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BACKGROUND: Studies across the globe generally reported increased mortality risks associated with particulate matter with aerodynamic diameter
≤2:5 lm (PM2:5) exposure with large heterogeneity in the magnitude of reported associations and the shape of concentration-response functions
(CRFs). We aimed to evaluate the impact of key study design factors (including confounders, applied exposure model, population age, and outcome
definition) on PM2:5 effect estimates by harmonizing analyses on three previously published large studies in Canada [Mortality-Air Pollution
Associations in Low Exposure Environments (MAPLE), 1991–2016], the United States (Medicare, 2000–2016), and Europe [Effects of Low-Level
Air Pollution: A Study in Europe (ELAPSE), 2000–2016] as much as possible.

METHODS: We harmonized the study populations to individuals 65+ years of age, applied the same satellite-derived PM2:5 exposure estimates, and
selected the same sets of potential confounders and the same outcome. We evaluated whether differences in previously published effect estimates
across cohorts were reduced after harmonization among these factors. Additional analyses were conducted to assess the influence of key design fea-
tures on estimated risks, including adjusted covariates and exposure assessment method. A combined CRF was assessed with meta-analysis based on
the extended shape-constrained health impact function (eSCHIF).
RESULTS: More than 81 million participants were included, contributing 692 million person-years of follow-up. Hazard ratios and 95% confidence inter-
vals (CIs) for all-cause mortality associated with a 5-lg=m3 increase in PM2:5 were 1.039 (1.032, 1.046) inMAPLE, 1.025 (1.021, 1.029) inMedicare, and
1.041 (1.014, 1.069) in ELAPSE. Applying a harmonized analytical approach marginally reduced difference in the observed associations across the three
studies. Magnitude of the association was affected by the adjusted covariates, exposure assessment methodology, age of the population, and marginally by
outcome definition. Shape of the CRFs differed across cohorts but generally showed associations down to the lowest observed PM2:5 levels. A common
CRF suggested amonotonically increased risk down to the lowest exposure level. https://doi.org/10.1289/EHP12141

Introduction
Ambient particulate matter (PM) pollution has been identified as a
leading risk factor for global disease burden.1 Evaluating the risks
attributable to PM with aerodynamic diameter ≤2:5 lm (PM2:5)

exposure and potential benefits related to the reduction in concen-
trations depends upon understanding both themagnitude and shape
of the concentration-response functions (CRFs) of the association
between PM2:5 and mortality. Studies across the globe generally
reported positive associations between long-term PM2:5 exposure
and increased mortality risks with substantial variations in the
magnitude of associations.2 In addition, different shapes of CRFs
have been reported.2 Investigators have speculated that variability
in the observed associations could be related to differences in the
study population, levels of PM2:5 exposure, composition of the
PM2:5 mixture, exposure assessment methodology, or statistical
models applied across studies. The influence of these factors has,
however, not been systematically investigated.

Recently, three studies were conducted to investigate the health
effects of low-level air pollution exposure in very large populations
in Canada, the United States, and Europe. These are the Mortality-
Air Pollution Associations in Low Exposure Environments
(MAPLE) study by Brauer et al. in Canada,3 theMedicare study by
Dominici et al. in the United States,4 and the Effects of Low-Level
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Air Pollution: A Study in Europe (ELAPSE) by Brunekreef et al. in
Europe.5 All three studies reported statistically significantly posi-
tive associations between long-term PM2:5 exposure and mortality
risks in the nationally representative administrative cohorts.
Specifically, hazard ratios (HRs) and 95% confidence intervals
(CIs) associated with a 5-lg=m3 increase in PM2:5 exposure and
all-cause or natural-cause mortality were 1.041 (1.036, 1.046) in
the Canadian Census Health and Environment Cohorts (CanCHEC)
in MAPLE,3 1.032 (1.025, 1.040) in the Medicare cohort,4 and
1.058 (1.022, 1.095) in the six ELAPSE administrative cohorts
based on a meta-analytical estimate.5 Despite the close HRs with
largely overlapping CIs, the three studies differed in many aspects,
including levels and potentially the composition of PM2:5 exposure,
as well as other key study design elements. One such difference was
the age of the study populations: the Medicare cohort only included
a population 65+ years of age, whereas MAPLE and ELAPSE
included adults 25+ and 30+ years of age, respectively. In addition,
the Medicare cohort investigated all-cause mortality, whereas
MAPLE and ELAPSE analyzed mortality from natural causes,
excluding accidental mortality and suicide. The three studies further
applied different exposure assessment methodologies at different
spatial resolutions (100× 100 m in ELAPSE and 1× 1 km in the
North American studies).6–8 Furthermore, adjustments for different
sets of potential confounders were dependent on data availability,
and different statistical model specifications were used across the
three studies. Harmonizing key study design elements across studies
and comparing with the original estimates offer an opportunity to
investigate sources of heterogeneity, relevant for future meta-
analysis of studies.

In the present study, we assessed linear associations and shape
of CRFs between long-term PM2:5 exposure and mortality by har-
monizing analyses across MAPLE, Medicare, and ELAPSE as
much as possible. We aimed to evaluate the impact of key study
design factors (including confounders, applied exposure model,
population age, and outcome definition) on PM2:5 effect estimates
by the contrasts between andwithin studies.

Methods
The primary harmonized analyses conducted in all three studies
involved analyzing associations between time-varying satellite-
derived PM2:5 exposure estimates8,9 and all-cause mortality in
adults 65+ years of age, adjusting for common potential con-
founders. The choice of population age and mortality end point
was limited by the Medicare cohort, which only had data on all-
cause mortality in a population 65+ years of age. In the Canadian
and European studies, we additionally evaluated the influence of
population age and outcome definition by performing analyses in
the full cohort (25+ years of age in MAPLE and 30+ years of
age in ELAPSE) and for natural mortality. We intentionally
maintained some consistencies in our methodology with previ-
ously published studies rather than a fully harmonized approach
to enable comparisons not only between studies but also within
individual studies.

Study Populations and Mortality Outcomes
CanCHEC cohort. The “stacked”CanCHEC cohort was created in
MAPLE, which comprised three Census-based cohorts enrolled in
the year 1991 (2:5million respondents), 1996 (3million respond-
ents), and 2001 (3million respondents), with duplicate records
removed (7:1million unique participants). Noninstitutionalized res-
idents of Canada who responded to the long form census question-
nairewere linked to vital statistics (including cause of death) and tax
records from census day to 31 December 2016.3 Linkage was
approved by Statistics Canada and is governed by the Directive on

Microdata Linkage. All cohort participants were 25 years old or
older at baseline.

Medicare cohort. The Medicare cohort is an open cohort of
Medicare enrollees 65 years old or older obtained from the Centers
for Medicare and Medicaid Services. This cohort includes
74million Medicare enrollees from 2000 to 2016 and includes de-
mographic information on age, sex, race/ethnicity, date of death (all
cause), and residential ZIP code.4 A unique patient ID is assigned to
each enrollee to allow for tracking over time. Medicare enrollees
entered the cohort in 2000 if enrolled before 2000 or upon their
enrollment after 2000. After enrollment, each enrollee was followed
annually until the year of their death or until 31December 2016.

ELAPSE cohorts. ELAPSE data included six European
cohorts for which harmonized exposure estimates could be linked,
comprised of five nationwide cohorts (i.e., Belgium, Denmark, the
Netherlands, Norway, and Switzerland) and one citywide cohort
(i.e., Rome, Italy).5 Participants 30 years old or older were enrolled
between 2000 and 2008 based on data from census or population
registries and followed-up through 2011–2016 (28million partici-
pants). Identification of underlying causes of death for deceased
individuals was based on linkage to mortality registries. The six
cohorts were analyzed separately in national secure environments
followed by random-effect meta-analyses.

In the present study, all-cause mortality (including accidental/
trauma mortality) was primarily evaluated because the Medicare
study included only information on all-cause mortality. Analyses
were restricted to study populations 65 years old and older, again
due to the age restriction of the Medicare cohort. Participants
were followed up until death, emigration, loss to follow-up for
other reasons, or end of the study, whichever came first.

