
Eventually-Consistent Replicated
Relations and Updatable Views

Joachim Thomassen and Weihai Yu[0000−0002−8886−9047]

UIT - The Arctic University of Norway, Tromsø, Norway
weihai.yu@uit.no

Abstract. Distributed systems have to live with weak consistency, such as even-
tual consistency, if high availability is the primary goal and network partitioning
is unexceptional. Local-first applications are examples of such systems. There is
currently work on local-first databases where the data are asynchronously repli-
cated on multiple devices and the replicas can be locally updated even when the
devices are offline. Sometimes, a user may want to maintain locally a copy of
a view instead of the entire database. For the view to be fully useful, the user
should be able to both query and update the local copy of the view. We present an
approach to maintaining updatable views where both the source database and the
views are asynchronously replicated. The approach is based on CRDTs (Conflict-
free Replicated Data Types) and guarantees eventual consistency.

Keywords: Data replication, eventual consistency, updatable views, lenses, CRDT

1 Introduction

Local-first software suggests a set of principles for software that enables both collabo-
ration and ownership for users. Local-first ideals include the ability to both work offline
and collaborate across multiple devices [11].

CRDT [13], or Conflict-free Replicated Data Type, has been a popular approach
to constructing eventually-consistent local-first systems. With CRDT, a site updates
its local replica without coordination with other sites. The states of replicas converge
when they have applied the same set of updates. CRR [14], or Conflict-free Replicated
Relation, is an application of CRDT to relational databases.

A user may want to maintain copies of views in her local devices, instead of the
entire database. This may reduce both the amount of data stored on the device as well
as the overhead of data communication and local data processing. For a view to be fully
useful, the user should be able to both query and update the local copies of the views.
The updates must then be translated and applied back to the original source database.

Supporting updatable views has been an active research topic for decades [2, 2–
4, 8, 10]. A view V is a sequence of query operations Qv = [q1,q2, . . . ] over a source
database s, i.e. v = Qv(s). After an update uv on view v, the new state of the view
becomes v′ = uv(v). A translation T↑ of uv to source database s results in a sequence
of updates in base relations T↑(s,uv) = [u1,u2, . . . ]. According to [4], T↑(s,uv) exactly



translates uv(v) iff Qv(T↑(s,uv)(s)) = uv(Qv(s)) and the integrity constraints defined
in the source database are preserved.

There is at present no existing work on supporting updatable views in a distributed
setting where both the source database and the views are asynchronously replicated and
local data can be updated even when the replicas are offline. One challenge is that the
translation T↑(s,uv) is dependent on the state s of the source database. The same view
update uv may have different translations at replicas in different concurrent states.

We present an approach based on delta-state CRDT [1, 5] (Section 2.1), applied to
replication of relational databases [14] (Section 2.2). The states of the source database
and the views form a join-semilattice [6,13]. The updates in the database and the views
are represented as join-irreducible states in the join-semilattice. A view update is trans-
lated into a set of join-irreducible states in the source database and the translation is
independent of the current state of the database. When the database (and equally view)
replicas have applied the same set of updates (i.e. join-irreducible states), their states
converge.

The paper is organized as the following. In Section 2, we briefly review the nec-
essary background of CRDT and CRR. In Section 3, we give a high-level overview of
our approach. In Section 4, we use examples to describe how we translate view updates
to the source database. In Section 5, we discuss related work. Finally, in Section 6, we
conclude.

2 Technical background

In this section, we briefly review necessary technical background on CRDT and CRR.

2.1 CRDT

A CRDT [13] is a data abstraction specifically designed for data replicated at different
sites. A site queries and updates its local replica without coordination with other sites.
The data are always available for update, but the data states at different sites may di-
verge. From time to time, the sites send their updates asynchronously to other sites with
an anti-entropy protocol. The sites also merge the received updates with their local data.
A CRDT guarantees strong eventual consistency [13]: a site merges incoming remote
updates without coordination with other sites; when all sites have applied the same set
of updates, their states converge.

