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ABSTRACT

We present decomposable (5, 6)-solutions M̃ 1,4 ×M6 in eleven-dimensional supergravity by solving the bosonic supergravity equations for a
variety of non-trivial flux forms. Many of the bosonic backgrounds presented here are induced by various types of null flux forms on products
of certain totally Ricci-isotropic Lorentzian Walker manifolds and Ricci-flat Riemannian manifolds. These constructions provide an analogy
of the work performed by Chrysikos and Galaev [Classical Quantum Gravity 37, 125004 (2020)], who made similar computations for decom-
posable (6, 5)-solutions. We also present bosonic backgrounds that are products of Lorentzian Einstein manifolds with a negative Einstein
constant (in the “mostly plus” convention) and Riemannian Kähler–Einstein manifolds with a positive Einstein constant. This conclusion gen-
eralizes a result of Pope and van Nieuwenhuizen [Commun. Math. Phys. 122, 281–292 (1989)] concerning the appearance of six-dimensional
Kähler–Einstein manifolds in eleven-dimensional supergravity. In this setting, we construct infinitely many non-symmetric decomposable
(5, 6)-supergravity backgrounds by using the infinitely many Lorentzian Einstein–Sasakian structures with a negative Einstein constant on
the 5-sphere, known from the work of Boyer et al. [Commun. Math. Phys. 262, 177–208 (2006)].

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0142572

I. INTRODUCTION
A. Motivation

The five established ten-dimensional superstring theories [type I, type IIA, type IIB, heterotic SO(32), and heterotic E8 × E8] provide
frameworks for uniting quantum theory and general relativity. By using string dualities such as T-duality, a unique eleven-dimensional super-
string theory, called M-theory, unites these five theories. As a result, the eleven-dimensional supergravity theory, viewed as a low-energy limit
of M-theory, has attracted much attention during the last half century (see, for example, Refs. 1–5).

The Lagrangian of eleven-dimensional supergravity was proposed in Ref. 6. The fields in the theory are a Lorentzian metric h, a closed
4-form F (called the flux form), and a Majorana spinor Ψ. They are defined on an eleven-dimensional manifold X and are subject to the
equations of motion determined by the Lagrangian. A special class of supergravity solutions are those with a vanishing fermionic part, Ψ = 0.
In this case, the equations of motion reduce to a simpler set of equations involving only h and F, which we call the bosonic supergravity
equations. This set of equations closely resembles the Einstein–Maxwell equations in four dimensions. Solutions to the bosonic supergravity
equations are called bosonic supergravity backgrounds. The bosonic backgrounds include the special class of eleven-dimensional Ricci-flat
Lorentzian manifolds for which F = 0.

Finding bosonic supergravity backgrounds is an important task, and the literature on bosonic supergravity backgrounds is vast. Several
geometrical tools and constructions have been used for finding them, including manifolds with special holonomy or special G-structures, irre-
ducible symmetric spaces, compactifications, Killing superalgebras, certain ansatzes on h and F, and others. We refer to some representative
works,7–21 and the reader can find more references therein.
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Supersymmetries also play an important role in these investigations. The maximally supersymmetric bosonic backgrounds are, in addi-
tion to flat Minkowski space, the Freund–Rubin backgrounds (AdS)7 × S4 and (AdS)4 × S7 (Ref. 22) and a particular pp-wave (see, for
example, Ref. 23). These are locally homogeneous, something that is true for all backgrounds admitting more than half of the maximal amount
of supersymmetries (Ref. 24). Other well-known examples are the M2-brane and the M5-brane (Refs. 25 and 26), whose near-horizon geome-
tries are the Freund–Rubin backgrounds (see also Refs. 27 and 28). These have exactly half the maximal amount of supersymmetries. On the
other side of the spectrum, with respect to the number of supersymmetries admitted, we have bosonic backgrounds such as (AdS)5 ×CP3,
which admit no supersymmetry (see Ref. 29).

B. Outline
In this article, we search for bosonic supergravity backgrounds that are products of an oriented Lorentzian manifold (M̃ 1,4, g̃) and an

oriented Riemannian manifold (M6, g), with a flux form F ∈ Ω4(X) of the type

F = φα̃ + β̃ ∧ ν + γ̃ ∧ δ + ϖ̃ ∧ ϵ + ψ̃θ,

where the ith term is the product of a (5 − i)-form on M̃ 1,4 and an (i − 1)-form on M6, for i = 1, . . . , 5. For various flux forms of the above-
mentioned type, we write down the corresponding simplified form of the bosonic supergravity equations and find particular solutions to
these equations. Our work can be considered a natural continuation of Ref. 30, where products of six-dimensional Lorentzian manifolds and
five-dimensional Riemannian manifolds are treated in a similar way.

We begin by describing the general constraints that appear due to the bosonic supergravity equations (which we split up into the closed-
ness condition, the Maxwell equation, and the supergravity Einstein equation). For a general 4-form F of the above-mentioned form, the
resulting system is still quite complicated. See, for example, Proposition 3.3 for the Maxwell equation and Eqs. (4.3)–(4.5) for the supergravity
Einstein equation. In order to obtain a more tractable system of equations, we specify F even further by letting three or four of its terms vanish.
Then, as in Ref. 30, the constraints that occur due to the Maxwell equation in combination with the closedness condition are simplified (see
Proposition 3.4), and the same applies to the supergravity Einstein equation (Proposition 4.3). It is worth mentioning that the form of F can
impose non-trivial restrictions on the geometry of M̃ 1,4 or M6 (see Corollary 4.5). For example, for F = α̃, the supergravity Einstein equation
implies that (M6, g) is an Einstein manifold, while for F = θ, the Einstein equation implies that (M̃ 1,4, g̃) is an Einstein manifold. In both
cases, the scalar curvature of (X, h) is constant (Corollary 4.8).

In order to find explicit solutions to eleven-dimensional bosonic supergravity, we take two different approaches. First, we examine the
case when F is composed of null forms. In this case, the bosonic supergravity equations simplify significantly, as shown in Proposition 5.1 and
Theorems 5.2–5.5, 4.8, and 4.9. Moreover, the supergravity Einstein equation requires (M6, g) to be Ricci-flat (Proposition 5.1). In addition,
for a bosonic supergravity background (X1,10 = M̃ 1,4 ×M6, h = g̃ + g, F = ϖ̃ ∧ ϵ), where ϖ̃ ∈ Ω1(M̃ 1,4) is null, we see in Corollary 5.7 that (X, h)
is totally Ricci-isotropic, as an analog of Ref. 30, Corollary 5.10. To find concrete solutions to the bosonic supergravity equations, we follow
Ref. 30 and assume that the Lorentzian part (M̃ 1,4, g̃) is a special type of Walker metric, since these come equipped with a distribution of null
lines from which non-trivial null flux forms can be built. Propositions 6.4, 6.6, 6.8, 6.9, 6.11, 6.13, and 6.16 concern non-symmetric bosonic
backgrounds that are direct products of a Ricci-isotropic Lorentzian Walker manifold and a Ricci-flat Riemannian manifold. These products
have special holonomy properties and can potentially support supersymmetries (see also Ref. 9). We explicitly illustrate these results with
examples involving five-dimensional pp-waves, while an investigation of supersymmetries will be left for a forthcoming work.

In the second approach, we study some cases where the Riemannian part (M6, g,ω) is a Kähler manifold. In this case, we do not assume
that F is null but rather that it is related to the Kähler form ω. In particular, we consider the cases F = γ̃ ∧ δ with δ = ω and F = θ = c⋆6ω, where
c is a constant. We see that if the flux form is given by F = γ̃ ∧ δ and ∥γ̃∥2

g̃ is not constant, then the supergravity Einstein equation forces M6

to be a Ricci-flat almost Hermitian manifold (Corollary 4.5), so in Proposition 7.2, we write down the bosonic supergravity equations for the
case when M6 is a Kähler manifold. For the case where the flux form is given by F = c⋆6ω, Proposition 7.4 says that the bosonic supergravity
equations are satisfied if and only if both (M̃ 1,4, g̃) and (M6, g) are Einstein with Einstein constants 1

6 c2 and − 1
6 c2, respectively. Therefore,

(M̃ 1,4, g̃) has positive scalar curvature, while (M6, g) has negative scalar curvature. For instance, the symmetric spaces CP3 and Gr+(2, 5)
endowed with their respective (unique) homogeneous Kähler–Einstein metrics can be used to obtain some of the decomposable symmetric
supergravity backgrounds presented in Ref. 17. Note that in this paper, we use the “mostly minus” convention for the Lorentzian metric
h, and thus a Riemannian metric g is viewed as a negative definite metric. Proposition 7.4 generalizes a result presented in Ref. 29, which
involved bosonic backgrounds of the form (AdS)5 ×M6, where M6 is a compact Kähler manifold. We discuss some possible candidates
for the Einstein manifold (M̃ 1,4, g̃), other than (AdS)5. In particular, we are based on negative Sasakian geometries and use the infinitely
many different Lorentzian Einstein–Sasakian structures with negative Einstein constants (in the “mostly plus” convention) described on
the 5-sphere S5 by Boyer et al.31 In this way, we get infinitely many new bosonic non-symmetric decomposable (5, 6)-solutions in eleven-
dimensional supergravity given by S5 ×M6, where M6 is any six-dimensional (de Rham irreducible) Kähler–Einstein manifold with positive
scalar curvature (also in the “mostly plus” convention), and S5 is endowed with one of the Lorentzian Einstein–Sasakian structures mentioned
earlier. Note that all such solutions that are based on the same Kähler–Einstein manifold M6 have equal flux forms. Other such examples can
be obtained by using the connected sum ♯k(S2 × S3), since this manifold also admits Lorentzian Einstein–Sasakian metrics for any integer
k ≥ 1.

We should finally mention that the above-mentioned conclusion fails if M6 is a six-dimensional (strictly) nearly Kähler manifold since, in
this case, the Kähler form ω is not closed, so the 4-form F indicated earlier cannot serve as a flux form (see the final section). As a consequence,
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and in line with the conclusion pointed out in Ref. 29 for (AdS)5 ×M6, bosonic solutions of the form M̃ 1,4 ×M6, where M̃ 1,4 is a Lorentzian
Einstein manifold and M6 is a compact Kähler–Einstein manifold, are not expected to admit supersymmetries. Essentially, this is because, in
dimension 6, smooth spin manifolds admitting real Killing spinors are exhausted by nearly Kähler manifolds [see, for example, Ref. 32 and
also Ref. 33 for the classification of eleven-dimensional supersymmetric supergravity solutions containing (AdS)5].

The paper is structured as follows. In Sec. II, we lay out the framework that will be used throughout the paper and establish some notation.
We introduce the eleven-dimensional bosonic supergravity equations and write down the ansatz of the general flux form, which we use in
this paper. The bosonic supergravity equations corresponding to this ansatz are computed in Secs. III and IV, respectively. There, we also
investigate the form of the equations after further simplification of the flux form and state some general consequences of the equations. As
mentioned earlier, the bosonic supergravity equations are simpler when the flux form is composed of null forms, and in Sec. V, we present
some general results for such flux forms. Next, in Sec. VI, we apply these results to Ricci-isotropic Lorentzian Walker manifolds and produce
several explicit examples of decomposable (5, 6)-supergravity backgrounds. In Sec. VII, we drop the requirement that F is null and analyze
the appearance of Kähler–Einstein manifolds and of negative Einstein–Sasakian geometries in our decomposable (5, 6)-solutions.

II. PRELIMINARIES
In this work, we study connected eleven-dimensional Lorentzian manifolds of the form

X1,10 = M̃ 1,4 ×M6,

where (M̃ 1,4, g̃) is a five-dimensional connected oriented Lorentzian manifold and (M6, g) is a six-dimensional connected oriented Rieman-
nian manifold. Our aim is to present on such products a systematic examination of the bosonic supergravity equations, i.e., of the following
system of field equations (see, for example, Refs. 10 and 34):

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

d F = 0,

d ⋆ F = 1
2

F ∧ F,

Rich(X, Y) = −1
2
⟨X⌟F, Y⌟F⟩h +

1
6

h(X, Y)∥F∥2
h.

(2.1)

Here, the Lorentzian metric on X1,10 is the product metric h = g̃ + g, and ⋆ : Ωk(X1,10)→ Ω11−k(X1,10) is the Hodge-star operator on (X1,10, h),
defined by α ∧ ⋆β = ⟨α,β⟩h volX, where volX = volM̃ ∧ volM denotes the volume form on (X1,10, h). We also have ∥F∥2

h = ⟨F, F⟩h. The bosonic
field F is a global 4-form on X1,10, called the flux form, which, together with the Lorentzian metric h, forms the bosonic sector of eleven-
dimensional supergravity. We will refer to the three conditions appearing in (2.1) as the closedness condition, the Maxwell equation, and the
supergravity Einstein equation, respectively. Triples (X1,10, h, F) solving this system of equations are called bosonic supergravity backgrounds.

