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Abstract— A method for differentiating marine oil slicks from 
radar-dark, low wind areas in open water using rapid repeat SAR 
imagery is reported. The study uses data acquired by the airborne 
UAVSAR L-band SAR instrument, imaging the Coal Oil Point 
seep field near Santa Barbara, California. Time-series of images 
from three different days are analyzed, all containing both verified 
oil slicks and low wind zones. We propose a method to derive high 
confidence oil/open water maps by exploiting the differences in 
spatial and temporal evolution between the low wind zones and oil 
slicks over time scales of ~1-3.5 hours. Our method uses the 
standard deviation of the backscatter intensity for ensembles of co-
located SAR pixels and is sufficiently simple and generic to be 
applied in near-real-time and without special processing code. The 
derived maps are compared to images of the ocean surface 
obtained by cameras mounted on a boat surveying the seep field 
simultaneously with the SAR. The imagery is manually classified 
into 1) confirmed oil, 2) likely oil, and 3) open water classes. Our 
results show ~1 – 7 dB difference between the SAR-derived mean 
standard deviation values of the confirmed/likely oil classes 
compared to the open water class. The minimum number of scenes 
needed to distinguish between areas of high likelihood of open 
water and oil slick was determined to be 3 – 5 scenes, spanning 50 
– 80 minutes, depending on the spatial extent and persistence of 
the low wind zones in the imagery.  

Index Terms—low wind, oil spill, look-alike, synthetic aperture 
radar, UAVSAR  

I. INTRODUCTION 

ynthetic Aperture Radar (SAR) instruments have 
become vital operational tools for the identification and 
monitoring of mineral oil slicks in the marine 
environment. Presently, operational services engaged in 

the detection, characterization, and extraction of pertinent 
information regarding mineral oil spills, including their 
location, extent, and source, rely on the analysis of single- 
polarization spaceborne SAR imagery. These sensors are  
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becoming increasingly utilized in guiding first responders to 
regions with actionable oil based on extracting features from 
individual SAR scenes, such as the damping ratio (DR) [1], [2], 
[3], [4], [5], [6], [7], [8], [9]. 

Mineral oil slicks are distinguishable in SAR imagery 
primarily because of smoothing of the ocean surface by the oil 
layer, which causes a reduction in the SAR backscatter [10]. As 
a result, mineral oil slicks can appear similar to other natural 
phenomena, often referred to as look-alikes, which exhibit a 
similar appearance [11], [12]. Some common look-alikes in 
addition to low wind areas include natural biogenic surface 
films, shear zones, rain cells, and grease ice [11], [13]. 
Considerable attention has been placed on the case of natural 
biogenic slicks [14]. Large scale experiments have been 
conducted at sea, where mineral oil, in conjunction with 
biogenic oil or oleyl alcohol, have been discharged [1], [15], 
[16], [17], [18]. Polarimetry was considered a promising 
approach for differentiation of radar-dark features [17], [19], 
[20], [21], [22], [23], [24], [25], though it was later 
demonstrated that deviations in observed scattering 
mechanisms between different type of slicks were more likely 
attributed to internal system noise of the sensors [14], [26]. 
Recently, machine learning (ML) techniques have been 
proposed as a viable method to address the oil slick vs. look-
alike problem, where studies have been conducted on the 
efficacy of traditional ML techniques [27], [28], [29], [30] as 
well as the effectiveness of artificial neural network 
architectures of differing complexity for oil slick/oil look-alike 
discrimination [31], [32], [33], [34], [35], [36] with varying 
degrees of success. 

However, the most ubiquitous oil spill look-alike 
phenomenon is associated with regions characterized by low 
wind speeds. Unlike the previously mentioned look-alikes, low 
wind zones are not confined to specific geographical locations 
and are less likely to be constrained by seasonal variations (e.g., 
increased biogenic activity during sunnier spring and summer 
months [37]). In addition, low wind zones stand out as they are 
among the few phenomena that can generate regions of radar-
dark pixels over ocean areas in SAR imagery even when there 
is no surface material present to dampen the surface capillary 
waves. 

There are few studies in the literature that focus exclusively 
on separating surface mineral oil slicks from low wind open 
ocean areas in SAR imagery. Two are [38] and [39], where both 
proposed algorithms for use in an operational setting to semi-
automatically detect and classify radar dark zones (oil slick or 
low wind) in ERS and Envisat ASAR imagery. However, both 
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studies relied on auxiliary wind speed information. Bertacca et 
al. [40] proposed a method for classifying radar dark areas into 
oil slick and low wind areas in high-resolution SAR imagery 
without the need for auxiliary wind speed data. Their method 
was based on a fractionally integrated autoregressive-moving 
average (FARIMA) model. However, their analysis was based 
on 3 ERS-1/2 SAR scenes, only one of which simultaneously 
contained low wind areas and verified mineral oil slick. 

Nearly all the studies mentioned thus far, which focused on 
distinguishing mineral oil slicks from oil slick look-alikes, have 
used space-borne SAR. However, airborne SAR sensors offer 
several advantages, such as the ability to be deployed to a 
specific area, rapidity of image acquisition, short repeat time 
imaging capability, and the potential of having a significantly 
higher signal-to-noise ratio (SNR) [41], [42].  

The purpose of this study is to demonstrate that with repeat 
time-series in the range of 1 hour or less, distinguishing 
between areas containing oil slick and low wind zones can be a 
highly tractable problem when using feature evolution. We 
analyze three separate time-series acquired by NASA’s L-band 
Unmanned Aerial Vehicle Synthetic Aperture Radar 
(UAVSAR) imaging the Coal Oil Point (COP) seep field off the 
coast of Santa Barbara, California, on three different days in 
June 2022. All scenes considered contain zones of verified oil 
slick and low wind zones and were acquired as part of the 
NOAA/NASA Marine Oil Spill Thickness (MOST) project.  

Our proposed method utilizes the intensity variation in the 
sequence of SAR images to effectively identify the location of 
mineral oil slicks within a scene even in the presence of 
significant low wind areas. We compare all derived high 
confidence oil/open water maps to ground truth data provided 
by GoPro camera photos acquired from a boat within the seep 
field. Our proposed method is generic and adaptable enough to 
be easily implemented to providing quick results for 
responders.  
 

