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Abstract
Stability selection represents an attractive approach to identify sparse sets of features jointly associated with 
an outcome in high-dimensional contexts. We introduce an automated calibration procedure via maximisation 
of an in-house stability score and accommodating a priori-known block structure (e.g. multi-OMIC) data. It 
applies to [Least Absolute Shrinkage Selection Operator (LASSO)] penalised regression and graphical 
models. Simulations show our approach outperforms non-stability-based and stability selection approaches 
using the original calibration. Application to multi-block graphical LASSO on real (epigenetic and 
transcriptomic) data from the Norwegian Women and Cancer study reveals a central/credible and novel 
cross-OMIC role of LRRN3 in the biological response to smoking. Proposed approaches were implemented 
in the R package sharp.
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1 Introduction
Tobacco smoking has long been established as a dangerous exposure causally linked to several se
vere chronic conditions, including the risk of developing lung cancer (National Center for Chronic 
Disease Prevention and Health Promotion (US) Office on Smoking and Health, 2014). 
Nevertheless, the molecular mechanisms triggered and dysregulated by the exposure to tobacco 
smoking remain poorly understood. Over the past two decades, OMICs technologies have devel
oped as valuable tools to explore molecular alterations due to external stressors or associated with 
future health conditions (Niedzwiecki et al., 2019).

Univariate analyses of OMICs data have enabled the identification of molecular markers of ex
posure to tobacco smoking (Huan et al., 2016; Joehanes et al., 2016). Multivariate regression, 
where all OMICs markers are used as predictors, can be used to avoid the detection of redundant 
prospective markers of disease risk (Chadeau-Hyam et al., 2013). In particular, variable selection 
models can identify sparse and non-redundant sets of predictors and have proved useful for signal 
prioritisation in this context (Vermeulen et al., 2018). Graphical models are particularly relevant 
to the analysis of biological data, where we expect intricate relationships between molecular 
markers (Barabási & Oltvai, 2004). In addition, with the emergence of multi-omics datasets, 
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where multiple high-resolution molecular profiles are measured in the same individuals (Guida 
et al., 2015; Noor et al., 2019), there is a need for efficient multivariate approaches accommodat
ing high-dimensional and heterogeneous data typically exhibiting block-correlation structures. In 
this article, we propose some methodological developments to identify (i) smoking-related mo
lecular markers of the risk of developing lung cancer using variable selection, and (ii) relationships 
between multi-OMICs markers of tobacco smoking using graphical models. These applications 
are conducted on real multi-OMICs data to illustrate the relevance and utility of the proposed 
approaches.

For variable selection, we consider the Least Absolute Shrinkage Selection Operator (LASSO), 
which uses the ℓ1-penalisation of regression coefficients to induce sparsity (Tibshirani, 1996). 
Extensions of these penalised regression models have been proposed for the estimation 
of Gaussian graphical models (Friedman et al., 2007; Meinshausen & Bühlmann, 2006). By ap
plying a ℓ1-penalisation to the precision matrix (as defined by the inverse of the covariance ma
trix), the graphical LASSO identifies non-zero entries of the partial correlation matrix. The 
evaluation (and subsequent selection) of pairwise relationships between molecular features in 
graphical models can guide biological interpretation of the results, under the assumption that 
statistical correlations reflect molecular interactions (Barabási & Oltvai, 2004; Valcárcel 
et al., 2011).

We focus in the present article on the calibration of feature selection models, where feature de
notes interchangeably a variable (in the context of regression) or an edge (graphical model). We 
illustrate our approach with regularised models, in which the model size (number of selected fea
tures) is controlled by the penalty parameter. The choice of parameter has strong implications on 
the generated results. Calibration procedures using cross-validation (Friedman et al., 2010; Leng 
et al., 2006) or maximisation of information theory metrics, including the Bayesian (BIC) or 
Akaike (AIC) Information Criterion (Akaike, 1998; Foygel & Drton, 2010; Giraud, 2008; 
Schwarz, 1978) have been proposed.

These models can be complemented by stability approaches to enhance the reliability of the find
ings (Liu et al., 2010; Meinshausen & Bühlmann, 2010; Shah & Samworth, 2013). In stability se
lection, the selection algorithm is combined with resampling techniques to identify the most stable 
signals. The model relies on the introduction of a second parameter: a threshold in selection pro
portion above which the corresponding feature is considered stable. A formula providing the 
upper-bound of the expected number of falsely selected features, or Per-Family Error Rate 
(PFER), as a function of the two parameters has been derived and is currently used to guide cali
bration (Meinshausen & Bühlmann, 2010; Shah & Samworth, 2013). However, this calibration 
relies on the arbitrary choice of one of the two parameters, which can sometimes be difficult to 
justify.

We introduce a score measuring the overall stability of the set of selected features, and use it to 
propose a new calibration strategy for stability selection. Our intuition is that all features would 
have the same probability of being selected in an unstable model. Our calibration procedure does 
not rely on the arbitrary choice of any parameter. Optionally, the problem can be constrained on 
the expected number of falsely selected variables and generate sparser results with error control.

We also extend our calibration procedure to accommodate multiple blocks of data. This exten
sion was motivated by the practical example on integration of data from different OMICs plat
forms. In this setting, block patterns arise, typically with higher (partial) correlations within a 
platform than between (Canzler et al., 2020). We propose here an extension of stability selection 
combined with the graphical LASSO accommodating data with a known block structure. For this 
approach, each block is tuned using a block-specific pair of parameters (penalty and selection pro
portion threshold) (Ambroise et al., 2009).

We conduct an extensive simulation study to evaluate the performances of our calibrated stabil
ity selection models and compare them to state-of-the-art approaches. Our stability selection ap
proaches are applied to targeted methylation and gene expression data from an existing cohort. 
These datasets are integrated in order to characterise the molecular response to tobacco smoking 
at multiple molecular levels. The transcript of the LRRN3 gene, and its closest CpG site were 
found to play a central role in the generated graph. These two variables have the largest numbers 
of cross-OMICs edges and appear to be linking two largely uni-OMICs modules. LRRN3 
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methylation and gene expression therefore appear as pivotal molecular signals driving the bio
logical response to tobacco smoking.

