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Abstract 

Resilience is defined as a system's ability to withstand and recover from disruptions such as 

failures, accidents, or external shocks. In the domain of engineering systems, resilience plays an 

essential role because it guarantees the system's ability to continue operating despite unexpected 

events, ultimately maintaining production levels and ensuring customer satisfaction. This paper 

aims to measure the amount of resilience in the mining industry. In this regard, an approach 

consisting of reliability, maintainability, supportability, the efficiency of system prognostic and 

health management (PHM), and organization resilience was introduced. These indexes provide a 

comprehensive assessment of the system's ability to withstand and recover from disruptions, 

thereby helping to ensure its continued performance and customer satisfaction. To reduce the 

uncertainty in the measurement of resilience, operational and environmental variables were used 

to estimate the values of reliability, maintainability, and supportability. Also, the opinions of 

experts were used in the estimation of the efficiency of the system (PHM) and indices. 

Organization resilience. The results of applying this approach are the value of 80% resilience if 

the variables are considered and 98% if the mentioned variables are ignored. Also, the value of 

58% resilience of this organization's management group indicates the weakness of situational 

awareness and weakness in the vulnerable points of the organization. 

keywords: Reliability, Maintainability, Supportability, Organization resilience, Prognostics and 

health management of the system index 

 



1-Introduction  

Over the years, Risk management has been The main approach to increase system safety by 

developing robust systems. At the same time, disruption indicates that this goal is unachievable. 

Thus, attention has shifted to developing resilient systems. The term resilience was born 

(Hosseini et al., 2016). The concept of resilience was expanded from ecology into other fields. 

(Holling, 1973). Such as social (White et al., 2015), (Yu et al., 2014), economic (Bristow, 2018) 

(Benito Del Pozo & López-González, 2020), organizational (Aleksić et al., 2013) (Burnard & 

Bhamra, 2011), and engineering (Cimellaro et al., 2010) (Henry, 2012). Sharma et al. evaluated 

the Indian transportation system's resilience in 2018. To investigate the relationships between 

the variables, they created a framework for measuring resilience and employed an analytical 

model based on the Bayesian belief networks methodology. In their article, Resilience was 

described as a term that combines the system's capacity to withstand and recover (Sharma & 

George, 2018). American Society of Mechanical Engineers defined engineering resilience as 

the system's ability to stabilize against internal or external disruptions without reducing the 

system's performance or quick recovery from disruption and return to its previous and main 

performance in case of reduction (Ahmed et al., 2019). The European project IMPROPER 

defines resilience as a system's ability to resist, absorb, adapt, and recover promptly from 

hazards to maintain and restore essential services. This definition emphasizes the importance 

of resilience in the context of critical European infrastructures (Petersen et al., 2020). 

According to the definitions above, the resilience concept can be expressed in Figure 1. As The 

figure illustrates, resilience changes the system's life cycle. Typically, the performance of the 

system declines significantly as the system ages. After that, the system can have different 

reactions to failure events at the time 𝑡𝑒.  The flexibility attribute in the resilient system enables 

it to adapt to new conditions; in other words, this attribute in the system makes it adjust its 

internal mechanism based on the existing conditions, which can provide service and function 

even with a decline in operation. While the systems are not resilient at this stage, if the amount 

of pressure caused by the failure event is higher than the resistance of the mentioned system, it 

leads to failure and, finally, the system's collapse. In the following, after the end of the 

disruption at the time 𝑡𝑑, when the system performance reaches its value 𝑄(𝑡𝑑), the system 

spends the period (𝑡𝑑 − 𝑡𝑒) in Disrupted conditions. Adequate logistic such as resources, 

information, components, and timely decision-making will reduce this period. Eventually, the 

recovery of the system starts over time 𝑡𝑠. The quality of adopted decisions and strategies and 

using qualified resources will cause the restored system performance level in time 𝑡𝑓 to be 

closer to its initial value. As can be seen resilience is influenced by a lot of factors. Every 

mining operation must assess the strengths and vulnerabilities of its mechanical systems to 

guarantee efficient mineral production and customer satisfaction. However, it is impossible to 

prevent failures and disturbances. Thus, mines need an indicator that, in the first place, has a 

system resistant to disruption and then, in the event of a disruption, they can be restored as 

soon as possible. Therefore in This work a formulation is presented to examine the resilience 

of mechanical systems. Five indicators such as reliability, maintainability, supportability, 

organizational resilience and efficiency of system (PHM) have been introduced. In this regard 

