
Aux-Drop: Handling Haphazard Inputs in Online Learning
Using Auxiliary Dropouts

Rohit Agarwal agarwal.102497@gmail.com
Bio-AI Lab, Department of Computer Science
UiT The Arctic University of Norway, Tromsø

Deepak Gupta
Bio-AI Lab, Department of Computer Science
UiT The Arctic University of Norway, Tromsø

Alexander Horsch
Bio-AI Lab, Department of Computer Science
UiT The Arctic University of Norway, Tromsø

Dilip K. Prasad
Bio-AI Lab, Department of Computer Science
UiT The Arctic University of Norway, Tromsø

Abstract

Many real-world applications based on online learning produce streaming data that is hap-
hazard in nature, i.e., contains missing features, features becoming obsolete in time, the
appearance of new features at later points in time and a lack of clarity on the total num-
ber of input features. These challenges make it hard to build a learnable system for such
applications, and almost no work exists in deep learning that addresses this issue. In this
paper, we present Aux-Drop, an auxiliary dropout regularization strategy for online learn-
ing that handles the haphazard input features in an effective manner. Aux-Drop adapts
the conventional dropout regularization scheme for the haphazard input feature space en-
suring that the final output is minimally impacted by the chaotic appearance of such fea-
tures. It helps to prevent the co-adaptation of especially the auxiliary and base features, as
well as reduces the strong dependence of the output on any of the auxiliary inputs of the
model. This helps in better learning for scenarios where certain features disappear in time
or when new features are to be modelled. The efficacy of Aux-Drop has been demonstrated
through extensive numerical experiments on SOTA benchmarking datasets that include
Italy Power Demand, HIGGS, SUSY and multiple UCI datasets. The code is available at
https://github.com/Rohit102497/Aux-Drop.

1 Introduction

Many real-life applications produce streaming data that is difficult to model. Moreover, a lot of existing
methods assume that the streaming data has a time-invariant fixed size and the models are trained accord-
ingly (Gama, 2012; Nguyen et al., 2015). However, this is not always true and the dimension of inputs can
vary over time. The inputs can have missing data, missing features, obsolete features, sudden features and
an unknown number of the total features. We define this here as the haphazard inputs. Formally, we define
haphazard inputs as streaming data whose dimension varies at every time instance and there is no prior
information about data received in the future. The characteristics of haphazard inputs are as follows: (1)
Streaming data - Here data arrives sequentially and is modelled using online learning techniques. The model
predicts an output based on the current data instance and then the actual output is revealed. The model
gets trained based on the loss from its prediction and the actual output, and this updated model is used

1

https://github.com/Rohit102497/Aux-Drop

Table 1: Comparison of different online deep learning models with respect to the characteristics of the haphazard
inputs (C1-C6). We showcase the inability of online deep learning methods in handling haphazard inputs even when
other techniques like imputation, extrapolation, priori information and Gaussian noise are employed.

Characteristics Aux-Drop Online Deep ODL ODL ODL ODL
Learning + + + +
Methods Online Extrapolation Prior Gaussian

like Data Information Noise
ODL Imputation

Streaming data (C1) ✓ ✓ ✓ ✓ ✓ ✓
Missing data (C2) ✓ × ✓ × ✓ ✓
Missing features (C3) ✓ × × × × ✓
Obsolete features (C4) ✓ × × ✓ × ✓
Sudden features (C5) ✓ × × × × ×
Unknown no. of features (C6) ✓ × × × × ×

for future prediction (Hoi et al., 2021). (2) Missing data - The input features can be missing at any time
instance. It can be due to data corruption, malfunctioning sensors, faulty equipment, human errors, etc.
(Emmanuel et al., 2021). (3) Missing features - It is known that a certain feature will arrive but doesn’t have
any other prior information like its distribution. It is never received at time instance t = 1. (4) Obsolete
features - The input features are received at any point in time but it ceases to exist after some time instances.
(5) Sudden features - There is no information about the existence of these features when the model is defined.
The model might know about this feature suddenly at any point of time after the model deployment. (6)
Unknown number of features: At the time of model designing, there is no information about the total number
of input features and at no point in time this information is available.

Some approaches (Beyazit et al., 2019; He et al., 2019) are available to address the challenges of haphazard
inputs but there is a dearth of deep-learning approaches in this field. Moreover, the characterization of the
problem discussed here is not defined properly in the previous works, hence we make an attempt to introduce
the problem (haphazard inputs) in a more formal way in this paper.

The outlined issues of haphazard inputs can be partly tackled by coupling an online deep-learning framework
with some existing approaches such as feature imputation, extrapolation of information and regularization
with Gaussian noise, among others. But not all challenges can be handled by any single framework. This is
better explained in Table 1 where we list the prominent challenges of online learning with streaming data
as well as point out the limitations of the existing approaches. Since the data is streaming, it becomes
imperative to apply online learning methods like online deep learning (ODL) (Sahoo et al., 2017) and online
gradient descent (OGD) (Sahoo et al., 2017; Cesa-Bianchi et al., 1996), however, it can only handle the
streaming aspect of the haphazard input. The online imputation model can be used to impute missing data
(C2) and can thus be applied in conjunction with any other online learning method but still, it can’t address
the other characteristics. Extrapolation can be used to address the case of obsolete features (C4). Prior
information on the features can be used to project the missing data (C2). Lastly, there can be a naive way
of employing the Gaussian noise wherever the data is not available. This can address missing data (C2),
missing features (C3) and obsolete features (C4), however, it can still not cater to the appearance of new
features (C5) as well as handle the issue of missing information on the total number of features (C6).

Recently, Agarwal et al. (2020) presented Aux-Net, a deep learning architecture capable of handling the
issues outlined above. However, Aux-Net employs a dedicated layer for each auxiliary feature, which results
in a very heavy overall network, and this leads to a significant increase in training time for each additional
auxiliary feature being modelled. The high time and space complexity of Aux-Net makes it inefficient and
not scalable for larger problems/datasets. Here, auxiliary features refer to those features which are not
available consistently in time, rather these are subjected to atleast one of the characteristics (C2-C6) as
outlined in Table 1. It is assumed that atleast one feature is always available and is known as the base
feature. Let us denote the set of indices of base features received at time t by Bt = B, then the set of indices
of base features received at time t + 1 is Bt+1 = B. Similarly, let us denote the set of indices of auxiliary

2

features received at time t by At, then the set of indices of auxiliary features received at time t + 1 is given
by At+1 ⊆ [∪t

i=1Ai] ∪ Ãt+1 where Ãt+1 is the set of indices of new auxiliary features received such that
Ãt+1 ∩ [∪t

i=1Ai] = ϕ. Here, we follow the assumption that B ̸= ϕ, i.e., there is atleast one base feature.

In this paper, we present Aux-Drop, an auxiliary dropout regularization strategy for an online learning
regime that handles the haphazard input features in an accurate as well as efficient manner. Aux-Drop
adapts the conventional dropout regularization scheme (Hinton et al., 2012) for the haphazard input feature
space ensuring that the final output is minimally impacted by the chaotic appearance of such features. It
helps to prevent the co-adaptation of especially the auxiliary and base features, as well as reduces the strong
dependence of the output on any of the auxiliary inputs of the model. This helps in better learning for
scenarios where certain features disappear in time or when new features are to be modelled. Aux-Drop is
simple and lightweight, as well as scalable to even a very large number of auxiliary features. We show the
working of our model on the Italy Power Demand dataset (Dau et al., 2019), the widely used benchmarking
datasets for online learning such as HIGGS (Baldi et al., 2014) and SUSY (Baldi et al., 2014) and 4 different
UCI datasets (Dua & Graff, 2017).

The contributions of this paper can be listed as follows: (1) We formally introduce the problem of haphazard
inputs and their characteristics. (2) We propose a dropout-inspired concept called Aux-Drop to handle
the haphazard streaming inputs during online learning. It employs selective dropout to drop auxiliary
nodes accommodating the haphazard auxiliary features and random dropout to drop other nodes. Together
they handle the auxiliary features while preventing co-adaptations of auxiliary and base features. (3) The
simplicity of Aux-Drop allows us to couple it with existing deep neural networks with minimal modifications
and we demonstrate it through ODL and OGD.

2 Related Work

Online Learning Online learning is approached via multiple concepts in the machine learning domain
(Gama, 2012; Nguyen et al., 2015). Among the various approaches that exist, some popular methods are
k-nearest neighbours (Aggarwal et al., 2006), decision trees (Domingos & Hulten, 2000), support vector
machines (Tsang et al., 2007), fuzzy logic (Das et al., 2016; Iyer et al., 2018), bayesian theory (Seidl et al.,
2009) and neural networks (Leite et al., 2013). Recently, deep learning approaches with different learning
mechanisms (Hoi et al., 2021) are introduced resulting in architectures like online deep learning (ODL)
(Sahoo et al., 2017). The ODL has shown tremendous improvement in the learning capability for streaming
classification tasks. But all these methods are limited by the assumption of fixed input features.

