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Abstract—Dry eye disease is a common and potentially debili-
tating medical condition. Meibum secreted from the meibomian
glands is the largest contributor to the outermost, protective
lipid layer of the tear film. Dysfunction of the meibomian glands
is the most common cause of dry eye disease. As meibomian
gland dysfunction progresses, gradual atrophy of the glands
is observed. The meibomian glands are commonly visualized
through meibography, a technique requiring specialist equipment
and knowledge that might not be available to the physician.
In the present project we use machine learning on clinical
tabular data to predict the degree of meibomian gland dropout.
Moreover, we employ explainable artificial intelligence on the best
performing algorithms for feature importance evaluation. The
best performing algorithms were AdaBoost, multilayer perceptron
and LightGBM which outperformed the majority vote baseline
classifier in every included evaluation metric for both multioutput
and binary classification. Through explainable artificial intelli-
gence known associations are validated and novel connections
identified and discussed.

Index Terms—Machine Learning, Explainable Artificial In-
telligence, Dry Eye Disease, Meibomian Gland Dysfunction,
Meibography

I. INTRODUCTION

The meibomian glands (MGs) are modified sebaceous
glands in the eyelids. These glands are responsible for pro-
ducing and secreting meibum, a lipid substance forming the
majority of the lipid layer of the ocular tear film [1].

A schematic illustration of the tear film is included in
Figure 1. The lipid layer is the outermost layer of the tear
film, decreasing evaporation of the underlying mucoaqueous
component, thus preventing dehydration of the ocular surface
and providing protection from the external environment [1].
Meibomian gland dysfunction (MGD) is the most common
cause of dry eye disease (DED), which affects 5-50% of
the population [2], [3]. The hallmark of DED is a disrup-
tion of tear film homeostasis, while MGD is defined as
“a chronic, diffuse abnormality of the meibomian glands,
commonly characterized by terminal duct obstruction and/or
qualitative/quantitative changes in the glandular secretion. This
may result in alteration of the tear film, symptoms of eye

irritation, clinically apparent inflammation, and ocular surface
disease” [3], [4]. The loss of MGs, often referred to as
meibomian gland (MG) dropout, is associated with several
underlying local and systemic disease states, their treatment,
senescence, and MGD [5].

Figure 1: The ocular tear film, its layers and contributors.
Illustration by Sara Nøland.

The degree of MG dropout is commonly determined through
contact, or more recently, non-contact meibography, depict-
ing the inside of the eyelids and the MGs with infrared
photography. Following imaging, the amount of MG dropout
is either calculated with software or visually graded by the
physician, commonly placed in groups of thirds or quartiles
representing the percentage of glandular loss. Determining the
degree of MG dropout is of importance regarding disease
staging, rate of progression and treatment alternatives. Some
treatment options, such as intense pulsed light (IPL) treatment,
aim to improve tear film stability by increasing the function
of the MGs and quality of the secreted meibum. For such
modalities to be effective, a minimum of residual glands are
required. Moreover, for proper calibration and dosage the
correct amount of MG dropout is often a necessary input.

The equipment necessary to perform meibography can be



expensive and unavailable to physicians. Moreover, the proce-
dure may be difficult and unpleasant, and the interpretation
of the images requires expertise. As a result, the current
study examined whether machine learning (ML) algorithms
can predict the degree of MG dropout based on questionnaires
and routine dry eye clinical tests. Furthermore, we utilise
explainable artificial intelligence (XAI) to investigate which
clinical features are the most important predictors concerning
MG dropout.

The main contributions of this work are the following:

• Evaluate the ability of ML algorithms to predict the
degree of MG dropout based on tabular clinical data.

• Employ XAI to delineate the most important predictors.
• Compare results from different XAI techniques used on

different classifiers of both tree-type architecture and
neural networks.

• Discuss the clinical implications of the features recog-
nized as the most important, both known associations and
novel connections.

II. RELATED WORK

In ophthalmology and DED, ML has mostly been used
for image analysis [6]–[8]. However, our group recently used
principal components analysis comparing salivary and ocular
lipids in DED patients and healthy controls [9]. Also, we
employed various ML algorithms on clinical tabular data in
DED patients to predict instability of the tear film [10].