Expert judges and operational and environmental variables have been used to quantify these 

indicators. The remaining parts of the paper are structured as follows: In the section 2 



methodology of resilience is describe. In the section 3, the case study and the application of 

methodology for analyzing the resilience of this system are shown. finally, Section 4 brings 

our findings. 
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Figure 1: Schematic representation of the concept of resilience (Mottahedi, Sereshki, Ataei, Qarahasanlou, et 

al., 2021)  

2- Methodology of resilience analysis 

 According to the concept and definitions of resilience, the two main aspects of any resilient 

system are robustness to disruptive events and recovery in case of disruption. Also, A 

mechanical system's resilience can be categorized into two parts in broad speaking, including 

soft resilience and hard resilience. Hard resilience represents the behavior of the technical part 

of the mechanical system, and soft resilience represents the people and the organization running 

the mechanical system in the preparedness and recovery phases (before, during, and after 

disruption). 

(Barabadi & Ayele, 2018). In this article, based on the mentioned reasons, a method has been 

used to quantify and analyze resilience. In the following, this method is quantified using Eq. 

(1) presented by (Rød et al., 2016a) : 

(1) 

  

 

𝜓(𝑡) = 𝑅(𝑡) + 𝛬(𝑡)(1 − 𝑅(𝑡)) 

In Eq. (1) Ψ(t) is resilience at the time of t, R(t) is the reliability of system as robustness aspect 

of resilience, and Λ(t) refer to system restoration. the system restoration can be formulated as 

Eq. (2): 

 (2) 𝛬(𝑡) = ∏ 𝛽𝑖

4

𝑖=1

 



In Eq. (2), 𝛽1  is the system maintainability after disruption, 𝛽2  is supportability, 𝛽3  is the 

efficiency of the system prognostic and health management (PHM) system before and after 

disruption, and 𝛽4  is the organizational resilience in case of disruption (Rød et al., 2016a). 

According to Eq. (1)to Eq. (2), reliability can be defined as “the ability of the system to maintain 

its required capacity and performance during a given period under stated conditions” 

(Dhillon, 2006a; Ghomghaleh et al., 2020; Komal, 2019; Rød et al., 2016b). Maintainability 

can be defined as “ the probability that the item will be repaired within a given period using 

specified resources such as a maintenance crew or spare parts” (Barabadi & Aalipour, 2015; 

Rød et al., 2016a). Supportability is “the maintenance group's ability to meet the demand for 

sufficient resources to maintain a specific service or devise under certain conditions” (Ghodrati 

et al., 2007). PHM system performance is “failure detection and prediction of defects in 

engineering systems” (Omri et al., 2021; Rød et al., 2016a). Investment in the PHM system can 

increase both of the main resilience capacities. Moreover, finally, Organization resilience is 

“the resilience of the team who work on the system”. All managers and people who work in 

mechanical systems must have high resilience in critical situations(Burnard & Bhamra, 2011; 

Denyer, 2017). 

Mechanical systems are always in conflict with various factors during their useful life. Ignoring 

these important factors leads to errors in identifying the strengths and weaknesses of the 

system. It is clear that in Eq. (1) to estimate the system's resilience, the effect of these factors 

has been neglected. Therefore, in 2021, Mottahedi et al. presented Eq. (3) to estimate the 

system's resilience by considering the effects of environmental and operational factors that are 

known as Risk factors which are used in reliability, maintainability, and supportability (RMS) 

analysis (Mottahedi, Sereshki, Ataei, Nouri Qarahasanlou, et al., 2021). 

(3) 𝜓(𝑡; 𝑐, 𝑐(𝑡)) = 𝑅(𝑡; 𝑐, 𝑐(𝑡)) + 𝛬(𝑡; 𝑐, 𝑐(𝑡))(1 − 𝑅(𝑡; 𝑐, 𝑐(𝑡))) 

In Eq. (3), 𝜓(𝑡; 𝑐,𝑐(𝑡)) refer to the system resilience, considering the environmental and 

operational factors, 𝑅(𝑡;𝑐,𝑐(𝑡)) and Λ(𝑡;𝑐,𝑐(𝑡)) are reliability and the rate of system restoration, 

respectively. Using the presented method in Figure 2, Eq. (3) indexes will be evaluated.  

