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Abstract

We show that medium sized Gaussian basis sets lead to significant in-
tramolecular basis set superposition errors at Hartree-Fock and Density
Functional levels of theory, with artificial stabilization of compact over ex-
tended conformations for a 186 atom deca-peptide. Errors of ∼ 80 kJ/mol
and ∼ 10 kJ/mol are observed, with polarized double zeta and polarized
triple zeta quality basis sets, respectively. Two different procedures for
taking the basis set superposition error into account are tested: While
both reduce the error, it appears that polarized quadruple zeta basis sets
are required to reduce the error below a few kJ/mol. Alternatively, the
basis set superposition error can be eliminated by using multiresolution
methods, based on Multiwavelets.

1 Introduction

Electronic structure calculations using density functional theory (DFT) are pop-
ular for probing a variety of properties for both molecular and extended systems.
The typical approach for practical applications involves expanding the orbitals
in a Gaussian basis set for molecules and plane waves for extended systems.
Gaussian basis sets can also be used for extended systems, but special tailored
basis sets are required to achieve numerical stability,1,2 although progress in
using conventional basis sets has been made lately.3 On the other hand, plane
waves can be used for molecular systems, but require quite large unit cells4 and
a special treatment of the core electrons to remain computationally feasible, for
example by replacing them with a pseudopotential.5
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Recent developments have considered methods based on multiresolution anal-
ysis (MRA),6,7 with the basis set consisting of polynomials in adaptive regions
of the three-dimensional space, and these methods are becoming competitive
with traditional methods in terms of computational efficiency, especially if high
precision is required.8

A large number of Gaussian basis sets have been proposed, and these can
be considered as different compromises between accuracy and computational
efficiency.9,10 Modern basis sets are usually defined in families, with the cardinal
number representing a systematic progression towards the complete basis set
(CBS) limit. As the convergence towards the latter depends on the underlying
method, the optimum convergence requires basis sets that are optimized towards
a specific type of method, such as the cc-pVXZ for wave function correlated
methods11 and the pcseg-n for DFT.12 Although this allows a rigorous control
over basis set errors, it may be infeasible to reach the desired accuracy, especially
for large systems.

A particular problem arises for calculating the interaction between frag-
ments, as incomplete basis sets will generally lead to an overestimation of the
interaction energy. The reason is qualitatively easy to understand, as the basis
set for the interacting fragments is more complete than for the separated species,
and this effect is denoted Basis-Set Superposition Error (BSSE).13 A number
of different schemes have been proposed to correct for BSSE, with the most
commonly used being the counter-poise (CP),14,15 where the fragment energies
are calculated in the full basis set of all fragments. It is recognized that the CP
is only an estimate of the BSSE, and often overestimates the effect, but inter-
action energies are often found to converge faster towards the CBS limit with
CP correction,16–22 than without this correction. The overestimation of the CP
correction has lead to approaches where only half the calculated correction is
included,23,24 or only the virtual orbitals of the other fragment are included.25

These conclusions are based on the difference relative to the CBS limit, but it
should be recognized that this includes also the basis set incompleteness effect.26

When the fragments are isolated molecules, the resulting intermolecular CP
is well-defined. However, the same effect is present for calculating differences in
conformational energies for larger systems, and this has been coined intramolec-
ular BSSE:27–29 spatially compact conformations are artificially stabilized rel-
ative to extended conformations.30,31 The analogy of the intermolecular CP
procedure can be used to estimate the intramolecular BSSE, but this requires
a manual and somewhat arbitrary decision of how to define fragments within
a molecule. Nevertheless, it has been shown that correction for intramolecu-
lar BSSE can have a large effect of for example rotational energy profiles for
a tripepetide.32–34 A version based on atomic fragments removes the user in-
volvement,35 but it has been argued that only the CP effect for atoms beyond
the close bonding region should be included, and we have suggested an Atomic
Counter Poise (ACP) model where only atoms separated by at least three bonds
are included.36 By discarding atoms beyond a cutoff distance where the overlap
is negligible, this can be made computationally tractable.36 An alternative ap-
proach, labelled geometry Counter Poise (gCP), involves calculating only over-
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lap between model atomic orbitals, and it has been parameterized for a selection
of combined methods and basis sets.37 The gCP requires negligible computa-
tional time, while the ACP method scales linearly with the system size in the
large system limit, and for the present systems typically requires a computa-
tional time an order of magnitude larger than calculating the energy itself.