We adopt delta-state CRDTs [1,5]. The possible states must form a join-semilattice
[6], which implies convergence. Briefly, the states form a join-semilattice if they are
partially ordered with ⊑ and a join ⊔1 of any two states (that gives the least upper
bound of the two states) always exists. State updates must be inflationary. That is, the
new state supersedes the old one in ⊑. The merge of two states s1 and s2 is the result of
s1 ⊔ s2. With delta-state CRDTs, it is sufficient to only send and merge join-irreducible
states. Basically, join-irreducible states are elementary states: every state in the join-
semilattice can be represented as a join of some join-irreducible state(s).

1 To avoid being confused with the join ⋊⋉ of relations, in the rest of the paper, we use the term
merge for ⊔.



CLSet(E) def
= E ↪→ N

insertδ (s,e) def
=

{
{e 7→ s(e)+1} if ¬in?

(
s(e)

)
{} otherwise

deleteδ (s,e) def
=

{
{e 7→ s(e)+1} if in?

(
s(e)

)
{} otherwise

(s⊔ s′)(e) def
= max

(
s(e),s′(e)

)
in?(s,e) def

= odd?
(
s(e)

)
Fig. 1. CLSet CRDT [14]

Since a relation instance is a set of tuples, the basic building block of CRR is a
general-purpose delta-state set CRDT (“general-purpose” in the sense that it allows
both insertion and deletion of elements). We use CLSet (causal-length set, [14, 15]),
a general-purpose set CRDT, where each element is associated with a causal length.
Intuitively, insertion and deletion are inverse operations of one another. They always
occur in turn. When an element is first inserted into a set, its causal length is 1. When
the element is deleted, its causal length becomes 2. Thereby the causal length of an
element increments on each update that reverses the effect of a previous one.

As shown in Fig. 1, the states of a CLSet are a partial function s : E ↪→ N, meaning
that when e is not in the domain of s, s(e) = 0. Using partial function conveniently
simplifies the specification of insert, ⊔ and in?. Without explicit initialization, the causal
length of any unknown element is 0. insertδ and deleteδ in Fig. 1 are delta-mutators that
returns a join-irreducible state instead of the entire state.

An element e is regarded as being in the set when its causal length is an odd num-
ber. A local insertion has effect only when the element is not in the set. Similarly, a
local deletion has effect only when the element is actually in the set. A local effective
insertion or deletion simply increments the causal length of the element by one. For
every element e in s and/or s′, the new causal length of e, after merging s and s′, is the
maximum of the causal lengths of e in s and s′.

2.2 CRR

The relational database supporting CRR consists of two layers: an Application Relation
(AR) layer and a Conflict-free Replicated Relation (CRR) layer (Fig. 2). The AR layer
presents the same database schema and API as a conventional relational database. Ap-
plication programs interact with the database at the AR layer. The CRR layer supports
conflict-free replication of relations.

An AR-layer relation schema R has an augmented CRR-layer schema R̃. In Fig. 2,
site A maintains both an instance rA of R and an instance r̃A of R̃. A query q is per-
formed on rA without any involvement of r̃A. An update operation u on rA triggers an
additional operation ũ on r̃A. The operation ũ is later propagated to remote sites through
an anti-entropy protocol. Merge with an incoming remote operation ũ′(r̃B) results in an
operation ũ′ on r̃A as well as an operation u′ on rA.



r̃A

rAq(rA)
query

u(rA) refreshupdate

ũ(r̃A)

r̃B
anti-entropy

merge

rB
u′(rB)

ũ′(r̃B)

Site A Site B

AR
layer

CRR
layer

Fig. 2. A two-layer relational database system [14]

CRR has the property that when both sites A and B have applied the same set of
operations, the relation instances at the two sites are equivalent, i.e. rA = rB and r̃A = r̃B.

CRR adopts several CRDTs. Since a relation instance is a set of tuples, we use the
CLSet CRDT (Fig. 1) for relation instances. We use the LWW (last-write wins) register
CRDT [9, 12] for individual attributes in tuples.

The join-irreducible states in a CRR relation r̃ are simply the tuples as the result of
the insertions, deletions and updates. In the rest of the paper, we use the term delta for
the tuple as the join-irreducible state of an operation. As we apply delta-state CRDTs,
the tuples of the latest changes are sent to remote sites in the anti-entropy protocol.