When using ML, especially in medicine, there is a need
for explainability [11]. Lack of explainability in a black box
diagnostic tool leads to several legal, ethical and medical
challenges [12]. For example, how can a patient really give
informed consent to a diagnostic procedure that can not
be explained? Who is legally liable in the case of errors?
From a medical perspective it is of utmost importance for
the physician to understand why a given model makes the
recommendation it does. If the the model output differs
from the conclusion reached by the clinician, the physician
should be able to verify the clinical validity of the features
weighted by the model. From a medical research standpoint,
XAI will help discover novel associations and potentially
contribute to establishing causative factors. Approaches such
as visualization through knowledge graphs, combining deep
learning (DL) and ontology, integrating human-in-the-loop,
transfer learning and multi-task learning have been pointed
out as possibilities to increase human understanding of opaque
ML algorithms [13].

Although neural networks are represented herein with the
multilayer perceptron (MLP), our main focus is on tree-based
models as they are computationally less expensive and still
tend to outperform DL architectures on tabular data [14], [15].

As far as we know, this is the first time predictions on MG
dropout through ML based on tabular data has been attempted.
Moreover, this is the first time XAI has been used to explore
the causes of MG atrophy.

Table I: Distribution of MG dropout.

Meiboscale Number of observations (right eye / left eye)

0 2/2
1 44/33
2 215/196
3 183/173
4 129/169

III. METHODOLOGY

A. Participants

The dataset included clinical data from 582 patients exam-
ined in the Norwegian Dry Eye Clinic between September
2021 and December 2022. The inclusion criteria were age
over 18 years, a diagnosis of DED and the ability to provide
informed consent. No specific exclusion criteria were specified
for the inclusion of clinical data in the present project.

All subjects signed written, informed consent. The study
was approved by the Regional Medical Ethics Committee of
South-East Norway (reference id 6892). The study adhered
to the Declaration of Helsinki. The dataset is not publicly
available since it contains patient-sensitive data but all code
produced to conduct the experiments is made public available.

B. Ophthalmological examinations

All clinical examinations were performed by a single dry
eye expert physician (FAF). Prior to the clinical examina-
tion, patients answered the Ocular Surface Disease Index
(OSDI), 5-Item Dry Eye Questionnaire (DEQ-5) as well as
questionnaires developed in our clinic regarding presence and
duration of various symptoms, medications, diet and more.
Following completion of the questionnaires, dry eye specific
tests were performed in the following order: Schirmer test
without anesthesia, tear film break-up time (TBUT) measured
with fluorescein under slit lamp microscopy (average of three
measurements used), ocular surface staining (OSS) (assessed
according to the Oxford grading scheme [16]), number of ex-
pressible glands (counted among the central eight on the lower
eyelids), meibum expressibility (ME) (grading the number of
expressible glands among the central five glands of the lower
eyelids), meibum quality (MQ), intraocular pressure (IOP),
and finally meibography performed with the Keratograph 5M
(Oculus Optikgeräte GmbH, Wetzlar, Germany). The degree
of MG dropout was graded between 0 and 4 according to the
meiboscale as presented by Pult and Riede-Pult in which grade
0 equals 0% dropout and grade 1 to 4 represent increasing
quartiles [17].

C. Data preprocessing

For both the classification task and XAI the same dataset
including tabular data from 582 DED patients examined at the
Norwegian Dry Eye Clinic was analysed. The degree of MG
dropout was missing for nine patients which were excluded.
The final dataset included 573 patients. Details regarding
distribution of MG dropout is presented in Table I.



Only two patients had MG dropout grade 0 and were
included among patients with grade 1 since the models are
unlikely to learn from such a low number of instances. For
both problems, models predicting the degree of MG dropout
on both lower eyelids were developed.

D. Classification

In total 9, 150 out of 53, 544 values were blank, which
equals 17.1%. Missing data were handled with the KNNIm-
puter with the number of neighbors set to three and assigned
equal weighting. Because the dataset was comprised of both
binary and numerical variables, StandardScaler was used to
normalise the data by removing the mean and scale to unit
variance. This way of scaling avoids inappropriately weighted
importance of a given feature based on high numerical values
alone. In this study, our primary focus was on the explain-
ability aspect of the ML models rather than their predictive
performance. We aimed to provide insights into the decision-
making process of the models and understand how the input
features contribute to the predictions. Our main objective
was to enhance the interpretability and transparency of the
models, which is essential for trust and adoption in real-
world applications. Given this focus, 80% of the dataset
was used for training and validation while 20% was held
out as an independent test set, rather than employment of
a non-overlapping dataset or cross-validation. As a baseline,
a classifier that places all instances in the most frequent
category was used. Also, a linear support vector classifier
(SVC) was included as linear regression is commonly used
for classification tasks in medicine.

