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materials, tools and parts using safe and efficient path finding
and collision avoidance solutions. Avoiding collisions in the
environment can save maintenance time and resources, while
also creating a safe work environment for other AVs and
human beings.

AVs that are tasked to work in unknown environments
are faced with navigational uncertainty due to lack of en-
vironmental information. Since finding a collision free path
requires environmental information, planning a path in an
unknown environment before run-time is challenging and can
be inaccurate. Additionally, the multi-agent aspect of the
environment can lead to further collision avoidance complexity
where other vehicles navigating the same environment act as
dynamic and unpredictable obstacles. To compensate for the
lack of information, the AVs need to rely on their sensors and
each other, rather than pre-processed paths, to avoid collisions
and navigate an unknown work environment. Collisions, if not
avoided, can damage equipment, cost time and may even harm
human workers sharing the environment with the AVs.

This paper presents a multi-agent collision avoidance
method for use in unknown environments based on fuzzy risk
estimation and information sharing. The AVs are managed
as a Multi-Agent System (MAS), where agents coordinate
with each other to proactively carry out both individual and
collective goals [3]. Using the method, the AVs can avoid
obstacles through a fuzzy risk estimation of a collision. The
risk estimation is based on fuzzy logic, where a rule base is
used that maps distance to an obstacle and current vehicle
velocity into three distinct risk levels. Based on the risk level,
the vehicles adjust their speed and make changes to their
trajectory to avoid obstacles. Additionally, the AVs exchange
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I. INTRODUCTION

Industry 4.0 describes the evolution of computer-controlled
automated facilities into cyber-physical systems that gather
and analyze data for intelligent autonomous decision making
[1]. Within Industry 4.0, a common warehouse logistics so-
lution is the usage of Automated Vehicles (AVs). AVs have
proven adequate to handle a large spectrum of tasks within the
material flow area [2]. AVs can move resources like production



GPS location and status information among themselves to
avoid collisions with each other. The vehicles also record the
estimated locations of detected obstacles to create a virtual
map of the initially unknown environment. The method is
evaluated through three experimental test cases. The findings
are compared to related collision avoidance approaches to
highlight differences, similarities, strengths and shortcomings
of the collision avoidance method.

The contribution of this research paper is the multi-agent
collision avoidance method based on fuzzy risk estimation and
information sharing. The goal of the method is to broaden the
possible work environments that the AVs can be deployed in.
The method aims to achieve this goal by providing means
of autonomous navigation and collision avoidance to AVs so
that they are not entirely reliant on environmental information.
The method can improve navigational flexibility, autonomy
and safety of AVs used in and out of Industry 4.0.

II. RELATED WORK

The collision avoidance problem has seen various types
of solutions in various types of agent and environmental
configurations.

In mapless and unknown environments, a common solution
for avoiding congestions and finding paths is to use reinforce-
ment learning. A reinforcement learning based mapless motion
planner by Marchesini et al. [4] shows that a single agent can
be virtually trained to find collision free paths in a mapless
environment. Similarly, a discrete deep-reinforcement learning
method by Tai et al. [5] also trains a single agent in a virtual
mapless environment to find paths without collisions. Another
solution to avoiding collisions in unknown environments is to
use fuzzy logic. A single agent solution by Beom et al. [6]
utilizes fuzzy logic to determine the distant safety levels of
an obstacle to a vehicle for collision-free navigation. Contrary
to related work avoiding collisions in unknown and mapless
environments, the method presented in this paper provides
multi-agent collision avoidance rather than focusing on a
single agent.