2 Methods
2.1 Data overview
We used DNA methylation and gene expression data in plasma samples from 251 women from the 
Norwegian Women and Cancer (NOWAC) cohort study (Sandanger et al., 2018). Our study popu
lation includes 125 future cases (mean time-to-diagnosis of 4 years) and 126 healthy controls. The 
data was pre-processed as described elsewhere (Guida et al., 2015). DNA methylation at each CpG 
site are originally expressed as a proportion of methylated sequences across all copies (β-values) and 
was subsequent logit2-transformed (M-values). The gene expression data were log-transformed. 
Features missing in more than 30% of the samples were excluded, and the remaining data was im
puted using the k-nearest neighbour. To remove technical confounding, the data was de-noised by 
extracting the residuals from linear mixed models with the OMIC feature as the outcome and mod
elling technical covariates (chip and position) as random intercepts (Sandanger et al., 2018).

2.2 Motivating research questions
Our overarching research question is to identify the role of smoking-related CpG sites in lung car
cingenesis and to better understand the molecular response to the exposure to tobacco smoke.

We therefore identified a subset of 160 CpG sites found differentially methylated in never vs. 
former smokers at a 0.05 Bonferroni corrected significance level in a large meta-analysis of 
15,907 participants from 16 different cohorts (Joehanes et al., 2016). Similarly, we selected a 
set of 156 transcripts found differentially expressed in never vs. current smokers from a meta- 
analysis including 10,233 participants from six cohorts (Huan et al., 2016). Of these, 159 CpG 
sites and 142 transcripts were assayed in our dataset.

Using a logistic-LASSO, we first sought for a sparse subset of the (N = 159) assayed smoking- 
related CpG sites that were jointly associated with the risk of future lung cancer. Second, to char
acterise the multi-OMICs response to exposure to tobacco smoking we estimated the conditional 
independence structure between smoking-related CpG sites (N = 159) and transcripts (N = 142) 
using the graphical LASSO.

To improve the reliability of our findings, both regularised regression and graphical models are 
used in a stability selection framework. These analyses raised two statistical challenges regarding 
the calibration of hyper-parameters in stability selection, and the integration of heterogeneous 
groups of variables in a graphical model. We detail below our approaches to accommodate these 
challenges.

2.3 Variable selection with the LASSO
In LASSO regression, the ℓ1-penalisation is used to shrink the coefficients of variables that are not 
relevant in association with the outcome to zero (Tibshirani, 1996). Let p denote the number of 
variables and n the number of observations. Let Y be the vector of outcomes of length n, and X 
be matrix of predictors of size (n × p). The objective of the problem is to estimate the vector βλ con
taining the p regression coefficients. The optimisation problem of the LASSO can be written:

min
βλ

􏽘n

i=1

(yi − βT
λ xi)

2 + λ
􏽘p

j=1

|βλj
|, (1) 

where λ is a penalty parameter controlling the amount of shrinkage.
Penalised extensions of models including logistic, Poisson and Cox regressions have been proposed 

(Simon et al., 2011). In this article, the use of our method is illustrated with LASSO-regularised linear 
regression. We use its implementation in the glmnet package in R (Gaussian family of models) 
(Friedman et al., 2010).
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2.4 Graphical model estimation with the graphical LASSO
A graph is characterised by a set of nodes (variables) and edges (pairwise links between them). As 
our data are cross-sectional, we focus here on undirected graphs without self-loops. As a result, the 
adjacency matrix encoding the network structure will be symmetric with zeros on the diagonal.

We assume that the data follows a multivariate Normal distribution:

Xi ∼ Np(μ, Σ), i ∈ {1, . . . , n}, (2) 

where μ is the mean vector and Σ is the covariance matrix.
The conditional independence structure is encoded in the support of the precision matrix 

Ω = Σ−1. Various extensions of the LASSO have been proposed for the estimation of a sparse pre
cision matrix (Banerjee et al., 2008; Meinshausen & Bühlmann, 2006). We use here the graphical 
LASSO (Friedman et al., 2007) as implemented in the glassoFast package in R (Friedman et al., 
2018; Sustik & Calderhead, 2012; Witten et al., 2011). For a given value of the penalty parameter 
λ, the optimisation problem can be written as:

max
Ω

log det (Ω) − tr (SΩ) − λ‖Ω‖ℓ1
, (3) 

where S is the empirical covariance matrix and ‖Ω‖ℓ1
=
􏽐

i≠j |Ωij|.
Alternatively, a penalty matrix Λ can be used instead of the scalar λ for more flexible penalisation:

max
Ω

log det (Ω) − tr (SΩ) − ‖Λ † Ω‖ℓ1
, (4) 

where † denotes the element-wise matrix product.

2.5 Stability selection
Stability-enhanced procedures for feature selection proposed in the literature include stability se
lection (Meinshausen & Bühlmann, 2010; Shah & Samworth, 2013) and the Stability Approach 
to Regularization Selection (StARS) (Liu et al., 2010). Both use an existing selection algorithm and 
complement it with resampling techniques to estimate the probability of selection of each feature 
using its selection proportion over the resampling iterations. Stability selection ensures reliability 
of the findings through error control.

The feature selection algorithms we use are (a) the LASSO in a regression framework 
(Friedman et al., 2010; Tibshirani, 1996) and (b) the graphical LASSO for the estimation 
of Gaussian graphical models (Banerjee et al., 2008; Meinshausen & Bühlmann, 2006; 
Sustik & Calderhead, 2012) (see Supplementary Methods, Sections 1.1 and 1.2 for more de
tails on the algorithms). The latter aims at the construction of a conditional independence 
graph. In a graph with p nodes, for each pair of variables X, Y and Gaussian vector Z compil
ing the (p − 2) other variables, an edge is included if the conditional covariance cov(X, Y ∣ Z) is 
different from zero (see Supplementary Methods, Section 1.3 for more details on model 
calibration).

