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Abstract 

Membrane transporter proteins are divided into channels/pores and carriers and constitute 

protein families of physiological and pharmacological importance. Several presently used 

therapeutic compounds elucidate their effects by targeting membrane transporter proteins, 

including anti-arrhythmic, anesthetic, antidepressant, anxiolytic and diuretic drugs. The lack of 

three-dimensional structures of human transporters hampers experimental studies and drug 

discovery. In the present chapter, the use of homology modelling for generating structural 

models of membrane transporter proteins is reviewed. The increasing number of atomic 

resolution structures available as templates, together with improvements in methods and 

algorithms for sequence alignments, secondary structure predictions and model generation, in 

addition to the increase in computational power have increased the applicability of homology 

modelling for generating structural models of transporter proteins. Different pitfalls and hints 

for template selection, multiple sequence alignments, generation and optimization, validation 

of the models, and the use of transporter homology models for structure based virtual ligand 

screening are discussed. 

 

Key words: Homology modelling, Transporter proteins, Carriers, Channels and pores, Model 
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1. Introduction 

Membrane transporter proteins (channels and carriers) are responsible for cellular extrusion and 

uptake of ions, electrons, nutrients, signaling molecules, drugs, toxic substances, metabolic 

products, macromolecules and other components involved in cellular regulation and function. 

Transporter proteins are necessary for establishing and controlling the voltage gradient across 

cell membranes and are major determinants for the pharmacokinetics, safety and efficacy of 

drugs and toxic substances. The Saier group at the University of California, San Diego, has 

designed and is maintaining the Transporter Classification Database (TCDB; 

http://www.tcdb.org),  which has become an official classification system approved by the 

International Union of Biochemistry and Molecular Biology [1,2]. The TCDB includes 

transporter proteins from all types of living organisms, and is organized as a five level 

hierarchical system of class, subclass, family, subfamily and the particular transporter protein. 

At present (17th of March, 2020), the TCDB contains 19 634 protein sequences classified into 

1449 transporter families based on phylogeny and function. The TCDB also contains PDB-

database (https://www.rcsb.org/) codes of known transporter protein structures and links to 

structural data. Transporters are multi-spanning integral membrane proteins, and most of them 

form α-helical bundles and/or barrel-like β-hairpin secondary structures [3,4]. 

Based on the transporter classification system, membrane transporter proteins are divided into 

channels and carriers.  Channels are water channels [2] or ion channels [5] that passively 

transport substances down an electrochemical gradient (also called facilitated diffusion) with a 

rapid transportation rate (milliseconds) since multiple molecules can pass the channel 

simultaneously. The two main types of ion channels are voltage-gated and ligand-gated ion 

channels. Voltage-gated ion channels are classified according to the ion being translocated, and 

ions are transported through the channels by diffusion down their electrochemical gradient. 

Voltage-gated ion channels are commonly targets for anesthetic and anti-arrhythmic drugs. 

http://www.tcdb.org/
https://www.rcsb.org/
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Ligand-gated ion channels open upon binding of a specific substrate, like the γ-aminobutyric 

acid (GABA) receptor A (GABAAR), which triggers the opening of a chloride ion selective 

pore upon GABA binding [6]. The receptor has a pentameric structure of five homologues 

subunits (a combination of α-, β-, and γ-subunits) surrounding the chloride ion selective pore 

[7,8]. The GABAAR is the main target for the benzodiazepines, which function as allosteric 

modulators of the receptor, and are sedative and anxiolytic drugs. From a pharmacological point 

of view, ligand-gated ion channels are often classified as ionotropic receptors and not 

transporters [9]. 