II. STUDY AREA AND DATA SET 
The COP seep field is an area of natural seep activity of ~13 

km2 extent [43] located in the Santa Barbara channel, 
California, which emits approximately 100 barrels of crude oil 
per day [44]. The sheltering effect from the outer Channel 
Islands and the proximity to Santa Barbara provides an ideal 
location to study oil slicks in low-wind and calm wave 
conditions.  

The black rectangle in Fig. 1 indicates the area that was 
imaged by the UAVSAR on three low-wind days in 2022, 
namely June 24, 28 and 29. The red, green, and blue lines in 
Fig. 1 indicate the boat tracks surveyed simultaneously to the 
UAVSAR acquired imagery. Fig. 1 also shows the locations of 
weather stations that measure wind speed and direction, and 
land-based high frequency (HF) Doppler radars that measure 
ocean surface current speed. 
 

A. UAVSAR data 
The primary instrument used in this study is UAVSAR, an 

airborne L-band SAR in NASA's suite of airborne science 
instruments [45]. It offers the benefits of fine resolution (2 m      

 
Fig. 1. Study area off the coast of Santa Barbara, California. Area 
imaged by the UAVSAR indicated by the black rectangle. Boat tracks 
are indicated by the red, green, and blue lines. Wind speed and 
direction taken from weather buoys marked by yellow and cyan points. 
HF Doppler radar sites marked in red. 

slant range resolution) and short repeat time between scenes. It 
has a range swath width of 22 km, corresponding to an 
incidence angle range of ~17°-67°. For ocean applications, the 
scene is cropped in the far range (62°) to avoid low SNR and 
cropped in the near range (25°) to be more sensitive to surface 
roughness [45]. All UAVSAR data used in this study are 
calibrated, georeferenced, ground range detected (GRD) 
products, which are provided already multilooked by 3 (slant 
range) ´ 12 (azimuth) pixels. No additional averaging is done. 
As UAVSAR data has a high SNR due to its low instrument 
noise equivalent sigma zero (NESZ) (-47.8 dB at mid-range) 
[45], no denoising was performed on the imagery used in this 
study. The images were acquired in the same flight pattern 
(imaging geometry), making the images directly comparable.  

Table I shows relevant information for the time-series 
acquired on June 24, 28, and 29, and Figs. 2-4 show all 
acquisitions used in this study. Radar dark areas are present in 
all the time-series. The wind conditions in relation to scene 
features are addressed in Section II.C. Three out of the 11 
acquisitions from the June 24 time-series are used due to 
coincident low wind conditions and the availability of in-situ 
data during those acquisitions. The red region of interest (ROI) 
in Fig. 2 outlines the mineral oil slick area where the boat 
traversed. The green ROI outlines an area containing two thin 
slicks, which we call streamers, discussed in Section IV. Fig. 3 
and 4 show the acquisitions from June 28 and 29, respectively. 
The red lines in Fig. 3 indicate the incidence angle range 
40°-60°, with smaller incidence angles to the north. Their 
relevance with respect to the NESZ is discussed in Section IV. 

 

B. GoPro data 
In this study, we employ optical imagery acquired by boat-

mounted GoPro cameras as validation data. Optical imagery 
was chosen as oil slicks can be distinguished and variations in 
internal thickness can be discerned by visual appearance based 
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upon the Bonn Agreement Oil Appearance Code (BAOAC) 
[46]. In addition, GoPro cameras offer the advantages of being 
lightweight, cost-effective, easy to set up, can acquire high-
definition imagery, are durable, and record all necessary 
auxiliary data such as GPS coordinates and time stamp 
information. A camera setup that acquires images continuously 
ensures that human interference, which might bias the images 
towards oil slicks and not open water, is avoided. It should be 
noted however that imagery acquired by the GoPros may be 
susceptible to adverse weather conditions, such as glare caused 
by the sun or foggy conditions and may result in the ocean 
surface being mischaracterized. This will be addressed in 
further detail in Section III.B. 

Outward-facing GoPro cameras were attached to both sides 
of the boat (GoPro left/GoPro right) to document the sea surface 
conditions. Table II shows details about the GoPro imagery, 
including the frame rate at which the imagery was recorded. On 
June 28 and 29, GoPro left and GoPro right were configured to 
acquire imagery at a rate of 2 frames/minute and positioned 1 
m above the water surface. GoPro left imagery is available for 
June 29, at a rate of 1 frame/minute, and on June 24, GoPro 
right acquired continuous imagery at 1800 frames/minute (30 
frames/second), which were reduced to 60 frames/minute to 
facilitate the analysis. The GoPro for June 24 was positioned 
2.5 m above the water surface. When capturing imagery in this 
mode, GoPros are programmed to divide the resulting video 
into 12-minute segments to prevent video corruption from 
causing loss of the entire footage. Unfortunately, three of these 
video segments, which coincide with the UAVSAR 
acquisitions, suffered corruption and were unusable. These 
compromised video segments collectively amount to a total 
length of 36 minutes.  

GoPro imagery starting from 30 minutes before the first 
UAVSAR acquisition and continuing until 30 minutes after the 
last acquisition was used for validation. GoPro images (each 
containing position and time metadata) were visually classified 
into oil/water classes which facilitates validation of the high 
confidence oil/open water radar maps. The classification 
scheme employed is described in Section III. 
 

C. Wind speed data 
Meteorology data is continuously measured from a network 

of weather buoys and stations in the Santa Barbara channel 
operated and maintained by the National Oceanic and 
Atmospheric Administration (NOAA) National Buoy Data 
Center. Wind speed and direction were obtained from the mid-
channel buoy 46053 and the shore station NTBC1 (see Fig. 1) 
and are available at 6- and 10-minute intervals, respectively. 

Wind speed and direction for the three days are shown in Fig. 
5. The times of all UAVSAR acquisitions are indicated with 
vertical black lines, with those used in this study indicted by the 
black dots. The time extent of the GoPro imagery is outlined by 
the horizontal bars at the bottom of the graphs. Periods during 
which GoPro images were available are indicated in green and 
those in which GoPro images were unavailable are indicated in 
red. Five scenes are used in a control experiment to test the 
method on an area confirmed to be solely experiencing low 
wind  

 
Table I: UAVSAR acquisition period and total number of acquisitions 
in each time series. 

 
Table II: GoPro video acquisition period and number of frames used 
in this study. Some of the video from June 24 was unrecoverable, and 
the gaps are shown in Fig. 5. 

 
in the absence of a mineral oil slick. These scenes are 
highlighted with pink squares (Fig. 5 (e)). 