Under the assumption that the selection of feature j is independent from the selection of any oth
er feature i ≠ j, the binary selection status of feature j follows a Bernouilli distribution with par
ameter pλ(j), the selection probability of feature j. The stability selection model is then defined 
as the set Vλ,π of features with selection probability above a threshold π:

Vλ,π = {j : pλ(j) ≥ π}. (5) 

For each feature j, the selection probability is estimated as the selection proportion across models 
with penalty parameter λ applied on K subsamples of the data.

The stability selection model has two parameters (λ, π) that need to be calibrated. In the original 
paper, Meinshausen & Bühlmann use random subsamples of 50% of the observations. They intro
duce qΛ, the average number of features that are selected at least once by the underlying algorithm 
(e.g. LASSO) for a range of values λ ∈ Λ, across the K subsamples. Under the assumptions of (a) 
exchangeability between selected features and (b) that the selection algorithm is not performing 
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worse than random guessing, they derived an upper-bound of the PFER, denoted by PFERMB, as a 
function of the number of selected features qΛ and threshold in selection proportion π:

PFERMB(Λ, π) =
1

2π − 1
q2

Λ
N
.

With simultaneous selection in complementary pairs (CPSS), the selection proportions are ob
tained by counting the number of times the feature is selected in both the models fitted on a sub
sample of 50% of the observations and its complementary subsample made of the remaining 50% 
of observations (Shah & Samworth, 2013). Using this subsampling procedure, the exchangeability 
assumption is not required for the upper-bound PFERMB to be valid. Under the assumption of un
imodality of the distribution of selection proportions obtained with CPSS, Shah & Samworth also 
proposed a stricter upper-bound on the expected number of variables with low selection probabil
ities, denoted here by PFERSS:

PFERSS(Λ, π) =

1
2 × (2π − 1 − 1/K)

q2
Λ

N
if π ≤ 0.75

4 × (1 − π + 1/K)
1 + 2/K

q2
Λ

N
otherwise.

⎧
⎪⎪⎨

⎪⎪⎩

For simplicity, we consider here point-wise control (Λ reduces to a single value λ) with no effects on 
the validity of the formulas. Both approaches provide a relationship between λ (via qλ), π and the 
upper-bound of the PFER such that if two of them are fixed, the third one can be calculated. The 
authors of both papers proposed to guide calibration based on the arbitrary choice of two of these 
three quantities. For example, the penalty parameter λ can be calibrated for a combination of fixed 
values of the selection proportion π and threshold in PFER.

To avoid the arbitrary choice of the selection proportion π or penalty λ, we introduce here a 
score measuring the overall stability of the model and use it to jointly calibrate these two param
eters. We also consider the use of a user-defined threshold in PFER to limit the set of parameter 
values for λ and π to explore.

2.6 Stability score
Our calibration procedure aims at identifying the pair of hyper-parameters (λ, π) that maximises 
model stability (Yu, 2013). Let Hλ(j) ∈ {0, . . . , K} denote the selection count of feature j ∈ 
{1, . . . , N} calculated over the K models fitted with parameter λ over different subsamples. To 
quantify model stability, we first define three categories of features based on their selection 
counts. For a given penalty parameter λ and threshold in selection proportion π ∈ ]0.5, 1[, 
each feature j is either (a) stably selected if Hλ(j) ≥ Kπ, (b) stably excluded if Hλ(j) ≤ K(1 − π), 
or (c) unstably selected if (1 − π)K < Hλ(j) < Kπ. Unstably selected features are those that are am
biguously selected across subsamples. The partitioning of the features into these three categories 
provides information about model stability, whereby a stable model would include a large num
bers of stably selected and/or stably excluded features and a small number of unstably selected 
features.

We hypothesise that under the most unstable selection procedure, all features would have the 
same probability γλ = qλ/N of being selected, where qλ = ⌊1K

􏽐N
j=1 Hλ(j) + 1

2⌋ is the average number 
of selected features across the K models fitted with penalty λ on the different subsamples of the 
data. Further assuming that the subsamples are independent, the selection count Hλ(j) of feature 
j ∈ {1, . . . , N} would then follow a binomial distribution:

Hλ(j) ∼ B(K, γλ).

By considering the N selection counts as independent observations, we can derive the likelihood of 
observing this classification under the hypothesis of instability, given λ and π:
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Lλ,π =
􏽙N

j=1

1 − FK,γλ (Kπ − 1)
( 􏼁1{Hλ (j)≥Kπ}
􏽨

× FK,γλ (Kπ − 1) − FK,γλ (K(1 − π))
( 􏼁1{(1−π)K<Hλ (j)<Kπ}

× FK,γλ (K(1 − π))1{Hλ (j)≤K(1−π),}
􏼃
, 

where FK,γλ is the cumulative probability function of the binomial distribution with parameters 
K and γλ.

Our stability score Sλ,π is defined as the negative log-likelihood under the hypothesis of equi- 
probability of selection:

Sλ,π = −log (Lλ,π).

The score Sλ,π measures how unlikely a given model is to arise from the null hypothesis, for a given 
set of λ and π. As such, the higher the score, the more stable the set of selected features. By construc
tion, this formula is accounting for (a) the total number of features N, (b) the number of iterations 
K, (c) the density of selected sets by the original procedure via λ, and (d) the level of stringency as 
measured by threshold π. The calibration approach we develop aims at identifying sets of param
eters λ and π maximising our score:

max
λ,π

Sλ,π. (6) 

Furthermore, this calibration technique can be extended to incorporate some error control via a 
constraint ensuring that the expected number of false positives (FP) is below an a priori fixed 
threshold in PFER η:

max
λ,π

Sλ,π such that Uλ,π ≤ η, where (7) 

Uλ,π is the upper-bound used for error control in existing strategies (i.e. PFERMB or PFERSS) 
(Meinshausen & Bühlmann, 2010; Shah & Samworth, 2013).