Exposure Assessment and Assignment
Annual PM2:5 concentrations were estimated at a 1 × 1 km spatial
resolution covering North America (data version V4.NA.02.
MAPLE; Washington University in St. Louis Atmospheric
Composition Analysis Group) and Europe (data version V4.
EU.02).10 The methodology for PM2:5 exposure assessment and
validation has been described in detail elsewhere.8,9 Briefly, PM2:5
concentrations were estimated by incorporating information from
remote-sensing-based aerosol optical depth (AOD), chemical
transport modeling, land use information, and ground-level meas-
urements. In North America, PM2:5 surfaces were first simulated
by a chemical transport model (GEOS-Chem) incorporating satel-
lite AOD over the period 1989–2016. The PM2:5 estimates were
then refined by applying geographicallyweighted regression incor-
porating ground-based measurement data. Relying on information
on interannual variation from ground-based measurements of
PM2:5, PM with aerodynamic diameter ≤10 lm (PM10), and total
suspended particulate matter (TSP), the estimates were back-
casted to produce estimates for the 1981–1988 period, resulting in
modeled annual surfaces across North America from 1981 to 2016.
In Europe, annual PM2:5 surfaces were estimated for 2000–2016
based on ground-level PM2:5 measurements from the European
Environment AgencyAir Quality e-Reporting system.9 Evaluation
against ground-based PM2:5 monitoring in North America
(R2 = 0:81, slope= 1:02, root mean squared error= 1:5lg=m3)
and Europe (R2 = 0:81, slope= 0:90, root mean squared error =
3:2 lg=m3) indicated strong agreement.3,9 This set of exposure
estimates was previously applied in theMAPLE study.3

To facilitate within-study comparisons, exposure assignment
was conducted consistently with previously published reports from
these studies, resulting in less harmonization.3–5 Annual PM2:5
exposures were estimated for study participants based on residen-
tial postal codes in MAPLE, residential ZIP code in Medicare, and
exact residential addresses in ELAPSE. In Canadian urban areas, a
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residential postal code centroid is typically within ∼ 500 m of a
person’s home, whereas in rural areas, the location for a given
postal code is typically accurate within about 1–5 km.11 ZIP codes
in the United States span in size from a single building to large
areas that cut across states and have an average population of
30,000 people.12 PM2:5 exposures were represented as time-
varying exposure incorporating residential mobility in most
cohorts. In the Dutch and Danish cohorts within ELAPSE, residen-
tial mobility was not incorporated,5 consistent with previous analy-
ses. The Dutch cohort had 5 years of follow-up only, suggesting
mobility was likely not a critical concern in exposuremisclassifica-
tion. In MAPLE, a 10-year moving average of PM2:5 with a 1-year
lag was assigned to a given person-year based on previous research
that this approach yielded stronger associations withmortality.13,14
For example, the average of PM2:5 exposures from 1981 to 1990
would be assigned as the exposure for a participant in 1991. In
ELAPSE and Medicare, annual average PM2:5 concentrations
were assigned to individuals for that calendar year.

Potential Confounders
We harmonized the choice of confounder variables across cohorts
as much as possible, considering different data availability, spa-
tial scale, and contexts. We chose common confounder variables
that cover the same concepts, accepting that the definition may
differ across cohorts.

In CanCHEC,3 information on individual level covariates was
collected at each census, including age (5-year age group), sex,
immigrant status (yes, no), indigenous identity [defined as per-
sons who identify as North American Indian and/or Métis and/or
Inuit, and/or reported being a Treaty Indian or a Registered
Indian and/or being a member of an Indian Band or First Nation
(yes, no)], visible minority status [defined as “persons, other than
Indigenous persons, who were not white in race or color” (yes,
no)], household income in quintiles, educational attainment (high
school graduation or below, high school, postsecondary nonuni-
versity, or university), marital status (never married/not common
law, common-law, married, or separated/divorced/widowed), and
employment status (employed, unemployed, or not in the labor
force). A composite index was calculated at the census tract level
(i.e., neighborhood of 2,500–8,000 people) in cities, and the cen-
sus subdivision level (i.e., rural municipality) outside of cities to
capture neighborhood-level marginalization. It contains four
dimensions of marginalization: material deprivation (e.g., propor-
tion of population with low education, low income), residential
instability (e.g., proportion of dwellings that are not owned, pro-
portion of multiunit housing), dependency (e.g., ratio of seniors
and youth to working aged population), and ethnic concentration
(e.g., proportion of recent immigrants and self-reported visible
minorities). Airshed was defined by the Canadian Air Quality
Management System on the basis of similar air-quality character-
istics or dispersion patterns,15 which subdivides the country into
six large geographic areas.

In Medicare,4 information on age, sex, race/ethnicity (White,
Black, Asian, Hispanic, or North American Native), Medicaid
eligibility (eligible, ineligible), and ZIP code was obtained from
the Centers for Medicare & Medicaid Services. Information
about Medicare beneficiary race and ethnicity was obtained from
the Social Security Administration, which collects race and eth-
nicity data at the time of application for a Social Security
Number.16 ZIP code level socioeconomic status (SES) was
updated every year, including median household income, median
house value, proportion of residents in poverty, proportion of res-
idents that own their house, and proportion of residents with a
high school diploma. Indicator for four Census geographic
regions was created: Northeast, South, Midwest, and West.4

In the Belgian cohort,17 information on individual level cova-
riates was collected at baseline (year 2001), including age, sex,
marital status (single, married/cohabiting, divorced/separated, or
widowed), country of origin (local, foreign), educational level
(no/primary, secondary, or tertiary), and employment status
(employed/self-employed, unemployed, homemaker, or retired).
Area-level SES indicators were available at both neighborhood
(sections, n=6,344) and regional levels (arrondissements, n=43),
consisting of mean household net taxable income in euros in year
2011, percentage of working age population unemployed in
year 2011, percentage of population with no/primary education in
year 2011, and percentage of non-Western migrants in year 2001.
Large area indicator was created for three regions: Brussels-
Capital Region, Flemish Region, andWalloon Region.

In the Danish cohort,18 individual-level demographics were
collected at baseline (year 2000), including age, sex, country of ori-
gin (Danish origin, immigrants/descendants fromWestern country
of origin, or immigrants/descendants from non-Western country of
origin), equivalized disposable household income in deciles, and
employment status (employed, unemployed, or sick/cash support/
student/pension/others). Area-level SES indicators for year 2001
were obtained at the parish (n=2,117) and municipality (n=98)
levels, including mean equivalized disposable household income,
percentage of population 15 years old and above unemployed, and
percentage of population 30 years old and above with the highest
educational attainment as primary level education. Large area indi-
cator was created for five regions: Capital Region of Denmark,
Region Zealand, Region of Southern Denmark, Central Denmark
Region, and Region of NorthernDenmark.

In the Dutch cohort,19 individual-level data were collected at
baseline (year 2008), including age, sex, country of origin (Dutch,
Western, non-Western, Morocco, Turkey, Suriname, or Antilles
Netherlands), marital status (single, married, divorced/separated, or
widowed), and household income in deciles. Area-level data were
collected in year 2006 and available at both neighborhood (“wijk,”
n∼ 2,700) and regional levels [Coördinatiecommissie Regionaal
Onderzoeksprogramma (COROP) areas, n=40]. Area-level SES
indicators consisted of composite SES score (calculated based on
education, income, and paid occupation), mean income per income
recipient, number of people with income support per 1,000 inhabi-
tants 15–64 years of age, and percentage of non-Western immi-
grants. Large area indicator was created for 12 provinces.

In the Norwegian cohort,20 individual-level data were available
from baseline (year 2001) on age, sex, marital status (single, married,
divorced/separated, or widowed), educational level (no/primary/
lower secondary, upper secondary, college/university), employment
status (employed/self-employed, unemployed, or retired), and house-
hold income in quartiles. Area-level SES indicators were available at
both neighborhood (“delområde,” n=1,543) and county (n=19)
levels, including these percentages among the 30–60-year-old cohort
participants in year 2001: percentage of individuals with household
income <60% of median income after tax, percentage of individuals
with educational attainment equal or below lower secondary, percent-
age of individuals unemployed. Large area indicator was created for
five regions (“landsdel”): Northern Norway, Trøndelag, Western
Norway, SouthernNorway, andEasternNorway.

In the Rome cohort,21 individual-level data were available
from baseline (year 2001) on age, sex, marital status (single, mar-
ried, separated/divorced, or widowed), educational level (primary
or below, junior high school, high school, university), employ-
ment status [top qualified nonmanual employed (i.e., managers,
university and high school professors, researchers), other nonma-
nual employed, manual labor employed, other employed (i.e.,
armed forces and retail sales), housewife, unemployed, retired, or
others], and place of birth (Rome, other). SES indicators for year
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2001 were available either at census tract (n=4,888) or district
level (n=94), on income in deciles (census tract), percentage of
educational attainment equal or above university degree (district),
percentage of educational attainment equal or below primary
school (district), percentage of working age population unem-
ployed (district), and socioeconomic position index (derived
based on education, occupation, house ownership, family compo-
sition, crowding, and immigrant status) in quintiles (census tract).
Regional level data were not necessary for the Rome study area.