Remark 2.1. In this paper, we apply the “mostly minus” convention. That is, the signature for h is (+,−, . . . ,−), and hence g is a negative
definite Riemannian metric on M. Recall that for any two k-forms ω and ϕ, we have

⟨ω,ϕ⟩h =
1
k! ∑

1≤iα , jβ≤11
ωi1...ikϕ j1... jk hi1 j1 . . .hik jk.

Then, for a k-form ω ∈ Ωk(M6), the sign of ∥ω∥2
h = ∥ω∥2

g is equal to that of (−1)k. Note that this choice of convention makes the right-hand
side of the last equation of (2.1) different from how it usually appears in the literature, by a minus sign.

Before we discuss closed 4-forms F ∈ Ω4
cl(X1,10) on X1,10, let us decompose the tangent space V ∶= TxX ≃ R1,10 of X1,10 at a point x ∈ X as

V = L1,4 ⊕ E6,

where we identify L with the five-dimensional Minkowski tangent space of M̃ 1,4 and E with the six-dimensional Euclidean tangent space of
M6. Then, one has an orthogonal decomposition

Λ4V = Λ4R1,10 = Λ4L⊕ (Λ3L ∧Λ1E)⊕ (Λ2L ∧Λ2E)⊕ (Λ1L ∧Λ3E)⊕Λ4E.

In this paper, we consider global differential 4-forms F ∈ Ω4(X), given by

F = φα̃ + β̃ ∧ ν + γ̃ ∧ δ + ϖ̃ ∧ ϵ + ψ̃θ, (2.2)

for some
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α̃ ∈ Ω4(M̃ 1,4), β̃ ∈ Ω3(M̃ 1,4), γ̃ ∈ Ω2(M̃ 1,4), ϖ̃ ∈ Ω1(M̃ 1,4), ψ̃ ∈ C∞(M̃ 1,4),
φ ∈ C∞(M6), ν ∈ Ω1(M6), δ ∈ Ω2(M6), ϵ ∈ Ω3(M6), θ ∈ Ω4(M6).

We assume that all these differential forms are smooth and defined globally on M̃ 1,5 and M6, respectively. We will show that the chosen class
of 4-forms is large enough to allow for a variety of non-trivial bosonic supergravity backgrounds. Note that the difference between (2.2) and
a general 4-form on X1,10 is, first, that a general 4-form may have more terms taking values in each of the subspaces ΛiL ∧Λ4−iE and, second,
that each term can be multiplied by a function on X1,10.

III. THE CLOSEDNESS CONDITION AND THE MAXWELL EQUATION
We begin by writing down the closedness condition and the Maxwell equation on (X1,10 = M̃ 1,4 ×M6, h = g̃ + g) for the 4-form F given

by (2.2). The closedness condition can be found by computing d F and comparing terms of similar type, a procedure that gives the following.

Lemma 3.1. The 4-form F defined by (2.2) is closed if and only if the following system is satisfied:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φdα̃ = 0, γ̃ ∧ dδ + dϖ̃ ∧ ϵ = 0,

α̃ ∧ dφ + dβ̃ ∧ ν = 0, ϖ̃ ∧ dϵ − dψ̃ ∧ θ = 0,

dγ̃ ∧ δ − β̃ ∧ dν = 0, ψ̃dθ = 0.

In particular, we notice that F given by (2.2) is closed in the case that α̃, β̃, γ̃, ϖ̃, ψ̃ and φ, ν, δ, ϵ, θ are closed on their respective manifolds.
Before studying the Maxwell equation, we recall some useful basic useful formulas (see also Refs. 30 and 34).

Lemma 3.2. Let X = M̃ p ×Mq be a product of two pseudo-Riemannian manifolds (M̃, g̃) and (M, g) of dimensions p, q, and let s̃, s be
the number of negative eigenvalues of g̃, g, respectively. Let us denote by ⋆, ⋆p, ⋆q the Hodge operator on (X, h = g̃ + g), (M̃, g̃), and (M, g),
respectively. Then, for any α̃ ∈ Ωk̃ (M̃), and β ∈ Ωk(M) the following hold:

⋆α̃ = ⋆pα̃ ∧ volM , ⋆ volM = (−1)s(−1)pq volM̃ ,

⋆ volM̃ = (−1)s̃ volM , ⟨α̃ ∧ β, α̃ ∧ β⟩h = ⟨α̃, α̃⟩g̃⟨β,β⟩g ,

⋆β = (−1)pq⋆qβ ∧ volM̃ , ⋆(α̃ ∧ β) = (−1)k(p−k̃ )⋆pα̃ ∧ ⋆qβ.

With the help of Lemma 3.2, we compute ⋆F and d ⋆ F for F being of the form (2.2). We obtain

⋆F = ⋆5α̃ ∧ ⋆6φ + ⋆5β̃ ∧ ⋆6ν + ⋆5γ̃ ∧ ⋆6δ + ⋆5ϖ̃ ∧ ⋆6ϵ + ⋆5ψ̃ ∧ ⋆6θ,

and consequently,

d ⋆ F = d⋆5α̃ ∧ ⋆6φ + d⋆5β̃ ∧ ⋆6ν + ⋆5β̃ ∧ d⋆6ν + d⋆5γ̃ ∧ ⋆6δ
− ⋆5γ̃ ∧ d⋆6δ + d⋆5ϖ̃ ∧ ⋆6ϵ + ⋆5ϖ̃ ∧ d⋆6ϵ − ⋆5ψ̃ ∧ d⋆6θ.

Notice that d ⋆6 φ = 0 since ⋆6φ is a 6-form on a six-dimensional manifold. Similarly, we have d⋆5ψ̃ = 0. We also compute

1
2

F ∧ F = φ α̃ ∧ ϖ̃ ∧ ϵ + φ ψ̃ α̃ ∧ θ + β̃ ∧ γ̃ ∧ δ ∧ ν + β̃ ∧ ϖ̃ ∧ ϵ ∧ ν

+ ψ̃ β̃ ∧ θ ∧ ν + ψ̃ γ̃ ∧ θ ∧ δ + γ̃ ∧ ϖ̃ ∧ ϵ ∧ δ + 1
2
γ̃ ∧ γ̃ ∧ δ ∧ δ.

After collecting the terms according to the subspace ΛiL ∧Λ4−iE in which they take values, we get the following proposition.

Proposition 3.3. The Maxwell equation on the Lorentzian manifold (X1,10 = M̃ 1,4 ×M6, h = g̃ + g) with 4-form F given by (2.2) is
equivalent to the following system of equations:

Type (2̃, 6)
Type (3̃, 5)
Type (4̃, 4)
Type (5̃, 3)

XXXXXXXXXXXXXXXXXXXXXXX

d⋆5α̃ ∧ ⋆6φ + ⋆5β̃ ∧ d⋆6ν = ψ̃ γ̃ ∧ θ ∧ δ,

d⋆5β̃ ∧ ⋆6ν − ⋆5γ̃ ∧ d⋆6δ = ψ̃ β̃ ∧ θ ∧ ν + γ̃ ∧ ϖ̃ ∧ ϵ ∧ δ,

d⋆5γ̃ ∧ ⋆6δ + ⋆5ϖ̃ ∧ d⋆6ϵ = ψ̃ φ α̃ ∧ θ + β̃ ∧ ϖ̃ ∧ ϵ ∧ ν + 1
2
γ̃ ∧ γ̃ ∧ δ ∧ δ,

d⋆5ϖ̃ ∧ ⋆6ϵ − ⋆5ψ̃ ∧ d⋆6θ = φ α̃ ∧ ϖ̃ ∧ ϵ + β̃ ∧ γ̃ ∧ δ ∧ ν.
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Of course, the system of equations given in Lemma 3.1 and Proposition 3.3 is significantly simplified when some terms of F vanish. Let
us list some of the important cases and write down the corresponding equations.

Proposition 3.4. Consider the Lorentzian manifold (X1,10 = M̃ 1,4 ×M6, h = g̃ + g) as earlier. Then the following hold:

(1) The 4-form F ∈ Ω4(X) defined by

F = φα̃, (3.1)

satisfies the Maxwell equation and the closedness condition if and only if φ is constant and α̃ is closed and coclosed,

d α̃ = d⋆5α̃ = 0.

(2) The 4-form F ∈ Ω4(X) defined by

F = β̃ ∧ ν, (3.2)

satisfies the Maxwell equation and the closedness condition if and only if β̃ and ν are closed and coclosed,

d β̃ = d⋆5β̃ = 0, d ν = d⋆6ν = 0.

(3) The 4-form F ∈ Ω4(X) defined by

F = γ̃ ∧ δ, (3.3)

satisfies the Maxwell equation and the closedness condition if and only if

d γ̃ = d δ = d⋆6δ = 0, d⋆5γ̃ ∧ ⋆6δ =
γ̃ ∧ γ̃ ∧ δ ∧ δ

2
.

If γ̃ ∧ γ̃ = 0, then the last equation implies d⋆5γ̃ = 0, and it puts no additional constraints on δ. If γ̃ ∧ γ̃ is nonzero, the last condition is
equivalent to

d⋆5γ̃ = κγ̃ ∧ γ̃, κ⋆6δ =
δ ∧ δ

2
,

for some constant κ ∈ R.
(4) The 4-form F ∈ Ω4(X) defined by

F = ϖ̃ ∧ ϵ, (3.4)

satisfies the Maxwell equation and the closedness condition if and only if ϖ̃ and ϵ are closed and coclosed,

d ϖ̃ = d⋆5ϖ̃ = 0, d ϵ = d⋆6ϵ = 0.

(5) The 4-form F ∈ Ω4(X) defined by

F = ψ̃θ, (3.5)

satisfies the Maxwell equation and the closedness condition if and only if ψ̃ is constant and θ is closed and coclosed,

d θ = d⋆6θ = 0.

(6) The 4-form F ∈ Ω4(X) defined by

F = φα̃ + β̃ ∧ ν, (3.6)

satisfies the Maxwell equation and the closedness condition if and only if

d α̃ = d⋆5β̃ = d ν = 0, dφ = κν, d β̃ = −κα̃, d⋆5α̃ = −λ⋆5β̃, d⋆6ν = λ⋆6φ, (3.7)
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for some constants κ, λ ∈ R. The last four conditions imply

⋆6d⋆6dφ = κλφ, ⋆5d⋆5d β̃ = κλβ̃.

(7) The 4-form F ∈ Ω4(X) defined by
F = ϖ̃ ∧ ϵ + ψ̃θ, (3.8)

satisfies the Maxwell equation and the closedness condition if and only if

d θ = d ϖ̃ = d⋆6ϵ = 0, d ψ̃ = κϖ̃, d ϵ = κθ, d⋆5ϖ̃ = λ⋆5ψ̃, d⋆6θ = λ⋆6ϵ, (3.9)

for some constants κ, λ ∈ R. The last four conditions imply

⋆5d⋆5d ψ̃ = κλψ̃, ⋆6d⋆6d ϵ = −κλϵ.

(8) The 4-form F ∈ Ω4(X) defined by
F = φα̃ + ψ̃θ. (3.10)

satisfies the Maxwell equation and the closedness condition if and only if either φα̃ = 0 or ψ̃θ = 0. Therefore, this case reduces to case (5)
or case (1), respectively.

(9) The 4-form F ∈ Ω4(X) defined by
F = β̃ ∧ ν + ϖ̃ ∧ ϵ, (3.11)

satisfies the Maxwell equation and the closedness condition if and only if

d β̃ = d ν = d ϖ̃ = d ϵ = 0, d⋆6ν = d⋆5β̃ = d⋆5ϖ̃ = 0, ⋆5ϖ̃ ∧ d⋆6ϵ = β̃ ∧ ϖ̃ ∧ ϵ ∧ ν.

If ϵ ∧ ν = 0, then the last equation implies d ⋆6 ϵ = 0. If ϵ ∧ ν is nonzero, then the last equation is equivalent to

d⋆6ϵ = κϵ ∧ ν, κ⋆5ϖ̃ = β̃ ∧ ϖ̃,

for some constant κ ∈ R.

Proof. All the cases are direct consequences of Lemma 3.1 and Proposition 3.3, i.e., the closedness condition and Maxwell equation for
F of the form (2.2). We show the calculations for (6) in detail. For F = φα̃ + β̃ ∧ ν, the first three equations of Lemma 3.1 reduce to

φ d α̃ = 0, α̃ ∧ dφ + d β̃ ∧ ν = 0, β̃ ∧ d ν = 0,

while the last three equations hold automatically. In particular, we see that d α̃ = 0 and dν = 0 (assuming φ ≠ 0 and β̃ ≠ 0). We also have dφ = κν
and d β̃ = −κα̃ for some constant κ ∈ R. The first two equations of Proposition 3.3 reduce to d⋆5α̃ ∧ ⋆6φ + ⋆5β̃ ∧ d⋆6ν = 0 and d⋆5β̃ ∧ ⋆6ν = 0,
respectively, while the last two hold automatically. This implies d⋆5β̃ = 0, d ⋆6 ν = λ ⋆6 φ, and d⋆5α̃ = −λ⋆5β̃. All together, we obtain (3.7).
The other cases are treated similarly. ◻

Remark 3.5. In comparison with the examination of (6, 5)-decomposable supergravity backgrounds presented in Ref. 30, i.e., Lorentzian
manifolds of the form Y = M̃ 1,5 ×M5, we see that the system of the closedness condition and the Maxwell equation are very similar, although
non-identical. In particular, a comparison of our Proposition 4.3 with Ref. 30, Proposition 3.5, shows that when the 4-form F is determined
via one of the cases (1), (2), or (4)–(8), then we obtain very similar constraints. On the other hand, cases (3) and (9) are quite different. For
example, in our case, X = M̃ 1,4 ×M6, and the Maxwell equation contains the new term ψ̃γ̃ ∧ θ ∧ δ. On the other hand, it does not contain the
term corresponding to α̃ ∧ γ̃ ∧ δ, which appears in the Maxwell equation for Y = M̃ 1,5 ×M5.