Haphazard Inputs Different versions and subsets of haphazard inputs are present in the literature. Incre-
mental learning approaches like ensemble methods (Polikar, 2012), Learn++ algorithms (Polikar et al., 2001;
Mohammed et al., 2006), Learn++.MF (Polikar et al., 2010) and Learn++.NSE (Elwell & Polikar, 2011)
handles only missing feature problems and is too expensive in terms of training and storage requirements.
Zhou (2022) presents open-environment machine learning which includes emerging new classes (Parmar et al.,
2021), incremental/decremental features (Hou et al., 2021), changing data distribution (Sehwag et al., 2019)
and varied learning objectives (Ding & Zhou, 2018). Online learning with streaming features (OLSF) algo-
rithm (Zhang et al., 2016) handles the trapezoidal data streams where both data volume and feature space
increase over time. Hou et al. (2017) introduced the problem of feature evolvable streams (FESL) where
the set of features changes after a regular time period. Zhang et al. (2020) proposed evolving discrepancy
minimization (EDM) for data with evolving feature space and data distribution. Hou et al. (2021) tries to
solve an interesting problem where there is an overlap between old and new features by introducing an
incomplete overlapping period. Evolving metric learning (EML) (Dong et al., 2021) handles the incremental
and decremental features. All the above methods solve specific problems in online learning and are only a
subpart of the haphazard inputs. Online learning from varying features (OLVF) (Beyazit et al., 2019) and
online learning with capricious data streams (OCDS) (He et al., 2019) can model haphazard inputs but both
of them are non-deep-learning approaches and are only tested in small datasets. OCDS trains a learner
based on a universal feature space that includes the features appearing at each iteration. It reconstructs the
unobserved instances from observable instances by capturing the relatedness using a graph. Thus, OCDS is
based on the dependency between features. Online learning from varying features (OLVF) (Beyazit et al.,

3

 Input \

A
ux

ili
ar

y
Fe

at
ur

es
B

as
e

Fe
at

ur
es

O
ut

pu
t

AuxLayer

\

N
on

 -
A

ux
ili

ar
y

N
od

es
A

ux
ili

ar
y

N
od

es

AuxInputLayer

 Input

Figure 1: (Best viewed in color) The Aux-Drop ar-
chitecture. The purple-colored box represents any on-
line learning-based deep learning approach. The trape-
zoid denotes zero or more fully connected layers. Both
the brown boxes are the same (represented by double-
headed arrows) and are known as AuxLayer. The Aux-
InputLayer is the concatenation of the hidden features
from the layer previous to the AuxLayer and the aux-
iliary features. The AuxInputLayer and the AuxLayer
are fully connected but depending on the unavailabil-
ity of auxiliary features, the corresponding nodes are
dropped (termed Auxiliary Nodes). The unlocked lock
denotes an inherent one-to-one connection between the
auxiliary features and the auxiliary nodes.

2019) tries to handle the varying features by projecting the instance and classifier at any time t into a shared
feature subspace. It learns to classify the feature spaces and the instances from feature spaces simultaneously.
The transformation in different feature spaces leads to a loss of information resulting in poorer performance.

Dropout Dropout was proposed by Hinton et al. (2012) to prevent co-adaptations between features. Since
then dropout has been used in different settings to handle various problems. Spatial dropout (Tompson
et al., 2015) removes adjacent pixels in convolutional feature maps to reduce strong spatial correlation in
the feature map activations. Poernomo & Kang (2018) proposed biased dropout and crossmap dropout for
better generalization of the model. Biased dropout divides the nodes in a layer into two groups, the one
with higher activation has a lower dropout rate and the one with lower activation has a higher dropout rate.
Crossmap drops or retains the nodes simultaneously in equivalent positions of each feature map to break the
correlation between adjacent maps. Stochastic Activation Pruning (SAP) (Dhillon et al., 2018) preserves
the nodes with higher activation magnitude and normalizes the retained node to preserve the dynamic range
of activations in each layer. Guided dropout (Keshari et al., 2019) drops the nodes with higher strength in
order to improve the performance of low-strength nodes. Group-wise dropout (Ke et al., 2020) adjusts the
dropout probabilities adaptively using the feature density by analyzing the number of linearly uncorrelated
deep features gathered over equally spaced grids in low-dimension feature space. All the discussed dropout
strategy is employed to better generalize the model and prevent overfitting but none of these strategies can be
used to handle haphazard inputs. Aux-Drop drops the nodes in the hidden layer based on the unavailability
of auxiliary features and dropout rate.

3 Method

3.1 Aux-Drop

The core of Aux-Drop lies in utilizing the concept of dropout to accommodate the ever-changing charac-
teristics of haphazard inputs. Dropout drops the nodes randomly from a hidden layer whereas we employ
selective dropout along with the random dropout. The proposed Aux-Drop concept handles the base features
and auxiliary features synchronously. The input features which are always available are termed base features
and the input features which are haphazard inputs are known as auxiliary features. The Aux-Drop concept
can be applied in any deep learning-based model capable of handling streaming data. A conventional online
deep learning model has one input layer which is connected to the first hidden layer and all the input features
are passed via this input layer. But in the Aux-Drop setup, we created a division in the passing of input
features to the model such that it can utilize all the information from the base features and increment the
model learning from the haphazardly available auxiliary features. The base features are directly passed to
the deep learning model (the purple color box in Figure 1). A hidden layer of this model is designated as an
AuxLayer and is represented by the dashed brown rectangular box in Figure 1. The hidden features from
the layer previous to the AuxLayer are concatenated with the incoming auxiliary features and are known
as the AuxInputLayer. The input to the AuxLayer is the AuxInputLayer and is fully connected. Based on

4

the number of different auxiliary features received, a pool of auxiliary nodes is chosen from the AuxLayer
such that there is a correspondence between an auxiliary feature and a specific auxiliary node. Whenever
an auxiliary feature is not available, the corresponding auxiliary node is dropped from the AuxLayer. This
creates an inherent one-to-one connection between the auxiliary features and the auxiliary nodes. The rest
of the nodes in the AuxLayer are termed the Non-Auxiliary nodes. The diagram of the Aux-Drop concept
is presented in Figure 1.

Dropout is applied only in the AuxLayer. The nodes to be dropped include all those nodes from the pool
of auxiliary nodes whose corresponding auxiliary features are unavailable, forming the group of selective
dropout nodes. The rest of the dropout nodes are chosen randomly from the remaining nodes of AuxLayer.
Dropout (Hinton et al., 2012) was proposed to prevent complex co-adaptations on the training data. We
exploit this property of dropout in handling haphazard inputs. Instead of randomly dropping the nodes, we
define some auxiliary nodes that certainly need to be dropped. Aux-Drop makes auxiliary features contribute
to the deep learning model even when some of the other features are not available making it independent.
This prevented complex co-adaptations in which an auxiliary feature is only helpful in the context of several
other auxiliary features.

3.2 Mathematical Formulation

Problem Statement The problem statement is defined as finding a mapping f : X → Y , where X, Y is
streaming data, such that X, Y = {(X1, Y1), ..., (XT , YT)}. The capital letter variables in italics denote a
vector here. The input X consists of base features (XB) and auxiliary features (XA) and can be represented
as X = {XB , XA}. We define nB as the number of base features and nt

A as the number of auxiliary features
received at time t. For convenience, we define nmax

A as the maximum number of auxiliary features. Note
that, we do not need the information about nmax

A at any point in time in the model. The input feature
at time instance t is given by Xt = {XB

t , XA
t } where XB

t and XA
t are the base features and the auxiliary

features at time t, respectively. Let us denote an input feature by x, then the base features at any time t is
given by XB

t = {xB
j,t}∀j∈B, where B is the set of indices of base features such that B = {1, ..., b, ..., nB} and b

is the index of bth base feature. Similarly, the auxiliary features at any time t is given by XA
t = {xA

j,t}∀j∈At ,
where At is the set of indices of auxiliary features at time t such that At ⊆ A = {1, ..., a, ..., nmax

A } and a
is the index of ath auxiliary feature. The output Y ∈ Rc, where c is the total number of classes. Since the
problem is based on online learning, at any time t, we have access to only the input features Xt and once
the model is trained on Xt and a prediction is made, we get the output labels Yt.

AuxLayer AuxLayer handles the haphazard auxiliary inputs by employing the dropout. Any ith layer of
the model is mathematically given by Li = {Wi; Si;Mi}, where Wi, Si and Mi denotes the weights connection
between the nodes of (i − 1)th and ith hidden layer, the bias of the ith layer nodes, and the set of nodes in
the ith layer respectively. If the layer is the 1st layer or the AuxLayer then for Wi, the (i − 1)th layer would
be the base features or the AuxLayerInput, respectively (see Figure 1). Thus, if zth hidden layer is chosen
as the AuxLayer, then AuxLayer can be mathematically given by Lz = {Wz; Sz;Mz}, where Mz consists of
auxiliary nodes (MA

z) and non-auxiliary nodes (MĀ
z). For each auxiliary feature, there is an auxiliary node,

i.e., |MA
z | = |A|, where | · | represents the cardinality of a set. The set of auxiliary nodes depends upon the

number of new auxiliary features received at any time t. Thus, whenever a new auxiliary feature arrives,
we introduce a new node with a full connection with AuxInputLayer and an inherent one-to-one connection
with the auxiliary feature (represented by the unlocked lock in Figure 1) in the AuxLayer and include it in
the set of auxiliary nodes. For simplification, from here on, we will consider nmax

A as the maximum number
of auxiliary features, and thus |MA

z | = nmax
A . Thus, the number of nodes in the set of non-auxiliary nodes

is given by |MĀ
z | = |Mz| − nmax

A . The AuxInputLayer is the input to the AuxLayer and at time t and it is
given by

IA
t = {XA

t , Hz−1,t} (1)

where Hz−1,t is the output of the (z − 1)th layer at time t.