In the following sections, the use of equation (6) is referred to as unconstrained calibration, and 
that of equation (7) as constrained calibration.

2.7 Multi-block graphical models
The combination of heterogeneous groups of variables can create technically induced patterns in 
the estimated (partial) correlation matrix, subsequently inducing bias in the generated graphical 
models. This can be observed, for example, when integrating the measured levels of features 
from different OMICs platforms. The between-platform (partial) correlations are overall weaker 
than within platforms (Supplementary Material, Figure S1). This makes the detection of bipartite 
edges more difficult. This structure is known a priori and does not need to be inferred from the 
data. Indeed, the integration of data arising from G homogeneous groups of variables generates 
B = G×(G+1)

2 two-dimensional blocks in the (partial) correlation matrix where variables are ordered 
by group (Ambroise et al., 2009).

To tackle this scaling issue, we propose to use and calibrate block-specific pairs of parameters, λb 
and πb controlling the level of sparsity in block b. Let Eb, b ∈ {1, . . . , B} denote the sets of edges 
belonging to each of the blocks, such that:

􏽛B

b=1

Eb = {1, . . . , N}.
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The stability selection model can be defined more generally as:

Vλ1,...,λB ,π1,...,πB =
􏽛B

b=1

{j ∈ Eb : pλ1,...,λB (j) ≥ πb}, where (8) 

The probabilities pλ1,...,λB (j), j ∈ {1, . . . , N} are estimated as selection proportions of the edges ob
tained from graphical LASSO models fitted on K subsamples of the data with a block penalty ma
trix such that edge j ∈ Eb is penalised with λb.

Our stability score is then defined, by block, as:

Sλ1,...,λB,π1,...,πB = − log
􏽙B

b=1

􏽙

j∈Eb

1 − FK,γλ1,...,λB
(Kπb − 1)

􏼐 􏼑1
{Hb

λ1,...,λB
(j)≥Kπb }

􏼔􏼠

× FK,γλ1,...,λB
(Kπb − 1) − FK,γλ1,...,λB

(K(1 − πb))
􏼐 􏼑1

{(1−πb )K<Hb
λ1,...,λB

(j)<Kπb }

× FK,γλ1,...,λB
(K(1 − πb))

1
{Hb

λ1,...,λB
(j)≤K(1−πb )}

􏼕􏼓

.

Alternatively, we propose a block-wise decomposition, as described in equation (9). To ensure that 
pairwise partial correlations in each block are estimated conditionally on all other (p − 2) nodes, 
we propose to estimate them from graphical LASSO models where the other blocks are weakly 
penalised (i.e. with small penalty λ0). We introduce pb

λb,λ0
(j) and Hb

λb,λ0
(j), the selection probability 

and count of edge j ∈ Eb as obtained from graphical LASSO models fitted with a block penalty 
matrix such that edges j ∈ Eb are penalised with λb and edges i ∈ Eℓ, ℓ ≠ b are penalised with 
λ0. We define the multi-block stability selection graphical model as the union of the sets of block- 
specific stable edges:

Vλ1,...,λB ,λ0,π1,...,πB =
􏽛B

b=1

{j ∈ Eb : pb
λb,λ0

(j) ≥ πb}. (9) 

The pair of parameters is calibrated for each of the blocks separately using a block-specific stability 
score defined by:

Sb
λb,λ0,πb

= − log
􏽙

j∈Eb

1 − FK,γλb ,λ0
(Kπb − 1)

􏼐 􏼑1
{Hb

λb ,λ0
(j)≥Kπb }

􏼔􏼠

× FK,γλb ,λ0
(Kπb − 1) − FK,γλb ,λ0

(K(1 − πb))
􏼐 􏼑1

{(1−πb )K<Hb
λb ,λ0

(j)<Kπb }

× FK,γλb ,λ0
(K(1 − πb))

1
{Hb

λb ,λ0
(j)≤K(1−πb )}

􏼕􏼓

, 

where γλb ,λ0 
is calculated based on the selection counts in Hb

λb,λ0
.

The implication of these assumptions are evaluated by comparing the two approaches described 
in equations (9) and (8) in a simulation study.

2.8 Implementation
The stability selection procedure is applied for different values of λ and π and the stability score is 
computed for all visited pairs of parameters. The grid of λ values is chosen so that the underlying 
selection algorithm visits a range of models from empty to dense (up to 50% of edges selected by 
the graphical LASSO) (Friedman et al., 2010; Müller et al., 2016). Values of the threshold π vary 
between 0.6 and 0.9, as proposed previously (Meinshausen & Bühlmann, 2010).
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2.9 Simulation models
In order to evaluate the performances of our approach and compare to other established calibra
tion procedures, we simulated several datasets according to the models described below, which we 
implemented in the R package fake (version 1.3.0).

2.9.1 Graphical models
We build upon previously proposed models to simulate multivariate Normal data with an under
lying graph structure (Zhao et al., 2012). Our contributions include (a) a procedure for the auto
mated choice of the parameter ensuring that the generated correlation matrix has contrast, and (b) 
the simulation of block-structured data.

First, we simulate the binary adjacency matrix Θ of size (p × p) of a random graph with density ν 
using the Erdös–Rényi model (Erdös & Rényi, 1959) or a scale-free graph using the 
Barabási-Albert preferential attachment algorithm (Albert & Barabási, 2002; Zhao et al., 
2012). To introduce a block structure in the generate data, the non-diagonal entries of the preci
sion matrix Ω are simulated such that:

Ωij =
0 if Θij = 0
αij if Θij = 1 and i and j belong to the same platform
αijvb if Θij = 1 and i and j belong to different platforms.

