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A B S T R A C T   

Digitalization of lithium-ion batteries can significantly advance the performance improvement of lithium-ion 
batteries by enabling smarter controlling strategies during operation and reducing risk and expenses in the 
design and development phase. Accurate physics-based models play a crucial role in the digitalization of lithium- 
ion batteries by providing an in-depth understanding of the system. Unfortunately, the high accuracy comes at 
the cost of increased computational cost preventing the employment of these models in real-time applications 
and for parametric design. Machine learning models have emerged as powerful tools that are increasingly being 
used in lithium-ion battery studies. Hybrid models can be developed by integrating physics-based models and 
machine learning algorithms providing high accuracy as well as computational efficiency. Therefore, this paper 
presents a comprehensive review of the current trends in integration of physics-based models and machine 
learning algorithms to accelerate the digitalization of lithium-ion batteries. Firstly, the current direction in 
explicit modeling methods and machine learning algorithms used in battery research are reviewed. Then a 
thorough investigation of contemporary hybrid models is presented addressing both battery design and devel
opment as well as real-time monitoring and control. The objective of this work is to provide details of hybrid 
methods including the various applications, type of employed models and machine learning algorithms, the 
architecture of hybrid models, and the outcome of the proposed models. The challenges and research gaps are 
discussed aiming to provide inspiration for future works in this field.   

This work is funded by Norwegian University of Science and Tech
nology (NTNU) and no external funding has been used. The authors have 
no conflicts of interest to disclose. 

1. Introduction 

To achieve sustainable electrification and decarbonization of the 
energy sector, reliable energy storage devices are essential. The lithium- 
ion battery (LIB) is the cornerstone of portable and stationary energy 
storage in the modern industrial age [1]. It is primarily due to their high 
specific energy (170–250 Wh/kg), high specific power (200–1000 
W/kg), high voltage (3.05–4.2 V), low self-discharge rate (less than 10 % 
per month), long cycle life (up to 3000 cycles), high efficiency (95 %), 
high rate capability, low toxicity, safety, compatibility with existing 
infrastructures and low heat release [2–5]. It is pertinent to note that, 
despite the exponential growth of LIBs in the last decade, large amounts 
of electrical energy storage are required to meet societal demands such 
as growing need for long-range hybrid and electric vehicles [6] and also 

maintaining reliable electricity supply from renewable energy systems 
[7]. In addition, more effective controlling strategies, and better battery 
designs are needed to allow for higher capacity and power, longer life
time, lower cost, and increased safety [8,9]. 

It is conventional to develop novel LIB design ideas by testing several 
prototypes in the lab, which can be costly, unsustainable, and time- 
consuming [10,11]. Digitalization of LIB development has made it 
possible to simulate the behavior of a battery in a virtual environment 
alongside testing actual batteries in the lab [12]. If the simulation 
method is accurate enough, valuable information about the intricate 
relationship between the internal battery processes (e.g., ion transport, 
thermal effects, mechanical stress, and electrochemical reactions) and 
battery structure and operating condition can be obtained. This, in turn, 
will accelerate battery research by providing the opportunity for a rapid 
evaluation of a wide range of design ideas and exploring different 
operating scenarios. 

A creation of digital research and development platform requires 
accurate models that mimic physical batteries. For many years, 
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electrochemical-thermal models, as one of the most accurate simulation 
methods available, have been used to study battery behavior using 
mathematical equations [13]. These electrochemical-thermal models 
are ideal for testing battery design ideas in a digital environment and can 
be developed further into battery digital twins [14]. 

In this context, a digital twin (DT) is defined as a virtual dynamic 
model that replicates the behavior of a physical entity [15]. Based on 
sensor data or historical data, DTs are commonly used to determine a 
system’s control strategy [16–21]. However, DTs can also be used in the 
design and development of different systems [22]. This is because DTs 
can analyze system’s behavior and determine the effect of different 
parameters on the performance of the system [23,24]. Many advantages 
can be derived from this technology, including improved performance 
estimation and behavioral prediction, reduced costs, and lower devel
opment risk [24]. 