For an AR-layer relation R(K,A1,A2, . . .), where K is the primary key, there is a
CRR-layer relation R̃(K̃,K,L,T1,T2, . . . ,A1,A2, . . .). K̃ is the primary key of R̃ and its
values are globally unique. L is the causal-lengths (Fig. 1) of the tuples in R̃. Ti is the
timestamp of the last update on attribute Ai. In other words, the (K̃,L) part represents
the CLSet CRDT of tuples and the (Ai,Ti) parts represent the LWW register CRDT of
the attributes.

When inserting a new tuple t into r, we insert a new tuple t̃ into r̃, with the initial
t̃(L) = 1. When deleting t from r, we increment t̃(L) with 1. Tuple t is in r, t ∈ r, if t̃(L)
is an odd number. That is,

in ar?(t̃) def
= odd?(t̃(L))

When updating t(Ai) in r, we update t̃(Ai) and t̃(Ti) in r̃.
An update delta on an relation instance r̃′ at a remote site is actually a tuple t̃ ′. If a

tuple t̃ in the local instance r̃ exists such that t̃(K̃) = t̃ ′(K̃), we update t̃ with t̃⊔ t̃ ′ where
the merge ⊔ is the join operation of the join-semilattice (Section 2.1). Otherwise, we
insert t̃ ′ into r̃. The merge t̃ ⊔ t̃ ′ is defined as:

t̃ ⊔ t̃ ′ def
= t̃ ′′, where t̃ ′′(L) =max(t̃(L), t̃ ′(L)), and

t̃ ′′(Ai), t̃ ′′(Ti) =

{
t̃ ′(Ai), t̃ ′(Ti) if t̃ ′(Ti)> t̃(Ti)

t̃(Ai), t̃(Ti) otherwise

After the update of r̃, we update r as the following. If in ar?(t̃) evaluates to false, we
delete t (where t(K) = t̃(K)) from r. Otherwise, we insert or update r with πK,A1,A2,...(t̃).



3 Approach Overview

We consider distributed database systems where data are replicated at multiple sites.
For the purpose of, say, high availability, the sites may update the data without coordi-
nation with other sites. The system is said to be eventually consistent, or convergent, if,
when all sites have applied the same set of updates, the sites have the same state. The
system is said to be strongly eventually consistent [13], if the sites unilaterally resolve
any possible conflict, i.e., without coordination with other sites. We focus on strongly
eventually-consistent relational database systems.

We restrict on which views can be updated, similar to [3, 8, 10]. More specifically,
a view can only project away non-primary-key attributes that are given default values
or can remain unspecified with NULL when inserted without given value. Moreover,
when joining two relations, the join attribute(s) must contain one of the primary keys.

For a source database schema S, we define a view V with V =Qv(S). Suppose when
the database state is initially s0, the view state is v0 =Qv(s0) (Fig. 3). Concurrently, the
view applies updates with delta state ∆v′ and the source database applies updates with
delta state ∆s′. The new states in the view and the database become v1 = v0 ⊔∆v′ and
s1 = s0 ⊔ ∆s′ respectively. When the database receives ∆v′, it applies the translated
delta T↑(∆v′) to s1 and the new state becomes s2 = s1 ⊔T↑(∆v′). Similarly, when the
view receives ∆s′, it applies the translated delta T↓(∆s′) to v1 and the new state become
v2 = v1 ⊔T↓(∆s′). One important property of the translations T↓ and T↑ is that they are
independent of the target state in which the translation results are going to be applied.

s0 s1
∆s′ s2

T↑(∆v′)
s3

∆s′′ = IC(s2)

v0

Qv

v1
∆v′ v2

T↓(∆s′)
v3

Qv
T↓(∆s′′)

Fig. 3. Delta-states in source database and view

Unlike traditional work on updatable views, we do not restrict to side-effect-free
view updates. However, we do respect integrity constraints, including the ones defined
by application programs, for instance, functional dependencies enforced with triggers.