Due to the imbalanced data and multioutput classification,
model performance was evaluated using balanced accuracy,
Matthews correlation coefficient (MCC) and the F1 score.

In addition to multioutput classification, binary classifiers
for each grade of MG dropout were trained. That is, models
were trained to predict whether a patient had MG dropout
grade 1 or not, grade 2 or not, grade 3 or not, and finally,
grade 4 or not.

E. Explainable artificial intelligence

Feature importance was examined for all the best perform-
ing classifiers, which included the MLP, AdaBoostClassifier,
HistGradientBoostingClassifier, XGBoost Classifier and the
LightGBM Classifer. For MLP, AdaBoost and HistGradient-
Boosting classifiers permutation importance was used. For
the XGBoost and LightGBM classifiers the built-in feature
importance evaluators were employed. Permutation feature
importance disrupts the relationship between the feature and
the true outcome by permuting, or rearranging, the values
of a given feature [18]. Thus the importance of a feature is
measured by calculating the change in the models prediction
error following permutation of a feature. The split count
importance feature ranking used by the LightGBM classifier
bases a feature´s importance value on the number of times
the feature is used to split the data. All experiments regarding
classification and XAI were performed using scikit-learn in

Table II: Demographics and clinical data.

Sex Frequency

Men 145
Women 428

Parameter Min Max Mean SD

Age 18 91 53.53 16.98

Schirmer test (mm/5min)

Right eye 1 35 17.59 10.75
Left eye 1 35 15.93 9.99

TBUT (seconds)

Right eye 1 11 4.40 3.02
Left eye 1 11 4.38 2.95

OSS

Right eye 0 12 2.28 1.93
Left eye 0 12 2.35 1.86

Number of expressible glands

Right eye 0 8 5.16 2.30
Left eye 0 8 4.68 2.31

ME

Right eye 0 3 1.15 1.03
Left eye 0 3 1.38 1.06

MQ

Right eye 0 20 4.88 3.57
Left eye 0 21 5.33 3.93

Osmolarity (mOsm/L)

Right eye 275 350 304.39 19.74
Left eye 275 347 300.63 17.41

IOP

Right eye 5 26 12.72 3.82
Left eye 4 35 12.52 3.98

OSDI 0 100 39.79 22.36
DEQ-5 0 22 13.02 4.30

DEQ-5: dry eye questionnaire-5; IOP: intraocular pressure; L: liter; Max:
maximum; ME: meibum expressibility; min: minimum; mm: millimeter;
mOsm: milliosmolar: MQ: meibum quality; OSDI: ocular surface disease
index; OSS: ocular surface staining; SD: standard deviation; TBUT: tear film
break-up time

Python 3.9.15 on an ASUS ROG Zephyrus M16 with Intel
Core i9-12900H CPU, NVIDIA GeForce RTX 3080 Ti GPU
and 32 GB memory. Experiments for XAI were performed on
the training data from the classification task. The source code
is publicly available, including results from classification and
feature importance analysis 1.

IV. RESULTS

The patients were from 18 to 91 years old, and the mean
age was 53.53 years. There were 428 females and 145 males.
Demographic and clinical data is presented in Table II.

A. Classifier Experiments

Classification with the baseline classifier on the right eye
gave a balanced accuracy score of .25, F1 score of .26 and a

1https://github.com/freafin/MeibomianGlandClassification

https://github.com/freafin/MeibomianGlandClassification


Table III: Results for the right eye.

Classifier Balanced accuracy MCC F1 score

Baseline .25 .0 .26

Linear SVC .36 .10 .40

XGBoost .43 .20 .47

AdaBoost .45 .15 .41

MLP .46 .16 .44

HistGradientBoost .49 .18 .45

LightGBM .50 .20 .47

MCC: Matthews correlation coefficient; MLP: multilayer perceptron; SVC:
support vector classifier. The best results are in bold.

Table IV: Results for the left eye.

Classifier Balanced accuracy MCC F1 score

Baseline .25 .0 .21

Linear SVC .27 .0 .26

XGBoost .33 .11 .37

AdaBoost .34 .13 .39

MLP .34 .10 .37

HistGradientBoost .34 .09 .37

LightGBM .37 .10 .39

MCC: Matthews correlation coefficient; MLP: multilayer perceptron; SVC:
support vector classifier. The best results are in bold.