The June 28 UAVSAR imagery was most affected by radar 
dark features that appear to be low wind zones (Fig. 3). Fig. 5 
(c) shows that the mid-channel station registered very low wind 
speeds of 1 m/s throughout the UAVSAR acquisition period. 
The shore-based station registered slightly higher wind speeds 
of about 1.2 – 1.8 m/s for the first four scenes and a wind speed 
of just under 3 m/s for the last scene. The area around the shore-
based station for the first four UAVSAR scenes (Fig. 3 (a) – 
(d)) contains extensive radar dark zones, and in Fig. 3 (e) this 
area becomes radar bright, consistent with the presence of 
higher wind speeds. 

The wind speed data for June 29 (Fig. 5 (e)) shows a general 
increase in the measured wind speed over the UAVSAR 
acquisition period. The shore-based station consistently 
measured values greater than 2 m/s while the mid-channel buoy 
registered wind speeds less than 2 m/s for all scenes except the 
last one (4 m/s). The UAVSAR imagery in Fig. 4 also shows 
this trend with all scenes displaying more brighter pixels as time 
progresses. The areas around the mid-channel buoy also 
contains radar dark pixels in all scenes except the last. 

The June 24 time-series stands out because low wind zones 
are highly localized within the UAVSAR imagery, not as 
widely distributed as on June 28 or 29. Starting in scene 2 (Fig. 
2 (a)) only the westmost portion of the scene contained low 
wind zones, which then progressed in an eastward direction 
towards the shore station while missing the mid-channel buoy 
(Fig. 2 (c) and (e)). The wind speed data in Fig. 5 (a) confirms 
this trend with the mid-channel buoy registering consistently 
higher wind speed than the shore-based station.  
 

D. HF radar data 
Land-based HF Doppler radars are located along the 

continental U.S. coast to measure surface current velocity. The 
HF radar network is operated and maintained by NOAA and is 
a component of their Integrated Ocean Observing System 
(IOOS) [47], [48]. The locations of two of the radars used for 
this study is shown in Fig. 1. Fig. 6 displays their three- hour 
average ocean surface current speed and current direction at the  

 

Series ID Time period 
(UTC) 

No. of 
scenes 

Time between 
acquisitions (min.) 

June 24, 2022 17:18 – 20:35 11 18-29 
June 28, 2022 17:22 – 18:32 5 17-18 
June 29, 2022 18:07 – 20:47 10 17-20 

Date & GoPro 
look direction 

Time period 
(UTC) 

Frames/ 
minute 

No. of frames 
used 

June 24 (right) 17:26 – 19:13 60 3814 
June 28 (right) 16:52 – 19:02 2 261 
June 29 (right) 18:07 – 20:47 2 322 
June 29 (left) 18:07 – 20:47 1 161 
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Fig. 2. (a), (c) and (e) VV-intensity images for scenes 2, 3 and 4 acquired on June 24, 2022. An area of low wind, indicated by a radar dark patch, 
can be seen traversing the imagery from the far left/middle of the scene to the right side of the scene throughout the time-series. The red region 
of interest (ROI) shows where the boat was during the times these scenes were acquired. Two streamers are outlined by the green ROI. (b), (d) 
and (f) are zoomed-in on the red ROI in (a), (c) and (e), respectively. 
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Fig. 3. (a) – (e) VV-intensity images for all scenes acquired on June 28, 2022. Scenes contain areas of both oil slick and low wind. The low wind 
zones cover most of the image in (c) – (e). 
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Fig. 4. (a) - (j) VV-intensity images for all scenes acquired on June 29, 2022. Scenes contain areas of both oil slick and low wind. The 46053 
weather buoy is marked by the yellow point. The purple rectangle outlines an area far from the seep field containing radar dark zones believed 
to solely be areas of low wind. This area is used in the control experiment (Section IV C). 
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Fig. 5. (a), (c) and (e) show measured wind speed vs. time at the two weather stations shown in Fig. 1. The times of all UAVSAR acquisitions 
on each day are indicated by the vertical black lines, and the acquisitions used in this analysis are indicated with black dots. The purple boxes 
indicate acquisitions that are used in the control experiment. The time extents of the GoPro imagery are indicated by the horizontal green 
(available) and red (unavailable) lines. (b), (d) and (f) show the direction the wind came from, measured at the times of all UAVSAR acquisitions. 
The concentric circles indicate the magnitude of the wind speed in m/s.
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Fig. 6. Average surface current velocity at 2 km resolution from shore-
based HF radars, measured over a period of 3 hours corresponding to 
the acquisition time of the UAVSAR. The UAVSAR swath (dashed 
line) and the boat tracks (solid black lines) are indicated. 

time of the UAVSAR acquisitions. The HF system provides 
current velocity of the top ~ 0.5-1 m of the ocean surface [48]. 
Velocities are averaged on an hourly basis and provided on a 2-
km grid. The velocity speeds and directions in Fig. 6 are quite 
variable on each day, characteristic of the sub-mesoscale 
circulation and variable winds found in this area [47]. 

Surface-dwelling slicks have been found to be transported at 
approximately 3% of the wind velocity and 100% of the current 
velocity [49]. Assuming a minimal influence of wind on oil drift 
in this scenario and using the range of measured current 
velocities, i.e., 0.08-0.43 m/s (June 24), 0.03 – 0.37 m/s (June 
28), 0.08 – 0.23 m/s (June 29), the amount of drift experienced 
by any oil slicks present within the UAVSAR imaging area can 

be estimated. Values for oil slick drift were estimated to be 226 
– 1213 m for June 24 (3 scenes), 126 – 1554 m for June 28 (5 
scenes), and 768 – 2208 m for June 29 (10 scenes).  

III. METHODOLOGY 

A. Algorithm description 
We begin by hypothesizing that a pixel that is radar dark due 

to the presence of a mineral oil slick in one scene will have a 
higher probability of being radar dark in subsequent scenes of a 
SAR time-series when rapid repeat imagery is collected. In 
contrast, a pixel that is radar dark due to low wind may or may 
not be radar dark in subsequent scenes due to varying winds. 
The proposed hypothesis assumes that an oil slick drifts only a 
short distance between acquisitions relative to the size of the 
imaged area. 

