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Abstract

Artificial intelligence (AI) encompasses a range of techniques that enable machines to perceive,
learn, and make intelligent decisions and it has emerged as transformative technology in many
applications. This thesis presents the development of an Al model, focusing on the significance
of the primary representative dataset and the effectiveness of transfer learning and fine-tuning
techniques for model development. The research demonstrates the affirmative impact of
methodical approaches on the accuracy, efficiency, and robustness of Al systems. Moreover,
the application of the detection model is demonstrated in wastewater management i.e., for
urban wastewater systems, thus underpinning the application of Al to real world scenarios.

The research approach followed in this work includes critical literature review, site surveys,
intensive experimentations, and robust validation processes which allowed to identify and
address existing gaps and limitations and helped to develop AI detection models for the
selected application.

Deep neural networks, a prominent Al technique, chosen for developing AI model in this work
has exceptional capabilities in handling complex tasks by learning from vast amounts of data.
But the availability of high-quality and representative datasets to effectively train deep neural
network models is critical. The comprehensive and diverse datasets provide effective training
examples, reduce biases, and enhance the detection models’ ability to handle complex inputs.

In the present case, the representative dataset was not available. Therefore, critical multiclass
representative image dataset was generated in the laboratory with unparalleled authenticity
using model sewer network and named as Sewer-Blockages Imagery Recognition Dataset (S-
BIRD) which served as a benchmark for real-time detection and recognition models. The
research also addressed the need for dataset curation, data integrity, and biases.

Using S-BIRD, deep neural object detection models were developed through transfer learning
and fine-tuning. Inductive transfer learning technique used for development of models,
improved convergence, training times, and performance on target detection tasks, enabling
adaptation to different domains with minimal additional training. Transfer learning parameters
were optimised for desired outcomes. The effectiveness of the developed model for detecting
sewer blockages was evaluated by performance metrics. The model achieved high accuracy
rate of 96.30% at an IoU of 0.5 in detecting different blockages validating efficacy of dataset
and the applicability of the techniques used for developing the model.

Al detector trained on the S-BIRD dataset was then imported on advanced GPU-based single-
board computer that formed an embedded vision-based automation system for the detecting
sewer blockages. The output of the present research contributes to the advancement of Al and
its application in wastewater management. The knowledge and findings acquired from this
research form a strong foundation for future explorations and advancements in the Al field and
facilitating its widespread implementation across various domains.

For future research work integration of Al techniques like semantic segmentation, instance
segmentation and panoptic segmentation, can be investigated to reinforce detection tasks. To
enhance model robustness, expansion of representative datasets coupled with continuous
learning approaches is recommended. For further practical application of the outcome of the
thesis, collaboration with industry will yield advancements in Al innovation.
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1 Introduction

Artificial Intelligence (Al) is a concept that aims to create intelligent machines that have the
ability to think and make intelligent decisions similar to humans. Since the advent of
computers, programs have been used to solve problems in different fields such as engineering
and business. However, finding correlations for making predictive models has always been the
centre of empirical analysis. A milestone in Al technology was the historical Paper by John
McCarthy & Marvin Minsky in 1956 [1], in which they discussed the potential areas of Al,
including language processing, neural networks, automatic theorem proving, and learning
machines. Nevertheless, the computational power was too small to do anything substantial and
computers did not have enough storage nor fast command processing power to exhibit
intelligence. Continuous development in computing power and storage capacity allowed the
storage of huge amounts of data generated by digital transformation of real-world information
(such as records of weather indicators, personal information, audio, videos, pictures, etc.),
which is impossible to analyse by humans. Al uses algorithms that allow computer/machine to
learn without being programmed explicitly. These algorithms analyse large datasets and create
systems that can carry out tasks like human intelligence and cognitive capabilities, for example
decision-making, recognising patterns, etc. There are various sub fields in Al due to the basis
of algorithms such as neural network, machine learning, deep learning and many more. The
scientific approach to Al involves formulating hypotheses, testing, and analysing data to
enhance the autonomy and accuracy of intelligent systems.

Today we live in the age of “big data,” where vast amount of data is collected, which beyond
the data processing capacity of humans. For this reason, the application of Al is making its way
in various industries such as engineering, security, banking, marketing, and entertainment. The
algorithms have not improved much, but the big data and massive computing are allowing Al
to make progress into many more areas. Data is the key and plays a central role in Al. Data
can be numerical data, text data and visual data. In terms of acquiring data, it can be obtained
by observation (actual recording the happenings), or synthetic data generated by models.

Application of Al in engineering is similar to modelling, data acquisition, data preparation,
simulation and test, and implementation. Like for traditional statistical analysis, a
representative dataset is an essential requirement for the development of reliable AI models in
real-world applications. It is also important to consider privacy, data ownership, ethical factors,
bias mitigation, data quality, informed consent, and regulatory compliance to ensure
responsible and ethical use of data in Al applications.

1.1 Challenges in AI

Al modelling poses several challenges when it comes to development of models for practical
applications. These challenges can significantly impact the effectiveness and reliability of Al
systems. Some challenges in the application of Al are listed below:

e Data Availability and Quality: In some applications acquiring datasets can be challenging
due to privacy concerns, data access restrictions, or unstructured data formats. In addition,
ensuring data quality, free from biases and inaccuracies, is crucial to prevent erroneous
predictions or decisions.



Model Selection and Evaluation: The selection of appropriate AI models for a given task is
a complex decision. Researchers and practitioners face the challenge of identifying the most
suitable model architecture and algorithms that can effectively handle the specific problem
domain. Evaluating the performance of Al models in a reliable and consistent manner is
critical, but often challenging due to the absence of universally accepted evaluation metrics.
Interpretability and Explainability: Al models, particularly Deep Learning (DL) models, are
often considered black boxes, making it difficult to understand the underlying decision-
making process. This lack of interpretability may raise concerns regarding the
trustworthiness and ethical implications of Al systems when used in certain fields where
transparency and responsibility are critical.

Scalability and Resource Constraints: Al models often require significant computational
resources and time for training, especially when dealing with large datasets or complex
tasks. Therefore, scaling up Al models to handle big data or real-time applications that
require large computing resources may become an issue due to budget limitations.

Ethical and Legal Considerations: Al models can potentially amplify biases present in the
training data or make decisions that have discriminatory effects. It is an ongoing challenge
to ensure fairness, transparency, and accountability in Al systems particularly in the
applications where ethical and legal considerations are necessary.

1.2 Data Types in Al
Distinct Al techniques with essential representative data types are explained in below Fig.1.
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Figure 1 Al Techniques and required data type

Numerical Data: It consists of numerical values and is one of the most common types of
data used in Al It includes continuous variables such as temperature, time, or sensor



readings. Numerical data can be processed using mathematical and statistical techniques,
and it forms the basis for many machine learning algorithms.

» Image Data: This data consists of visual information in the form of pixels. It is commonly
used in computer vision tasks such as object detection, image classification, and image
generation. Deep learning (DL) algorithms, especially convolutional neural networks
(CNNp5s), are widely employed to process and extract features from image data.

*  Video Data: It consists of a sequence of frames, each containing visual information. It can
include surveillance footage, movies, or videos captured from cameras. Video processing
and analysis techniques are used to extract information, detect events, or recognize objects
and actions in videos.

»  Textual Data: It comprises unstructured text, such as documents, articles, emails, or social
media posts. Natural Language Processing (NLP) techniques are used to analyse and
extract meaningful information from text, enabling tasks like sentiment analysis, text
classification, and language translation etc.

* Audio Data: This data represents sound waves and is used in various applications such as
speech recognition, music analysis, and sound classification. Audio data analysis and
interpretation make use of various techniques like signal processing and DL. The recurrent
neural networks (RNNs) are widely employed to analyse and interpret audio data.

* Temporal Data: It involves sequences or time-series data points collected over time.
Examples include stock market prices, sensor data, or weather patterns. Temporal data
analysis often employs techniques like time-series analysis, RNNs, or Long Short Term
Memory (LSTM ) networks to capture patterns and make predictions.

*  QGraphical Data: It represents entities and their relationships, commonly visualized as
nodes connected by edges. It is used in social network analysis, recommendation systems,
and network analysis. Graph neural networks (GNNs) and graph-based algorithms are
employed to analyse and extract insights from graphical data.

The choice of input data depends on the specific Al task, application domain, and the nature of
the problem being solved. Al techniques employ a wide range of methods and approaches;
namely machine learning (ML), deep learning (DL), Cognitive Modelling, and Evolutionary
Algorithms, Computer Vision (CV), etc.

1.3 Al in Computer Vision (CV) and Research Significance

The computer vision enables machines to understand and interpret visual information from
images or videos. It involves tasks such as object recognition, image classification, image
segmentation, and object tracking. The computer vision algorithms include feature extraction,
pattern recognition, and deep neural networks to extract meaningful information from visual
data.

There are various fields that employ Al image recognition, ranging from recognising fruits and
vegetables for labelling the produce to defence and healthcare. Image recognition systems are
used to analyse visual data more efficiently, faster, and more accurately. Detection of blockages
in the sewerage systems is one such application. Maintaining sewerage systems is a critical
operational challenge for water and wastewater utilities. Identifying the type of blockage and
predicting blockage formations in sewer pipes and pumping stations early so that required
measures are taken before the blockage develops a service failure. In places where same
network is used for storm water, heavy rainfall raises high levels within the sewer network due
to additional water runoff entering the sewer system, that may trigger hundreds of alarms. The
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volume of these alarms during wet weather periods can be unavoidable for operational and
maintenance teams.

Particularly in the developed world, smart water and wastewater networks are at the forefront
of investment plans for authorities as a step towards circular economy. With technological
advancements it is possible to gather more information to allow water companies to implement
Al for better management. Autonomous robots appear to have great potential for inspecting
difficult to access water pipe networks [2]. A report on Robotic Autonomous Systems (RAS)
by TWENTY 65, emphasises the importance of sewer monitoring in the practical world [3].

Developing countries like India, where traditionally human scavenging was used for cleaning
blocked pipes, have started to use mechanical systems and robotic scavengers. These
automated methods of maintaining sewers critically employ Al techniques for improving the
performance of detection of blockages and planning their removal. This thesis focuses on
developing and implementing Al techniques to detect blockages and select appropriate
unblocking techniques. This work is a part of an EU-India collaborative project Horizon 2020
SPRING, which focuses on developing wastewater management technologies. The case used
for developing and implementing Al techniques is the sewerage system within Pune
municipality (India). The research work includes developing a new representative image
dataset and Al model training through transfer learning followed by fine-tuning techniques to
improve the model's performance and effectiveness for detecting different types of blockages
in the sewerage network.

1.4 Thesis Organization
The work presented in thesis is organised as follows

Chapter 1 introduces the concept of Al, challenges in Al modelling, input data types,
application fields of Al research significance, and thesis organization.

Chapter 2 presents literature review leading to problem statement and justification of the
objectives. It conducts a review of existing literature for examining different approaches in Al
and computer vision. Research gaps and limitations in the current methods are discussed
leading problem statement. Hypothesis of the research and objectives are stated in this chapter.

Chapter 3 provides theoretical background for distinct Al techniques, modern computer vision
approaches, deep neural networks for methodical approach, artificial learning, and crucial
advances in AL

Chapter 4 gives details about applied methodology in the research work. It progresses by
presenting a case study, conducting theoretical and mathematical analyses, elucidating the
development of a representative dataset, providing intricate arithmetic details, describing the
experimentation and validation processes, elaborating on the creation of detection models using
Al techniques, and presenting the corresponding results and discussions.

Chapter 5 summarises the whole research with conclusions and provides recommendation for
further work.

This organizational structure ensures a logical and coherent progression through the thesis,
guiding the reader from the foundational concepts to the culmination of the research outcomes
and their implications.



2 Literature Review

This chapter provides a detailed literature review related to the work presented in the thesis.
The purpose is to discuss the state-of-the-art techniques and methods which have been
considered for developing the methodology used in the research work.

2.1 Object Detection Models with Structural Insights

Over the years, various approaches have been developed to solve object detection problems
and advance relevant algorithms. Here, a brief overview of some of the major techniques that
have significantly impacted the field of object detection is provided. It will also offer valuable
insights into the structural aspects of detection models, enabling a comprehensive
understanding.

Evolution of Object Detection Algorithms: Object detection algorithms have undergone
significant evolution over the years, driven by advancements in machine learning and
computer vision. Key contributions and approaches include:

>

>

Traditional Approaches: Earlier object detection algorithms relied on handcrafted
features and classical machine learning techniques. These methods used feature
extraction techniques like Histogram of Oriented Gradients (HOG) and Haar-like
features, combined with classifiers such as Support Vector Machines (SVM) or
AdaBoost.

Sliding Window Approaches: Sliding window-based methods scanned the image at
multiple scales and positions, applying a classifier to each window to determine if an
object is present. This approach had limitations in terms of computational efficiency
and accuracy due to exhaustive search over all possible windows.

Region Proposal Approaches: The introduction of region proposal methods, such as
Selective Search and EdgeBoxes, improved efficiency by generating a set of potential
object regions instead of exhaustive search. These methods reduced the number of
windows to be evaluated, improving both speed and accuracy.

Deep Learning Approaches: The advent of deep learning revolutionized object
detection. R-CNN, Faster R-CNN, YOLO, SSD, RetinaNet, etc.

Strengths and Limitations of Object Detection Algorithms: When comparing different
object detection algorithms, several factors need to be considered:

a)

b)

d)

Accuracy: Accuracy measures how well the algorithm can correctly detect and classify
objects. Deep learning-based algorithms, especially those using CNNs, have shown
superior accuracy compared to traditional methods.

Speed: It is crucial for real-time applications. Traditional sliding window approaches
were slower due to exhaustive search, while region proposal-based methods improved
speed. Deep learning-based approaches like Faster R-CNN, YOLO, RetinaNet, etc
further enhanced speed and efficiency.

Robustness: It refers to the algorithm's ability to handle various environmental
conditions, such as changes in lighting, occlusions, and object deformations. Deep
learning algorithms trained on large datasets have demonstrated improved robustness
compared to traditional methods.

Scalability: Scalability relates to an algorithm's performance as the number of objects
or complexity of the scene increases. Traditional methods often struggled with



scalability due to the large search space. Deep learning algorithms, especially those
with region proposal networks, have shown better scalability.

e) Training Data Requirements: Deep learning-based algorithms typically require large,
labelled datasets for training, which can be a limitation in certain domains where
labelled data is scarce or expensive to obtain.

f) Computational Resources: Deep learning-based algorithms, particularly those with
deep neural networks, require substantial computational resources during training and
inference. This can be a limitation in resource-constrained environments.

g) Generalization: Generalization refers to an algorithm's ability to perform well on
unseen data. Deep learning algorithms trained on diverse datasets tend to exhibit better
generalization, although overfitting can still occur if not properly regularized.

h) Interpretability: Deep learning algorithms often lack interpretability compared to
traditional methods. Understanding the decision-making process and explaining why a
certain detection occurred can be challenging with complex neural networks.

Considering these factors, deep learning-based approaches have emerged as the state-of-the-
art in object detection due to their balance between accuracy and speed. However, the choice
of algorithm depends on the specific application requirements and constraints.

The advent of deep learning, particularly convolutional neural networks (CNNs), has
revolutionized object detection. Deep learning-based detectors have shown remarkable
performance improvements, leveraging large-scale datasets and powerful network
architectures. They can automatically learn discriminative features and effectively handle
complex visual patterns. These object detectors typically comprise two main components: a
pretrained backbone that extracts features from input frames, and a head that utilizes these
feature maps to estimate object classes and bounding boxes. In recent object detection models,
an additional component known as the neck has been introduced. The neck consists of a few
layers positioned between the backbone and the head, responsible for aggregating feature maps
from different stages. Figure 2 [4] provides an illustration of the architectures of single-stage
detectors like SSD and YOLO, which consist of a backbone and a densely predicted head. On
the other hand, two-stage object detectors like Faster R-CNN and R-FCN include a backbone
and a head with both dense and sparse predictions. Sparse and dense predictions refer to how
object detectors make predictions at different spatial locations within an image.
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Figure 2 Structure of single-stage and two-stage object detectors
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Dense predictions involve making predictions for every spatial location or grid cell in the input
image. This means that the detector generates class probabilities and bounding box coordinates
for multiple objects at each location. The dense predictions can be achieved by using techniques
like fully convolutional networks (FCNs) or sliding window approaches. Sparse predictions,
on the other hand, involve making predictions for a subset of selected regions or anchor boxes
within an image. Instead of estimating object properties for every location, these detectors
focus on a smaller set of regions or anchor boxes that are likely to contain objects. The regions
or anchor boxes are determined through techniques like region proposal methods (e.g.,
selective search) or Region Proposal Networks (RPNs). Sparse predictions are common in
methods like keypoint detection or landmark localization, where the focus is on specific points
of interest. Both dense and sparse prediction strategies have their advantages and limitations.
Dense predictions offer fine-grained object localization and can capture small objects
effectively. However, they may introduce a large number of false positives due to the high-
resolution output. Sparse predictions, on the other hand, focus on selected regions, which can
reduce false positives and computational overhead. But they may struggle with detecting small
objects or objects at different scales. The choice between dense and sparse predictions depends
on the specific requirements of the application, including factors like speed, accuracy, and the
size and diversity of the objects being detected.

However, single-stage detectors are favoured in real-time embedded applications due to their
faster inference times compared to two-stage detectors. These object detectors integrated into
automated systems play a crucial role in various fields. Table 1 [4] illustrates the components
that adhere to the structural framework of object detector models

Table 1 Main structural parts of object detectors

Structural Parts Details

Input multi-scaled frames, frames, frame patches

Darknet53, CSPDarknet-53, ResNet-152,
ResNet-50, ResNet-10, Inception-ResNet-V2,
GoogLeNet, DetNet-59, CBNet, VGG16,
ThunderNet, ViT, EfficientNet-B0/B7, etc.

Neck FPN, Bi-FPN, PAN, SFAM, etc.

Backbones

Dense SqueezeDet, YOLO, SSD, DetectNet,
RetinaNet, CenterNet, MatrixNet, etc.
Heads
Sparse R-FCN, Faster R-CNN, Mask R-CNN, Cascade
p R-CNN, etc.

Object detection algorithms employ various strategies, such as feature extraction, region
proposal generation, classification, regression, and post-processing, to accurately detect and
localize objects in images or videos. Region-based and anchor-based detectors are approaches
within object detection that primarily deal with how objects are localized and matched within
an image. Region-based detectors divide the object detection task into two stages: region
proposal generation and object classification. They generate a set of candidate regions
(bounding boxes) within an image using methods like selective search or region proposal



networks (RPNs). The regions are then classified to determine if they contain an object or not.
This approach, used in method like R-CNN, allows for accurate localization but can be
computationally expensive. Whereas, anchor-based detectors, such as SSD and Faster R-CNN,
use predefined anchor boxes (also known as priors) at various scales and aspect ratios. These
anchor boxes serve as reference templates to match objects present in the image. The detectors
predict offsets and class probabilities for each anchor box to determine the final bounding box
predictions. This approach allows for handling objects of different sizes and aspect ratios
efficiently. Anchor-free detectors, like CornerNet and CenterNet, do not rely on predefined
anchor boxes. Instead, they directly predict the bounding box coordinates and class
probabilities without the need for anchor box matching. This simplifies the detection process
and can be more suitable for objects with diverse scales and aspect ratios.