Alternative approaches, such as the chemical Hamiltonian approach38,39 or
same number of optimized parameters,40,41 have been much less used than the
CP, and are only defined for intermolecular fragments. A valence bond approach
with restrictions on which basis functions are allowed to contribution to a given
localized orbital can be used to estimate both inter- and intra-molecular BSSE,42

but this cannot account for possible charge-transfer between fragments.
Calculating conformational energies of medium sized systems, such as small

peptides with a few hundred atoms, by electronic structure methods is a valu-
able tool in parameterizing force field methods.43–45 Such systems, however, are
clearly susceptible to artifacts from intramolecular BSSE, but there are virtu-
ally no systematic studies of how large such errors can be, as calculations close
to the CBS limit using standard basis sets are difficult. BSSE is absent when
using plane wave basis functions, but replacing the core electrons by e.g. a
pseudopotential5 introduces an inherent limitation that is difficult to quantify,
and the requirement of using large unit cells for medium sized molecules make
this unattractive. Recent developments in the use of MRA applied to quan-
tum chemistry,7,46 however, have made it possible to generate precise reference
values47 at both Hartree-Fock (HF) and DFT levels at computational accessi-
ble costs.8,48 In the present work we quantify the magnitude of intramolecular
BSSE for a selection of spatially different conformations for a deca-peptide at
HF and DFT levels using a selection of standard Gaussian basis sets against
reference multiresolution values, and evaluate the performance of proposed cor-
rection schemes. Calibration studies of BSSE have often focused on small model
systems, but the present 186 atom system can be considered as a real-case ap-
plication.

We note that BSSE at correlated levels of theory usually are larger than
for independent particle models, like HF and DFT, and the present results can
thus be taken as lower bounds for e.g. MP2 or double hybrid methods. As the
BSSE is not expected to depend significantly on the specific exchange-correlation
functional, we have elected to use only the popular B3LYP model49 in addition
to HF. Environmental effects are likewise not expected to be important, and
all calculations have therefore been done in vacuum. The present work only
addresses the effects of intramolecular BSSE on conformational energies, but
including dispersion will be essential for calculating accurate values.

2 Methods

Conformations of teixobactin were generated by a Monte-Carlo approach and
structures optimized by the MMFF force field,50 yielding ∼4000 conformations.
The sampling statistics suggests that this is far from a complete sampling, but
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it is sufficient for selecting a range of extended to compact structures. The
conformations were sorted according to the difference between the largest and
smallest eigenvalue of their moment of inertia tensor, which is used as a proxy
for the elongation of the molecule. 20 structures were selected according to a
uniform sampling of the sorted values. There is a strong correlation between
the difference between the largest and smallest eigenvalue of their moment of
inertia and the average moment of inertia, as shown in Figure 1.

HF and DFT calculations using Gaussian basis sets were done using the
Gaussian-16 program package,51 while references values were calculated using
the MRChem52 program. The multiwavelet (MW) basis of MRA employs a basis
of polynomials53 on a real-space grid which is adaptively refined based on the
norm of the wavelet functions, to make sure that the error is below a predefined
threshold.6 The threshold is defined by a single accuracy parameter, and the
corresponding results are labeled as MWn, where n indicates a 10−n precision.
The ACP calculations employed the ACP(4) option,36 where 4 indicates that
only atoms separated by 4 bonds or more are included in the CP procedure,
and a cutoff of 10 Å was employed.