In this study, we use the surface current speed data, as 
described in Section II.D, to illustrate that the imaged oil does 
not experience a significant amount of drift over the time frame 
of the UAVSAR data acquisitions. As stated in Section II.D, it 
was estimated from the surface current information within the 
UAVSAR footprint that the maximum oil drift values were 
approximately 1.2 km (on June 24), 1.5 km (on June 28), and 
2.2 km (on June 29). Although these values may appear 
substantial, they are small on the scale of the UAVSAR 
footprint. Therefore, relatively large oil slicks will have a 
substantial degree of overlap in the images during the 
acquisition period. Additionally, more typical drift distances are 
around 280 m, 420 m, and 960 m for June 24, 28, and 29, 
respectively, at a drift speed of 0.1 m/s. 

An important aspect of the time-series SAR data is that they 
are georeferenced so a pixel with image coordinates (i, j) is 
coregistered in all scenes. We begin by considering a time-
series consisting of k scenes in total where n scenes are chosen 
by the user such that n £ k. In this study we assume that each of 
the n scenes used were acquired successively. This will ensure 
the oil slick drifts only a short distance across the n scenes. 

Here, each of the n SAR scenes are divided into square 
windows of size m ´ m, where m is a tunable parameter. The 
standard deviation is calculated from an ensemble of pixels 
obtained by combining each collocated square window across 
the n scenes. If an m ´ m window corresponds to a geographic 
area containing an oil slick, then all pixels from the ensemble 
are expected to be radar dark and so will have a low standard 
deviation. In contrast, if all pixels in the ensemble are from 
radar bright open water, the standard deviation is expected to 
be larger. An m ´ m window corresponding to a region of open 
water experiencing low wind is expected to have an 
intermediate standard deviation value. However, as more 
scenes are incorporated, the standard deviation values are 
expected to converge towards that of radar bright open water. 
All standard deviation values are displayed in dB to improve 
interpretability. 

The m parameter was set to values ranging from 3 to 21 with 
comparable results. However, employing larger values had the 
effect of spatially down-sampling the final high confidence 
oil/open water map and thus reducing its resolution. A value of 
9 was determined to be an optimal choice for the UAVSAR data 
because it offered a sufficiently large ensemble for obtaining 
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Fig. 7. Flow chart diagram of the proposed method. 

accurate statistical values while still avoiding excessive down 
sampling.  

While this approach can be applied to any polarization 
normalized radar cross-section (NRCS), the most suitable 
polarization mode for this purpose is VV (vertical transmit, 
vertical receive) due to the consistently higher backscatter 
returns in the VV channel, which offer a higher margin above 
the instrument's noise floor. Fig. 7 provides a flow chart 
diagram outlining the proposed method. 

 

B. Validation data: GoPro imagery 
Individual GoPro frames were manually classified into three 

classes based on the visual appearance of the ocean surface, red 
for confirmed oil, orange for likely oil, and blue for open water 
(Fig. 8). Confirmed oil would manifest as either a 
silver/rainbow sheen or thicker oil types that has become 
emulsified. The likely oil classification is assigned if the ocean 
surface had a smooth and glassy appearance, with no apparent 
oil present. Open water is used when the ocean surface 
exhibited no signs of oil and featured textural details, like 
surface ripples. Fig. 8 presents four GoPro images taken on 
June 24, showing visual examples of the classes. The 
classification categories are denoted by the presence of red, 
orange, and blue circles in the upper left corner of each image. 

When classifying the GoPro imagery, each frame was 
categorized solely based on the information contained within  

Table III: Cross correlation between GoPro Right (GP-R) and GoPro 
Left (GP-L). Number of photographs falling into each class is 
presented. Total number of photographs in this instance is 161. 

 
that specific photo’s field of view. Contextual factors, such as 
classifications from previous or subsequent images, or the 
geographic location of testing (e.g., in a region with natural seep 
activity), were not considered. Every GoPro photograph was 
classified irrespective of the boats speed, potentially resulting 
in multiple photos from a single area if the boat was stationary. 

In certain cases, a predominantly smooth, glassy surface was 
observed with minor patches of oil, mostly in the form of silver 
sheen, e.g. Fig. 8 (b). In such scenarios, the image was 
categorized under the confirmed oil class. The rationale behind 
this choice was that the presence of even a small amount of oil 
was indicative of the smooth surface being primarily a result of 
oil, rather than another potential surfactant, such as natural 
biogenic material. 

The ability to effectively differentiate between the open 
water class and the confirmed/likely oil classes was notably 
enhanced under relatively clear and sunny weather conditions, 
as was the situation on June 24 and 29. In contrast, adverse 
weather conditions, such as heavy fog, presented additional 
challenges in the classification of the GoPro imagery, as was 
the case on June 28. An example of foggy conditions on June 
28 is shown in Fig. 9, where two photographs taken by a 
handheld camera (not the GoPros) are shown. Fig. 9 (a) shows 
a picture of the boundary between an area of thicker (farthest 
from boat) and thinner (closer to boat) oil, as evident by the 
discontinuity. The presence of fog causes a significant amount 
of glare which likely caused a large amount of GoPro imagery 
to be classified as likely oil (orange) instead of confirmed oil 
(red). Fig. 9 (b) shows an area that is believed to be open water. 
However, due to the glare caused by foggy conditions, any 
small contrasting surface features that would indicate the 
presence of open water can potentially be washed out, giving 
the ocean surface a false, smoother appearance. These weather 
conditions resulted in GoPro imagery that would be classified 
as open water (blue) under better visual observation being 
classified as likely oil (orange). 

 

C. Cross-comparison of GoPro imagery 
Given that imagery from two GoPros are available for June 

29, it is possible to compare the classifications. The GoPro right 
images were halved to match the quantity of GoPro left images. 
Images with the closest time stamp to GoPro left (13 seconds 
apart) were chosen for comparison. The results are presented in 
Table III. Despite the time gap of 13 seconds between the 
compared images, a significant proportion, 54%, were acquired 
within 10 meters of each other and the largest separation 
observed was ~100 meters. The entries along the diagonal of 
Table III shows that there is a high degree of agreement 
between the classifications derived from the two GoPros. 