For certain flux forms, imposing topological restrictions on M6 may result in additional conditions on F. For example, let F = φα̃ + β̃ ∧ ν
be a 4-form satisfying the Maxwell equation and the closedness condition. We assume that α̃, β̃, ν are nonzero differential forms, and also that
the function φ is nonzero at every point in M6. Equation (3.7) of Proposition 3.4 implies that d ⋆6 ν = λ ⋆6 φ or, equivalently, d⋆6ν = λφ volM ,
for some constant λ ∈ R. Now assume that M6 is a closed manifold. We will see that this implies λ = 0. If λ ≠ 0, then there exists a constant
K > 0 such that ∣λφ∣ ≥ K. Therefore,

K vol(M) = K∫
M

volM ≤ ∫
M
∣λφ∣ volM.
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The function λφ is either positive at each point in M6 or negative at each point. Therefore, by Stokes’ theorem, we deduce that for a
connected closed manifold M6, the right-hand side is (up to an overall sign) equal to

∫
M
λφ volM = ∫

M
d⋆6ν = ∫

∂M
⋆6ν = 0.

This implies vol(M) = 0, a contradiction. In particular, if φ is a nonzero constant, we get the following statement (after absorbing the constant
φ into α̃).

Proposition 3.6. Let (X1,10 = M̃ 1,4 ×M6, h = g̃ + g, F = α̃ + β̃ ∧ ν) be an eleven-dimensional bosonic supergravity background. If M6 is
closed, then λ = 0 in Eq. (3.7), i.e., d⋆5α̃ = 0 and d ⋆6 ν = 0.

A similar phenomenon occurs for the flux form F = ϖ̃ ∧ ϵ + θ.

Proposition 3.7. Let (X1,10 = M̃ 1,4 ×M6, h = g̃ + g, F = ϖ̃ ∧ ϵ + θ) be an eleven-dimensional bosonic supergravity background. If M̃ 1,4 is
closed, then λ = 0 in equation (3.9), i.e., d⋆5ϖ̃ = 0 and d ⋆6 θ = 0.

Proof. By assumption, we have ψ̃ = 1 in (3.9), which implies d⋆5ϖ̃ = λ⋆51 = λ volM̃ . We have

λ vol(M̃) = ∫
M̃
λ volM̃ = ∫

M̃
d⋆5ϖ̃ = ∫

∂M̃
⋆5ϖ̃ = 0,

where the last equality follows since M̃ 1,4 has been assumed to be closed. This implies λ = 0. ◻

Before we treat the supergravity Einstein equation, let us consider one more special case for which the Maxwell equation significantly
simplifies. Namely, assume that ψ̃θ = 0 and that α̃, β̃, γ̃, ϖ̃ share a common factor ω̃ ∈ Ω1(M̃ 1,4), meaning that α̃ = ω̃ ∧ α̂, β̃ = ω̃ ∧ β̂, γ̃ = ω̃ ∧ γ̂,
ϖ̃ = ϖ̂ω̃. Since ω̃ is a 1-form, we have ω̃ ∧ ω̃ = 0. Therefore, the right-hand sides of Proposition 3.3 vanish. We summarize this in a proposition
that we will take advantage of in Sec. VI F.

Proposition 3.8. Consider the Lorentzian manifold (X1,10 = M̃ 1,4 ×M6, h = g̃ + g) with 4-form F = φα̃ + β̃ ∧ ν + γ̃ ∧ δ + ϖ̃ ∧ ϵ and
assume that α̃ = ω̃ ∧ α̂, β̃ = ω̃ ∧ β̂, γ̃ = ω̃ ∧ γ̂, ϖ̃ = ϖ̂ω̃ for a non-trivial 1-form ω̃ ∈ Ω1(M̃ 1,4) and α̂ ∈ Ω3(M̃ 1,4), β̂ ∈ Ω2(M̃ 1,4), γ̂ ∈ Ω1(M̃ 1,4),
ϖ̂ ∈ C∞(M̃ 1,4). Then, the Maxwell equation is equivalent to the following system of equations:

d⋆5α̃ ∧ ⋆6φ + ⋆5β̃ ∧ d⋆6ν = 0, d⋆5β̃ ∧ ⋆6ν − ⋆5γ̃ ∧ d⋆6δ = 0,
d⋆5γ̃ ∧ ⋆6δ + ⋆5ϖ̃ ∧ d⋆6ϵ = 0, d⋆5ϖ̃ ∧ ⋆6ϵ = 0.

In particular, Proposition 3.8 shows that if α̃, β̃, γ̃, ϖ̃, ν, δ, ϵ are coclosed on their respective manifolds and if α̃, β̃, γ̃, ϖ̃ share a common
factor ω̃ as earlier, then F = φα̃ + β̃ ∧ ν + γ̃ ∧ δ + ϖ̃ ∧ ϵ satisfies the Maxwell equation.

IV. THE SUPERGRAVITY EINSTEIN EQUATION
In this section, we present the supergravity Einstein equation for an oriented Lorentzian manifold of the form X = M̃ 1,4 ×M6, endowed

with the product metric h = g̃ + g and the 4-form F defined by (2.2). We recall that the supergravity Einstein equation has the form

Rich(X, Y) = −1
2
⟨X ⌟F, Y ⌟F⟩h +

1
6

h(X, Y)∥F∥2
h, (4.1)

where X, Y are vector fields on X1,10. Note that Lemma 3.2 implies the following:

Lemma 4.1. Let F be the 4-form on (X1,10 = M̃ 1,4 ×M6, h = g̃ + g) defined by (2.2). Then,

∥F∥2
h = φ2∥α̃∥2

g̃ + ∥β̃∥2
g̃∥ν∥2

g + ∥γ̃∥2
g̃∥δ∥2

g + ∥ϖ̃∥2
g̃∥ϵ∥2

g + ψ̃ 2∥θ∥2
g. (4.2)

Since X1,10 = M̃ 1,4 ×M6 is a direct product of pseudo-Riemannian manifolds, we have

Rich(X, Y) = Ricg(X, Y), ∀ X, Y ∈ Γ(TM6),
Rich(X̃, Ỹ) = Ricg̃(X̃, Ỹ), ∀ X̃, Ỹ ∈ Γ(TM̃ 1,4),
Rich(X, Ỹ) = 0, ∀ X ∈ Γ(TM6), Ỹ ∈ Γ(TM̃ 1,4).
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This lets us split Eq. (4.1) into three parts. By using (4.2), we explicitly obtain each of the parts of the supergravity Einstein equation.
In particular:

For any X, Y ∈ Γ(TM6), we compute

Rich(X, Y) =
φ2∥α̃∥2

g̃

6
g(X, Y)

+ (∥ν∥
2
g

6
g(X, Y) − 1

2
ν(X)ν(Y))∥β̃∥2

g̃

+ (∥δ∥
2
g

6
g(X, Y) − 1

2
⟨X⌟δ, Y⌟δ⟩g)∥γ̃∥2

g̃

+ (∥ϵ∥
2
g

6
g(X, Y) − 1

2
⟨X⌟ϵ, Y⌟ϵ⟩g)∥ϖ̃∥2

g̃

+ (∥θ∥
2
g

6
g(X, Y) − 1

2
⟨X⌟θ, Y⌟θ⟩g)ψ̃ 2.

. (4.3)

For any X̃, Ỹ ∈ Γ(TM̃ 1,4), we obtain

Rich(X̃, Ỹ) = (
∥α̃∥2

g̃

6
g̃(X̃, Ỹ) − 1

2
⟨X⌟α̃, Y⌟α̃⟩g̃)φ2

+
⎛
⎝
∥β̃∥2

g̃

6
g̃(X̃, Ỹ) − 1

2
⟨X̃⌟β̃, Ỹ⌟β̃⟩g̃

⎞
⎠
∥ν∥2

g

+ (
∥γ̃∥2

g̃

6
g̃(X̃, Ỹ) − 1

2
⟨X̃⌟γ̃, Ỹ⌟γ̃⟩g̃)∥δ∥2

g

+ (
∥ϖ̃∥2

g̃

6
g̃(X̃, Ỹ) − 1

2
ϖ̃(X̃)ϖ̃(Ỹ))∥ϵ∥2

g

+ ψ̃
2∥θ∥2

g

6
g̃(X̃, Ỹ).

(4.4)

Finally, for any X ∈ Γ(TM6) and Ỹ ∈ Γ(TM̃ 1,4), we get the following condition:

0 = Rich(X, Ỹ) = 1
2
(φν(X)⟨β̃, Ỹ⌟α̃⟩g̃ − ⟨γ̃ ∧ (X⌟δ), (Ỹ⌟β̃) ∧ ν⟩h

+ ⟨ϖ̃ ∧ (X⌟ϵ), (Ỹ⌟γ̃) ∧ δ⟩h − ψ̃ϖ̃(Ỹ)⟨X⌟θ, ϵ⟩g).
(4.5)

As a summary, we state the following:

Theorem 4.2. Consider the manifold X1,10 = M̃ 1,4 ×M6 with the product metric h = g̃ + g, where g̃ is a Lorentzian metric on M̃ 1,4 and
g is a Riemannian metric on M6, and let F be the 4-form defined by (2.2). Then the eleven-dimensional supergravity Einstein equation (4.1)
decomposes into Eqs. (4.3)–(4.5).

Regarding the supergravity Einstein equation for the various special cases of F discussed in Proposition 3.4, we present the following
result (all equations below hold for general vector fields X, Y on M6, and X̃, Ỹ on M̃ 1,4, which, for brevity, we will not repeat).

Proposition 4.3. Consider the Lorentzian manifold (X1,10 = M̃ 1,4 ×M6, h = g̃ + g).

(1) The 4-form F ∈ Ω4(X) defined by
F = α̃, (4.6)

satisfies the Einstein condition if and only if the following equations hold:

Rich(X, Y) =
∥α̃∥2

g̃

6
g(X, Y),

Rich(X̃, Ỹ) =
∥α̃∥2

g̃

6
g̃(X̃, Ỹ) − 1

2
⟨X⌟α̃, Y⌟α̃⟩g̃.

(4.7)
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(2) The 4-form F ∈ Ω4(X) defined by

F = β̃ ∧ ν, (4.8)

satisfies the Einstein condition if and only if the following equations hold:

Rich(X, Y) = (∥ν∥
2
g

6
g(X, Y) − 1

2
ν(X)ν(Y))∥β̃∥2

g̃ ,

Rich(X̃, Ỹ) =
⎛
⎝
∥β̃∥2

g̃

6
g̃(X̃, Ỹ) − 1

2
⟨X̃⌟β̃, Ỹ⌟β̃⟩g̃

⎞
⎠
∥ν∥2

g.
(4.9)

(3) The 4-form F ∈ Ω4(X) defined by
F = γ̃ ∧ δ, (4.10)

satisfies the Einstein condition if and only if the following equations hold:

Rich(X, Y) = (∥δ∥
2
g

6
g(X, Y) − 1

2
⟨X⌟δ, Y⌟δ⟩g)∥γ̃∥2

g̃ ,

Rich(X̃, Ỹ) = (
∥γ̃∥2

g̃

6
g̃(X̃, Ỹ) − 1

2
⟨X̃⌟γ̃, Ỹ⌟γ̃⟩g̃)∥δ∥2

g.

(4.11)

(4) The 4-form F ∈ Ω4(X) defined by
F = ϖ̃ ∧ ϵ, (4.12)

satisfies the Einstein condition if and only if the following equations hold:

Rich(X, Y) = (∥ϵ∥
2
g

6
g(X, Y) − 1

2
⟨X⌟ϵ, Y⌟ϵ⟩g)∥ϖ̃∥2

g̃ ,

Rich(X̃, Ỹ) = (
∥ϖ̃∥2

g̃

6
g̃(X̃, Ỹ) − 1

2
ϖ̃(X̃)ϖ̃(Ỹ))∥ϵ∥2

g.

(4.13)

(5) The 4-form F ∈ Ω4(X) defined by
F = θ, (4.14)

satisfies the Einstein condition if and only if the following equations hold:

Rich(X, Y) = ∥θ∥
2
g

6
g(X, Y) − 1

2
⟨X⌟θ, Y⌟θ⟩g ,

Rich(X̃, Ỹ) = ∥θ∥
2
g

6
g̃(X̃, Ỹ).