In the Swiss cohort,22 individual-level data were available from
baseline (year 2001) on age, sex, marital status (single, married,
divorced/separated, or widowed), educational level (compulsory
education or less, upper secondary level education, or tertiary level
education), mother tongue (German and Rhaeto-Romansch,
French, Italian, or other language), nationality (Swiss, non-Swiss),
and employment status (employed/self-employed, unemployed,
homemaker, or retired). Area-level SES indicators were available
for year 2001 at both postcode (n=3,175) and canton (n=26) lev-
els, including the Swiss neighborhood index of socioeconomic
position (calculated based on median rent per square meter, pro-
portion households headed by a person with primary education or
less, proportion headed by a person in manual or unskilled occupa-
tion, and the mean number of persons per room),23 proportion of
unemployed population 20–65 year of age, proportion of adults
with compulsory or less education, and proportion of adults with
tertiary education or higher. Large area indicator was created for
seven regions at the Nomenclature of Territorial Units for
Statistics (NUTS)-2 level.24

Statistical Analysis
Main analyses. Cox proportional hazards regression models were
applied in MAPLE and ELAPSE. As per the models applied in the
published reports,3,5 age was included as the time axis in ELAPSE
for better adjustment for potential confounding by age,25 whereas
year of follow-up was included as the time axis in MAPLE.
MAPLE analyses were further stratified by the three CanCHEC
census enrollment years. InMedicare, a Cox regression-equivalent
and more computationally efficient Poisson formulation was
applied because of the size of the cohort.4 The Poisson regression
model was fit with the count of all-cause deaths at the given
follow-up year, calendar year, and ZIP code as the outcome, and
the corresponding total person-time as the offset term. Time-
varying PM2:5 exposure was included in the models as a linear
function in all cohorts.

We specified four common models with increasing control for
potential confounders. Model 1 included identical covariates avail-
able across cohorts—individual level age at follow-up, sex, and
follow-up year.Model 2 further adjusted for selected covariates rep-
resenting individual level SES and ethnicity—income quintiles, im-
migration status, visible minority status, and indigenous identity in
CanCHEC; Medicaid eligibility and race in Medicare; educational
level and country origin in the Belgian cohort; income deciles and
country origin in the Danish and Dutch cohorts; income quartiles in
the Norwegian cohort; educational level in the Roman cohort; edu-
cational level, nationality, and mother tongue in the Swiss cohort.
Model 3 further adjusted for all available area-level SES covariates
in each cohort as described above. Model 4 added large regional
indicators as described above to account for residual spatial varia-
tion. We considered Model 4 as the main model, as it provided the
maximum adjustment for potential confounding using the available
information (Table S1). Participants with missing exposure or
incomplete information on Model 4 covariates were excluded from
all analyses. We conducted a random-effects meta-analysis across
all eight cohorts to quantitatively evaluate whether harmonization
reduced between-study variance in themagnitude ofHRs.

Additional analyses. In MAPLE and ELAPSE, we performed
additional analyses in the full study populations (25+ years of age
inMAPLE and 30+ years of age in ELAPSE), and for natural mor-
tality, defined by the International Classification of Diseases, ninth
revision (ICD-9) or tenth revision (ICD-10) codes: ICD-9: 1–779;
ICD-10: A00–R99. We performed additional adjustment for
potential individual level confounders that were not included in the
main models, including educational level, marital status, and
employment status. These additional analyses allowed comparison
between the current study and the previously published reports3,5

and, thus, allowed more detailed evaluation of factors influencing
the magnitude of observed associations. Statistical significance
was determined based on a 95% CI of the effect estimate that did
not include unity.

Characterizing themagnitude and shape of thePM2:5–mortality
association. We modeled the shape of the CRFs based on the
main Model 4, using the extended shape constrained health
impact function (eSCHIF).3 The eSCHIF has been proposed as a
biologically plausible function for modeling concentration–mor-
tality associations for benefits analysis. The methodology has
been described in detail before.26 Briefly, we first fit a Cox model
(Cox-equivalent Poisson in Medicare) where PM2:5 exposure was
included as a restricted cubic spline (RCS) function with 6 knots.
We selected RCS to flexibly model the association between
PM2:5 and mortality.27 The RCS has the form

lnRCSðzÞ=b0z+
XK−2

l=1
blslðzÞ, (1)

for K ≥ 3 knots, and

sl zð Þ= max 0,
z− tl

tK − t1ð Þ2=3
� �� �3

−
tK − t1

tK − tK − 1

� �
max 0,

z− tK − 1

tK − t1ð Þ2=3
� �� �3

+
tK − 1 − t1
tK − tK − 1

� �
max 0,

z− tK
tK − t1ð Þ2=3

� �� �3
,

for K knot concentrations (t1, . . . tK). The K–1 unknown parame-
ters (b0, . . .bK − 2) were estimated within the Cox survival model
framework by including [z, s1ðzÞ, . . .sK−2ðzÞ] as K–1 variables in
the survival model. To each of the eight cohorts, we fit the RCS
model in addition to other covariates using 6 knots defined at the
5th, 23rd, 41st, 59th, 77th, and 95th percentiles of the respective
exposure distributions. For each cohort, we extracted the parame-
ter K–1 estimates and their respective covariance matrix, in addi-
tion to the 6 knot values. Assuming the parameter estimates are
multivariate normally distributed, we then simulated 1,000 sets
of parameter values with mean given by the parameter estimates
and dispersion given by the estimated covariance matrix. We
then generated 1,000 sets of RCS predictions over the cohort-
specific concentration range defined by their 2.5 to 97.5 exposure
percentiles at 0:1 lg=m3 increments using Equation 1.

A counterfactual concentration, zcf , was incorporated into the
RCS fit for each of the 1,000 sets of predictions by dividing the
RCS prediction at any concentration greater than zcf by the RCS
prediction at zcf . Based on this adjustment, the RCS prediction at
the counterfactual equals unity for each of the 1,000 series of pre-
dictions. In this paper, we set the counterfactual at the fifth per-
centile of the cohort-specific exposure distributions.

The best fitting shape of the association estimated by splines
may not be entirely suitable for risk assessment due to potential
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oscillations over short concentration ranges. We thus remove this
“wiggly” behavior using an algebraic function of the form

lneSCHIFðz− zcf Þ= c log ððz− zcf Þ=d+1Þ

+ h log ððz− zcf Þ=a+1Þ=ð1+ expð−ðz− zcf − lÞ=srÞÞ,
with r representing the range in concentrations. Here, we extend
the shape constrained health impact function, lnSCHIFðzÞ=
h log ðz=a + 1Þ=ð1 + expð–ðz − lÞ=srÞÞ, with the additional term,
c log ðz=c + 1Þ, that allows more complex shapes and potentially
negative associations. We do this since the RCS predictions have
not been restricted to be monotonically increasing.

The unknown parameters (c, d, h, a, l, and s) are determined
such that they maximize the log-likelihood for each of the 1,000
series separately.3 The eSCHIF plot is graphically summarized
by the mean of the 1,000 eSCHIF predictions at each concentra-
tion, and CI is provided by the 2.5 and 97.5 percentiles among
the 1,000 eSCHIF curves.

We then used the following procedure to fit a common eSCHIF
function to the eight cohort-specific mean eSCHIF predictions
between their respective 2.5 and 97.5 exposure percentiles.28 Let
r̂ sj represent the logarithm of the mean of the 1,000 RCS predic-
tions for the sth of S studies at the jth of Js concentrations. Further,
let v̂sj represent the variance of the r̂ sj among the 1,000 predictions.
Consider themultivariatemeta-analysis model,

r̂ sj = c log ððzsj − zcf Þ=d+1Þ+ h log ððzsj − zcf Þ=a+1Þ=

ð1+ exp ð−ðzsj − zcf − lÞ=srÞÞ+ êsj +gs,

where êsj is normally distributed with zero mean and variancebvs = PJs
j=1 v̂sj, gs is normally distributed with zero mean and var-

iance r2, and zcf is set at the minimum concentration among all
cohorts. Note, we assigned the same sampling variance to each of
the Js values of fr̂ sj, j=1, . . . , Jsg since we have generated Js
“pseudo-data” for each cohort and we need to reflect this data
generation in the multivariate meta-analysis model. Here, gs rep-
resents the between cohort variation in the r̂ sj not explained by
the eSCHIF model.