Girshick et al. [5], introduced the Region-based Convolutional Neural Networks (R-CNN)
framework, which revolutionized the field of object detection and semantic segmentation. R-
CNN presents the idea of using region proposals to select a set of potential object locations in
an image, followed by applying a convolutional neural network (CNN) to classify and refine
those regions. It achieved promising results but was computationally expensive. Further,
Girshick improved R-CNN object detection framework and presented ‘Fast R-CNN’ [6]. The
enhancement was done by proposing a unified architecture that shared the computation of the
CNN across different region proposals, resulting in faster processing. It also introduced a
region of interest (Rol) pooling layer to extract fixed-size features from the region proposals.
Fast R-CNN demonstrated the benefits of shared feature extraction and end-to-end training for
object detection, paving the way for further advancements in the field. Ren et al. [7], initiated
Faster R-CNN which addressed the drawbacks of the previous methods by introducing a
Region Proposal Network (RPN) that shared convolutional layers with the detection network.
This allowed for end-to-end training and significantly improved the speed and accuracy of
object detection. Redmon et al. [8], came up with YOLO (You Only Look Once) detection
framework which actually revolutionized object detection by introducing a single-stage
detection algorithm that jointly predicted class probabilities and bounding box coordinates
using a single pass of the neural network. This resulted in real-time performance, but it faced
challenges with smaller object detection. It was evaluated on the PASCAL VOC and COCO
datasets and achieved competitive results compared to existing state-of-the-art methods. Liu et
al. [9], produced SSD (Single Shot MultiBox Detector) which aimed to improve the speed and
accuracy of object detection by utilizing a series of convolutional feature maps at different
scales to detect objects of various sizes. It combined the benefits of both region proposal
methods and dense prediction techniques. It employed default anchor boxes and predicted
offsets and class probabilities for each anchor, enabling efficient and accurate detection. Lin et
al. [10], presented ‘RetinaNet’ framework. It introduced the focal loss, which addressed the
problem of extreme class imbalance during training in dense object detection. It assigned
higher weights to challenging examples and down-weighted easy examples to improve the
model's performance, making it particularly effective for detecting objects at different scales.
Kaiwen Duan et al. [11], conferred ‘CenterNet’, a keypoint-based object detection framework
that utilizes triplet keypoints for accurate and efficient object localization. It employs a fully
convolutional network architecture, often based on popular backbone networks such as
Hourglass or ResNet, for feature extraction. The network predicts heatmaps for object centres
and offset vectors to locate the bounding boxes around each centre point. It achieves
competitive accuracy in object detection tasks and performs well across various object scales
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and occlusion scenarios. Hei Law and Jia Deng presented ‘CornerNet’ that employs a deep
neural network architecture based on Hourglass modules for object detection. It detects objects
by predicting the top-left and bottom-right corners of their bounding boxes as paired keypoints
[12]. This representation enables precise localization and better handling of object scale and
aspect ratio variations. It is a two-stage architecture that includes a keypoint estimation network
and a refinement network. The keypoint estimation network predicts corner heatmaps, and the
refinement network refines the corner locations. Here, pooling mechanism aggregates
information from the corner keypoints to enhance the localization accuracy and robustness.

2.1.1 YOLO Series

The YOLO (You Only Look Once) series of object detection models have made significant
contributions to the field of computer vision. Here is an explanation of the YOLO models along
with the key papers associated with each version:

Joseph Redmon and Ali Farhadi introduced YOLOv2 and YOLO9000 which comprise several
improvements to the original YOLO [13]. They include the use of anchor boxes for better
handling of object scales and aspect ratios, multi-scale training and testing, and incorporating
unified object detection and classification on a large-scale dataset (COCO) along with
ImageNet. The hierarchical classification approach and dataset combination contribute to
improved accuracy and scalability, making YOLO9000 a significant advancement in the
YOLO series of models. Further, they came up with YOLOV3 by introducing a few key
modifications such as the Darknet-53 architecture, feature pyramid network (FPN), and
multiple detection scales [14]. It achieved better performance and accuracy compared to the
previous versions through architectural improvements and training techniques. Darknet-53
consists of 53 convolutional layers. This deeper network enables better feature extraction and
representation compared to the shallower networks used in previous YOLO versions. A feature
pyramid network allows to capture objects at different scales and improve detection
performance on small objects. YOLOv3 detects objects at three different scales and this
multiple detection scales approach allows the model to handle objects with varying scales and
aspect ratios more effectively. Alexey Bochkovskiy et al. [15], initiated YOLOv4 model which
aimed to optimize both speed and accuracy by introducing several architectural improvements,
including CSPDarknet53 as the backbone to enhance information flow and improve
performance, PANet (Path Aggregation Network) as the neck to help the model for capturing
features at different scales by aggregating information from multiple levels of the feature
pyramid, and various optimization techniques such as Mish activation function, CIOU loss,
etc. It achieved state-of-the-art performance on multiple object detection benchmarks. The
YOLOVS and YOLOX models, which are discussed in detail in Chapter 3 of the theoretical
background, have been considered for a methodical approach.

Each iteration of the YOLO series introduced novel techniques and architectural enhancements
to improve object detection accuracy, efficiency, and speed. These models have been widely
adopted in research and practical applications due to their competitive and real-time detection
performance across different datasets.

The development of novel methodical architectures, fusion with other computer vision tasks,
transfer learning, and the discovery and development of new datasets with evaluation metrics
are driving progress in the field of Al including object detection. It continues to be an active
area of research, with ongoing efforts to enhance detection performance. So, the advances in



this are paving the way for the deployment of intelligent systems in various domains, enabling
machines to interact and understand the visual world around them.

2.2 Sources for Availability of Representative Data in Al
Sources of representative data can vary depending on the specific application or domain. Here
are some common sources where representative data may be available:

e Publicly available datasets: Numerous organizations and research institutions make their
datasets publicly available for Al research. These datasets cover a wide range of domains
such as image recognition, natural language processing, and healthcare. Examples include
ImageNet, COCO, and MNIST.

e Open data initiatives: Governments and public institutions often release datasets related to
demographics, transportation, weather, and more. These datasets can be valuable sources
of representative data for Al applications.

e Web scraping: The internet contains vast amounts of data that can be scraped and used for
Al training. However, it is important to respect the terms of service and legal guidelines
when scraping data from websites.

e Data discovery platforms: Online platforms exist that facilitate the exchange of data, where
individuals or organizations can buy or sell datasets. These platforms often cover diverse
domains and can provide access to representative data.

e Academic research papers: Research papers often provide datasets used in experiments or
evaluations. Many papers include links to download the data or provide instructions on how
to access it. Platforms like arXiv, IEEE Xplore, and ACM Digital Library are good
resources for finding research papers.

e Crowdsourcing: Platforms like Amazon Mechanical Turk or specialized crowdsourcing
platforms allow researchers to collect data by outsourcing tasks to human workers. This
method can be employed to gather labelled or annotated data for training Al models.

e Data collection initiatives: Organizations sometimes conduct data collection initiatives
specifically aimed at creating representative datasets. They may employ various methods,
such as surveys, crowdsourcing, or partnerships with data providers, to collect
comprehensive and diverse data.

e Data augmentation techniques: In some cases, representative data can be generated or
expanded using data augmentation techniques. These techniques involve applying
transformations or modifications to existing data to create additional representative
examples.

e Data collaboration: Collaborations among researchers, industry professionals, and data
scientists can lead to the pooling of data resources, allowing access to larger and more
representative datasets.

While representative data plays a crucial role in Al, it is essential to address various aspects
such as privacy, data ownership, and ethical considerations when sourcing and utilizing data
for Al applications.

Gebru et al. [16], introduced the concept of datasheets for datasets, which provide a structured
framework for documenting critical information about datasets, including their collection
process, potential biases, and limitations. It highlights the importance of representative data to
avoid biased and unfair Al systems. Bhardwaj et al. [17], presented DataHub, a platform for
dataset management and collaboration. This work discusses the features of DataHub and how
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it enables dataset search, versioning, and sharing among data scientists and researchers. It also
evaluates multiple dataset search platforms based on various criteria such as dataset coverage,
metadata quality, and search performance. The paper underscores the importance of dataset
search in supporting Al research. Umbrich et al. [ 18], focussed on the evaluation and evolution
of open data portals, which are online platforms that provide access to datasets from various
sources. They proposed a quality assessment framework for open data portals that comprises a
set of metrics to evaluate various aspects of the portals, such as data availability, freshness,
relevance, and usability. The contribution is about the understanding of open data portals and
offers practical guidance for their improvement to better serve the needs of data users and the
broader community. Koesten et al. [19], focussed on the concept of data summarization and its
importance in understanding and utilizing datasets effectively. They explored different
dimensions and aspects that are relevant to users when working with datasets. The studies cover
topics such as data availability, provenance, quality, statistics, and schema information. It
provides insights into the information needs of users and presents guidelines for designing
effective dataset summaries, with the aim of improving data comprehension, decision-making,
and collaboration in various domains.

Al plays a crucial role in enhancing computer vision capabilities by employing intelligent
algorithms to extract valuable digital statistics from images and videos. This augmentation
enables automated systems based on embedded platforms to possess greater vision power and
intelligence. To achieve advanced results, it is imperative to have a large quantity of
appropriate and labelled data for training Al's Deep Neural Object Detection Models. In the
realm of Al, a dataset refers to a collection of significant and distinctive details within a
particular field. These datasets are utilized for training Al models with specific objectives,
including clustering, segmentation, regression, classification, and detection. Various types of
data can be found, such as images, time series, numerical data, graphs, text, and so on. It is
essential to recognize that the performance of a detection model heavily relies on the quality
of the dataset used for training. Even the best detection model will yield inferior results if
trained on a poor dataset. On the other hand, a poorly performing detection model can benefit
from a highly featured and high-quality dataset. At the core of single-stage or two-stage object
detectors lies a classifier responsible for identifying the intended object classes. It becomes
evident that the performance and accuracy of any detection model are determined by the quality
of the input imagery dataset. Therefore, having a comprehensive, diverse, and accurately
labelled dataset significantly contributes to the effectiveness of object detection models.

Obtaining a relevant dataset for training Al models and achieving accurate results is a crucial
requirement and a significant focus of research in relevant communities. This involves
acquiring or collecting data, appropriately labelling the data, and improving the available data
or models [20]. Many funding agencies have embraced an open-access research strategy,
resulting in the availability of large datasets from various fields on different platforms. Data
can be obtained from data-sharing platforms like Kaggle datasets [21], DataHub [17],
Mendeley Data [22], and data-searching platforms like IEEE DataPort [24], Google Dataset
Search [23], and others. Despite challenges in data discovery, researchers can succeed in
obtaining the necessary dataset [25]. In 2011, the difficulties in accessing and tracing open data
were acknowledged, leading to the regulation of data publishing movements in Europe [26].
Six barriers to obtaining and tracing open data were identified, including limited information
about data existence and accessibility, uncertainty regarding data ownership by government
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authorities, ambiguity concerning terms of reuse, data cost and its sensitivity, complex
licensing procedures and high fees, specific reuse contracts with professional members, and
restrictions on recycling for state-owned companies.

Notably, data acquisition involves various functions such as searching, augmenting, and
generating data as needed. In our case, the dataset is not only generated due to unavailability
but also undergoes individual preprocessing, augmentation, and labelling for classification and
detection tasks. The dataset can be created manually or through automated techniques, and
synthetic data is used to fill in any missing parts. For optimal learning models, standardized or
benchmark datasets are preferred, and transfer learning techniques can be applied using
representative datasets. Transfer learning in computer vision refers to the process of leveraging
knowledge from a pre-trained model on a large dataset and applying it to a new task with
limited labelled data. It involves using the learned features and representations from the pre-
trained model as a starting point for the new task, allowing the model to benefit from the general
visual knowledge gained during pre-training. Fine-tuning, on the other hand, involves further
training the pre-trained model on the new task-specific dataset. By updating the model's
parameters using the task-specific data, it adapts the learned representations to the nuances and
characteristics of the new task, improving its performance and generalization, and helping
avoid overfitting. In computer vision problems, a digital imagery dataset with object class
details is divided into a training set, validation set, and testing set. These sets are then used as
input for Al models to facilitate training, evaluation, and testing, respectively. Cross-validation
techniques such as holdout, k-fold, and bootstrap can be employed to ensure the selection of
the most suitable model during the training process. These techniques help in avoiding bias in
the dataset or training model and ensure relevant results.

2.3 Computer Vision and AI Approach in Sewer Inspection

This discussion focuses on examining the influence and constraints of notable contributions in
the realms of computer vision and Al, aiming to define the boundaries and possibilities within
these domains.

Kumar and Abraham introduced a framework that utilized Deep Convolutional Neural
Networks (CNN) to classify various issues, such as cracks, root intrusions, and deposits in
CCTYV frames of sewer pipelines [27]. Their study involved training and evaluating the CNNs
using a dataset of 12,000 frames from more than 200 sewer pipelines. However, it is important
to note that their work focused on static frames rather than real-time navigation, and they
primarily classified faults without providing information about their specific location
(localization). Cheng and Wang proposed an automated approach cantered around fast R-CNN
for fault detection in sewer pipes [28]. They trained a detection model using a dataset of 3,000
sewer pipe images extracted from CCTV inspection videos. The accuracy and computational
cost of the model were analysed using metrics such as mean accuracy (MAP), training time,
missing rate, and detection speed. Similar to the previous study, this work primarily focused
on analysing standing frames rather than real-time frames and encountered some
misclassification issues for cracks during the experiments.

Gutiérrez-Mondragon et al. developed a training technique for a convolutional neural network
aimed at detecting levels of obstruction in sewer pipes [29]. They trained their model using
significant frames extracted from a CCTV video database. Additionally, they integrated the
Layerwise Relevance Propagation explainability technique to gain insights into the neural
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networks' behaviour and performance in relational tasks. The authors predicted that their
proposed system could offer high accuracy, speed, and consistency for real-time sewer
inspection. However, it is worth mentioning that this work considers the degree of blockage in
the drain but does not provide information regarding the specific type and location of the
blockage.

Halfawy and Hengmeechai proposed a systematic algorithm combining HOG (Histogram of
Oriented Gradient) and SVM (Support Vector Machine) to detect tree root intrusion faults in
conventional CCTV monitoring videos [30]. The algorithm consisted of two steps: (a)
segmenting the frames to extract regions of interest (ROIs) indicating defect regions, and (b)
applying an SVM classifier trained with HOG features to classify the ROIs. It should be noted
that this approach only considered static frames and did not account for large datasets or video
sequences. Yin et al. developed a framework for real-time automatic fault detection in sewer
pipes using a CNN-based YOLOV3 object detector [31]. Their model was trained on a dataset
of 4056 frames, including six classes of defects such as holes, breaks, cracks, deposits,
fractures, and roots. The framework also incorporated construction feature detection. However,
it is worth mentioning that this model has not been tested in a real-time sewer pipe scenario
and may require further improvements in performance.

Moradi et al. introduced an automated method that utilized computer vision techniques for the
inspection and condition assessment of sewer pipelines [32]. The process involved identifying
a region of interest (ROI) containing sewer defects and then classifying the frames. They used
Hidden Markov Models (HMMs) to extract sewer frames from CCTV videos and employed
CNNs for defect detection and classification. Kumar et al. evaluated deep learning-based
frameworks such as YOLO, SSD, and Faster R-CNN for speed and accuracy in detecting and
localizing root infiltration and deposits in CCTV sewer frames [33]. They trained and tested
their models using a collection of 3800 annotated frames. The faster R-CNN model achieved
the highest accuracy in defect detection, although it had the slowest processing speed per frame.
The YOLOv3 model had slightly lower accuracy but a processing speed almost twice as fast
as the faster R-CNN. The SSD model exhibited the lowest accuracy but the highest processing
speed per image. However, it is important to note that the dataset used for training and testing
in this study was relatively small, which may have limited the achievement of desired results.

2.4 Evaluation of Previous Surveys

A comprehensive examination of image-based automation in closed-circuit television (CCTV)
and sewer scanner and evaluation technology (SSET) is presented by reviewing 25 years of
sewer inspection research [34]. This survey conducted by Haurum and Moeslund, examines
pipeline algorithms and datasets, along with the protocols used in sewer inspection. The survey
investigates various aspects of automated sewer pipeline inspection, including frame
acquisition, pre-processing, detection and segmentation, feature description, classification, and
temporal filtering. The survey suggests the creation of free and publicly available datasets for
each release, accompanied by open-source code and standardized evaluation metrics.

Another review by Moradi et al. focuses on recent sewer inspection technologies utilizing
computer vision and machine learning techniques [35]. The review compares the advantages
and disadvantages of different methods through evaluation. It thoroughly investigates image
representation, image pre-processing, and learning techniques for sewer pipe fault detection.
The review recommends the use of a standard CCTV camera, effective hardware with high
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specifications, and standardized datasets with robust algorithms. Liu and Kleiner present sewer
pipe inspection and evaluation techniques, discussing augmented reality, smart pipes, and
intelligent robots [36]. They assess the functionality of these technologies and their relevance
to real-world applications. The importance of CCTV and laser scanning techniques is also
emphasized.

Tur and Garthwaite analyse available robotic tools and identify unresolved issues in the
successful implementation of sewer inspection systems [37]. They shed light on various
automated systems, sensing techniques, SSET, and CCTV techniques. The authors suggest that
automated systems should be programmed for specific tasks to reduce costs and minimize
energy consumption. They also highlight the need for advanced artificial visual processing
techniques, deep learning algorithms, and supervised/unsupervised algorithms in fault
detection and classification. In another review conducted by Czimmermann et al., the focus is
on fault detection and classification using advanced artificial visual processing techniques,
deep learning algorithms, supervised and unsupervised algorithms [38]. The authors note that
challenges such as insufficient test samples, inconsistent databases, and a lack of solid
algorithms hinder the implementation of ideal sewer inspection systems.

Overall, these surveys and reviews provide a detailed analysis of computer vision and Al based
automation in CCTV and sewer inspection technologies. They offer insights into the strengths
and weaknesses of different methods, recommend best practices for hardware and datasets, and
highlight the importance of advanced techniques and standardized evaluation metrics in
achieving effective sewer inspection systems.

Previous research studies have often focused on various common issues that arise in sewer
systems, including breaks, tree root infiltration, holes, cracks, deposits, fractures, and obstacles.
However, the most significant problem encountered is blockages in sewers, which occur due
to the accumulation of various types of waste such as sludge, rocks, toilet waste, plastic, tree
roots, leaves, grease, and foreign objects. These blockages pose a major challenge in
maintaining the functionality of sewer networks.

In Table 2, the techniques applied to obtain detection results are listed due to their significance
and relevance in previous research endeavours [39]. It enhances the transparency of the study
by explicitly referencing and acknowledging the techniques that contributed to the obtained
results.

Table 2 Important techniques to obtain detection results

Conventional Algorithms in | ¢ Geometric transformations
Computer Vision for pre-|e Thresholding

processing and detection task Morphological operations

e Noise removing

e Image stitching, mosaicking, and unwrapping
Colour spaces

Image enhancement and filtering
Decision Trees

Random Forests

k-means

Logistic Regression

Learning and Classification
Techniques in  Machine
Learning (ML)
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SVM

k-NN

Naive Bayes
Faster-RCNN
SSD VVG
Tiny YOLOV2
YOLOvV3
GoogleNet
MobileNet v2
AlexNet
CaffeNet
SqueezNet
ZFNet 512
DenseNet 121
ResNet — 18v1, ResNet — 50v1
CNN Mnist
ShuffleNet
ResNet 101 DUC HDC
Mask R-CNN
ENet

FCN

Object detection models in
Deep Learning (DL)

Deep Learning based
Classification models

Deep Neural Network (DNN)
Models for Segmentation

2.5 Existing Automated Systems

In this passage, the discussion focuses on various existing automated systems and highlight
their features, limitations, and potential improvements. The aim is to provide a comprehensive
overview of the advancements made in this area for Al and computer vision and draw
conclusions regarding the state of the art.