(4.15)

(6) The 4-form F ∈ Ω4(X) defined by

F = φ α̃ + β̃ ∧ ν, (4.16)

satisfies the Einstein condition if and only if the following equations hold:

Rich(X, Y) =
φ2∥α̃∥2

g̃

6
g(X, Y) + (∥ν∥

2
g

6
g(X, Y) − 1

2
ν(X)ν(Y))∥β̃∥2

g̃ ,

Rich(X̃, Ỹ) = (
∥α̃∥2

g̃

6
g̃(X̃, Ỹ) − 1

2
⟨X̃⌟α̃, Ỹ⌟α̃⟩g̃)φ2 +

⎛
⎝
∥β̃∥2

g̃

6
g̃(X̃, Ỹ) − 1

2
⟨X̃⌟β̃, Ỹ⌟β̃⟩g̃

⎞
⎠
∥ν∥2

g ,

0 = φ ν(X)⟨β̃, Ỹ⌟α̃⟩g̃.

(4.17)

J. Math. Phys. 64, 062301 (2023); doi: 10.1063/5.0142572 64, 062301-9

Published under an exclusive license by AIP Publishing

 04 M
arch 2024 13:18:58

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

(7) The 4-form F ∈ Ω4(X) defined by

F = ϖ̃ ∧ ϵ + ψ̃ θ, (4.18)

satisfies the Einstein condition if and only if the following equations hold:

Rich(X, Y) = (∥ϵ∥
2
g

6
g(X, Y) − 1

2
⟨X⌟ϵ, Y⌟ϵ⟩g)∥ϖ̃∥2

g̃ + (
∥θ∥2

g

6
g(X, Y) − 1

2
⟨X⌟θ, Y⌟θ⟩g)ψ̃ 2,

Rich(X̃, Ỹ) = (
∥ϖ̃∥2

g̃

6
g̃(X̃, Ỹ) − 1

2
ϖ̃(X̃)ϖ̃(Ỹ))∥ϵ∥2

g +
ψ̃ 2∥θ∥2

g

6
g̃(X̃, Ỹ),

0 = ψ̃ ϖ̃(Ỹ)⟨X⌟θ, ϵ⟩g.

(4.19)

(8) The 4-form F ∈ Ω4(X) defined by

F = α̃ + θ, (4.20)

satisfies the Einstein condition if and only if the following equations hold:

Rich(X, Y) =
∥α̃∥2

g̃

6
g(X, Y) + ∥θ∥

2
g

6
g(X, Y) − 1

2
⟨X⌟θ, Y⌟θ⟩g ,

Rich(X̃, Ỹ) =
∥α̃∥2

g̃

6
g̃(X̃, Ỹ) − 1

2
⟨X⌟α̃, Y⌟α̃⟩g̃ +

∥θ∥2
g

6
g̃(X̃, Ỹ).

(4.21)

(9) The 4-form F ∈ Ω4(X) defined by

F = β̃ ∧ ν + ϖ̃ ∧ ϵ, (4.22)

satisfies the Einstein condition if and only if the following equations hold:

Rich(X, Y) = (∥ν∥
2
g

6
g(X, Y) − 1

2
ν(X)ν(Y))∥β̃∥2

g̃ + (
∥ϵ∥2

g

6
g(X, Y) − 1

2
⟨X⌟ϵ, Y⌟ϵ⟩g)∥ϖ̃∥2

g̃ ,

Rich(X̃, Ỹ) =
⎛
⎝
∥β̃∥2

g̃

6
g̃(X̃, Ỹ) − 1

2
⟨X̃⌟β̃, Ỹ⌟β̃⟩g̃

⎞
⎠
∥ν∥2

g + (
∥ϖ̃∥2

g̃

6
g̃(X̃, Ỹ) − 1

2
ϖ̃(X̃)ϖ̃(Ỹ))∥ϵ∥2

g.
(4.23)

Proof. For each case, the equations involving the Ricci tensor follow directly from Eqs. (4.3)–(4.5). Note that we have simplified the cases
(1) and (5) by setting φ and ψ̃ equal to 1 since we are only interested in solutions to the supergravity Einstein equation that also satisfy the
Maxwell equation and the closedness condition (recall from Lemma 3.1 that the closedness condition implies that φ and ψ̃ are constant in
these particular cases). ◻

We see that the supergravity Einstein equation simplifies significantly when the form of F is further specified, as earlier. In fact, the special
form of many of the equations in Proposition 4.3 leads to some particular consequences that we will now investigate.

Let (x̃, x) denote a general point on M̃ 1,4 ×M6. For each equation in Proposition 4.3, we observe that the left-hand side depends either
on x̃ or x (but not both), while the right-hand side is either of the form f1(x̃)g1(x) or f1(x̃)g1(x) + f2(x̃)g2(x) for every pair of vector fields.
From this, we draw some conclusions about fi and gi, which are functions on M̃ 1,4 and M6, respectively. They are based on the following
simple observation.

Lemma 4.4. Assume that r(x̃) = f1(x̃)g1(x) (for every x̃ ∈ M̃ 1,4 and every x ∈M6). Then either f1 is identically equal to zero or g1 is
constant.

Assume that r(x̃) = f1(x̃)g1(x) + f2(x̃)g2(x) and that none of the functions f1 and f2 are identically equal to zero (if one of them is, then
the situation is the same as earlier). Then either g1 and g2 are both constant, or f1(x̃) = C f2(x̃) for some C ∈ R/{0}, and g2(x) = −Cg1(x) +D
for some constant D ∈ R. In the latter case, we have r(x̃) = D f2(x̃).

Notice that a similar statement holds after switching x with x̃. The application of these statements to the equations of Proposition 4.3
results in the following corollary.
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Corollary 4.5. Assume that (X1,10 = M̃ 1,4 ×M6, h = g̃ + g, F) is a solution of the supergravity Einstein equations (4.1).

(1) If F = α̃, then (M6, g) is Einstein with Einstein constant ∥α̃∥2
g̃/6.

(2) If F = β̃ ∧ ν, then ∥β̃∥2
g̃ is constant.

(3) If F = γ̃ ∧ δ and ∥γ̃∥2
g̃ is not constant, then we have g(X, Y) = 3

∥δ∥2
g
⟨X⌟δ, Y⌟δ⟩g for all X, Y ∈ Γ(TM6), which implies that (M6, g,ω, J) is a

Ricci-flat almost Hermitian manifold with an almost complex structure J defined by ω(X, Y) = g(JX, Y) and Kähler form ω =
√

3
∥δ∥2

g
δ.

(4) If F = ϖ̃ ∧ ϵ, then ∥ϵ∥2
g is constant and negative.

(5) If F = θ, then (M̃ 1,4, g̃) is Einstein with Einstein constant ∥θ∥2
g/6 > 0.

(6) If F = φα̃ + β̃ ∧ ν, then ∥β̃∥2
g̃ and ∥α̃∥2

g̃ are constant.
(7) If F = ϖ̃ ∧ ϵ + ψ̃θ, then ∥ϵ∥2

g and ∥θ∥2
g are constant.

Proof. Statements (1) and (5) are obvious. We prove the rest of them.
(2) When Y = X, the first equation of (4.9) reduces to

Rich(X, X) = (∥ν∥
2
g

6
∥X∥2

g −
1
2
ν(X)2)∥β̃∥2

g̃ ,

which must hold for every X ∈ Γ(TM6). By Lemma 4.4, either ∥β̃∥2
g̃ is constant, or

(∥ν∥
2
g

6
∥X∥2

g −
1
2
ν(X)2) = 0.

Let X be a nonzero vector field in the kernel of ν, that is, ν(X) = 0. Since g is negative definite, the functions ∥ν∥2
g and ∥X∥2

g are not identically
zero. Therefore, ∥β̃∥2

g̃ must be constant.
(3) If F = γ̃ ∧ δ, we have from the first equation of (4.11) that

Rich(X, Y) = (∥δ∥
2
g

6
g(X, Y) − 1

2
⟨X⌟δ, Y⌟δ⟩g)∥γ̃∥2

g̃.

If ∥γ̃∥2
g̃ is not constant, it follows from Lemma 4.4 that g(X, Y) = 3

∥δ∥2
g
⟨X⌟δ, Y⌟δ⟩g . Consequently, (M6, g) is Ricci-flat. Since δ is a 2-form,

∥δ∥2
g is positive. Using the definition of ω we can write the condition as g(X, Y) = ⟨X⌟ω, Y⌟ω⟩g . If ω(X, Z) = 0 for every Z, then g(X, Y) = 0

for every Y , so the non-degeneracy of g implies the non-degeneracy of ω. This allows us to define an almost complex structure J via ω(X, Y)
= g(JX, Y), since we then get

J j
i Jk

j = ωiaga jω jbgbk = −ga jωiaωb jg
bk = −Idk

i ,

where the last equality follows from g(X, Y) = ⟨X⌟ω, Y⌟ω⟩g . Moreover,

g(JX, JY) = ω(JX, J2Y) = ω(JX,−Y) = ω(Y , JX) = g(Y , X) = g(X, Y),

and consequently (M6, g, J) is an almost Hermitian manifold.
(4) For Ỹ = X̃, the second equation of (4.13) reduces to

Rich(X̃, X̃) = (
∥ϖ̃∥2

g̃

6
g̃(X̃, X̃) − 1

2
ϖ̃(X̃ )2)∥ϵ∥2

g.

If ∥ϖ̃∥2
g̃ = 0, let X̃ be a vector with the property ϖ̃(X̃) ≠ 0. If ∥ϖ̃∥2

g̃ is different from 0, let X̃ be the g̃-dual of the 1-form ϖ̃. Then we obtain the
equation

Rich(X̃, X̃) = −∥ϖ̃∥4
g̃∥ϵ∥2

g/3.
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In both cases, we see that ∥ϵ∥2
g is constant due to Lemma 4.4, and it is negative since g is negative definite on 3-forms.

(6) To see that ∥α̃∥2
g̃ is constant, let us assume that X is given by X j = 1

3 gi jνi. Then, the first equation of (4.17) reduces to

Rich(X, Y) =
φ2∥α̃∥2

g̃

6
g(X, Y) + (∥ν∥

2
g

6
g(X, Y) − 1

2
ν(X)ν(Y))∥β̃∥2

g̃

= (
φ2∥α̃∥2

g̃

6
+ (∥ν∥

2
g

6
− 1

2
ν(X))∥β̃∥2

g̃)ν(Y)

=
φ2∥α̃∥2

g̃

6
ν(Y),

since ν(X) = ∥ν∥2
g/3. By choosing Y such that ν(Y) = 3g(X, Y) ≠ 0, we see that ∥α̃∥2

g̃ is constant by Lemma 4.4. It is then clear that also ∥β̃∥2
g̃

must be constant.
(7) The proof is similar to that of (6). ◻
Remark 4.6. The sign of the Einstein constant depends on the signature convention. For example, if the manifold (M̃ 1,4, g̃) in point (5)

has positive Einstein constant, it will have negative Einstein constant in the “mostly plus” convention.

Remark 4.7. For point (3) in Corollary 4.5, we observe the following. If (X̃ 1,10, h, F = γ̃ ∧ δ) satisfies the closedness condition, then dδ = 0.
If ∥δ∥2

g is constant, this implies that ω is closed, and so (M6, g, J,ω)must be an almost Kähler manifold.

From the trace of the Einstein equation, consequently, the scalar curvature Scalh of a bosonic supergravity background (X1,10, h, F)
satisfies the relation Scalh = 1

6∥F∥
2
h (see, for example, Refs. 23 and 35). For the cases (1) and (5) in Corollary 4.5, we obtain that ∥F∥2

h is
constant.

Corollary 4.8. Assume that (X1,10 = M̃ 1,4 ×M6, h = g̃ + g, F) is a solution of the supergravity Einstein equations (4.1).
If F = α̃, then Scalh = 1

6∥α̃∥
2
g̃ is constant.

If F = θ, then Scalh = 1
6∥θ∥

2
g is constant and positive.

V. GENERAL THEOREMS REGARDING FLUX FORMS COMPOSED OF NULL FORMS
We continue our investigation of manifolds of the form X1,10 = M̃ 1,4 ×M6, endowed with the product metric h = g̃ + g and the 4-form F

given in (2.2). Since g̃ is a Lorentzian metric, there exist differential forms on M̃ 1,4 that are null. Recall that a k-form ω ∈ Ωk(M̃ 1,4) is called
null if ⟨ω,ω⟩g̃ = 0. In this section, we will show that if F is composed of such forms, then the supergravity Einstein equation simplifies. These
results are of particular relevance whenever M̃ 1,4 comes equipped with a distribution of null lines. Indeed, this is the case, for example, if M̃ 1,4

is a Walker manifold or a Kundt spacetime. The case when M̃ 1,4 is a Walker manifold will be further explored in Sec. VI in a way analogous to
what was performed in Ref. 30.

The following proposition concerns a particular type of null flux form and is a direct consequence of the relations (4.3) and (4.4).