Auxiliary Dropout Let the dropout value be d, then the number of nodes to be dropped is given by
|Mz| · d, and the set of dropout nodes is represented by MD

z . We always choose the value of d sufficiently

5

Algorithm 1 Aux-Drop algorithm
Require: A deep learning-based online learning model OL, dropout d, z as the AuxLayer

Create Aux-Drop(OL) from OL as done in Figure 1
while time t do

Receive XA
t , XB

t

Pass XB
t to Aux-Drop(OL) and get the hidden features Hz−1,t

Get IA
t by eq. 1

Get MD
z,t by eq. 4

Get Wz,t, Sz,t by freezing weights, bias affected by unavailable auxiliary features, and dropped nodes
Create Lz,t by eq. 5
Get the prediction Ŷt of the model Aux-Drop(OL)
Receive the actual label Yt

Compute the loss from Yt and Ŷt

Update the weights and biases of Aux-Drop(OL) based on the computed loss
end while

large such that the number of dropout nodes is always greater than the number of auxiliary nodes. The
auxiliary dropout component consists of selective dropout on the auxiliary nodes based on the unavailable
auxiliary features and random dropout on the leftover nodes from the AuxLayer. The selective dropout and
random dropouts are represented by MDs

z and MDr
z , respectively. The selective dropout includes all those

nodes from the auxiliary nodes whose corresponding auxiliary features are unavailable and is given by

MDs
z = MA

z − MAt
z (2)

where MAt
z represents the set of auxiliary nodes whose corresponding auxiliary features are available and

U − V represents the relative complement, i.e., elements that belong to U and not to V. Consider pi

as the probability of dropout of each ith node in the AuxLayer. Then because of the selective dropout,
pj = 1 ∀j ∈ MDs

z . Random dropout is achieved using the Bernoulli distribution. Our problem statement is
a closer match with the Bernoulli distribution because it is a discrete probability distribution that models
the probability of a binary outcome for a single trial which is the basis of selective dropout. Other graphical
models like the Random Markov field will fit our problem statement only if we take the case when the set
of auxiliary features probability can be modelled as a joint distribution like in the computer vision as there
is high dependence between adjacent pixels. |Mz| · d − |MDs

z | nodes are dropped randomly from the leftover
nodes of AuxLayer (Mz − MDs

z). Thus the dropout probability (pk) of the leftover nodes and the random
dropouts (MDr

z) are given by

pk = |Mz| · d − |MDs
z |

|Mz − MDs
z |

∀k ∈ Mz − MDs
z

MDr
z = { k | k ∈ Mz − MDs

z ∧ m = 1, m ∼ Bernoulli(pk)}
(3)

Thus, the set of nodes dropped from the AuxLayer is given by

MD
z = MDs

z + MDr
z (4)

Algorithm Here, we explain the working of the Aux-Drop. We choose a deep learning-based model capable
of handling streaming data and name it OL. A dropout value d is set and a hidden layer z is chosen as the
AuxLayer. We modify OL as done in Figure 1 and term it Aux-Drop(OL). At the time t, we receive the base
features XB

t and the auxiliary features XA
t . The base features are passed to Aux-Drop(OL). We compute

the hidden features of all the hidden layers before the AuxLayer. Based on Hz−1,t, the AuxInputLayer (IA
t)

is constructed using eq. 1. Now, we have to create the AuxLayer (Lz,t) based on the auxiliary features (XA
t)

received at time t. MD
z,t nodes are determined using eq. 4 and are dropped from the AuxLayer. All the

weight connections and bias are frozen which are affected by the unavailable auxiliary features and dropped

6

nodes. Thus, the weights and the bias to the AuxLayer at time t are given by Wz,t and Sz,t, respectively.
The AuxLayer is given by

Lz,t = {Wz,t; Sz,t;Mz − MD
z,t} (5)

The AuxInputLayer is passed to the AuxLayer and the successive hidden layers computation is done giving
a final prediction Ŷt. Finally, the ground truth Yt is revealed and the loss is computed between Yt and Ŷt.
The weights and biases of the Aux-Drop(OL) are then updated based on this loss. The algorithm of the
Aux-Drop is presented in Algorithm 1.

3.3 Handling Haphazard Inputs

The auxiliary features are haphazard inputs that exhibit all the six characteristics presented in Table 1.
We present a situation with all the characteristics of haphazard inputs and the changes in the Aux-Drop
architecture with respect to different characteristics. Consider there are two output features from the hidden
layer previous to the AuxLayer. At the time t − 1, two auxiliary features are available. We present only
the upper half of the model which handles the auxiliary features. The architecture presented in Figure 2
(a) represents the model connection after instance t − 1. The dropout value is set as 0.7. (1) An Auxiliary
Feature is Missing: Figure 2 (b) presents the change in the architecture when an auxiliary feature is missing.
The inherent one-to-one corresponding node is dropped and all the connections that come with it. Also,
all the connections from these auxiliary features to all the other nodes are also frozen. Since the dropout
value is 0.7, two nodes need to be dropped. One node is randomly chosen from the remaining 3 nodes and
is dropped. (2) Missing data arrives: The auxiliary feature missing in the previous case (time t) arrives at
instance t + 1. Thus, all the auxiliary features arrive. Two nodes are randomly chosen from all the nodes in
the auxiliary layer and dropped along with all its connections as shown in Figure 2 (c). (3) Obsolete features:
At time t+2, an auxiliary feature becomes obsolete. Note that the model at any point doesn’t know that this
feature is obsolete. Thus for this situation, the change in architecture is the same as the missing auxiliary
feature. The change is shown in Figure 2 (d). (4) Sudden features: At time t + 3, a sudden auxiliary feature
with no prior information arrives. To handle this, a new auxiliary node and all the connections with it are
introduced (shown in the black rectangular box in Figure 2 (e)). The connections from this auxiliary feature
to all the nodes in AuxLayer are also introduced. The feature that became obsolete at time t = 2 will not
arrive so the corresponding auxiliary node is dropped. Two more nodes are randomly selected to drop. The
architectural change is present in Figure 2 (e). (5) Missing feature arrives: At time t + 4, a missing feature
arrives whose prior information is unknown. The only attribute known about this feature is that it will
arrive. To handle this, either an auxiliary node can be created and assume that this feature is unavailable
till it arrives or it can be considered as a sudden feature. In either case, the computation overhead is almost
negligible and the model performance will not change. Hence, we can consider it as a sudden feature and
the architectural change is the same as Figure 2 (e).

3.4 Discussion

Independent of the Maximum Number of Auxiliary Features For simplification of the Aux-Drop
explanation, we set a value nmax

A as the maximum number of auxiliary features available to the model. As
shown in the previous subsection 3.3, sudden features can be easily handled by the model and hence the
value of nmax

A is not needed.

Invariant to the Architecture Aux-Drop can be applied to any deep-learning architecture capable of
handling streaming data. We apply Aux-Drop on the OGD and ODL framework and represent it as Aux-
Drop(OGD) and Aux-Drop(ODL) respectively. Here, we demonstrate the change in the architecture of OGD
and ODL framework when Aux-Drop is applied to it (see Figure 3). Aux-Drop(OGD): OGD is a simple
deep-learning neural network with multiple hidden layers trained using stochastic gradient descent (Ketkar
& Ketkar, 2017). For simplification, we present a 4-layer OGD (top figure in 3(a)). To apply Aux-Drop on
OGD, let’s say, we first choose the 3rd hidden layer as the AuxLayer and fix the dropout value as 0.5. The
hidden activation from the 2nd hidden layer is concatenated with the incoming auxiliary features giving an
AuxInputLayer. All the connections between the 2nd and 3rd hidden layer is removed. The 3rd hidden layer
is made flexible by increasing the number of nodes and providing it the capability of adding additional nodes

7

A
ux

ili
ar

y
Fe

at
ur

es

AuxLayer

N
on

-A
ux

ili
ar

y
N

od
es

A
ux

ili
ar

y
N

od
es

AuxInputLayer

Input from a
hidden layer of

base model

(a) After Instance

A
ux

ili
ar

y
Fe

at
ur

es

AuxLayer

N
on

-A
ux

ili
ar

y
N

od
es

A
ux

ili
ar

y
N

od
es

AuxInputLayer

(b) Instance

Input from a
hidden layer of

base model

A
ux

ili
ar

y
Fe

at
ur

es

AuxLayer

N
on

-A
ux

ili
ar

y
N

od
es

A
ux

ili
ar

y
N

od
es

AuxInputLayer

Input from a
hidden layer of

base model

(c) Instance

A
ux

ili
ar

y
Fe

at
ur

es

AuxLayer

N
on

-A
ux

ili
ar

y
N

od
es

A
ux

ili
ar

y
N

od
es

AuxInputLayer

(d) Instance

Input from a
hidden layer of

base model

A
ux

ili
ar

y
Fe

at
ur

es

AuxLayer

N
on

-A
ux

ili
ar

y
N

od
es

A
ux

ili
ar

y
N

od
es

AuxInputLayer

Input from a
hidden layer of

base model

(e) Instance

: An auxiliary feature is missing

: Missing data arrives : An auxiliary feature becomes obsolete

: Sudden feature arrives

Selective dropout

Random dropout

Unavailable auxiliary feature

(f) Legend

Inherent one-to-one connection of selective dropout node

Remaining connections to selective dropout node

Remaining connections from unavailable auxiliary feature

Connections to random dropout nodes

Inherent one-to-one connection of random dropout node

Figure 2: (Diagram best viewed in color) We present the changes in the connection between AuxInputLayer and
AuxLayer with respect to different characteristics of haphazard inputs. Different color meaning: Here the blue
circle denotes a random dropout node, and the red circle in the AuxLayer and AuxInputLayer denotes a selective
dropout node and unavailable auxiliary feature respectively. The colored arrow follows a hierarchical way of removing
connections. First, the inherent one-to-one connection of the selective dropout node is frozen and it is denoted by
the dashed red arrow. Next, all the other connections to the selective dropout node are frozen and it is represented
by the green arrows. Then all the remaining connections from the unavailable auxiliary features are frozen and are
shown by the purple arrows. Next, all the remaining connections to the random dropout node are frozen and are
denoted by the blue solid arrows. Finally, the inherent one-to-one connection to the random dropout node is shown
by the blue dashed arrow. This is more clear from the legend present in Figure 2 (f). In Figure 2 (e): The black
rectangular box depicts the arrival of a new auxiliary feature and the introduction of an auxiliary node with all the
relevant connections in the AuxLayer. Moreover, all the connections from the new auxiliary feature to all the nodes
in the AuxLayer are also introduced.