3 Results

We have selected the teixobactin peptide, which is a 186-atom decapeptide of
biological interest as an antibiotic agent.54 The system has a net charge of +1
and a cyclic structure at one end of the chain. From a force field generated
conformational search, we have selected 20 conformations representing a range
of structures from extended to compact, and Figure 2 shows the two most
different conformations.

The hypothesis is that extended structures will have the least amount of
intramolecular BSSE, and small basis sets will thus artificially stabilize the
compact conformations. By investigating how the relative conformational ener-
gies depend on the quality of the basis set, we can quantify the magnitude of
the intramolecular BSSE. A precise quantification requires a valid reference: In
the present case we will make use of the the relative energies obtained at the
MW7 level, which yield errors well below 0.01 kJ/mol, with respect to the CBS
limit.

The results using Gaussian basis sets can be extrapolated to the CBS limit,
and mean field methods like HF and DFT are expected to converge exponentially
with the square root of the basis set cardinal number X.55,56 We have used the
three-point extrapolation in Eq. 1 based on the pcseg-2,-3,-4 results. We note
that this extrapolation provides results closer to the reference MW7 than a
pure exponential and also better than functions with the cardinal number as a
prefactor for the exponential.57

E(X) = E(∞) + A exp−B
√
X (1)

The pcseg-2,-3,-4 extrapolated absolute energies agree with the MW7 ref-
erence results to within 16 and 7 milli-Hartree at the HF and B3LYP levels
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Figure 1: Correlation between the average value and the difference between
highest and lowest eigenvalue of the inertia tensor (atomic units), the selected
conformations denoted by points are labeled 1-20 left to right.

Figure 2: Most compact (left) and most extended (right) selected conformations
of the teixobactin peptide, labeled as conformation 1 and 20, respectively

respectively (corresponding to 42 and 18 kJ/mol), and relative energies agree to
within 0.04 kJ/mol on average, with the maximum deviation being 0.15 kJ/mol,
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at both levels.
The MW7 relative energies of the 20 conformations at the HF and B3LYP

levels are shown in Table 1, where the order label reflects the degree of compact-
ness according to Figure 1, 1 being the most compact and 20 being the most
extended, shown in the left and right panel in Figure 2, respectively. The energy
of the most extended conformation is defined as zero, as this is expected to be
least affected by intramolecular BSSE. The conformations span an energy range
of ∼200 kJ/mol, but there is no correlation between the relative energies and the
degree of compactness. Neither HF nor B3LYP account for dispersion effects
which are very important for predicting accurate conformational energies, and
the last column in Table 1 shows the dispersion correction calculated with the
D3 parameterization of the B3LYP method.58 There is a significant correlation
between the degree of compactness and the predicted differential stabilization
by dispersion.

Label Rel. E [HF] Rel. E [B3LYP] Rel. ∆E [D3]
1 -24.9 -56.7 -166.0
2 -25.1 -55.2 -150.1
3 86.5 47.9 -140.0
4 -25.0 -46.5 -131.9
5 -74.7 -114.6 -90.1
6 3.0 -11.0 -85.6
7 -60.6 -96.6 -121.9
8 79.8 41.8 -101.0
9 36.8 24.6 -28.5
10 110.7 89.5 -50.4
11 78.8 59.5 -28.3
12 35.2 24.6 -25.9
13 131.3 112.8 -64.2
14 75.6 52.3 -51.7
15 135.4 124.2 -39.3
16 -2.9 -18.7 -50.6
17 84.1 70.2 -50.4
18 -10.4 -12.1 2.4
19 -4.1 -3.9 2.3
20 (0.0) (0.0) (0.0)

Table 1: Reference relative energies in kJ/mol of conformers at MMFF opti-
mized geometries at the MW7 HF and B3LYP levels with respect to the most
extended conformer. The column labeled Rel. ∆E [D3] is the correction from
dispersion calculated with the D3 parameterization of the B3LYP method. The
labels 1-20 refer to the order of the degree of compactness, with 1 being the
most compact and 20 the most extended, as shown in Figure 2