             GP-R 
GP-L 

Open water 
 

Likely oil Confirmed oil 

Open water 58 (36 %) 11 (7%) 10 (6%) 
Likely oil 7 (4%) 20 (12%) 5 (3%) 

Confirmed oil 5 (3%) 6 (4%) 39 (24%) 
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Fig. 8. Examples of classified GoPro images. (a) GoPro images with clearly visible oil is classified as confirmed oil and indicated with a red 
label. (b) A smooth, featureless surface with some indications of oil is also classified as confirmed (red), here seen as silver sheen in the very 
center of the image. (c) Smooth featureless surface with no other indications of oil is classified as likely oil, indicated by an orange label. (d) 
When small surface ripples characteristic of undamped capillary waves is observed, a blue label is applied indicating open water. 

 
Fig. 9. Photographs taken from the boat with a handheld camera. (a) The boat is in an area of thin oil, where the boundary of a 
thicker oil region is a short distance away. Glare obscures any features or color discontinuities of the slickened surface. (b) Boat is 
in an area of open water. Due to low wind and effect of fog, small surface ripples (indicative of open water) are more difficult to 
observe. The position of the photos in Fig. 13 are marked with the corresponding yellow and green circles.
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IV. RESULTS AND DISCUSSION 
The following sub-sections present the derived high 

confidence oil/open water maps for the three UAVSAR time-
series and compares the SAR standard deviation values in the 
vicinity of the boat track with the GoPro classifications. 

A. June 24 time-series 
During the June 24 acquisitions, low wind conditions were 

near shore and not persistent throughout the time-series, as 
discussed in Sec. II.C. The ability to mask out low wind 
damping is shown in Fig. 10 where (a) shows a large area of 
low wind in addition to two streamers (see Fig. 2 (a), (c) and 
(e)). Fig. 10 (b) shows the corresponding high confidence 
oil/open water map, where the area of low wind is not apparent 
while the likely oil slicks, i.e. the streamers, are clearly 
delineated. The standard deviation values corresponding to the 
streamers, are higher than the surrounding open water area, 
which contradicts previous assertions that oil slick areas retain 
low standard deviation values over a time-series. However, this 
is most likely due to a northward movement of the streamers, 
which are primarily oriented east-west, over the time frame 
during which the UAVSAR images were acquired. Considering 
the elongated shape of the streamers, this could lead to a lack of 
overlap in consecutive scenes, and consequently cause a 
substantial increase in standard deviation values.  

Fig. 10 (c) displays DR masks from scenes 2-4, using a 
threshold of 1.2, here superimposed on each other. These two 
streamers exhibit a northward shift from scene 2 to scene 4, 
suggesting that drift is the probable factor contributing to the 
notably elevated standard deviation values. This is supported by 
the current speed data, shown in Fig. 6 (a), which shows 
northeast-bound currents (0.4 – 0.5 m/s) for this section of the 
scene. This suggests that identifying long, thin oil slick features 
within low-wind areas using time-series imagery may require a 
more nuanced interpretation.  

Fig. 11 (a) shows the high confidence oil/open water map for 
the entire imaged area. Like Fig. 10 (b), low standard deviation 
values more likely correspond to oil slick areas. Fig. 11 (b) 
displays the red ROI in Fig. 11 (a) and shows a dark region with 
clear boundaries, likely indicating the separation between oil 
slick and open water. This is the general area the boat traversed 
in the period corresponding to the three June 24 UAVSAR 
scenes. Fig, 11 (c) shows the cyan ROI from Fig. 11 (b). The 
boat track is overlayed and color-coded based on the 
classification scheme introduced in Section III.B. The blue 
segments of track (open water) correspond to higher standard 
deviation values while the red and orange segments 
(confirmed/likely oil) correspond to lower standard deviation 
values. This observation is supported by Fig. 12 (a), which 
presents a histogram of standard deviation values segregated by 
class for the boat track segment. The open water class exhibits 
higher average standard deviation values, with a difference of 
approximately 7 dB compared to the confirmed/likely oil 
classes. 

B. June 28 time-series 
As discussed in Section II.C, the time-series on June 28 

depicts an exceptional occurrence of very low wind speed often 
covering the entire scene (see Fig. 3). This is further  

 
Fig. 10 (a) Green ROI in Fig. 2 (a) (VV NRCS). (b) Corresponding 
high confidence oil/open water map. (c) Damping ratio (DR) masks 
from three UAVSAR images. 

 
corroborated by the wind speed data illustrated in Fig. 5 (c) and 
(d), where the recorded wind speeds at the times of the 
UAVSAR acquisitions were mostly below 2 m/s. Only the land-
based station registered a wind speed >2 m/s at the time that 
scene 4 was acquired. In contrast, wind speed measurements 
during the UAVSAR acquisitions on June 24 and 29 frequently 
exceeded 3.5 m/s. 

Upon visual examination of Fig. 3, it is apparent that scene 0 
has the least low-wind zones, followed by scene 1, while scenes  
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Fig. 11. (a) High confidence oil/open water map for June 24, 2022, based on scenes 2-4. The low values (plotted as dark areas) are likely mineral 
oil slicks while the high values (plotted as bright areas) are likely open (unslicked) water. (b) The area that corresponds to the red ROI in (a) is 
shown and the oil slick is a clearly delineated dark region with sharp borders. (c) The map for the smaller cyan ROI in (b) is shown as well as a 
classified boat track. Time extent for classified GoPro imagery is 17:26 – 19:13 UTC (SAR imaging time ±30 minutes).

2 through 4 exhibit a similar and more extensive occurrence of 
low-wind zoning. In this section, we create high confidence 
oil/open water maps on a dataset that serves as an extreme 
example of how frequent low-wind conditions can entirely 
mask the presence of oil slicks in SAR imagery. This was done 
using three batches of imagery to evaluate the minimum 
number of images and time of observation needed to identify 
slicks under these conditions given the specific wind history.  

Initially, all five scenes were used, then the process was 
repeated with all scenes except the first one (the scene with the 
least low wind zoning), and finally using all scenes except the 

first two (both scenes with the least amount of low wind zoning) 
thereby focusing on the three scenes within the time-series most 
affected by low wind zones. Fig. 13 (a), (c), and (e) show the 
resulting high confidence oil/open water maps. The cyan ROI 
outlines the area the boat traversed over the period the 
UAVSAR images were acquired. As can be seen in Fig. 13 (a) 
and (c), areas that are likely affected with oil slick are evident, 
characterized by their extensive and contiguous appearance.  

