 cm when using 

conventional Stefan model, Neumann solution and “modified Berggren equation”, respectively; while for the proposed 

method, it was 44.2 cm.  



 
     (a)            (b) 

Figure 2. Melt-front migration with time in min1/2 (a); and day (b) for one-phase case. 

 

The conventional one-phase Stefan model was shown to be the fastest one among all the cases. By considering 

sensible heat of the liquid phase using analytical Neumann solution and a correction factor of “modified Berggren 

Equation”, the solution has improved mathematically. By not omitting the sensible heat term due to mathematical 

technique, i.e., Eq. (24) instead of Eq. (15), the proposed model showed a comparable result to previous studies. 

3.1.2. Two-phase models 

For the two-phase case, the Stefan model, Rodrıguez-Aleman et al. (2020) and our proposed model are observed 

to have a similar trend, in which the melt-front positions are non-linear to the square root of time (Figure 3a). The 

Stefan model gave the fastest thaw front migration rate, next comes the Rodrıguez-Aleman et al. (2020), and the 

proposed model is the slowest one. The deviation of the Rodrıguez-Aleman et al. (2020) and the proposed model, 

compared to the Stefan model, increases after a certain period and remains stable following this point. In this scenario, 

after 12 days, the differences were about 2% and 11%, respectively; and remains stable to the end of the simulation 

period. Rodriguez-Aleman et al. (2020) and the proposed model provided a slower migration-rate than that of the 

Stefan model since they include additional physical phenomena. However, in this specific instance, the net sensible 

heat of the phases dominates the effect of volume change. 

On the other hand, the result from the model of Kurylyk and Hayashi (Kurylyk and Hayashi 2016), which consider 

non-zero initial temperature, showed a linear relationship between melt-front position and square root of time (Fig. 

3a). At the beginning of the melting process, the migration of the interface from the proposed model was closer to the 

study of Kurylyk and Hayashi. However, after a certain period, around 10 days in this scenario, the migration rate of 

Kurylyk and Hayashi was faster than that of the two-phase Stefan model (Figure 3b). This results from the fact that 

their model was derived from the one-phase model (Kurylyk and Hayashi 2016). Meanwhile, the proposed model was 

consistently lower than the Stefan model. We observe that initial temperature (Kurylyk and Hayashi 2016) and net 

sensible heat (present study) have slowed down the interface migration compared to the volume change effect of 

Rodrıguez-Aleman et al. (2020) at the beginning of the thawing process. As time went on the consequences of the 

volume change on the melting process steadily grew. Meanwhile, by including the net sensible heat of the phases, the 

proposed model was found to maintain its effect by slowing down the migration of the interface by a stable rate 

compared to the conventional Stefan model.  



   

                         
                             (a)                                                                                         (b) 

Figure 3. Melt-front migration with time in min1/2 (a); and day (b) for two-phase case. 

 

3.1.3. One-phase and two-phase comparison 

Figure 4 shows the results of Kurylyk and Hayashi, the Neumann solution, the “modified Berggren Equation”, 

Rodriguez-Aleman and both the one-phase and two-phase cases of Stefan’s and the proposed models. In general, the 

interface positions of the one-phase cases were observed to grow faster than those of the two-phase cases. In all 

models, as time increased, the effect of adding a solid phase to the equations was that the melting process was affected 

considerably. 

With the given input values, to melt ice to 30-cm depth, the Stefan two-phase case takes 55% longer than that of 

the Stefan one-phase case, i.e., 11.8 days compared to 7.6 days. Likewise, for the proposed model, the difference was 

49%, i.e., 17.2 days for two-phase compared to 11.5 days for one-phase. As the difference between the Stefan one-

phase Eq. (15) and two-phase Eq. (17a) is the addition of the solid phase, the heat flux into the solid phase affects the 

melt-front migration by slowing it down; this also happens to our proposed methods in Eq. (24) and Eq. (25). 

Meanwhile, other results are in between the Stefan models and our proposed models for both the one-phase and two-

phase cases. 