Figure 3 shows the absolute error in the conformational energy for the pcseg-
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n basis sets as a function of the compactness order. The left panel refers to HF
calculations, whereas the right panel contains the B3LYP results. Note the log-
arithmic energy scale and that only values for conformations 1-19 are shown, as
conformation 20 is taken as a reference. Figure 3 shows a correlation between the
conformer elongation and the error relative to the reference conformer, demon-
strating the effect of intramolecular BSSE. Note that the conformations labeled
18, 19 and 20 according to Figure 1 are very similar, serving as an internal refer-
ence for our hypothesis, and their relative energies are indeed insensitive to the
quality of the basis set. The magnitude of the BSSE error and its correlation
with the elongation of the structure are both progressively smaller along the
pcseg-n series, both for HF and B3LYP. In particular for B3LYP calculations
with large pcseg-n bases (n=3,4) the errors are small, and not correlated with
the elongation. The structural compactness measured by the moments of in-
ertia is expected to provide a qualitative correlation with the number of atom
pairs in close contact, and thus the intramolecular BSSE error. The correla-
tion, however, is only qualitative, and for example conformations 9 and 15 have
lower errors than expected from their moments of inertia. Table 1 shows that
conformations 9 and 15 also have lower predicted dispersion corrections, which
is consistent with these conformations having fewer atom pairs in close contact
than expected from the moments of inertia.

Figure 3: Absolute errors for the conformational energy of the 19 conformers
relative to conformer 20. Each line in the graph refer to a different pcseg-n
basis, with the MW7 conformational energies taken as a reference. HF results
in the left panel and B3LYP results in the right panel. Logarithmic scale

The corresponding values for the MW results are collected in Figure 4. The
MW results are less correlated with the conformer elongation, as would be
expected for a numerically complete basis: the resulting error is mostly a con-
sequence of the imposed precision and should be regarded mostly as numerical
noise.

Figure 5 compares the behavior of the Gaussian basis set and multiresolution
approaches, and shows that the errors on conformational energies computed with
Gaussian basis sets approach the reference values from below (overstabilized)
and they clearly show a correlation with their elongation (larger overstabiliza-
tion for more compact conformers). The opposite is true for lower precision
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Figure 4: Absolute error for the conformational energy of the 19 conformers
relative to conformer 20. Each line in the graph refer to a different precision
(MW4, 5 and 6), with the MW7 conformational energies taken as a reference.
HF results in the left panel and B3LYP results in the right panel. Logarithmic
scale.

multiwavelet bases (MW4 and MW5), as most conformational energies are un-
derestimated, although the correlation with the elongation is not obvious and
a different reference choice might lead to a different outcome. This is indeed
confirmed by looking at conformers 18, 19 and 20, which give practically identi-
cal results for the pcseg-n basis sets, but some differences are observed for MW
calculations, showing that below the requested precision, the calculations are
strongly affected by random noise.

Figure 5: Error for the conformational energy of the 19 conformers relative to
conformer 20. Each line in the graph refer to a different basis set or precision,
with the MW7 conformational energies taken as a reference. The results at HF
are shown in the left panel and the results at B3LYP level are in the right panel.