It is imperative that the underlining models of a LIB DT are highly 
detailed in order to calculate local battery parameters with a high degree 
of accuracy [25,26]. To improve the quality of any model findings, it is 
necessary to incorporate large experimental datasets for parameter 
extraction and validation. Coupled partial differential equations 
describing mass and charge conservation and electrochemical reaction 
kinetics involving multiple electrical and electrochemical parameters 
such as electrical conductivity and diffusion coefficients must then be 
solved simultaneously in electrochemical-based models of the DT [27, 
28], which requires a significant amount of computation, particularly 
when thousands of iterations are required to obtain the optimal design. 

Data-driven models and in particular machine learning algorithms 
offer better computational efficiency compared to physics-based battery 
models. By analyzing large experimental datasets or synthetic data from 

simulation results, these algorithms may be able to learn the physics of 
the LIB and may also act as a surrogate for the electrochemical-based DT. 
By combining the physical insight provided by the electrochemical- 
based DTs with the ML’s fast response, the complementary advantages 
of each approach can be leveraged. This will allow us to develop an 
efficient DT that can be used to conduct battery experiments, digitally. 
The ML can be used for different applications, such as real-time 
parameter estimation, correcting errors of simplified battery models 
and for finding design related parameters to achieve optimal battery 
performance for a particular application when combined with optimi
zation algorithms. 

Physics-based machine learning can be applied to identify the com
plex relationship between important battery parameters across a range 
of battery length scales (from material to pack) and lifecycle stages 
(from production to end-of-life operation) for reducing the cost of pro
duction, enhancing battery performance and improved decision making 
for battery control [29–32] (Fig. 1). 

In this work, the current state-of-the-art in battery modelling and 
machine learning to enable the development of a LIB DT is outlined. The 
work then explores the possibilities for developing a fully functional 
battery DT that can be used to optimize battery design. This work pre
sents a review of studies towards application of machine learning for 
advancing the digitalization of battery experimentation. The novelty of 
this work allows the consolidation of studies in battery digitalization to 
focus the field on future research into digital experimentation. More
over, this work consolidates this field to guide focus towards a goal of 
real-time battery monitoring and control, and digital battery research 
and development. The work gives clear gaps and perspectives of the field 
where focus on future studies and opportunities can lead to innovation 

Abbreviations 

ANN artificial neural network 
DNN deep neural networks 
DT digital twin 
ECM equivalent circuit model 
FNN feed forward neural network 
GPR gaussian process regression 
LCO Lithium Cobalt Oxide 
LFP Lithium Iron Phosphate 
LIB Lithium-ion Battery 
LSTM long short-term memory 
NMC Nickel Manganese Cobalt Oxide 
P2D pseudo two-dimensional 
RC resistor-capacitor 
SOC state of charge 
SOH state of health 
SPM single particle model 
SPTM single particle thermal model 
SVM support vector machine 
NDC nonlinear double capacitor 

Nomenclature 
i0 Exchange current density 
t+ Transference number 
D Diffusion coefficient 
F Faraday’s constant 
I Current 
R Resistance 
Rg Universal gas constant 
T Temperature 
V Voltage 
a Specific surface area of electrode 

c Concentration 
i Current density 
r Particle radius 
t Time 
x Spatial coordinate 

Greek 
κD Ionic diffusional conductivity 
α Charge transfer coefficient 
ε Volume fraction 
η Overpotential 
κ Ionic conductivity 
σ Electronic conductivity 
φ Potential 

Faraday’s constant Subscripts and superscripts 
L Load 
OCV Open circuit voltage 
a Anode 
app Applied 
avg Average 
c Cathode 
cp Concentration polarization 
e Electrolyte phase 
eff Effective 
ep Electrolyte polarization 
eq Equilibrium state 
k Cell parts, (k = n, sep,p)
n Negative electrode 
p Positive electrode 
s Solid phase 
surf Surface  
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in digitalization of battery experimentation. The aim is that the opinions 
and perspectives presented in this work will lead to development of 
digital tools that can help monitoring and control of batteries, evalua
tion of innovative ideas, and accelerate the evolution of LIB industry. 

