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Abstract—As the world moves towards mass customization,
there is a need for a manufacturing system that can quickly
adapt to market changes. Reconfigurable manufacturing systems
(RMS) have been proposed as a solution. RMS is designed to
be modular with a high degree of flexibility. However, such a
structure creates a lot of complexity. For instance, if the modules
are moved or changed, the robot arms in the system must be
re-programmed. Adding 3D cameras and image recognition to
the robot arms can solve some of these problems. Nevertheless,
creating image recognition models is time-consuming work, re-
quires human labor, and can increase the cost of manufacturing.
To manufacture a large variety of products, there is a need to
create image recognition models for each product. One method
to automate the generation of image recognition models can be
to use synthetic data. Synthetic data can be used to generate a
large amount of labeled data, which can be used to train image
recognition models.

In this paper, we propose a method for training image recog-
nition models using synthetic data, which can further automate
robots in RMS. Specifically, the system utilizes a 3D model of
a part to generate images, which are then processed by a cycle
generative adversarial network (GAN) to enhance their realism.
These images are subsequently auto-labeled and employed to
train an image recognition model compatible with an industrial
robot arm.

Index Terms—Industrial robot arm, Image recognition, Re-
configurable Manufacturing System (RMS), Cycle Generative
Adversarial Network (GAN)

I. INTRODUCTION

The manufacturing industry is transitioning from mass
production towards mass customization, necessitating more
frequent changes in manufacturing systems to accommodate
new products and variations in demand [1]. Reconfigurable
manufacturing systems (RMS) offer a solution to address these
changes by providing modular manufacturing systems that can
easily scale up or down and adapt to market fluctuations [2].
However, RMS still faces several challenges. For instance,
RMS is designed to be reconfigurable at both the hardware
and software levels [1], which requires the entire system and

control software to be adjustable and flexible. Furthermore,
the modular nature of RMS introduces additional complexity
to the system [3], resulting in extended setup and programming
times for manufacturing systems.

An example of an RMS featuring a modular structure
is presented in [4]. This RMS employs a mobile robot
to autonomously reconfigure the system’s platforms without
human intervention. A demonstration video of the system
can be viewed at https://youtu.be/UXUlaawd8Ps. However,
the system has a drawback: the mobile robot lacks accuracy
when positioning the platforms that form the customized
production line. Therefore, the robot arms in the system
must be programmed for each reconfiguration. Given that
RMS is designed for frequent reconfigurations, the robots
and system require constant reprogramming, which is both
time-consuming and demands robotics expertise. For future
research, it is suggested to investigate how the system can be
automatically programmed.

One approach that can automate the programming/control of
the robot arms in an RMS is to use Industry 4.0 technologies.
Industry 4.0 is the fourth industrial revolution which brings
new technologies such as the internet of things (IoT), cyber-
physical systems (CPS), big data and analytics, simulation and
digital twin, artificial intelligence (AI) and additive manufac-
turing [5]. Singh et al. [6] note that Industry 4.0 technologies
are essential for the future success of RMS.

One Industry 4.0 technology that can be used to automate
the programming/control of the robot arms is to use AI with
a bin-picking system. For example, using 3D cameras with
image recognition to pick objects automatically. For example,
robot arms equipped with 3D cameras and image recognition
can classify objects and determine the distance [7]. Fujita
et al. [8] looked at four state-of-the-art bin-picking solutions
and investigated what technologies should be combined for
effective bin-picking by robots. They found that in all the
systems industrial robot arms were used because of their high



accuracy and were combined with suction grippers and RGB-
D sensors with CNN-based algorithms.

However, the challenge of using the CNN-based algorithms.
In a typical machine learning project can be categorized
into four steps, data collection, data labeling, model training,
and deployment. One challenge is that the labeling step can
consume up to 80% of development time [9]. Moreover, deep
neural networks require substantial amounts of labeled data
for training [10].

This relates to big data, which comprises four dimensions:
volume, velocity, variety, and veracity. Volume relates to the
amount of data, variety describes the types of data that are
available, velocity is related to the speed at which the data is
generated and the speed the data is processed, and veracity
refers to the reliability (correctness) of the data [11].

Large, diverse, and accurate labeled datasets can be used
to develop effective machine learning models. For image
recognition, this entails capturing multiple images of an object
from various angles, backgrounds, and lighting conditions.
This process can be time-consuming, labor-intensive, and
expensive, especially when considering the need to adapt
to mass customization in manufacturing. Consequently, new
machine learning models must be developed for each new
product manufactured.