Proposition 5.1. Consider the Lorentzian manifold X1,10 = M̃ 1,4 ×M6 with metric h = g̃ + g and the 4-form F, given by (2.2). Assume that
α̃, β̃, γ̃, ϖ̃ are null and, moreover, that ψ̃ = 0. Then, (X1,10, h, F) satisfies the supergravity Einstein equations if and only if (M6, g) is Ricci-flat
and

Rich(X̃, Ỹ) = −1
2
⟨X̃⌟F, Ỹ⌟F⟩h

= −1
2
(⟨X̃⌟α̃, Ỹ⌟α̃⟩g̃φ2 + ⟨X̃⌟β̃, Ỹ⌟β̃⟩g̃∥ν∥2

g + ⟨X̃⌟γ̃, Ỹ⌟γ̃⟩g̃∥δ∥2
g + ϖ̃(X̃)ϖ̃(Ỹ)∥ϵ∥2

g),

0 = φν(Z)⟨β̃, Ỹ⌟α̃⟩g̃ − ⟨γ̃ ∧ (Z⌟δ), (Ỹ⌟β̃) ∧ ν⟩h + ⟨ϖ̃ ∧ (Z⌟ϵ), (Ỹ⌟γ̃) ∧ δ⟩h,

for any X̃, Ỹ ∈ Γ(TM̃ 1,4) and Z ∈ Γ(TM6).

One notable consequence is that the component (M6, g) of bosonic supergravity backgrounds of the type described in Proposition 5.1 is
required to be Ricci-flat. Moreover, by combining Proposition 5.1 with Proposition 3.4, we arrive at the following general statements.
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Theorem 5.2. Consider the Lorentzian manifold X1,10 = M̃ 1,4 ×M6 with metric h = g̃ + g and the 4-form F = α̃, where α̃ is null. Then
(X1,10, h, F) is a bosonic supergravity background if and only if M6 is Ricci-flat, α̃ is closed and co-closed on M6, and

Rich(X̃, Ỹ) = −1
2
⟨X̃⌟α̃, Ỹ⌟α̃⟩g̃ , ∀ X̃, Ỹ ∈ Γ(TM̃). (5.1)

Note that if F = φα̃, then Proposition 3.4 implies that φ is constant, and it can thus be absorbed into α̃. Therefore, the above-mentioned
condition F = α̃ is considered without loss of generality.

Theorem 5.3. Consider the Lorentzian manifold X1,10 = M̃ 1,4 ×M6 with metric h = g̃ + g and the 4-form F = β̃ ∧ ν, where β̃ is null. Then
(X1,10, h, F) is a bosonic supergravity background if and only if M6 is Ricci-flat, β̃ and ν are closed and co-closed (on M̃ 1,4 and M6, respectively),
and

Rich(X̃, Ỹ) = −1
2
⟨X̃⌟β̃, Ỹ⌟β̃⟩g̃∥ν∥2

g , ∀ X̃, Ỹ ∈ Γ(TM̃). (5.2)

Theorem 5.4. Consider the Lorentzian manifold X1,10 = M̃ 1,4 ×M6 with metric h = g̃ + g and the 4-form F = γ̃ ∧ δ, where γ̃ is null. Then
(X1,10, h, F) is a bosonic supergravity background if and only if M6 is Ricci-flat, γ̃ and δ are closed (on M̃ 1,4 and M6, respectively), δ is co-closed
on M and the following two equations hold:

d⋆5γ̃ ∧ ⋆6δ =
1
2
γ̃ ∧ γ̃ ∧ δ ∧ δ, Rich(X̃, Ỹ) = −1

2
⟨X̃⌟γ̃, Ỹ⌟γ̃⟩g̃∥δ∥2

g , ∀ X̃, Ỹ ∈ Γ(TM̃). (5.3)

Note that the first condition of (5.3) is satisfied if γ̃ is co-closed and either γ̃ ∧ γ̃ = 0 or δ ∧ δ = 0.

Theorem 5.5. Consider the Lorentzian manifold X1,10 = M̃ 1,4 ×M6 with metric h = g̃ + g and the 4-form F = ϖ̃ ∧ ϵ, where ϖ̃ is null. Then
(X1,10, h, F) is a bosonic supergravity background if and only if M6 is Ricci-flat, ϖ̃ and ϵ are closed and co-closed (on M̃ 1,4 and M6, respectively),
and

Rich(X̃, Ỹ) = −1
2
ϖ̃(X̃)ϖ̃(Ỹ)∥ϵ∥2

g , ∀ X̃, Ỹ ∈ Γ(TM̃). (5.4)

Observe that Eq. (5.4) implies that ∥ϵ∥2
g is constant, and without loss of generality, one may assume that it is equal to −1 (by absorbing

the constant into ϖ̃). Let us also recall the following definition (see, for example, Ref. 36).

Definition 5.6. A Lorentzian manifold (X, h) is called totally Ricci-isotropic if the Ricci endomorphism rich : TX→ TX corresponding to
Rich satisfies the relation

h(rich(X), rich(Y)) = 0, ∀ X, Y ∈ Γ(TX).

In Theorem 5.5, we observe that a bosonic supergravity background (X1,10 = M̃ 1,4 ×M6, h = g̃ + g), with flux form F = ϖ̃ ∧ ϵ and ϖ̃ null,
is totally Ricci-isotropic. This is essentially the same claim as Ref. 30, Corollary 5.10, and the proof is similar.

Corollary 5.7. Let ϖ̃ ∈ Ω2(M̃ 1,4) be null. Then, a bosonic supergravity background (X1,10 = M̃ 1,4 ×M6, h = g̃ + g, F = ϖ̃ ∧ ϵ) is totally Ricci-
isotropic.

Next, we state two results concerning flux forms of the form φα̃ + β̃ ∧ ν and β̃ ∧ ν + ϖ̃ ∧ ϵ, respectively, where α̃, β̃ and ϖ̃ are null.

Theorem 5.8. Consider the Lorentzian manifold X1,10 = M̃ 1,4 ×M6 with metric h = g̃ + g and the 4-form F = φα̃ + β̃ ∧ ν, where α̃ and β̃
are null. Then (X1,10, h, F) is a bosonic supergravity background if and only if M6 is Ricci-flat,

d α̃ = d ν = 0, dφ = κν, d β̃ = −κα̃, d⋆5β̃ = 0, d⋆5α̃ = −λ⋆5β̃, d⋆6ν = λ⋆6φ,

for some constants κ, λ ∈ R and

Rich(X̃, Ỹ) = −1
2
⟨X̃⌟α̃, Ỹ⌟α̃⟩g̃φ2 − 1

2
⟨X̃⌟β̃, Ỹ⌟β̃⟩g̃∥ν∥2

g , ∀X̃, Ỹ ∈ Γ(TM̃),

0 = ⟨β̃, X̃⌟α̃⟩g̃ , ∀X̃ ∈ Γ(TM̃).
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Theorem 5.9. Consider the Lorentzian manifold X1,10 = M̃ 1,4 ×M6 with metric h = g̃ + g and the 4-form F = β̃ ∧ ν + ϖ̃ ∧ ϵ, where β̃ and ϖ̃
are null. Then (X1,10, h, F) is a bosonic supergravity background if and only if M6 is Ricci-flat,

d β̃ = d ν = d ϖ̃ = d ϵ = 0, d⋆6ν = d⋆5β̃ = d⋆5ϖ̃ = 0, ⋆5ϖ̃ ∧ d⋆6ϵ = β̃ ∧ ϖ̃ ∧ ϵ ∧ ν,

and

Rich(X̃, Ỹ) = −1
2
⟨X̃⌟β̃, Ỹ⌟β̃⟩g̃∥ν∥2

g −
1
2
ϖ̃(X̃)ϖ̃(Ỹ)∥ϵ∥2

g , ∀X̃, Ỹ ∈ Γ(TM̃).

Notice that the last equation in Proposition 5.1, the one coming from Eq. (4.5), is satisfied automatically in Theorems 5.2–5.9. The only
exception is Theorem 5.8, where the consequence ⟨β̃, X̃⌟α̃⟩g̃ = 0 gives additional constraints.

Let us also pose the following:

Corollary 5.10. All bosonic supergravity backgrounds appearing in this section have vanishing scalar curvature.

Proof. This is a simple consequence of the relation Scalh = 1
6∥F∥

2
h and the fact that the flux form F is null for all the backgrounds presented

earlier. ◻

VI. BOSONIC SUPERGRAVITY BACKGROUNDS FOR WHICH M̃1,4 IS A RICCI-ISOTROPIC WALKER MANIFOLD
In order to construct explicit examples of bosonic supergravity backgrounds for which the flux form is composed of null forms, as treated

in Sec. V, we assume in this section that M̃ 1,4 is a Lorentzian Walker manifold. Lorentzian Walker manifolds admit a parallel distribution of
isotropic lines, which we will use to build the Lorentzian part of the flux form F. With the aim of further simplifying the supergravity Einstein
equations, we follow Ref. 30 and will work with a special type of totally Ricci-isotropic Walker manifolds, defined below. In Secs. VI B–VI E,
we consider the simplest type of flux forms, namely, those of the form α̃, β̃ ∧ ν, γ̃ ∧ δ, and ϖ̃ ∧ ϵ. In Sec. VI F, we unify these results by
considering the more general flux form φα̃ + β̃ ∧ ν + γ̃ ∧ δ + ϖ̃ ∧ ϵ under the additional condition that the eight involved differential forms
α̃, β̃, γ̃, ϖ̃,φ, ν, δ, ϵ are closed and coclosed on their respective manifolds. Finally, in Sec. VI G, we consider the flux form φα̃ + β̃ ∧ ν without the
strict assumption of closedness and coclosedness for each of its components.

A. Ricci-isotropic Walker manifolds and null forms
Let us recall the definition of a Lorentzian Walker manifold.

Definition 6.1. A Lorentzian Walker manifold is a Lorentzian manifold that admits a parallel distribution of isotropic (or null) lines.

Next, we focus on the five-dimensional case. If (M̃ 1,4, g̃) is a Lorentzian Walker manifold, then it is locally diffeomorphic to a product
R ×N3 ×R of manifolds with coordinates u, x = (x1, x2, x3), and v, respectively, on which the metric takes the form

g̃ = 2 du dv + ρ + 2Ad u +H du2. (6.1)

Here, ρ = ρij(u, x)dxidx j is a family of Riemannian metrics on N3 [parametrized by u and of signature (−,−,−)], A = Ai(u, x)dxi is a family
of 1-forms on N3, and H = H(u, x, v) is a smooth function on M̃ 1,4 (see Refs. 30 and 37–39). In these coordinates, the distribution spanned
by ∂v consists of isotropic lines and is parallel since ∇g̃ ∂v = 1

2 Hv∂v ⊗ d u, where ∇g̃ denotes the Levi–Cività connection with respect to g̃.
Observe also that d u = ∂v⌟g̃ is null, that is, ⟨d u, d u⟩g̃ = 0.

Following Ref. 30, we will further assume the following equation:

∂vH = 0, Ai = 0 for any i = 1, 2, 3, ρ is a family of Ricci−flat metrics. (6.2)

The first condition implies∇g̃ ∂v = 0, and consequently∇g̃ d u = 0. Under these assumptions, the Ricci tensor is significantly simplified to

Ricg̃ = −
1
2
Δρ(H) du2, (6.3)

where Δρ(H) = ∑3
i, j,k=1 ρ

i j(∂xi∂x j H − Γk
i j∂xk H) is the Laplace–Beltrami operator of the metric ρ applied to H (see Ref. 38). Consequently, the

Ricci endomorphism ricg̃ is null, i.e., ⟨ricg̃ , ricg̃⟩g̃ = 0. As in Ref. 30, we shall slightly abuse the terminology and call Walker metrics satisfying
conditions (6.2) Ricci-isotropic Walker metrics, referring to the property that the image of the Ricci endomorphism related to the Walker
metric is totally null (see Definition 5.6). Note that since the 1-form du is null, we can use it to build other null differential forms on M̃ 1,4. In
particular, if we use du to construct a null 4-form F, we may take advantage of the results found in Sec. V.
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By Proposition 5.1, we know that if (X1,10 = M̃ 1,4 ×M6, h = g̃ + g, F) is a bosonic supergravity background, then the Ricci tensor of M̃ 1,4

satisfies the equation

Rich(X̃, Ỹ) = −1
2
(⟨X̃⌟α̃, Ỹ⌟α̃⟩g̃φ2 + ⟨X̃⌟β̃, Ỹ⌟β̃⟩g̃∥ν∥2

g + ⟨X̃⌟γ̃, Ỹ⌟γ̃⟩g̃∥δ∥2
g + ϖ̃(X̃)ϖ̃(Ỹ)∥ϵ∥2

g).

When (M̃ 1,4, g̃) is a Ricci-isotropic Walker manifold of the type described earlier, the right-hand side of this equation must be the same type
of tensor as in (6.3). The following lemma shows that this happens when α̃, β̃, γ̃, ϖ̃ are of the form du ∧ ω(u), for some ω(u) ∈ Ωk(N3). Here,
the notation indicates that the differential forms on N3 are parametrized by u. We remind that the metric ρ, in general, also depends on u,
even though our notation does not emphasize this.