The first system discussed is PIRAT (Pipe Inspection Real-Time Assessment Technique),
which was evolved by Kirkham et al. [40]. PIRAT is a semi-autonomous tethered system that
uses interpretation techniques to assess physical data. It employs a three-dimensional model
for classifying and detecting damages. However, the system has certain limitations. It requires
a human operator to manually detect and mark the damaged areas in the images, making it less
efficient. Additionally, the proposed algorithm is a decade old, suggesting that it may lack some
of the more recent advancements in the field. Next, Kuntz et al. [41] developed KARO
(KAnalRoboter), another tethered, semi-autonomous sewer inspection device. KARO features
self-correcting tilting poses and wheel slippage. It utilizes 3D optical sensors and microwave
sensors to detect damages such as cracks, bends, and blockages. However, this system heavily
relies on sensors, and the onboard hardware is not as advanced as desired. The main control
unit is located at a distant place, which can introduce communication delays and potential
issues.

Kirchner and Hertzberg introduced KURT (Canal-Undersuchungs-Robot-Testplatform) in
[42]. KURT]I, a part of this system, focuses on autonomous navigation in dry sewer networks.
It classifies pipe junction types and has the potential for mapping sewer landmarks. KURT2,
on the other hand, incorporates sensory platforms such as optional bumpers, odometry sensors,
an inclinometer, obstacle detection, and ultrasound distance measurement using an infrared
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transducer. While KURT demonstrates autonomous navigation capabilities, it may lack some
advanced computer vision techniques. Rome et al [43] presented the MAKRO
(Mehrsegmentiger Autonomer KAnalRoboter) robot, which utilizes an ultrasound range sensor
to detect obstructions in sewer pipes. It also incorporates collision avoidance, landmark
detection, and speed control functions. However, the authors note that the system lacks efficient
use of computer vision techniques, which could potentially enhance its capabilities. Nassiraei
et al. [44] developed the KANTARO system, which features an intelligent modular architecture
with implicated sensors and mechanisms. It employs a small-sized smart 2D laser scanner to
detect directional markings, while a fisheye camera evaluates pipe condition and detects
defects. The system demonstrates a promising combination of sensor technologies.

Alejo et al. [45] presented the SIAR (Sewer Inspection Autonomous Robot) system, capable of
detecting critical structural defects in pipelines. SIAR employs real-time 3D structure
reconstruction techniques and collects environmental water or gas samples for analysis
purposes. It utilizes RGB-D sensors and an impressive wireless transmission network. This
system showcases advanced capabilities in real-time data collection and analysis. Abidin [46]
introduced an in-pipe robot that uses an ultrasonic sensor to detect differences in diameter,
indicating the presence of a blockage if the diameter is small. It can clean soft and medium
clogs and operates at distances of less than 30 mm. However, it should be noted that this is a
basic laboratory-scale experiment, and further development is required for practical
implementation. BhrtyArtana, as described by Vaani et al. [47], is a system designed to detect
corrosion, cracks, and obstacles in turbine mechanisms. It utilizes a camera to capture real-time
frames and a proximity sensor to identify obstacles. When an obstacle is detected, the system
employs a turbine mechanism to cut and clear the obstruction.

Gobinath and Malathi developed a relatively expensive robotic machine [48] equipped with a
robot arm capable of moving in different angles, from left to right and top to bottom. This
machine is specifically designed for sewer cleaning purposes. It incorporates a SewerSnort gas
board to detect toxic gases and an LCD display to visualize the cleaning process. Prasad and
Karthikeyan designed a robot [49] to clean and eliminate obstacles in large sewer pipes.
Obstructions are detected using an ultrasonic sensor, and a drilling technique is employed to
remove them. A MATLAB tool is utilized to observe wireless camera videos and frames. Abro
introduced an autonomous system called SewerBot [50], which employs digital image
processing to detect defects in sewerage pipelines. The system uses gradient and segmentation
techniques with the assistance of wireless cameras to identify sewer pipe blockages. However,
the algorithm and performance of the system presented by Abro were found to be subpar for
practical implementation.

In conclusion, several automated sewer inspection systems have been developed with varying
levels of autonomy and capabilities. These systems utilize different sensors, techniques, and
algorithms to detect damages, blockages, and other structural defects in sewer pipes. While
some systems require human intervention for certain tasks, others aim to achieve full
autonomy. However, there are limitations and areas for improvement in terms of efficiency,
use of computer vision techniques, practical implementation, and system performance. These
limitations and comments for the existing automated systems are summarized in Table 3.
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Table 3 Limitations and comments for existing automated systems

Automated | Ref. Features Limitations and Comments
Systems No.
KARO [41] Tethered, 3D optical Possible to work through the acquired
sensors sensory data information and depend on the
reliability of the human operators
MAKRO [43] Ultrasound range Absence of effective Computer vision
sensor, collision technique and not able to navigate inside
avoidance bending pipes
SIAR [45] 3D structure Innovative system for inspection and
reconstruction, RGB-D | sample collection purposes but not capable
Sensors of corrective action.
PIRAT [40] Semi-autonomous, 3D Depends on reliability of human operator
models for damage and lack of onboard control routine
classification
KURT [42] | Autonomous navigation, System used entirely sensors and it was
sensory platforms affected by ecological attributes
KANTARO | [44] Modular architecture, Defects detection software had lower
fisheye camera precision rate and lack of systematic
approach to improve logically
Machine [48] | Robot arm, SewerSnort Expensive and requires adaption to
Robot gas board techniques for system development.
In-pipe [46] Ultrasonic sensor Elementary system and not convenient for
Robot the practical world
Sewerbot [50] gradient and Need for efficiency improvement and
segmentation reduction of poor techniques for practical
development.
BhrtyArtana | [47] proximity sensor and Need of methodical approach capable of
camera for detection being applied to real fault detection and
cleaning situations
MATLAB [49] Ultrasonic sensor, High improvement needs in applied
Based drilling technique computer vision method
Robot

The following table, Table 4, provides a distinction between various types of sewer robotic

assemblies.

Table 4 Distinctions between types of sewer robotic systems

Full autonomy

Semi autonomy

No autonomy

The reliability of the
evaluation depends on the
intelligence of the system

The reliability of the
evaluation depends on both
the intelligence of the system
and human operator.

The reliability of the
evaluation depends on
human operator

Not reliable in small diameter
pipes

Recommendable in lesser
diameter pipes

Acceptable in lesser
diameter pipes
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Un-tethered Might be tethered or un- Tethered

tethered

All mandatory resources may
be brought onboard, or the
control unit might be located
at a remote location

Control unit is located
at remote location

Brings all mandatory
resources onboard

Teleoperated with some Fully teleoperated

degree of self-intelligence

Absolute intelligence for self-
navigation

Includes less sensors
and operated only by a
human

Includes average sensors with
navigation structure

Includes many sensors and
intricated navigation structure

2.6 Existing Vision Methods in SOP

Sewers are essential underground structures that are crucial for managing sewage in a city or
town. They provide a network of pipes and channels through which wastewater flows to
treatment plants or disposal sites. However, one of the major concerns in sewerage systems is
the occurrence of blockages in sewer pipes, which can be caused by a variety of factors, both
natural and human-made. Dealing with these blockages requires significant manpower and
resources. Traditionally, in India manual cleaning methods were employed, but they pose
serious risks to the workers' health and safety. Therefore, Government of India (GOI)
introduced a standardized measure in August 2021 to eliminate manual scavenging and
promote safer alternatives.

Even prior to this, the GOI had taken proactive steps to prevent hazardous and improper
cleaning of drains and septic tanks, aiming to avoid accidents at all and ensure the well-being
of workers. As per the presented Standard Operating Procedure (SOP) by The Ministry of
Housing and Urban Affairs, India, some vision based indirect inspection technologies have
been detailed in below given Table 5 [51].

Table 5 Indirect techniques for sewer inspection

Feasible Attributes
Sr. No Situation of Composite for | Measurements Technique
Sewer Sewer of Sewer
(1) Unfilled Altering Diverse CCTV
Measurement
(2) Entirely Altering Diverse Sonar Technique
conducting Measurement
3) Unfilled Altering prepared for 300 Light and Mirror
mm Technique
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Figure 6 Closed Circuit Television (CCTV) technique for sewer inspection

Figures 3.,4,5,6 illustrate indirect inspection functions for sewer systems [51], [52]. Whereas
visual inspection by concerned authority is known as direct inspection. Tools utilised for
maintenance of sewerage system are given in Table 6 [39], [51].

Table 6 Tools for maintenance of sewerage system

Sewer Maintenance Tools
Automated Rodding Machine with | Labour-intensive A collected wood
Executions Flexible Sewer Rods Executions board - Scraper
Speedy cleaners (Jetting
Machines)
Bucket Machine Sectional Rods for
Dredger (Clamshell) Sewer
Hydraulically Driven Cloth Ball and
Tactics Manila Rope
Gully Emptier

2.7 Research Gaps

After conducting a thorough review of existing literature, relating to Al detection techniques,
computer vision approaches, sources of representative data availability and sewer inspection
systems, the following research gaps have been identified:

e Inefficient utilization of computer vision algorithms with on-board processing: Existing
detection techniques do not efficiently utilize computer vision algorithms that can process
data on-board. There is a need to optimize these algorithms and adapt them for practical
implementation.

e Lack of focus on sewer clogging issues: The majority of research in sewer inspection has
primarily focused on detecting damages and clearing soft and medium clogs. However,
little attention has been given to the problem of sewer clogging caused by debris
accumulation. This indicates a research gap in the development of robust algorithms and
automated systems capable of both real-time detection and removal of obstructions in sewer

pipes.
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e Lack of standardized dataset for sewer obstructions: Currently, there is no standardized
dataset available that specifically addresses the problem of sewer obstructions. Moreover,
issues related to personal liability, copyright, and privacy restrict the accessibility of
existing datasets. Having an open and accessible research dataset would be beneficial for
the research community to contribute and enhance the Al field more broadly.

e Opportunity for algorithmic model integration: The identified research gaps present an
opportunity to develop an algorithmic model that combines computer vision and Al
approaches. This model can be integrated with existing or newer automated systems used
for inspecting and cleaning sewer systems. By leveraging these revolutionary techniques,
more effective and efficient sewer inspection and maintenance processes can be achieved.

e Absence of accessible source code and evaluation metrics: In the research field of Al and
computer vision focussing on sewer inspection, the availability of accessible source code
for published work is limited. This hampers the replication and further development of
existing algorithms. Additionally, the lack of approved evaluation metrics makes it
challenging to compare and assess the performance of different approaches. Addressing
these issues would promote transparency, reproducibility, and collaboration within the
research community.

e Need to enhance Learning Strategy of Al Models: There is a need to improve the learning
strategy of Al models in detection fields such as sewer inspection. This can be achieved
through the use of representative data, transfer learning, and fine-tuning techniques. By
incorporating these approaches, the performance parameters of Al models can be increased,
making them more suitable for practical deployment.

In summary, the literature review identified several areas for improvement in the current
research that involves Al techniques application to sewerage maintenance. These areas include
the underutilization of computer vision algorithms, the lack of focus on sewer clogging, the
potential for integrating algorithmic models, the absence of a standardized dataset, the limited
availability of accessible source code and evaluation metrics, and the necessity to improve the
learning strategy of Al models.

2.8 Problem Statement & hypothesis

The automated systems are capable of navigating and operating in hazardous, odorous, and
sludgy areas. In order to develop advanced robotic solutions, Al techniques can be used which
will allow inspection and cleaning of sewer systems. Obstructions in drains, displacement of
joints, cracks, encroachment of tree roots are main reasons for deterioration of sewers that lead
to sewage spills, endangering the environment, and causing public health problems. However,
existing methods lack the assurance required for comprehensive sewer inspection and cleaning.
In view of this, the problem statement is to develop Al-powered solution for sewer inspection
and maintenance. The hypothesis suggests that the development and utilization of
representative image datasets coupled with Al detection model can enhance the precision and
efficacy of sewer blockage detection for removal with automated system. These detection
model can offer efficient and cost-effective maintenance of real-world urban sewer systems.
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2.9 Aim and Objectives

The aim of the research work presented in this thesis is to develop a new representative image
dataset of sewerage blockages and develop Al model for their detection by training through
transfer learning and fine-tuning techniques, with the goal of improving the model’s
performance and effectiveness for real-world applications.

The following research objectives are formulated to address the research gap and achieve the
aim of this thesis work.

To investigate Al techniques, including Machine Learning (ML) and Deep Learning (DL),
and the structure of Deep Neural Object Detection Models.

To develop a new representative image dataset, and analyse its strength, performance,
consistency, and viability for real-time applications.

To develop Al detection models using transfer learning and fine-tuning techniques on the
new dataset, aiming to achieve a high precision rate for a specific application.

To specify a methodical approach for system development based on embedded vision and
integrate the trained detection model into an embedded processor for a certain real-time
application.

In addition to above objectives, for the sewer maintaining applications specific objectives are
achieved.

To review existing automated systems and applied techniques used for sewer monitoring
and maintenance purposes.

To identify the constraints in existing Al and computer vision techniques for sewer
inspection and cleaning in order to devise efficient solutions to overcome.

To investigate distinct types of sewer pipe blockages and creating a new imagery dataset
of sewer blockages caused by grease, plastic, and tree roots.

To develop detection models by transfer learning and fine tuning with modifications using
representative dataset for identification and localization of sewer blockages with high
precision rate.

To import trained detection model in embedded processor for real-time application and it
can be added into existing or newly developed sewer automated system.
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3 Theoretical Background

This chapter provides the theoretical foundation necessary for a comprehensive understanding
of the concepts explored in the research work.

3.1 Role of Machine learning Techniques

Al has the ability to make decisions like humans and has standard rules encoded in the style
computer programs. Machine Learning (ML), an inherent branch of Artificial Intelligence (Al),
which is one of the most leading technologies in the current scenario. ML techniques
encompass a wide range of algorithms and approaches used to enable computers to learn from
data and make predictions or decisions. The action and reaction of big data in ML can be
interchanged to attain maximum scalability, efficiency, and adaptability. Figure 7 [53] shows
classification details of ML techniques.

Arthur Samuel, an American pioneer in the field of Al and computer gaming, earliest presented
the phrase ML in 1959 and delineated it as, “it gives computers the ability to learn without
being explicitly programmed." Later, Tom Mitchell in 1997 specified ML as, “A computer
program is said to learn from experience E concerning some task T and some performance
measure P, if its performance on T, as measured by P, improves with experience E.”

The following are significant types of ML techniques.

e Supervised Learning: In supervised learning, the algorithm is trained on labelled data,
where each data point has a corresponding target or output label. The algorithm learns to
map input features to the desired output based on the provided examples. Popular
supervised learning algorithms include decision trees, support vector machines (SVM), and
neural networks.

e Unsupervised Learning: Unsupervised learning involves training models on unlabelled
data, where the algorithm aims to discover patterns or relationships in the data without any
specific target variable. Clustering algorithms, such as k-means clustering and hierarchical
clustering, are common unsupervised learning techniques. Dimensionality reduction
techniques like principal component analysis (PCA) and t-distributed stochastic neighbour
embedding (t-SNE) are also used for unsupervised learning.

e Reinforcement Learning: Reinforcement learning focuses on training an agent to interact
with an environment and learn optimal actions to maximize a reward signal. The agent
learns through trial and error, receiving feedback in the form of rewards or penalties.
Reinforcement learning techniques are commonly used in areas such as robotics, game
playing, and autonomous systems.

Further, Deep Learning (DL) is a subset of machine learning that leverages artificial neural
networks with multiple layers to learn complex patterns and representations from data. Deep
Neural Networks apply subtractive computation at numerous levels to perform human-like
tasks [54]. DL has revolutionized fields like computer vision, natural language processing,
speech recognition, etc. Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) are commonly used deep learning architectures.
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Figure 7 Significant types of the ML techniques

e (CNNs are primarily used for image and video processing tasks. They employ convolutional
layers to extract local features and pooling layers to downsample and aggregate
information. CNNs have demonstrated exceptional performance in tasks such as image
classification, object detection, and image segmentation. In general CNN equation can be
expressed as follows:

N
y=fO) W;sx; +b) G.1)
i=1
Where,
f () is the activation function applied element-wise to the sum of convolutions.
N is the number of input channels.

Wi represents the i-th set of learnable convolutional filters (also called kernels or
weights).

* denotes the convolution operation.

x; represents the i-th input feature map or activation map.

b is the bias term applied to each convolutional filter.

y represents the output feature map or activation map of the CNN.

The convolution operation involves sliding each filter over the input feature map, computing
element-wise multiplications between the filter weights and the corresponding input values,
summing up the results, and applying the activation function. This process generates the output
feature map y. The sizes of the filters, input feature maps, and output feature maps determine
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the dimensions of the convolutional layers in the CNN. The specific architecture and layer
configurations of a CNN can vary based on the problem domain and design choices.

The CNN equation for processing an image can be broken down into the following steps:

» Input: Consider a colour image with dimensions H x W x C, where H represents the
height, W represents the width, and C represents the number of channels (usually 3 for
RGB images).

» Convolutional Layer: The convolutional layer applies a set of filters to the input image.
Each filter has dimensions K x K x C, where K is the size of the filter (often 3x3 or
5x5). The convolution operation involves sliding the filters over the input image,
computing the element-wise multiplication between the filter weights and the
corresponding pixels in the receptive field, and summing up the results. This produces
a set of feature maps. The output of a single convolutional layer can be computed as
follows:

output|i, j, k]

= activation(sum(input_patch * filter[k]) (3.2)

+ bias[k])
Here, output(i, j, k] represents the value of the k-th feature map at position (i, j) in the
output, input patch is the receptive field from the input image corresponding to the
filter position, filter[k] represents the k-th filter, bias/k] is the bias term for the k-th
feature map, and activation is the activation function applied element-wise to the
summed result.

» Pooling Layer: The pooling layer reduces the spatial dimensions of the feature maps,
aiming to capture the most salient information. Common pooling operations include
max pooling and average pooling. A pooling operation with a pool size of P and stride
of S can be defined as follows:

outputli, j, k]
= pool_function(input[i *S:i*S+ P,j*S:j*S (3.3)
+ P, k])
Here, output [i, j, k] represents the value of the k-th pooled feature at position (i, j) in
the output, input [i*S : i*S+P, j*S : j*S+P, k] represents the pooling region from the
k-th feature map, and pool function is the pooling function applied to the pooling
region.

» Fully Connected Layers: After the convolutional and pooling layers, the resulting
feature maps are often flattened into a 1-dimensional vector. This vector is then fed into
one or more fully connected layers, which perform high-level feature extraction and
map the learned features to the desired output classes or predictions. The fully
connected layers can be represented as:

output = activation(dot_product(input,weights) + bias) (3.4)

Here, input represents the flattened feature vector, weights represent the weight matrix
connecting the input to the fully connected layer, bias represents the bias term,
dot_product denotes the dot product operation, and activation is the activation function
applied element-wise to the summed result.
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» Output: The output of the last fully connected layer represents the predicted class
probabilities or regression values, depending on the task being performed.