In Fig. 13 (e) (where only scenes 2-4 were used), the 
differentiation between regions likely to contain oil slick and 
open water becomes challenging, indicating that four scenes are  
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Fig. 12. Histograms of standard deviation values that correspond to the 
GoPro tracks for June 24 and June 28 separated by class. Number of 
GoPro images sorted into each class indicted in parentheses in the 
legend. 

 
a minimum requirement to separate these two classes for this 
data set. We note that this number of scenes (time interval) 
depends upon the wind history, but this example shows that it 
is possible to identify mineral oil slicks using rapid repeat 
imaging even in very low wind conditions. 

For validation of the method in this case, Fig. 13 (b), (d) and 
(f) show the area outlined by the cyan ROI along with the 
classified segment of boat track. For Fig. 13 (b) and (d), many 
of the blue open water segments are associated with higher 
standard deviation values, whereas the red confirmed oil 
segments are linked to lower standard deviation values.  

As seen in Fig. 13 (b) and (d), some sections of boat track 
classified as orange (likely oil) are associated with both high 
and low standard deviation values. As discussed in Section 
III.B, the prevalence of both high and low standard deviation 
values corresponding to the orange class may be a result of the 
classification difficulties during the heavy fog on June 28. The 
location of Fig. 9 (a) is indicated by the yellow circle in Fig. 13 
(b), (d) and (f), an area characterized by predominantly low 
standard deviation values (indicating oil) and features an orange 
segment of track (likely oil), though the photograph is distinctly 
identified as an oil slick. In contrast, the green circle is placed 

in an area primarily exhibiting high standard deviation values 
(indicating the presence of open water) and, once again, 
features an orange segment of track (likely oil). As elaborated 
in Section III.B, this misclassification is likely attributable to 
glare from the fog, resulting in a disproportionate number of 
pixels being assigned to this intermediate class. This is also 
observable in Fig. 12 (b), where the average standard deviation 
values for the open water, likely oil, and confirmed oil classes 
are -22.5 dB, -23.3 dB, and -25.4 dB, respectively, though the 
overlapping values between the blue and orange classes can be 
attributed to the inherent ambiguities introduced by foggy 
conditions. Despite the similarity in average values for all 
classes, the orange and red classes record lower standard 
deviation values than the blue class. Nonetheless, the limited 
availability of GoPro images during this period raises the 
possibility of low statistics affecting these results, leading to 
significant overlap within all classes.  

Deriving the high confidence oil/open water maps relies on 
identification of sporadic bright patches in the radar image, as 
low wind zones can move relatively rapidly across an area 
under investigation. Without these intermittent patches, the 
entire scene appears uniformly dark, leading to a lack of 
contrast throughout the scene. This scenario is illustrated in Fig. 
13 (e) and (f). Considering the persistent very low wind 
conditions on June 28, we assess whether a sensor characterized 
by an exceptionally low noise floor, like UAVSAR, was 
essential for this method to work or whether a sensor with a 
higher noise floor could have achieved the same objectives. 
This is relevant for design of an airborne SAR instrument 
specifically for oil spill response. The red lines plotted on the 
five UAVSAR images in Fig. 3 indicate the incidence angle 
bins of 40° and 60°. We extract backscatter values falling within 
the 95th to 99th percentile range for each incidence angle bin, 
in 1° increments, and compute both the mean and standard 
deviation. This is done for each scene in the June 28 time-series. 
The 100th percentile is intentionally omitted, primarily due to 
the probability that backscatter values at this level may be 
attributed to ships. This assumption is reasonable, considering 
that point sources representing ships are relatively small 
compared to the extent of the surrounding ocean. 

The results are plotted in Fig. 14 where the black line is the 
noise equivalent sigma naught (NESZ) of the UAVSAR. As can 
be seen all backscatter values are at least 10 dB above the noise 
floor of the sensor indicating that a less sensitive sensor could 
have yielded equivalent results. 

 

C. June 29 time-series (Control experiment) 
    The analysis that was performed on the June 24 and 28 time-
series was similarly carried out on the June 29 time-series. June 
29 is the longest time-series considered in this study with 10 
scenes spanning 2 hours and 40 minutes. It was investigated as 
to whether utilizing only half of the scenes can yield 
comparable results (i.e., scenes collected over an interval of 1 
hour and 20 minutes). Since the findings resemble those for the 
June 24 and 28 case, these results can be found in the Appendix. 

Moreover, we test the method on an area of ocean, believed 
to be solely experiencing low wind zoning, in the absence of oil 
slick. The area surrounding the 46053 weather buoy (see Fig.
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Fig. 13. June 28 high confidence oil/open water maps for instances when (a) all five scenes of the time-series are used, (c) the first scene was 
excluded, and (e) the first two scenes were excluded. The cyan box is a ROI that outlines an area where the boat traversed in which mineral oil 
slicks were present. (b), (d) and (f) show the cyan ROI from (a), (c) and (e), respectively with classified GoPro imagery tracks. Time extent for 
classified GoPro imagery is 16:52 – 19:02 UTC (SAR imaging time ±30 minutes). The green and yellow circles indicate locations where the 
handheld photographs in Fig. 9 were taken.
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Fig. 14. Mean s! values, ±1 standard deviation (vertical bars), 
for the backscatter in the 95th to 99th percentile, for each 
incidence angle bin between 40° and 60° for the 5 scenes in the 
June 28 time-series. All mean values are at least 10 dB above 
the UAVSAR NESZ, shown in black. 
 
1) was chosen for its distance from the COP seep field and the 
availability of localized wind speed information (Fig. 5 (e), (f)) 
supporting our assertion that any radar dark zones are likely due 
to low wind. This ROI can be seen as a pink box in Fig. 4 (f) – 
(j). In addition, these five scenes were chosen as they were 
acquired in succession, a necessary requirement of the method 
(see Section III.A).  

Fig. 15 (a) shows the high confidence oil/open water map for 
June 29. A large, dark contiguous area, believed to be oil slick, 
is outlined by the blue ROI. The area surrounding the 46053 
weather buoy (yellow square) is outlined by the pink ROI.  

Fig. 15 (b) shows the blue ROI from (a). The classified 
GoPro imagery tracks are superimposed onto the image. As can 
be seen the dark, contiguous area, believed to be oil slick, 
corresponds closely to the confirmed/likely oil classes while the 
blue class corresponds to higher standard deviation values.  