Carriers show stereospecific substrate specificity, where the binding of the substrate triggers 

conformational changes that allow movement of the bound substrate and release on the other 

side of the membrane. They  mediate passive transport or active transport against a 

concentration gradient and comprise, among others, solute carriers [10] and ATP-driven pumps, 

including ABC transporters [11]. During passive carrier transport, the substrate/solute diffuses 

along the concentration gradient without consuming energy, while active transport requires 

energy as the movement of the substrate is against the concentration gradient. Carriers for active 

transport are divided into primary and secondary active transporters.  In primary active 

transport, hydrolysis of molecules such as ATP provides energy required for transport of a 

substrate against its concentration gradient. In secondary active transport, the electrochemical 

gradient generated by migration of ions down the gradient is used to transport substrates against 

their concentration gradient. The secondary active transport can be by antiporters, where the 

substrate and ion transport across the membrane is in opposite direction of each other, or by 

symporters, where the ion and substrate transport is in the same direction.  Due to the 

complicated process of necessary conformational changes, carriers have much lower 

transportation rates than channels (102-104 molecules per second for carriers and 106-107 

molecules per second for ion channels) [12].  
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Examples of carriers include the monoamine transporters of the neurotransmitter: sodium 

symporter (NSS) family, that belong to the superfamily of solute carriers  [13]. The monoamine 

transporters are secondary transporters expressed in both the central (CNS) and peripheral 

nervous systems, being responsible for the reuptake of monoamines (5-hydroxytryptamine (5-

HT), dopamine and norepinephrine) from the extracellular space into the presynaptic cell. 

Dysregulation of monoamine mediated synaptic transmission in the CNS is connected to 

prevalent mental disorders including major depressive disorder (MDD) [14], schizophrenia  

[15], Parkinson’s disease [16] and attention deficit hyperactive disorder (ADHD) [17]. 

Inhibitors of monoamine transporters are therefore therapeutic agents in the pharmacological 

treatment of mental disorders, such as the selective serotonin reuptake inhibitors (SSRIs). In 

addition, monoamine transporters are also the primary sites of action of several 

psychostimulants and drugs of abuse including cocaine, ecstasy and methamphetamine [13].  

Another therapeutically important superfamily of carriers is the ATP-binding cassette (ABC) 

superfamily, that utilize the energy from hydrolysis of ATP to pump  different substrates, 

including drugs, out of the cells [11]. This superfamily includes the permeability glycoprotein 

(P-glycoprotein), the multidrug resistance associated protein (MRP1) and the breast cancer 

resistance protein (BCRP) and several others. Increased expression of these transporters 

contributes to multidrug resistance (MDR) of multiple structurally unrelated chemotherapeutic 

drugs [11]. These transporters were first discovered as mediators of MDR, but in addition, they 

are important for the normal excretion of drugs from the body and in the function of barriers 

such as the blood-brain barrier (BBB), and are therefore very important for the 

pharmacokinetics and bioavailability of drugs [11].  

In 2011, 67 transport proteins were primary effect-mediating targets for drugs approved by the 

US Food and Drug Administration (FDA) [18]. This corresponded to 15 % of totally 435 

primary effect-mediating targets of  FDA approved drugs in 2011 , making transporter proteins 
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the third most common class of human drug targets after receptors and enzymes. The most 

common type of transporter drug targets was voltage-gated ion channels with 29 primary effect-

mediating targets.  

At present (April, 2021), approximately 177.000 structural entities have been deposited in the 

PDB-database (https://www.rcsb.org/), which is a huge increase from approximately 13.500 

entities in 2000 [19]. A recent paper by Goodsell and co-workers show that in July 2019 the 

PDB-database contained 9834 structures of transporter proteins, of which 4131 were of 

channels (756 voltage gated-, and 968 ligand-gated ion channels) and pores. The 9834 

structures also included accessory factors involved in transport (1651 structures) and 

incompletely characterized  transport systems (952 structures) [19]. The number of available 

structures of clinical important transporter proteins has also increased, but still quite few human 

transporters are structurally characterized. The first x-ray crystal structure of an NSS transporter 

was published in 2005, which was the structure of the sodium dependent leucine transporter 

LeuT from the bacterium Aquifex aeolicus [20], while an inhibitor bound LeuT structure was 

published in 2008 [21]. The inhibitor bound structure was used, as a template for constructing 

homology models of human monoamine transporters for several years. The first human NSS 

transporter structure, the serotonin transporter (SERT), came several years later in 2016 [22]. 