1.1. Methodology 

With consideration of the types of modelling approaches for LIBs, the 
main physics-based modelling methods used include equivalent circuit 
models and electrochemical models. Additionally, machine learning 
approaches are utilized to predict unknown parameters, and to assess 

battery characteristics that may be computationally heavy for modelling 
approaches. These machine learning approaches include equivalent 
circuit models and electrochemical models. All these modelling and 
machine learning approaches are defined to assess batteries for specific 
applications and requirements. Considering the focus on performance of 
LIBs in this work, physics-based models and machine learning methods 
are discussed. 

This work was performed to understand the pros and cons of the 
different modelling and machine learning approaches when considering 
battery monitoring and control, and battery design. Therefore, the 
suitability of these approaches has been evaluated. The following 

Fig. 1. Illustration of the interdependence of multiscale battery parameters across the entire battery lifecycle.  
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methods were followed for the review of modelling and machine 
learning approaches.  

• Collection of current applications of modelling and machine learning 
in LIBs towards monitoring, control, and battery design.  

• Use of graphical-based analysis and comparison for modelling and 
machine learning applications in LIBs.  

• Interpretation of the current state-of-the-art.  
• Future predictions and trends in the field. 

In general, a comprehensive review has been conducted with a 
thorough investigation of previous studies of modelling and machine 
learning in LIBs. A state-of-the-art review is provided for understanding 
modelling and machine learning used in LIBs. Based on the analysis, 
result interpretation is performed, and key findings are summarized. 
Finally, the future outlook and conclusions are presented. 

This work is limited by the availability of published modelling and 
machine learning documentation. There are many private institutions 
where monitoring, control and design of batteries is a key aspect of their 
research and development portfolios. Developments in this field are 
therefore propriety information that is not shared in the public domain. 
Therefore, this work focuses only on available methods and studies that 
have been published. 

Error can also be induced within this work. Modelling of LIBs relies 
on the use of many parameters that are defined experimentally, and 
some that are define theoretically. The misuse of parameters within a 
model of an LIB can cause errors in the results obtained. Furthermore, 
when incorporating the design of novel LIBs, the parameters determine 
both experimentally and theoretically may no longer be relevant. This 
would require experimental validation to ensure minimal errors. 

2. Physics-based modeling of lithium-ion batteries 

In LIBs, energy is converted between chemical and electrical energy 
through electrochemical reactions occurring within the active material 
of the electrodes [3]. To maintain electro-neutrality, electrons flow 
through an external circuit while Li+ ions flow through the electrolyte 
from one electrode to another. Migration and diffusion are two processes 
that govern mass transfer due to gradients in potential and concentra
tion, respectively [33]. During the operation of a LIB, charge transfer 
and electrochemical reactions produce heat. Also, some irreversible 
processes, such as formation of solid-electrolyte interface layer, lithium 
plating and particle fracture caused by diffusion induced mechanical 
stress occur [34]. Capacity loss, power loss and increased internal 
resistance are some of the observable effects of these undesired reactions 
[35]. 

These dynamic processes of the battery can be estimated in a model 
using mathematical equations and simplifying assumptions. Models of 
batteries can be very simple representations of the underlying system or 
they can be very detailed explanations of the mechanisms involved [36, 
37]. A description of the most famous LIB models with different pre
diction capability and computational requirements is provided. 

2.1. Equivalent circuit model 

In equivalent circuit models (ECMs), circuit elements such as voltage 
sources, resistors and capacitors are combined to reflect the voltage 
variation of the LIB with regards to an applied current [38]. These 
models have simple structure with low computation time [39], are easy 
to implement and can have different form and components depending 
on the required application [40]. 

The simplest type of ECM is called Rint model consisted of an ideal 
voltage source in series with a resistor. The voltage source represents the 
OCV and the resistor is equivalent to the internal resistance of the cell 
which is caused by different battery and also side reactions [41]. 

Rint model only considers ohmic polarization which reflects the 

instant changes in voltage [42], therefore it is not suitable for practical 
applications [43]. For a more realistic simulation of voltage behavior, 
gradual changes due to other polarization effects also need to be 
considered. These polarization effects can be represented by parallel 
resistor-capacitor (RC) networks to the original Rint model. 