In multi-agent environments, several solutions have been
explored in the past utilizing fuzzy logic and information
sharing for multi-agent path finding and collision avoidance
purposes. Fuzzy logic has been used to determine the relative
position of obstacles for multi-agent path finding by Kumar
et al. [7], to find stable and collision free paths by Bogdan et
al. [8], and to determine critical cases for collision avoidance
by Souliman et al. [9]. A different approach by Lin et al.
[10] utilizes fuzzy logic to detect and escape distinct local
minimum trap cases in a complex and known environment.
Additionally, information sharing among agents was used to
resolve intersection and collision conflicts by Makarem et al.
[11], and to efficiently navigate an environment while avoiding
collisions by Subramanian et al. [12]. Information sharing has
also been utilized for creating a virtual map of an initially
unknown environment by Wang et al. [13]. Overall, multi-
agent path finding and information sharing based solutions
assume that the environment is known and fully observable

for navigation and collision avoidance purposes, except for
the virtual map solution [13]. In contrast to the multi-agent
path finding and information sharing related work, the method
presented in this paper assumes an initially unknown work
environment for multiple agents for collision avoidance. Sim-
ilar to the virtual map solution [13], the method also creates
a virtual map of the initially unknown environment through
information sharing.

The collision avoidance method, presented in this paper,
builds upon the dynamic path finding method [14]. The
dynamic path finding method uses attractive and repulsive
forces calculated during run-time to avoid collisions and move
towards a target destination. The target destination attracts the
agent to move towards it (attractive force) and the obstacles
in the environment repel the agent away from them (repelling
force). The collision avoidance method uses the dynamic path
finding algorithm for navigation and utilizes fuzzy logic and
information sharing on top of it to improve collision avoidance
for multiple agents in unknown work environments.

III. THE MULTI-AGENT COLLISION AVOIDANCE METHOD

The multi-agent collision avoidance method is a step-wise
method that uses fuzzy risk estimation coupled with multi-
agent information sharing to avoid collisions. The fuzzy risk
estimation uses velocity and obstacle distance measurements
to determine the risk of collision to the obstacles. The risk
estimation is then used by the AVs to adjust their speed
and their current trajectory to avoid collisions and escape
local minimum traps. The method also allows the agents to
exchange their location and status information to identify
and avoid collisions with other agents. The agents also share
the locations of detected obstacles with a software agent to
create a virtual map of the environment. To carry out the
tasks mentioned above, the method includes the following four
steps:

• Obstacle detection: Detect and measure distances to ob-
stacles in range

• Path Calculation & Fuzzy Risk Estimation: Calculate a
collision free path based on fuzzy risk estimation

• Path Correction: Make adjustments to the path when local
minimum traps are encountered

• Information Sharing & Identification: Share location and
status information with other agents and identify other
agents

The following sub-sections will provide in-depth information
into each step respectively.

A. Obstacle detection

In order to avoid a collision with an obstacle, the AVs need
to first detect the obstacle using sensors. The AVs are assumed
to be equipped with sensors capable of detecting obstacles
and measuring the direction and the distance to the detected
obstacles.

The AVs gather sensor data which includes a direction
vector towards an obstacle and the closest distance to it
every 0.2 seconds. The data is then used to find a safe path



Fig. 1. Automated vehicle sensor setup with range

away from the obstacles within range. As seen in Fig. 1, the
simulated AVs for testing the method are equipped with 4
LiDAR sensors located to the front, left side, right side and
back of the vehicle. The range of the sensors are highlighted
with the green circle around the vehicle (Fig. 1) and the radius
of the sensors are set to be twice the front-to-back length of
the vehicle.

B. Path Calculation & Fuzzy Risk Estimation

Once the obstacle direction and distance data is gathered
from the sensors, a collision-free path is calculated. The
attractive and repulsive forces are calculated at each sensor
scan interval (every 0.2 seconds). The attractive force is the
direction from the AV towards the target destination. The
direction is stored as a normalized coordinate vector with
x, y and z coordinates. When added to the current GPS
location vector of the AV, the resulting vector is used as an
arbitrary target destination for the AV to move towards. The
repulsive force is the direction away from obstacles relative
to the current GPS location of the AV. The gathered obstacle
direction data is inverted and then normalized to a coordinate
vector to generate the repulsive force away from an obstacle
within detection range. When the repulsive force is added to
the current GPS location vector of the AV, the resulting vector
provides an arbitrary path to the AV that the agent follows to
move away from the obstacle.