Table 2 shows the Mean Absolute Deviation, Maximum Absolute Deviation
and Mean Signed Deviation (MAD, MaxAD, MSD) of the conformational ener-
gies relative to the MW7 reference results as a function of basis set quality, at the
HF and B3LYP levels. The MAD and MSD are in essentially all cases of nearly
the same magnitude, showing that the errors are systematic. For the whole
set of conformations there is a clear trend that small basis sets strongly over-
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stabilize the conformations according to their degree of compactness, as shown
in Figure 3, and the MaxAD effectively measures the error between the most
extended and most compact structures. The three basis sets of DZP quality,
pcseg-1, Def2-SVP59 and 6-31G(d),60 display similar performance with MaxAD
∼80 kJ/mol. The MaxAD is reduced to ∼10 kJ/mol with the TZP quality
pcseg-2 and Def2-TVZP59 basis sets, while the 6-311G(2df,2pd)61 has much
larger MaxAD values. The latter reflects the well-known fact that the 6-311G
basis set is effectively only of DZP quality, despite it formally is a TZP style
basis set.48,62 Note that the pcseg and Def2 basis sets perform similar at the HF
level, but the pcseg has lower errors at the B3LYP, likely reflecting that the pc-
seg basis sets have been optimized specifically for DFT methods. Note also that
the pcseg-3 basis set, being of QZP quality, is required to reduce the MaxAD
below 1 kJ/mol at the B3LYP level. Including diffuse functions in the basis set
is often found to reduce BSSE, but in the present case there is little difference
between the results with the pcseg-1 and aug-pcseg-1, with the MaxAD only
reduced from 82 to 77 kJ/mol at the HF level, and from 71 to 57 kJ/mol at the
B3LYP level. The MW4 results are slightly less accurate than the pcseg-2 ones,
while the MW5 results are comparable to those with the pcseg-3.

Method HF B3LYP
Basis MAD MaxAD MSD MAD MaxAD MSD

pcseg-0 84.52 205.24 -84.20 87.33 205.70 -87.14
pcseg-1 36.60 81.72 -36.38 32.38 70.81 -32.24

Def2-SVP 37.32 86.25 -37.18 44.45 102.44 -44.34
6-31G(d) 33.59 74.78 -33.54 41.84 91.99 -41.76
pcseg-2 4.44 12.67 -4.41 2.70 7.89 -2.67

Def2-TZVP 3.50 8.72 -3.50 5.25 12.10 -5.25
6-311G(2df,2pd) 21.26 48.99 -21.17 25.02 58.47 -24.95

pcseg-3 1.16 2.72 -1.15 0.08 0.24 -0.03
pcseg-4 0.28 0.60 -0.27 0.05 0.14 0.04
MW4 10.69 22.46 10.38 3.90 13.75 2.58
MW5 0.26 0.87 0.19 0.16 0.38 0.13
MW6 0.01 0.03 -0.01 0.01 0.02 0.00

Table 2: Mean and maximum absolute deviation, and mean signed derivation
(MAD, MaxAD, MSD) of relative energies in kJ/mol as a function of basis set
quality, relative to MW7 reference values

The quantification of the BSSE as the difference relative to the CBS limit
also includes a basis set incompleteness component, i.e. the change in rela-
tive energies due to details in the calculated electron distribution that would
be present in the hypothetical situation where BSSE was absent. The energy
differences in the present systems are between different conformations, where it
is likely that basis set incompleteness effects are very similar for all structures,
and thus differences in relative energies as a function of basis set mainly reflect
intramolecular BSSE. The strong dependence on the compactness of the confor-
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mations shown in Figure 3 clearly supports this view. Basis set incompleteness
effects should show up as basis set dependence on inherent molecular properties
not related to the energy, and we have in the present case chosen atomic charges
calculated by the minimal basis set iterative Stockholder (MBIS) approach.63

The basis set incompleteness is quantified by calculating the absolute change in
atomic charges for each step up in basis set quality, and averaged over all 186
atoms in a given conformation. The average of this value over all 20 conformers
and its standard deviation are computed, with the results shown in Table 3.
The standard deviation is in all cases only a few percent of the average change,
which implies that the change in atomic charges due to a change in basis set
is nearly the same in all conformations. This result supports the assumption
that changes in basis set incompleteness across the conformers is only a minor
component in the strong dependence of the conformational relative energies on
basis set quality in Table 2.

Basis change HF B3LYP
Average Std. Dev. Average Std. Dev.

pcseg-0 to -1 0.01827 0.00048 0.01077 0.00042
pcseg-1 to -2 0.02247 0.00029 0.02264 0.00060
pcseg-2 to -3 0.00204 0.00010 0.00142 0.00009
pcseg-3 to -4 0.00042 0.00001 0.00015 0.00003

Table 3: Average and standard deviation over the 20 conformations between
basis sets for the average absolute change in 186 atomic charges.