Table V: Balanced accuracy for binary classification of dropout
grades in the right eye.

MG dropout grade SVC AdaBoost LightGBM MLP

1 .63 .73 .75 .79
2 .53 .51 .51 .56
3 .51 .52 .56 .57
4 .59 .62 .59 .64

MG: meibomian gland; MLP: multilayer perceptron; SVC: support vector
classifier. The best results are in bold.

MCC of .0. With the linear SVC, balanced accuracy increased
to .36, while the best performing classifiers, XGBoost, Ad-
aBoost, MLP, HistGradientBoost and LightGBM reached .44,
.45, .46, .49 and .50, respectively. Results for the right eye are
presented in Table III and results for the left eye in Table IV.

For binary classification the baseline classifier had a bal-
anced accuracy of .5 for all classes due to assigning all subjects
to the majority class and there only being two possibilities.
Results from the binary classifiers are presented in Table V.

B. Feature Importance Experiments

For the sake of brevity, only feature importances from the
MLP, AdaBoost and LightGBM classifiers are included. The
results from the remaining experiments are available online.
First, feature importances according to the MLP and AdaBoost
classifiers using permutation importance are presented fol-

lowed by inspection of the in-built split count method used
by the LightGBM classifier.

1) Multilayer Perceptron Permutation Importance: The 20
most important features for predicting MG dropout with the
MLP are presented in Figure 2a. For the right eye, age was the
most important predictor. Features from previously undergone
treatments such as laser eye surgery, autoimmune diseases
like rheumatoid arthritis, restrictive diets and clinical signs
are all represented. Their clinical implications are discussed
below. Some of the specific features differed between the eyes,
however, the overall clinical motif remained similar.

2) AdaBoost Permutation Importance: The 20 features re-
garded as most important by the AdaBoost classifier are listed
in Figure 2b. For the right eye, features such as age, number
of expressible glands, osmolarity and tear film stability were
of importance. Also, clinical signs such as telangiectasias and
cicatricial disease are high ranking. Moreover, self-reported
presence of hyperemia, itching, epiphora as well as symptoms
in the morning and in the summer were seen as important.

3) LightGBM Classifier Split Count Importance: The 20
features ranked as most important by LightGBM in predicting
MG dropout are listed in Figure 2c. Unlike the features seen
as important by the MLP, no previous treatments, systemic
autoimmune diseases or dietary factors are included. Rather,
clinical features including age, osmolarity, tear film stability,
the number of expressible MGs, MQ, and OSDI were consid-
ered important. Clinical implications are discussed below.

V. DISCUSSION

The main aim of the present project was two-fold. First,
we wanted to determine whether ML algorithms could make
accurate predictions of MG dropout based on clinical data and
questionnaires. Second, we set out to illuminate which features
were the most important predictors contributing to the loss of
MGs.

Concerning multiclass classification, our models outper-
formed the baseline and linear SVC classifiers for both eyes.
The F1 score increased from .26 at baseline to .47 with Light-
GBM, indicating superior model performance. However, the
MCC remained relatively low, increasing from .0 to only .20
for the best performing algorithm. Since the MCC include both
true and false positives and negatives, globally good results
are necessary for a value closer to 1 which represents perfect
predictions [19]. In addition to outperforming the baseline
classifiers, the models presented an estimated probability that a
given subject belongs to a given class. These probabilities were
typically centred around the class considered most probable by
the model in a decreasing fashion. Thus, although the models
might not be absolutely certain, the clinician is presented with
a probability overview, indicating to which class a patient
belong. As a result, the physician will have an estimated
probability of whether the patient has more than 75% MG
dropout, which may be of specific importance when deciding
treatment alternatives.

The binary classifiers outperformed baseline classification
metrics with the MLP achieving the overall greatest results.



(a) Multilayer Perceptron

(b) AdaBoost Classifier

(c) LightGBM Classifier

Figure 2: Feature importance from the Multilayer perceptron, AdaBoost and LghtGBM Classifiers. Left: right eye. Right: left
eye. Feature importance is arranged top to bottom.



When predicting in a binary fashion the data becomes highly
skewed with proportionally few patients belonging to the
positive class. A balanced accuracy of .5 represents predicting
all subjects in the majority class. As can be seen from Table V
and the confusion matrices presented in the source code, the
classifiers managed to overcome the skewness of the data
in varying degree depending on classifier and class to be
predicted.

When looking at feature importance, age was one of the
most important features of MG dropout according to all
included algorithms, validating previous observations [5], [20].