We estimated the unknown parameters (c, d, h, a, l, and s)
by first simulating a large number N (say 10,000) of values from
the following distributions,

d ∼ Uð1, rÞ, a ∼ Uð1, rÞ, l ∼ Uð− r, rÞ, s ∼ Uð0, 1Þ,
and given these N sets of values, calculate two variables represent-
ing the two terms in the eSCHIF model not including the leading
parameters c and h. These two variables are then included in the
rma.mv routine in the R package metafor (version 4.2.0; R
Development Core Team) with the following specifications: no
intercept, cohort as a random effect, and method=REML. For
each of theN runs, we extracted the estimate of cfcn,n=1, . . .Ng,
h fĥn,n=1, . . .Ng, and their corresponding 2 by 2 covariancemat-
rices fĈn,n=1, . . .Ng.

Finally, we formed an ensemble of the N models by weighting
each of the N model predictions over the range in concentration
by the corresponding model likelihood value.29 This approach
incorporates the sampling uncertainty in c and h in addition to
the uncertainty in the shapes defined by the values of d, a, l, and
s. All analyses were performed in R software.

Results
Table 1 and Table S2 present the demographics and average PM2:5
exposure levels in each cohort for the population 65+ years of age

and the full population. More than 106 million participants were
included in the current analysis, contributing more than 970 mil-
lion person-years of follow-up. PM2:5 exposure levels varied by
cohort.

Linear Associations
Figure 1 and Table 2 show the linear associations between PM2:5
exposure and mortality with increasing adjustment for covariates.
In the minimally adjusted Model 1, associations were negative in
CanCHEC, yet positive in Medicare and ELAPSE. In the fully
adjusted main Model 4, HRs increased in all three studies.
Adjustment for SES at individual- (Model 1 to Model 2) and
area-level (Model 2 to Model 3) both influenced HRs, while the
relative importance differed by cohort. Adjustment for individual
SES had a relatively large impact in the stacked CanCHEC
cohort, whereas it was less important in Medicare and ELAPSE.
SES covers multiple dimensions, including income, education,
occupation, and employment status. For harmonization, we re-
stricted the individual SES indicators included in the main analy-
ses for MAPLE and ELAPSE. We, however, did not observe
much deviation in HRs after additionally adjusting for other indi-
vidual SES indicators available in MAPLE and ELAPSE (addi-
tional Models 2, 3, and 4 in Table 2). In most cohorts, HRs
derived from Model 4 and Model 3 were similar, suggesting that
adjusting for individual- and area-level SES reduced the need to
adjust for regional indicators. However, in the ELAPSE Belgian
and Swiss cohorts, further adjustment for regional indicators of
the country increased HRs moderately.

HRs were higher in the full population than in those 65+ years
of age in ELAPSE cohorts, whereas similar HRs were observed for
the two age groups in MAPLE (Table 2). Differences in HRs for
mortality from all causes and natural causes was minor, which is
consistent with the observation that the fraction of nonnatural
deaths is low (<4% in MAPLE and ELAPSE in the population
65+ years of age).

Comparison with previously published individual reports.
Figure 2 shows the associations between PM2:5 exposure and all-
cause mortality derived from the fully adjusted main Model 4 in
the 65+ year old populations compared to the effect estimates
published in previous reports.3–5 We observed statistically signif-
icant positive associations in all studies with a similar magnitude
and overlapping CIs. Variability in HRs across the three studies
was only reduced slightly after performing the harmonized ana-
lytical approach, as indicated by the minor decrease in the esti-
mate of tau-squared (Figure S1).

Using the harmonized exposure model (i.e., MAPLE exposure)
in the present analyses yielded comparable HRs to those obtained
by applying the initial exposure estimates in the original Medicare
and ELAPSE studies (Table S3). However, HRs differed substan-
tially in individual ELAPSE cohorts with higher HRs estimated by
the harmonized exposure in some cohorts (i.e., Belgian, Danish,
Dutch), and lowerHRs in others (i.e., Norwegian and Swiss).

Shape of the CRF
Figure 3A shows the mean eSCHIF fits of associations between
PM2:5 exposure and all-cause mortality in populations 65+ years
of age in eight individual cohorts. The individual curves with
their own scaling are shown in Figure S2. The shape of the CRFs
differed substantially across cohorts. In the CanCHEC and
Roman cohorts, we observed a pattern of increasing spline pre-
dictions at lower concentrations followed by a flattening of pre-
dictions at median concentrations, with increasing predictions at
higher concentrations. In the Dutch cohort, the concentration–
mortality pattern was nearly linear. In the Danish and Norwegian
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Table 1. Characteristics of the study populations 65+ years of age in Medicare, CanCHEC, and ELAPSE cohorts.

Medicare Stacked CanCHEC

ELAPSE

Belgian Danish Dutch Norwegian Roman Swiss

Year of enrollment 2000–2016 1991, 1996, 2001 2001 2000 2008 2001 2001 2001
Follow-up
Start-end 2000–2016 1991–2016 2001–2011 2000–2015 2008–2012 2001–2016 2001–2015 2001–2014
Persons at risk
n 74,493,754 942,600a 1,291,067 697,359 2,314,101 551,962 359,715 945,846
Person-years at risk
n 636,817,430 9,106,200a 10,299,384 6,835,701 10,351,266 5,674,821 3,571,859 9,499,911
All-cause mortality
Rate × 1,000 person-years 40.5 51.9 54.5 72.3 46.4 68.0 53.3 54.5
Natural mortalityb

Rate × 1,000 person-years — 50.3 52.1 70.0 45.1 65.0 51.0 52.4
Sex (%)
Males 44.6 42.9 45.8 41.9 43.4 41.2 41.6 42.0
Females 55.4 57.1 54.2 58.1 56.6 58.8 58.4 58.0
Baseline age (years)
Mean±SD 69:2± 6:7 70:6± 4:6 74:5± 6:7 75:2± 7:1 74:5± 7:1 75:9± 7:0 74:6± 6:9 74:8± 6:9
PM2:5 exposure during follow-up (lg=m3)
Mean±SD 9:8± 3:2 8:2± 2:6 15:4± 1:5 9:9± 1:4 15:7± 1:4 7:0± 1:6 17:8± 1:1 16:1± 3:1
5th−95th percentile 5.0–14.5 3.7–12.0 12.3–19.3 6.5–13.1 12.3–18.1 4.2–10.3 14.8–22.4 10.3–21.7
Individual-level SES and ethnicity
Country of origin/ immigration status
Local/nonimmigrant — 74.0 99.2 96.7 87.9 — — —
Foreign/immigrant — 26.0 0.8 3.3 12.1 — — —
Nationality (%)
Swiss — — — — — — — 93.1
Non-Swiss — — — — — — — 6.9
Mother tongue (%)
German and Rhaeto-Romansch — — — — — — — 69.9
French — — — — — — — 20.8
Italian — — — — — — — 7.3
Other — — — — — — — 2.1
Race (%)
White 84.1 — — — — — — —
Black 8.9 — — — — — — —
Asian 1.8 — — — — — — —
Hispanic 2.0 — — — — — — —
North American Native 0.3 — — — — — — —
Visible minority status (%)
Yes — 4.9 — — — — — —
No — 95.1 — — — — — —
Indigenous identity (%)
Yes — 1.1 — — — — — —
No — 98.9 — — — — — —
Medicaid eligibility (%)
Eligible 11.6 — — — — — — —
Ineligible 88.4 — — — — — — —
(Household) income in local currency
Levels — Quintiles — Deciles Deciles Quartiles — —
Educational level (%)
Primary or below — 55.2 50.7 — — 48.9 51.0 41.5
Secondary — 37.2 38.8 — — 40.4 37.9c 45.5
Tertiary — 7.5 10.5 — — 10.7 11.1 13.0
Marital status (%)
Single — 5.2 6.1 — 5.4 7.4 7.0 7.3
Married — 66.7 57.9 — 58.5 52.3 57.4 58.7
Divorced/separated — 6.0 4.6 — 7.3 6.3 3.4 6.0
Widowed — 21.7 31.4 — 28.7 34.0 32.2 28.0
Employment status (%)
Employed — 11.1 0.6 4.5 — 6.1 3.7 5.4
Unemployed — 0.5 0 0.1 — 0.1 0.1 0.1
Homemaker — — 2.0 — — — 30.1 0
Retired — 88.3d 97.4 95.4e — 93.8 58.2 94.5

Note:—, no data; CanCHEC, Canadian Census Health and Environment Cohorts; ELAPSE, Effects of Low-Level Air Pollution: A Study in Europe; PM2:5, particulate matter with aer-
odynamic diameter ≤2:5 lm; SD, standard deviation.
aRounded to nearest 100 for confidentiality.
bNatural mortality was defined by the International Classification of Diseases, 9th revision (ICD-9) or 10th revision (ICD-10) codes: ICD-9: 1–779; ICD-10: A00–R99.
cGrouped junior high school and high school.
dEmployment status has three classes in CanCHEC: employed, unemployed, and not in the labor force (i.e., persons who left on disability, had retired, or had never worked).
eEmployment status has three classes in the Danish cohort: employed, unemployed, and pensioner (i.e., retired, sick, cash support, student, pension, or others).
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cohorts, the curves exhibited a supralinear pattern, with a flatten-
ing out of the tail at high concentrations. In the Medicare and
Swiss cohorts, the concentration–mortality pattern was similar to
that of a sigmodal function with a slow increase at low concentra-
tions followed by a steep increase in predictions over medium
concentrations and a flatter increase at high concentrations. In the
Belgian cohort, the curve sloped upward toward the mean and
then downwards as concentrations increased further. The curves
generally showed increased risk with higher PM2:5 concentrations
starting with the lowest observed levels within each study popula-
tion, except for the Medicare cohort that displayed a slight
decrease in risk over its lowest concentrations followed by a
sharp increase in risk over median concentrations.