whenever required based on the new auxiliary features. The nodes in the AuxLayer are grouped into two
parts: auxiliary nodes and non-auxiliary nodes such that the number of nodes in auxiliary nodes is equal
to the known number of auxiliary features. A full connection is introduced between the AuxInputLayer and
AuxLayer such that there is a one-to-one connection between the auxiliary features and the auxiliary nodes.

8

In
pu

t F
ea

tu
re

s

Output

B
as

e
Fe

at
ur

es

Output

A
ux

ili
ar

y
Fe

at
ur

es

AuxInputLayer

AuxLayer

In
pu

t F
ea

tu
re

s

B
as

e
Fe

at
ur

es
A

ux
ili

ar
y

Fe
at

ur
es

AuxInputLayer

AuxLayer

hedge hedge hedge hedge

hedge hedge hedge

(b) Top: ODL, Down: Aux-Drop(ODL) (a) Top: OGD, Down: Aux-Drop(OGD)

Figure 3: (Diagram best viewed in color) Two online learning methods (OGD and ODL) and their corresponding
Aux-Drop architecture (Aux-Drop(OGD) and Aux-Drop(ODL)) are shown here. (a) Top: OGD architecture, Down:
Aux-Drop(OGD) architecture (b) Top: ODL architecture, Down: Aux-Drop(ODL) architecture.

All the required connections (because of the new nodes added in the AuxLayer) between the AuxLayer and
the 4th hidden layer are also introduced. This gives us the Aux-Drop(OGD) architecture (see down figure in
3(a)). Selective and random dropout is applied on the AuxLayer and necessary changes are done based on
the auxiliary features received at any time instance t as discussed in subsection 3.3. Aux-Drop(ODL): A
snippet of ODL with 4 hidden layers is shown in Figure 3(b) (the top figure). The difference between ODL
and OGD is that the output prediction in the OGD architecture is based on the last hidden layer whereas
the final prediction in the ODL is based on the weighted output from each hidden layer. The weightage
(α) of the prediction from each hidden layer is adapted using the Hedge algorithm (Freund & Schapire,
1997). Detailed information about the ODL architecture can be found in (Sahoo et al., 2017). To create
Aux-Drop(ODL) (see down figure in 3(b)), we follow a similar process as done for Aux-Drop(OGD). The
only difference is that the prediction from AuxLayer is removed since the number of nodes in AuxLayer is
always different.

Haphazard Inputs and Aux-Drop vs Other Works It is to be noted that haphazard inputs are
different than adversarial inputs (Goodfellow et al., 2018) since haphazard inputs are not modified/changed
(more discussion in Appendix A). Semi-supervised techniques like MARK (Patil et al., 2022) attempt to fill
in the blanks by generating an unavailable pattern for anomaly detection but it is orthogonal to haphazard
inputs problem (see Appendix B). One can envision an analogy between progressive networks (Rusu et al.,
2016) and Aux-Drop but progressive networks cannot deal with haphazard inputs because of storage and
computational inefficiency (see Appendix C). Domain adaptation (Farahani et al., 2021) assumes that all the
features are base features (see Appendix D). Open set problems (Scheirer et al., 2012) deal with an unknown
number of classes whereas Aux-Drop deals with an unknown number of input features (see Appendix E).

9

Table 2: The number of instances and features of all the datasets.

Dataset # Instances # Features
german 1000 24
Italy Power Demand 1096 24
svmguide3 1243 21
magic04 19020 10
a8a 32561 123
SUSY 1M 8
HIGGS 1M 21

Assumption of Base Features Aux-Drop assumes that there is atleast one base feature, i.e., atleast
one feature is always available. However, the Aux-Drop model can be adapted in multiple ways to remove
the assumption of base features as follows: (1) The naive way to handle this would be to just assume one
auxiliary feature as a base feature and impute it. This would induce some bias but still, it would be for just
one feature. (2) Choosing the position of AuxLayer as the first layer, the Aux-Drop model can be adapted
to handle haphazard inputs without any base feature. But we attempt to propose a generalized concept of
Aux-Drop where the position of AuxLayer is a hyperparameter and can be chosen based on the dataset and
application. Hence, the assumption of the base feature is adding a better value proposition.

4 Experiments

Datasets We consider the Italy Power Demand dataset1 (Dau et al., 2019), HIGGS2 (Baldi et al., 2014),
SUSY3 (Baldi et al., 2014) and 4 different UCI datasets (german4, svmguide35 (Chang & Lin, 2011),
magic046, a8a7) (Dua & Graff, 2017). The number of instances and the features of each dataset are
listed in Table 2. (1) Italy Power Demand - It contains the electrical power demand from Italy for twelve
months. The associated task is a binary classification task to determine the month of each instance, i.e.
distinguish days from Oct to March (inclusive) from April to September. (2) HIGGS - It is synthetic data
produced using Monte Carlo simulations. It has 28 features out of which the first 21 features are kinematic
properties measured by the particle detectors in the accelerator and the last 7 features are the functions
of the first 21 features. We use only the first 21 features because it is proved experimentally in the paper
(Baldi et al., 2014) that the last 7 features don’t contribute to the performance of a deep learning model.
The binary classification task is to distinguish between a signal process (1) where new theoretical Higgs
bosons (HIGGS) are produced, and a background process (0) with identical decay products but distinct
kinematic features. (3) SUSY - It is also synthetic data produced using Monte Carlo simulations. The
first 8 features are kinematic properties measured by the particle detectors in the accelerator. The last
10 features are functions of the first 8 features. Similar to HIGGS, we only use the first 8 features as it
is proved experimentally by Baldi et al. (2014) that the last 10 features do not contribute to training a
deep learning model. The associated binary classification task is to distinguish between a signal process
(1) where new super-symmetric particles (SUSY) are produced and a background process (0) with the
same detectable particles. (4) german - It contains the financial information of the customer to classify
each customer as having good or bad credit risks. The numerical form of data is considered which has 24
features. (5) svmguide3 - It is a synthetic dataset of a practical svm guide with a binary classification task
containing 1243 instances and 21 features. (6) magic04 - It is simulated data for the registration of high
energy gamma particles in an atmospheric Cherenkov telescope. Monte Carlo is used for the simulation.
The binary task is to distinguish if a shower image is caused by primary gammas (signal-1) or cosmic rays
in the upper atmosphere (background-0). (7) a8a - It is census data from 1994 to predict whether the

1https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
2https://archive.ics.uci.edu/ml/datasets/HIGGS
3https://archive.ics.uci.edu/ml/datasets/SUSY
4https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
5https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
6https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope
7https://archive.ics.uci.edu/ml/datasets/adult

10

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope
https://archive.ics.uci.edu/ml/datasets/adult

Probability Aux-Net Aux-Drop(ODL)
.50 0.6975 0.6031±0.0081
.60 0.6831 0.5839±0.0111
.70 0.6788 0.5497±0.0082
.80 0.6130 0.5321±0.0071
.90 0.5456 0.5149±0.0119
.95 0.5168 0.5013±0.0108
.99 0.5165 0.4788±0.0101

Table 3: The table contains the average loss on the Italy
Power Demand dataset. The first 12 features are base fea-
tures and the last 12 features are auxiliary features. The
availability of each auxiliary feature is varied by a uni-
form distribution of probability p. The value of p ranges
from .50 to .99. The average loss of Aux-Net for each p is
reported from the Aux-Net paper (Agarwal et al., 2020).
Aux-Drop(ODL) is run 20 times and the mean ± stan-
dard deviation of the average loss is reported here.

income exceeds $50k/yr. The pre-processed data to get numerical values has 123 features. The training set
of 32561 instances is used for experiments in this paper.

Motivation of the Chosen Datasets The motivation to choose these datasets is two-fold: (1) The first is
to see how Aux-Drop performs on small (german, Italy Power Demand, svmguide3), medium (magic04, a8a)
and large (SUSY, HIGGS) datasets. (2) The number of features in the dataset ranges from 8 (SUSY) to
123 (a8a). This helps in demonstrating the flexibility of Aux-Drop in the varying number of auxiliary features.