The increase in the number of deposited structures indicates that technical advances in 

crystallization and structural data collection by synchrotron and major advances in three 

dimensional cryo-electron microscopy [23] during the last 10 years have contributed to an 

increased insight into three-dimensional structures of transporter proteins and other membrane 

proteins. Especially carriers, but also other transporter proteins are structurally flexible. 

Capturing the protein structure in interesting conformational states for further studies may be 

challenging. In spite of the increase in the number of structures, several transporter families are 

still poorly characterized at the molecular level, despite of clinical significance and potential as 

https://www.rcsb.org/
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drug targets [24]. The lack of structures at a sufficient level of structural details hampers rational 

drug design, and limits the understanding of transporter function and interactions.  

In lack of 3D structure, homology modeling is a valuable approach for obtaining structural 

information about transporter proteins. The increase in the number of available templates for 

homology modelling and improvements in computational power and molecular modelling 

methods have given increased applicability of homology modelling for generating structural 

models of transporter proteins. Computational methods for predicting the 3D structures of 

proteins have been used for several years, and the prediction methods are generally classified 

as de novo modelling, where the 3D structure is predicted directly from its amino acid sequence 

[25,26], traditional homology modelling (comparative modelling), and treading which mainly 

is used in combination with one of the other methods [27]. In spite of improved de novo 

methods, the homology modelling approach is still considered as the most accurate approach. 

A general homology modelling approach can be divided into four steps: 1) Identification of 

homologous proteins of known structure and selection of the best template or set of templates 

for the modelling. 2) Generating and optimizing (multiple) sequence alignments between the 

query sequence and homologues sequences (including template protein sequences). 3) Building 

and optimizing homology models of the query sequence. 4) Validation of the model(s).       

 

2. Materials 

The quality of the amino acid alignment between the template and the target is very important 

for the quality of the homology model. Methods for generating multiple sequence alignments 

were originally developed for soluble proteins [28] since knowledge-based reference 

alignments could be generated based on available 3D structures. Most soluble proteins are 

globular with a hydrophilic surface while most membrane proteins have quite hydrophobic 

membrane traversing regions, giving differences in the amino acid substitution preferences 
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between soluble proteins and membrane proteins. Due to the increase in the number of available 

structures from different membrane protein families, it has been possible to develop alignments 

methods for membrane proteins that take into account hydrophobicity profiles and 

transmembrane region predictions. Examples are the AlignMe program [29] that was developed 

for sequence alignments of solute carriers structurally resembling the bacterial leucine 

transporter LeuT, and the MP-T (Membrane Protein Threader) program [30]. Such programs 

have improved the sequence alignments of membrane proteins and thereby the quality of 

homology models [30].   

A table showing frequently used online servers and software tools for protein homology 

modelling is given by Muhammad and Aki-Yalcin [31]. These resources are commonly used in 

the construction of homology models of transporter proteins. We have a long lasting experience 

with the ICM-modelling program package [32,33], Prime (Schrödinger) [34] and Modeller [35] 

for generating homology models of solute carriers and G-protein coupled receptors [36-45].  

Online servers and services offering automatic generation of homology models are available, 

like SWISS-MODEL [46], and Phyre2 [47]. Some online tools are specifically designed for 

automatic generation of homology models of membrane proteins. These tools have 

implemented algorithms and methods specifically designed for sequence alignments, prediction 

of secondary structure, transmembrane regions and 3D models of membrane proteins   [48,49]. 

Examples are MEMOIR [50], MEDELLER [51] and RosettaMembrane [52].  

Services for automatically generation of homology models of membrane proteins may produce 

high quality models, especially when the sequence similarity between template and target is 

high [53]. Fully automatically generated models may also be decent starting models at low 

similarity between target and template, and the RosettaMembrane program has been 

specifically developed for modeling transmembrane helical proteins based on distant 

homologous as template [52]. At lower similarity, manual adjustments of the different steps in 
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the modelling procedure are often necessary, like adjustments of the multiple amino acid 

sequence alignments and introduction of constrains/restrains in building and optimization of 

the model. Manual adjustments of the alignment can be based on structural superposition of 

proteins of known 3D structure. Several molecular modelling packages, like the ICM modelling 

and Schrödinger program packages also contain possibilities for structural superposition of 

proteins.  Most available templates are bacterial, and when using bacterial templates for 

constructing models of human transporters, each step in the modelling must also be performed 

with caution due to differences between prokaryotes and eukaryotes. For example, post-

translation modifications are lacking in prokaryotes, which may affect protein structure, folding 

and dynamics and give differences between prokaryotes and eukaryotes. In such cases, a less 

automatic process where each step is carefully performed, with necessary manual adjustments, 

may give more accurate models of human transporters than fully automatically generated 

models [54].  