For both AdaBoost and LightGBM, the number of express-
ible glands was of particular importance in predicting the
amount of MG dropout. This is understandable because totally
atrophied glands will not be expressible. However, this lack
of expressibility might also be due to reversible obstruction
of only partially atrophied glands by thickened, stagnated
meibum. As such, the quality of the secreted meibum was
considered among the most important predictors by both the
MLP and LightGBM. These findings are very interesting as
previous reports have questioned whether MG dropout might
be preceded by increased intraluminal pressure resulting from
meibum stagnation [21].

The fact that TBUT was one of the most important features
for all three classifiers substantiates the role of the MGs and
meibum in stabilising the tear film. This is in accordance with
our previous findings that the degree of MG dropout is an
important predictor of an unstable tear film [10]. Interestingly,
lid margin abnormalities such as telangiectasias, cicatricial
disease, an irregular lid margin and displacement of the
mucocutaneous junction stand out as important features. The
latter of these has previously been proposed as one of the
diagnostic criteria for MGD [22]. The same article indicated
the ocular symptom score as the most important diagnostic
tool regarding MGD. In the present work both the OSDI
and several elements from our in-house questionnaires were
among the most important features. Self-reported epiphora,
stinging and gritty sensations, itching, blurry vision, symptoms
at various times of day and year are all included among the 20
most important features. Since these results stem from our in-
house questionnaires they are all previously unconfirmed. Data
gathering in the clinic is still ongoing and we aim to reassess
the results on larger datasets when possible. Also, we want
to evaluate whether any of these self-reported elements might
predict effect (or lack thereof) to various treatments used in
the clinic.

As the only classifier among the three presented here,
the MLP included risk factors, such as blepharoplasty and
laser eye surgery, medications, such as antidepressants and
isotretinoin, as well as underlying autoinflammatory diseases
like rheumatoid arthritis (RA), systemic lupus erythemato-
sus (SLE) and hypothyroidism. An increased degree of MG
dropout has been described among patients with SLE [23],
[24], and both RA and SLE are associated with secondary
Sjögren‘s syndrome [25]. Refractive surgery and cataract
surgery might pose deleterious effects on the MGs [26], [27].

However, the impact of surgery and the remaining risk factors
accentuated by the MLP on the MGs are all in need of further
investigation.

Interestingly, several restrictive diets such as veganism, veg-
etarianism and pescetarianism were among the most important
features for the MLP in predicting MG dropout. Studies have
indicated an ameliorating effect from omega-3 and omega-6
fatty acids on DED [28]–[30], as well as from supplementation
of fish oil [31], and a mediterranean diet [32], [33]. Moreover,
a recent study indicated a possible protective effect from
animal fats in regards to DED [34]. However, we do not claim
that there is any causal relationship between these diets and
the atrophy of MGs. These results may be because of selection
bias as all included subjects are DED patients. Also, since
patients with a greater degree of dropout may experience more
symptoms, there is a possibility that they are more prone to
try different diets for alleviation. The possible link between
diet and MG dropout is of potential great consequence and in
need of further research.

The model performance varied between the eyes with better
performance on the right eye. Also, the feature ranking differed
between the eyes. This can be explained by the higher number
of eyes with dropout grade 4 among the left eyes. Also, for
both models, measurements from the contralateral eye was
important. This is due to both eyes being affected in a large
number of patients.

VI. CONCLUSION

This study uses ML methods to classify DED patients
according to the degree of MG atrophy. Moreover, we employ
two XAI methodologies, namely permutation importance and
split count importance. The predictive capabilities of the
models presented herein cannot replace meibography in the
clinic yet. However, we believe that the models are accurate
enough to prove valuable for clinicians lacking the necessary
equipment when considering treatment alternatives. Based on
our findings with XAI in this study, age, the number of
expressible MGs, tear film stability and symptoms were the
most important features when predicting the degree of MG
dropout. Furthermore, several interesting novel associations
were presented by the MLP. This shows that XAI can be
used to discover interesting and potentially novel medical
knowledge.

For future work we plan to compare the predictive
capabilities of the model in clinical practice. In addition
we are also working on collecting additional meibographic
images and combine these in a multimodal analysis.

Conflicting Interests: Fredrik A. Fineide is co-owner of
the Norwegian Dry Eye Clinic. Tor P. Utheim is the founder
and co-owner of the Norwegian Dry Eye Clinic.
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