Lemma 6.2. Let ω(u) ∈ Ωk(N3) be a k-form and let g̃ = 2 du dv + ρ +H(u, x)du2 be a metric on M̃ 1,4 = R ×N3 ×R. Then

⟨X̃⌟(d u ∧ ω(u)), Ỹ⌟(d u ∧ ω(u))⟩g̃ = a1a2⟨ω(u),ω(u)⟩g̃ ,

where a1 = X̃⌟d u and a2 = Ỹ⌟d u. In particular, the expression vanishes, unless both X̃⌟d u and Ỹ⌟d u are nonzero.

Proof. We have ⟨d u, d u⟩g̃ = 0 and ⟨d u, d xi⟩g̃ = 0, which implies ⟨d u ∧ ω1,ω2⟩g̃ = 0 for every k-form ω2 and every (k − 1)-form ω1 on
R ×N3. Let X̃ = a1∂u +∑3

i=1 bi
1∂xi + c1∂v and Ỹ = a2∂u +∑3

i=1 bi
2∂xi + c2∂v . Then, for ω̃ = d u ∧ ω(u), we compute

⟨X̃⌟ω̃, Ỹ⌟ω̃⟩g̃ = ⟨a1ω(u) − d u ∧ (
3

∑
i=1

bi
1∂xi⌟ω(u)), a2ω(u) − d u ∧ (

3

∑
i=1

bi
2∂xi⌟ω(u))⟩g̃

= a1a2⟨ω(u),ω(u)⟩g̃.

◻
An important subclass of Ricci-isotropic Lorentzian Walker metrics, which we may use in our study to construct explicit examples

of bosonic supergravity backgrounds, consists of the so-called pp-waves (see Refs. 9 and 40 for details). Locally, in five dimensions, such
manifolds are of the form (6.1), with A = 0, ρ = −(d x1)2 − (d x2)2 − (d x3)2, and ∂vH = 0, and so topologically, M̃ 1,4 = R ×R3 ×R ≅ R5. In
particular, we have ΔρH = −∑3

i=1 Hxixi .

Remark 6.3. Walker manifolds provide examples of indefinite metrics that exhibit various geometric aspects (see, for example, Refs. 39,
41, and 42 for the Lorentzian version of such manifolds). For instance, the pp-waves form one of the simplest and well-known classes of
Lorentzian Walker manifolds. On the other hand, (totally) Ricci-isotropic Lorentzian manifolds are known to be important in the holonomy
theory of indefinite metrics (see, for example, Ref. 36), and their Ricci tensor attains a simplified expression (Ref. 38). Due to this special
holonomy feature, Ricci-isotropic Lorentzian Walker manifolds have many natural applications in supergravity theories (see, for instance,
Refs. 9, 30, 41, and 43–45).

In the remainder of this section, we apply the results from the previous sections to the case where (M̃ 1,4, g̃) is a Lorentzian Walker
manifold satisfying (6.2).

B. Results concerning the flux form F = α̃

Let us consider the non-trivial 4-form F = α̃ = d u ∧ f (u, x) volρ, where volρ denotes the (in general, u-dependent) volume form of the
metric ρ on N3.

Proposition 6.4. Let (M6, g) be a Ricci-flat Riemannian manifold and let (M̃ 1,4, g̃ = 2 du dv + ρ +H du2) be a Walker manifold with
ρ Ricci-flat and ∂v(H) = 0. Then (X1,10 = M̃ 1,4 ×M6, h = g̃ + g, F = f (x, u)d u ∧ volρ) is a bosonic supergravity background if and only if
∂xi( f ) = 0 for i = 1, 2, 3 and

ΔρH = − f 2.

Proof. Since α̃ does not depend on v, we have d α̃ = 0. The condition d⋆5α̃ = 0 is equivalent to ∂xi( f ) = 0 for i = 1, 2, 3. From Lemma 6.2,
we see that ⟨X̃⌟α̃, Ỹ⌟α̃⟩g̃ = 0 for every pair X̃, Ỹ on which du2 vanishes. The statement then follows from Theorem 5.2 since we get

Ricg̃ =
1
2

f 2du2,

which by (6.3) is equivalent to ΔρH = − f 2. ◻
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Example 6.5. For an explicit example, let (M6, g) be a Ricci-flat Riemannian manifold and let (M̃ 1,4, g̃ = 2 du dv −∑3
i=1 (d xi)2

+H du2) be a five-dimensional pp-wave. SinceΔρH = −∑3
i=1 Hxixi , the equationΔρH = − f 2 is satisfied when H = 1

6 f (u)2∑3
i=1 (xi)2. Therefore,

with this choice of H,
(X1,10 = M̃ 1,4 ×M6, h = g̃ + g, F = f (u)d u ∧ d x1 ∧ d x2 ∧ d x3),

is an eleven-dimensional bosonic supergravity background.

C. Results concerning the flux form F = β̃ ∧ ν

Let us now consider a Ricci-flat Riemannian manifold M6 = R × Σ with metric g = −dt2 − μ, where μ is a positive definite metric on the
five-dimensional manifold Σ.

Proposition 6.6. Let (M6 = R × Σ, g) be a Ricci-flat Riemannian manifold with metric g = −dt2 − μ and let (M̃ 1,4 = R ×N3 ×R,
g̃ = 2 dv du + ρ +H du2) be a Walker manifold with ∂v(H) = 0 and ρ u-independent and Ricci-flat. Set ν = dt and β̃ = d u ∧ ω for a closed
and coclosed 2-form ω on N3. Then (X1,10 = M̃ 1,4 ×M6, h = g̃ + g, F = β̃ ∧ ν) is a bosonic supergravity background if and only if

ΔρH = −∥ω∥2
ρ.

Proof. It is clear that β̃ is closed and that ν is closed and coclosed. It follows from ⋆5β̃ = ⋆2d u ∧ ⋆ρω = −d u ∧ ⋆ρω that β̃ is coclosed.
We also see that ⟨X̃⌟β̃, Ỹ⌟β̃⟩g̃ = 0 for every pair X̃, Ỹ on which du2 vanishes. Therefore, it follows from Theorem 5.3 that the Ricci tensor is
given by

Rich = −
1
2
∥ω∥2

g̃∥ν∥2
g du2.

This equivalent to ΔρH = −∥ω∥2
g̃ = −∥ω∥2

ρ, since ∥ν∥2
g = −1. ◻

Example 6.7. Let (M̃ 1,4 = R ×N3 ×R, g̃ = 2 dv du −∑3
i=1 (d xi)2 +H du2) be a pp-wave with H = 1

6∑
3
i=1 (xi)2. Let (M6, g) and ν be as

described in the proposition earlier and set β̃ = d u ∧ d x1 ∧ d x2. Then

(X1,10 = M̃ 1,4 ×M6, h = g̃ + g, F = β̃ ∧ ν),

is an eleven-dimensional bosonic supergravity background.

D. Results concerning the flux form F = γ̃ ∧ δ

Let γ̃ = d u ∧ ζ for a 1-form ζ on N3 and assume that M6 is a Calabi–Yau manifold and that δ is its Kähler form.

Proposition 6.8. Consider a six-dimensional Calabi–Yau manifold (M6, g, δ), where δ denotes the Kähler form, and a five-dimensional
Walker manifold (M̃ 1,4 = R ×N3 ×R, g̃ = 2 dv du + ρ +H du2) with ρ u-independent and Ricci-flat, and ∂v(H) = 0. Set γ̃ = d u ∧ ζ for some
closed and coclosed 1-form ζ on N3. Then (X1,10 = M̃ 1,4 ×M, h = g̃ + g, F = γ̃ ∧ δ) is a bosonic supergravity background if and only if

ΔρH = ∥ζ∥2
ρ∥δ∥2

g. (6.4)

Proof. We use Theorem 5.4. Since γ̃ ∧ γ̃ = 0, the Maxwell equation and closedness condition are satisfied when γ̃ and δ are closed and
coclosed. Since δ is the Kähler form, it is closed and coclosed, and the same holds for γ̃. Since (M6, g, δ) is a Calabi–Yau manifold, it is
Ricci-flat. We also see that ⟨X̃⌟γ̃, Ỹ⌟γ̃⟩g̃ = 0 for every pair X̃, Ỹ on which du2 vanishes. It follows from (5.3) that

Rich = −
1
2
∥ζ∥2

g̃∥δ∥2
g du2,

which is equivalent to (6.4) (note that the function ∥δ∥2
g is constant since it is the Kähler form). This proves our claim. ◻

E. Results concerning the flux form F = ϖ̃ ∧ ϵ

Proposition 6.9. Let (M6, g) be a Riemannian Ricci-flat manifold and ϵ a closed and coclosed 3-form on M6. Let (M̃ 1,4 = R ×N3 ×R,
g̃ = 2 dv du + ρ +H du2) be a Walker manifold with ρ u-independent and Ricci-flat and ∂v(H) = 0. Set ϖ̃ = d u. Then (X1,10 = M̃ 1,4 ×M6,
h = g̃ + g, F = ϖ̃ ∧ ϵ) is a bosonic supergravity background if and only if ∥ϵ∥2

g is constant, and
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ΔH = ∥ϵ∥2
g.

Proof. We use Theorem 5.5. It is clear that ϖ̃ = d u is both closed and coclosed. We have ϖ̃(X̃)ϖ̃(Ỹ) = 0 for every pair X̃, Ỹ on which du2

vanishes. Therefore, by (5.4), the Ricci tensor takes the form

Rich = −
1
2
∥ϵ∥2

g du2,

or, equivalently, ΔρH = ∥ϵ∥2
g . Since the left-hand side of this equation is a function on M̃ 1,4, ∥ϵ∥2

g must be constant. This completes the
proof. ◻

We illustrate Proposition 6.9 with the following example:

Example 6.10. Let M̃ 1,4 be a pp-wave with metric

g̃ = 2 dv du −
3

∑
i=1
(d xi)2 − E2

6
(

3

∑
i=1
(xi)2)du2,

let (M6, g) be a Riemannian Ricci-flat manifold and let ϵ be a closed and coclosed 3-form on M6 with ∥ϵ∥2
g = −E2 constant. Then

(X1,10 = M̃ 1,4 ×M6, h = g̃ + g, F = d u ∧ ϵ) is an eleven-dimensional bosonic supergravity background.

F. Results concerning the flux form F = φα̃ + β̃ ∧ ν + γ̃ ∧ δ + ϖ̃ ∧ ϵ

In this section, we unify the previous four cases by considering a flux form F = φα̃ + β̃ ∧ ν + γ̃ ∧ δ + ϖ̃ ∧ ϵ, where

α̃ = d u ∧ α̂(u), β̃ = d u ∧ β̂(u), γ̃ = d u ∧ γ̂(u), ϖ̃ = d u ∧ ϖ̂(u),

with α̂(u) ∈ Ω3(N3), β̂(u) ∈ Ω2(N3), γ̂(u) ∈ Ω1(N3), and ϖ̂(u) ∈ C∞(N3), respectively. Recall that the notation indicates that the differential
forms on N3 are parametrized by u. Since dim N3 = 3, we have α̂(u) = f (u, x) volρ for some function f ∈ C∞(R ×N3), where volρ is the (in
general, u-dependent) volume form with respect to the metric ρ. In this case, the Maxwell equations (Proposition 3.3) simplify significantly: all
right-hand sides vanish due to du ∧ du = 0, and we obtain the equations in Proposition 3.8. It is easily seen that both the closedness condition
and the Maxwell equation are satisfied in the particular case that α̃, β̃, γ̃, ϖ̃ and φ, ν, δ, ϵ are closed and coclosed on their respective manifolds.
Let us remark that the closedness of φ implies its constancy, and we can without loss of generality assume that it is equal to 1. Finally, notice
that if ω = d u ∧ ω̂(u) for some ω̂(u) ∈ Ωk(N3), then closedness of ωwith respect to the exterior derivative on M̃ 1,4 is equivalent to closedness
of ω̂(u) with respect to the exterior derivative dN on N3,

dω = −d u ∧ d ω̂(u) = −d u ∧ d N ω̂(u).

A similar statement can be made for coclosedness of ω: d ⋆5ω = 0 if and only if d N⋆ρω̂(u) = 0.

Proposition 6.11. Consider the 4-form F = d u ∧ (α̂(u) + β̂(u) ∧ ν + γ̂(u) ∧ δ + ϖ̂(u)ϵ), where

α̂(u) ∈ Ω3(N3), β̂(u) ∈ Ω2(N3), γ̂(u) ∈ Ω1(N3), ϖ̂(u) ∈ C∞(N3),
ν ∈ Ω1(M6), δ ∈ Ω2(M6), ϵ ∈ Ω3(M6),

are closed and coclosed on N3 and M6, respectively. Let also (M̃ 1,4, g̃) be a Walker metric of the form (6.1) with ρRicci-flat, A = 0, and ∂v(H) = 0.
Then,

(X1,10 = M̃ 1,4 ×M6, h = g + g̃, F),

is a bosonic supergravity background if and only if (M6, g) is Ricci-flat and

ΔρH = ∥α̂(u)∥2
ρ + ∥β̂(u)∥2

ρ∥ν∥2
g + ∥γ̂(u)∥2

ρ∥δ∥2
g + ϖ̂(u)2∥ϵ∥2

g.