In practice, CNNs often have multiple convolutional layers with different filter sizes and
strides, non-linear activation functions, regularization techniques, and complex
architectures, such as residual connections or attention mechanisms, to improve
performance on various image-related tasks.

RNNs are designed to handle sequential and temporal data. They utilize recurrent
connections to capture dependencies between elements in a sequence. RNNs are commonly
employed in tasks such as natural language processing, speech recognition, and time series
analysis. Also, there are some other DL algorithms such as Generative Adversarial
Networks (GANSs), autoencoders, transformers.

LSTMs are a type of RNN that mitigate the vanishing gradient problem and can retain
information over long sequences. LSTMs are particularly effective in modelling and
generating sequential data and have been successful in tasks like speech recognition,
language translation, and handwriting recognition.

GANSs consist of a generator network and a discriminator network that compete against
each other. The generator aims to generate realistic samples, while the discriminator aims
to distinguish between real and generated samples. GANs have been widely used for tasks
such as image synthesis, style transfer, and data augmentation.

Autoencoders are unsupervised learning models that aim to reconstruct their input data.
They consist of an encoder network that maps the input data to a lower-dimensional latent
space and a decoder network that reconstructs the input from the latent representation.
Autoencoders are used for tasks such as dimensionality reduction, anomaly detection, and
denoising.

Transformers have gained prominence in natural language processing tasks. They utilize
self-attention mechanisms to capture global dependencies and learn contextual
representations of words or tokens. Transformers have demonstrated state-of-the-art
performance in tasks like machine translation, text summarization, and language
modelling.

Overall, the choice of technique depends on the nature of the problem, available data,
computational resources, and desired results. Machine learning techniques continue to evolve
and advance, enabling computers to learn and make predictions in increasingly complex

situations.

The following Table 7 informs about key phrases in ML and their respective meanings.

Table 7 Key phrases in ML with significances

Phrases Significance
Model Trained by employing ML algorithm to produce outputs
Algorithm Bunch of rules along with computational techniques to gain profound

details

Training Data

Consist of features, patterns, and key trends

Validation Data

To evaluate model performance during training
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Testing Data To assess the accuracy of the trained model

Predictor Variable | A data trait to predict the outcome

Response Variable | A trait of the output variable and Predictor Variable should envisage it

To implement the ML technique illustrated in Figure 8, one needs to follow these steps:

Step 1 ____[ Defining the problem statement and W
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Step 8 ——vI Results generation J

Figure 8 Crucial steps to implement the ML technique

3.2 Modern Approaches to Computer Vision Techniques

Computer vision techniques that are intelligent algorithms to extract deep feature details from
images and videos. The primary goal of computer vision is to enable machines to analyse and
interpret visual data, recognize objects, understand scenes, and extract relevant information.
This encompasses a wide range of tasks, including image classification, object detection, image
segmentation, pose estimation, image generation, and video analysis.

3.2.1 ML and DL in Computer Vision

The computer vision field has its own traditional algorithms and a large area of it is untouched
by Al techniques. Conventional algorithms in computer vision may provide acceptable results
for low imagery data but these algorithms may not perform well with large datasets i.e., produce
saturated results. At this point, using artificial intelligence (Al), i.e., machine learning and deep
learning techniques with computer vision provide excellent results with large datasets and also
enhance performance properties. Figure 9(a) shows a systematic approach of ML with
computer vision while a deep neural network approach is considered in Figure 9(b). In
advanced ML techniques, both feature extraction and learning are automated. Deep learning
has had a significant impact on the field of computer vision. Convolutional Neural Networks
(CNNs) have become the backbone of many computer vision systems, enabling highly accurate
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image recognition and object detection. CNNs learn hierarchical representations of visual data
by stacking multiple convolutional layers, which capture increasingly complex features.
Overall, it plays a crucial role in enabling machines to perceive and understand the visual
world, bridging the gap between humans and machines in terms of visual understanding and

interpretation.
Input frame Input frame
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Figure 9 Steps in applying ML techniques to computer vision tasks

3.2.2 Object Detection

Object detection techniques of computer vision detect the occurrence of objects in an image or
video with bounding boxes and identify their classes. It has two method types such as single-
stage which works for inference speed and real-time use and two-stage which works for model
performance i.e., detection accuracy [55]. The single-stage detectors remove the process of
region of interest (ROI) extraction and moves for classification and regression whereas two-
stage detectors extract ROI and then apply classification and regression. Classification and
localization accuracy and inference speed are two important metrics for object detectors.

Object detection techniques have advanced significantly with the rise of deep learning and
convolutional neural networks (CNNs). Here is a high-level overview of the typical process
involved in object detection:

e Input Image: The object detection algorithm takes an image or a video frame as input.

e Feature Extraction: A CNN is employed to extract features from the input image. This
is typically done by passing the image through multiple convolutional and pooling
layers to generate a feature map. CNN learns hierarchical representations that capture
visual patterns and discriminative features from the input data.

e Region Proposal: The feature map is used to generate a set of potential object locations,
often referred to as region proposals. This step helps narrow down the search space and
improve efficiency. Various methods are used for region proposal generation, such as
selective search, region proposal networks (RPNs), or anchor-based approaches.
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e C(lassification: The extracted features are then used to classify each region into specific
object classes or background. This is typically done using classifiers, such as support
vector machines (SVMs) or softmax classifiers, which are trained on labelled data to
recognize different object categories.

e Localization: In addition to classifying objects, the algorithm also localizes them by
predicting the bounding boxes that tightly enclose the detected objects. This can be
done using regression techniques, where the algorithm learns to estimate the
coordinates of the bounding box corners.

e Post-processing: To refine the object detections, post-processing steps are performed.
These steps may involve filtering out overlapping or low-confidence detections,
applying non-maximum suppression to keep the most confident detections, or
incorporating contextual information to improve accuracy.

The deep learning architectures such as Faster R-CNN, YOLO (You Only Look Once), and
SSD (Single Shot MultiBox Detector), have greatly improved object detection systems. These
models have achieved impressive performance on a wide range of object detection tasks and
are widely used in applications like autonomous driving, surveillance, object recognition,
augmented reality, maintenance practices, etc. Overall, object detection plays a vital role in
many computer vision applications, enabling machines to understand and interact with visual
data by detecting and localizing objects of interest within images or videos.

The following terms and equations are essential for evaluating the performance of object
detection models. They provide insights into the model's ability to detect objects accurately
and balance precision and recall trade-offs.

True Positive (TP): The model correctly predicts the presence of an object when it actually
exists in the image.
True Negative (TN): The model correctly predicts the absence of an object when there is
no object in the image.
False Positive (FP): The model incorrectly predicts the presence of an object when there is
no object in the image (false alarm).
False Negative (FN): The model incorrectly predicts the absence of an object when an
object is present in the image (missed detection).
Accuracy: The proportion of correctly classified objects (both positives and negatives) to
the total number of predictions made by the model.

Accuracy = (TP + TN) /(TP + TN + FP + FN) (3.5)

Precision: The proportion of correctly classified positive predictions (TP) to the total
number of positive predictions made by the model.
Precision = TP /(TP + FP) (3.6)

Recall (also known as Sensitivity or True Positive Rate): The proportion of correctly
classified positive predictions (TP) to the total number of actual positive instances in the
dataset.

Recall = TP /(TP + FN) (3.7)
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e Average Precision (AP): A measure of how well the model ranks the predicted bounding
boxes for different object classes. It is calculated by computing the precision-recall curve
for each class and then computing the average precision.

AP = ))(Precision at each recall point) (3.8)
/ Number of recall points

e Mean Average Precision (mAP): The average of the AP values across all object classes in
the dataset. It is commonly used as an evaluation metric for object detection models.
mAP = Y.(AP for each class) /| Number of classes (3.9

e FI score: The harmonic mean of precision and recall. It provides a balanced measure of the
model's performance by considering both precision and recall.
Flscore = 2 x (Precision * Recall) / (Precision + Recall) (3.10)

e Precision-Recall (PR) Curve: A graph that represents the trade-off between precision and
recall for different classification thresholds. The x-axis represents the recall, and the y-axis
represents the precision. The curve shows how precision changes as the recall threshold
varies.

e Intersection over Union (IOU): A measure of overlap between the predicted bounding box
and the ground truth bounding box. It is commonly used to evaluate the accuracy of object
detection algorithms.

I0U = Area of Intersection / Area of Union (3.11)

3.2.3 Embedded Vision Approach

Embedded vision systems leverage computer vision algorithms to analyse visual data captured
by embedded cameras or sensors. These algorithms process and interpret the visual information
to extract meaningful insights, make decisions, or trigger actions [56], [57]. Common tasks in
embedded vision include object detection, recognition, tracking, image segmentation, and
scene understanding. Here, the term embedded refers to an embedded system which is any
microprocessor-based computing hardware system and vision refers to computer vision
techniques. One of the key challenges in embedded vision is the limited computational
resources and power constraints of embedded devices. To overcome these limitations,
specialized hardware accelerators, such as GPUs (Graphics Processing Units), FPGAs (Field-
Programmable Gate Arrays), and dedicated vision processing units (VPUs), are often used to
perform computationally intensive tasks efficiently. These hardware accelerators enable real-
time processing of visual data on resource-constrained devices. Embedded vision finds
applications in various domains, including autonomous vehicles, robotics, smart surveillance,
augmented reality, healthcare monitoring, and industrial automation. Researchers and
engineers in the field of embedded vision continuously develop novel algorithms, architectures,
and optimization techniques to improve the efficiency and accuracy of visual processing on
embedded devices. This includes advancements in deep learning models, compression
techniques, and real-time processing algorithms tailored for embedded systems.
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3.3 Selected Models for Methodical Approach
Here, two YOLO models selected as YOLOX and YOLOvVS for methodical approach are
described below in detail.

YOLOX — It is a single-stage detection model which functioned well on multiple object
detection benchmark datasets, including COCO, PASCAL VOC, and Open Images [58].
YOLOX comprises three crucial facets such as an anchor-free approach for precise
bounding box detection, a decoupled head for efficient classification and regression tasks,
and advanced label allocation tactics like SImMOTA. The Darknet53 is a CNN and as a
backbone which involves 1x1 convolutions, residual connections, and 3x3 convolutions as
shown in Figure 11 [14]. The anchor-free design utilises a center-based approach for each
pixel's detection mechanism. This approach selects a single positive instance per pixel and
estimates four distances (left, top, right, bottom) from the positive instance to the image
borders. As a result, YOLOX uses a single 4D vector to encode the location of the bounding
box for every foreground pixel. The decoupled head enables better optimization and
scalability by separating the two tasks. It also allows for the addition of multiple detection
heads with varying feature scales, resulting in improved object detection across different
object sizes. The head architecture includes a 1x1 convolutional layer that effectively
reduces the channel dimension. It is then followed by two parallel branches, each consisting
of two 3%3 convolutional layers as shown in Figure 10. SImOTA is a Simplified Optimal
Transport Assignment, redesigned strategy for target assignment during training. It
improves average precision without increasing training cost. It estimates the number of
positive anchors for each ground truth based on IoU values, considering factors like size,
scale, and occlusion. SImOTA reduces the number of iterations significantly (training time
reduces), leading to improved performance i.e., enhancing the accuracy of the model. The
loss function is computed for optimize the model for accurate class predictions, bounding
box regression, and objectness scoring.

Loss = class_loss + reg_weight x (reg_loss + iou_loss) (3.12)

Here, class loss is the Binary Cross Entropy (BCE) loss between the predicted class
probabilities and the ground truth class labels. The reg_loss is the regression loss, which is
optimized using Generic Intersection over Union (GloU) to measure the accuracy of
bounding box predictions. iou_loss is the objectness loss, which uses BCE to optimize the
objectness predictions based on the IoU values. The reg weight parameter is a scaling
factor that determines the relative importance of the regression loss compared to the other
losses in the model.

It is a versatile detection framework that offers different version sizes to accommodate
varying requirements. The YOLOX-nano has 0.91 million (M) parameters and performs
well with a test image size of 416 pixels in both width and height. On the other hand,
YOLOX-tiny utilizes 5.06 M parameters and is optimized for the same test image size. For
more demanding tasks, YOLOX provides the YOLOX-small which was selected in our
case for embedded vision purpose, YOLOX-medium, and YOLOX-large, which have 9 M,
25.3 M, and 54.2 M parameters respectively, and are designed to work with a test image
size of 640. Lastly, the YOLOX-large version boasts 99.1 million parameters and is suitable
for processing test image sizes of 640 or 800.
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YOLOVS — It is based on PyTorch framework, having .yaml configuration file and targets
on a simplified architecture, model scaling, and transfer learning for various object
detection tasks. The architecture comprises CSP Darknet-53 backbone to extract essential
features from input images. It is a modified version of the Darknet-53, incorporating Cross
Stage Partial (CSP) connections to improve information flow and feature representation. A
neck employs Path Aggregation Network (PAN) to create feature pyramids for effective
object scaling and generalization. A head design is same as that of YOLOv3 and v4 and is
responsible for the final detection step, using anchor boxes to generate output vectors with
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class probabilities, abjectness scores, and bounding boxes (center x, center y, height,
width) [59]. To update the model parameters during training, loss is computed as follows.

Loss = BCE(classes) + BCE(objectness) + CloU(location) (3.13)
= Al L_cls + A2L_obj + A3 L_loc

#YOLOvVS v6.0

# Parameters

nc: # number of classes

depth_multiple: _ # model depth multiple
width_multiple: _  # layer channel multiple

anchors:

- [10,13, 16,30, 33,23] # P3/8

- [30,61, 62,45, 59,119] # P4/16
-[116,90, 156,198, 373,326] # P5/32

backbone:

# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4

[-1, 3, €3, [128]],

[-1, 1, Conv, [256, 3, 2]], # 3-P3/8

[-1, 6, €3, [256]],

[-1, 1, Conv, [512, 3, 2]], # 5-P4/16

[-1, 9, C3, [512]],

[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 = :
[-1, 3, C3, [1024]], el Sy
[-1, 1, SPPF, [1024, 5]], #9

’

1

head:

[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13

Upsample

[-1, 1, Conv, [256, 1, 1]],

[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)

[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)

[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)

[[17, 20, 23], 1, Detect, [nc, anchors]], #
Detect(P3, P4, P5)
]

Figure 12 YOLOVS5 Arithmetical Details

The arithmetical details in the model architecture have been given in Figure 12. In above
equation, BCE (classes) represents the Binary Cross Entropy loss for the predicted classes,
BCE (objectness) represents the Binary Cross Entropy loss for the objectness scores, and
CloU (location) represents the Complete Intersection over Union loss for the bounding box
locations. It uses autoanchor to automatically verify and generate the anchor boxes based
on the distribution of bounding boxes in the custom dataset with K-means clustering and
genetic learning algorithm. This ensures better alignment between the model and the
objects it needs to detect. Activation functions such as SiLU, or the Sigmoid Linear Unit
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also known as swish, combines the sigmoid and linear functions to capture complex
features in hidden layers.
silu(x) = x *x o(x) (3.14)

Here, o(x) is the logistic sigmoid.

Its powerful gradients enable faster and more stable training. The sigmoid activation
function is used in the output layer for binary classification tasks. It comprises different
versions of sizes (YOLOv5n, YOLOvSs, YOLOv5Sm, YOLOvSI, and YOLOv5X) to
accommodate different resource constraints and performance requirements. YOLOv5n is a
lightweight architecture for edge devices, weighing less than 2.5MB in INT8 format and
4MB in FP32 format. YOLOvVS5s is a small version optimized for CPU inference as selected
in our case for mobile deployment, while YOLOv5m strikes a balance between speed and
accuracy with 21.2 M parameters. YOLOVS5I is designed for detecting smaller objects,
featuring 46.5 M parameters. Finally, YOLOvS5x is the largest version, offering the highest
mean average precision (mAP) but with 86.7 M parameters and slower inference speed.

Backbone Neck Head

d Con2d

Figure 13 YOLOVS Architectural Details
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The architecture illustrated in both Figure 13 employs a combination of Convolutional
(Conv) and C3 layers within the backbone to extract relevant features from input images.
These features are subsequently merged at different hierarchical levels utilizing Conv,
Upsample, Concat, and C3 layers within the head of the model. Facilitating the object
detection process is a dedicated Detect layer, which utilizes anchor boxes and the
designated class count for accurate identification. Notably, the C3 (CSP-3) blocks within
the architecture consist of two parallel convolutional layers each. The first layer compresses
input features through a bottleneck, while the second layer directly produces features. The
resultant feature streams are concatenated, further processed through pooling and
convolutional layers, and benefit from skip connections and attention mechanisms present
in the C3 blocks to enhance information flow and diminish the impact of noise. This
comprehensive architecture focuses on precise object detection across varying scales
present within the input image.

3.4 Transfer learning and Fine-tuning
Transfer learning and fine-tuning are both essential techniques in the field of Al, particularly
in deep learning. Here is an explanation of their prominence in the Al:

Transfer Learning - It refers to the process of leveraging knowledge gained from one task

or domain and applying it to another related task or domain. It involves using a pre-trained

model that has been trained on a large-scale dataset and reusing its learned representations
or features for a new task. The pre-trained model serves as a starting point, and its

knowledge is transferred to the target task, typically by using the pre-trained model as a

feature extractor or initializing the weights of a new model. It is very important for the

following reasons:

a) Data efficiency - Transfer learning enables models to learn from smaller labelled
datasets by leveraging the knowledge learned from large-scale datasets. This is
particularly useful when labelled data is scarce or expensive to acquire. By using
transfer learning, models can effectively extract relevant features from limited data,
preventing overfitting and improving generalization.

b) Improved performance - Pre-trained models, such as those trained on large-scale
datasets like ImageNet, have learned general features that are useful across various
tasks. By utilizing these pre-trained models as a starting point, transfer learning allows
the model to benefit from the previously learned representations, resulting in improved
performance on the target task.

¢) Reduced training time - Training deep neural networks from scratch on large-scale
datasets can be computationally expensive and time-consuming. Transfer learning
reduces training time significantly by utilizing pre-trained models as initial starting
points. Instead of training the entire model, only specific layers or parts of the model
are fine-tuned on the target task, accelerating the training process.

d) Domain adaptation - Transfer learning is beneficial when the source and target domains
have different characteristics. By transferring knowledge from a source domain to a
target domain, models can adapt to new data distributions, bridging the gap between
the two domains and improving generalization performance.

Fine-tuning - It is a specific step in the transfer learning process. Once the pre-trained model

is utilized as a feature extractor or initialized, fine-tuning involves further training the

model on the target task-specific dataset. During fine-tuning, the parameters of the pre-

35



trained model are updated by backpropagating gradients through the added task-specific

layers. This process allows the model to adapt and optimize its performance for the target

task. Fine-tuning is important for the following reasons:

a) Task-specific adaptation - Fine-tuning allows the model to adapt to the intricacies and
specific requirements of the target task. By updating the pre-trained model's parameters,
it can learn task-specific patterns and optimize its performance on the specific problem.

b) Model customization - Fine-tuning allows practitioners to customize and tailor pre-
trained models to suit their specific needs. By modifying or extending the architecture
of the pre-trained model and fine-tuning it on the target task, researchers and developers
can create models that are optimized for their specific application, thereby improving
performance and efficiency.

c) Preserving learned representations - While fine-tuning task-specific layers, the pre-
trained model's early layers, often referred to as feature extractors, are typically kept
frozen. This ensures that the valuable general features learned from the source domain
are preserved and effectively utilized during training. Fine-tuning only modifies the
parameters of the later layers, which are more specialized for the target task.