Thevenin model comprises of a parallel RC network in series with 
other Rint model components. This additional RC pair accounts for 
electrochemical (activation) polarization which is associated with 
charge transfer [44]. The resistor represents the charge interfacial 
transfer resistance [45] while the capacitor is related to the double layer 
capacitance [46]. Thevenin model considers both ohmic and electro
chemical polarization therefore it can better describe the transient 
behavior of the battery [47]. 

A second RC network is added to the Thevenin model in the dual 
polarization model to represent concentration polarization caused by 
gradients in the electrolyte and solid phases [48]. In this RC network, the 
resistor and capacitor account for concentration resistance and capaci
tance [49], respectively. Since this model can describe ohmic, electro
chemical and concentration polarizations, it can generate accurate 
results [50]. The schematic of these model is shown in Fig. 2. 

By addition of more RC networks the accuracy of the model would 
also be increased, but at the same time the computational efficiency 
would be lower [51]. ECMs could not be used for describing the spatial 
parameters of the battery such as ion transport behavior, but they are 
powerful tools for state of charge (SOC) estimation [52]. 

As the complexity of ECMs escalates with additional RC networks, 
and computational efficiency diminishes. Despite their performance in 
estimating SOC, ECMs exhibit limitations in characterising spatial pa
rameters like ion transport behavior within the battery. The advantages 
of ECMs include providing a simplified yet practical approach to simu
late LIB voltage variations. Therefore, there is a trade-off between model 
complexity and computational efficiency, emphasizing the suitability of 
ECMs for SOC estimation while highlighting their inability to capture 
intricate spatial battery dynamics. Although ECMs can be suitable for 
real-time monitoring of basic battery parameters, they are not able to be 
employed for digital battery research and development. 

2.2. Electrochemical models 

A LIB model based on electrochemical principles is more suitable for 
LIB research since it provides more detailed insight into the electro
chemical behavior of the battery by describing the cell’s galvanostatic 
charge and discharge processes, as well as transport phenomena. This 
kind of modeling also, allows tracking of the battery’s spatial and tem
poral state, and provides estimation of parameters that are difficult to 
measure (e.g., Li+ concentration) [53]. 

A common electrochemical model is the single particle model (SPM) 
proposed by Zhang et al. [54] as shown in Fig. 3. Taking each electrode 
as a spherical particle, this SPM model describes how Li ions diffuse 
within electrode spheres based on Fick’s second law for spheres, as well 
as charge-discharge kinetics based on Butler-Volmer equation [55]. This 
means that Li diffusion within the spheres are considered as the gov
erning process of the system while Li+ concentration in the electrolyte is 
assumed to be constant [56]. This model is relatively fast, but does not 
provide detailed information regarding the processes occurring within 
the battery, and the battery’s net response is only reliable at low current 
rates [57]. The electrolyte dynamics including electrolyte concentration 
and potential distribution have been taken into account in order to 
improve the accuracy of the conventional SPM model [58–60]. 

The Pseudo-two-dimension (P2D) model is a more comprehensive 
electrochemical model proposed by Doyle Fuller and Newman. In this 
model, electrodes are described as porous environments containing 
many spherical particles, with electrolyte filling the spaces between 
particles [61]. This model is schematically illustrated in Fig. 4. P2D 
model, describes concentration and potential variations in both elec
trode and electrolyte phases. Li ion diffusion in solid phase and 
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charge-discharge kinetics follow the same physical rules as the SPM. The 
equation for Li ion concentration has been derived from the general law 
of mass conservation [62]. The electrode and electrolyte potential 
equations are both governed by Ohm’s law, although the electrolyte 
potential equation has an additional term which incorporates the effects 
of Li ion concentration [63,64]. The P2D model provides more detailed 
insight of the electrochemical behavior of the battery compared to SPM; 
but it also requires more computation time. 