Relevant experimental data to guide the modelling can increase the accuracy of the models, and 

increase the hit rate during docking and virtual screening. Appropriate experimental data are 

results from site- directed mutagenesis studies or other molecular biology approaches that can 

contribute with structural information about the geometry of binding sites or other functionally 

important protein regions. Information from different biophysical and structural biology studies 

of transporter structure, function and dynamics can also be important, Further, ligand binding 

data like substrate specificity and inhibition kinetics, structure activity relationships studies of 

inhibitors and substrates can be used to refine models and obtain ligand specific (ligand steered) 

models. 

Several programs are available for structural validation of the generated homology models. 

These program include WhatCheck [55] and PROCHECK [56] that both are using geometrical, 

stereochemical, and statistical criteria to check the models, and ERRAT [57] which is 
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comparing the statistics of non-bonded interactions between different atom types of the model 

and highly refined structures. ICM Protein Health, which is a part of the ICM package, is using 

normalized force field residue energies and compare the energies with expected energies from 

high quality crystal structures [58]. In addition, Ramachandran plots can be used to check the 

backbone geometry of the model. Models can be uploaded to structural validation severs, as the 

SAVES (https://servicesn.mbi.ucla.edu/SAVES/), and the user can select between different 

programs for quality checking.    

 

3. Methods 

Selection of methods and the reliability of the models relay on the availability of templates 

close in amino acid sequence and function to the target. Homology models are computationally 

derived approximations of a protein structure, and will always contain inaccuracies and 

sometimes errors. The quality required for a model depends largely on its intended use. Low-

accuracy models can be completely sufficient for designing mutagenesis experiments, while an 

overall sequence similarity of more than 50 % between the target and template of soluble 

proteins is generally believed to be necessary for obtaining models that can be used for structure 

based drug discovery [59]. For mechanistic studies, the highest possible level of accuracy is 

essential [60]. The transmembrane regions and ligand binding sites are highly conserved within 

membrane protein families, despite the fact that the overall sequence similarity can be much 

lower than 50 %. Forrest and co-workers showed that a sequence similarity of approximately 

30 % in transmembrane regions between template and target gave a Cα root mean square 

deviation (RMSD) of 2 Å in these regions between the model and x-ray structure template [61]. 

A flow chart indicating the main steps in a homology modelling procedure of transporter 

proteins is shown in Fig. 1. The following sections outline particular steps in the scheme. 

https://servicesn.mbi.ucla.edu/SAVES/
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3.1 Template identification and selection  

Template selection is most often based on a traditional BLAST (Basic Local Alignment Search 

Tool) search for identifying templates most similar in sequence to the query sequence (the 

template). The structure closest in sequence to the target sequence is then most often used as a 

template for modelling the target. However, using the sequence similarity only as the criterion 

for template selection will not always give the most optimal model (see Note 1). 

Carriers undergo substantial conformational changes during the transport cycle. For solute 

carriers, an “alternating access” mechanism has been proposed that requires transition between 

at least three conformational states in which the ion and substrate binding sites are alternately 

exposed to the inner and outer side of the membrane, or occluded within the carrier [62]. Crystal 

structures of the sodium dependent leucine transporter LeuT from the bacterium Aquifex 

aeolicus [63], and other secondary transporters with similar 3D fold [64,65], support the 

suggested translocation mechanisms, and the structures are classified as being in inward-facing, 

outward-facing or substrate-occluded states describing the putative pathway for substrate 

binding, translocation and release. Additional elucidation of the “alternating access” 

mechanism was given by biophysical studies and theoretical calculations [66,67]. Several 

energetically stable conformational states may therefore be possible during the transport cycle, 

which also needs to be taken into account during template selection. The putative template 

closest in sequence to the target sequence is not necessarily the best template, since it may not 

represent the conformational state in the transport cycle that was intended to model.  