The collision avoidance method estimates the risk of colli-
sion with obstacles based on the distance to the obstacle and
current directional velocity of the vehicle. The distance and
velocity input pair is fuzzified and mapped to a fuzzy rule
base as seen in Table I.

TABLE I.
FUZZY LOGIC RULE-BASE FOR DISTANCE AND VELOCITY INPUT PAIRS

Velocity/Distance Close Medium Far
Slow Caution Safe Safe

Moderate Risky Caution Safe

Fast Risky Risky Caution

There are nine total combinations for distance and velocity
input pairs and three estimation types. The estimation types
are: Safe, Caution and Risky. For a Safe estimation, the vehicle
tries to maximize its current speed while slightly adjusting
its trajectory. For Caution estimation, the vehicle moderately
slows down and also moderately adjusts its current trajectory.

Fig. 2. Final fuzzy risk estimation

Risky estimation forces the vehicle to drastically slow down
and change trajectory in order to avoid a collision with the
obstacle.

1) Fuzzification process: In order to map the sensory inputs
to the rule base, the inputs first need to be normalized to a
range between 0 to 1. For both inputs, distance and velocity,
(1) and (2) are used respectively.

Dn =
Dcur −Dmin

Dmax −Dmin
(1)

Vn =
Vcur − Vmin

Vmax − Vmin
(2)

Both Dn and Vn represent the normalized values which
are based on the current distance (Dcur) and velocity (Dcur)
values’ relation to the minimum (Dmin, Vmin) and maximum
distance and velocity (Dmax, Vmax) that can be measured by
the sensors. The value ranges that represent distance classi-
fications can be seen in (3) and value ranges that represent
velocity classifications can be seen in (4).

Close: 0 ≤ Dn ≤ 0.33
Medium: 0.33 < Dn ≤ 0.66
Far: 0.66 < Dn ≤ 1

(3)

Slow: 0 ≤ Vn ≤ 0.33
Moderate: 0.33 < Vn ≤ 0.66
Fast: 0.66 < Vn ≤ 1

(4)

After classifying distance and velocity inputs, computing the
risk estimation is done via subtracting the normalized distance
value from the normalized velocity value as seen in (5).

R = Vn −Dn (5)

The final risk value R is a floating number value between
−1 and 1. The spectrum seen in Fig. 2 represents the final risk
value range with the colors signifying ”Risky” estimation for
red areas (value range from 1 to 0.33), ”Caution” estimation
for yellow areas (value range from 0.33 to −0.33) and ”Safe”
estimation for green areas (value range from −0.33 to −1).
The vehicle uses the risk estimation to adjust its current
velocity target. If there are multiple obstacles in vicinity, the
calculated risk estimation with the higher risk value is used for
adjusting the velocity. For example, if there are three obstacles
in range with ”Risky”, ”Safe”, ”Caution” risk estimations
respectively, then the ”Risky” estimation will be the basis of
velocity adjustment.

The risk estimation process is calculated for each obstacle
within detection range. As part of this process, each repulsive
force used in the Dynamic Path Finding method (that pushes
the agent away from itself), is altered based on the risk



Fig. 3. Local minimum example

estimation. When the risk estimation for a specific obstacle is
”Risky”, the repulsive force coming from that obstacle will be
at maximum 100% effectiveness in magnitude. Alternatively,
the magnitude of repulsive forces with a ”Caution” estimation
will be at maximum 50% and ”Safe” estimations will be at
maximum 10% effectiveness. The alteration of repulsive forces
helps the vehicle adjust its current trajectory to be safer in
riskier collision avoidance situations and more efficient in safer
collision avoidance situations.