Yosinski et al. [60] investigated the transferability of features learned in deep neural networks
(DNNSs) and their effectiveness in transfer learning. They found that initial DNN layers learn
more generic and transferable features, while deeper layers become task-specific. Similarity
between the source and target tasks influences feature transferability, with better transfer
observed for similar visual or semantic concepts. The size of the target task dataset and the
capacity of the pre-trained model also impact transfer learning performance. Oquab et al. [61]
proposed a method using mid-level representations in CNNs for transfer learning across tasks
with different label spaces. Their approach involves pre-training on a large-scale dataset for
the source task and fine-tuning on the target task with a smaller labelled dataset. Long et al.
[62] introduced Deep Adaptation Networks (DANS) for transfer learning in computer vision
tasks, achieving improved performance by aligning features from the source and target
domains. He et al. [63] presented ResNet architecture, emphasizing the importance of transfer
learning and fine-tuning in image recognition tasks. Their approach, with pre-trained weights
and fine-tuning, outperformed traditional networks on various benchmarks such as ImageNet,
CIFAR-10, and COCO.

In essence, transfer learning sets up the initial knowledge transfer, and fine-tuning fine-tunes
the model to fit the target task by updating its parameters. Together, these techniques can
significantly improve model performance for accuracy, data efficiency, reduction in training
time, and facilitate adaptation to new domains or tasks. Their importance is evident across
diverse applications, including computer vision, natural language processing, recommendation
systems, and speech recognition.

3.5 Role of Artificial Learning in understanding physical mechanisms and
developing predictive models in Different Research Domains

Artificial learning involves training algorithms on large datasets to recognize patterns,

relationships, and structures within the data. In the context of understanding physical

mechanisms, artificial learning can be applied in various scientific and engineering domains as

given below.
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e Engineering and Manufacturing: Artificial learning facilitates the development of
predictive models for engineering applications. It can be used to analyse sensor data,
monitor equipment performance, optimize processes, and predict failure or maintenance
needs. By learning from historical data and real-time measurements, machines can provide
valuable insights for improving efficiency, quality, and safety in manufacturing and
engineering domains.

e Physics and Natural Sciences: In physics, artificial learning techniques are employed to
understand complex physical systems, such as quantum mechanics, particle physics, and
astrophysics. By training models on experimental data or simulations, researchers can
uncover hidden patterns and relationships, enabling a deeper understanding of fundamental
physical processes. It helps to model the behaviour of particles, understand quantum
phenomena, or predict the properties of materials.

e Biology: Artificial learning can assist in deciphering genetic data, analysing protein
structures, understanding biological processes, and predicting drug interactions. It can help
identify disease patterns, classify different cell types, or optimize drug discovery processes.

e Environmental Science: Artificial learning can be employed to model and predict climate
patterns, analyse satellite imagery for land cover classification, or assess the impact of
pollution on ecosystems. It aids in understanding complex environmental interactions and
developing more accurate predictive models.

Overall, artificial learning plays a pivotal role in understanding physical mechanisms and
developing predictive models across various domains. It enables machines to learn from data,
discover patterns, and make accurate predictions or decisions. By harnessing the power of
artificial learning, researchers and practitioners can gain valuable insights, optimize processes,
and make informed choices in diverse real-world applications.

1. Demir et al. [64], introduced the DeepGlobe challenge dataset which consists of high-
resolution satellite images covering various regions of the Earth. It includes labelled ground
truth data for tasks such as land cover classification, road extraction, and building delineation.
The dataset enables participants to develop and evaluate their deep learning models on real-
world scenarios. This work reveals the potential of Al in analysing Earth's satellite images for
a wide range of applications. Maziar Raissi et al. [65], instituted physics-informed neural
networks (PINNSs), a framework that combines physics-based models with neural networks to
solve forward and inverse problems involving nonlinear partial differential equations (PDEs).
It demonstrates how artificial learning can be leveraged to learn the underlying physical
mechanisms and make predictions based on limited or noisy data. Feng et al. [66], presented a
methodology for structural damage detection using deep CNNs and transfer learning. The
collection images of different types and degrees of structural damage were done for dataset
development. They applied pre-processing and annotation operations on the images, labelled
them as either damaged or undamaged. The CNN model was trained using this dataset to learn
the patterns and features associated with structural damage. This work contributes to the
advancement of Al-based approaches for structural health monitoring and maintenance in the
field of civil engineering. Biamonte et al. [67], explored the intersection of quantum computing
and machine learning. They discussed the use of quantum algorithms, such as quantum support
vector machines, quantum clustering, and quantum neural networks, to tackle various machine
learning tasks. They described how these algorithms can leverage quantum properties, such as
superposition and entanglement, to perform computations in parallel and potentially provide
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speedup over classical counterparts. Moen et al. [68], presented an approach for the
development and implementation of several deep learning i.e., CNNs models tailored for
different cellular image analysis tasks. They discuss the architecture and training procedures
of these models, which include strategies such as data augmentation, transfer learning, and
assembling. The models had been trained on large-scale datasets, providing a diverse range of
microscopy cellular image examples. It also highlights future directions and opportunities for
integrating deep learning with other imaging techniques and multi-modal data analysis. But/er
et al. [69] considered the application of machine learning techniques such as support vector
machines, neural networks, and random forests for the prediction of material properties,
identification of novel materials, and designing of molecules with specific functionalities. It
highlights the use of various data types, such as crystal structures, molecular fingerprints, and
experimental measurements, to train machine learning models. Hino et al. [70], provided
details about specific machine learning models in decision-making for sustainable
environmental management, which includes air quality prediction, water quality assessment,
species identification, weather forecasting, climate change modelling, and other environmental
parameters. These algorithms are capable to analyse large amounts of environmental data
collected from sensors, satellite imagery, and other sources. Florian Shroff et al. [71], presented
FaceNet, a deep learning model that learns compact representations of face images, known as
face embeddings, and maps them into a multidimensional space, where similar faces are close
to each other for further face recognition and clustering tasks. They also proposed a triplet loss
function that encourages the network to learn embeddings with small intra-class variance and
large inter-class variance, enabling accurate and robust face recognition. It has a wide
application area in advanced face recognition and verification systems, biometric
authentication, and surveillance applications.

The general equation that represents the fundamental concept of Al can be given as

Y =f(X,0) (3.15)
Where,

X - indicates the input data or features given to the Al algorithm

Y - denotes the output or prediction generated by the Al algorithm

6 - signifies the parameters or weights of the AT model

f - stands for the function or algorithm that maps the input data to the output predictions.

The equation signifies that the output Y is a function of the input X and the model parameters
0. The function f represents the learning algorithm or model architecture that transforms the
input data using the learned parameters to produce the desired output. Here. the function f will
vary depending on the AI technique being used such as deep learning i.e., complex neural
network architecture with multiple layers and activation functions, support vector machines,
decision trees, etc.

3.6 Significant breakthroughs in Al
Many experiments have been done since the inception of Al to its modern state. Some of the
impressive advances are listed as follows.

Vapnik presented a comprehensive and rigorous treatment of the theoretical underpinnings of
statistical learning [72]. It highlights the importance of understanding the generalization
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properties of learning algorithms and presents key concepts such as empirical risk, true risk,
VC dimension, and structural risk minimization. The support vector machines (SVMs), a
powerful learning algorithm introduced by Vapnik, and his colleagues is based on the principle
of finding an optimal hyperplane that separates the data into different classes with the
maximum margin. This paper has had a significant impact on the development of machine
learning algorithms and has contributed to advancing the field of Al

LeCun et al. introduced the use of convolutional neural networks for document recognition
tasks and demonstrated their effectiveness on the MNIST dataset, which is a widely used
benchmark dataset in the field of machine learning and consists of a large number of grayscale
images of handwritten digits [73]. The presented CNN architecture i.e., LeNet-5, included
multiple layers of convolutional filters, pooling layers for subsampling, and fully connected
layers for classification which has the ability to automatically learn features and capture spatial
hierarchies present in the input images. It played a pivotal role in advancing the field of
computer vision and contributed to the broader adoption of deep learning techniques in Al
research.

Hinton and Salakhutdinov demonstrated the effectiveness of unsupervised pretraining and deep
belief networks on several benchmark datasets, including handwritten digit recognition and
object recognition [74]. It showed that by using unsupervised pretraining, deep neural networks
could achieve better generalization performance, especially when the labelled training data was
limited. Once the unsupervised pretraining was complete, the entire network was fine-tuned
using supervised learning, such as backpropagation, to optimize it for the specific task at hand.
The unsupervised pretraining served as an effective initialization step that helped the network
escape local optima and facilitated faster convergence during the fine-tuning phase. It showed
the potential of these techniques through empirical results and significantly influenced the field
of deep learning.

The research work presented by Alex Krizhevsky et al., is highly influential in the field of
computer vision and marked a significant breakthrough in image classification using deep
convolutional neural networks (CNNs) [75]. They proposed a deep CNN architecture called
AlexNet and trained it on a large dataset of labelled images from the ImageNet database.
AlexNet achieved a top-5 error rate of 15.3% in the ILSVRC 2012 competition, significantly
outperforming other methods and surpassing human-level performance in image classification
tasks.

Tsung-Yi Lin et al., provided the MS COCO dataset which serves as an important reference for
researchers and practitioners in the computer vision community [76]. This work was published
in the European Conference on Computer Vision (ECCV) in 2014. It provides an in-depth
description of dataset, its creation process, annotations, and its significance as a benchmark for
evaluating and advancing computer vision algorithms.

The "Attention is All You Need" paper has had a significant impact on the field of modern Al
and NLP, contributing to the development of state-of-the-art models in machine translation,
language generation, and other language-related tasks. The Transformer model introduced in
this work has become the de facto standard for various NLP tasks, surpassing previous
approaches in terms of performance and efficiency [77]. This novel architecture relies solely
on attention mechanisms, without using recurrent neural networks (RNNs) or convolutional
neural networks (CNNs) commonly used in sequence modelling. The self-attention mechanism
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allows the model to capture dependencies between words or tokens in a sequence and enables
the model to attend to various parts of the input sequence when generating each output token,
making it more effective at capturing long-range dependencies compared to traditional
sequential models.

Goodfellow et al. [78], introduced the concept of Generative Adversarial Networks (GANs),
that consists of two neural networks, a generator, and a discriminator, which are trained in a
competitive manner. The key idea of GANs is to generate synthetic data that is
indistinguishable from real data by learning from a training dataset. The generator network
takes random input noise and generates synthetic data samples, while the discriminator network
tries to differentiate between real and generated data. The networks are trained in a two-player
minimax game, where the generator aims to fool the discriminator, and the discriminator tries
to correctly identify the real data from the generated data. Through this adversarial training
process, the generator network gradually improves its ability to generate realistic data, while
the discriminator network becomes more adept at distinguishing real from fake data. It has a
tremendous impact on various domains, including image synthesis, text generation, and data
augmentation. GANs have been used to generate realistic images, create deepfakes, enhance
low-resolution images, etc.

Brundage et al., conferred a comprehensive exploration of the potential risks and challenges
associated with the malicious use of Al It raises awareness about the ethical and security
implications of Al technologies and provides valuable insights into the forecasting, prevention,
and mitigation of these risks [79]. The authors identify three primary areas where the malicious
use of Al could have significant consequences: digital security, physical security, and political
security. They explore various scenarios and potential applications where Al could be exploited
for harmful purposes, such as automated hacking, social engineering, autonomous weapons,
and Al-driven disinformation campaigns. The work serves as a foundation for further research
and policy discussions regarding the responsible development and deployment of Al systems
to ensure the beneficial use of this transformative technology.

3.7 Summary: Leading to the Methodical Approach

In this, the included sections highlight the significance of machine learning techniques,
including supervised, unsupervised, and reinforcement learning, in Al and computer vision.
Deep learning, specifically CNNs have greatly impacted computer vision tasks like image
recognition and object detection. Object detection involves various steps such as feature
extraction, region proposal generation, classification, and localization. Embedded vision
systems leverage computer vision algorithms and specialized hardware accelerators to process
visual data in resource-constrained environments. ML and DL techniques continue to advance
the field of computer vision, enabling machines to effectively analyse and understand visual
information.

The section specifically focuses on the selection of YOLOX and YOLOVS models, describing
their features and architectures. YOLOX employs an anchor-free approach, decoupled head,
and advanced label allocation tactics, while YOLOVS is based on the PyTorch framework and
emphasizes a simplified architecture, model scaling, and transfer learning. It utilizes a CSP
Darknet-53 backbone and a PAN neck for effective feature extraction and scaling. Both models
employ different loss functions to optimize class predictions, bounding box regression, and
objectness scoring.
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Furthermore, the selection of these models was also based on their performance on benchmark
datasets, their versatility in accommodating varying requirements, and their availability of
different model sizes. The YOLOX model provides different sizes ranging from YOLOX-nano
to YOLOX-large, while the YOLOvVS5 model offers sizes from YOLOv5n to YOLOv5x.

Additionally, the concepts of transfer learning and fine-tuning are introduced, highlighting their
importance in improving data efficiency, performance, and adaptability. The relevance of these
techniques is supported by research findings and their successful application in the domain.

The chosen methodology in the next chapter will delve deeper into the implementation and
performance evaluation of Al algorithms, providing a comprehensive understanding of their
application in computer vision tasks.
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4 Methodology and Case Study with Results

The AI model for object detection is developed in this thesis. As already mentioned, the
application field is chosen as detecting blockages in sewers.

4.1 Methodology
A comprehensive explanation of the research methodology employed in this study is provided
in the following sections.

4.1.1 Development of New Critical Multiclass Representative Image Dataset

Figure 14 depicts the workflow involved in dataset decision-making, illustrating the
comprehensive procedure from requirement generation to model training [4]. The subsequent
subsections succinctly elaborate on the significance and necessity of developing a novel
dataset, which is based on authentic facts, meticulous surveys, insightful observations, and
thorough analysis.
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and Investigate other
augmentation of resources such as
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Importing Authorities
Training of _| detection model
detection model "I onembedded
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v

Detecting sewer blockages

Figure 14 Decision-making workflow for the development of new dataset
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In this, recognizing the indispensability of data, we embarked on a comprehensive investigation
into its availability. We meticulously scrutinized various avenues, including data searching
methodologies, sharing protocols, and hybrid platforms. Our efforts extended to engaging with
diverse stakeholders such as authorities, municipal corporations, and the open research
community. Despite these endeavors, certain constraints and confidentiality issues posed
challenges in accessing secondary data. This scenario prompted us to navigate an alternative
route, involving the creation of a primary dataset to attain further objectives.

4.1.1.1 Survey Details of Pune Municipal Corporation (PMC)

To gain a comprehensive understanding of the research landscape, a survey was conducted in
Pune, India, a representative mid-size city in a developing country. The sewerage system in the
city was designed in 1928, to accommodate a capacity of 31.8 million litres per day (MLD) to
cater to a population of 0.26 million. However, as of 2020, the city's population has surged to
7.4 million, resulting in significant strain on the existing infrastructure. Presently, the city has
11 Sewage Treatment Plants (STPs) with a total capacity of treating 396 MLD.

Within SPRING project with the support of DYPatil, Engineering college and in collaboration
with the Pune Municipal Corporation (PMC), a comprehensive city survey was conducted to
evaluate the available sewage treatment techniques and identify associated challenges. The
findings of the survey, along with insights from specific cases of cleaning works, are presented
in Table 8 [39].

Based on information obtained through official sources, it was gathered that the primary
objective of sewerage maintenance activities is to minimize drainage blockages per unit length.
Generally, external mechanical systems are employed for cleaning purposes, incurring
substantial costs. Although PMC endeavours to adhere to government directives for regular
sewer inspection and maintenance, budgetary constraints have resulted in a lack of appropriate
techniques and inadequate equipment for this purpose.

Table 8 Details of survey conducted at PMC. [39]

Terms Details
Sewer Line 2167 kilometre
Sewer Pipe Diameter Ranges from 100 mm to 1800 mm
Total Chambers (manhole) | 2187
Sewer Pipe Material e RCC
e High-density
polyethylene (HDPE)
e bid-iron!
e PVC
Distance Between | 10 to 15 meters
Chambers
Sewer Net pressure lto4
Sewer Cleaning Techniques e Suction Cum Jetting
Machine with a Recycler
e Suction Cum Jetting
Machine
e Jetting Machine
Total Generated Sewage 744 MLD
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Intermediate pump stations | 6

(IPS)
Sewage Treatment Plants |9
(STPs)
Main Sewer Lines e River side
e Below road
e (anal side
Cleaning Tools Charges/Shift (8 hours shift)

e Suction Cum Jetting
Machine 6400 INR
e Suction Cum Jetting
Machine with a Recycler | 37000 INR

e Jetting Machine
5360 INR

4.1.1.2 Why do we need to develop a New Representative Dataset?

A comprehensive review of the literature on computer vision applications and automated
systems in sewer inspection work reveals that sewer blockages are difficult to detect. The
existing algorithms and automated systems for real-time detection and cleaning of sewer
blockages are found to be unreliable and lacking robustness. This problem of maintaining the
sewers is further aggravated if there is a single sewer line for sewage and stormwater.

To address the real-time detection and identification of sewer blockages using Al model, it is
essential to have a standardized dataset. Despite extensive efforts to gather relevant data from
open literature and reaching out to various authorities and municipalities, no suitable datasets
for real-time sewer blockage detection could be obtained. The noxious, unhygienic, and
malodorous environment of sewers poses a significant hurdle in capturing images for dataset
generation. It is worth pointing out that individual obligations, copyright, or confidentiality
issues related to prior works are also accountable for the inaccessibility of datasets.

Clogging in drains is mainly initiated by the presence of grease, plastic, and tree roots as
detailed in Table 9. However, there are additional components within sewage that mix with
black water, making them challenging to identify. These components are generally considered
as black sewer blockages and are represented as black grease in the dataset. Altogether, grease,
plastic, and tree root imagery data have been considered as mentioned above in the
representative dataset, named as S-BIRD (Sewer-Blockages Imagery Recognition Dataset),
which is employed for learning of object detection models to detect and identify sewer barriers
in real-time.

Figure 15 illustrates the concept of creating the S-BIRD dataset, which incorporates imagery
data of grease, plastic, and tree roots [4].

The absence of a standardized matrix for implemented algorithms poses a significant challenge
in practical development. However, the Al models trained on the S-BIRD dataset provide a
valuable benchmark for assessing the localization results in real-time scenarios. By utilizing
this dataset, researchers and developers can evaluate the performance of their implemented
algorithms in real-world situations, making it a crucial resource in the field. This research case
study aims to utilize new techniques in computer vision and Al technologies to optimize the
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performance and effectiveness of sewer robotic systems by improving the efficiency of sewer
blockage removal because blind systems may lack the same level of competence as vision-
based automated systems, resulting in more efficient and reliable sewer maintenance processes.

S- BIRD For

Main Sewer
Blockages

Figure 15 S-BIRD dataset including major sewer blockages

Table 9 Common Causes and Consequences of Major Sewer Blockages

Obstruction Causes Impact and Issues
Type
Treeroots Tree roots infiltrating | @ causes physical obstruction, leading to
sewer lines blockages.

e roots seek out moisture and can grow into
pipes, causing cracks and blockages.
e Jlead to sewage backups and potential pipe

damage.
Plastic plastic waste suchas | ¢ accumulation of plastic debris leads to
single use plastic, gradual blockages.

transparent and multi-
coloured bottles,
containers, medical
waste, bags, etc.

e plastics become entangled with other debris,
exacerbating blockages.

e contributes to sewage overflows and
environmental issues.