As mentioned in the Introduction, only a few procedures have been pro-
posed to correct for intramolecular BSSE, and we here consider the ACP36 and
gCP37 methods. The gCP procedure involves fitting four parameters for each
combination of method and basis set to the CP corrections calculated for the
S66 × 8 benchmark set, and parameters have only been published for a small
selection of commonly used combinations.37 Table 4 shows the MAD, MaxAD
and MSD for the DZ, DZP and TZP quality basis sets in their uncorrected
form, and with the ACP and the gCP corrections applied. We have here em-
ployed the gCP HF and DFT versions in combinations with basis sets: SV for
pcseg-0, SVP for pcseg-1 and Def2-SVP, 6-31G(d) for 6-31G(d), and TZVP for
pcseg-2, Def2-TZVP and 6-311G(2df,2pd). The ACP and gCP corrections in
all but one cases improve the performance, in some cases substantially, but with
significant dependence on the specific basis set. The results based on pcseg-0
are, not surprisingly, still unacceptable. The ACP procedure is overall better at
reducing the MaxAD than the gCP, especially at the B3LYP level, but neither
can improve the performance of DZP quality basis sets to a chemical accuracy
of a few kJ/mol. The MSD values show that both correction procedures tend
to underestimate the BSSE effect at the HF level, but tend to overestimate the
effect at the B3LYP level. The consistent improvement by the ACP and gCP
procedures further strengthen the assessment that intramolecular BSSE is the
leading cause of the basis set errors in relative conformational energies. The
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gCP procedure has a negligible computational cost and can be used as a quali-
tative indicator of the amount of intramolecular BSSE, but as shown in Table 4,
this should only be taken as a guideline.

Method BSSE Corr HF B3LYP
Basis MAD MaxAD MSD MAD MaxAD MSD

pcseg-0 none 84.52 205.24 -84.20 87.33 205.70 -87.14
pcseg-0 ACP 37.19 100.83 -33.64 16.28 58.91 -6.62
pcseg-0 gCP 50.34 125.03 -48.10 40.81 104.59 -39.15
pcseg-1 none 36.60 81.72 -36.38 32.38 70.81 -32.24
pcseg-1 ACP 15.53 37.90 -15.35 8.16 20.79 -8.08
pcseg-1 gCP 3.84 15.58 -2.39 16.52 46.98 16.48

Def2-SVP none 37.32 86.25 -37.18 44.45 102.44 -44.34
Def2-SVP ACP 14.51 38.08 -14.40 4.47 11.74 2.72
Def2-SVP gCP 4.00 8.76 -3.19 4.93 17.56 4.38
6-31G(d) none 33.59 74.78 -33.54 41.84 91.99 -41.76
6-31G(d) ACP 4.15 10.21 -1.85 13.45 39.06 12.98
6-31G(d) gCP 4.27 10.25 -1.11 4.61 16.11 1.60
pcseg-2 none 4.44 12.67 -4.41 2.70 7.89 -2.67
pcseg-2 ACP 0.91 2.24 0.32 1.03 2.97 -0.43
pcseg-2 gCP 0.88 2.27 0.72 5.12 11.38 5.08

Def2-TZVP none 3.50 8.72 -3.50 5.25 12.10 -5.25
Def2-TZVP ACP 1.12 3.19 -0.94 1.4 5.30 1.29
Def2-TZVP gCP 1.68 5.05 1.63 2.64 8.47 2.50

6-311G(2df,2pd) none 21.26 48.99 -21.17 25.02 58.47 -24.95
6-311G(2df,2pd) ACP 1.93 6.79 -1.25 8.15 21.69 8.08
6-311G(2df,2pd) gCP 16.08 36.81 -16.03 17.20 39.91 -17.19

Table 4: Mean and maximum absolute deviation, and mean signed derivation
(MAD, MaxAD, MSD) of relative energies in kJ/mol as a function of basis set
quality and BSSE corrections, relative to MW7 reference values