In Fig. 3, if the state s2 violates an integrity constraint, s2 is never visible to the
application. Instead, the view immediately applies some additional delta (as side effect
of T↑(∆v′)), ∆s′′ = IC(s2) for integrity-constraint preservation, and the new state s3 does
not violate any integrity constraint. Finally, the view applies the translation of ∆s′′. Our
approach guarantees that the updates in Fig. 3 commute. That is,

Qv(s0 ⊔∆s′⊔T↑(∆v′)⊔∆s′′) = Qv(s0)⊔∆v′⊔T↓(∆s′)⊔T↓(∆s′′)

Since the merge operation ⊔ is commutative, when the different replicas of the
source database (or the view) have applied the same set of delta states, their final states
converge.

We have implemented a prototype of CRR and updatable views with SQLite. We
do not include the implementation and experiments in this paper due to space limit.



album quantity
Disintegration 6

Show 3
Galore 1
Paris 4
Wish 5

track year instore
Lullaby 1989 TRUE

Lovesong 1989 TRUE
Trust 1992 FALSE

track album
Lullaby Galore
Lullaby Show

Lovesong Galore
Lovesong Paris

Trust Wish

Ra Rt Rta

Fig. 4. Example database

4 Translation of view-update delta states

The translation from source database to views, T↓, is traditionally know as incremental
maintenance of materialized views. In this section, we focus on T↑, the translation of
view-update delta states to the source database. We describe the translation through
examples. The example database (Fig. 4) is adapted from [3, 8].

We start with select and project views. In Fig. 5, the base relation Rt (top left) is first
augmented to a CRR-layer relation R̃t (top right). R̃t has an attribute L for the causal
lengths of the tuples. In addition, every non-primary-key attribute is associated with a
timestamp attribute, indicating the last time at which the attribute value was set.

A project view has the same causal-length and timestamp attributes as the base
relation, unless the attribute is projected away. A select view has two more attributes σ

and Tσ that tell the last time the select predicate was evaluated. Initially, all σ values are
TRUE and the timestamp value Tσ of a tuple is the maximum of the timestamp values of
the attributes that occur in the select predicate. For tuples in CRR-layer ṽ1 in Fig. 5(a),
the Tσ values are set to the Ty values of r̃t . If later the year-attribute of a tuple is set to a
value greater than or equal to 1990, the σ value becomes FALSE and the corresponding
tuple disappears from the AR-layer view.

The delta state of an update is simply a tuple in a CRR-layer relation or view. For up-
date v1⟨Lullaby,1989 ↗ 1988⟩ in Fig. 5(a), the delta state is ṽ′1⟨Lullaby,1988,5.1,1,
TRUE,5.1⟩. Here, Ty = 5.1 is the timestamp at which the new year-value is set. Since
the year-attribute is used in the select predicate, Tσ is also set to 5.1.

For deletion −v1⟨Lovesong,1989⟩, the L attribute of the delta state is incremented
with 1. As it is an even number, the tuple is regarded as being deleted in the AR layer.

For insertion +v1⟨Catch,1989⟩, the initial L value is 1 and all timestamps are set
according to the current time. For all insertions in select views, the Tσ value must be
TRUE.

Recall that a project view is updatable only if it keeps the primary key of the base
relation. Moreover, CRR-layer base and view relations keep all tuples regardless of
whether they have been deleted or not. Therefore, for every tuple in a CRR-layer select-
and-project view, there is exactly one tuple in the CRR-layer base relation.

Delta states of a view can be translated almost directly to the base relation. The only
exception is for the attributes that are projected away. The instore-attribute of the Catch-
tuple, which is missing in view V1, is set to its default value (suppose it is FALSE). Its
timestamp value Ti is set to 0.0, the smallest possible timestamp value. This means that
a default value (or NULL) cannot override any value that is explicitly given.