Figure 3B shows a common eSCHIF created by a meta-
analysis. The weight of each contributing cohort is shown as the
thickness of the individual curves: Medicare (0.444), Swiss
(0.213), CanCHEC (0.084), Norway (0.080), Belgian (0.067),
Danish (0.049), Dutch (0.045), and Rome (0.017). The common
eSCHIF curve increased monotonically from the lowest observed
level (3:7lg=m3), with a steep slope observed from 7 to
9lg=m3. From ∼ 9 lg=m3, the slope of curve started to flatten
out. From ∼ 14lg=m3, the curve was almost linear. The common
curve showed an increased risk with wide uncertainty at lower
concentrations (<7 lg=m3) due to the variation in the sublinear
Medicare cohort shape and the supralinear CanCHEC and
Norwegian cohort shapes. The common eSCHIF was highly
influenced by the Medicare cohort over the lower concentration
ranges, whereas it was dominated by the Swiss cohort over the
higher concentrations. We observed an increased mortality risk
associated with PM2:5 exposure down to the lowest observed
level in the common eSCHIF.

Discussion
Our findings indicate that employing a harmonized analytical
approach led to a minor reduction in the variation among the
observed associations among three large cohort studies conducted
in Canada (MAPLE), the United States (Medicare), and Europe
(ELAPSE), when contrasted with the findings reported in prior
individual study publications. Themagnitude of the observed asso-
ciation was influenced by the adjusted confounders, the age of the
population, the applied exposure model, and to a slight extent, the

definition of the outcome. The shape of the PM2:5–mortality asso-
ciation differed across cohorts but generally showed associations
down to the lowest observed PM2:5 levels. A common CRF indi-
cated a monotonically increasing risk pattern, starting from the
lowest exposure level.

Confounder Adjustment
We found that adjustment for a more complete list of potential con-
founders reduced the differences in the observed PM2:5–mortality
associations, suggested by the larger variability across studies in
the minimally adjusted Model 1 HRs compared to the fully
adjusted Model 4 HRs. Adjustment for SES influenced HRs dif-
ferently across cohorts. This probably reflects different underly-
ing associations between PM2:5 exposure and socioeconomic
factors in different populations. For example, in Rome, the (more
polluted) historic city center is predominantly inhabited by
wealthier people because of the high housing costs,21 whereas in
the United States, areas with low-income populations have been
consistently exposed to higher air pollution levels than areas with
high-income groups.30

Adjustment for regional indicators in addition to SES increased
HRs moderately in the ELAPSE Belgian and Swiss cohorts. The
Belgian cohortfindings are consistent with a previous analysis con-
ducted within the same cohort using both ELAPSE and alternative
exposure models.17 The change in HRs with additional adjustment
for large area indicators likely reflects broad-scale spatial variation
in mortality risks due to factors other than PM2:5 exposure and
adjusted (socioeconomic) covariates, such as geographic varia-
tions in diagnostic and therapeutic practices or cultural and health-
related behaviors.31 In the North American settings, the spatial var-
iations in health may also be related to climate differences across
large geographical area. Previous analyses also adjusted for mete-
orological variables to account for large scale variations in health
instead of/in addition to regional indicators.32,33 Climate difference
is a less likely explanation for the large-scale variation in mortality
patterns within the ELAPSE cohorts, as the climate is usually rela-
tively homogeneouswithinmoderately sized countries.

Exposure Assessment
In ELAPSE, applying the harmonized exposure model (i.e.,
MAPLE exposure) resulted in similar overall HR when compared
to the original exposure estimates used. However, varying HRs
were observed among individual ELAPSE cohorts. This finding is
consistent with the previously reported time-independent analysis
applying the harmonized and ELAPSE exposures.5 Since the
harmonized and ELAPSE exposures were modeled over a large
area in Europe, the models may tend to average out within-country
variations in the relationship between air pollution and predictors
across Europe, which could result in less accurate predictions at the
national levels. As noted by the Atmospheric Composition
Analysis Group that created the harmonized exposure surface for
Europe (V4.EU.02),10,34 these exposure estimates are primarily
intended to aid in large-scale studies. This might explain the over-
all similar but individually varying HRs for the six European
cohorts. Jerrett et al. documented lower HRs for mortality in the
American Cancer Society study when only remote sensing data
were used to assess PM2:5 exposure.35 In our study, we found lower
HRs in the Medicare and higher HRs in ELAPSE when we used
harmonized exposure estimates. All exposure estimates in our
studies used a combination of remote sensing and ground-level
monitoring data, however.

The harmonized exposure was estimated at a 1 × 1 km spatial
resolution, which is usually sufficient for PM2:5 because of the
largely regional spatial distribution of PM2:5 with limited local

Figure 1. Associations between PM2:5 exposure (per 5 lg=m3) and all-cause
mortality derived from the minimally adjusted Model 1 to the fully adjusted
main Model 4 in the harmonized analyses for all-cause mortality in popula-
tion 65+ years of age in CanCHEC (1991–2016), Medicare (2000–2016),
and ELAPSE (2000–2016). Numeric effect estimates are shown in Table 2.
Model 1 is adjusted for age, sex, and follow-up year; Model 2 is further
adjusted for individual level SES and ethnicity; Model 3 is further adjusted
for area-level SES; and Model 4 added large regional indicators. Note:
CanCHEC, Canadian Census Health and Environment Cohorts; ELAPSE,
Effects of Low-Level Air Pollution: A Study in Europe; PM2:5, particulate
matter with aerodynamic diameter ≤2:5 lm; SES, socioeconomic status.
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Table 2. Associations between PM2:5 exposure (per 5 lg=m3) and mortality from all-causes and natural causes in the full cohort and the 65+ cohort. The sec-
ond column (65+, all-cause) represents the main harmonized analyses.

65+ y
Full cohorts: 30+ y for ELAPSE cohorts;

25+ y for CanCHEC

All-cause [HR (95% CI)] Natural causes [HR (95% CI)] All-cause [HR (95% CI)] Natural causes [HR (95% CI)]

CanCHEC (1991–2016)
n=942,600; PY=9,106,200; n all-cause= 473,100;

n natural cause= 458,400
n=6,144,200; PY=94,736,400; n all-cause= 1,064,900;

n natural cause= 1,013,200
Model 1 0.954 (0.950, 0.958) 0.954 (0.950, 0.958) 0.948 (0.944, 0.951) 0.954 (0.950, 0.958)
Model 2 1.007 (1.003, 1.012) 1.009 (1.004, 1.013) 1.014 (1.010, 1.019) 1.020 (1.015, 1.024)
Model 3 1.035 (1.030, 1.041) 1.036 (1.031, 1.041) 1.029 (1.025, 1.034) 1.035 (1.030, 1.040)
Model 4 1.039 (1.032, 1.046) 1.042 (1.035, 1.049) 1.039 (1.033, 1.045) 1.046 (1.039, 1.053)
Model 2add 1.009 (1.004, 1.013) 1.010 (1.006, 1.015) 1.015 (1.011, 1.019) 1.021 (1.016, 1.025)
Model 3add 1.027 (1.022, 1.032) 1.028 (1.023, 1.033) 1.019 (1.015, 1.024) 1.026 (1.022, 1.031)
Model 4add 1.037 (1.030, 1.044) 1.040 (1.033, 1.047) 1.037 (1.031, 1.044) 1.045 (1.039, 1.052)
Medicare (2000–2016)