⎧
⎨

⎩
, i ≠ j where 

αij ∼ U({ − 1, 1}) and vb ∈ [0, 1] is a user-defined parameter.
We ensure that the generated precision matrix is positive definite via diagonal dominance:

Ωii =
􏽘p

j=1

|Ωij| + u, where 

u > 0 is a parameter to be tuned.
The data are simulated from the centred multivariate Normal distribution with covariance Ω−1.
The simulation model is controlled by five parameters: 

(a) number of observations n,
(b) number of nodes p,
(c) density of the underlying graph ν ∈ [0, 1],
(d) scaling factor vb ∈ [0, 1] controlling the level of heterogeneity between blocks,
(e) constant u > 0 ensuring positive definiteness.

We propose to choose u so that the generated correlation matrix has a high contrast, as defined by 
the number of unique truncated correlation coefficients with three digits (Supplementary Material, 
Figure S2). The parameter vb ∈ [0, 1] is set to 1 (no block structure) for single-block simulations 
and chosen to generate data with a visible block structure for multi-block simulations (vb = 0.2). 
These models generate realistic correlation matrices (Supplementary Material, Figure S1).

2.9.2 Linear regression
For linear regression, the data simulation is done in two steps with (i) the simulation of n observa
tions for the p predictors and (ii) the simulation of the outcome for each of the n observations, con
ditionally on the predictors data. The first step is done using the simulation model introduced in the 
previous section for graphical models. This allows for some flexibility over the (conditional) inde
pendence patterns between predictors. For the second step, we sample β-coefficients from a uniform 
distribution over { − 1, 1} (for homogeneous effects in absolute value) or over {[ − 1, 0.5] ∪ 
[0.5, 1]} (to introduce variability in the strength of association with the outcome). The outcome 
Yi, i ∈ {1, . . . , n} is then sampled from a Normal distribution (Friedman et al., 2010):

Yi ∣ Xi = xi ∼ N (xiβ, σ2).
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The parameter σ controls the proportion of variance in the outcome that can be explained by its 
predictors. The value of σ is chosen to reach the expected proportion of explained variance R2 

used as simulation parameter:

σ =
�����������
1 − R2

R2 s2

􏽲

, 

where s2 is the variance of Xβ.

2.9.3 Performance metrics
Selection performances of the investigated models are measured in terms of precision p and recall r:

p =
TP

TP + FP
and r =

TP
TP + FN

, where 

TP and FP are the numbers of true and false positives, respectively, and FN is the number of FNs.
The F1-score quantifies the overall selection performance based on a single metric:

F1 =
2 × p × r

p + r 

3 Simulation study
We use a simulation study to demonstrate the relevance of stability selection calibrated with our 
approach: 

(a) in a linear regression context for the LASSO model,
(b) for graphical model using the graphical LASSO,
(c) for multi-block graphical models.

From these, we evaluate the relevance of our stability score for calibration purposes, and compare 
our score to a range of existing calibration approaches including information theory criteria, 
StARS, and stability selection models using the previously proposed error control for different val
ues of the threshold in selection proportion π. As sensitivity analyses, we evaluate the performan
ces of stability selection for graphical models using different resampling approaches, different 
numbers of iterations K, and compare the two proposed approaches for multi-block calibration.

3.1 Simulation parameters
All simulation parameters were chosen in an attempt to generate realistic data with many strong 
signals and some more difficult to detect (weaker partial correlation).

For graphical models, we used p = 100 nodes with an underlying random graph structure of dens
ity ν = 0.02 (99 edges on average, as would be obtained in a scale-free graph with the same number 
of nodes). For multi-block graphical models, we considered two homogeneous groups of 50 nodes 
each. Reported distributions of selection metrics were computed over 1,000 simulated datasets.

Unless otherwise stated, stability selection models were applied on grids of 50 dataset-specific 
penalty parameter values and 31 values for the threshold in selection proportion between 0.6 
and 0.9. The stability-enhanced models were based on K = 100 (complementary) subsamples of 
50% of the observations.

3.2 Applications to simulated data
Our stability selection approach is first applied to the LASSO for the selection of variables jointly 
associated with a continuous outcome in simulated data (Figure 1).

The penalty parameter λ and threshold in selection proportion π are jointly calibrated to maxi
mise the stability score (Figure 1a). Stably selected variables are then identified as those with 
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(a)

(b)

(c)

(d) (e)

Figure 1. Stability selection LASSO (a–c) and graphical LASSO (D–E) applied on simulated data. Calibration plots 
(a–d) show the stability score (colour-coded) for different penalty parameters λ, or numbers of features selected q, 
and thresholds in selection proportion π. We show selection proportions (b) and a graph representation of the 
detected and missed edges (e). We report the median, 5th and 95th quantiles of the R2 obtained for 100 unpenalised 
regression models sequentially adding the predictors in order of decreasing selection proportions (c). These models 
are trained on 50% of the data and performances are evaluated on the remaining observations. TPs, FPs, and FN are 
highlighted (b, c, e). Calibration of the stability selection graphical LASSO ensures that the expected number of false 
positives (PFER) is below 20 (d). The two datasets are simulated for p = 50 variables and n = 100 observations. For 
the regression model, 10 variables contribute to the definition of the outcome with effect sizes in {[ − 1, − 0.5] ∪ 
[0.5, 1]} and an expected proportion of explained variance of 70%. For the graphical model, the simulated graph is 
scale-free.
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selection proportions greater than the calibrated parameter π̂ = 0.86 (dark red line) in LASSO 
models fitted on 50% of the data with calibrated penalty parameter λ̂ = 0.34 (Figure 1b). The re
sulting set of stably selected variables includes 8 of the 10 ‘true’ variables used to simulate the out
come and 1 ‘wrongly selected’ variables we did not use in our simulation.

We observe a marginal increase in prediction performances across unpenalised models sequen
tially adding the nine stably selected predictors by order of decreasing selection proportions 
(Figure 1c). Further including the two FNs generates a limited increase in R2, and so does the in
clusion of any subsequent variable. This suggests that our stability selection model captures most 
of the explanatory information and was therefore well calibrated.