C. Path Correction

A local minimum trap can be encountered when the at-
tractive and repulsive forces overlap or negate each other.
Force overlap can cause the agent to move directly towards an
obstacle if the attractive force is larger than the repulsive force,
which can result in a collision. Force negation can cause the
agent to get stuck in one place creating a deadlock situation.
Additionally, in a multi-agent environment, local minimum
traps can occur in a dynamic and unpredictable manner due
to the presence of other agents in the environment.

Fig. 3 shows two examples of common local minimum
traps. In Fig. 3 A, the agent is trying to move to the northern
side of the grid based on the attractive force denoted as Fa

and is blocked by an obstacle which is generating a repulsive
force denoted as Fr. The two forces, Fa and Fr, negate each
other, causing the agent to remain in place. In Fig. 3 B, two
agents are moving head-to-head towards the polar opposite
side of the grid where they cause a local minimum trap for
each other. The forces Fa1 and Fr2 negate each other, and the
forces Fa2 and Fr1 negate each other as well. Thus causing a
deadlock.

To avoid local minimum traps, the method provides a
heading correction solution which also uses the distance fuzzy
classification. Based on the current distance classification to
the obstacle, that is causing the trap, the heading of the vehicle
is skewed to either the right or the left side with the skew angle
ranging from 35° to 45° based on the distance. The riskier the
distance to the obstacle the larger the angle will become. The
correction is always made to the opposite side of the obstacle
relative to the vehicle. For instance: if an obstacle causing a
trap is to the left of the vehicle, the heading will be skewed
to the right of the vehicle. The heading correction allows the
agent to escape many dynamic and static local minimum traps
that can be encountered in an unknown, multi-agent working
environment.

Manager
agent

Nav. agent #1 Nav. agent #2 Nav. agent #n

Environment

InteractInteract Interact

Comm. Comm.

Exchange
info.

Exchange
info.

Exchange
info.

Fig. 4. Multi-agent architecture and hierarchy

D. Information Sharing & Identification

In the last step of the method, the AVs exchange informa-
tion about their current state, location and detected obstacle
locations. During this step, the agents identify each other
to aid collision avoidance and generate a virtual map of
the unknown environment. Within the multi-agent system
architecture each AV is represented as an agent. There are
two different agent types which communicate with each other
with distinct objectives:

• Worker agent (AVs): Tasked with navigating to requested
destinations in the environment while also estimating and
gathering obstacle location information

• Manager agent (Software): Tasked with distributing target
destinations to worker agents and gathering information
from them to create a virtual map of the environment

While the worker agent (the AV) can interact with the
environment directly using its sensors and actuators (wheel
motors), the manager agent has no direct involvement with
the environment. The manager agent simply has access to
basic GPS coordinates within the environment and has no
knowledge of the environment layout, structure and obstacle
locations.

The two agent types are arranged in a semi-centralized,
peer-to-peer network as seen in Fig. 4. Through the peer-to-
peer communication channel, the manager agent distributes
target GPS locations to each worker agent currently connected
to it. Once given a target destination, worker agents move
towards their objective. During their traversal, the worker
agents interact with the environment by detecting obstacles
with their sensors and controlling their motors to move towards
their target.

As seen in Fig. 5, the worker agents have multiple working
layers that handle navigational, sensory and computational
tasks. There are two main layers: software and hardware.
Within the software layer, agent brain handles all of the ongo-
ing communications with other agents and exchanges informa-
tion with the lower modules: sensor and motor controllers. The
sensor controller gathers hardware level information from the
distance measuring sensors. It then uses the sensor information
to measure distances and direction to obstacles and finds
a collision-free path to relay to agent brain for navigation.
Once given a collision-free path, the agent brain provides
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navigational input (forward, left, right, backward) to the motor
controller, which it uses to move the wheels of the vehicle
based on the input.