• Part 1: Estimation of the organization's resilience  

• Part 2: Estimation of the system’s RMS  

• Part 3: Estimation of the efficiency of the system (PHM) 
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Figure 2. Resilience estimation method [𝑨𝒖𝒕𝒉𝒐𝒓′𝒔 𝒐𝒘𝒏 𝒄𝒓𝒆𝒂𝒕𝒊𝒐𝒏] 

 

2-1 Estimation of the organizational resilience 

Organizational resilience is the capacity of a company or organization in predictive, absorptive, 

adaptive, and restorative. Madani et al. considered the concept of resilience as an organization's 

capacity in predictive, absorptive, adaptive, and restorative. In this regard, they presented an 

integrated model that examines the quality perspective and how resilience and innovation are 

related (Madani & Parast, 2023). In this article, the Macknemus model, as extended by Seville, 

is used to estimate organizational resilience(McManus et al., 2007). Maknemus defines 

organizational resilience as an organization's ability to plan in order to be flexible in the face 

of a catastrophe. Crisis (McManus, 2007). In Maknemos' model, the resilient organization has 

indicators in three main principles:  

• The indicators measure the organization's situational awareness level 

• The indicators measure the level of the management keystone vulnerability of the 

organization 

• The indicators measure the organization's Adaptive capacity 

In this article, expert judgment is used to quantify the Makenmuns model. Furthermore, fuzzy 

set theory is applied to reduce uncertainty in the expert's viewpoint. Table 1 shows the 

components and indicators of organizational resilience. 



Table 1.Organization Resilience Indicators(Seville, 2009) 

Adaptive Capacity Symbol 
Management of 

keystone 

Vulnerabilities 

Symbol Situation Awareness Symbol 

Silo Mentality 
𝐴𝐶1 Quality of Planning 

Strategies 

𝐾𝑉1 Roles & 

Responsibilities 

𝑆𝐴1 

Communications 
𝐴𝐶2 

Exercises 
𝐾𝑉2 Hazard & 

Consequences 

𝑆𝐴2 

Strategic Vision 
𝐴𝐶3 

Internal Resources 
𝐾𝑉3 Awareness of 

Connectivity 

𝑆𝐴3 

Management Information 

and Knowledge 

𝐴𝐶4 
External Resources 

𝐾𝑉4 
Insurance 

𝑆𝐴4 

Leadership, Management 

Structures 

𝐴𝐶5 
Connectivity 

𝐾𝑉5 
Recovery Priorities 

𝑆𝐴5 

Innovation & Creativity 
𝐴𝐶6 

Staff Engagement 
𝐾𝑉6 Informed decision 

making 

𝑆𝐴6 

Devolved and responsive 

Decision-making 

𝐴𝐶7 
Robust Processes 

𝐾𝑉7 
Situation Monitoring 

𝑆𝐴7 

The article uses a questionnaire to obtain expert opinions on fuzzy set theory in Table 2 

(Mottahedi & Ataei, 2019). Then, the quantified opinions are integrated to fuzzify the 

organization's resilience indicators. When the number of experts who participated in the survey 

process is equal to z and the fuzzy number obtained from the opinion of the zth expert about 

the influential component is equal to 𝑠̃𝑖𝑧 = (𝑎𝑖𝑧𝑏𝑖𝑧𝑐𝑖𝑧), the output of the experts' judgment is 

in the form of Eq. (4) (Chen, 2000). 

(4)  (𝑠̃𝑖)𝑘 = (𝑎𝑖, 𝑏𝑖, 𝑐𝑖) = (𝑚𝑖𝑛𝑧{𝑎𝑖𝑧} ,
∑ 𝑏𝑖𝑧

𝑛
𝑧=1

𝑍
, 𝑚𝑎𝑥𝑧{𝑐𝑖𝑧}) (𝑧 = 1,2,3, . , 𝑧) 

 

Table 2. Linguistic terms and their corresponding fuzzy components 

No. Linguistic Terms Symbol 
Corresponding 

fuzzy components 

1 Very low-very weak-very bad-completely contrary VL (0,0,0.1) 

2 Low-weak-bad-contrary L (0,0.1,0.3) 

3 Relatively low-relatively weak- relatively bad- relatively contrary RL (0.1,0.3,0.5) 

4 Moderate-medium-mediocre-unbiassed M (0.3,0.5,0.7) 

5 Relatively high-relatively strong-relatively good-relatively agreeable RH (0.5,0.7,0.9) 

6 High-good-strong-agreeable H (0.7,0.9,1) 

7 Very high-very strong-very good-very agreeable VH (0.9,1,1.1) 

In Eq. (4), 𝑐𝑖. 𝑏𝑖. 𝑎𝑖 are the lower, average, and upper limits, respectively, of the expert's opinion 

about the effective component of organizational resilience. This number is fuzzy, and it must 

be de-fuzzified to obtain the value of organizational resilience. In this case, if the resulting 

output of the experts' opinions about the mentioned components is equal to (𝑆̃𝑖)𝑘
= (𝑎𝑖. 𝑏𝑖. 𝑐𝑖), 



the non-fuzzified output is obtained using Eq. (5). The following equation's output is 

considered the non-fuzzy final score of each component (Carlsson & Fullér, 2001).  