The results in Table 2 show that intramolecular BSSE can be significant for
basis set of DZP quality, and may even be non-negligible at the TZP level. The
error with DZP quality basis sets is strongly correlated with and of the same
magnitude as the empirical D3 dispersion correction in Table 1 (correlation
coefficient of 0.97 against the pcseg-1 results). Methods that do not account for
dispersion, like HF and B3LYP, will thus by virtue of the BSSE include an effect
that resembles dispersion. The geometry dependence of intramolecular BSSE
and dispersion, however, is different, and the BSSE decreases with larger basis
sets while the dispersion effect often increases. A DZP quality basis set may thus
represent a sweet spot in terms of overall performance, but calculating accurate
conformational energies will require accounting for both BSSE and dispersion.
For DFT models with explicit dispersion corrections, the BSSE will lead to an
artificial stabilization of structures with geometrically close fragments, and if
used for structure optimization, will lead to optimized geometries being too
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compact. As mentioned in the Introduction, the effects of intramolecular BSSE
are likely larger with methods based on correlated wave functions, like MP2 and
double hybrid DFT, and the present results can thus be taken as a lower bound
guideline.

Figure 6 shows the absolute value of the relative error at both HF and DFT
levels of theory, averaged over all conformers for each basis set and resolution.
This figure allows the comparison between the overall precision offered by each
basis set/resolution, as the averaging serves as a first correction to remove the
superposition error inherent to Gaussian basis sets. For each increase in preci-
sion, multiwavelets bases expectedly improves precision by roughly one order of
magnitude, whereas Gaussian bases offer a slower decrease in the error for each
step up in cardinal number. The convergence with respect to cardinal num-
ber is exponential, as expected from Eq. 1. The precision offered by pcseg-2 is
comparable to MW4, while MW5 is comparable to pcseg-4. As shown also in
a recent benchmark by by P. Wind et al.,8 for low/moderate precision Gaus-
sian basis sets of TZP quality will likely be more efficient both complexity- and
runtime-wise, compared to MW4, which yield similar results for relative ener-
gies. However, if precision requirements are tighter, MWs become competitive
compared to modern atomic orbital bases.

Figure 6: Absolute value of the relative error on ground state energy at HF (left)
and DFT (right) levels of theory, averaged over all conformers for both Gaussian-
type (pcseg-n series) and Multiwavelets (MWn series) basis sets. MW7 values
taken as reference.

4 Summary

The common procedure of assessing conformational relative energies by DFT
calculations using DZP or TZP quality basis sets is prone to systematic errors
due to intramolecular BSSE which artificially favors compact structures. We
show that the basis set dependence of relative conformational energies is strongly
correlated with the molecular structure classified in terms of compactness, and
the near-constant change in atomic charges between different conformations
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suggests that basis set incompleteness is only a minor component. CP based
correction procedures systematically improve the results, strongly suggesting
that intramolecular BSSE is the leading factor in the basis set dependence of
relative conformational energies. The results for a 186 atom decapeptide show
that DZP quality basis set may lead to errors up to 80 kJ/mol in relative confor-
mational energies, TZP quality basis sets bring the error down to ∼ 10 kJ/mol,
and QZP quality basis sets are required to bring the error down to ∼ 1 kJ/mol.
The overstabilization of compact structures may be further aggravated by the
common procedure of optimizing structures with a medium sized basis set. The
ACP and gCP procedures for estimating the intramolecular BSSE are shown to
improve the results systematically, but both fail to reduce the error from DZP
quality basis sets to a few kJ/mol, and only lead to a slight error reduction with
TZP quality basis sets. The ACP procedure requires a non-negligible computa-
tional effort when used as a posterori, while the gCP procedure employing an
empirical parameterization based on overlap integrals calculated from atomic
orbital models requires negligible computational time, and can be incorporated
into geometry optimizations. Improved versions based on the gCP method may
offer a pragmatic solution. Alternatively, replacing traditional Gaussian basis
set with multiresolution methods may provide a computationally efficient way
of eliminating intramolecular BSSE.

5 Author contributions
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