 

 



 
     (a)                 (b) 

Figure 4. Melt-front migration with time for one-phase and two-phase cases in min1/2 (a); and day (b). 

 

Unlike Stefan’s models in which sensible heat of each phase has been omitted, Eq. (10), in the proposed models, 

the net-sensible-heat of the liquid and solid phases are included in the two-phase case, Eq. (22), while only the sensible 

heat of the liquid phase was included for the one-phase case, Eq. (23). As in Figure 5a, the net rate of sensible heat is 

also the sensible heat of the liquid as the solid phase is negligible in one-phase cases. On the other hand, in Figure 5b, 

those of both liquid and solid phases were demonstrated for the two-phase case; in which, sensible heat of the liquid 

phase is greater than that of the solid phase. Therefore, the net sensible heat is of considerable importance in the 

estimation of the melt-front interface. 

 



 
        (a) One-phase case (Eq. 23)      (b) Two-phase case (Eq. 22) 

Figure 5. Sensible heat rate (per m2) for (a) one-phase and (b) two-phase cases of proposed models. 

 

3.2 Sensitivity analysis of the proposed model 

With the purpose of evaluating the robustness of the proposed method, a sensitivity analysis can help to identify 

uncertain input values which have significant impact on the melt-front migration, based on Eq. (24) for one-phase and 

Eq. (25) for two-phase cases. In the present model, the density 𝜌, conductivity 𝜆 and heat capacity 𝑐 of each phase are 

assumed to be unchanged and whose values are in Table 1. It is noted that non-dimensional Stefan number, which is 

ratio of sensible heat to latent heat, is not included since the model is not limited for certain Stefan numbers. The 

varied physic-parameter inputs are surface temperature 𝑇0, initial temperature 𝑇𝑖  and pipe length 𝑙. 
 a. Effects of surface temperature 𝑇0 



 

 
  (a) one-phase (Eq. 24)            (b) two-phase (Eq.25) 

Figure 6. Interface position change with time and varying 𝑇0  in the range of 10oC to 100oC. 

                                 



By keeping pipe length at 𝑙 = 1.0𝑚 and temperature at 𝑇𝑙 = −10℃, Figure 6 revealed that as 𝑇0 increases, the 

migration of the interface is faster. Specifically, after 25 days of melting, for 𝑇0 = 10℃, the depth of liquid reached 

25.6 cm for the one-phase case, while it was 16 cm for the two-phase case; on the other hand, for 𝑇0 = 100℃, they 

are 57 cm and 48.1 cm, respectively for one- and two-phase cases. In addition, the graph shows that even if temperature 

difference is fixed with 10oC, the rate of migration of the interface decreased as the surface temperature increased. For 

instance, for the two-phase case, after 25 days, as 𝑇0  from 10 ℃ to 20 ℃, the difference in Z(t) is about 8.2 cm, 

whereas 𝑇0 from 90℃ to 100℃, its difference is about 1.56 cm. The reason for this is due to the existence of the net 

sensible heat inside the pipe, as in Eqs. (24) and (25). Thus, net sensible heat is a significant parameter that affects the 

melting process. 

 b. Effects of initial temperature 𝑇𝑖  

 
Figure 7. Interface position change with time for two-phase case as 𝑇𝑖  in the range of −10℃ to 0℃. 

In the one-phase case, the solid phase is assumed to have no effect on the melting process. Hence, the initial 

temperature 𝑇𝑖  does not affect the interface condition. In contrast, it has great effects on the two-phase case. Figure 7 

shows that as the initial temperature of the ice 𝑇𝑖  increases from −10℃ to 0℃, after 25 days, the interface migrated 

about 10.1 cm further than for the two-phase case, while they are the same for the one-phase case. This is due to the 

larger sensible heat in the solid phase required to heat up the ice to its melting temperature from lower-than-melting 

temperature. In addition, at 𝑇0 = 0℃, it agrees well with the Neumann solution (Alexiades and Solomon 1993), as 

Z(t) developed linearly with square root of time. 