Fig. 5(b) shows two additional cases. The first case shows that a deletion in some
views can be handled differently. Here, we have an opportunity to achieve a least-effect
translation of deletions in a view, when the select predicate includes a boolean attribute,



track year instore
Lullaby 1989 TRUE

Lovesong 1989 TRUE
Trust 1992 FALSE

track year
Lullaby 1989

Lovesong 1989

track year
Lullaby 1988

Lovesong 1989
Catch 1989

track year instore
Lullaby 1988 TRUE

Lovesong 1989 FALSE
Trust 1992 FALSE
Catch 1989 FALSE

track year Ty instore Ti L
Lullaby 1989 1.0 TRUE 1.0 1

Lovesong 1989 3.0 TRUE 3.0 1
Trust 1992 2.0 FALSE 2.0 1

track year Ty L σ Tσ

Lullaby 1989 1.0 1 TRUE 1.0
Lovesong 1989 3.0 1 TRUE 3.0

track year Ty L σ Tσ

Lullaby 1988 5.1 1 TRUE 5.1
Lovesong 1989 3.0 2 TRUE 3.0

Catch 1989 7.1 1 TRUE 7.1

track year Ty instore Ti L
Lullaby 1988 5.1 TRUE 5.1 1

Lovesong 1989 3.0 TRUE 3.0 2
Trust 1992 2.0 FALSE 2.0 1
Catch 1989 7.1 FALSE 0.0 1

AR layer CRR layer

rt , r̃t

v1, ṽ1

v′1, ṽ
′
1

r′t , r̃
′
t

(a) V1 = πtrack,yearσyear<1990Rt

track year
Lullaby 1989

Lovesong 1989

track year
Trust 1989

Lovesong 1989

track year instore
Trust 1989 TRUE

Lovesong 1989 FALSE

track year Ty L σ Tσ

Lullaby 1989 1.0 1 TRUE 1.0
Lovesong 1989 3.0 1 TRUE 3.0

track year Ty L σ Tσ

Lullaby 1989 1.0 1 FALSE 6.2
Lovesong 1989 3.0 1 FALSE 5.2

Trust 1989 6.2 1 TRUE 6.2
track year Ty instore Ti L

Lullaby 1989 1.0 TRUE 6.2 1
Lovesong 1989 3.0 FALSE 5.2 1

Trust 1989 6.2 TRUE 6.2 1

v2, ṽ′

v′2, ṽ
′
2

r′t , r̃
′
t

(b) V2 = πtrack,yearσinstore=TRUERt

Fig. 5. Updating select and project views

such as the instore-attribute in σinstore=TRUE. Now, for the deletion −v2⟨Lovesong,1989⟩,
instead of deleting the Lovesong-tuple in the base relation (i.e. by incrementing the L
value), we set the σ value to FALSE. When translating to the base relation, we set the
boolean value of the attribute as the negation in the select predicate. That is,
T↓(ṽ2⟨Lovesong,1989,3.0,1,FALSE,5.2⟩) = [r̃t⟨Lovesong,1989,3.0,FALSE,5.2⟩].

In this particular example, setting the Lovesong-track to be not-in-store is less de-
structive than deleting the track. When a select predicate uses multiple boolean at-
tributes, we choose to update the truth value of the leftmost one in the view definition.

The next case that Fig. 5(b) shows actually applies generally to updates in both view
and base relations. An update of (part of) a primary-key value is regarded as a deletion
and an insertion. In the figure, the update v2⟨Lullaby ↗ Trust,1989⟩ is interpreted as
[−v2⟨Lullaby,1989⟩,+v2⟨Trust,1989⟩].

For a view of two-way join R1 ⋊⋉ R2 to be updatable, we require, as in [10], that the
join attributes contain a primary key of R1 or R2. We can make a graph from a view
of a multi-way join. The nodes are the base relations. If the join attributes of Ri ⋊⋉ R j
contains the primary key of R j, there is a link from Ri to R j in the graph. Currently, we
require, also as [10], that the view graph is a tree. The primary key of the view is the
primary key of the root relation of the tree. Since the primary keys of the base relations