(5)  (𝑠̃𝑖)𝑘 =
(𝑎𝑖 + 4𝑏𝑖 + 𝑐𝑖)

6
, (0 ≤ 𝑠𝑖 ≤ 1) 

After determining the score of each component, the score of three indicators or the main 

principle of organizational resilience is determined using the average score of the components 

related to each principle. Finally, the value of organizational resilience is obtained by averaging 

the scores of all three main principles.  

2-2 estimation of RMS indicators based on covariates 

Engineering systems are often impacted by various environmental and operational factors that 

can affect their performance. These factors are commonly referred to as "covariates," and it is 

important to consider them in the analysis of the system to understand its behavior and potential 

weaknesses. (Kumar & Klefsjö, 1994). In this article, the models based on the proposed 

covariates by Cox are used to estimate the behavioral indicators of the system. The analysis 

requires two types of data: time series data and information about covariates. This information 

can be gathered from various sources, such as reports from the control room, daily reports, 

reports from the spare parts warehouse, reports from the repair shop, data from the 

meteorological unit, as well as interviews and meetings with the operators and maintenance 

personnel (Dhillon, 2006b, 2008). To use the models based on the covariates proposed by Cox, 

it is necessary to evaluate the time dependence of the covariates(Cox, 1972). This article used 

the proportional hazard rate (PH) (shown in Eq. (6)) assumption to investigate the 

interdependence between covariates and time. The stratified Cox regression models (SCRM)(is 

shown in Eq. (7)) are used if the covariates depend on time. The proportional hazard rate 

models (PHM) or Cox proportional repair rate models are used instead if they are independent. 

Table 3 demonstrates the mentioned models for reliability (Barabadi et al., 2011b). Regarding 

maintainability, "𝑀0 = 1 −  𝑅0" is used. 

Table 3. Cox models for performance analysis (Barabadi et al., 2011a) 

Model Formula Model Description 

PHM 
 

𝑅(𝑡, 𝑧) = (𝑅0(𝑡))𝑒𝑥𝑝 ∑ (𝛼𝑖
𝑛
𝑖=1 𝑧𝑖) (6) 

 

𝑅(𝑡, 𝑧): Reliability rate function, 𝑅0(𝑡): Baseline 

Reliability rate function, 𝑧: Covariates, 𝛼: Impact 

coefficient of covariates, 𝑒𝑥𝑝 ∑ (𝛼𝑖𝑧𝑖)
𝑛
𝑖=1 : Link function 

in exponential function mode 

SCRM 

 

𝑅𝑠(𝑡, 𝑧) = (𝑅0𝑠(𝑡))𝑒𝑥𝑝 ∑ 𝑧𝑖𝛼𝑖
𝑛
𝑖=1  

𝑠 = 1,2,3, . , 𝑟 

(7) 

 

𝑅𝑠(𝑡, 𝑧): Reliability rate function in the "s" layer, 

𝑅0𝑠(𝑡): Baseline Reliability rate function in the "s" 

layer, 𝑧: Covariates, 𝛼: Impact coefficient of covariates, 

𝑒𝑥𝑝 ∑ (𝛼𝑖𝑧𝑖)
𝑛
𝑖=1 : Link function in exponential function 

mode 

 

The paper used statistical software such as SPSS, Stata, and Minitab to apply risk factors in the 

risk rate (PHM) and proportional repair rate models (PRM). The Backward Stepwise Method 

was used to determine the effective risk factors in the linking function model. The Akaike and 



Bayesian information criteria were used to evaluate the basic functions of the models. (Javed 

et al., 2014; Rahimdel et al., 2016). The research determined the reliability, maintainability, 

and supportability of the basic functions and identified effective risk factors in the linking 

function of each indicator. This information was then used to calculate the system behavior 

over time based on the effective risk factors. 