For a more realistic simulation result, it is possible to incorporate 
thermal and aging models into the original equations of the electro
chemical models. Gu et al. [65], developed a multi-physics electro
chemical-thermal model by integrating the P2D model with a thermal 
expression. In the proposed thermal model, heat generation was 
assumed to be caused by electrode reactions and Joule heating. This has 
been used for investigation of electrochemical-thermal behavior of LIBs 
[66–68], and simplified thermal models have been proposed to reduce 
the computation cost [69]. 

Degradation elements by Ramadass et al. [70] have also been inte
grated, allowing investigation of SEI formation on capacity fade [70]. 
Comprehensive electrochemical-aging models have also been developed 
[71,72], as well as electrochemical-thermal-aging models capable of 
considering the effect of temperature rise and degradation on 

electrochemical behavior of LIBs [73–75]. Data-driven models based on 
onboard measurable data [76], and empirical equations for estimation 
of battery parameters are also used for capturing modes of degradation 
in batteries [77,78], and have been integrated with electrochemical 
models [79]. Further additions to the P2D model include Li ion 
intercalation-induced stress for a LiyMn2O4 positive electrode [80], 
electrochemical-thermal-mechanical stress [81,82], and a 
electrochemical-thermal-aging-mechanical model considering the effect 
of SEI formation, lithium plating and mechanical stress on solid particles 
[83]. 

A three-dimensional model of battery behavior facilitates enhanced 
insight, especially regarding heat generation and temperature distribu
tion [84]. A 3D electrochemical-thermal model was developed for a 
standard 18650 cell [85]; whereas, Fang [86] used a 3D 
electrochemical-thermal model to simulate the Nail-penetration test 
[87] for internal short-circuit investigation. Such models have been used 
for thermal analysis of different LIB formats, including pouch and pris
matic cells [88,89]. Additionally, three-dimensional modeling was used 
to simulate the electrochemical behavior of an LIB cell with a hetero
geneous negative electrode consisting of solid particles of different 
shapes and sizes [90]. 

Considering the models developed to describe LIBs’ processes with 

Fig. 2. schematic illustration of common ECMs. (a) Rint model, (b) Thevenin model, (c) dual polarization model.  

Fig. 3. Schematic illustration of SPM during discharge.  
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high level of accuracy. It is becoming possible to move the digital models 
closer to the physical entities due to their maturity and reliability. By 
transferring all aspects of LIBs to a digital environment and developing a 
model with in-depth details, it is possible to develop a LIB DT. This in
volves transferring all aspects of LIBs, including electrochemical, elec
trical, thermal, aging, and mechanical, to a digital environment [91]. 
Developing such a multi-physics DT requires careful parameterization 
and validation based on extensive test data of LIBs. Such DT can also be 
developed with the aid of powerful computational resources and battery 
simulation packages, such as PyBaMM [92], COMSOL [93,94], and 
LIONSIMBA [95]. However, such a DT will be computationally expen
sive due to the high number of complicated equations that need to be 
solved simultaneously. Despite this, any simplification that reduces the 
cost of computation, such as ignoring side reactions will lead to devia
tion from the reality. Therefore, it is important to come up with methods 
of reducing the computational cost without sacrificing accuracy and 
detail. 

The prospect of developing a DT for LIBs, amalgamating electro
chemical, electrical, thermal, aging, and mechanical aspects into a 
unified digital environment, holds promise. However, achieving this 
requires precise parameterization and validation against extensive 
experimental data, which can be challenging to verify and cross- 
correlate between multiple studies due to the different methods used 
to obtain experimental data. 

The significance of electrochemical models in elucidating LIB 
behavior is clear, due to their capacity to capture detailed electro
chemical phenomena and their crucial role in understanding LIB per
formance. However, there are many challenges associated with 
computational demands, model complexity, and the quest for balancing 
computational efficiency without compromising accuracy. Despite this, 
these models represent a pathway toward accurate digital representa
tions of LIBs, albeit with complexities in computational execution and 
the need for continued advancements to enhance accuracy and effi
ciency. This allows the use of electrochemical models for digital design 
and research, but requires substantial computation power and time, 
preventing them from being utilized in real-time applications and 
impeding the development of LIB DTs. 