track album quantity
Lullaby Show 3

Lovesong Paris 4
Trust Wish 5

track album quantity
Lullaby Show 3

Lovesong Disintegration 7
Trust Wish 5

album quantity
Disintegration 7

Show 3
Galore 1
Paris 4
Wish 5

track album
Lullaby Galore
Lullaby Show

Lovesong Galore
Lovesong Paris
Lovesong Disintegration

Trust Wish

track album quantity Tq σt Tσt Lt Lta
Lullaby Show 3 1.5 T 1.5 1 1

Lovesong Paris 4 3.5 T 3.5 1 1
Trust Wish 5 2.5 T 2.5 1 1

track album quantity Tq σt Tσt Lt Lta
Lullaby Show 3 1.5 T 1.5 1 1

Lovesong Paris 4 3.5 T 3.5 1 2
Lovesong Disintegration 7 7.7 T 7.7 1 1

Trust Wish 5 2.5 T 2.5 1 1

album quantity Tq L
Disintegration 7 7.7 1

Show 3 1.5 1
Galore 1 4.5 1
Paris 4 3.5 1
Wish 5 2.5 1

track album L
Lullaby Galore 1
Lullaby Show 1

Lovesong Galore 1
Lovesong Paris 2
Lovesong Disintegration 1

Trust Wish 1

AR layer CRR layer

v3, ṽ3

v′3, ṽ
′
3

r′a, r̃
′
a

r′ta, r̃ta

V3 = Rta ⋊⋉ σquantity>2Ra

Fig. 6. Updating a join view

are not projected away, for a tuple tv in the view, we can find the tuples in the base
relations that contribute to tv via their primary-key values.

For view V = R1 ⋊⋉ R2, the set of attributes of the CRR layer Ṽ is the union of the
sets of attributes of the CRR-layer R̃1 and R̃2. For tuple t̃v in CRR-layer ṽ, tuple tv is in
AR-layer v, if the L values of both r̃1 and r̃2 are odd and the σ values of both r̃1 and r̃2
are TRUE, i.e.,

in ar?(t̃v)
def
= odd?(t̃v(Lr1))∧odd?(t̃v(Lr2))∧ t̃v(σr1)∧ t̃v(σr2)

In Fig. 6, there is only one update in the view, v3⟨Lovesong,Paris ↗ Disintegration,
4 ↗ 7⟩. Since the album-attribute is part of the primary key of the view, the update is
interpreted as a deletion −v3⟨Lovesong,Paris,4⟩ and an insertion +v3⟨Lovesong,
Disintegration,7⟩.

For the deletion, we delete the corresponding tuple in the root base relation. Hence
the tuple ⟨Lovesong,Paris⟩ is deleted from rta.

For the insertion, we first insert ⟨Lovesong,Disintegration⟩ into the root relation rta.
Then, since there is already a Disintegration-tuple in ra, we set the quantity-attribute to
the new value 7.

5 Related work

[2] and [7] study the consistency of updatable views via mapping of states between
source databases and views, where a source database is modeled as the product of the
view and a complementary. When a chosen complementary is kept constant (side-effect



free) [2] or “shrinking” (under a partial order) [7], there is an unambiguous translation
of a view update to the source database. [2] did not aim for computational algorithms
that translate view updates to source databases.

To translate the updates from a view to a source database, [10] directly associates tu-
ples and attributes in view relations with base relations in the source database. [4] makes
the translation based on the tractability and functional dependency of attributes via view
dependency graphs. [7] translates view programs (sequence of updates equipped with
if-then-else statements) to base programs. [3] and [8] make bi-directional translation
of every query operation (known as a lens) that defines the views. In most of the work
on updatable views, translation of view updates is based on the attribute values. For
example, since the view dependency graphs in [4] are defined on attributes, deletions
are defined with predicates on attributes, for instance, “delete from V where A = 7”.
The source tuples can then be identified with queries on attributes with similar predi-
cates. This may work well in a non-distributed system. In a distributed system where
the source database and the view can be replicated, different replicas in different states
may make different translations.

Our work is different from the previous work in that we use delta states (i.e. join-
irreducible states in a join semilattice) to represent state updates. The translation is
independent of the state to which the update is to be applied.

Regarding the restrictions on views that are updatable, [10] is the closest to our
work, which are probably the most restrictive. There are at least two reasons for these
restrictions. The first one is practical. Most related work assumes that all information
about integrity constraints is available when a view is created, which is practically not
true. In particular, the only functional dependencies that can be expressed in SQL is
primary-key constraints. The second reason is that we are currently not able to express
aggregate results (such as COUNT and MAX) as join-irreducible states.