Fig. 15 (c) shows the pink ROI. The very bright spots 
correspond to a boat which traversed the area while the scenes 
were being acquired. The left side of Fig. 15 (c), nearest the 
46053 weather buoy, has the largest standard deviation values 
which become progressively lower towards the right side of the 
ROI. The wind speed was measured to be continuously 
increasing from 1.2 to 4.0 m/s for the scenes 5 – 9. In addition, 
the winds were measured to be blowing in a westward direction 
(see Fig. 5 (e) and (f)). This indicates that the right side of the 
ROI experienced a more severe degree of low wind zoning then 
the left side.  

While examining the blue and pink ROIs in Fig. 15 (b) and 
(c) respectively, its apparent that radar dark zones that are a 
result of oil slick are likely to manifest as large contiguous 
areas, with relatively well-defined borders in the high 
confidence oil/open water map. In contrast, radar dark zones 
that are due to low wind are not as likely to manifest as 
contiguous zones and will tend to have higher standard  

 

Fig. 15. (a) High confidence oil/open water map for June 29, 
2022, based on scenes 5-9. Blue ROI outlines area with what is 
believed to be oil slick. Pink ROI outlines area used in control 
experiment. The yellow dot is the weather buoy. (b) Blue ROI 
along with classified GoPro imagery tracks. (c) Pink ROI. 

 
deviation values closer to that of open water.   

V. CONCLUSION  
The primary objective of this study was to demonstrate the 

use of rapid-repeat airborne time-series of SAR data to identify 
oil slicks in regions experiencing low wind conditions, even 
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when the radar-dark phenomena are co-located. We propose an 
automated approach that uses the standard deviation of the 
intensity across an entire time-series of images, a method that 
can be readily implemented without the need for highly 
specialized code. Furthermore, the method we suggest 
eliminates the need for preprocessing steps like the computation 
of established and well researched polarimetric features such as 
the DR or co-polarimetric ratio. This is especially advantageous 
when dealing with situations where areas under investigation 
contain numerous radar dark pixels concentrated within a single 
incidence angle bin in the azimuth direction, for which the 
former cannot be calculated [9].  

The specific application of the method proposed is to 
separate mineral oil slicks from low wind areas. In principle, 
any surfactant which responds to the ocean current and winds 
in a similar way to mineral oil will display low standard 
deviation values in the high confidence oil/open water map. 
This means differentiating mineral oil and biogenic slicks using 
the method proposed is likely not possible. As a result, utilizing 
this method on SAR imagery in regions with high biological 
activity may lead to the inaccurate identification of a mineral 
oil slick. Thus, this method might be better suited for cleanup 
operations when there is clear and definite information about 
the existence of a slick, as opposed to its application in 
surveillance and monitoring operations.  

However, differences in the time evolution between mineral 
oil and biogenic material, as observed in SAR time-series, may 
mitigate this issue. This would require a SAR with a high SNR 
to consistently obtain information on the internal state of the 
slickened material over a time-series. Therefore, we 
recommend conducting airborne campaigns using a 
multifrequency SAR, such as DLR's airborne F-SAR, in areas 
of high biological marine activity or oil-on-water campaigns 
where oil and biological material are discharged simultaneously 
[15] [16]. F-SAR can acquire simultaneous imagery in X-, C-, 
S-, L-, and P-bands, each with distinct noise floors [50].  

One benefit however is that this method is expected to 
produce similar results for low sulfur fuel oil (LSFO) spills. 
These are oils with low sulfur content (< 0.5% by mass) which 
are required to be used for shipping operations (implemented 
by the International Maritime Organization (IMO)) from 
January 2020 onwards [51]. These oils have shown departures 
from the physical properties of other traditionally used fuel oils 
[51], indicating that applying well established methods such as 
the BAOAC [46] may be more difficult. 

The high confidence oil/open water maps presented in this 
study were derived from three time-series of UAVSAR images, 
all of which showed some degree of low wind zoning. The 
progression and distribution of low wind areas were different 
on all three days, covering different low wind scenarios. The 
maps were able to be derived from just 3 – 5 geolocated 
UAVSAR scenes, depending on the degree to which the scenes 
were affected by low wind. This amounts to approximately 50 
– 80 minutes of imaging in the three cases examined. 
Considering the speed and straightforwardness of the method 
for computing the high confidence oil/open water maps, it 
becomes feasible to execute this process on board an aircraft 
and promptly provide results to first responders. 

A unique aspect of this study involved employing GoPro 
imagery as truth data. Given our experience using both video 
and 1-2 frame/minute captures, our recommendations for future 
use of this method are to use two or more GoPro cameras 
imaging different sides of the boat for redundancy and to collect 
video to provide more validation information. The GoPro 
imagery taken on June 28 was captured under foggy conditions, 
leading to the presence of glare. This likely resulted in imagery 
that should have been classified as confirmed oil (red), or open 
water (blue), being misclassified as likely oil (orange). Future 
experiments could add Forward Looking Infrared (FLIR) 
cameras to measure differences in the thermal emissivity 
between oil and water, to better detect oil in foggy and poor 
lighting conditions. 

As stated in Section III.B, areas of thicker slick may be 
overrepresented in the classified GoPro imagery as these areas 
were favored for collecting in-situ data. However, typical drift 
values corresponding to the boat track were 0.1- 0.2 m/s (see 
Fig. 6), meaning that for June 28 and June 29 the boat would 
have drifted between 30 – 60 m between successive GoPro 
photographs. Given that the boat has different drift 
characteristics than oil slick, it is unlikely identical areas of 
slick were photographed. However, this is a possibility for the 
June 24 GoPro whose video was down sampled to a rate of 60 
frames/minute (0.1 – 0.2 m drift between frames). Our 
recommendations for future use of this method involves 
acquiring GoPro images from the boat moving fast enough to 
allow the cameras to consistently acquire images of different 
patches of the ocean surface. However, the speed should not be 
so fast as to create a bow wake which will obscure any images 
acquired. 

In this study, we used the mean of the standard deviation 
radar values to provide a simple statistical description of the 
histograms that correspond to the classified boat tracks (see Fig. 
12). The mean was used, instead of other well-established 
metrics such as the median or the mode, because it is sensitive 
to extreme values, particularly for small samples sizes. 
Therefore, the mean was expected to exhibit the lowest values 
for the confirmed oil class, intermediate values for the likely oil 
class, and the highest values for the open water class. This was 
observed for the June 24 and 28 time-series (Fig.12) and the 
June 29 time-series (see Appendix). It should be noted that this 
trend was observed for instances when a small amount of GoPro 
images were available (June 28) and when a relatively large 
amount of GoPro images were available (June 24). This 
indicates that regions with oil slick can be identified even in the 
presence of low wind with this method.   