Grease accumulated grease and
fat deposits such as e grease solidify in pipes and accumulate over
cooking oil and fats, time, causing blockages.
dairy-based fats, e leads to reduced flow capacity and causes
industrial grease, backups and overflows.
shortening, hydrogenated |  attract other debris, further exacerbating the
oil, etc. blockage.
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4.1.2 Methodical Flow for New Dataset and Detection Model Training

Methodical Work with
Generated Image Data

l

Preprocessing and
l Augumentation of

data

Heatmap for
New Imagery annotations of
Dataset object classes
h

| Strength analysis | |
of dataset

Object count
Histogram for
dataset

A

Proved
Consistency and
Feasibility of
Dataset

Model 1 - using
YOLOX-s
by Transfer Learning
and Fine Tuning

A

Model 2 - using Achieved High
_| YOLOVS-s by Transfer Precision rate for
Learning and Fine sewer blockages
Tuning detection

h

Embedded Vision
based cost
effective real-
time application

Imported Model
on Embedded
Single Board Computer
(SBC)

Figure 16 Methodical Workflow with newly developed dataset

Figure 16 presents a systematic workflow that outlines the key steps and techniques employed
for development of sewer blockage detection models using the newly developed representative
dataset and transfer learning. The workflow encompasses various essential techniques and their
implications, highlighting the practical relevance of the research findings.

To begin, frames capturing sewer blockages were collected, and preprocessing and
augmentation operations were performed to generate critical instances suitable for training
purposes. Heatmap and object count histogram analyses were conducted to evaluate the
strength of each object class within the newly developed dataset. This dataset, named the S-
BIRD dataset, was specifically designed to identify common sewer blockages, and
demonstrated its effectiveness in training robust detection models.

The application oriented model development process involves utilizing the YOLOX-s and
YOLOvS5-s architectures, incorporating transfer learning and fine-tuning techniques with
optimized parameters and data augmentation. The evaluation of the developed models is done
for the confirmation of their exceptional accuracy in detecting sewer blockages and
demonstrated the consistency and feasibility of the employed dataset.
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Furthermore, the methodical flow emphasizes the integration of embedded vision techniques
for real-time applications, underscoring the practical implications of the research findings in
wastewater management. Various tools and techniques, including OpenCV (Open Source
Computer Vision and Machine Learning Library), Python programming, the PyTorch
framework, machine learning libraries, high-performance Nvidia GPU workstations, Single
Board Computers (SBC), and the Linux operating system, were utilized to facilitate the
development of model training programs and the creation of a robust and efficient embedded
vision platform.

By following this methodical flow, the research successfully develops detection models trained
on the newly created representative primary dataset, for showcasing their accuracy and
feasibility in identifying sewer blockages. Additionally, the integration of embedded vision
techniques highlighted the practicality of the research findings, contributing to advancements
in wastewater management.

4.2 Tools Utilized in S-BIRD Dataset Generation
Below, a comprehensive explanation with significance of the tools utilized in the development
of the S-BIRD dataset is presented, which serves a crucial role in the practice.

4.2.1 Constructed Sewer Pipeline

The sewer network simulation and dataset generation work were done at laboratory of DY Patil
School of Engineering, Pune one of the project partners in SPRING. A simulated sewer
network was constructed using PVC pipelines with a diameter of 200 mm as shown in Figure
17 (a), similar which are used in residential sewers. The purpose of this simulated network was
to mimic a real sewer environment while eliminating the noxious atmosphere and stench as
illustrated in Figure 17 (b) (pure negative samples). The resulting sewer pipeline, as depicted
in Figure 17 [4], closely resembled an actual sewer system.

(b)

Figure 17 Illustration of the constructed sewer pipeline with (a) material and diameter details and (b) realistic
design and internal environment

In order to ensure authenticity, the simulated sewer network replicated the various types of
blockages such as tree roots, plastics, and grease, that naturally occur in real sewer systems, as
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discussed in section 4.3. All relevant information and characteristics of these blockages were
incorporated into the simulated network. This ensured that the detection model trained using
the S-BIRD dataset would be capable of functioning effectively in practical situations.

4.2.2 Inspection Camera for Sewerage Systems

The watertight sewer camera, illustrated in Figure 18 [4], played a crucial role in capturing
real-time frames of sewer barriers such as grease, plastics, and tree roots. This camera
possessed specific features and characteristics, as outlined in Table 10.

Figure 18 Watertight sewer camera employed for frame capture

The dataset generation process incorporated a highly advanced sewer camera with a compact
dimension of 23 mm x 120 mm. This camera was equipped with 12 modifiable white LEDs,
enabling it to adapt to varying lighting conditions by adjusting the brightness levels. Its
exceptional waterproofing grade of IP68 provided reliable protection against water infiltration,
which is of utmost importance when operating in sewer environments. Furthermore, the camera
boasted a wide vision angle of 140 degrees, facilitating comprehensive coverage during
inspections.

Table 10 Technical details of the utilized sewer camera

Attributes Specifications
[llumination source 12 adjustable white LEDs
Camera dimension Camera dimension 23 mm X 120 mm

Vision angle (Field of view) 140 degrees
Waterproof grade P68

Utilizing this sophisticated sewer camera was instrumental in enhancing the S-BIRD dataset.
It enabled the capture of real-time frames from diverse angles, allowing for the desired aspect
ratio and accommodating different lighting conditions. Moreover, it accurately documented the
various obstacles encountered within sewer systems. These captured frames serve as invaluable
training data for the detection model, guaranteeing its efficacy when confronted with similar
real-world scenarios.
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4.3 Image Data Collection for the Development of Novel S-BIRD

The dataset of sewer blockages comprises a comprehensive collection of carefully captured
images taken under diverse lighting conditions and from various angles within the simulated
sewer network. These images offer essential insights and features required for detection and
recognition tasks. Detailed descriptions of the captured blockage scenarios are provided in the
following paragraphs.

Figure 19 [4] presents a selection of frames displaying blockages caused by tree roots,
providing a glimpse into the diversity of occurrences encountered in the dataset. These images
offer valuable insights into the presence and characteristics of tree root blockages within sewer
pipes, contributing to the dataset's authenticity and relevance.

Figure 20 Frames illustrating plastic blockages in the S-BIRD dataset
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In Figure 20 [4], the dataset captures images of blockages made up of different-coloured
plastics, which are crucial for obtaining key information relevant to identification tasks. The
inclusion of diverse plastic colours adds complexity to the dataset, enhancing its realism and
practicality in training detection models.

Within the dark mass of sewage, additional elements such as plastic bags or debris may be
present. However, due to their mixture with black water and grease, they often appear
predominantly blackish in colour, posing challenges for visual identification. Nonetheless, the
dataset effectively captures this characteristic, enriching the variety of blockage scenarios
encountered in real-world sewer systems.

Figure 21 [4] displays frames depicting grease blockages, capturing a wide range of colours
and diverse information. Grease blockages originate from various sources, including domestic
households and both high- and low-density production plants that generate significant amounts
of chemical and processed waste. The inclusion of such instances in the dataset enhances its
authenticity and reflects the complexity of real sewer systems.

Figure 21 Frames displaying grease blockages in the S-BIRD dataset

Through meticulous collection and inclusion of these diverse blockage scenarios, the dataset
provides a comprehensive and representative collection of images essential for training robust
detection and recognition models in sewer systems.

4.4 Detailed Analysis of Captured Frames

The captured frames are accompanied by comprehensive arithmetic details, which are
presented in Table 11 for further implementation. Annotating the objects in each captured
frame required meticulous efforts, ensuring high skill and accuracy without any labelling
errors. These annotations provide vital information regarding the location, specifically the
center coordinates (center x, center y), width, height, and class of objects present in each frame
of the S-BIRD dataset. This is essential information for subsequent computations and analysis.
To ensure consistency and facilitate further computations, all these parameters are normalized
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based on the original frame's width and height. Normalization is performed to ensure that the
values range from 0 to 1, irrespective of the original image size.

Mathematically, the normalized parameters are computed as follows:
e Normalized Center Coordinates:

x_center_norm = x_center / frame_width,
y_center_norm = y_center |/ frame_height 4.1)

e Normalized Width and Height:

w_norm = w / frame_width, h_norm = h / frame_height (4.2)

For example, let's examine annotations for three classes: 0 for plastic, 1 for grease, and 2 for tree
roots. For Class (0), representing plastic, the annotation includes the center coordinates (center x =
0.8389423076923077, center y = 0.25841346153846156), width (0.3173076923076923), and
height (0.5168269230769231).

The annotated data provides valuable training examples for machine learning models, allowing
them to learn and recognize objects of interest in images.

Table 11 Arithmetical details of captured frames.

Olgf:zk(; lg;esffgfslfev;er Acquired Frames
Captured frames
Tree roots 2295
Plastic 2392
Grease 2353
Total frames 7040
Annotations 10,233 (Average = 1.5 per frame)
Average frame size 0.08 Megapixels
Mean frame ratio 352 x 240 (wide)
Angle of diagonal 0.598 radian = 34.3°
Length of diagonal 426 pixels
Aspect ratio Class 1.467:1
Pixel density 9 pixels/mm or 230 pixels/inch

To visualize the class balance in terms of annotations, Figure 22 displays the total number of
annotations for each sewer blockage type: 4131 for grease, 3471 for tree roots, and 2631 for
plastic.
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Sum of Acquired Images and Sum of Annotations by Object Class

o Sum of Acquired Images ® Sum of Annotations

Sum of Annotations

Sum of Acquired Images

Sum of Acquired Images and Sum of Annotations

Plastic Grease Tree roots
Object Class

Figure 22 Annotated illustrations depicting the balance of sewer blockage types

a2

(a) Grease (4131) (b) Treeroots (3471)
(c) Plastic (2631) (d) Resulting (7040)

Figure 23 Heatmap visualization of annotation details for recorded images

The spatial distribution of annotations, represented by bounding boxes, for the considered
blockage types across all captured frames is displayed as a heatmap in Figure 23. Heatmaps
provide a graphical representation of informative data, employing a color-coding system to
convey values. In this context, the values correspond to the annotation details. Heatmaps offer
a quick and visually comprehensive summary, facilitating the understanding of the intricate
nature of the dataset. The use of colours in a heatmap enables a more intuitive comprehension
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of the correlations between annotated values, compared to traditional numerical tables. The
heatmap presented here exhibits yellow colour for highly positioned regions of annotations,
while light green colour denotes lower positioning. All depicted heatmaps demonstrate that the
majority of annotations are concentrated towards the center of the object classes within the
frames.

The imagery data is divided into three balanced groups: training data (70%) consisting of 4928
frames, validation data (20%) comprising 1408 frames, and testing data (10%) with 704 frames,
as depicted in Figure 24.
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Figure 24 Data balancing for each class

Table 12 [4] provides annotation details specifically for the classes within the training data.

Table 12 Annotations for training data

Object Class (Sewer Blockage Annotations
Type)
Grease 2920
Tree roots 2455
Plastic 1821
Total 7196 (Average = 1.5 per frame)

These detailed annotations play a crucial role in training and validating detection models,
enabling accurate identification and localization of sewer blockages.

4.5 Preprocessing and Augmentation Techniques

In this section, two representative preprocessing techniques have been employed on captured
frames. Firstly, auto-orientation of pixel data was implemented by discarding the EXIF (i.e.,
image metadata) rotation and validating the pixel sort. Additionally, resizing the frames to 416
x 416 pixels was performed by stretching the frame without losing the source frame
information.
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To resize the frame from 352 x 240 to 416 x 416 without losing any information, we need to
stretch the frame while maintaining its aspect ratio. Let us calculate the scaling factors for width
and height:

Scaling factor for width (sf,,) = target_width / original_width
= 416 /352 ~ 1.1818 4.3)

Scaling factor for height (sf;,) = target_height / original_height
= 416 /240 ~ 1.7333 (4.4)
Now, new dimensions of the resized frame can be calculated as follows:

resized_width = original_width * sf_.w = 352 * 1.1818 = 416 4.5)

resized_height = original_height * sf_h = 240 x 1.7333 = 416 (4.6)

These image preprocessing methods contribute to reducing model training time and
accelerating inference for detection models.
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Figure 25 Distribution Graph of Aspect Ratios

Figure 25 illustrates the distribution graph of aspect ratios in the S-BIRD dataset, confirming
that all frames are square-sized with dimensions of 416 x 416 pixels.

Furthermore, important image-level augmentation techniques have been employed to generate
new training instances from existing data. Figure 26(a) demonstrates the visual result of
applying a 25 percent gray scaling to the input training frame. This technique increases training
variation while retaining colour information during inference. Figure 26(b) illustrates the
application of salt and pepper noise, also known as impulse noise, to 5 percent of the pixels in
the input frames. This noise helps the detection model adapt to camera artifacts during training
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by adding bright and dark pixels to different regions of the frames, preventing adverse effects
and overfitting.

To enhance the detection model's robustness against changes in light and camera settings,
random exposure adaptations have been introduced. These adaptations randomly adjust the
exposure of the input frame between -25 and +25 percent, as shown in Figure 26(c) [4]. The
complete implementation is as given -

e (Gray Scaling: To apply a 25 percent gray scaling to the input training frame, the formula is
as follows:

New_pixel_value = (0.75 * R) + (0.75 x G) + (0.75 * B) 4.7)

where R, G, and B represent the red, green, and blue colour channels of each pixel,
respectively.

e Salt and Pepper Noise:
» Determined the number of pixels in the image (416 x 416 = 173,056 pixels),
» Selected 5 percent of the total pixels (0.05 * 173,056 = 8,653 pixels) randomly,
» Assigned a random intensity of either the maximum (255) or minimum (0) value (bright
or dark pixel) to each selected pixel.

e Random Gamma Exposure Adaptations: To randomly adjust the exposure of the input
frame between -25 and +25 percent, the formula is given below:

New_pixel_value
= Old_pixel_value * (1

+ Random_number_between(—0.25,0.25)) (4.8)

where Random number between(-0.25, 0.25) generates a random number between -0.25 and
0.25.
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Figure 26 Illustrative outcomes of common augmentation methods: (a) grayscale transformation, (b) salt and
pepper noise, (c) arbitrary exposure variation

In addition, two important advanced augmentation techniques, namely cutout and mosaic, have
been utilized. Figures 27(a) and 27(b) [4] depict the visual outcomes of these techniques,
respectively. Cutout involves inserting three occlusions in 10 percent of the input frames,
helping the detection model handle object occlusion. The mosaic technique combines multiple
images from the training set to create a collage, improving the detection model in effectively
detecting small objects. In this case, four different sewer block frames were added to a single
frame i.e., Random Image Cropping and Patching (RICAP).

Overall, these augmentation techniques significantly contribute to improving the efficiency of
the object detection model by increasing the number and diversity of training instances and
annotations. They also help reduce training time and costs. Consequently, discrete output
versions have been generated for the source frames.

Table 13 [4] presents the quantitative details of the training frames in the S-BIRD dataset after
applying preprocessing and augmentation techniques.
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Table 13 Computational details of training samples in S-BIRD after preprocessing and augmentation.

Metric Values
Total frames 14,765
Annotations 69,061 (Average = 4.7 per frame)
Average frame size 0.173 Megapixels
Mean frame ratio 416 x 416 (square)
Aspect ratio Class 1:1
Angle of diagonal 0.785 radian = 45°
Length of diagonal 588 pixels
Pixel density 12 pixels/mm or 290 pixels/inch

Mosaﬁc
(b)

Figure 27 Visual outcomes of enhanced augmentation methods: (a) cutout and (b) mosaic
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Sum of Annotations after augumentation and Sum of Annotations before augumentation by Sewer Blockage Types
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Figure 28 Annotation specifications for each class in the training dataset following image-level augmentation

Graph in Figure 28 displays the increased annotations for each sewer block type in the S-BIRD
training data after applying augmentation techniques. The number of annotations for grease,
tree roots, and plastics are now 26,847, 21,553, and 20,661, respectively, resulting in a total of
69,061 augmented annotations (bounding boxes). This represents a significant increase of
61,865 annotations, or 859.714%. The preprocessing and augmentation techniques were
implemented using OpenCV, a popular computer vision and machine learning library, along
with Python programming on the Linux platform, achieving the desired results.

4.6 Annotated Heatmap and Object Count Histogram

Two important metrics, the annotated heatmap and the object count histogram, have been
analysed to evaluate the effectiveness of the training data. Figure 29 illustrates the location of
all annotations for grease, plastic, and tree roots in the training data of S-BIRD through
heatmaps. These heatmaps provide an overview of the most common positions and distribution
of annotations for each class. From the colour information in the heatmaps, it is evident that
the majority of annotations (yellow colour) are located at the far left and right of both top and
bottom sides of the images for all object classes.

A histogram is a useful chart that represents numeric data in individual columns called bins.
Figure 30 [4] presents the object count histogram, which details the number of frames on the
y-axis and the corresponding object counts for all classes on the x-axis. The number of objects
or annotations for grease and tree roots ranges up to nine instances, as shown in Figure 30(a)
and 30(b). Grease objects appear once in 1730 frames and four to five times in 1400 to 1600
frames, as depicted in Figure 30(a). Similarly, there are 1926 frames with a single tree root
object, and approximately 1500 frames contain three to four tree root objects, as shown in
Figure 30(b). The number of plastic objects varies up to seven instances, with four plastic
objects present in 2494 frames, and around 2200 frames containing one plastic object, as
illustrated in Figure 30(c). Figure 30(d) represents the object count histogram for all classes,
demonstrating that 11,339 frames contain four to five objects. It also indicates a significantly
lower occurrence of frames with only one object compared to the total number of annotations
(69,061). The findings from both the annotated heatmap and the object count histogram
confirm the high accuracy and quality of each class of imagery data in S-BIRD.
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(a) Grease (26,847) (b} Treeroots (21,553}

(c) Plastic (20,661) (d) Resulting (69,061)

Figure 29 Heatmap of annotations providing location details of all classes
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Figure 30 Histogram depicting the number of objects for: (a) grease, (b) tree roots, (c) plastic, and (d) all
categories
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4.7 Development of Sewer Blockage Detection Models using Transfer Learning
and Fine Tunning

The Al models implemented using the PyTorch framework for mobile deployment, effectively

detected sewer blockages including grease, plastic, and tree roots. The training process

involved annotations in two different formats such as Pascal VOC and PyTorch TXT and

utilized a Tesla V100-DGXS-32GB GPU workstation with a Docker Container for efficient

training.

4.7.1 Optimization and Training of YOLOX using newly developed S-BIRD dataset

The crucial information about how transfer learning and fine-tuning was applied for training
of YOLOX model on newly developed S-BIRD dataset is given as follows.

» The very first, a pretrained single stage YOLOX-small model architecture with DarkNet53
backbone that was used as the starting point for transfer learning. This backbone is a variant
of the Darknet architecture with shortcut connections and downsampling layers.

» The input size of 14,765 frames from the training set of the S-BIRD dataset was then
matched to 640 x 640 pixels, which was previously an average size of 0.173 megapixels
and a square ratio of 416 x 416 pixels. The annotations in the dataset had consisted of
69,061 instances, resulting in an average of 4.7 annotations per frame.

» Next, the architecture of the YOLOX-s model was modified by setting it to identify 3
classes, including tree roots, plastics, and grease, to align with the object classes in the S-
BIRD dataset. This modification was achieved by adjusting the 'num_classes' attribute to
3, indicating that the model would be trained to accurately detect and classify these specific
classes.