Proof. It is clear that the closedness condition in Lemma 3.1 is satisfied, as is the Maxwell equation (Proposition 3.8). Therefore, the
condition for being a bosonic supergravity background boils down to the supergravity Einstein equation, which, by Proposition 5.1, consists
of the following system of equations:
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⎧⎪⎪⎪⎨⎪⎪⎪⎩

Rich(X̃, Ỹ) = −1
2
(⟨X̃⌟α̃, Ỹ⌟α̃⟩g̃ + ⟨X̃⌟β̃, Ỹ⌟β̃⟩g̃∥ν∥2

g + ⟨X̃⌟γ̃, Ỹ⌟γ̃⟩g̃∥δ∥2
g + ϖ̃(X̃)ϖ̃(Ỹ)∥ϵ∥2

g),

0 = φν(Z)⟨β̃, Ỹ⌟α̃⟩g̃ − ⟨γ̃ ∧ (Z⌟δ), (Ỹ⌟β̃) ∧ ν⟩h + ⟨ϖ̃ ∧ (Z⌟ϵ), (Ỹ⌟γ̃) ∧ δ⟩h.

The first equation reduces to

ΔρH = −2Rich(∂u,∂u) = ∥α̂(u)∥2
ρ + ∥β̂(u)∥2

ρ∥ν∥2
g + ∥γ̂(u)∥2

ρ∥δ∥2
g + ϖ̂(u)2∥ϵ∥2

g ,

due to (6.3) and Lemma 6.2, while the second one holds automatically. Therefore, we get our claim. ◻

Notice that since α̂(u) = f (u, x) volρ, we have d N α̂(u) = 0. We also see that ∥α̂(u)∥2
ρ = − f 2, and the condition d N⋆ρα̂(u) = 0 is equiva-

lent to condition ∂xi( f ) = 0 for i = 1, 2, 3, which we recognize from Proposition 6.4. Notice that closedness of ϖ̂(u) on N3 means that ϖ̂(u) is
a function of u only. Propositions 6.4, 6.6, 6.8, and 6.9 can now be viewed as corollaries of Proposition 6.11. Moreover, their corresponding
examples are special cases of the following more general example.

Example 6.12. Let (M6, g) be a Ricci-flat Riemannian manifold and assume that there exist differential forms ν ∈ Ω1(M6),
δ ∈ Ω2(M6), ϵ ∈ Ω3(M6), which are closed and coclosed, satisfying ∥ν∥2

g = −1, ∥δ∥2
g = 1, and ∥ϵ∥2

g = −1, respectively. Let M̃ 1,4 be a five-
dimensional pp-wave with metric

g̃ = 2 du dv −
3

∑
i=1
(d xi)2 + f1(u)2 − f2(u)2 + f3(u)2 − f4(u)2

6
(

3

∑
i=1
(xi)2)du2,

and set α̂(u) = f1(u) volρ, β̂(u) = f2(u)d x1 ∧ d x2, γ̂(u) = f3(u)d x1, ϖ̂(u) = f4(u). If

F = d u ∧ (α̂(u) + β̂(u) ∧ ν + γ̂(u) ∧ δ + ϖ̂(u)ϵ)
= d u ∧ ( f1(u)d x1 ∧ d x2 ∧ d x3 + f2(u)d x1 ∧ d x2 ∧ ν + f3(u)d x1 ∧ δ + f4(u)ϵ),

then (X1,10 = M̃ 1,4 ×M6, h = g̃ + g, F) is an eleven-dimensional bosonic supergravity background. Notice that when all but one of the functions
fi vanish, the example reduces to the ones previously considered. We can specify the example even further by considering M6 = R3 × Σ with
metric g = −(d y1)2 − (d y2)2 − (d y3)2 − ν, where ν is a Ricci-flat positive definite metric on a three-dimensional manifold Σ, and ν = dy3,
δ = dy2 ∧ dy3, ϵ = dy1 ∧ dy2 ∧ dy3.

G. Results concerning the flux form F = φα̃ + β̃ ∧ ν

Now, set α̃ = d u ∧ f (u, x) volρ and β̃ = d u ∧ ω(u), where f ∈ C∞(R ×N3) is a function,ω(u) ∈ Ω2(N3) is a 2-form depending smoothly
on the parameter u, and f ,ω(u), ν,φ are nonzero. Then we get the following statement regarding bosonic supergravity backgrounds with flux
form F = φα̃ + β̃ ∧ ν.

Proposition 6.13. Let (M6, g) be a Riemannian Ricci-flat manifold, φ a function on M6 satisfying ⋆6d ⋆6 dφ = κλφ, and set ν = 1
κdφ for a

nonzero constant κ. Let also (M̃ 1,4 = R ×N3 ×R, g̃ = 2 dv du + ρ +H du2) be a Walker manifold with ρ Ricci-flat and ∂v(H) = 0. Set as above
α̃ = d u ∧ f volρ and β̃ = d u ∧ ω(u) with ω(u) = − 1

λ⋆ρd N f for a nonzero constant λ, and assume that f satisfies ⋆ρdN ⋆ρ dN f = −κλf . Then
(X1,10 = M̃ 1,4 ×M6, h = g̃ + g, F = φα̃ + β̃ ∧ ν) is a bosonic supergravity background if and only if

ΔρH = ∥ω(u)∥2
ρ∥ν∥2

g − f 2φ2.

Proof. The proof is mainly based on Theorem 5.8. The Maxwell equation and the closedness condition reduce to

d N⋆ρω(u) = 0, d Nω(u) = κ f volρ, d N f = λ⋆ρω(u), d ν = 0, dφ = κν, d⋆6ν = λ⋆6φ.

These equations are satisfied due to the definitions of ν and ω(u) and the two differential equations

⋆6d⋆6dφ = κλφ, ⋆ρd N⋆ρd N f = −κλ f ,

constraining them. Next, the supergravity Einstein equation consists of the following system of equations:
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⎧⎪⎪⎪⎨⎪⎪⎪⎩

Rich(X̃, Ỹ) = −1
2
⟨X̃⌟α̃, Ỹ⌟α̃⟩g̃φ2 − 1

2
⟨X̃⌟β̃, Ỹ⌟β̃⟩g̃∥ν∥2

g , ∀ X̃, Ỹ ∈ Γ(TM̃),

0 = ⟨β̃, X̃⌟α̃⟩g̃ , ∀ X̃ ∈ Γ(TM̃).

By Lemma 6.2 and by assuming that (M̃ 1,4, g̃) is of the form (6.1) with ρ Ricci-flat and ∂v(H) = 0, we see that the only nonzero component
of the Ricci tensor has the form

Rich(∂u,∂u) = −
1
2
( f 2φ2∥ volρ∥2

g̃ + ∥ω(u)∥2
g̃∥ν∥2

g) =
1
2
( f 2φ2 − ∥ω(u)∥2

g̃∥ν∥2
g),

while for α̃ and β̃ of the chosen form, the equation ⟨β̃, X̃⌟α̃⟩g̃ = 0 holds automatically. However, then, by (6.3), it turns out that the above-
mentioned relation is equivalent to the condition ΔρH = ∥ω(u)∥2

g̃∥ν∥2
g − f 2φ2, which proves our claim. ◻

Remark 6.14. By assumption, the function f 2 is nonzero, and ∥ω(u)∥2
g̃ = ∥ω(u)∥2

ρ > 0, since ρ is positive definite on 2-forms. By
Lemma 4.4, we see that either φ and ∥ν∥2

g are both constants, or f 2 = C∥ω(u)∥2
g̃ for some nonzero constant C, which can only be positive.

In the latter case, we obtain

∥ν∥2
g = Cφ2 +D,

for some constant D. In this equation, the left-hand side is negative. For this reason, we look for an example involving trigonometric functions.

Example 6.15. Let (M6 = S1 ×R5, g) be a flat Riemannian manifold with coordinates y1, . . . , y6 and metric g = −(d y1)2 −∑6
i=2 (d yi)2.

Set

φ = sin (y1), ν = 1
κ

dφ = 1
κ

cos (y1)d y1.

Consider also a pp-wave (M̃ 1,4, g̃) with metric g̃ = 2 du dv −∑3
i=1 (d xi)2 +H(u, x)du2. Set f = exp(x1) and ω = κ ⋆ρ d f = −κ exp(x1)dx2

∧ dx3. In terms of the notation in Proposition 6.13, we have λ = −1/κ. Now, the supergravity Einstein condition gives

ΔρH = ∥ω∥2
g̃∥ν∥2

g − f 2φ2 = − exp (2x1).

This equation is satisfied if, for example, H = 1
4 exp (2x1). Therefore, (X1,10 = M̃ 1,4 ×M6, h = g + g̃, F = φα̃ + β̃ ∧ ν) is a bosonic supergravity

background with these choices of φ, ν, f ,ω, H, and then the flux form F reads as F = exp (x1)d u ∧ d x2 ∧ d x3 ∧ (sin (y1)d x1 + cos (y1)d y1).

Let us now consider the case where dφ = 0 (and κ = 0). By absorbing the constant into α̃, we can, without loss of generality, assume that
φ = 1. As long as λ ≠ 0, the 2-form ω(u) is determined by f via the relation ω(u) = − 1

λ⋆ρd N f . This implies at once that dN ⋆ρ ω(u) = 0. The
equation dNω(u) = 0 is then equivalent to dN ⋆ρ dN f = 0, or ⋆ρdN ⋆ρ dN f = 0. With this simplification, we obtain the following statement.

Proposition 6.16. Let (M6, g) be a Riemannian Ricci-flat manifold endowed with a closed 1-form ν ∈ Ω1(M) satisfying ⋆6d ⋆6 ν = λ for
some constant λ ≠ 0. Let also (M̃ 1,4 = R ×N3 ×R, g̃ = 2 dv du + ρ +H du2) be a Walker manifold with ρ Ricci-flat and ∂v(H) = 0, and assume
that f is a smooth function on R ×N3, such that

⋆ρd N⋆ρd N f = 0.

Set α̃ = d u ∧ f volρ, β̃ = d u ∧ ω(u), with ω(u) = − 1
λ⋆ρd N f . Then (X1,10 = M̃ 1,4 ×M6, h = g̃ + g, F = α̃ + β̃ ∧ ν) is a bosonic supergravity

background if and only if

ΔρH = ∥ω(u)∥2
ρ∥ν∥2

g − f 2.

Consequently, ∥ν∥2
g must be constant for such a bosonic supergravity background.

Recall that by Proposition 3.6, the six-dimensional Riemannian manifold M6 appearing in Proposition 6.16 must be non-closed. Notice
that Examples 6.12 and 6.15 can easily be modified to make M6 a compact manifold, for example, a flat six-dimensional torus. This is not the
case for the following example.
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Example 6.17. Consider the Riemannian manifold M6 = (−L, L) ×R5 with metric g = −(d y1)2 −∑6
i=2 (d yi)2. We set λ = 1 and

ν = −y1d y1 +
√

L2 − (y1)2d y2 so that ∥ν∥2
g = −L2. Let (M̃ 1,4, g̃) be a pp-wave, that is, g̃ = 2 du dv −∑3

i=1 (d xi)2 +H(u, x)du2. If we set f = x1

and ω = − ⋆ρ dN f = dx2 ∧ dx3, then the Einstein equation is given by

ΔρH = ∥ω∥2
ρ∥ν∥2

g − f = −L2 − (x1)2.

This equation is satisfied when, for example, H = 1
12(x

1)4 + L2

2 (x
1)2. Therefore, (X1,10 = M̃ 1,4 ×M6, h = g̃ + g, F = α̃ + β̃ ∧ ν) is a bosonic

supergravity background with these choices of ν, f ,ω, H. In this case, the flux form is given by F = d u ∧ d x2 ∧ d x3 ∧ (x1d x1 − y1d y1

+
√

L2 − (y1)2d y2).

VII. BOSONIC BACKGROUNDS INVOLVING KÅHLER MANIFOLDS AND NON-NULL FLUX FORMS
In this section, we treat flux forms of types F = γ̃ ∧ δ and F = θ for the case when (M6, g) is a Kähler manifold with Kähler form ω. We

will assume that the part of F taking values in TM6 is given by ω. More precisely, we consider the cases for which δ = ω and θ = c ⋆6 ω for
some nonzero constant c ∈ R.

A. Results concerning F = γ̃ ∧ δ

Inspired by Corollary 4.5, we consider bosonic supergravity backgrounds with F = γ̃ ∧ δ, where ∥γ̃∥2
g̃ is not (necessarily) constant, and

hence not null. The following theorem follows directly from the bosonic supergravity equations (Propositions 3.4 and 4.3).