The June 28 time-series was incorporated into this study to 
illustrate the application of the proposed method in a scenario 
where the entire scene is dominated by low wind zones. As 
shown in Section IV.B, the highest backscatter values (95th - 
99th percentile) for June 28 were at least 10 dB above the noise 
floor of the instrument for a broad range of incidence angle 
values. This is significant, as it suggests that high confidence 
oil/open water maps can be obtained using a less sensitive 
instrument, which is a design consideration in SAR systems. 
However, it remains uncertain whether having information on 
the variability in intensity within an oil slick, measurable with 
a low noise instrument, could contribute to the accuracy of the 
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high confidence oil/open water maps. Thus, we reiterate our 
prior recommendation that more multifrequency SAR studies 
acquiring data in different frequency bands with varying noise 
floors should be performed. 

While this study shows promising results, it should be noted 
that persistent localized low wind zones can lead to consistently 
low standard deviation values in the resulting high confidence 
oil/open water map. This can be observed in the right-hand side 
of Fig. 15 (a) and (c) where low standard deviation values in 
likely low wind areas are indicated as open water in the high-
confidence oil/open water. This may result in these low values 
being misinterpreted as oil slick. However, in the event of a 
massive spill, this potential issue may be mitigated because a 
single, large oil slick would manifest as a substantial, 
contiguous area characterized by low standard deviation values 
in the high-confidence oil/open water map. In the event of a 
smaller spill, where the slicks surface area might be similar in 
scale to the wind-induced, low standard deviation values in the 
high-confidence oil/open water map, identifying the oil may 
prove more challenging and might require a more nuanced 
interpretation. 

An essential requirement for the proposed technique in this 
study is the frequent and rapid imaging of areas with oil slicks, 
ensuring their positions overlap in subsequent imagery. 
Therefore, this method is well-suited for airborne sensors. A 
notable advancement in recent years involves the emergence of 
microsatellite constellations by commercial providers1. These 
satellites most often operate in X-band and have each orbit 
plane phased around the Earth, featuring different local times 
for ascending and descending nodes rather than the more 
conventional dawn-dusk sun-synchronous orbit. This setup 
opens the potential for sub-daily to daily rapid-repeat 
spaceborne imagery, particularly in higher latitudes. Although 
X-band sensors tend to have higher noise floors relative to other 
frequency bands, the open ocean backscatter in X-band is also 
generally higher. Thus, future work should also be conducted 
on the efficacy of applying this procedure to imagery from 
spaceborne SARs. 

APPENDIX 
In this appendix we analyze the June 29 time-series. We 

generated high-confidence oil/open water maps using the first 
5 scenes, the last 5 scenes, and all scenes in the time-series. We 
then compare the high confidence oil/open water maps from all 
three combinations against the classified GoPro imagery for 
GoPro right. A total of 322 frames were obtained during the 2-
hour and 40-minute period. To ensure a satisfactory number of 
GoPro frames for comparison, we compare the complete 
collection of GoPro imagery to all three combinations. 

Fig. 16 (a), (c) and (e) show the high confidence oil/open 
water maps derived using the first five scenes, the last five 
scenes, and all ten scenes in the time-series, respectively. A 
large area of persistent oil can be seen in the top center of all 
three high confidence oil/open water maps, outlined by a blue 
ROI. The bottom corner of the three high confidence oil/open 

 
1 See e.g. https://earth.esa.int/eogateway/missions/iceye# for a synopsis on 

the first SAR microsatellite. Last visited November 3, 2023. 

water maps shows moderately dark values, which are most 
likely due to persistent low wind zoning in that region of the 
scene (see Fig. 4). 

Fig. 16 (b), (d), and (f) display the blue ROI, and in all three 
images the classified segments are overlayed. Again, the blue 
segments of the track (open water) are associated with higher 
standard deviation values, whereas the red segments (confirmed 
oil) correlate with lower standard deviation values. It should be 
noted that certain orange values (likely oil) align with higher 
standard deviation values. This reflects the challenges in 
manually classifying GoPro imagery, which can be susceptible 
to subjectivity.  

Fig. 17 displays histograms of standard deviation values 
categorized by class for the boat track segments in Fig. 16 (b), 
(d), and (f). The average standard deviation values for open 
water are approximately -19 to -20.1 dB across all three scene 
batches, while for likely oil, they range from -20.2 to -21.6 dB. 
For confirmed oil, average values fall between approximately -
22.7 to -23.3 dB.  

Like the findings outlined in Section IV.A, the confirmed oil 
class consistently displays the lowest average standard 
deviation values, while the open water class consistently shows 
the highest average standard deviation values across all three 
dataset batches although the separation between classes is not 
as pronounced as in the other time-series. This difference is 
likely attributable to the significantly smaller number of 
available GoPro images on this date, with only 322 compared 
to the 3814 on June 24. However, there is a notably higher 
occurrence of very low standard deviation values (< 40 dB) for 
the oil classes then for the open water class. 
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Fig. 16. June 29 high confidence oil/open water maps for instances when (a) the first five scenes of the time-series are used, (c) the last five 
scenes of the time-series are used and (e) all ten scenes in the time-series are used. The cyan box is a ROI that outlines an area of what is believed 
to be mineral oil over which the boat traversed. (b), (d) and (f) show the cyan ROI from (a), (c) and (e) respectively. The classified GoPro imagery 
track is overlayed on these images and displayed in red, orange, and blue for the different classes. Time extent for classified GoPro imagery is 
18:07 – 20:47 UTC. 
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Fig. 17. (a) – (c) Histograms of standard deviation values that 
correspond to the classified GoPro tracks in Fig. 16 (b), (d) and (f), 
respectively, divided by class. Average values for the likely oil class 
(orange) are between 1.2 - 1.4 dB lower than the average values for the 
open water class (blue). Average values for the confirmed oil class 
(red) are between 1.7 - 2.8 dB lower than the average values for the 
likely oil class (orange). Number of GoPro images sorted into each 
class indicted in parentheses in the legend. 
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