Therefore, to automate this process there is a need for a
method to create data that can be used to train the machine
learning model. One method that can be used to create training
data, is generating synthetic data. Using synthetic data can
give a cost-effective method to get large amounts of labeled
training data [10].

One of the most used methods to generate synthetic data
is generative adversarial networks (GAN) [10]. The GAN are
neural networks that consist of two networks, one generator
that generates the data and a discriminator. When the model is
trained, the generator generates images, and the discriminator
will try to identify which images are real and which are fake.
The goal when training is to reach an equilibrium where
the generated images follow the same distribution as the real
images.

Generative Adversarial Networks (GANs) are a versatile
class of neural networks that can be employed for a wide
range of applications. For instance, Zou et al. [12] utilized
GANs to enhance the calibration process of a welding robot,
resulting in improved performance, while Mishra et al. [13]
leveraged GANs for effective footstep planning in humanoid
robots. However, a significant challenge associated with many
GANs is the necessity for large datasets containing paired
image-to-image translations, such as Pix2Pix [14]. Acquiring
these datasets can be difficult and time-consuming.

To tackle this challenge, Zhu et al. [15] used another
approach, namely, cycle GAN. Cycle GAN does not require
paired images and is trained in an unsupervised manner.
The cycle GAN uses two generators and two discriminators,
and when training, the images are translated two times. One
to translate the image, and a second time to translate the
translated image back to the original image. Rao et al. [16]

explored the use of cycle Generative Adversarial Networks
(GAN) to make simulations more realistic. By using rein-
forcement learning, robot arms can be trained to pick objects
automatically. However, the challenge lies in ensuring the
simulation accurately reflects reality, which is where cycle
GAN comes in, transforming simulated images to appear more
realistic.

In the manufacturing of new products using CNC machines
or additive manufacturing, CAD 3D models of the product are
often readily available. These 3D models can be harnessed
to create synthetic images for training machine learning al-
gorithms. Building on this concept, Hanssen [17] designed a
system that employs 3D models to generate images in various
orientations, which were subsequently used to train a VGG16
model for image recognition. However, solely relying on the
generated images with the VGG16 model [18] did not result in
an effective image recognition system. Furthermore, Jordon et
al. [10] highlight that the utilization of synthetic data remains
an emerging research area, characterized by a scarcity of
established frameworks for implementing the technology.

In this paper, we build upon Hanssen’s work [17] by
combining 3D models with a cycle GAN to create more real-
istic images and implementing YOLOv5, a fast and powerful
image recognition model. We also propose a system structure
detailing the necessary steps for creating an image recognition
model from a 3D model.

The main contribution is to propose a novel method for au-
tomatically generating image recognition models for industrial
robot arms in RMS, eliminating the need for reprogramming
robots after system reconfigurations. Additionally, we show-
case the practical implementation of this approach.

The rest of the paper is organized as follows: Section II
proposes how the image recognition model can be generated
from the 3D model and how the system works, and in Section
III, experimental testing of the system is conducted. Then the
paper discusses the results and concludes in Section IV and
V.

II. A METHOD FOR GENERATING SYNTHETIC TRAINING
DATA

This section presents a system for automatically generating
image recognition models for 3D-printed parts. These models
can then be seamlessly transferred to robot arm platforms, en-
abling the robot arms to directly utilize the image recognition
models for object detection.

A. Generating synthetic data

The first step is to generate images from the 3D model. A
Python program imports a 3D model as an STL file, rotates
the model to different orientations and generates images from
the model, as can be seen in Fig. 1. However, the resulting
images may not resemble realistic 3D-printed parts. Therefore,
it is necessary to further process and enhance the images to
achieve a more lifelike appearance.



Fig. 1. The generated images of an STL file with different orientations.

B. Cycle GAN

As mentioned, the generated images do not have realistic
features. One method that can be used to make the image look
more realistic, is a translation system. The translation system
can be used to generate new synthetic images based on real
or synthetic images.

Therefore, cycle GAN is trained to translate the synthetic
images from the 3D model into real-looking 3D printed
parts. When training the cycle GAN, it was noted that if
the generated images have white backgrounds, as shown in
Fig. 1, the cycle GAN network will end up focusing on the
background instead of the parts. Therefore, background images
can be inserted into all the generated images for the training
of the cycle GAN.