Choice of Deep Learning Model We use the online deep learning (ODL) model for a few reasons:
(a) ODL has shown better performance in the online learning domain and can handle big datasets very
efficiently, (b) The only deep learning method available for haphazard inputs (Aux-Net) also use ODL
as their base model, hence it gives a fair comparison. We also apply Aux-Drop on the online gradient
descent (OGD) framework. We represent them as Aux-Drop(ODL) and Aux-Drop(OGD) respectively and
collectively as Aux-Drop.

Comparison Models We evaluate the performance of Aux-Drop empirically in multiple scenarios. We
compare Aux-Drop(ODL) with Aux-Net (Agarwal et al., 2020) since it is a deep-learning method with ODL
base, capable of handling haphazard inputs. We also report Aux-Drop(ODL) and Aux-Drop(OGD) on 4
UCI datasets and compare them with OLVF (Beyazit et al., 2019) and OLSF Zhang et al. (2016). Since
most of the datasets used by previous methods were small, we also consider two big datasets to test the
effective application and feasibility of Aux-Drop(ODL) and compare it with ODL. In all the scenarios, the
instances are provided one by one to the model, and the training and testing are performed in a single pass.
For each specific case, the dataset is designed suitably.

4.1 Comparison with Aux-Net

The current literature has only one deep learning model, Aux-Net (Agarwal et al., 2020) based on ODL
that can handle the situation we present. It is only applied to the Italy Power Demand dataset which is
a very small dataset. Nevertheless, we compare our model with Aux-Net and prepare the data similar to
the Aux-Net paper. We considered the first 12 features of the Italy Power Demand dataset as the base
features and the last 12 features as the auxiliary features. We varied the availability of each auxiliary input
independently by a uniform distribution of probability p. In comparison with Aux-Drop, Aux-Net is a very
heavy model. Let the number of parameters from the base deep learning architecture be PB . Then the
number of parameters for Aux-Drop and Aux-Net is given by PD (eq. 6) and PN (eq. 7), respectively.

PD = PB + NAmaxMlaux (6)

PN = PB + NAmax
NH + NAmax

NHMlaux
(7)

where NH is the number of nodes in the hidden layer. Therefore, the number of parameters in Aux-Net
is NAmax

∗ NH ∗ Mlaux
more than the number of parameters in Aux-Drop since Aux-Net dedicates a layer

for each auxiliary feature whereas Aux-Drop can handle that feature seamlessly using only one node. In
numbers, if we assume 200 auxiliary features, 200 hidden nodes and 800 nodes in the AuxLayer then Aux-Net
has about 32M more parameters than Aux-Drop.

11

Table 4: Comparison with OLVF on various datasets. Here all the errors reported for OLVF are on p = 0.75 (i.e.
Rem = 0.25) and the value is taken from its original paper. Thus, we adjust the probability value (p) for haphazard
features for Aux-Drop accordingly to match the amount of missingness of OLVF. The error is reported as the mean
± standard deviation of the 20 experiments performed with random seeds.

Dataset OLVF Aux-Drop(ODL) Aux-Drop(OGD) p
german 333.4±9.7 300.4±4.4 312.8±19.3 0.73
svmguide3 346.4±11.6 297.2±2.0 297.5±1.5 0.72
magic04 6152.4±54.7 5536.7±59.3 5382.8±98.9 0.68
a8a 8993.8±40.3 6710.7±117.8 7313.5±277.7 0.75

Aux-Drop settings Aux-Net is compared with Aux-Drop(ODL) and its settings are kept similar to Aux-
Net for a fair comparison. Aux-Drop(ODL) is trained with 11 hidden layers, considering the 3rd hidden layer
as AuxLayer. Each layer has 50 nodes and the AuxLayer has 100 nodes. The smoothing rate is set as 0.2,
the discount rate is fixed at 0.99 and the dropout is chosen as 0.3. We use cross-entropy loss. The learning
rate is 0.3. Since the number of instances is less, a higher learning rate helps the model converge faster.

Result We report the average loss by taking the mean of the total loss of each instance over the whole
dataset. Aux-Drop(ODL) is run 20 times with random seeds for all the different values of p and the average
loss ± standard deviation is calculated. The result is shown in Table 3. Aux-Drop(ODL) outperforms Aux-
Net in all seven different probability scenarios. In the situation, where p = 0.9, 0.95, 0.99, the difference in
performance between Aux-Drop(ODL) and Aux-Net is very less. It is because of the less haphazardness in the
data, the efficiency of the auxiliary dropout was not used to its fullest. Whereas, when the haphazard inputs
are very high and frequent (p = 0.8, 0.7, 0.6, 0.5), the difference between Aux-Net and Aux-Drop(ODL)
is high. Here, dropout makes the features independent of each other and hence when the features are
not available frequently, it doesn’t affect the performance of the model. Whereas, Aux-Net has dedicated
layers for each auxiliary feature, requiring time to converge whenever the data is infrequent. The change in
performance in the case of p = 0.8, 0.7, 0.6 and 0.5 is 13.53%, 14.52%, 19.02% and 13.2% respectively. The
amount of haphazardness is highest when p = 0.5, implying the effectiveness of Aux-Drop(ODL).

4.2 Comparison with state-of-the-art OLVF

We consider datasets with enough instances (≥ 1000) and variability from the OLVF paper to apply our
model. We chose 4 different UCI datasets, namely, german, svmguide3, magic04 and a8a to simulate the
scenarios of haphazard inputs. We compare our model with OLVF for the scenarios of 0.25 removing ratio
(Rem) where it denotes that 25% of the instances are removed. We consider the first 2 features as base
features and the remaining features as auxiliary features in all the datasets. For a fair comparison, we
simulate the same amount of haphazardness as OLVF. For e.g., in the magic04 dataset with 10 features,
Rem = 0.25 in OLVF experiments accounts for Rem = 0.32 for 8 auxiliary features in Aux-Drop. The
probability p of the availability of each auxiliary input is 1 − Rem, therefore, p = 0.68 for the magic04
dataset. Similarly, we calculate the value of p for each dataset and round it to two decimal places. The p
value in the Aux-Drop for each dataset is shown in Table 4. We compare OLVF with both Aux-Drop(ODL)
and Aux-Drop(OGD).

Aux-Drop Settings Both Aux-Drop(ODL) and Aux-Drop(OGD) have the same setting and hence are
collectively referred to as Aux-Drop. Since the number of instances is less, we design Aux-Drop with only 6
hidden layers. The third layer is set as the AuxLayer. Each hidden layer has 50 nodes but the number of
nodes in AuxLayer is different for each dataset considering the number of features and dropout value. The
dropout value is set as 0.3. The number of nodes in AuxLayer is 100 except for a8a which has 400 nodes in
AuxLayer. The number of auxiliary features in a8a is 121 and the dropout value is 0.3, so we need about
(121/0.3 ∼ 403) nodes. The smoothing rate for Aux-Drop(ODL) is 0.2 and the discount rate is 0.99. The
cross-entropy loss is employed to train the model. The learning rate is 0.1 for the smaller datasets, i.e.,
german and svmguide3, whereas, for the larger datasets, i.e., magic04 and a8a, it is set as 0.01.

12

Table 5: Experiments on the trapezoidal data streams. Aux-Drop(ODL) and Aux-Drop(OGD) are compared with
OLSF and OLVF (metrics reported from their original paper) in terms of the average number of errors. All the
experiments are performed 20 times and the mean ± standard deviation is reported.

Dataset OLSF OLVF Aux-Drop(ODL) Aux-Drop(OGD)
german 385.5±10.2 329.2±9.8 312.2±8.0 320.9±39.4
svmguide3 361.7±29.7 351.6±25.9 296.9±1.0 297.0±0.9
magic04 6147.4±65.3 5784.0±52.7 6361.25±319.6 5635.8±100.9
a8a 9420.4±549.9 8649.8±526.7 7850.9±15.9 7848.8±10.3

Result We consider the metric reported by OLVF and calculate the number of errors for each dataset.
Aux-Drop is run 20 times randomly with respect to data shuffling, creating haphazard inputs and initializing
the model as done in the OLVF manuscript. The mean and the standard deviation of these 20 experiments
are reported in Table 4. Aux-Drop outperforms OLVF for all the datasets. Aux-Drop(ODL) performs
better than Aux-Drop(OGD) in all datasets except magic04. The worst-performing experiment out of the
20 experiments of Aux-Drop is better than the best-performing experiment of OLVF.

4.3 Experiments on trapezoidal data streams

We experiment on the trapezoidal data streams and compare them with the OLVF and OLSF (best per-
forming) algorithms Zhang et al. (2016). The trapezoidal streams are simulated by splitting the data into
10 chunks. The number of features in each successive chunk increases with the data stream. The first chunk
has the first 10% of the total features, the second chunk has the first 20% features, and so on. The Aux-Drop
setting and the dataset used are similar to the section 4.2 except the number of nodes in AuxLayer for a8a
is 600. Only the first two features are considered the base features. Note that first ∼12 features (10%) are
always available in this case. All the models are run 20 times and the mean ± standard deviation is reported.