To limit the number of ‘wrongly selected’ features, we can restrict the values of λ and π visited so 
they ensure a control of the PFER (Supplementary Material, Figure S3). In that constrained opti
misation, the values of λ and π yielding a PFER exceeding the specified threshold are discarded and 
corresponding models are not evaluated (Supplementary Material, Figure S3a). The maximum sta
bility score can be obtained for different pairs (λ, π) depending on the constraint, but our simula
tion shows that differences in the maximal stability score (Supplementary Material, Figure S3b) 
and resulting selected variables are small (Supplementary Material, Figure S3c) if the constraint 
is not too stringent.

Our stability score is also used to calibrate the graphical LASSO for the estimation of a condi
tional independence graph, while controlling the expected number of falsely selected edges below 
20 (Figure 1c). The calibrated graph (Figure 1d) included 56 (47 rightly, in plain dark blue and 9 
wrongly, in dashed red lines) stably selected edges (i.e. with selection proportions ≥ π̂ = 0.90), 
based on graphical LASSO models fitted on 50% of the data with penalty parameter λ = 0.52. 
The nine wrongly selected edges tend to be between nodes that are otherwise connected in this ex
ample (marginal links). The two missed edges are connected to the central hub and thus corres
pond to smaller partial correlations, more difficult to detect.

3.3 Evaluation of model performance and comparison with existing approaches
Our simulations show that models with higher stability score yield higher selection performances 
(as measured by the F1-score), making it a relevant metric for calibration (Figure 2a). We also find 
that irrespective of the value of λ and π, stability selection models outperform the original 
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Figure 2. Selection performance in stability selection and relevance of the stability score for calibration. The 
graphical LASSO and stability selection are applied on simulated data with n = 200 observations for p = 100 
variables where the conditional independence structure is that of a random network with ν = 0.02. The F1-score of 
stability selection models fitted with a range of λ and π values is represented as a function of the stability score (a). 
Calibrated stability selection models using the unconstrained and constrained approaches are highlighted. The 
precision and recall of visited stability selection models (grey) and corresponding graphical LASSO models (dark 
blue) are reported (b). The calibrated models using the BIC (beige) or EBIC (brown) are also showed (b).

J R Stat Soc Series C: Applied Statistics, 2023, Vol. 72, No. 5                                                             1385
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/article/72/5/1375/7223787 by guest on 08 February 2024

http://academic.oup.com/JRSSSC/article-lookup/doi/10.1093/jrsssc/qlad058#supplementary-data
http://academic.oup.com/JRSSSC/article-lookup/doi/10.1093/jrsssc/qlad058#supplementary-data
http://academic.oup.com/JRSSSC/article-lookup/doi/10.1093/jrsssc/qlad058#supplementary-data
http://academic.oup.com/JRSSSC/article-lookup/doi/10.1093/jrsssc/qlad058#supplementary-data


implementation of the graphical LASSO (Figure 2b). Graphical LASSO calibrated using the BIC or 
EBIC (see Supplementary Methods, Supplementary Material, Section 1.3) generate dense graphs 
resulting in perfect recall and poor precision values (0.20 and 0.41). Our stability score instead 
yield sparser models, resulting in slightly lower recall values (0.90) which did not include many 
irrelevant edges, as captured by the far better precision value (0.81). Our simulation also shows 
that the constraint controlling the PFER further improves the precision (0.83) through the gener
ation of a sparser model.

Our calibrated stability selection graphical LASSO models are compared with state-of-the-art 
graphical model estimation approaches on 1,000 simulated datasets in low, intermediate and 
high-dimension (Figure 3, Supplementary Material, Table S1). Non stability-enhanced graphical 
LASSO models, calibrated using information theory criteria, are generally the worst performing 
models (median F1-score <0.6 across dimensionality settings). StARS models, applied with the 
same number of subsampling iterations and using default values for other parameters, have the 
highest median numbers of TPs. However, they include more FPs than stability selection models, 
making it less competitive in terms of F1-score (best performing in high-dimension with a median 
F1-score of 0.66). For stability selection models calibrated using error control (MB Meinshausen 
& Bühlmann, 2010, SS Shah & Samworth, 2013), the optimal choice of π seems to depend on 
many parameters including the dimensionality and structure of the graph (Supplementary 
Material, Figure S4). By jointly calibrating the two parameters, our models show generally better 
performances compared to models calibrated solely using error control on these simulations (me
dian F1-score ranging from 0.69 to 0.72 using PFERSS < 20 only in high dimension, compared to 
0.74 using constrained calibration maximising the stability score). Results were consistent when 
using different thresholds in PFER (Supplementary Material, Figure S5). For LASSO models, 
we observe a steep increase in precision with all stability selection models compared to models cali
brated by cross-validation (Supplementary Material, Figure S6). Unconstrained calibration using 
our stability score yielded the highest F1-scores in the presence of independent or correlated pre
dictors. Computation times of the reported stability selection models are comparable and accept
able in practice (less than 3 min in these settings) but rapidly increase with the number of nodes for 
graphical models, reaching 8 hr for 500 observations and 1,000 nodes (Supplementary Material, 
Table S2).

3.4 Sensitivity to the choice of resampling procedure
Stability selection can be implemented with different numbers of iterations K and resampling tech
niques (subsampling, bootstrap or CPSS approaches, and subsample size). We show in a 
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Figure 3. Selection performances of state-of-the-art approaches and proposed calibrated stability selection 
graphical LASSO models. We show the median, quartiles, minimum, and maximum F1-score of graphical LASSO 
models calibrated using the BIC, EBIC, StARS, and stability selection graphical LASSO models calibrated via error 
control (MB or SS) or using the proposed stability score (red). Models are applied on 1,000 simulated datasets with 
p = 100 variables following a multivariate Normal distribution corresponding to a random graph structure (ν = 0.02). 
Performances are estimated in low (n = 2p = 200, a), intermediate (n = p = 100, b), and high (n = p/2 = 50, c) 
dimensions.
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simulation study with p = 100 nodes that (a) the effect of the number of iterations K reaches a plat
eau after 50 of iterations, and (b) that the best performances were obtained for bootstrap samples 
or subsamples of 50% of the observations (Supplementary Material, Figures S7 and S8).