Transporter proteins are structurally flexible, and during binding, the ligand binding cavity 

adopts to the structure of the binding molecule. The binding site structure may therefore be very 

different between an apo and holo structures of a transporter protein (Note 2). Due to structural 

adaption, the holo structure may be quite selective for the particular complexed ligand or for a 
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structural group of ligands. Binding site differences between apo and holo structures also need 

to be taken into account during template selection and in docking experiments.  

Models of transporter proteins are often constructed based on templates with relative low levels 

of overall sequence identity with the target (less than 30 %), due to the lack of available 

templates with higher similarity [54]. The application of such models may be limited. However, 

functionally important regions like substrate binding sites exhibit most often higher degrees of 

conservation than the rest of the structure, and fairly accurate structural models of binding sites 

may still be constructed in spite of poor overall accuracy [59]. It has been shown, by us and 

others, that homology models with an overall similarity of less than 25 % between the template 

and target may successfully be used for structure based virtual ligand screening. For example 

by using homology models of the noradrenaline transporter (NET) and experimental 

verification, Schlessinger and coworkers identified NET inhibitors [68], while we used 

homology models of the SERT and experimental verification to identify SERT inhibitors [37]. 

In both studies, the structure based virtual ligand screening was performed with homology 

models based on the structure of the leucine transporter LeuT from the bacterium Aquifex 

aeolicus [20,21]. The overall amino acid similarity between LeuT and SERT is 21 %, while the 

similarity in transmembrane helices involved in substrate binding is 35 % [38]. Fig 2 shows the 

binding site of LeuT with the inhibitor L-Trp [21], which was used as template for our 

homology models, and the binding site of human SERT with the SSRI paroxetine [22], which 

was determined after our homology models. These x-ray structures show that there are both 

conserved and non-conserved amino acids between the binding sites, and that the L-Trp binding 

site in LeuT is narrower than the paroxetine binding site in SERT, which may indicate that 

LeuT has adopted to the smaller inhibitor. Our initial LeuT-based SERT models could not dock 

most of the known SERT inhibitors [38], and special treatment of the binding site was 

necessary.  By using the ICM software to generate multiple conformations of the binding site 
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and perform ensemble docking [38,69,70], we were able to dock most known SERT inhibitors 

and select binding site conformations for structure based virtual ligand screening that 

recognized new SERT inhibitors [37]. These studies indicate that special treatment of binding 

site amino acids may be important for the success rate of docking and structure based virtual 

ligand screening when using carrier models based on low sequence identify between template 

and target (Note 3). 

A single model based on one template only represents a static snapshot, which will reduce the 

feasibility of the generated model. If several templates are available for the transporter, several 

models can be constructed, and in that way structural flexibility is partly taken into account. 

Another relevant factor for template selection is the structural quality of template structures. In 

general, high resolution structural templates should be favored over low resolution templates. 

Several putative template structures for transporter proteins are low resolution structures from 

cryo-electron microscopy.  Experimental conditions, putative structural errors and crystal 

packing forces will also affect the quality of homology models, and should also be considered 

in the selection of templates. If crystal packing forces affect particular interesting areas it will 

affect the quality of the homology model. 

 

3.2 Target-template alignments 

The sequence alignment between target and template is as a very critical step, and the quality 

of the alignment determines the quality of the model. Small mistakes in the alignment may give 

limited accuracy of the models. A multiple sequence alignment is recommended as a basis for 

the alignment between target and templates. Such an alignment will highlight evolutionary 

relationships within the family and increase the probability that corresponding sequence 

positions are correctly aligned. However, the sequences used in the alignment should be 

carefully inspected such that the sequence conservation is not biased towards a subset of 
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sequences within the family/subfamily (Note 4).  If more than one temple is available, it may 

also be useful to adjust the alignment based on structural superposition of the known structures 

(Note 5).  