2-3 Estimation of the efficiency of system PHM 

Recently, proactive maintenance decisions have been enabled by developing prognostics and 

health management (PHM) methods that detect, diagnose, and predict the effects of adverse 

events. Capitalizing on PHM technology at an early design stage can transform passively 

reliable (or vulnerable) systems into adaptively reliable (or resilient) systems while 

considerably reducing their life cycle cost (LCC). Based on the research, PHM efficiency is 

mainly determined by the probability of the correct failure diagnosis event and the probability 

of the correct failure prognosis event (Youn et al., 2011). The probability of correct diagnosis 

can be measured using sensors in the design stages. Also, the probability of correct prognostics 

van measured by prognostic algorithm design to meet the required prognostic accuracy 

level(Youn et al., 2011). 

In some cases, the efficiency of the system PHM in mechanical systems may not match the 

standard duty cycle. This is because the information provided by the sensors may not be 

recorded or analyzed correctly by operators or maintenance personnel. In such cases, the 

efficiency of system PHM depends on the accuracy of defect detection and failure prediction 

by the operators and maintenance personnel. This efficiency is usually determined by 

evaluating the probability of correct defect detection and the probability of correct failure 

prediction (Ahmed et al., 2019). The article uses the probability of accurately detecting the 

defect and correctly predicting the failure to determine the efficiency of the system PHM by 

applying Fuzzy Fault Tree Analysis (FFTA) (Mottahedi & Ataei, 2019). 

The experts' opinions must be used using the linguistic expressions in Table 4 to estimate the 

basic events. The obtained opinions must be merged after quantifying the experts' opinions 

using Eq. (8). In this equation, 𝑊𝑗 is the weight of each expert, which is calculated according 

to the educational, occupational, and such characteristics. Also, 𝐴𝑖𝑗 is the j  th expert's opinion 

about i  th basic event. After merging opinions, using Eq. (9), the fuzzy numbers resulting from 

combining opinions are deterministic, and each basic event's failure probability (FP) is 

estimated. 

(8) Mi = ∑ wjAij

n

j=1

, , Mi = (ai, bi, di) 

(9) FP =
1

3

(a4 + a3)2 − a4a3 − (a1 + a2)2 + a1a2

(a4 + a3 − a2 − a1)
, , a

∼
= (a1, a2, a3, a4) 

 

 



Table 4. Linguistic terms and their corresponding fuzzy components (used in the FFTA method) 

No. Linguistic Terms symbol Corresponding fuzzy Components 

1 Very low VL (0,0,1.0,25.0) 

2 Low L (0,25.0,25.0,4.0) 

3 Medium M (3.0,5.0,5.0,7.0) 

4 High H (6.0,75.0,75.0,9.0) 

5 Very High VH (8.0,9.0,1,1) 

 

The probability of failure of the PHM system efficiency, which consists of correctly detecting 

the defect and the probability of accurately predicting the failure, is estimated using Eq. (10). 

Since the events of efficiency and the absence of the PHMs system are both related to the same 

sample space and are complementary at the same time, in this equation, 𝐹𝑃(𝐵𝐸𝑖) is equal to 

the failure possibility of i’th basic event, and m is equal to the number of basic events. The 

possibility of the efficiency of the system  (𝑃(𝛬𝑃𝐻𝑀)) or the efficiency index of the PHM 

system is equal to the complement of the failure possibility of this system through Eq. (11) 

(Mottahedi & Ataei, 2019).  

(10) 𝐹𝑃(𝛬𝑃𝐻𝑀) = ∏ 𝐹𝑃(𝐵𝐸𝑖)

𝑚

𝑖=1

 

(11) 𝑃(𝛬𝑃𝐻𝑀) = 1 − 𝐹𝑃(𝛬𝑃𝐻𝑀) 

3- Case study 

The Chadormalu Iron Ore mine was used as the case study for applying the proposed approach. 

The mine is located in the central desert of Iran, near Yazd City, with a geological reserve of 

400 million tons and an average iron grade of 55.2%. The extraction ratio is 2 to 1 ton. The 

equipment at the mine is divided into two parts: machinery in the extraction unit and equipment 

and systems in the processing unit. The mill system, located at the entrance of production line 

2 and responsible for milling minerals, was chosen for the study as it is considered a bottleneck 

in the production line. The mill system includes an electric motor, gearboxes, a lubrication 

system, and a mill body. Due to the increase in mineral grade at the mine, the mill system has 

changed from semi-autogenous grinding mills (SAG MILL) to autogenous mills (AG MILL). 