Result Table 5 shows the performance of Aux-Drop as compared to others. The Aux-Drop outperforms
OLVF and OLSF in all the datasets except magic04. The mean error is low for Aux-Drop compared to OLVF
and OLSF. The amount of error in Aux-Drop(ODL) and Aux-Drop(OGD) compared to OLSF and OLVF is
16.7% and 9.2% less in the a8a dataset, suggesting that as the amount of data increases, the performance
of Aux-Drop massively increases as compared to OLSF and OLVF. Furthermore, the standard deviation of
Aux-Drop is low from OLVF and OLSF in all the datasets (except magic04), showing that the Aux-Drop
has performed well consistently in all 20 experiments.

4.4 Evaluation on big datasets

HIGGS and SUSY dataset is used by ODL to report its metrics. Hence, we found them suitable to test the
performance of Aux-Drop(ODL). We run our experiment for the first 1M instances. We design two exper-
iments on this dataset: (1) Experiment on variable probability as done in section 4.1, and (2) Experiment
on obsolete and sudden unknown features. Since the HIGGS and SUSY dataset is large, we run all the
experiments 5 times (instead of 20) and the average is reported. For comparison, we chose ODL as the base
model trained with only base features and refer it as ODL(B). For HIGGS and SUSY, we consider the first
5 and 2 features as base features and the next 16 and 6 features as auxiliary features, respectively.

AuxDrop Settings In both the cases of HIGGS and SUSY, we train the Aux-Drop(ODL) with 11 hidden
layers. The 3rd layer is set as the AuxLayer. The number of neurons in each hidden layer is 50 and in the
AuxLayer is 100. The dropout value is 0.3 and the learning rate value is set at 0.05. The discount rate is
fixed at 0.99 and the smoothing rate is 0.2. For a fair comparison, we design ODL with 11 hidden layers, 50
nodes in each hidden layer and the same value of learning rate, discount rate and smoothing rate.

13

Table 6: Error in HIGGS and SUSY for various probability p. The
metric is reported as the mean ± standard deviation of the number of
errors in 5 runs. The error of ODL(B) trained on only base features
for HIGGS and SUSY dataset is 441483.2±184.3 and 286198.6±189.4,
respectively. The ∆Avg value reported in the table is calculated by
subtracting the average number of errors of ODL(B) with the average
number of errors of Aux-Drop(ODL), respectively.

p
HIGGS SUSY

Avg±Std ∆ Avg Avg±std ∆ Avg
.01 440033.4±129.9 1449.8 285088.0±69.3 1110.6
.05 440045.4±250.5 1437.8 283463.0±305.5 2735.6
.10 439752.0±198.5 1731.2 280752.4±396.2 5446.2
.20 438775.2±361.7 2708.0 274907.0±575.7 11291.6
.30 435286.0±675.5 6197.2 269269.8±549.6 16928.8
.40 432190.8±381.3 9292.4 262713.4±632.3 23485.2
.50 427844.8±616.1 13638.4 256719.4±618.3 29479.2
.60 423002.8±604.5 18480.4 250108.0±829.5 36090.6
.70 418927.4±495.2 22555.8 243954.2±813.7 42244.4
.80 412601.6±254.0 28881.6 237211.6±654.5 48987.0
.90 405834.6±350.3 35648.6 230216.2±698.5 55982.4
.95 399234.8±613.7 42248.4 226631.8±354.4 59566.8
.99 391787.8±641.8 49695.4 222151.6±181.4 64047.0

Figure 4: The average error and stan-
dard deviation of ODL on the whole fea-
tures (base + auxiliary features) for 5 runs for
HIGGS and SUSY are 391334.8 and 218622.2.
Thus the performance improvement (∆AI) of
ODL(B) because of the addition of the whole
auxiliary features are 50148.4 and 67576.4 for
HIGGS and SUSY, respectively. The fraction
improvement in the Aux-Drop(ODL) is calcu-
lated by the ratio of ∆Avg (in Table 6) and
∆AI. The value of p (in Table 6) denotes the
amount of auxiliary information available.

4.4.1 Experiment on variable probability

We vary the availability of each auxiliary feature by a uniform distribution of probability p. Each auxiliary
feature is varied by the same value of p, but they are independent of each other. We consider all the situations
such as when very little auxiliary data is present (p = 0.01), the haphazardness in the data is maximum (p
= 0.5), almost all the auxiliary data is available all the time (p = 0.99), etc.

Results The mean and the standard deviation on HIGSS and SUSY are shown in Table 6. The mean
and standard deviation of the number of errors of ODL(B) for HIGGS is 441483.2 and 184.3 respectively.
Whereas, for the SUSY, it is 286198.6 and 189.4, respectively. We consider this value as the base value
and also report the metrics for all the p values with respect to this in Table 6. The ∆ Avg reported in the
table shows the less amount of errors made by Aux-Drop(ODL) utilizing the extra information from auxiliary
features and is calculated by subtracting the average number of errors of ODL(B) from the average number of
errors of Aux-Drop(ODL), respectively. Aux-Drop(ODL) is able to incorporate even a little amount of data
from auxiliary features when p = 0.01 and gives better performance. Moreover, at each increasing p value,
the Aux-Drop(ODL) performance improves. This is better represented in Figure 4 where the progression of
the fraction improvement (∆Avg/∆AI) is shown with respect to the availability of auxiliary data (p). The
average error of ODL on all available datasets (i.e., all the auxiliary features are always available) is also
reported here. For HIGGS, ODL trained on the 21 features gives an error of 391334.8 whereas, for SUSY, it
is 218622.2. Based on this, we can say that the performance improvement (∆ AI) achieved by ODL(B) due
to auxiliary data for HIGGS and SUSY is 50148.4 and 67576.4, respectively.

4.4.2 Obsolete and Sudden Unknown features

We demonstrate the effectiveness of Aux-Drop(ODL) in processing the extra information received from
auxiliary features in both the SUSY and HIGGS datasets. Here, we design the data in a such way that
all of them are sudden features, i.e., there is no information about the existence of these features when the
model is defined. The model knows about this feature suddenly at time t after the model deployment. For
the SUSY dataset, the first auxiliary feature starts arriving from 100k till 500k, the next auxiliary feature
ranges from 200k till 600k, and so on to the 6th auxiliary feature coming from 600k to 1000k instances.

14

100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000

B. F. 1
B. F. 2
B. F. 3
B. F. 4
B. F. 5
A. F. 1
A. F. 2
A. F. 3
A. F. 4
A. F. 5
A. F. 6
A. F. 7
A. F. 8
A. F. 9

A. F. 10
A. F. 11
A. F. 12
A. F. 13
A. F. 14
A. F. 15
A. F. 16

(a) SUSY

0 0

(b) HIGGS

Fe
at

ur
es

B. F. 1

B. F. 2

A. F. 1

A. F. 2

A. F. 3

A. F. 4

A. F. 5

A. F. 6

Number of Instances (in k) Number of Instances (in k)

N
um

be
r o

f E
rr

or
s

Figure 5: Result of the obsolete and sudden features experiment on (a) SUSY and (b) HIGGS dataset for Aux-
Drop(ODL). Every experiment is run 5 times and the average value is reported. We calculate the average number of
errors in each 50k instance. Thus, the graph starts at 50k and goes till 1000k. B. F. {n} and A. F. {n} represent the
nth number base features and auxiliary features, respectively. 95% confidence interval (CI) is also shown in the graph.
The green box represents the time instances when a certain auxiliary feature was available. The x-axis denotes the
number of instances (in k).

Each feature becomes obsolete after arriving for 400k instances. Similarly for the HIGGS dataset, the first
auxiliary feature arrives from 50k to 250k instances, the second arrives from 100k to 300k, and so on where
every successive auxiliary feature arrives at 50k instances after the previous auxiliary features start arriving
and arrive till the next 200k instances. This is better depicted in the lower part of Figure 5(a) for SUSY
and Figure 5(b) for HIGGS.

Results Figure 5 shows the result of obsolete and sudden unknown features for both SUSY and HIGGS.
The performance of ODL(B) and Aux-Drop(ODL) is similar for the first 50k instances since both get the
same amount of data. But as Aux-Drop(ODL) gets the auxiliary information, its performance improves. The
maximum amount of auxiliary information received in the SUSY dataset is from 400k to 700k and we see that
the best performance is during that period. The minimum is achieved at 600k. Moreover, in the later stages
after 900k, when the auxiliary information reduces, the Aux-Drop(ODL) converges to the performance of
ODL(B) depicting the agile manner in which Aux-Drop(ODL) handles the haphazard inputs. In the case of
HIGGS, Aux-Drop(ODL) is better than ODL as soon as it starts getting the auxiliary information. For each
period of 50k instances, we get a confidence interval (CI) low and CI high. We calculate the 95% CI. The
average of all these 20 periods gives a CI low of 13027.9 and a CI high of 13077.2 for Aux-Drop(ODL) and a

15

Table 7: Table shows the need for AuxLayer and the use of dropout. Notations: RDANDO - Random Dropout
in AuxLayer No Dropout in Others, RDAL - Random Dropout in All Layers, ADARDO - Auxiliary Dropout in
AuxLayer and Random Dropout in Other layers, RDIFL - Random Dropout in First Layer with all features passed
directly to the first layer. The probability p = 0.27, 0.28, 0.32 and 0.25 for german, svmguide3, magic04 and a8a
datasets respectively.