The amino acid similarity between template and target may be low which complicates the 

alignment procedure. For soluble proteins, an overall sequence identity between template and 

query higher than 40% will normally give an alignment with few gaps, and models where 

approximately 90 % of backbone atoms can be modeled with an RMSD of about 1 Å. An overall 

sequence identity of 30 % - 40 % will normally results in more frequent insertions and deletion 

in the alignment and models where 80 % of backbone atoms are modelled with an RMSD of 

approximately 3.5 Å [71,72].  For membrane protein families the overall amino acids similarity 

may be quite low, but the structure of membrane spanning areas and binding sites for 

endogenous activators are well conserved.  

 

3.3 Model building and refinements 

The model building of transporter homology models briefly involves three main steps: 1. 

Construction the structurally conserved core region, which for most transporters are the 

transmembrane parts. 2. Construction of extracellular and intracellular loop regions, which 

normally are the less conserved parts. 3. Optimization of side chains conformation and energy 

refinements of the model. 

The methods used for construction of conserved core regions can be classified into rigid body- 

assembly methods [33], segment matching methods [73], spatial restraint methods [35] and 

artificial evolution methods [74,75].  Reviews of core construction methods used by the most 

popular homology modelling programs are given by Xiang [71] and Muhammad and Aki-

Yalcin [31]. The ICM program [33] and Prime (Schrödinger) [34]  use the rigid body assembly 
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method, while MODELLER which is the most popular homology modelling program (based 

on citations) uses the spatial restraint method [35]. Some programs use a combination of 

different methods for constructing the core regions [76]. 

The length of loops and terminals may differ substantially within a membrane protein family, 

and the construction of these regions are therefore much more uncertain than of the conserved 

core regions. The structure of terminals and loops may be important for binding specificity and 

function, and the accuracy of these parts is an important factor for the application of the model 

in further studies. The inclusion of loops in the model may therefore depend on the planned 

application of the model, and wrongly modelled loop structure may induce structural stress into 

conserved regions during refinements (Note 6).  For non-conserved shorter loops (4-7 amino 

acids), a database loop search is most often used, where available structures in the PDB are 

searched to provide the loop structure. Another approach is to use de novo prediction methods 

to search the conformational space of the loop. Monte Carlo (MC) simulations, molecular 

dynamics  (MD) simulations, simulated annealing and genetic algorithms are used, and often, 

in combination [77-79]. 

The model refinements process usually involves removal of clashes and geometrical 

regularisation of bond lengths and angles, but may also involve more sophisticated structural 

corrections. The refinements process may be performed with traditional molecular mechanical 

force field programs and often starts with an energy minimization, and involve different steps 

of side chain conformational sampling, interactive annealing of backbone atoms, and 

refinements by MC and MD simulations. The different steps in the refinements may eliminate 

structural errors, but it is important to have in mind that other error may as well be introduced 

(Note 6). 

Structural templates often represent an unliganed state of the binding site (apo structure) or the 

binding site geometry is biased against a particular compound complexed with the template 
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(holo structure). Models based on such templates may also represent unliganed or biased 

conformations of the binding site. Docking known target binders into these models may be 

problematic and give low docking score. Incorporating ligand binding data into the model 

optimization process may improve docking into such models. If the template contains a 

compound in the binding site, one approach is to replace the compound with a preferred target 

compound, and treat the ligand as a part of the model through the modelling process, and 

thereby obtain a ligand gated or ligand steered model with a binding site adjusted to the target 

compound [80]. A simpler approach is to perform induced fit docking of high affinity 

compounds that will generate additional conformations of the binding site. Structural clustering 

of known target compounds and induced fit docking of cluster representatives may give binding 

site conformations that are specific for a structural cluster of known compounds [44].  

Homology models optimized by docking of known compounds (ligand-based models) may give 

an improved accuracy of the binding site conformation, and have been shown to increase 

docking enrichment [81], and increase the hit rate during structure based virtual screening 

experiments [37,59]. However, the success demands on correct docking of compounds used to 

optimize the homology models. 