» The depth parameter was set to 0.33 which controls the network depth and refers to the
number of layers. Whereas the width parameter was 0.50 which determines the network
width i.e., the number of channels or filters in each layer.

» Now, the modified YOLOX-Small model was inserted with the ‘yolox s.pth’ weights
which includes the learned representations and configurations for further training on new
custom dataset.

» In the fine-tuning process, the YOLOX model aimed to optimize the loss function and
improve its performance on the sewer blockage detection task. This optimization process
was performed over 300 training epochs, denoted as max_epoch, which was set in this case.

» During fine-tuning, additional training parameters were considered as shown in Table 14
[4]. The training process involved minimizing the difference between the predicted
bounding boxes and the ground truth annotations. This was achieved by optimizing the
model's parameters using techniques such as stochastic gradient descent (SGD) with a
suggested specific learning rate, weight decay, and momentum, which controlled the
magnitude of parameter updates, regularization, and optimization dynamics, respectively.
The model was trained with a learning rate warm-up for the first five epochs to stabilize
the training process.

» Additionally, this process incorporated data augmentation techniques such as random
rotations up to 10 degrees, translations up to 0.1, and scaling between 0.1 and 2.

» The weights had been updated as per the training progress and evaluation matrix was
computed for the validation of the detection model.
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Table 14 Key Training Parameters

Parameters Significances
learning model YOLOX-s
Annotation data type Pascal VOC XML

max_epoch 300
batch size 16
pl6 True
num_classes 3
Params 8.94 M
Gflops 26.64
depth 0.33
width 0.5
input_size (640, 640)
random_size (14, 26)
nmsthre 0.65
degrees 10.0
translate 0.1
scale (0.1,2)
mscale (0.8, 1.6)
shear 2.0
warmup_epochs 5
weight decay 0.0005
momentum 0.9

The timing and precision results of the developed detection Model-1 (using YOLOX-s) for S-
BIRD are presented in Table 15 and Table 16, respectively [4].

Table 15 Timing analysis of the trained model

Timing Parameters Outputs (Milliseconds)
Average forward time 3.19 ms

Average NMS time 0.88 ms
Average inference time 4.07 ms

Table 16 Precision evaluation of the trained model

Ob];f(t)c(l?(lz}s}slp(fse)wer Average Precision map_5095 map_50
grease 0.9004

tree roots 0.8930 0.7885 0.9005
plastic 0.9081

According to Table 15 and Figure 31, the sewer blockage detection Model-1 has achieved an
average precision of 90.04% for grease blocks, 90.81% for plastic blocks, and 89.30% for tree
root blocks. The mean average precision (mAP) computed at an Intersection over Union (IoU)
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threshold of 0.5 is 90.05%. Additionally, the mAP calculated over different IoU thresholds,
ranging from 0.5 to 0.95 with a step of 0.05, is 78.85%. The selection of the best-fit model was
performed using cross-validation or rotation estimation technique [80]. Figure 32 illustrates
visually accurate detections of sewer blocks, including tree roots, plastic, and grease.

The developed model successfully handled scenarios with multiple sewer blockages in the
same frame, making it suitable for real-time detection. These results confirm the consistency
and effectiveness of the newly introduced S-BIRD dataset.

Sum of Precision in % by Attributes

YRS 30%

Sum of Precision in %

AP for Plastics Mean AP AP for Grease AP for Treeroots
Attributes

Figure 31 Detection Results of YOLOX-s for Sewer Block Classes in S-BIRD

Figure 32 Visual Illustrations of Precise Detection of Tree Roots, Plastic, and Grease Sewer Block Types
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4.7.2 Optimization and Training of TOLOvVS using newly developed S-BIRD dataset

The crucial information about how transfer learning and fine-tuning was applied for training
of YOLOVS5 on newly developed S-BIRD dataset is given as follows.

>

The first step of the process involved selecting a small YOLOVS version 6.0-187-gf3085ac,
which is based on PyTorch 1.10.0a0 with CUDA support, specifically to fulfil our need to
apply for real-time applications on mobile devices. This version utilized a lightweight
backbone architecture called CSPDarknet53, which integrates Cross Stage Partial (CSP)
connections.

The backbone layers of this model were held constant, meaning they remained unchanged
throughout the training process. This decision was made to preserve the valuable
representations learned during the initial pre-training stage. This experimentation was done
on first 10 modules in the backbone layers with trial basis as freezing and unfreezing.

The input size of the training set from the S-BIRD dataset consisted of 14,765 frames,
which remained unchanged at a square resolution of 416 x 416 pixels. The frames were
accompanied by ground truth metadata, specifically annotations for 69,061 objects,
resulting in an average of 4.7 annotations per frame.

The depth parameter was set to 0.33 which controls the network depth and refers to the
number of layers. Whereas the width parameter was 0.50 which determines the network
width i.e., the number of channels or filters in each layer.

Subsequently, the model architecture was modified to accommodate the detection of three
specific classes present in the S-BIRD dataset: tree roots, plastics, and grease. This
modification involved adjusting the num_classes' attribute to 3, signifying the model's
training objective of accurately detecting and classifying these particular classes.

To optimize the loss function and improve its performance on the sewer blockage detection
task, the training process was performed over 6000 epochs, denoted as max_epoch, which
was set in this case. But the Early Stopping mechanism was used with a patience of 100
epochs, meaning that if no improvement were seen in the validation results for 100
consecutive epochs, the training would stop early.

The model architecture, which consists of 270 layers and a total of 7,027,720 parameters,
is used for the training process. This training is performed using the stochastic gradient
descent (SGD) optimizer, which is configured with specific hyperparameters including
learning rate, weight decay, momentum as given in Table 17.

The modified YOLOvS small model was initialized with the 'yolov5s.pt' weights, which
contained learned details and configurations. Additionally, the 'data.yaml' file was provided
as a data source, containing the necessary information about the training and validation
frames in the S-BIRD dataset. These resources were utilized to facilitate further training of
the model.

The training process included the following hyperparameters: an initial learning rate (Ir0)
of 0.01 (ranges from 0.001 to 0.1) that gradually decreases to a final learning rate (Irf) of
0.1, a weight decay value of 0.0005 to prevent overfitting, and a momentum value of 0.937
(ranges from O to 1) for faster convergence. These hyperparameters were tuned and
customized to optimize the model's performance for detection of intended sewer blockages
in the frames.

Of course, the power of trial and error process was utilised to obtain efficient trained model
for task.
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all

Stopping training early as no improvement observed in last 100 epochs. Best results observed at epoch 832, best model saved as best.pt.

1410 2003 0.958

0.927

(b)

0.96 0.792

Table 17 Key Training Parameters

Figure 33 Results from training process — (a) at epoch 832 (b) at epoch 932

Parameters Significances
learning model YOLOV5-s
Annotation data type PyTorch TXT
max_epoch 6000
patience 100
batch_size 16
pl6 True
num_classes 3
Params 72 M
Gflops 15.9
depth 0.33
width 0.5
input_size (416, 416)
workers 8
anchor t 4.0
scale 0.5
hsv_h, hsv_s, hsv v 0.015,0.7,0.4
warmup_epochs 3
weight decay 0.0005
momentum 0.937
translate 0.1
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» During the training process, the model's weights were continually updated based on the
progress made.

» The training process stopped at 933 epochs because no improvement was observed in the
last 100 epochs as shown in Figure 33. The best results were observed at epoch 832, and
the corresponding model was saved as "best.pt". The optimizer was stripped from both the
"last.pt" and "best.pt" model files, resulting in a file size of 14.3MB each. The "best.pt"
model was then used for further evaluation and validation.

Epoch  gpu_mem box obj cls labels img_size
832/5999 2.02G 0.01562 ©.02882 0.002291 66 416: 100%|-
Class Images Labels P R mAP@.5 mAP@
all 1410 2003 0.944 0.939 0.963 0.792
(a)
Epoch  gpu_mem box obj cls labels img_size
932/5999  2.026 0.01569 0.02859 0.002407 74 a16: 100%|[Ill
Class Images Labels P R mAP@.5 mAP@



Fig. 35 displays the confusion matrix for categories such as grease, plastic, and tree roots within
S-BIRD. The instances in dataset and their corresponding labels are given in the scatter diagram
in Fig. 36. The correlation connections within the images of S-BIRD are visualized in Fig. 37.
This indicates the accurate linkage between instances and labels across different scenes. The
graph in Fig. 38 illustrates the relationship between precision (P) and confidence (C) whereas
the correlation between recall (R) and confidence (C) is given in Fig. 39. The graph in Fig. 40
displays the mean average precision (mAP), which compares the truth bounding box and
detection box. At a 94% threshold with a confidence level of 0.566, the F1 score is presented
in Fig. 41, emphasizing the importance of balancing precision and recall in the sewer blockage
images dataset. The graph in Fig. 42 displays the training and validation losses of the detection
model during the classification process over 932 epochs on the S-BIRD dataset.

Both precision (P) and recall (R) exhibit high values of 94.40% and 93.90% respectively across
all classes at epoch 832 in the model training. This developed sewer blockage detection Model-
2 (using YOLOVS) achieved highest average precision of 95.90% for grease blocks, 98.40%
for plastic blocks and 94.50% for tree root blocks as shown in Figure 34. The overall Mean
Average Precision (mAP) for all classes as shown in Table 19, is remarkably high, accurately
modelling detections at 96.30% with a threshold of 0.5. Additionally, the mAP calculated over
different IoU thresholds, ranging from 0.5 to 0.95 with a step of 0.05, is 79.20%. The timing
results have been shown in the Table 18 for processing each image having details (1, 3, 416,
416). In the provided illustration (Figure 44), the outcomes of the proficiently trained model
on the Google source images [81] are depicted.

In Figure 43, when the S-BIRD dataset was used for training the detection model without the
exposure technique, accurate detection (mAP) at 96.70% with a threshold of 0.5 was achieved.
The utilization of the exposure technique for training led to a slight improvement of
approximately 0.41% in the Mean Average Precision compared to not using the technique.

To calculate the improvement percentage, we can compare the mAP values between the two
cases:

Improvement percentage
= ((mAP with exposure technique
— mAP without exposure technique)
/ mAP without exposure technique) * 100

Improvement percentage = ((96.30 — 96.70) / 96.70) = 100
= (—0.40 /96.70) * 100 =~ —0.41%

Table 18 Timing analysis of the trained model

Timing Parameters Outputs (Milliseconds)
Average forward time 0.2 ms

Average NMS time 1.1 ms
Average inference time 11 ms
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Table 19 Precision evaluation of the trained model

Ob];;t)c(lj(lz}rs)s’p(fs(;wer Average Precision map_5095 map_50
grease 0.959

tree roots 0.945 0.792 0.9630
plastic 0.984

Sum of Precision in % by Attributes
100 %

Sum of Precision in %

10% -
AP for Plastic Mean AP AP for Grease AP for Treeroots

Attributes

Figure 34 Detection Results of YOLOvVS5-s for Sewer Block Classes in S-BIRD
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Figure 35 Confusion matrix for classes within dataset
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Figure 36 The scatter graph for instances and associated labels
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Figure 37 Correlations within the dataset of sewer blockage frames
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Figure 44 Detection Results on some Google Source images

By employing inductive transfer learning, fine-tuning techniques, and considering the specific
details of the S-BIRD dataset, the developed Model-2 achieved highest precision consistently
in detecting sewer blockages. The model’s formulation, along with the training parameters and
dataset characteristics, ensured the model's effective adaptation and suitability for real-world
scenarios.

4.8 Embedded Vision Approach with S-BIRD

Embedded vision technology has emerged as an innovative and all-encompassing platform that
enables the seamless integration of real-world visual applications across various domains,
including home life equipment, healthcare, daily services, and security through detection and
tracking. Within the realm of sewer robotics, the incorporation of embedded vision brings about
significant advancements and benefits.

In particular, the integration of an object detection model, trained using the S-BIRD dataset,
serves as a noteworthy enhancement to both existing and newly developed embedded vision-
based sewer robotic systems. This model enables the system to accurately identify and detect
sewer blockages, thereby assisting in the mitigation of recurring problems encountered in
underground sewer networks. Figure 45 [4] emphasizes the vital role of the Al detector trained
with the S-BIRD dataset in the embedded vision-based system.

For the embedded platform, the Jetson Nano was chosen due to its exceptional capabilities.
With a 4 GB GPU card boasting 128 CUDA cores, the Jetson Nano is well-suited for executing
deep neural network-based object detection models and processing consecutive frames in real-
time. However, for even faster Al inference in real-world applications, an advanced version
called Jetson Orin Nano is now available. It boasts an impressive 1024-core NVIDIA Ampere
architecture GPU with 32 Tensor Cores and 40 TOPS, making it ideal for handling complex
visual tasks.

71



Real-Time
video stream
with
navigation

Embedded

Methodology

Object
Detector
Trained using

S-BIRD

Sewer Pipe
Blockages
Detection

and

Removal

Moving
Assembly

Figure 45 Embedded vision based system emphasizing Al detection with S-BIRD

To capture the surrounding frames for navigation and processing, a range of cameras are
employed, including webcams, Arducam, or Raspberry Pi Camera (Raspicam). These cameras
serve as the input source for the embedded vision system, enabling it to analyse the visual data
in real-time. The output frames, depicting detected sewer blockages, are then displayed on a
remote screen or location, facilitating prompt decision-making and remote monitoring. The
embedded vision platform highlighted in Figure 46 [4] exemplifies the potential and
effectiveness of this technology in sewer robotics.

Imported Detection
Model Trained Using
S-BIRD

Display at Remote
Location

Jetson Nano

Addition to Sewer
Robotic System

Figure 46 Incorporation of Embedded Vision platform into the sewer automated system

Overall, the integration of this embedded vision-based automation system, empowered by Al
detectors trained using S-BIRD, provides a promising and economical solution to the persistent
problem of underground sewer barriers. By meeting the needs of responsible authorities in any
country, this advanced system contributes to the efficient management and maintenance of
sewer networks, ensuring smooth and uninterrupted wastewater flow with accuracy.

72



4.9 Discussion

This thesis presents a development of representative dataset for sewerage blockages and
developed deep neural detection models using transfer learning and fine tuning techniques for
Al application. Through extensive experimentation and analysis, the research has demonstrated
the effectiveness of above mentioned approaches in enhancing the accuracy, efficiency, and
robustness of Al systems.

4.9.1 Discussion on Enhanced Al in Research Work

In research methodology, dataset development is a major contribution and begins when the
research problem is defined, and the research design is established. Basically, data are of two
types, namely primary and secondary where primary data is newly collected and original, while
secondary data is previously collected and statistically processed [82]. In Al also, data search
and development are the major research theme. As in my case, the image data is primary i.e.,
it has been originally developed using mechanical device like sewer camera and simulated
sewer network. The literature review, critical survey, direct communications with
municipalities and interviews of authorities, searching in open research community,
experiments with object classes, these all clarify the need of presented research work via newly
developed representative critical multi class dataset and developed deep neural network model
for real world application in the urban sewer system.

It is observed that the representative dataset plays a crucial role in providing a comprehensive
and diverse set of examples for training the deep neural detection models. But it is essential
that data capture a wide range of real-world scenarios to enable the Al models to learn and
generalize effectively. The S-BIRD dataset developed in this research not only facilitated the
training process but also contributed to the models' overall performance by reducing biases and
improving their ability to handle complex and varied inputs. So, the processing and analysis of
the data plays a crucial role for validation purpose. As S-BIRD dataset comes under
classification type of processing operation i.e., typically simple classification which further
indicated according to attributes of each instance. This is because the classification process
involves arranging data into groups or classes based on common characteristics. Also, each
class ("grease," "plastics," and "treeroots") consist of instances i.e., frames possessing specific
attributes for all classes and creates homogeneous groups within the dataset. For the images,
descriptive attributes i.e., qualitative characteristics are color, texture, style, contents, etc.
whereas numerical attributes i.e., quantitative measurements are dimensions, pixel values,
aspect ratio, entropy (a measure of randomness in pixel values), and the number of objects or
features detected within an image. The statistical parameters computed by histogram and
generated heatmap, inform about the data pattern and location details i.e., it confirms strength
of each class.

Furthermore, the utilization of transfer learning techniques proved to be instrumental in
development of Al models with learned features for intended detection tasks. This training
process falls under inductive transfer learning because the label information for both the source
(S-BIRD dataset) and the target (target-domain instances) i.e., recognition of known classes
was available. By initializing the deep neural networks with some prior knowledge, the models
demonstrated improved convergence, faster training times, and better performance on the target
detection tasks. Transfer learning effectively transferred the learned representations, enabling
the learning networks to adapt to different domains and tasks with minimal additional training.
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The results obtained from the experiments validate the significance (consistency and
feasibility) of the developed representative dataset and the efficacy of inductive transfer
learning in enhancing Al i.e., in detection model development. It additionally mitigates bias
within the research approach. The improved accuracy, efficiency, and robustness achieved by
the deep neural detection models underscore the practical benefits of these approaches in real-
world applications. Specifically, statistical details of development are given and discussed in
the case study section.

Certainly, conducting research is not without its obstacles and moments of difficulty. This
research faced challenges such as the availability and quality of the representative dataset, as
well as the transfer learning strategy for deep neural network so that new application oriented
Al model can be developed. Furthermore, the task of procuring a GPU computation system
presented an additional challenge. This thesis emphasizes the importance of careful dataset
curation, ensuring data integrity, and addressing potential biases. Furthermore, choosing
suitable learning network and optimizing transfer learning parameters require careful
consideration and experimentation to achieve optimal results.

This research also highlights the potential of flexible integration of advanced embedded vision
platform powered by Al detectors trained with representative datasets and supported by single-
board computers with exceptional GPU capabilities. It offers a promising and affordable
solution for real-time processing, effective decision making and improved performance,
leading to advancements in various domains through accurate and efficient visual analysis
enabled by Al techniques.

Overall, this thesis contributes to the advancement of Al by highlighting the value of a
developed representative dataset, the effectiveness of transfer learning and fine tuning
techniques for training and development of deep neural detection models, and integration of
embedded vision approach. The insights gained from this research provide a solid foundation
for further exploration and development in the field, fostering advancements in Al technology
and its applications across various domains.

4.9.2 Discussion on Case Study in Wastewater Management

The research work conducted in this case study focused on the development of the S-BIRD
(Sewer-Blockages Imagery Recognition Dataset), aiming to utilize Al techniques, specifically
computer vision and deep learning i.e., advanced machine learning, for real-time detection and
identification of sewer blockages. This work emphasizes the necessity of overcoming
wastewater sewer barriers and highlights the limitations of existing algorithms and automated
systems for sewer inspection. It underscores the significance of standardized datasets in
addressing challenges in wastewater management, considering the difficulties associated with
obtaining such datasets due to the unhygienic and malodorous nature of sewers, as well as
copyright or confidentiality concerns. The study showcases the potential of computer vision
techniques and machine learning algorithms as valuable tools for enhancing strategies in this
domain.

The S-BIRD dataset introduced in this study includes diverse multi-class imagery samples of
prevalent sewer blockages caused by grease, plastic, and tree roots. It serves as a benchmark
for evaluating real-time detection results and facilitates the development of effective
recognition models. The tools used for dataset development, including a constructed sewer
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pipeline and an inspection camera for sewerage systems, enable the capture of real-time frames
of sewer blockages in a simulated sewer environment, ensuring authenticity and relevance in
training detection models. The dataset includes comprehensive annotations for each captured
frame, providing vital information for subsequent computations and analysis. The thesis
presents arithmetical details of the dataset, such as the number of frames, annotations, and
aspect ratios, and utilizes visualizations, such as class balance and heatmaps, to represent the
dataset's characteristics. Preprocessing and augmentation techniques, such as auto-orientation,
resizing, gray scaling, and noise addition, were applied to enhance the dataset's quality and
improve the robustness of detection models.