Figure 3 demonstrates a view of the mill system.  



 

Figure 3. Diagram of AG MILL department [𝑨𝒖𝒕𝒉𝒐𝒓′𝒔 𝒐𝒘𝒏 𝒄𝒓𝒆𝒂𝒕𝒊𝒐𝒏] 

3-1 Organizational Resilience analysis of the mill department 

The methodology shown in Figure 2 was used to evaluate the organizational resilience of the 

management team of the Chadormalu mine processing plant. A questionnaire with key 

components for measuring resilience was used. The questionnaire was carefully designed to be 

clear for better understanding and accurate answers. The questionnaire was used to collect the 

perspectives of fifteen experts who were selected as representatives of the relevant domain. 

The Likert rating technique was then used to quantify the gathered expert opinions, as shown 

in Table 2. Subsequently, following the quantification of expert opinions, the quantified 

opinions were integrated using Eq. (4) to obtain the fuzzy values of each factor influencing the 

mentioned organization's resilience. Due to the factor scores being fuzzy, these scores cannot 

be used to calculate the resilience of the intended organization. According to Eq. (5), these 

numbers became non-fuzzy. Finally, the resilience of the Chadormalu set was calculated using 

the average of the main influential factors. Table 5 shows the results of the above calculations. 

A fixed and equal weight for experts is a crucial consideration when assessing this rating. This 

is the result of getting input from a group whose members all possess the same amount of 

education and expertise. 

Table 5. The results of the estimated scores for major influence factors on the organization's resilience 

Symbol of 

Factors 

Final Score of 

Factors 

Organization Resilience 

Attributes 

Final Score of 

Organization Resilience 

Attributes 

Organization 

Resilience Score 

SA1 0.567 

Situation Awareness 

(AS) 
0.53 

0.53 

SA2 0.560 

SA3 0.463 

SA4 0.466 

SA5 0.543 

SA6 0.631 

SA7 0.507 

KV1 0.492 Management of keystone 

Vulnerabilities (KV) 
0.51 

KV2 0.501 

KV3 0.567 



KV4 0.464 

KV5 0.641 

KV6 0.415 

KV7 0.493 

AC1 0.559 

Adaptive Capacity (AC) 0.54 

AC2 0.548 

AC3 0.500 

AC4 0.653 

AC5 0.550 

AC6 0.495 

AC7 0.448 

 

3-2 Estimation of RMS indicators in the mill department 

Following delimitation and the system selection based on the suggested methodology in Figure 

2, data was gathered over 24 months from various departments, such as the production line, 

control room unit, and the repair shop unit. The collected data was categorized into the time 

between failure (TBF), time to repair (TTR), and time to delivery (TTD). Table 6 provides an 

example of failure data (TBF) extracted from the collected mine data. 

Table 6. TBF data of AG mill system 

F
ai

lu
re

s 

N
o

.
 T

B
F

 S
ta

tu
s 

Covariates 

Field Data Monitoring data 

Shift Team 
Environment 

Temp 
System Temp 

Gearbox 

Vibration 

1 21.7 0 3 3 20.15 58.99 2.15 

2 342.3 1 3 3 11.79 58.28 2.3 

3 48.5 1 3 1 10.79 61.64 2.75 

4 13.5 1 1 1 7.84 55.63 2 

 

The article emphasizes the importance of keeping high supportability, set at 90%, for mineral 

processing operations to ensure continuous production. The AG mill system is a critical 

component in the production line, highlighting the need for a quick response in case of failures. 

The mine's policy dictates zero downtime, and the spare parts warehouse is designed to 

minimize response time. Also, time to repair (TTR) data are demonstrated in Table 7 to analyze 

the AG system's maintainability and the influential risk factors.  

Table 7. TTR data of AG mill system 

NO.of Repairs TTR Status Shift Environment Temp (C°) 

1 0.72 0 1 16.39 

2 0.75 0 2 10.79 

3 0.75 0 1 9.93 

4 125.78 1 1 11.02 

 



The article utilized both graphical and analytical methods to determine the most suitable model 

from Table 3. The analytical method was specifically employed to overcome the limitations 

associated with the graphical method, particularly when confronted with an increasing number 

of layers and the intricate nature of qualitative covariates. The results from the graphical 

method showed that the AG mill covariates were not dependent on time for each reliability and 

maintainability indicator. The shift work covariate was demonstrated based on the three shifts 

work (morning, noon, and night). As seen in Figure 4, the parallelism of the curves indicates 

the layers' independency on time. 