The rate of melting is proportional to square root of cumulative time as the surface temperature is constant (Kurylyk 

and Hayashi 2016). The coefficient of proportionality, 𝑍/√𝑡[cm ⋅ (𝑚𝑖𝑛)−0.5], is considered as the rate of migration 

of the melting interface Z with respect to the square-root-of-time. In the one-phase case, this coefficient is constant, 

as seen in Figure 2a; while for the two-phase case, it depends on the thermal properties of solid and liquid, initial 

temperature or temperature difference between the initial temperature and melting temperature and the latent heat 

during the phase change (Kurylyk and Hayashi 2016). 

In order to generalize the proposed model compared to other models in the literature, the coefficients of 

proportionality of the two-phase cases are shown in graphs in Figure 8. In this figure, 𝛥𝑇𝑖 = 𝑇𝑚 − 𝑇𝑖  is the temperature 

difference between the initial temperature and the melting temperature; and 𝛥𝑇0 = 𝑇0 − 𝑇𝑚 is the temperature 

difference between the surface heating temperature and the melting temperature. 

 



 
(a) 𝛥𝑇𝑖 = 0°𝐶 

 
(b) 𝛥𝑇𝑖 = 2°𝐶 

 
(c) 𝛥𝑇𝑖 = 4°𝐶 

 
(d) 𝛥𝑇𝑖 = 6°𝐶 

 
(e) 𝛥𝑇𝑖 = 8°𝐶 

 
(f) 𝛥𝑇𝑖 = 10°𝐶 

 Figure 8. Comparison of the coefficients of proportionality of the two-phase cases as 𝛥𝑇0 and 𝛥𝑇𝑖 change. 

By considering the effects of additional physical parameters of the solid phase to the rate of melting process, both 

the studies of Rodriguez-Aleman (Rodriguez-Aleman 2020) and our proposed model have shown their effects on the 

migration of the thawing interface compared to the Stefan model.  

 In Stefan model, the only parameter that contributed to the phase change process is the net heat flux 

applied. As a result, when 𝛥𝑇0 increases at a certain initial temperature, which also means that the net 

heat-flux increases; the melting rate also increases considerably. On the other hand, the lower the initial 

temperature, the slower melting rate. 

 The model of Rodriguez-Aleman (Rodriguez-Aleman 2020) has a trend similar to the Stefan model as 

𝛥𝑇0 increases, but at a slower rate. It is also observed that the difference in melting rate between this and 

the Stefan model is getting lower as  𝛥𝑇0 increases. For instance, at 𝛥𝑇0 = 10𝑜𝐶, the melting rate 

difference of the two was 1%; while at 𝛥𝑇0 = 100𝑜𝐶, it was 10%. Meanwhile, the effect of 𝛥𝑇𝑖 is 

negligible for this scenario. 



 On the other hand, by accounting for the net sensible heat of both phases to the Stefan model, Eq. (22) 

compared to Eq. (13), the melting rate of the proposed model also showed a similar trend to Stefan model 

as 𝛥𝑇0 increases at certain initial temperature, but at a slower rate. It was also observed that this melting 

rate difference increased as 𝛥𝑇0 increased. For instance, at 𝛥𝑇𝑖 = −10°𝐶, with 𝛥𝑇0 = 10𝑜𝐶, the melting 

rate difference was nearly 33%; while with 𝛥𝑇0 = 100𝑜𝐶, it was approximately 43%. Similarly, the 

melting rate of the proposed model is lower than that of the Stefan model at a certain 𝛥𝑇0. For instance, 

at 𝛥𝑇0 = 10𝑜𝐶, with 𝛥𝑇𝑖 = 0𝑜𝐶, the melting rate difference was about 6%; while with 𝛥𝑇𝑖 = 10𝑜𝐶, it 

was nearly 33%. 

c. Effects of pipe-length 𝑙 
In order to investigate the effects of the pipe-length on the proposed model for both one-phase and two-phase 

cases, the pipe length was varied between 0.60 m, 0.80 m, 1.20 m, and 1.40 m while the other physic-parameter inputs 

are kept constant. Then, they were compared with the above 1-meter pipe-length results as the time of investigation is 

extended comparing to Figure 2 and Figure 3. The result showed that, for the one-phase case, the change in pipe-

length does not affect the migration of the interface, as in Figure 9a. On the other hand, as pipe-length increases, a 

slightly higher rate of interface migration was observed for the two-phase case, Figure 9b. In addition, there was a 

discontinuity after a certain period of time for each pipe-length. Furthermore, the longer pipe-length, the longer the 

time-period the discontinuity lasted. 