The manager agent periodically asks the worker agents to
send it information about themselves and the environment.
The worker agents share the following information with the
manager agent:

• Current location in GPS coordinates
• Current state (Idle, Navigating, Working)
• Detected obstacle locations in GPS coordinates

Once information on all worker agents have been gathered,
the manager agent broadcasts the GPS locations of worker
agents back to all of them. The broadcast information can be
used by the worker agents when they need to identify each
other. They can detect and identify each other by comparing
the estimated locations of detected obstacles with the location
information of other agents. If the two locations are in close
proximity to each other, the detecting worker agent sends a
message to the suspected worker agent to acknowledge each
other, slow down their speed and make adjustments to their
trajectory in order to avoid a possible collision.

Current state information is used by the manager agent
to keep track of worker agents’ current status. The worker
agents who are in an ”Idle” state are given a navigation task
starting from their current GPS location towards a random
GPS location in the environment with no information as to
how to get there. The worker agents in the ”Navigating”
state are given information about other agents’ GPS locations
periodically to help them avoid colliding with each other.
And lastly, the worker agents currently in a ”Working” state
indicate to the manager agent that the worker agent has
reached its target destination and is going to stand there for
five seconds before going into the ”Idle” state.

Gathered GPS locations of detected obstacles are compiled
and visualized by the manager agent to create a virtual map
of the working environment. Initially, the manager agent starts
with a blank map roughly the size of the working environment
(based on edge GPS coordinates of the environment) and fills
in the map with the locations of the obstacles given to it by
the worker agents.

Fig. 6. Case 1, test run from start to finish

Fig. 7. Starting positions of the agents for Case 2

IV. EXPERIMENTS & RESULTS

The proposed collision avoidance method has been imple-
mented in a simulation developed using Unity platform [15]
in C# programming language [16]. Within the simulation,
three test cases have been created. Case 1 tests the agents
ability to avoid collisions with other agents. Case 2 tests the
agents ability to avoid collisions with various obstacles that
cause a local minimum. Case 3 combines the two previous
cases in a larger, denser unknown environment where one
test run is executed with fuzzy logic and information sharing
activated (FLIS), and one test run is executed without them
for comparison as a baseline (no FLIS).

1) Case 1 - Agent to agent test: In this test case, the agents’
ability to identify and safely avoid collisions with another
agent is evaluated.

As seen in Fig. 6 A, two worker agents have been arranged
to start from opposite sides in a small test environment where
they need to move to the opposite side where the other agent
is currently standing in front of. The X markers on the figure
denote the target destinations for the two agents. The blue X
marker to the north side of the grid is the target destination
for the agent to the south side of the grid. The red X marker
to the south side of the grid is the target destination of the
agent to the north side of the grid. Fig. 6 B shows the agents
moving away from each other and Fig. 6 C shows the agents
reaching their target destinations. For Case 1, both agents were
able to detect, identify and avoid colliding with each other in
a head-on collision situation.

2) Case 2 - Various obstacle tests: As part of this test
case, three test scenarios have been created to identify the
agent’s usage of the fuzzy risk estimation to avoid collisions
and local minimums. The three scenarios can be seen in Fig.
7. In scenario A, the agent is tasked to move directly behind
a large obstacle. In scenario B, the agent is tasked to move
underneath a storage shelf from a diagonal side. In scenario
C, the agent is tasked to move around a corner.

The results for the three scenarios can be seen in Fig. 8.
The agent was able to avoid all three local minimum traps



Fig. 8. Results for the three test scenarios of Case 2

Fig. 9. Simulated test environment for Case 3

and move to its target destinations for all scenarios.
3) Case 3 - Combined test: In the combined case, the

previous two test cases have been combined together in a
larger and denser environment in which there are five function-
ally identical worker agents and a single manager agent. The
environment houses 14 storage shelves, two corner pieces and
five large columns. The simulated environment can be seen in
Fig. 9.