 

Figure 4. Log -Log chart for Shift work covariate [𝑨𝒖𝒕𝒉𝒐𝒓′𝒔 𝒐𝒘𝒏 𝒄𝒓𝒆𝒂𝒕𝒊𝒐𝒏] 

Results from the analytical method (Schonfield's residuals) in Table 8 demonstrate that AG 

mill’s covariates are time-independent. Thus, PHM and PRM models will be used for reliability 

and maintainability, respectively (Cox, 1972). 

Table 8. PH test of RMS indicators 

AG Covariates 𝜌 Chi2 df P-Value PH assumption 

Reliability 

Shift -0.04 0.07 1 0.79 accepted 

Team 0.00 0.00 1 0.99 accepted 

Environment Temp -0.15 1.15 1 0.28 accepted 

Gearbox Vibration -0.06 0.26 1 0.61 accepted 

System Temp 0.07 0.21 1 0.64 accepted 

Maintainability 
Shift 0.02 0.05 1 0.8 accepted 

Environment Temp -0.12 1.04 1 0.30 accepted 

 

The results of identifying the significant covariates for the AG mill system are shown in Feil! 

Fant ikke referansekilden.. Based on the result obtained, the vibration of the gearbox 

subsystem has a significant influence on the reliability function of the AG mill system. and 

also after two steps, there is no influence covariate on the maintainability function of the 

system. According to Table 9, the fourth column is the regression coefficient of the covariates 

used in reliability or maintainability models. The fifth column indicates the Wald statistics of 

the factors; the sixth column shows the significance level of the factors and the most critical 



column in this Table. Also, the seventh column represents the hazard rate of each risk factor, 

and the increase or decrease of this rate significantly affects the increase or decrease of behavior 

indicators. 

Table 9. Risk factors and their significance in equation with reliability and maintainability 

Index Step Covariates α Wald p-value Hazard Ratio 

Reliability Five Gearbox Vibration 1.11 4.73 0.03 3.04 

Maintainability two Environmental temp 0.00 0.06 0.79 1.00 

Table 10 shows the AIC and BIC values of the Weibull and exponential distribution for the 

reliability model and the exponential, Weibull, and lognormal distribution for the 

maintainability model. The results showed that the Weibull function was chosen for the basic 

reliability and maintainability of the AG2 system. The Weibull function was selected for 

reliability and maintainability when selecting distribution functions for the AG2 system. 

Table 10. AIC and BIC goodness of fit tests statistics 

Baseline System Function AIC BIC 

Reliability AG 
Weibull 236.44 250.23 

Exponential 265.66 277.48 

Maintainability AG 

Weibull 442.64 454.94 

Exponential 507.40 519.70 

Lognormal 648.12 660.42 

The scale and shape parameters of the Weibull function are presented in Table 11.  

Table 11. Parameter values of reliability and maintainability functions 

AG Function 
Parameter values 

Shape (θ) Scale (β) 

Reliability 2-parameter Weibull 0.57 44110 

Maintainability 2-parameter Weibull 0.57 24.8 

After determining the coefficients of the effective risk factor and the basic function, the 

reliability and maintainability of the system were determined using Eq.(12) and Eq. (13), 

respectively  

• AG reliability 

(12) 𝑅(𝑡, 𝑧) = (𝑒𝑥𝑝( − (
𝑡

44110
)0.57)𝑒𝑥𝑝(1.115×𝑧4) 

• AG maintainability 

(13) 𝑀(𝑡, 𝑤) = 1 − (1 − (1 − (𝑒𝑥𝑝( − (
𝑡

24.809
)0.58)))) 

Figure 5 and Figure 6 present the reliability and maintainability functions of the AG system, 

respectively. In the Figure 5. If a risk factor is present, the classical model is represented by 



“AG-B” which shows the reliability function without covariates, and “AG-PHM” shows the 

reliability function based on covariates. 

 

3-3 Analysis of the efficiency of the system (PHM) 

The efficiency of the PHM system depends on the ability to detect events and accurately 

diagnose defects in the AG mill system of the Chadormalu mine. The article mentions using 

the FFTA method to estimate these values, and a questionnaire was designed to gather expert 

opinions, which are presented in Table 12. 

Table 12. PHM questionnaire to obtain experts' opinions 

No Symbol Question 
Linguistic variables symbol 

VL L M H VH 

1 Λ𝐷  What is the probability of correctly diagnosing failures 

in the mill system? 
     