  

3.4 Model validation 

Homology models of channels and carriers will always contain uncertainties and shortcomings, 

especially when the similarity in sequence and function between the template and target is low. 

However, models generated from templates of low similarity may still be used as a working 

tool for generating hypothesis and designing site directed mutagenesis.  

The models need to be validated both for spatial feasibility and predictive applicability.  

Evaluation of spatial feasibility may access local and global structural errors and may be based 

on geometrical, stereochemical, statistical and/or energy criteria. The validation can form the 
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basis for additional refinements of the model, adjustments of the target-template alignment and 

rebuilding models. Predicting transporter-ligand interactions by using structure based virtual 

ligand screening enrichment has become a commonly used approach for testing the model 

compliance with experimental ligand binding data. A dataset consisting of known potent 

compounds for the target and decoys (typical ration of 1:50) is docked and the compounds are 

ranked by predicted binding affinities.  The decoys resemble potent binders in molecular 

weight, number of atoms, and physiochemical properties, and are presumed non-binders. If the 

model is capable of scoring the known binders in front of the decoys, the model is considered 

to be predictive and has a good potential for structure based drug discovery.  This approach can 

be used to evaluate between models before a virtual screening campaign (Note 7).  

The optimal testing of a model or a set of model is to design and perform in vitro studies based 

on the models. Several iterative cycles of spatial feasibility and predictivity testing and models 

adjustments may be necessary before in vitro testing. The in vitro testing may for example be 

site directed mutagenesis combined by ligand binding studies, or testing of hits from a structure 

based virtual screening campaign.    

 

4 Notes 

1. A careful selection between appropriate templates is necessary. The template closest in 

sequence to the target is not necessary the most appropriate. Most transporter proteins 

(especially carriers) undergo substantial conformational changes during the transport 

cycle and the template conformation may not be in an appropriate conformation for the 

target model.  

2. If the purpose is to study transporter-ligand interactions, it must be considered if 

templates represent conformations biased for a ligand or a group of ligands (apo or holo 

structures).   



18 
 

3. Proper treatment of the binding site amino acids are important for the success rate when 

docking into carrier models based on low sequence identify between template and 

target. A docking protocol taking the structural flexibility of the binding site (induced 

fit, ensemble docking) may increase the success rate.  

4. The sequences used in the multiple sequence alignment should be carefully selected to 

avoid that the sequence conservation is biased towards a subset of sequences within the 

family/subfamily. However, sequences lacking known 3D structures should also be 

included in the multiple sequence alignment, since that will highlight the 

family/subfamily sequence conservation.  

5. Manual adjustments of the multiple sequence alignment may be necessary. Such and 

alignment must be based on a structural superimposition of known structures as a 

knowledge-based reference for the alignment. 

6. Homology models of transporters need careful refinements. A tough global refinement 

process using molecular mechanics force field programs for energetically and 

structurally refinements by MD or MC simulations may as well induce uncertainties 

into conserved regions. This is particularly important if the homology between the 

template and target is low, and binding sites for ions and water molecules are not 

conserved. MD and MC simulations for refinements may than induce structural stress 

into conserved regions.   

7. The ligand datasets used to validate models by docking should not be biased against a 

subset of the known binders for the target. 
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6 Figure captions 

Fig. 1. Flow chart indicating putative steps in the modelling procedure of transporters. Template 

selection, alignment, model building and refinements (in dark blue), model validation (light 

blue), and putative use of the final models (green).  

Fig. 2. Above: The leucine transporter LeuT from the bacterium Aquifex aeolicus in complex 

with the inhibitor L-Trp (PDB id: 3F3A). Below: The human SERT structure in complex with 

the inhibitor paroxetine (PDB id:5I6X). Amino acid side chains within 5 Å of the inhibitors 

have been displayed. Color coding of atoms: oxygen; red, nitrogen; blue, carbon (SERT); light 

blue, carbon (LeuT); grey, carbon (inhibitors); yellow. Color coding of ions: Na+: blue sphere, 

Cl-: green sphere.     

 



30 
 

 

Fig. 1 

 



31 
 

 

Fig. 2 