In their seminal work [4], Dayal and Bernstein pointed out that a view update can
be correctly (exactly) translated to the source relations if and only if there is a clean
source of the update. It is possible to verify if a source is clean with the use of view
dependency graphs. With the restrictions of the view that can be updated (Section 3),
we guarantee that every update in a view has a clean source.

Unlike previous work, we allow translations of view updates to have side effects
(Fig. 3). Avoiding side effect is probably more important in earlier work, which expects
virtual (i.e. non-materialized) views. In fact, avoiding side effect is impossible without
knowing all integrity constraints, such as the functional dependencies embedded in the
view dependency graphs [4]. Notice that concurrent updates at different replicas may
temporarily violate integrity constraints (like uniqueness and referential constraints)
anyway [14]. We detect violations and repair constraints at the time of merge [14].

6 Conclusion

We presented an approach to asynchronously replicating both source databases and
views. The local replicas of the database and the view can be updated even when they
are offline. The approach guarantees eventual consistency. That is, the view updates are



correctly translated to the source database, and when the replicas have applied the same
set of updates, their states converge.

References

1. ALMEIDA, P. S., SHOKER, A., AND BAQUERO, C. Delta state replicated data types. J.
Parallel Distrib. Comput. 111 (2018), 162–173.

2. BANCILHON, F., AND SPYRATOS, N. Update semantics of relational views. ACM Trans.
Database Syst. 6, 4 (1981), 557–575.

3. BOHANNON, A., PIERCE, B. C., AND VAUGHAN, J. A. Relational lenses: a language
for updatable views. In Proceedings of the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS) (2006), S. Vansummeren, Ed., ACM,
pp. 338–347.

4. DAYAL, U., AND BERNSTEIN, P. A. On the correct translation of update operations on
relational views. ACM Trans. Database Syst. 7, 3 (1982), 381–416.

5. ENES, V., ALMEIDA, P. S., BAQUERO, C., AND LEITÃO, J. Efficient Synchronization of
State-Based CRDTs. In IEEE 35th International Conference on Data Engineering (ICDE)
(April 2019).

6. GARG, V. K. Introduction to Lattice Theory with Computer Science Applications. Wiley,
2015.

7. GOTTLOB, G., PAOLINI, P., AND ZICARI, R. V. Properties and update semantics of con-
sistent views. ACM Trans. Database Syst. 13, 4 (1988), 486–524.

8. HORN, R., PERERA, R., AND CHENEY, J. Incremental relational lenses. Proc. ACM Pro-
gram. Lang. 2, ICFP (2018), 74:1–74:30.

9. JOHNSON, P., AND THOMAS, R. The maintamance of duplicated databases. Internet Re-
quest for Comments RFC 677 (January 1976).

10. KELLER, A. M. Algorithms for translating view updates to database updates for views
involving selections, projections, and joins. In Proceedings of the Fourth ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems, March 25-27, 1985, Portland,
Oregon, USA (1985), ACM, pp. 154–163.

11. KLEPPMANN, M., WIGGINS, A., VAN HARDENBERG, P., AND MCGRANAGHAN, M.
Local-first software: you own your data, in spite of the cloud. In Proceedings of the 2019
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, (Onward! 2019) (2019), pp. 154–178.

12. SHAPIRO, M., PREGUIÇA, N. M., BAQUERO, C., AND ZAWIRSKI, M. A comprehensive
study of convergent and commutative replicated data types. Rapport de recherche 7506
(January 2011).

13. SHAPIRO, M., PREGUIÇA, N. M., BAQUERO, C., AND ZAWIRSKI, M. Conflict-free repli-
cated data types. In 13th International Symposium on Stabilization, Safety, and Security of
Distributed Systems, (SSS 2011) (2011), pp. 386–400.

14. YU, W., AND IGNAT, C.-L. Conflict-free replicated relations for multi-synchronous
database management at edge. In IEEE International Conference on Smart Data Services
(SMDS) (October 2020), pp. 113–121.

15. YU, W., AND ROSTAD, S. A low-cost set CRDT based on causal lengths. In Proceedings
of the 7th Workshop on the Principles and Practice of Consistency for Distributed Data
(PaPoC) (2020), pp. 5:1–5:6.