2 Λ𝑃 What is the probability of correct prognostics in the mill 

system? 
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Figure 5. Reliability of AG mill system [𝑨𝒖𝒕𝒉𝒐𝒓′𝒔 𝒐𝒘𝒏 𝒄𝒓𝒆𝒂𝒕𝒊𝒐𝒏] 

Figure 6. Maintainability of AG mill system [𝑨𝒖𝒕𝒉𝒐𝒓′𝒔 𝒐𝒘𝒏 𝒄𝒓𝒆𝒂𝒕𝒊𝒐𝒏] 



After quantifying the experts' opinions, these opinions should be integrated using Eq. (8) to 

calculate the fuzzy values of each event. Next, the fuzzy numbers from integrating opinions 

were determined using Eq.(9), and each of the basic events' failure probability (FP) was 

estimated. The efficiency possibility of the PHM system or the efficiency index of the PHM 

system was calculated using Eq. (11). The results of the above steps are presented in Table 13.  

Table 13. The results of the questionnaire survey 

Event Merged comments 
Possibility of failing 

events 

Possibility of PHM 

failure 

Possibility of 

PHM performance 

Λ𝐷  0.27 0.44 0.44 0.61 0.441 
0.221 0.799 

Λ𝑃 0.32 0.50 0.50 0.68 0.500 

 

3-4 Estimation of The AG Mill System Resilience 

Eq. (3) was used to determine the resilience of the AG mill system in the Chadormalu mine 

processing plant. Figure 7 shows the influence of covariates, system efficiency of PHM, and 

organizational resilience in the resilience of AG mill over 200 hours of operation. In this figure: 

• AG1 denotes resilience using organizational resilience and system efficiency PHM by 

expert judgment and RMS based on covariate(gearbox vibration).  

• AG2 indicates resilience using organizational resilience and system efficiency PHM by 

expert judgment and RMS estimation without considering covariate. 

• AG3 demonstrates resilience using a constant value of 85% for organizational resilience 

and system efficiency PHM and RMS estimation while considering covariate(gearbox 

vibration).  

• AG4 shows resilience using constant value of 85% for organizational resilience and 

system efficiency PHM, and RMS estimation without considering covariate(gearbox 

vibration). 

• As can be seen, there are differences in the amount of resilience with considering 

covariates and expert judgment in the estimation of RMS, system efficiency PHM, and 

organizational resilience.  

 



 

 

4. Conclusion 

Resilience is the ability of a system to withstand and recover after a disruptive event. One of 

the key components of systems resilience management is the estimation of the amount of 

system resilience. In this article, the estimation of resilience based on the concept of resilience 

has two main parts. The robustness of the resilient system before disruption and recovery of 

the resilient system after disruptions. Reliability was introduced for the first part, and 

recovery(maintainability, supportability, system efficiency PHM, and organizational 

resilience) was introduced for the second part. Expert opinions have been utilized to estimate 

the organizational resilience and system efficiency PHM and environmental and operational 

factors that affect the performance of the system have been used to estimate reliability, 

maintainability, and supportability. The mill system of the production line at the Chadormalu 

mine was chosen as a case study. The mill system of the processing plant is crucial because it 

acts as a bottleneck in the production line. Results in Figure 7 showed there are significant 

differences in the amount of resilience if covariates or risk factors and experts' opinions are 

considered during 200 hours of operation. If we consider the risk factors in RMS estimation 

and the opinions of experts in organizational resilience and system efficiency PHM, after 200 

hours of operation, the system has a value of 70%. Despite without considering the risk factors 

and experts' opinions in the estimation of the mentioned indicators, the amount of resilience 

reaches 97%. Therefore, they are very important to consider risk factors such as gearbox 

vibration in estimating RMS indicators and attributes like situation awareness in organizational 

resilience. The PHM index plays a crucial role in the resilience and reliability of systems. In 

the previous articles on measuring resilience, the index value of PHM was assumed to be 

constant. In this article, it was tried to use experts' opinions and fuzzy logic in the estimation 

of the mentioned index. It is recommended to use data analysis(sensors, monitoring equipment, 

historical records), modeling, and predictive algorithms(statistical analysis, machine learning, 

deep learning, and time-series analysis) to estimate PHM. 

Figure 7.The resilience of the AG mill system [𝑨𝒖𝒕𝒉𝒐𝒓′𝒔 𝒐𝒘𝒏 𝒄𝒓𝒆𝒂𝒕𝒊𝒐𝒏] 
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