3.5 Multi-block extension for graphical models
Our single and multi-block calibration procedures are applied on simulated datasets with a block 
structure in different dimensionality settings. Block-specific selection performances of both ap
proaches can be visualised in precision-recall plots (Figure 4, Supplementary Material, 
Table S3). Irrespective of the dimensionality, accounting for the block structure as proposed in 
equation (9) with λ0 = 0.1 generates an increase in selection performance in both within and be
tween blocks (up to 7% in overall median F1-score in low dimension). This gain in performance 
comes at the price of an increased computation time (from 2 to 6 min in low dimension).

Additionally, we show in Supplementary Material, Table S4 that the choice of λ0 has limited ef
fects on the selection performances, as long as it is relatively small (λ0 ≤ 0.1). We choose λ0 = 0.1 
for a good balance between performance and computation time. We also show that the use 
of equation (9) gives better selection performances than that of equation (8) (median F1-score 
≥ 0.71 compared to 0.57). In particular, it drastically reduces the numbers of FPs in the off- 
diagonal block.
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Figure 4. Precision-recall showing single and multi-block stability selection graphical models applied on simulated 
data with a block structure. Models are applied on 1,000 simulated datasets (points) with p = 100 variables following 
a multivariate Normal distribution corresponding to a random graph (ν = 0.02) and with known block structure 
(50 variables per group, using vb = 0.2). The contour lines indicate estimated two-dimensional density distributions. 
Performances are evaluated in low (a, n = 2p = 200), intermediate (b, n = p = 100), and high (c, n = p/2 = 50) 
dimensions.
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(a)

(c)

(d)

(b)

Figure 5. Stability selection on real DNA methylation and gene expression data. The stability selection 
logistic-LASSO with the future lung cancer status as outcome and epigenetic markers of smoking as predictors is 
calibrated by maximising the stability score (a). The selection proportions in the calibrated model and explanatory 
performances of unpenalised logistic models where the predictors are sequentially added by decreasing selection 
proportion are showed (b). The three blocks of a multi-OMICs graphical model integrating DNA methylation and 
gene expression markers of tobacco smoking are calibrated separately using models where the other blocks are 
weakly penalised (λ0 = 0.1), while ensuring that PFERMB < 150 overall (c). The stability selection model includes 
edges that are stably selected in each block (d).
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4 Application: molecular signature of smoking
4.1 Epigenetic markers of lung cancer
To identify smoking-related markers that contribute to the risk of developing lung cancer, we 
use stability selection logistic-LASSO with the 159 CpG sites as predictors and the future lung 
cancer status as outcome (Figure 5a, b). The calibrated model includes 21 CpG sites with selec
tion proportions above 0.66. The unpenalised logistic models with stably selected predictors 
reach a median AUC of 0.69, which is close to that of pack years (median AUC of 0.74) and im
plies that these 21 CpG sites capture most of the information on smoking history relevant to lung 
cancer prediction. The limited increase in AUC beyond the calibrated number of predictors sug
gests that the stability selection model achieves a good balance between sparsity and prediction 
performance.

4.2 Multi-OMICs graph
We first estimate the conditional independence structure between smoking-related CpG sites with 
single-block stability selection (Supplementary Material, Figure S9). A total of 320 edges involving 
100 of the 159 CpG sites are obtained. Most CpG sites are in the same connected component, but 
we also observe 6 small modules made of 2 or 3 nodes.

In order to get a more comprehensive understanding of the biological response to smoking we 
integrate methylation data, known to reflect long-term exposure to tobacco smoking, and gene ex
pression, which is functionally well characterised, and seek for correlation patterns across these 
smoking-related signals via the estimation of a multi-OMICs graph.

We accommodate the heterogeneous data structure (Supplementary Material, Figure S10) by 
calibrating three pairs of block-specific parameters (λ, π) using our multi-block strategy 
(Figure 5a). We found a total of 601 edges, including 150 in the within-methylation block, 425 
in the within-gene expression block, and 26 cross-OMICs edges (Figure 5b). The detected links 
reflect potential participation to common regulatory processes of both transcripts and CpG sites. 
As our analysis was limited to smoking-related markers, connected nodes can be hypothesised to 
jointly contribute to the biological response to tobacco smoking.

For comparison, we estimate the graphical LASSO model calibrated using the BIC on the 
same data (Supplementary Material, Figure S11). Of the 601 edges included in the stability se
lection graph, 583 were also in the BIC-calibrated graph. The BIC-calibrated graph is more 
dense (N= 6,744 edges), which makes it difficult to interpret. As this procedure does not ac
count for the block structure in the data, two modules corresponding to the two platforms 
are clearly visible.

DNA methylation nodes are annotated with the symbol of its closest gene on the genome 
(Joehanes et al., 2016). Most sets of CpG sites annotated with the same gene symbol are intercon
nected in the graph (e.g. AHRR, GNG12-AS1, and ALPPL2 on chromosomes 5, 3, and 2, respect
ively). The data includes a CpG site and a transcript with the same annotation for two genes, but 
only found a cross-OMIC link for LRRN3 (Guida et al., 2015). The LRRN3 transcript, which is 
linked to 4 CpG sites including AHRR, ALPPL2, and a CpG site annotated as LRRN3 
(cg09837977), has a central position among methylation markers (Figure 5b).

Strong correlations involving features that are closely located on the genome, or cis-effects, have 
been reported previously (Robinson et al., 2014). Our approach also detects cross-chromosome 
edges (Supplementary Material, Figure S12), suggesting that complex long-range mechanisms 
could be at stake (Jones, 2012).