As part of the combined test, two separate sessions are
held within the environment. One session using the proposed
method (FLIS) and another session without using the method
(no FLIS). In both sessions, the manager agent distributes
random GPS locations as target destinations for the five worker
agents repeatedly until the session ends. During the sessions,
the number of collisions are recorded. For both sessions, 5,
15 and 30 minute test runs have been conducted where each
run was repeated 15 times for accuracy.

The average number of collisions encountered during both
test sessions can be seen in Fig. 10. In the figure, ”FLIS”
represents the test session with fuzzy logic and information
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Fig. 10. Average number of collisions for both sessions.

Fig. 11. Virtual map creation progress through 5 minute sessions repeated
15 times

sharing enabled and ”no FLIS” represents the session with
the method disabled (baseline). With the method enabled, the
agents encountered an average of 0.33 collisions for 5 minute
runs, average of 3.26 collisions for 15 minute runs and an
average of 5.13 collisions for 30 minute runs. With the method
disabled, the agents encountered an average of 14.73 collisions
for 5 minute runs, average of 41.01 collisions for 15 minute
runs and an average of 81.86 collisions for 30 minute runs.
Based on the gathered collision information, with the method
enabled (FLIS), the agents collided with the shelf legs only.
With the method disabled (no FLIS), the agents collided at
least once with every type of obstacle in the environment
including other agents.

Fig. 11 shows the virtual map creation progress from 5
minute test sessions repeated 15 times. Fig. 11 A shows the
snapshot of the virtual map after 5 runs, Fig 11 B shows
the virtual map after 10 runs and Fig. 11 C shows the final
snapshot of the virtual map. A total number of five agents
were able to map the environment in Fig. 9 within 10 test
runs which corresponds to 50 minutes in total.

V. DISCUSSION

Based on the results from the initial two test cases (Fig. 6
and Fig. 8), the method allowed AVs to avoid collisions with
other agents and obstacles in an unknown environment. The
third case results (Fig. 10) show improvement over the baseline
(no FLIS). However, the agents, even while using the method,
recorded collisions with the shelf legs during the third test
case. The collisions with the shelf legs in Case 3 indicates
that the results from Case 2 scenario B (Fig. 8 B) do not
translate directly over to a multi-agent setting. The inclusion
of other AV presence near a challenging local minimum trap
may negatively impact the trap escape strategy utilized in
the method. Overall, the method was capable of avoiding all
collisions with agents and obstacles (other than shelf legs)
while also creating a virtual map of the unknown environment.

Compared to the works presented in papers [4]–[6], the
method provided collision-free navigation in a multi-agent
unknown environment in contrast to a single-agent unknown
environment. Compared to papers [7]–[12], the method works
in an unknown environment rather than a fully known and
observable one. And, similarly to paper [13], the method
is capable of creating a virtual map of the unknown work
environment using information sharing.



VI. CONCLUSION AND FUTURE WORK

In this paper, a collision avoidance method utilizing fuzzy
risk estimation and multi-agent information sharing has been
presented. The method is designed to work in unknown
environments where there is no environmental information
available for the AVs to utilize. The fuzzy collision risk
estimation is made through mapping sensor and velocity data
to a rule base. The AVs use the risk estimation to adjust their
speed and current trajectory to avoid collisions as well as local
minimum traps. The AVs also exchange information on their
current GPS location, state and detected obstacle locations
in order to avoid collisions with each other and ultimately
create a virtual map of the environment. The method has
been implemented and tested within a simulation to evaluate
it in agent-to-agent and static obstacle avoidance scenarios
which present a local minimum trap. The findings indicate
that the method is capable of providing collision avoidance
for multiple agents in an unknown environment, while also
avoiding the majority of local minimum traps that were tested
for.

In the future, the method’s local minimum trap avoidance
strategy needs improvements to also factor for the presence
of other AVs in local minimum proximity. Additionally, the
method can be implemented in a real-world setting to evaluate
the effectiveness of the method further.
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