n=74,493,754; PY=636,817,430; n all-cause= 25,791,106 — —
Model 1 1.017 (1.013, 1.023) NA NA NA
Model 2 1.013 (1.008, 1.017) NA NA NA
Model 3 1.027 (1.024, 1.031) NA NA NA
Model 4 1.025 (1.021, 1.029) NA NA NA
Model 2add NA NA NA NA
Model 3add NA NA NA NA
Model 4add NA NA NA NA
ELAPSE overall (i.e., pooled estimate from random-effects meta-analysis of 6 ELAPSE cohorts)

n=6,160,050; PY=46,232,942; n all-cause= 2,630,607;
n natural cause= 2,530,940

n=26,111,529; PY=239,046,064; n all-cause= 3,566,100;
n natural cause= 3,387,248

Model 1 1.026 (0.983, 1.070) 1.022 (0.976, 1.070) 1.053 (0.986, 1.123) 1.053 (0.989, 1.121)
Model 2 1.040 (0.990, 1.093) 1.038 (0.985, 1.093) 1.071 (0.997, 1.151) 1.072 (0.999, 1.151)
Model 3 1.033 (0.997, 1.070) 1.032 (0.994, 1.071) 1.050 (0.997, 1.105) 1.051 (1.001, 1.104)
Model 4 1.042 (1.015, 1.069)a 1.041 (1.014, 1.069)a 1.064 (1.021, 1.108)a 1.063 (1.022, 1.106)a

Model 2add 1.036 (0.992, 1.081) 1.033 (0.987, 1.082) 1.054 (0.995, 1.117) 1.056 (0.998, 1.117)
Model 3add 1.030 (0.997, 1.063) 1.029 (0.995, 1.064) 1.038 (0.996, 1.082) 1.040 (1.000, 1.082)
Model 4add 1.037 (1.014, 1.061)b 1.036 (1.012, 1.062)b 1.050 (1.018, 1.082)b 1.050 (1.020, 1.081)b

Belgian (2001–2011)
n=1,291,067; PY=10,299,384; n all-cause= 561,565;

n natural cause= 537,080
n=5,474,548; PY=51,874,182; n all-cause= 757,418;

n natural cause= 707,146
Model 1 0.959 (0.952, 0.966) 0.963 (0.955, 0.970) 0.979 (0.973, 0.985) 0.985 (0.979, 0.992)
Model 2 0.977 (0.970, 0.984) 0.983 (0.975, 0.990) 0.998 (0.992, 1.004) 1.006 (0.999, 1.012)
Model 3 0.974 (0.967, 0.982) 0.981 (0.973, 0.988) 0.990 (0.984, 0.996) 0.998 (0.992, 1.005)
Model 4 1.006 (0.997, 1.014) 1.005 (0.996, 1.013) 1.028 (1.021, 1.036) 1.028 (1.021, 1.036)
Model 2add 0.973 (0.966, 0.981) 0.979 (0.972, 0.987) 0.982 (0.976, 0.988) 0.990 (0.984, 0.997)
Model 3add 0.973 (0.966, 0.980) 0.979 (0.972, 0.987) 0.979 (0.973, 0.985) 0.988 (0.981, 0.994)
Model 4add 1.005 (0.997, 1.013) 1.004 (0.996, 1.012) 1.021 (1.014, 1.028) 1.022 (1.014, 1.029)
Danish (2000–2015)

n=697,359; PY=6,835,701; n all-cause= 494,250;
n natural cause= 478,838

n=3,079,709; PY=42,537,377; n all-cause= 743,749;
n natural cause= 713,835

Model 1 1.112 (1.102, 1.122) 1.111 (1.100, 1.121) 1.217 (1.208, 1.226) 1.212 (1.203, 1.221)
Model 2 1.155 (1.145, 1.166) 1.155 (1.145, 1.166) 1.265 (1.256, 1.275) 1.263 (1.253, 1.272)
Model 3 1.097 (1.084, 1.111) 1.097 (1.083, 1.111) 1.166 (1.155, 1.178) 1.164 (1.152, 1.176)
Model 4 1.095 (1.080, 1.110) 1.094 (1.079, 1.110) 1.166 (1.153, 1.178) 1.162 (1.149, 1.175)
Model 2add 1.133 (1.122, 1.144) 1.134 (1.123, 1.144) 1.197 (1.189, 1.207) 1.198 (1.189, 1.207)
Model 3add 1.086 (1.073, 1.100) 1.086 (1.072, 1.100) 1.122 (1.110, 1.133) 1.121 (1.109, 1.132)
Model 4add 1.082 (1.067, 1.097) 1.082 (1.067, 1.097) 1.118 (1.106, 1.130) 1.117 (1.104, 1.129)
Dutch (2008–2012)

n=2,314,101; PY=10,351,266; n all-cause= 480,658;
n natural cause= 466,357

n=10,187,024; PY=49,104,281; n all-cause= 614,148;
n natural cause= 590,590

Model 1 1.054 (1.044, 1.064) 1.052 (1.042, 1.063) 1.075 (1.066, 1.085) 1.074 (1.064, 1.083)
Model 2 1.071 (1.060, 1.081) 1.069 (1.059, 1.080) 1.096 (1.086, 1.105) 1.093 (1.084, 1.103)
Model 3 1.058 (1.047, 1.069) 1.058 (1.048, 1.069) 1.074 (1.065, 1.084) 1.074 (1.064, 1.084)
Model 4 1.064 (1.047, 1.082) 1.064 (1.047, 1.082) 1.086 (1.071, 1.102) 1.083 (1.068, 1.099)
Model 2add 1.056 (1.046, 1.067) 1.055 (1.045, 1.065) 1.072 (1.063, 1.081) 1.071 (1.062, 1.080)
Model 3add 1.053 (1.041, 1.065) 1.055 (1.043, 1.067) 1.063 (1.052, 1.074) 1.064 (1.053, 1.075)
Model 4add 1.058 (1.041, 1.075) 1.057 (1.040, 1.075) 1.071 (1.056, 1.086) 1.069 (1.054, 1.085)
Norwegian (2001–2016)

n=551,962; PY=5,674,821; n all-cause= 385,787;
n natural cause= 368,641

n=2,119,512; PY=29,873,933; n all-cause= 508,612;
n natural cause= 479,741

Model 1 1.017 (1.007, 1.026) 1.017 (1.007, 1.026) 1.036 (1.028, 1.045) 1.032 (1.024, 1.041)
Model 2 1.014 (1.004, 1.023) 1.014 (1.004, 1.023) 1.044 (1.036, 1.053) 1.040 (1.031, 1.049)
Model 3 1.039 (1.029, 1.049) 1.037 (1.027, 1.048) 1.057 (1.048, 1.066) 1.053 (1.044, 1.063)
Model 4 1.034 (1.024, 1.045) 1.034 (1.024, 1.045) 1.053 (1.044, 1.063) 1.051 (1.042, 1.061)
Model 2add 1.024 (1.014, 1.033) 1.024 (1.014, 1.034) 1.044 (1.036, 1.053) 1.041 (1.033, 1.050)
Model 3add 1.035 (1.025, 1.045) 1.034 (1.023, 1.044) 1.045 (1.036, 1.054) 1.043 (1.034, 1.052)
Model 4add 1.029 (1.019, 1.039) 1.029 (1.018, 1.040) 1.042 (1.033, 1.051) 1.040 (1.031, 1.050)
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variability, though the composition of PM2:5 mass may differ.36
For example, exposure estimates at a spatial resolution of 1× 1 km
may not adequately capture the spatial variation of traffic-related
air pollution, which could introduce bias in the health effect esti-
mates. As the composition of PM2:5 mass varies across study areas,
this may contribute to the different observed effect estimates for
PM2:5.

The geocoding and exposure period assignments varied largely
across studies, which may contribute to the remaining heterogene-
ity in the observed effect estimates. The assignment of PM2:5 expo-
sure to the relatively coarse ZIP code level in Medicare may result
in more measurement errors compared to the assignment to postal
code level in MAPLE and residential address level in ELAPSE.
However, the small fine-scale spatial variation of PM2:5 concentra-
tions suggests that these measurement errors are likely small. For
pollutants with strong local sources such as ultrafine particles, this
would have been an important concern. Consistently, in the
MAPLE study, HRs were not sensitive to exposure assignment at
different spatial scales (1, 5, and 10 km).13 In MAPLE, a 10-year
moving average of exposure was adopted because it was

previously documented that the longer moving average exposure
window provided stronger associations with mortality.13,14 For
example, HRs of nonaccidental mortality for a 10-lg=m3 increase
in PM2:5 were 1.04 (95% CI: 1.01, 1.06) and 1.11 (95% CI: 1.09,
1.13) for 3-year and 10-year exposure periods in 2001 CanCHEC.3
Wewere not able to renew exposure assignment for ELAPSE and
Medicare to obtain similar 10-year moving averages, but this
implies that weaker associations may be observed if a 1-year ex-
posure window had been applied in MAPLE. The Dutch and
Danish cohorts did not incorporate residential mobility in the ex-
posure assessment. This approach is consistent with previous
analyses within ELAPSE, which facilitated within-study com-
parison,5 though this may introduce measurement errors. The
Dutch cohort had 5 years of follow-up only, suggesting that resi-
dential mobility was likely not a critical concern. The exposure
estimates used in MAPLE before 1989 were based on backcast-
ing, which may introduce measurement errors. However, this
method involved creating prediction models using data from var-
ious sources and had been validated to accurately predict a large
portion of measured PM2:5.8

Table 2. (Continued.)