Moreover, filters can also be used. The idea of the filters
is to slightly change the images with either a blur filter or
by increasing or decreasing the brightness, sharpness, and
contrast. If the filters made too big changes to the images,
these filters would be added to the cycle GAN. However,
small adjustments in the generated images would improve
the translated images from the cycle GAN. Fig. 2, shows the
images used to train the Cycle GAN.

Fig. 2. The cycle GAN training approach: a) is the generated images, where
backgrounds have been inserted, and b) is the real 3D printed parts used to
train the cycle GAN.

In this study, we utilized 24 unique 3D models to generate a
total of 2,700 synthetic images. The same 3D models were also
3D-printed and photographed, resulting in an additional 2,700
images. This provided us with a combined dataset of 5,400
images, comprising both generated and photographed images.
Furthermore, we employed the code from [19] to implement
the cycle GAN. The cycle GAN was tested on a 3D model not
included in the training dataset, yielding the results illustrated
in Fig. 3.

Fig. 3. The image shows the resulting cycle GAN, where a) The input images
of the cycle GAN. b) The output from the cycle GAN.

C. Image recognition model

The You-Only-Look-Once (YOLO) object detection algo-
rithm is known for its high accuracy and rapid processing
capabilities, making it suitable for real-time applications [20].
By extracting the x and y coordinates of detected objects,
YOLO can be employed to control robots [21]. In the proposed
system, YOLOv5 [22] is employed to provide object position
information to the robot arm controller.

YOLOv5 primarily consists of four models: YOLOv5x,
YOLOv5l, YOLOv5m, and YOLOv5s. The YOLOv5x model
is the most comprehensive, generally yielding the best results,
while the other three models are simplified versions. The mod-
els differ in terms of feature extraction, convolutional kernels,
specific network locations, parameter count, and overall size
[23].

Given that the generated images contain only one part
centrally positioned, an automatic labeler can be used. The
”Automatic YOLO Labeler” library on GitHub [24] is capable
of identifying the main object within a frame and saving its
position. This library leverages the U2-Net [25] for salient
object detection, which removes backgrounds in images.

When the images are labeled, a background is added to
the pictures and a filter to improve the training of the image
recognition model. An illustration of the automatic labeling
can be seen in Fig. 6.

D. The image recognition system

The automatic generation of the image recognition model
can be divided into four main steps:

1) Generate images with different orientations.



Fig. 4. The images are automatically labeled, and a new background is
inserted.

2) Run the images through a cycle GAN to make the
images look more realistic.

3) Then label the images, insert background images, and
run the images through a filter.

4) Finally, the images are used to train the YOLOv5 model.
All of these steps can be executed automatically, and the

image recognition model can be transferred to a robot arm
and start picking objects automatically. An illustration of the
steps can be seen in Fig. 5.

Fig. 5. On the left side, all the steps are used to create the image recognition
model, and on the right side, the images are transformed.

III. SYSTEM DEMONSTRATION

A demonstration has been built to showcase how the system
works. First, we explain how the image recognition model is

created and then show video demonstrations of the system
with robot arms.

A. Generating the image recognition model

The system is demonstrated using the three objects. A total
of 12,000 images were generated by creating 4,000 images
for each of the three 3D models with varying rotations. These
images were then processed through the GAN to enhance
realism and incorporate background images. As previously
mentioned, the YOLOv5 algorithm is employed for the image
recognition model, specifically using the largest pre-trained
weights model, YOLOv5x [26].

Initial tests revealed that training the model with 100 epochs
led to mislabeling and incorrect object identification, whereas
training with 200 epochs resulted in overfitting, preventing the
model from recognizing the objects. Consequently, training the
model for 150 epochs yielded the best outcomes and the loss
from the training can be seen in Fig 6. Additionally, an Intel
RealSense D405 camera is utilized in the demonstration to
obtain depth information from the camera frame.

Fig. 6. The loss from training with 150 epochs.

B. Demonstrations 1 and 2

The initial two demonstrations illustrate the performance
of the image recognition model in conjunction with different



robot arm movements. In the first demonstration, the robot
arm moves in a square pattern, increasing its height after
each completed pattern. The image recognition model operates
simultaneously with the robot arm’s movement. A screenshot
of this test is provided in Fig. 7, and the video can be viewed
at https://youtu.be/6lGjiVP21Dg.