Theorem 7.1. Consider the Lorentzian manifold X1,10 = M̃ 1,4 ×M6 with metric h = g̃ + g and a 4-form F = γ̃ ∧ δ. Then (X1,10, h, F) is a
bosonic supergravity background if and only if δ is closed and coclosed, γ̃ is closed and satisfies

d⋆5γ̃ ∧ ⋆6δ =
γ̃ ∧ γ̃ ∧ δ ∧ δ

2
,

and the following equations hold:

Rich(X, Y) = (∥δ∥
2
g

6
g(X, Y) − 1

2
⟨X⌟δ, Y⌟δ⟩g)∥γ̃∥2

g̃ ,

Rich(X̃, Ỹ) = (
∥γ̃∥2

g̃

6
g̃(X̃, Ỹ) − 1

2
⟨X̃⌟γ̃, Ỹ⌟γ̃⟩g̃)∥δ∥2

g.

(7.1)

Now, Corollary 4.5 tells us that if ∥γ̃∥2
g̃ is not constant, then M6 is a Ricci-flat, almost Hermitian manifold. If we let M6 be a Kähler

manifold with Kähler form δ, we get the following statement.

Proposition 7.2. Let (M6, g, δ) be a Kähler manifold and let (M̃ 1,4, g̃) be a Lorentzian manifold. Assume also that γ̃ is a closed 2-form on
M̃ 1,4. Then (X1,10 = M̃ 1,4 ×M6, h = g + g̃, F = γ̃ ∧ δ) is a bosonic supergravity background if and only if (M6, g) is Ricci-flat,

d⋆5γ̃ = γ̃ ∧ γ̃,

and

Rich(X̃, Ỹ) = (
∥γ̃∥2

g̃

2
g̃(X̃, Ỹ) − 3

2
⟨X̃⌟γ̃, Ỹ⌟γ̃⟩g̃). (7.2)

Proof. Let us first mention that the Kähler form δ is closed and coclosed and that ∥δ∥2
g = 3. The equation d⋆5γ̃ ∧ ⋆6δ = γ̃∧γ̃∧δ∧δ

2 is in this
case equivalent to d⋆5γ̃ = γ̃ ∧ γ̃ because of the identity

⋆6δ =
1
2
δ ∧ δ, (7.3)

on the Kähler form. The first of Eq. (7.1) is satisfied since M6 is Kähler, while the second reduces to (7.2). This completes the proof. ◻

This construction illustrates the well-known fact that Ricci-flat Kähler manifolds and, more specifically, Calabi–Yau manifolds play an
important role as components of bosonic supergravity backgrounds.
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B. Results concerning the flux form F = θ and Kähler–Einstein metrics
By Corollary 4.5, we know that (X1,10 = M̃ 1,4 ×M6, h = g̃ + g, F = θ) is a solution of the supergravity Einstein equations only if ∥θ∥2

g is
constant and (M̃ 1,4, g̃) is an Einstein manifold with positive Einstein constant ∥θ∥2

g/6 (in our “mostly minus” convention). By also taking into
account Propositions 3.4 and 4.3, we obtain the following theorem.

Theorem 7.3. Consider the Lorentzian manifold X1,10 = M̃ 1,4 ×M6 with metric h = g̃ + g and a 4-form F = θ ∈ Ω4(M6). Then (X1,10, h, F)
is a bosonic supergravity background if and only if θ is closed and coclosed, ∥θ∥2

g is constant, (M̃ 1,4, g̃) is an Einstein manifold with Einstein
constant 1

6∥θ∥
2
g and

Rich(X, Y) = ∥θ∥
2
g

6
g(X, Y) − 1

2
⟨X⌟θ, Y⌟θ⟩g , ∀ X, Y ∈ Γ(TM6). (7.4)

As a consequence, we obtain the following proposition.

Proposition 7.4. Consider the Lorentzian manifold X1,10 = M̃ 1,4 ×M6, where (M̃ 1,4, g̃) is a Lorentzian manifold and (M6, g,ω) is a Kähler
manifold. Then the triple (X1,10, h = g̃ + g, F = θ = c⋆6ω) is a bosonic supergravity background if and only if (M̃ 1,4, g̃) and (M6, g) are Einstein
with Einstein constants 1

2 c2 and − 1
2 c2, respectively.

Proof. Let M6 be a Kähler–Einstein manifold with a complex structure J and Kähler 2-form ω, defined by ωikJk
j = gi j . Obviously, the

4-form θ = c ⋆6 ω is coclosed. By identity (7.3), we learn that the flux form is also closed. Hence, the Maxwell equation and closedness condition
are satisfied. Recall now that (M6, g,ω) admits an adapted orthonormal frame,

e1, e2 ∶= Je1, e3, e4 ∶= Je3, e5, e6 ∶= Je5,

such that each ωij = 0 if (i, j) ∉ {(1, 2), (2, 1), (3, 4), (4, 3), (5, 6), (6, 5)}. Then, by (7.3), we see that

θijkl = ωi jωkl − ωikω jl − ωilωk j.

This relation can be used to compute 1
3!θiabcθ abc

j , where with g we may raise or lower the indices. In particular, having in mind the relation
ωikJk

j = gi j , it is straightforward to verify that

⟨θi, θ j⟩h =
1
3!
θiabcθ

abc
j = 2gi j =

2
3
∥θ∥2

g gi j.

Note that ⋆6 is an isometry and we have c2∥ω∥2
g = ∥θ∥2

g . Hence (7.4), together with the second equation of (4.15), reduces to the following
system of equations:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Rich(X, Y) = − c2

2
g(X, Y),

Rich(X̃, Ỹ) = c2

2
g̃(X̃, Ỹ).

(7.5)

This completes our proof. ◻

By Corollary 4.8, the bosonic background (X1,10 = M̃ 1,4 ×M6, h = g̃ + g, F = θ = c⋆6ω) discussed earlier must have constant positive
scalar curvature given by Scalh = 1

6∥θ∥
2
g = c2

2 . Moreover, we see that (M̃ 1,4, g̃) has positive scalar curvature while (M6, g) has negative scalar
curvature.

Corollary 7.5. Let (M̃ 1,4, g̃) be a Lorentzian Einstein manifold with Einstein constant 1
2 c2 and let (M6, g,ω) be an Einstein Kähler manifold

with with Einstein constant − 1
2 c2. Then the triple

(M̃ 1,4 ×M6, g̃ + g, F = c⋆6ω),

is a bosonic supergravity background.

Remark 7.6. Several bosonic backgrounds of the type appearing in Corollary 7.5 are already known. In Ref. 29, it was shown that
(AdS)5 ×M6, where (M6, g,ω) is a Kähler manifold, defines a bosonic background with flux form F = 1

2 cω ∧ ω (which is proportional to
⋆6ω) if and only if (M6, g) is Einstein with negative scalar curvature (in the “mostly minus” setting). In particular, Eqs. (4) and (5) in
Ref. 29 are the same as (7.5), up to a scalar and signature convention. Therefore, Corollary 7.5 can be viewed as a slight generalization of
the backgrounds found in Ref. 29, in the sense that M̃ 1,4 is here allowed to be any Lorentzian Einstein manifold with a positive Einstein
constant (in the “mostly minus” setup), not only (AdS)5.
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In order to get other bosonic supergravity backgrounds from Corollary 7.5, we need Lorentzian Einstein manifolds (M̃ 1,4, g̃)with positive
scalar curvature that are different from (AdS)5. The class of Lorentzian Einstein–Sasakian manifolds provides us with many candidates.

Lorentzian Einstein–Sasakian structures were studied in Refs. 46–48 under the geometric perspective of Killing and twistor spinors on
Lorentzian manifolds. Such manifolds admit a cone characterization and, in the simply connected case, a spin structure (Ref. 47, Lemma 12),
as in the Riemannian case. Moreover, there is an analog of the well-known construction of Riemannian Einstein–Sasakian manifolds (see,
for example, Ref. 32), which provides Lorentzian Einstein–Sasakian manifolds in terms of circle bundles over Kähler–Einstein manifolds of
negative scalar curvature (Ref. 47, Lemma 14).

Lorentzian Einstein–Sasakian manifolds with positive (in the “mostly minus” convention) Einstein constants also occur within the frame-
work of η-Einstein Sasakian geometry, and we refer to Ref. 31 for many details and notions that we omit. A particularly important result, from
our perspective, is that every negative Sasakian manifold M2n+1 admits a Lorentzian Einstein–Sasakian structure with positive Einstein con-
stant 2n in the “mostly minus” convention (Ref. 31, Corollary 24). In particular, the 5-sphere S5 admits infinitely many different Lorentzian
Einstein–Sasakian structures, with Einstein constant 4 (all of them are inhomogeneous). Each of these can be used as the five-dimensional
Lorentzian manifold M̃ 1,4 in Corollary 7.5, providing us with infinitely many decomposable backgrounds (carrying the same flux form).

Example 7.7. Let (M̃ 1,4, g̃) be the 5-sphere S5 with an Einstein metric coming from any of the infinitely many Lorentzian
Einstein–Sasakian structures mentioned earlier with Einstein constant 4, and let (M6, g,ω) be any Einstein Kähler manifold with Einstein
constant −4. Then the triple

(M̃ 1,4 ×M6, g̃ + g, F = 2
√

2⋆6ω),

is a bosonic supergravity background.

The connected sum ♯k(S2 × S3) also admits Lorentzian Einstein–Sasakian metrics for any integer k ≥ 1 (see Refs. 31 and 49), giving
another class of Lorentzian Einstein–Sasakian manifolds that can potentially be used as ingredients in bosonic supergravity backgrounds.
Example 7.7 highlights the appearance of Lorentzian Einstein–Sasakian geometries in supergravity, and more applications of such structures
in eleven-dimensional supergravity are described in Ref. 50. For further details on the applications of five-dimensional Lorentzian manifolds
in certain supergravity theories, the reader may consult the recent work21 and the references therein.

Remark 7.8. Some of the bosonic backgrounds of the type appearing in Corollary 7.5 are symmetric. For example, if M̃ 1,4 = (AdS)5
and M6 is one of the symmetric spaces CP3 = SU(4)/U(3) or Gr+(2, 5), endowed with their respective homogeneous Kähler–Einstein
metrics, then we obtain decomposable symmetric backgrounds (see also Ref. 17, Sec. 4.4). To construct decomposable, homogeneous but
non-symmetric, (5, 6)-supergravity backgrounds, we may use the full flag manifold F = SU(3)/Tmax (see, for example, Ref. 51 for the cor-
responding Kähler–Einstein metrics). In addition, in Ref. 52, the reader can find families of non-supersymmetric bosonic backgrounds with
non-relativistic symmetry based on products involving (AdS)5. Finally, it is worth mentioning that (7.3) also holds for a strictly nearly Kähler
manifold, and ∥θ∥2

g = c2∥ω∥2
g is a constant as well (see Ref. 53, Corollary 2.7). However, for a strictly nearly Kähler manifold, the Kähler form

is not closed. Therefore, in this case, the 4-form F chosen earlier is not coclosed and cannot serve as a flux form.

VIII. CONCLUSION
The aim of this paper was to find new bosonic supergravity backgrounds by searching for decomposable (5, 6)-solutions to the bosonic

supergravity equations (2.1). Following the ideas proposed in Ref. 30, where they were applied to find decomposable (6, 5)-solutions, we
analyzed the bosonic supergravity equations for a variety of different types of flux 4-form F. We singled out some special cases that we
analyzed more carefully in order to get concrete new supergravity backgrounds.

For several different types of null 4-forms, we found supergravity backgrounds whose five-dimensional Lorentzian part was a special
type of Ricci-isotropic Walker manifold. These results, which can be found in Sec. VI, are very close in nature to those of Ref. 30, and one
may conjecture that similar results and examples can be found for decomposable (m, 11 −m)-solutions with other choices of m. A couple of
places where we differed from Ref. 30 were Corollary 4.5 and Proposition 6.11 (and the corresponding Example 6.12), which contain insights
that were not used in Ref. 30. These solutions may support supersymmetries, but we leave this investigation for a later paper.

In Sec. VII, we investigated two particular types of flux forms that were not null. Here we relied on some known results that are very
specific to the particular pair of dimensions (5, 6). For example, by assuming that the six-dimensional Riemannian component is a Kähler
manifold and by choosing a 4-form F that depended explicitly on the Kähler form, we showed that any Einstein Kähler manifold with Einstein
constant −c2/2 (in the “mostly minus” convention) can be paired with any Lorentzian Einstein manifold with Einstein constant c2/2 to
give an eleven-dimensional bosonic supergravity background. One background of this type that was already known is (AdS)5 ×M6, which
was treated in Ref. 29 (the symmetric ones among these are also listed in Sec. 4.4 of Ref. 17), and we describe infinitely many more: From
Ref. 31, we know that the 5-sphere admits infinitely many different Lorentzian Einstein–Sasakian structures with Einstein constant 4, and
each of them give rises to a bosonic supergravity background when paired with an Einstein Kähler manifold with Einstein constant −4.
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