65+ y
Full cohorts: 30+ y for ELAPSE cohorts;

25+ y for CanCHEC

All-cause [HR (95% CI)] Natural causes [HR (95% CI)] All-cause [HR (95% CI)] Natural causes [HR (95% CI)]

Roman (2001–2015)
n=359,715; PY=3,571,859; n all-cause= 190,202;

n natural cause= 182,158
n=1,263,712; PY=15,301,265; n all-cause= 245,855;

n natural cause= 235,543
Model 1 1.038 (1.018, 1.059) 1.043 (1.022, 1.064) 1.050 (1.033, 1.069) 1.055 (1.037, 1.073)
Model 2 1.045 (1.024, 1.065) 1.050 (1.029, 1.071) 1.059 (1.041, 1.077) 1.064 (1.045, 1.082)
Model 3 1.044 (1.022, 1.066) 1.049 (1.027, 1.072) 1.046 (1.027, 1.065) 1.051 (1.031, 1.071)
Model 4 NA NA NA NA
Model 2add 1.044 (1.023, 1.064) 1.049 (1.028, 1.070) 1.055 (1.037, 1.073) 1.060 (1.041, 1.078)
Model 3add 1.043 (1.021, 1.065) 1.048 (1.026, 1.071) 1.044 (1.025, 1.063) 1.049 (1.030, 1.069)
Model 4add NA NA NA NA
Swiss (2001–2014)

n=945,846; PY=9,499,911; n all-cause= 518,145;
n natural cause= 497,866

n=3,987,024; PY=50,355,026; n all-cause= 696,318;
n natural cause= 660,393

Model 1 0.982 (0.980, 0.983) 0.956 (0.952, 0.961) 0.975 (0.972, 0.979) 0.977 (0.973, 0.980)
Model 2 0.989 (0.988, 0.991) 0.968 (0.964, 0.972) 0.989 (0.985, 0.992) 0.990 (0.986, 0.994)
Model 3 0.992 (0.990, 0.993) 0.975 (0.970, 0.980) 0.975 (0.971, 0.979) 0.977 (0.973, 0.981)
Model 4 1.014 (1.011, 1.016) 1.008 (1.001, 1.014) 1.010 (1.005, 1.015) 1.011 (1.006, 1.017)
Model 2add 0.991 (0.990, 0.993) 0.970 (0.965, 0.974) 0.988 (0.984, 0.992) 0.988 (0.984, 0.993)
Model 3add 0.996 (0.994, 0.998) 0.981 (0.976, 0.986) 0.983 (0.978, 0.987) 0.984 (0.979, 0.988)
Model 4add 1.011 (1.009, 1.013) 1.005 (0.998, 1.011) 1.007 (1.001, 1.012) 1.008 (1.002, 1.013)

Note: Model 1 adjusted for age at follow-up, sex, and follow-up year; Model 2 further adjusted for individual level SES and ethnicity; Model 3 further adjusted for area-level SES; and
Model 4 added large regional indicators. Additional Model 2—Main model 2 further adjusted for individual level educational level, marital status, and employment status; Additional
Model 3—Main model 3 further adjusted for individual level educational level, marital status, and employment status; Additional Model 4—Main model 4 further adjusted for individ-
ual level educational level, marital status, and employment status. Model specifications in each cohort are as follows. CanCHEC Model 1: cohort (strata), sex (strata), 5-year age
groups (strata), follow-up year (time axis); Model 2: Model 1+income, immigration status, visible minority, indigenous identity; Model 3: Model 2+neighborhood composite SES
index; Model 4: Model 3+airshed indicator; Model 2add: Model 2+education, marital status, employment status; Model 3add: Model 3+education, marital status, employment status;
Model 4add: Model 4+education, marital status, employment status. Medicare Model 1: sex (strata), 5-year age groups (strata), follow-up year (strata); Model 2: Model 1+race (strata),
Medicaid eligibility (strata); Model 3: Model 2+ZIP code level income, median house value, poverty rate, house-owing rate, high education rate; Model 4: Model
3+regional indicator. Belgian Model 1: age at follow-up (time axis), sex (strata), follow-up year (strata); Model 2: Model 1+country origin, education; Model 3: Model 2+income,
unemployment rate, low education rate, non-Western ethnic rate at both neighborhood and regional levels; Model 4: Model 3+regional indicator; Model 2add: Model
2+marital status, employment status; Model 3add: Model 3+marital status, employment status; Model 4add: Model 4+marital status, employment status. Danish Model 1: age at fol-
low-up (time axis), sex (strata), follow-up year (strata); Model 2: Model 1+country origin, income; Model 3: Model 2+income, unemployment rate, low education rate at both neigh-
borhood and regional levels; Model 4: Model 3+regional indicator; Model 2add: Model 2+employment status; Model 3add: Model 3+employment status; Model 4add: Model
4+employment status. Dutch Model 1: age at follow-up (time axis), sex (strata), follow-up year (strata); Model 2: Model 1+country origin, income; Model 3: Model
2+composite SES index, income, unemployment rate, non-Western ethnic rate at both neighborhood and regional levels; Model 4: Model 3+regional indicator; Model 2add: Model
2+marital status; Model 3add: Model 3+marital status; Model 4add: Model 4+marital status. Norwegian Model 1: age at follow-up (time axis), sex (strata), follow-up year (strata);
Model 2: Model 1+income; Model 3: Model 2+poverty rate, unemployment rate, low education rate at both neighborhood and regional levels; Model 4: Model 3+regional indicator;
Model 2add: Model 2+education, marital status, employment status; Model 3add: Model 3+education, marital status, employment status; Model 4add: Model 4+education, marital sta-
tus, employment status. Roman Model 1: age at follow-up (time axis), sex (strata), follow-up year (strata); Model 2: Model 1+education; Model 3: Model 2+income, unemployment
rate, low education rate, high education rate, composite SES index at neighborhood level; Model 2add: Model 2+marital status, employment status; Model 3add: Model
3+marital status, employment status. Swiss Model 1: age at follow-up (time axis), sex (strata), follow-up year (strata); Model 2: Model 1+nationality, mother tongue, education;
Model 3: Model 2+composite SES index, unemployment rate, low education rate, high education rate at both neighborhood and regional levels; Model 4: Model 3+regional indicator;
Model 2add: Model 2+marital status, employment status; Model 3add: Model 3+marital status, employment status; Model 4add: Model 4+marital status, employment status. —, no
data; CanCHEC, Canadian Census Health and Environment Cohorts; CI, confidence interval; ELAPSE, Effects of Low-Level Air Pollution: A Study in Europe; HR, hazard ratio; NA,
not applicable; PM2:5, particulate matter with aerodynamic diameter ≤2:5 lm; PY, person-years; SES, socioeconomic status.
aMeta-analytical estimate of main Model 4 results from Belgian, Danish, Dutch, Norwegian, and Swiss cohorts and main Model 3 result from the Roman cohort.
bMeta-analytical estimate of additional Model 4 results from Belgian, Danish, Dutch, Norwegian, and Swiss cohorts and additional Model 3 result from the Roman cohort.
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Age of Study Population
In ELAPSE, HRs were higher for the full population than for
those 65+ years of age, while MAPLE showed similar HRs
across age groups. We have no clear explanation of the different
findings in ELAPSE and MAPLE. There is evidence that HRs in
the elderly (e.g., 60+ years of age) tend to be lower than in a
younger population because of competing risks for the elderly, a
finding corroborated by the original ELAPSE report and several
previous studies,5,21,37,38 notably with overlapping CIs. As the el-
derly had much higher mortality baseline risks than the younger
populations, the absolute number of deaths attributable to PM2:5
may be higher in the elderly.