We incorporate functional information in the visualisation using Reactome pathways 
(Figure 5b) (Jassal et al., 2020; Langfelder & Horvath, 2008). As previously reported, the immune 
system and in signal transduction (red) pathways were largely represented in the targeted set 
(Huan et al., 2016; Sandanger et al., 2018). Interestingly, the group of interconnected nodes 
around RPL4 (green) was involved in a range of pathways including the cellular response to stress, 
translation, and developmental biology. Similarly, the transcripts involved in the metabolism of 
lipids (yellow) are closely related in the graph. Altogether these results confirm the functional 
proximity of the nearby variables from our graph, hence lending biological plausibility of its 
topology.
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5 Discussion
The stability selection models and proposed calibration procedure have been implemented in the R 
package sharp (version 1.2.1), available on CRAN. The selection performances of our variable se
lection and (multi-block) graphical models were evaluated in a simulation study. We showed that 
stability selection models yield higher F1-score, to the cost of a (limited) increase in computation 
time. The computational efficiency of the proposed approaches can easily be improved using warm 
start and parallelisation, both readily implemented in the R package sharp. We also demonstrated 
that the proposed calibration procedure is generally identifying the optimal threshold in selection 
proportion which leads to overall equivalent or better performances than previously proposed ap
proaches based solely on error control. Our multi-block extension was successful in removing 
some of the technical bias through a more flexible modelling, but generated a tenfold increase 
in computation time compared to single-block models on these simulations.

The proposed approaches also generated promising results on real OMICs data (Petrovic et al., 
2022). The development of stability-enhanced models accommodating data with a known block 
structure we proposed was triggered by the multi-OMICs application for the characterisation of 
the molecular signature of smoking. Their application to methylation and gene expression data 
gave further insights on the long-range correlations previously reported (Guida et al., 2015), 
and revealed a credible pivotal cross-OMICs role of the LRRN3 transcript (Huan et al., 2016). 
Annotation of the networks using biological information from the Reactome database identifies 
modules mostly composed of nodes belonging to the same pathways, suggesting that statistical 
correlations can reflect functional role in shared biological pathways.

The stability selection approach and calibration procedure introduced here could also be used 
in combination with other variable selection algorithms, including penalised unsupervised mod
els that cannot rely on the minimisation of an error term in cross-validation (Zou et al., 2006), or 
extensions modelling longitudinal (Charbonnier et al., 2010) or count data (Chiquet et al., 
2018). The method and its implementation in the R package sharp comes with some level of 
flexibility and user-controlled choices. Depending on the application and its requirements, the 
models can be tailored to generate more or less conservative results using (a) the threshold in 
PFER controlling the sparsity of the selected sets and (b) considering features with intermediate 
selection proportions (between 1 − π and π). The calculation of our stability score can alterna
tively be based on two categories including (a) stably selected features with Hλ(j) ≥ Kπ, and 
(b) non-stably selected features with Hλ(j) < Kπ. As this definition would ignore stably excluded 
features, which also contribute to the overall model stability, it may hamper selection 
performances.

Nevertheless, the results of stability selection models should always be interpreted with care. 
Our simulation studies indicate that, even when the assumptions of the model are verified (includ
ing the multivariate Normal distribution), the estimations of the graphical models are not perfect. 
In particular, some of the edges selected may correspond to marginal relationships (and not true 
conditional links). On the other hand, the absence of an edge does not necessarily indicate that 
there is no conditional association between the two nodes (especially for cross-group edges, for 
which the signal is diluted). Reassuringly, the overall topology of the graph seems relevant, as ob
served when applied on data with a scale-free graphical structure.

Stability selection approaches are based on the assumption that important features are stable, 
i.e. frequently selected over multiple subsamples of the study population. In the presence of corre
lated features that could be used interchangeably in the model for no loss of prediction perform
ance (Breiman, 2001), selection proportions are naturally reduced due to the competition across 
correlated features. As suggested by our simulation study with correlated predictors, the use of our 
stability score for calibration may help in detecting all relevant features even if they are correlated 
by identifying the most stable model, which would include all surrogates.

As with all penalised approaches, the stability selection models we propose rely on a sparsity 
assumption. In regression, this assumption implies that some of the predictors do not contribute 
to the prediction of the outcome or provide information that is redundant with that from other 
predictors. As the stability score Sλ,π we propose is equal to zero the stability selection model is 
empty (no stably selected features) or saturated (all features are stably selected), our calibration 
procedure is only informative for models where the number of stably selected features is between 
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1 and (N − 1). The validity of this sparsity assumption could be investigated post-hoc using unpen
alised models sequentially adding the selected features in decreasing order of selection proportion.

Our calibration procedure is solely based on stability and does not rely on prediction perform
ance, even for regression models. As such, there is no guarantee that stably selected variables are 
the most predictive ones. To assess the predictive performances of the stability selection model and 
to evaluated the per-feature contribution to these performances, we recommend to complement 
stability selection by post-hoc evaluation of prediction performances where features are incremen
tally added as predictors in the model in decreasing order of selection proportion, as illustrated in 
this article.

The calculation of the stability score relies on the assumption that the feature selection counts 
are independent. The link between correlation across features and correlation of their selection 
counts is not obvious and would warrant further investigation. However, selection and prediction 
performances of our calibrated stability selection LASSO models do not seem to be affected by the 
presence of correlated predictors.

While stability selection LASSO has been successfully applied on high-dimensional data with 
almost 450,000 predictors (Petrovic et al., 2022), the stability selection graphical LASSO has lim
ited scalability. The complexity of graphical models is rapidly increasing with the number of no
des, and despite recent faster implementations of the graphical models (Sustik & Calderhead, 
2012), computation times remain high with more than a few hundreds of nodes. Beyond their 
computational burden, large graphical models can become very dense and more efficient ways 
of visualising and summarising the results will be needed. Alternatively, as structures of redundant 
interconnected nodes (cliques) can be observed, summarising these in super-nodes could be valu
able. This could be achieved using clustering or dimensionality reduction approaches, or by in
corporating a priori biological knowledge in the model.
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