 
  (a) one-phase case    (b) two-phase case 

Figure 9. Interface position change with time and pipe length in the range of 60cm to 140cm. 

In relation to the conservation of energy for each phase, Eq. (1) for liquid and Eq. (2) for solid, the net heat flux 

on the right-hand side decides the change of enthalpy with time in the control volume of each phase inside the pipe. 

Hence, in this case the net heat flux is zero; in other words, heat flux in is equal to the heat flux out of the control 

volume, there is no longer a change in enthalpy with time. Thus, for this special case, the right-hand side of Eq. (13) 

for the Stefan model and Eq. (22) for the proposed model are zero. Consequently, this is the limitation of both the 

Stefan and the proposed models for the two-phase case as the net heat-flux reaches non-positive value. 

For different pipe-lengths, Figs. 10 (b) and (d) demonstrated that at the time the net heat-flux reaches zero, the 

discontinuity of Z(t) occurred as in Figs. 10 (a) and (c) for both the Stefan’s and the proposed models. However, with 

the same pipe-length, it took a longer time to reach discontinuity point than that of the Stefan model. To demonstrate, 

at pipe-lengths of 0.6m, 0.8m, 1.0m, 1.2m and 1.5m, the time differences are 6.5 days, 11.9 days, 17.2 days, 25.6 days, 



and 32.9 days, respectively. The delay occurs because of the existence of the sensible heat of each phase in the 

proposed model. 

 
Figure 10. Interface position and net heat flux as the pipe length changes. 

 

3.3 Validity and application of the proposed model 

It has been shown in previous studies that the simplifications made to derive the Stefan model tend to bias the 

model by increasing the freezing and melting rates (Leppäranta 1993). The net sensible heat in both one-phase and 

two-phase cases has a significant effect on the melt-front migration. From the above results, the proposed models for 

evaluating the melt-front migration are also comparable with many other models (Alexiades and Solomon 1993, 

Kurylyk and Hayashi 2016). 

Validity of the proposed model 

As mentioned above, the validity of the proposed model is quite similar to the Stefan model for a semi-infinite 

pipe length, for both one-phase and two-phase cases. In detail, if the length of the pipe is limited, the discontinuity 

happens after a certain period for a given initial set of physic-parameters. From Eqs. (24) and (25), the proposed model 

is valid if the terms under the square root are fulfilled. Since 𝑡 > 0, 𝑇0 > 𝑇𝑚, Eq. (24) for the one-phase model this is 

always satisfied. On the other hand, Eq. (24) for two-phase is satisfied as long as:  



 𝛽 >
𝜆𝑠(𝑇𝑚−𝑇𝑙)

𝜆𝐿(𝑇0−𝑇𝑚)
 and 𝜌𝐿𝐿 + 𝑐𝐿𝜌𝐿𝛥𝑇𝐿 − 𝑐𝑠𝜌𝑠𝛥𝑇𝑠  > 0      (26) 

In the melting processes, the rate of migration of the melt-front interface must be positive; thus,  

 
𝜕𝑍(𝑡)

𝜕𝑡
≥ 0 

Referring to Eq. (22), the remaining term (𝜌𝐿𝐿 + 𝑐𝐿𝜌𝐿𝛥𝑇𝐿 − 𝑐𝑠𝜌𝑠𝛥𝑇𝑠) on the left-hand side depends on the net heat 

flux of the control volume. For that reason, the second term in Eq. (26) is satisfied when the heat flux in greater than 

heat flux out; therefore, at the melt-front interface:  