Definition of Mortality Endpoint
We observed minor differences in HRs for mortality from all
causes and natural causes, suggesting that the definition of overall
mortality is not a crucial factor for difference in the observed
associations across cohorts. This finding supports the inter-
changeable usage of both mortality end points in previous sys-
tematic reviews and comparison between studies.2,39 Analyzing
natural-cause mortality may prevent noise introduced in the anal-
ysis, as most nonnatural mortality is not associated with air pollu-
tion exposure. Recently, some studies have suggested a possible
etiological link between long-term air pollution exposure and sui-
cides, as well as psychiatric disorder mortality,40 some of which
may be coded as nonnatural mortality (accidents related to sub-
stance abuse, etc.).

Shape of the CRF
Shape of the CRF differed largely across cohorts, which likely
reflects that different settings have different populations and mix-
tures at the same PM2:5 mass level. For example, 10lg=m3

reflects urban populations in Canada but may be indicative of
suburban or even rural populations in the Netherlands. Sources
and composition of PM2:5 mass also vary across regions,10,41

which in turn results in different associations with mortality.42,43
In the common eSCHIF, we observed an increased mortality

risk associated with PM2:5 exposure down to the lowest observed

level. This is consistent with findings from an ensemble CRF
between PM2:5 exposure and natural-cause mortality estimated
from 41 cohorts in 16 countries using an earlier version of the
SCHIF methodology.28 Some of the current cohorts were
included in the previous analysis as well, including the ELAPSE
Dutch cohort with a different follow-up period.

Methodology applied for producing the CRF may affect the
shape of the curve. In the ELAPSE report,5 CRF curves produced
by the spline functions tended to be less smooth than the more
parametric SCHIF function (an earlier version of the currently

Figure 2. Associations between PM2:5 exposure (per 5 lg=m3) and mortality
in the harmonized analyses and the original reports. Numeric effect estimates
derived from the current harmonized analyses are shown in Table 2. Hazard
ratios and 95% CIs associated with a 5-lg=m3 increase in PM2:5 exposure
were 1.041 (1.036, 1.046) for the stacked CanCHEC (1991–2016), 1.032
(1.025, 1.040) for Medicare (2000–2016), and 1.058 (1.022, 1.095) for the
six ELAPSE cohorts (Belgian, 2001–2011; Danish, 2000–2015; Dutch,
2008–2012; Norwegian, 2001–2016; Roman, 2001–2015; Swiss, 2001–
2014) in the respective original reports.3–5 HRs in the original reports were
associated with different ages, exposure models applied, statistical analyses,
and mortality definitions. Note: CanCHEC, Canadian Census Health and
Environment Cohorts; CI, confidence interval; ELAPSE, Effects of Low-
Level Air Pollution: A Study in Europe; HR, hazard ratio; PM2:5, particulate
matter with aerodynamic diameter ≤2:5 lm.

Figure 3. CRF for PM2:5 exposure and all-cause mortality in population 65+
years of age. (A) Mean of eSCHIF fits in eight individual cohorts with coun-
terfactual levels equal to the fifth percentile of the cohort-specific PM2:5 ex-
posure distributions (corresponding values specified in Table 1). (B)
Common eSCHIF (blue solid line) and confidence interval (shaded area)
combined by meta-analysis. In panel B, all curves share the common coun-
terfactual level represented by the lowest fifth percentile of the cohort-spe-
cific PM2:5 exposure distributions across all cohorts (i.e., counterfactual
level set to 3:7 lg=m3). Each cohort only contributed information over its
concentration range. The thickness of the individual lines indicated the
weights each cohort contributed to in the meta-analysis: Medicare (0.444),
Swiss (0.213), CanCHEC (0.084), Norway (0.080), Belgian (0.067), Danish
(0.049), Dutch (0.045), Rome (0.017). Note: BEL, Belgian (2001–2011);
CAN, CanCHEC (1991–2016); CanCHEC, Canadian Census Health and
Environment Cohorts; CI, confidence interval; CRF, concentration-response
function; DAN, Danish (2000–2015); DUT, Dutch (2008–2012); ELAPSE,
Effects of Low-Level Air Pollution: A Study in Europe; eSCHIF, extended
shape-constrained health impact function; HR, hazard ratio; MED, Medicare
(2000–2016); NOR, Norwegian (2001–2016); PM2:5, particulate matter with
aerodynamic diameter ≤2:5 lm; ROM, Roman (2001–2015); SWI, Swiss
(2001–2014).
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applied eSCHIF function). The shape of the curve reported for
the Medicare cohort in the original paper/report deviated from
the current analyses.4,32 In the previous report, the HR increased
monotonically from the lowest exposure, though with a higher
slope from about 7lg=m3. Here, the spline predictions indicated
a slightly decreased association over the lower exposure levels;
however, the exposure models were different between these
methods. The Belgian and Roman curves also deviated from the
previous report,5,20 but the different populations included in the
analyses make it difficult to compare. In CanCHEC, a similar flat-
tening of the CRF was observed in the middle concentration
range, which could possibly be explained by the regional differ-
ence in the air pollution mixture.3 For assessment of the shape of
the CRF, the nonparametric nature of the splines may be an
advantage compared to approaches borrowing information from
assumptions about the shape of the function. For health impact
assessment, the biologically more plausible SCHIF functions are
more attractive than the spline functions.28,44 However, the meth-
ods generally resulted in the same conclusion about the shape of
the CRF, that is the absence of evidence for a level below which
no associations were found.

Strengths, Limitations, and Implications
In this study, we were able to partially harmonize analyses across
three very large studies in the United States, Canada, and Europe
by using the same exposure model and, to the extent possible, the
same covariates and statistical model. We were able to evaluate
the strength and direction of key influential study design factors
on low-level PM2:5 effect estimates by the contrasts between and
within studies. These findings would assist in evaluating the risks
attributable to PM2:5 exposure in evidence synthesis and likely be
important for supporting public health policy and burden of ill-
ness assessments.

We intentionally kept some design decisions previously justi-
fied in the individual studies to allow comparisons not only
between but also within studies. This resulted in remaining hetero-
geneity across studies in the exposure period assignment, the defi-
nition of covariates adjusted for, and the way that time was
represented in the models. We discussed the potential influence in
the respective sections above. In addition, we were not able to
account for differences in levels and composition of PM2:5 expo-
sure, availability of information on potential confounders, charac-
teristics of study populations, and availability of residential
address spatial resolution. Despite the substantial differences that
remained across studies, we observed very comparable effect esti-
mates of PM2:5 exposure.

All cohorts included in the present study are administrative
cohorts and are therefore most representative of the general popula-
tion.However,wewere not able to adjust for individual lifestyle fac-
tors such as smoking because of the lack of information in these
cohorts. Using indirect adjustment approaches, we previously docu-
mented that HRs were not substantially affected by missing data on
individual lifestyle, including smoking.3,5,32 There is an implicit
assumption that lack of adjustment for individual level confounders
such as smoking would lead to an overestimation of air pollution
risks, although this assumption has been previously refuted.45 In
order for an individual level variable Z (e.g., smoking) to confound
the relationship between X (e.g., air pollution) and Y (e.g., mortal-
ity), the variable Zmust be a predictor of X conditional on all of the
other covariates that are included in the model.46 If there is an asso-
ciation between air pollution and lifestyle (e.g., smoking), it is likely
related to socioeconomic factors, so the potential confounding by
lifestyle may have been partially accounted for by the adjustment
for individual and area-level SES in the model. In Medicare and a
Dutch national health survey,32,47 smoking was found to be only

weakly correlated with air pollution exposure, conditional on the
other covariates included in the model. Even if there is residual con-
founding by behavioral factors, it can result in bias either toward or
away from the null, depending on the direction of associations
between air pollution exposure and lifestyle risk factors. In the
MAPLE and ELAPSE reports,5,14 we previously documented
smaller effect estimates in the administrative cohorts compared to
cohorts that had individual lifestyle data available. In a recent sys-
tematic review of the association between PM2:5 and mortality, the
meta-analytical effect estimate was not affected by excluding
administrative cohorts that did not have individual lifestyle data
available. HRs associated with a 10-lg=m3 increase in PM2:5 expo-
sure were 1.08 (1.06, 1.09) for all studies and 1.08 (1.05, 1.10) for
the studies with individual lifestyle data only.2

Conclusions
The magnitude of the association was affected by the adjusted
confounders, exposure model applied, age of the population, and
marginally by outcome definition. Applying a harmonized analyt-
ical approach marginally reduced the difference in the observed
associations across the three studies. A common CRF suggested
a monotonically increasing risk starting from the lowest exposure
level.
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