Methods german svmguide3 magic04 a8a
RDANDO 318.0±2.8 297.6±1.9 6123.5±169.1 7853.1±16.3
RDAL 319.3±4.4 298.2±3.0 6433.1±143.7 7862±323.2
ADARDO 318.6±4.2 297.6±1.7 6700.4±33.1 7852.9±15.9
Aux-Drop(ODL) 317.4±1.9 296.9±1.5 6039.1±190.4 7855.5±16.8
RDIFL 318.5±2.8 297.2±1.7 6528±136.4 7869.9±33.2

CI low of 14289.1 and a CI high of 14332.0 for ODL in the SUSY dataset. Whereas for the HIGGS dataset,
the average CI (low, high) is (21696.8, 21799.4) for Aux-Drop(ODL) and (22039.1, 22109.2) for ODL.

5 Ablation Studies

For all the ablation studies, we use Aux-Drop(ODL) framework and apply it to the four UCI datasets
(german, svmguide3, magic04 and a8a). We prepare all the haphazard datasets following the subsection 4.2.
In order to increase the complexity, we perform all the experiments with less availability of auxiliary features.
Hence we consider 1-p value from Table 4. Thus, the probability of the availability of auxiliary features is
0.27, 0.28, 0.32 and 0.25 for german, svmguide3, magic04 and a8a datasets respectively. The architecture of
Aux-Drop(ODL) is also followed from subsection 4.2 until it is specified otherwise. Aux-Drop(ODL) has 6
hidden layers with the 3rd layer as the AuxLayer. In this section, the terms Aux-Drop(ODL) and Aux-Drop
are used interchangeably.

5.1 Need of AuxLayer

One of the requirements of Aux-Drop is the presence of alteast one base feature. So, we design a model
where we pass all the inputs (base and auxiliary features) directly to the first layer itself without the use
of AuxLayer in ODL. Here, we employ Random Dropout in the First layer to handle the haphazard inputs
(RDIFL). The performance of RDIFL is shown in the lower part of Table 7. It can be seen that Aux-
Drop(ODL) outperforms RDIFL by 7.4% in magic004 and is marginally better in other datasets. This is
because Aux-Drop utilizes the full information from base layers and increments it with the information from
haphazard auxiliary features.

5.2 Effective Use of Dropout

We apply the dropout in the AuxLayer with an emphasis on the coupling between the auxiliary feature and
auxiliary node by the manner of selectively choosing nodes to drop, based on the unavailability of auxiliary
features. But, it is to be noted that, dropout can be applied randomly in the AuxLayer too. Moreover,
dropout can also be applied to the other hidden layers as well. We present a comparison of all these ways
of applying dropout and show empirically that Aux-Drop is the best way to employ dropout. We compare
Aux-Drop with its three other variants: (a) RDANDO - Random Dropout is applied in the AuxLayer and No
Dropout is applied in Other layers, (b) RDAL - Random Dropout is applied in All Layers, and (c) ADARDO
- Auxiliary Dropout is applied in the AuxLayer and Random Dropout is applied in all the Other layers. The
results of all these methods (applied on ODL) are compared with Aux-Drop (ODL) in the 4 UCI machine
learning dataset and are shown in the upper half of Table 7. Aux-Drop is better in all the cases except
in a8a. The maximum variation in the results is seen in the magic04 dataset. The second best method is
RDANDO which also applies dropout only in the AuxLayer. So, the best way is to employ auxiliary dropout
only in the AuxLayer.

16

Table 8: Comparison of the position of AuxLayer. Pos here stands for the position. The experiment is conducted
on the four UCI datasets. The probability p = 0.27, 0.28, 0.32 and 0.25 for german, svmguide3, magic04 and a8a
datasets respectively.

Pos german svmguide3 magic04 a8a
1 317.7±2.0 298.5±2.9 6049.4±269.5 7842.1±31.6
2 319.1±3.5 298.4±2.8 6054.0±213.3 7730.5±73.5
3 317.4±1.9 296.9±1.5 6039.1±190.4 7855.4±16.8
4 318.5±2.7 298.9±2.8 6110.7±146.2 7852.9±12.4
5 317.7±2.2 297.4±1.7 6428.7±105.5 7856.7±14.3

5.3 Effect of AuxLayer position in the Model

The position of AuxLayer is a hyperparameter in the Aux-Drop. In all the above methods, we fixed the 3rd

layer as the AuxLayer. Here, we demonstrate how the model performs with respect to the different positions
of the AuxLayer in the 4 UCI datasets. The results are shown in Table 8. The 3rd layer seems to be the
best position except for a8a which gives the best performance for the 2nd position. The ratio of base and
auxiliary features is 1:60.5 for a8a. Thus, it requires comparatively more layers to process the auxiliary
information. The 2nd position outperforms the 1st position in a8a because the first hidden layer helps to
process the base features. Whereas for the other three datasets, the maximum ratio of base features and
auxiliary features is 1:11 (for german) and hence comparatively less number of layers are enough to capture
the auxiliary features.

6 Conclusion

The challenge and application of haphazard inputs are immense and to our knowledge, there are no effective
deep learning methods available to handle it. So, we propose a generalized concept called Aux-Drop which
can be applied to any deep learning-based online architecture. We demonstrate the effectiveness of Aux-Drop
in multiple datasets and empirically assert the importance of the Aux-Drop design by applying it to ODL
and OGD frameworks. The various experiments on big datasets meticulously show the agile manner in which
Aux-Drop processes the auxiliary information and converges to the base deep learning architecture during
the unavailability of auxiliary features.

Acknowledgement We acknowledge the various funding that supported this project: Researcher Project
for Scientific Renewal grant no. 325741 (Dilip K. Prasad) and UiT’s thematic funding project VirtualStain
with Cristin Project ID 2061348 (Alexander Horsch and Dilip K. Prasad).

References
Rohit Agarwal, Arif Ahmed Sekh, Krishna Agarwal, and Dilip K Prasad. Auxiliary network: Scal-

able and agile online learning for dynamic system with inconsistently available inputs. arXiv preprint
arXiv:2008.11828, 2020.

Charu C Aggarwal, Jiawei Han, Jianyong Wang, and Philip S Yu. A framework for on-demand classification
of evolving data streams. IEEE Transactions on Knowledge and Data Engineering, 18(5):577–589, 2006.

Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-energy physics
with deep learning. Nature communications, 5(1):1–9, 2014.

Ege Beyazit, Jeevithan Alagurajah, and Xindong Wu. Online learning from data streams with varying feature
spaces. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 3232–3239, 2019.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov, Giorgio Giacinto,
and Fabio Roli. Evasion attacks against machine learning at test time. In Machine Learning and Knowledge
Discovery in Databases: European Conference, ECML PKDD 2013, Prague, Czech Republic, September
23-27, 2013, Proceedings, Part III 13, pp. 387–402. Springer, 2013.

17

Nicolo Cesa-Bianchi, Philip M Long, and Manfred K Warmuth. Worst-case quadratic loss bounds for
prediction using linear functions and gradient descent. IEEE Transactions on Neural Networks, 7(3):
604–619, 1996.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM transactions
on intelligent systems and technology (TIST), 2(3):1–27, 2011.

Yining Chen, Haipeng Luo, Tengyu Ma, and Chicheng Zhang. Active online learning with hidden shifting
domains. In International Conference on Artificial Intelligence and Statistics, pp. 2053–2061. PMLR,
2021.

Ron Tor Das, Kai Keng Ang, and Chai Quek. ierspop: A novel incremental rough set-based pseudo outer-
product with ensemble learning. Applied Soft Computing, 46:170–186, 2016.

Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr time series archive. IEEE/CAA
Journal of Automatica Sinica, 6(6):1293–1305, 2019.

Guneet S Dhillon, Kamyar Azizzadenesheli, Zachary C Lipton, Jeremy Bernstein, Jean Kossaifi, Aran
Khanna, and Anima Anandkumar. Stochastic activation pruning for robust adversarial defense. arXiv
preprint arXiv:1803.01442, 2018.

Yao-Xiang Ding and Zhi-Hua Zhou. Preference based adaptation for learning objectives. Advances in Neural
Information Processing Systems, 31, 2018.

Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Proceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery and data mining, pp. 71–80, 2000.

Jiahua Dong, Yang Cong, Gan Sun, Tao Zhang, Xu Tang, and Xiaowei Xu. Evolving metric learning for
incremental and decremental features. IEEE Transactions on Circuits and Systems for Video Technology,
32(4):2290–2302, 2021.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/
ml.

Ryan Elwell and Robi Polikar. Incremental learning of concept drift in nonstationary environments. IEEE
Transactions on Neural Networks, 22(10):1517–1531, 2011.

Tlamelo Emmanuel, Thabiso Maupong, Dimane Mpoeleng, Thabo Semong, Banyatsang Mphago, and Oteng
Tabona. A survey on missing data in machine learning. Journal of Big Data, 8(1):1–37, 2021.

Abolfazl Farahani, Sahar Voghoei, Khaled Rasheed, and Hamid R Arabnia. A brief review of domain
adaptation. Advances in Data Science and Information Engineering: Proceedings from ICDATA 2020 and
IKE 2020, pp. 877–894, 2021.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an application
to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

Joao Gama. A survey on learning from data streams: current and future trends. Progress in Artificial
Intelligence, 1(1):45–55, 2012.

Ian Goodfellow, Patrick McDaniel, and Nicolas Papernot. Making machine learning robust against adver-
sarial inputs. Communications of the ACM, 61(7):56–66, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the ACM, 63(11):
139–144, 2020.