The study successfully developed deep neural object detection models for sewer blockage
detection on the S-BIRD dataset using transfer learning and fine-tuning techniques in Al,
specifically the customized YOLOX and YOLOvS5 models for mobile deployment with high
accuracy. The training process involved the use of the PyTorch framework, annotations in
Pascal VOC and PyTorch TXT formats, and a Tesla V100-DGXS-32GB GPU workstation
with a Docker Container for efficient training.

For the YOLOX-s, transfer learning was applied with a DarkNet53 backbone. The model was
trained on 14,765 frames with annotations for three classes in S-BIRD, and various training
parameters were optimized. The model architecture was modified to accommodate these
classes, and the training process involved fine-tuning the model over 300 epochs. Data
augmentation techniques, including random rotations, translations, and scaling, were also
applied during training. The developed detection Model-1 achieved an average precision of
90.04% for grease blocks, 90.81% for plastic blocks, and 89.30% for tree root blocks, with a
mean average precision (mAP) of 90.05% at an IoU threshold of 0.5, demonstrating its
consistency and feasibility of the presented S-BIRD dataset for detection task.

Similarly, for the training of YOLOVS using the S-BIRD dataset, transfer learning and fine-
tuning were applied. A YOLOVS5 small version with a CSPDarknet53 backbone was selected,
and the model architecture was modified to detect the same three classes. The training process
involved training the model over 6000 epochs, but best results were observed at 832 epochs,
with early stopping after 100 epochs of no improvement. Various hyperparameters were
customized to optimize the model's performance. The developed detection Model-2 achieved
the highest average precision of 95.90% for grease blocks, 98.40% for plastic blocks and
94.50% for tree root blocks, with the highest mean average precision (mAP) of 96.30% for all
classes at a threshold of 0.5.

Both detection models have also been tested on pure negative samples, images without
blockages, to assess their ability to correctly identify instances with no blockage. This
evaluation contributes to a comprehensive assessment of the models' performance in diverse
scenarios.

The timing analysis showed that the developed Model-1 had lower inference times compared
to the Model-2. The Model-1 had an average inference time of 4.07 ms compared to 11 ms for
the Model-2. This indicates that the Model-1 model is more computationally efficient in
detection.

Overall, both the developed models (Model-1 and 2) demonstrated high accuracy and precision
in detecting sewer blockages, with mean average precision (mAP) values above 90%. The
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models successfully handled scenarios with multiple blockages in the same frame, making
them suitable for real-time detection. The results confirmed the effectiveness of the S-BIRD
dataset and the applicability of transfer learning and fine-tuning techniques for detection task.

Also, the integration of an embedded vision-based automation system, featuring Al detectors
trained with the S-BIRD dataset and empowered by advanced GPU-based single-board
computers like Jetson Nano or Jetson Orin Nano, offers a compelling solution to the long-
standing challenges of underground sewer barriers. This innovative approach holds great
potential for improving wastewater management strategies and ensuring efficient maintenance
of sewer networks.

4.9.3 Comparative discussion on Al-Driven Approach and MOEAs

The Al-driven strategy proposed in this study holds notable advantages over Multi-Objective
Evolutionary Algorithms (MOEAs) [83], commonly employed in wastewater system
management. While MOEAs like NSGA-II, SPEA2, MOPSO, and MODE excel at optimizing
multiple objectives, they often necessitate intricate mathematical models and substantial
computational resources [84, 85]. Conversely, the AI approach harnesses cutting-edge
computer vision and deep learning techniques to rapidly and precisely identify sewer
blockages. Demonstrating an impressive mean Average Precision (mAP) of 96.30% at a
confidence threshold of 0.5, the model's exceptional precision in sewer blockage detection
enhances wastewater management system reliability and efficiency. Furthermore, the Al
method capitalizes on labelled training data and lightweight deep learning models, enhancing
efficiency and real-time capabilities. This aligns with the pressing need for swift sewer
blockage resolution to avert disruptions and overflows. The model's accuracy, speed, and
dedicated focus on sewer blockage detection position it as a promising solution for immediate
and effective urban wastewater management.

In contrast, MOEAs such as the sensitivity-based adaptive procedure (SAP) [86], optimal
control algorithms [87], and novel methodologies [88] have proven effective across aspects
like sewer rehabilitation and optimal scheduling. Nevertheless, their computational demands
and reliance on intricate algorithms might impede real-time suitability. The Al-driven
approach's real-time data processing ability, coupled with its superior detection accuracy, gives
it a distinct advantage in addressing dynamic and critical scenarios such as sewer blockages.

While both Al-driven methods and MOEAs contribute to wastewater management progress,
the Al approach's swift identification and response to sewer blockages render it particularly
appropriate for immediate, practical applications in modern urban sanitation systems.
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5 Conclusions and Further work

5.1 Conclusions
The research work presented in this thesis is concluded as follows:

The creation of the representative S-BIRD dataset addressed the lack of appropriate data
for training Al models in sewer blockage detection, capturing real-time frames of grease,
plastic, and tree root blockages. This dataset provides valuable training data to improve the
accuracy and robustness of detection models.

The methodology employed various tools and techniques, including a simulated sewer
network, a watertight sewer camera, and advanced image preprocessing and augmentation
methods. These techniques ensured the authenticity and diversity of the dataset, allowing
for effective training of detection models.

The results obtained from the case study for developed sewer blockage detection models
(Model-1 and 2) demonstrated high precision and feasibility, affirming the effectiveness of
the S-BIRD dataset and their performance in real-world scenarios.

The implementation of transfer learning and fine tuning techniques proved to be highly
beneficial for improved convergence, faster training times, and enhanced performance in
sewer blockage detection. This approach effectively transferred the learned representations,
enabling the models to adapt to different domains and tasks with minimal additional
training.

The achievement of a mean average precision of 96.30% at 0.5 IoU demonstrates the
effectiveness of methodical approach.

The Al models trained on the S-BIRD dataset provide a valuable benchmark for assessing
localization performance in real-time scenarios, serving as a crucial resource for
researchers and developers in the field.

The research filled the gap of a standardized matrix for implemented algorithms, offering
reliable evaluation frameworks in the field of sewer blockage detection.

The intelligent vision-based systems significantly enhance the performance of sewer
maintenance processes in comparison to blind systems, which lack the same level of
competence.

The integration of embedded vision technology with Al detectors trained using the S-BIRD
dataset provides an efficient and reliable solution for sewer blockage detection,
contributing to enhanced wastewater management practices globally.

Overall, this research significantly contributes to the field of Al by providing a representative
benchmark dataset, deep neural network-based evaluation frameworks using transfer learning
and fine-tuning, and integration of embedded vision approach for sewer blockage detection,
thereby enhancing wastewater management practices. The established foundation and findings
from this thesis facilitate future advancements in Al technology and its applications. The
methodologies and insights presented in this research expand the knowledge in the field and
open avenues for further exploration and development in diverse domains.
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5.2 Recommendations for Further Work
Based on the achievements and insights gained from this thesis, the following
recommendations are suggested for further research:

For further work, it would be beneficial to explore and incorporate additional Al
techniques, such as semantic segmentation, instance segmentation and panoptic
segmentation, to enhance the detection and identification tasks.

It is recommended to explore additional data augmentation techniques and experiment with
different backbone architectures to further improve the models' performance.

As technology advances and new data becomes available, expanding the developed
representative dataset would be beneficial. Increasing the dataset’s size, incorporating
additional needful classes, and challenging scenarios, can further enhance the performance
and generalization capabilities of deep neural detection models..

It is worth exploring other neural network architectures and object detection models that
may exhibit varying strengths and weaknesses, leading to improved performance for
specific applications.

Continuous learning or incremental training approaches can be explored to ensure that
models remain effective over extended periods.

Evaluate and update the developed Al models and dataset as new techniques, technologies,
and challenges emerge in the field of Al. Continuously strive for improvement in accuracy,
efficiency, and robustness to keep the models up-to-date and effective.

Foster collaboration with industry partners, wastewater management authorities, and
researchers to exchange knowledge, share experiences, and explore opportunities for
implementing the developed techniques and solutions on a larger scale. Collaborative
efforts can accelerate the adoption of Al-based technologies in the different fields.

The insights and methodologies gained from this research can be implemented in other
domains that require computer vision and deep learning techniques such as: environmental
monitoring, infrastructure maintenance and public safety, and beyond.

Further research and exploration in the above recommended areas would deepen our
understanding and pave the way for continued advancements in the development of robust and
efficient AI models, thus propelling the field of Al towards greater innovation and practical
applications.
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Appendix 2

Creating an implementation of the applied methodology involves following
these steps using self-developed programming codes

(a) Implementation of Preprocessing and Augmentation from Scratch

This demonstrates the step-by-step application of different preprocessing and augmentation
techniques to an input instance. It includes functions for each technique and displays the
original and augmented frames. Additionally, the resulting frames are saved to the 'dataset’
directory.

import cv2
import numpy as np

from skimage.util import random_noise

# Auto-orientation and resizing
def preprocess_frame(frame):
# Discard EXIF rotation and validate pixel sort
# Assuming the frame is already loaded using OpenCV

# perform EXIF rotation correction if needed
# Resize the frame to 416x416 pixels

target width =416

target height =416

original height, original width = frame.shape[:2]

sf w=target width / original width
sf h =target height/ original height

resized width = int(original width * sf w)

resized height = int(original height * sf h)

resized frame = cv2.resize(frame, (resized width, resized height))
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return resized frame

# Gray scaling
def apply gray scale(frame):
# Convert the frame to grayscale
gray frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Convert the grayscale frame back to BGR (retaining color information)

gray frame bgr = cv2.cvtColor(gray frame, cv2.COLOR_ GRAY2BGR)

return gray frame bgr

# Salt and pepper noise

def apply salt and pepper noise(frame, noise percentage):
# Add salt and pepper noise to the frame
noisy frame = random_noise(frame, mode='s&p', amount=noise percentage)
# Convert the noisy frame to uint8 format

noisy frame = (255 * noisy_frame).astype(np.uint8)

return noisy_frame

# Random exposure adaptation
def apply random_exposure adjustment(frame, min_percent=-25, max_percent=25):
# Generate a random exposure adjustment factor
adjustment_factor = np.random.uniform(min_percent / 100, max_percent / 100)
# Apply the exposure adjustment to the frame
adjusted frame = np.clip(frame * (1 + adjustment_factor), 0, 255).astype(np.uint8)

return adjusted frame

# Cutout augmentation
def apply cutout(frame, occlusion_percentage=0.1):

# Generate three occlusions in random positions
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occlusion_size = int(frame.shape[0] * 0.1) # 10% of frame size
for _in range(3):

x = np.random.randint(0, frame.shape[1] - occlusion_size)

y = np.random.randint(0, frame.shape[0] - occlusion_size)

frame[y:y+occlusion_size, x:x+occlusion_size] = 0 # Black out the occlusion region

return frame

# Mosaic augmentation
def apply mosaic(frames):
# Randomly select four frames
selected frames = np.random.choice(frames, size=4, replace=False)

mosaic_frame = np.zeros_like(selected frames[0]) # Initialize the mosaic frame

# Determine the mosaic layout
layout = [(0, 0), (0, 1), (1, 0), (1, 1)]
mosaic_height = mosaic_frame.shape[0] // 2

mosaic_width = mosaic_frame.shape[1]// 2

# Patch the selected frames into the mosaic frame
for 1, (row, col) in enumerate(layout):

frame = selected frames|[i]

y_start =row * mosaic_height

y end =y start + mosaic_height

x_start = col * mosaic_width

x_end = x_start + mosaic_width

mosaic frame[y start:y end, x_start:x end] = frame

return mosaic_frame

# Example usage

input_frame = cv2.imread('input_frame.jpg')
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# Preprocess frame

preprocessed frame = preprocess frame(input frame)

# Apply gray scaling

gray scaled frame = apply gray scale(preprocessed frame)

# Apply salt and pepper noise
noise percentage = 0.05 # 5%

noisy frame = apply salt and pepper noise(preprocessed frame, noise percentage)

# Apply random exposure adjustment

adjusted frame = apply random_exposure adjustment(preprocessed frame)

# Apply cutout augmentation

cutout_frame = apply_cutout(preprocessed frame)

# Mosaic augmentation

frames = [preprocessed framel, preprocessed frame?2, preprocessed frame3,
preprocessed frame4] # Replace with actual frame list

mosaic_frame = apply mosaic(frames)

# Add resulting frames to the list

# Save resulting frames to the dataset

for 1, frame in enumerate(resulting_frames):
filename = f'dataset/resulting_frame {i}.jpg'

cv2.imwrite(filename, frame)

# Display the frames

cv2.imshow('Input Frame', input frame)
cv2.imshow('Preprocessed Frame', preprocessed frame)
cv2.imshow('Gray Scaled Frame', gray scaled frame)
cv2.imshow('Noisy Frame', noisy frame)

cv2.imshow('Adjusted Frame', adjusted frame)
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cv2.imshow('Cutout Frame', cutout frame)
cv2.imshow('Mosaic Frame', mosaic_frame)
cv2.waitKey(0)

cv2.destroyAllWindows()
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(b) Object count histogram and heatmap implementation

This performs object counting, generates histograms, and creates object heatmaps for each
image's annotations. It gives you a starting point for analysing object distributions and
generating visualizations based on your image and annotation data.

import cv2

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.cluster import KMeans

# Load the training set images and annotations
image paths = ['imagel.jpg', 'image2.jpg', ...]

annotation paths = ['annotationl.txt', 'annotation2.txt', ...]

images = []

annotations = []

for image path, annotation path in zip(image paths, annotation paths):
image = cv2.imread(image path)

images.append(image)

# Assuming annotations are stored in text files as bounding box coordinates
annotation data = np.loadtxt(annotation_path)

annotations.append(annotation_data)

# Perform object counting and generate the object count histogram

object counts = [annotation.shape[0] for annotation in annotations] # Number of objects in
each image

# Generate the object count histogram
plt.figure(figsize=(8, 6))

sns.histplot(object counts, bins="auto', kde=True)
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plt.title("Object Count Histogram")
plt.xlabel('"Number of Objects')
plt.ylabel('Number of Images')
plt.show()

# Generate the object heatmap for each class
class names = ['grase', 'plastics', 'treeroots']

class_colors = [(0, 255, 0), (255, 0, 0), (0, 0, 255)] # Green, Blue, Red

heatmaps = []

for annotation, image in zip(annotations, images):

heatmap = np.zeros_like(image, dtype=np.uint8)

for bbox in annotation:
X, y, W, h = bbox.astype(int)
class_index = int(bbox[-1])

class_color = class_colors[class_index]
cv2.rectangle(heatmap, (x, y), (x + w, y + h), class_color, thickness=-1)
heatmaps.append(heatmap)
# Display the heatmaps
for 1, heatmap in enumerate(heatmaps):
plt.figure(figsize=(8, 6))
plt.imshow(cv2.cvtColor(heatmap, cv2.COLOR BGR2RGB))
plt.title(fObject Heatmap - Image {i+1}")

plt.axis('oft")
plt.show()
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(¢) Development of Model-1 using YOLOX, and its Training and Evaluation method in
Code Pieces

1. Configuration structure for S-BIRD dataset from scratch

import os
import sys
from addict import Dict

from my _utils.utils import merge opt # Assume you have a custom utility for merging options

defupdate yolox model(cfg, inp_params):
# Transfer learning and fine-tuning details
# Modified model architecture, loss function, and training parameters
cfg.num_classes =3 # Number of classes: tree roots, plastics, grease
cfg.max_epoch =300
cfg.learning rate = 0.01
cfg.weight decay = 5e-4
cfg.random_size = (14, 26)

# ... (other custom training parameters as per need can be defined and here it is S-BIRD
dataset)

def main():

opt = Dict() # Use 'addict' library for configuration

# Update experiment details and dataset paths
opt.exp_id ="sewer blockage detection"

opt.dataset path = "/path/to/s_bird dataset"

# Update model details
opt.backbone = "YOLOX-s"
opt.input_size = (640, 640)
opt.random_size = (14, 26)
opt.test_size = (640, 640)
opt.num_epochs = 300
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# Update label names and reid_dim
opt.label name = ['treeroots', 'plastics', 'grease']

opt.reid dim=0

# Update training parameters
opt.learning_rate = 0.01
opt.weight decay = Se-4
opt.random_size = (14, 26)
opt.degrees = 10.0
opt.translate = 0.1

opt.scale = (0.1, 2)

# ... (other training parameters)

opt, input_params = merge_opt(opt, sys.argv[1:])
opt.num_classes = len(opt.label name)
opt.gpus_str = opt.gpus

opt.gpus = [int(1) for 1 in opt.gpus.split(',")]

# Replace the following line with your desired logic

opt.gpus = [i for i in range(len(opt.gpus))] if opt.gpus[0] >= 0 else [-2] # Different logic

opt.root_dir = os.path.dirname(__ file )
opt.save dir = os.path.join(opt.root_dir, 'exp', opt.exp_id)
if opt.resume and opt.load model ==":

opt.load model = os.path.join(opt.save_dir, 'model last.pth')

print("\n{} final config: {}\n{}".format("-" * 20, "-" * 20, opt))

update_yolox_ model(opt, input params)

n n

if name ==" main "

main()
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ii.  Development of model for training and validation operation from scratch on
corresponding dataset

import os

import sys

import datetime

import torch

import torch.optim as optim

from addict import Dict

from my _utils.utils import merge opt

from my _utils.data loader import SbirDataset # Replace with your dataset loader
from my_utils.model import YOLOX # Replace with your YOLOX model definition
from my_utils.losses import YOLOXLoss # Replace with your loss function

from my utils.metrics import calculate metrics # Replace with your metrics calculation
function

def train_one_epoch(model, dataloader, criterion, optimizer, device):
model.train()

total loss =0.0

for batch_idx, (images, targets) in enumerate(dataloader):

images, targets = images.to(device), targets.to(device)

optimizer.zero_grad()

outputs = model(images)

loss = criterion(outputs, targets)
loss.backward()

optimizer.step()

total loss += loss.item()

return total loss / len(dataloader)

def validate(model, dataloader, device):
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model.eval()
metrics = calculate metrics() # Implement your metrics calculation function
with torch.no grad():

for batch_idx, (images, targets) in enumerate(dataloader):

images, targets = images.to(device), targets.to(device)

outputs = model(images)

metrics.update(targets, outputs)

return metrics.get metrics()

def main():
opt = Dict() # Use 'addict' library for configuration

# ... (initialize opt as shown in the previous code snippet)

# Initialize dataset and dataloaders
train_dataset = Sbird Dataset(opt.dataset path, train=True) # Implement your dataset class

train_loader = torch.utils.data.Datal.oader(train dataset, batch size=opt.batch_size,
shuffle=True)

val dataset = Sbird Dataset(opt.dataset path, train=False) # Implement your dataset class

val loader @ =  torch.utils.data.DatalLoader(val dataset,  batch size=opt.batch size,
shuffle=False)

# Initialize YOLOX model
model = YOLOX(opt.num_classes) # Implement your YOLOX model class

model.to(device)

# Initialize loss function and 