 −𝜆𝐿
𝑇0−𝑇𝑚

𝑍(𝑡)
> −𝜆𝑠

𝑇𝑚−𝑇𝑙

𝛽𝑍(𝑡)
        (27) 

By replacing Eq. (16), it becomes: 

 𝑍(𝑡) <
𝜆𝐿(𝑇0−𝑇𝑚)

𝜆𝐿(𝑇0−𝑇𝑚)+𝜆𝑠(𝑇𝑚−𝑇𝑙)
𝑙       (28) 

Consequently, as long as the melting distance Z(t) satisfies Eq. (28), which has considered other inputs, i.e., length 

of the pipe, temperature at the end of the pipe and surface temperature, the proposed method is valid. 

Applications of the proposed models 

The proposed models can potentially be used to evaluate the melting process, when the length of the profile is 

semi-infinite, and the initial temperature of the ice is able to be obtained or measured. For instance, they can be applied 

to predict thawing or melting of frozen drainage pipes under roads in arctic conditions (used to prevent ditches on the 

side of roads filling with water).  

Similar to the Stefan model, although the proposed models require additional parameters, i.e. length to melt and 

temperature at that point, engineers can make use of the proposed model to estimate the required input heat flux or 

surface temperature and time for melting to a pre-determined length of melting. The proposed model can also be 

expanded to optimize the varied heat flux or surface temperature in order to achieve a specified melting-depth in the 

shortest time. 

  4. CONCLUSIONS 

The Stefan model is widely used in estimating melting process because of its simplicity, but the results can lead to 

over-estimation of the thaw front migration. In this work, we evaluate the complexity at the interface in an ice-melting 

process in a vertical pipe. As sensible heat of the phases, which is an important physic effect of the melting process, 

were omitted in the energy conservation equation in the Stefan models, the proposed models have included sensible 

heat by combining energy conservation equations in differential form. The findings are as follow: 

 The results gave comparable outcomes to other related studies in predicting the interface position. 

Compared to other similar studies for the one-phase case, the trend of melting pattern is quite similar. The 

proposed model has a reduction in thaw front migration rate by 18.5%, 12.0% and 4.3% compared to 

those of the Stefan model, Neumann solution and “modified Berggren Equation,” respectively, after 25 

days for the given scenario. For the two-phase case, the trend was similar for the proposed study and that 

of the Stefan’s model with a reduction of approximately 11.4% lower after about 12 days, this difference 

remains stable for the rest of the simulation period. 

 By applying Equation (24) instead of Equation (15) for the one-phase case and Equation (25) instead of 

Equation (17a) for the two-phase case, the study has offered an easily-implemented methodology, as 

simple as the Stefan models. 

 As the initial temperature, surface temperature and length of the pipe changed, the proposed model 

showed good agreement to previous models for both one-phase and two-phase cases.  

Even though the proposed models need to be verified by future experimental work, it can still be used as an 

alternative model for engineers to evaluate the melting process, where length and temperature are measurable. 



Nomenclature 

𝑇: Temperature, K 

𝑇𝑚: Melting temperature, K 

𝑇0: Temperature on the surface, K 

𝑇𝑙: Temperature at the end of the pipe, K 

𝑇𝑖: Initial temperature of the pipe, K 

𝜆𝐿 , 𝜆𝑠: Thermal conductivity of the liquid and solid phase, respectively, W/m ∙ K 

𝑐𝐿 , 𝑐𝑠: Specific heat capacity of the liquid and solid phase, respectively, J/kg ∙ K 

𝜌𝐿 , 𝜌𝑠: Density of liquid and solid phase respectively, kg/m3 

𝐿: Specific latent heat of fusion, J/kg 

𝐴: Cross section area, m2 

𝑙: Pipe length, m 

𝑚𝐿 , 𝑚𝑠: Mass of liquid and solid phase, respectively, kg 

𝑡: Time, min or day 

b: geometric parameter 

𝛥𝑇𝐿, 𝛥𝑇𝑠: increase of temperature in the liquid and solid phases, respectively, K 

 

Subscript: 

 L, s: liquid and solid, respectively 
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