Fig. 7. Screenshot from the first demonstration, with a) depicting the camera
approximately 160mm from the table and b) showing the camera 300mm from
the table.

The second demonstration, available at https://youtu.be/
6TmoyWvbd5Q, features the robot arm moving up and down
slowly while the image recognition model runs concurrently.

Both demonstrations reveal that the image recognition
model performs well at close distances. However, as the
distance increases, the model’s ability to recognize the object
deteriorates.

C. Demonstration 3

The objective of the third demonstration is to automatically
pick up an object using the image recognition model. A Nachi
MZ07 six-axis industrial robot arm equipped with a suction
gripper is utilized for this purpose, and the demonstration is
limited to a single object. In this demonstration, the robot arm
relies on the camera for navigation, adjusting its position based
on the object’s location within the camera frame. Once the
suction cup is aligned with the object, the robot arm descends
with a fixed movement to pick it up and then places it in a
designated red box. To demonstrate the system’s reliability,
the robot arm repeats the process three times. The video can
be found at https://youtu.be/oD82GAP8Ffs.

IV. DISCUSSION

Traditionally, RMS needs to set up and program robots
for each reconfiguration of the RMS. In this paper, we have
proposed a method that can be used to automate the process
of creating an image recognition model. This again can
allow robot arms in manufacturing systems to become more
automated and reduce the need for humans.

Moreover, in Industry 4.0, we have gotten new digital
technologies such as digital twins, Big data, and simulation.

These technologies can be used to digitalize manufacturing
systems, but connecting or using these technologies with
physical/real systems can be challenging. Using cycle GAN,
can be an effective method to transform digital 3D models and
make them look more realistic (real).

We also propose a system to generate the image recognition
model automatically. The system takes in a 3D model, which
is used to generate synthetic images. These images are then
transformed with a cycle GAN, to make them more realistic.
Then the images are automatically labeled, a background is
added, and a filter is applied to make them ready to be trained.
In this system, we use YOLOv5 since it is a fast method that
can accurately detect objects but also tell where in the picture
the object is. The image recognition model can be directly
transferred to the robot arm for the pick and place of parts. It
can also allow robot arms to work with objects without any
human intervention.

The method achieved good results for close-ups, but several
issues were experienced from a distance. To see what the
image recognition model is focusing on, EigenCAM [27] is
implemented. EigenCAM is a class activation map that can be
used to find what pixels of the image the model is focusing
on. After implementing EigenCAM, the main problem seems
to be that the model is focused on specific parts of the part
and not the general shape of the part. Another challenge is
the effect of different lighting conditions and the background
surface. If the light in the room is too strong or not strong
enough can lead to no recognition. In addition, if the object
is on a reflective surface and there is a lot of glare, the object
will not be recognized.

Furthermore, as seen from the first two demonstration
videos, the box is rarely recognized. However, the other
objects are very well recognized at a close distance and the
image recognition model can label them correctly. The box
detection might be worse because it does not contain any clear
feature that the image recognition model can focus on.

V. CONCLUSION AND FURTHER WORK

In this paper, we have developed a method on how an
image recognition model can be created automatically without
the need for humans. The system takes a 3D model as
input and generates images from the 3D model with differ-
ent orientations. These images are transformed with a cycle
GAN, to make them look more realistic. The Images can be
automatically labeled, trained, and deployed on a robot arm
for pick-and-place operations. This method can therefore be
used to automatically create image recognition models, which
can reduce the reconfiguration time of RMS.

We have also developed three demonstration videos. The
first two videos show the performance of the image recognition
model when the robot arm is moving. The third video shows
pick and place with an industrial robot arm.

As mentioned in the discussion, there are many challenges
with this system that must be solved before this system can
be deployed in an RMS. For instance:



• To improve the detection of parts, the image recognition
model must be improved. The first part is to find a method
that allows for the detection of parts from a distance.

• In this paper, we create a cycle GAN that is used for 3D-
printed parts in black. Further work should investigate if
the same cycle GAN can be used from parts that come
from CNC or turning machines. In addition, create a GAN
which can work with all colors, not only black.

• The cycle GAN used in this system can be expanded
and improved. This can be done by adding more images
of real parts and using more 3D models. In addition,
the system can be tested with other methods to create
synthetic data, such as variational auto-encoders (VAE).
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