Yi He, Baijun Wu, Di Wu, Ege Beyazit, Sheng Chen, and Xindong Wu. Online learning from capricious
data streams: a generative approach. In International Joint Conference on Artificial Intelligence Main
track, 2019.

18

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov. Im-
proving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580,
2012.

Steven CH Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. Online learning: A comprehensive survey. Neuro-
computing, 459:249–289, 2021.

Bo-Jian Hou, Lijun Zhang, and Zhi-Hua Zhou. Learning with feature evolvable streams. Advances in Neural
Information Processing Systems, 30, 2017.

Bo-Jian Hou, Lijun Zhang, and Zhi-Hua Zhou. Prediction with unpredictable feature evolution. IEEE
Transactions on Neural Networks and Learning Systems, 2021.

Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvári. Learning with a strong adversary. arXiv
preprint arXiv:1511.03034, 2015.

Aparna Ramesh Iyer, Dilip K Prasad, and Chai Hiok Quek. Pie-rspop: A brain-inspired pseudo-incremental
ensemble rough set pseudo-outer product fuzzy neural network. Expert Systems with Applications, 95:
172–189, 2018.

Zhiwei Ke, Zhiwei Wen, Weicheng Xie, Yi Wang, and Linlin Shen. Group-wise dynamic dropout based on
latent semantic variations. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pp. 11229–11236, 2020.

Rohit Keshari, Richa Singh, and Mayank Vatsa. Guided dropout. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pp. 4065–4072, 2019.

Nikhil Ketkar and Nikhil Ketkar. Stochastic gradient descent. Deep learning with Python: A hands-on
introduction, pp. 113–132, 2017.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv preprint
arXiv:1611.01236, 2016.

Daniel Leite, Pyramo Costa, and Fernando Gomide. Evolving granular neural networks from fuzzy data
streams. Neural Networks, 38:1–16, 2013.

Xuejiao Liu and Xueshuang Xiang. How does gan-based semi-supervised learning work? arXiv preprint
arXiv:2007.05692, 2020.

Hussein Syed Mohammed, James Leander, Matthew Marbach, and Robi Polikar. Can adaboost. m1 learn
incrementally? a comparison to learn++ under different combination rules. In International Conference
on Artificial Neural Networks, pp. 254–263. Springer, 2006.

Hai-Long Nguyen, Yew-Kwong Woon, and Wee-Keong Ng. A survey on data stream clustering and classifi-
cation. Knowledge and information systems, 45(3):535–569, 2015.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge and data
engineering, 22(10):1345–1359, 2010.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as a defense
to adversarial perturbations against deep neural networks. In 2016 IEEE symposium on security and
privacy (SP), pp. 582–597. IEEE, 2016.

Jitendra Parmar, Satyendra Singh Chouhan, Vaskar Raychoudhury, and Santosh S Rathore. Open-world
machine learning: applications, challenges, and opportunities. ACM Computing Surveys (CSUR), 2021.

Rajendra Patil, Vinay Sachidananda, Hongyi Peng, Akshay Sachdeva, and Mohan Gurusamy. Mark: Fill
in the blanks through a jointgan based data augmentation for network anomaly detection. Computers &
Security, 119:102759, 2022.

19

Alvin Poernomo and Dae-Ki Kang. Biased dropout and crossmap dropout: learning towards effective dropout
regularization in convolutional neural network. Neural networks, 104:60–67, 2018.

Robi Polikar. Ensemble learning. In Ensemble machine learning, pp. 1–34. Springer, 2012.

Robi Polikar, Lalita Upda, Satish S Upda, and Vasant Honavar. Learn++: An incremental learning algorithm
for supervised neural networks. IEEE transactions on systems, man, and cybernetics, part C (applications
and reviews), 31(4):497–508, 2001.

Robi Polikar, Joseph DePasquale, Hussein Syed Mohammed, Gavin Brown, and Ludmilla I Kuncheva.
Learn++. mf: A random subspace approach for the missing feature problem. Pattern Recognition, 43
(11):3817–3832, 2010.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Doyen Sahoo, Quang Pham, Jing Lu, and Steven CH Hoi. Online deep learning: Learning deep neural
networks on the fly. arXiv preprint arXiv:1711.03705, 2017.

Walter J Scheirer, Anderson de Rezende Rocha, Archana Sapkota, and Terrance E Boult. Toward open set
recognition. IEEE transactions on pattern analysis and machine intelligence, 35(7):1757–1772, 2012.

Vikash Sehwag, Arjun Nitin Bhagoji, Liwei Song, Chawin Sitawarin, Daniel Cullina, Mung Chiang, and
Prateek Mittal. Analyzing the robustness of open-world machine learning. In Proceedings of the 12th
ACM Workshop on Artificial Intelligence and Security, pp. 105–116, 2019.

Thomas Seidl, Ira Assent, Philipp Kranen, Ralph Krieger, and Jennifer Herrmann. Indexing density models
for incremental learning and anytime classification on data streams. In Proceedings of the 12th international
conference on extending database technology: advances in database technology, pp. 311–322, 2009.

Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler. Efficient object
localization using convolutional networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 648–656, 2015.

Ivor W Tsang, Andras Kocsor, and James T Kwok. Simpler core vector machines with enclosing balls. In
Proceedings of the 24th international conference on Machine learning, pp. 911–918, 2007.

Qin Zhang, Peng Zhang, Guodong Long, Wei Ding, Chengqi Zhang, and Xindong Wu. Online learning from
trapezoidal data streams. IEEE Transactions on Knowledge and Data Engineering, 28(10):2709–2723,
2016.

Zhen-Yu Zhang, Peng Zhao, Yuan Jiang, and Zhi-Hua Zhou. Learning with feature and distribution evolvable
streams. In International Conference on Machine Learning, pp. 11317–11327. PMLR, 2020.

Zhi-Hua Zhou. Open-environment machine learning. National Science Review, 9(8):nwac123, 2022.

A Adversarial Inputs

Adversarial inputs are malicious inputs designed to cause the machine-learning model to make a mistake. This
is achieved by modifying the input data subtly (Goodfellow et al., 2018). Machine learning models are highly
vulnerable to small changes in the input at test time (Biggio et al., 2013; Kurakin et al., 2016). Hence dealing
with adversarial inputs require special methods and training procedure like injecting adversarial examples
into the training set (Huang et al., 2015), using defensive distillation for network training (Papernot et al.,
2016). Whereas, haphazard inputs are not modified, disturbed, or perturbed. All the inputs are used as it
is and no new inputs are created at any point in time.

20

B Semi-supervised techniques

Adaptations of generative adversarial networks (GAN) (Goodfellow et al., 2020) have achieved competitive
results in semi-supervised learning (Liu & Xiang, 2020). Approaches like MARK (Patil et al., 2022) attempt
to use GAN to generate data that can exhibit the patterns of the unknown test data and this generated data
in turn can train the model to deal with adversarial inputs (Goodfellow et al., 2018) and unknown attacks.
However, this does not apply to haphazard inputs, since it cannot deal with changing input dimensions and
unavailable auxiliary features.

C Progressive Networks

Progressive networks (Rusu et al., 2016) are designed to handle a complex sequence of tasks (Task1, Task2,
..., Taskk) by leveraging transfer learning and avoiding catastrophic forgetting. Here, at Task1 a deep neural
network (D1) is trained in an offline manner. When Task2 arrives, a copy of D1 is made with random
initialization (let’s say D2), and D1 is frozen. The input to D2 is now the hidden activations from D1 and
the actual input. This goes on till Taskk. Whereas in the haphazard inputs problem, there is only one
task without any change and the model is trained in an online manner with a stochastic gradient. Hence,
progressive networks can not be applied here. One can still think of a connection between progressive
networks and Aux-Drop by considering each new auxiliary feature as task-specific and creating a deep neural
network whenever a new feature arrives. In a practical scenario, the number of auxiliary features can go up
to thousands (121 in the case of the a8a dataset) which will require 1000 deep neural networks. This is not
feasible from both the point of storage and computation.

D Domain Adaptation

Domain adaptation aims to train a model using source data (training data) in such a way that the model
generalizes well to the target data (test data) too (Farahani et al., 2021). Training and test data can be
from different distributions, hence it becomes an important part of the model to explicitly handle the data
from different domains (distribution). Domain adaptation is a special case of transfer learning (Pan & Yang,
2010). Interestingly, domain adaptation has only been applied in the online learning setting (Chen et al.,
2021). But the biggest assumption in domain adaptation is that all the features are base features and hence
it cannot handle the haphazard input problems.

E Open Set

Open set problems deal with scenarios where the number of classes (output labels) is unknown at the training
time and new classes can appear during testing (Scheirer et al., 2012). The haphazard inputs problem is
orthogonal to the open set problem since the number of classes is always known and the number of input
features is unknown.

21

	Introduction
	Related Work
	Method
	Aux-Drop
	Mathematical Formulation
	Handling Haphazard Inputs
	Discussion

	Experiments
	Comparison with Aux-Net
	Comparison with state-of-the-art OLVF
	Experiments on trapezoidal data streams
	Evaluation on big datasets
	Experiment on variable probability
	Obsolete and Sudden Unknown features

	Ablation Studies
	Need of AuxLayer
	Effective Use of Dropout
	Effect of AuxLayer position in the Model

	Conclusion
	Adversarial Inputs
	Semi-supervised techniques
	Progressive Networks
	Domain Adaptation
	Open Set