3. Machine learning approaches for lithium-ion battery 
applications 

The use of machine learning in the technology sector has been 
widespread for quite some time [29,96]; however, ML in batteries has 
only gained traction in the last decade. For effective ML parameteriza
tion and performance prediction for different battery materials, struc
tures, sizes, and formats, the emergence of advances in sensing 
technologies and experimental tools [97,98] has benefited the field of 
battery modelling by improved parameterization and reduced compu
tational requirements [20]. Moreover, the application of ML in the 
battery field has gained significant importance due to the effectiveness 
of ML methods in reducing the requirement for experimental approaches 
[99]. 

Different types of artificial neural networks (ANN) including feed 
forward neural networks (FNN), deep neural networks (DNN) and 
recurrent neural networks (RNN) such as long short-term memory 
(LSTM), support vector machine (SVM), gaussian process regression 
(GPR), decision tree and random forests [96,100,101] are commonly 
used ML approaches for LIB estimation and performance prediction 
[102–104]. Fig. 5 shows the structure of some of these algorithms. 

Table 1 provides information on the findings of studies that inves
tigated ML models for LIB applications. FNN has proven to be a suitable 
choice for studying the relationship between material and cell properties 
and the resulting battery performance. Meanwhile, RNN, LSTM and GPR 
methods have been extensively used for online estimation of time- 
dependent battery states such as state of health (SOH) and SOC esti
mations. GPR is a suitable choice for capacity estimation which can be 
trained with small dataset, but the complexity of the model has shown to 
be a challenge. SVM stands out as a simple and accurate model when it is 
used for regression tasks, providing efficiency comparable to NNs. Both 
DT and RF have been successfully employed for both classification and 
regression tasks. 

It is, however, very difficult to provide a general comparison on the 
performance of each ML model across different LIB applications since 
the predictions of these models are dependent on the training dataset. It 
is only possible to provide such comparison when different models are 
trained with the same dataset and for the same task. Many comparative 
studies have done such investigations across different ML algorithms. Li 

Fig. 4. Schematic illustration of P2D model during discharge.  
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et al. [118] compared prediction accuracy and computational efficiency 
of GPR and RF for capacity estimation. The results showed that RF and 
GPR are both capable of accurately predicting the capacity with a root 
mean squared error (RMSE) of 0.82 % and 1.16 %, respectively. In 
addition, RF showed to be at least ten times faster than GPR, indicating 
the superior capability of RF for online SOH estimation. Zhang et al. 
[111] developed a LSTM model for RUL prediction of LIBs. The goal was 
to predict the number of cycles that a battery could undergo before the 
capacity falls below 80 % of the initial capacity using the data from 
previous cycles. The prediction capacity and computational time of the 
LSTM was compared to SVM and a simple RNN model for four different 
cells. The three models showed better results when larger training data 
was used. In all cases, the computational time of the SVM model was the 
lowest (less than 0.01s), while the RNN took the longest to be trained 
(about 40s). SVM showed superior predictive capabilities compared to 
simple RNN by predicting the failure cycle closer to the actual values. In 
contrast, RNN failed in capturing the long-term dependencies of ca
pacity degradation. Overall, LSTM showed better prediction capacity 
compared to both SVM and RNN with a reasonable training time of 
around 20s. Sahinoglu et al. [113] developed four GPR variants for 
battery SOC estimation utilizing voltage, current, and temperature data, 
along with SOC values from prior cycles. They performed a comparative 
analysis by evaluating the performance of the GPR models, a NN and a 
SVM model. All GPR variants showed lower RMSE compared to NN and 
SVM with NN outperforming SVM. The computational time for GPR 
models was higher than the other two but still sufficiently low for 
real-time SOC estimation applications. Liu et al. [119] performed a 
multi-class classification using a RF model to find the correlation be
tween manufacturing features from coating and mixing stages with 
battery porosity and mass loading. The accuracy of the developed RF 
model was compared to a DT and a SVM model. The DT showed the 
weakest accuracy, while SVM results were very close to RF predictions. 

Standardizing the dataset used for ML application in LIBs facilitates 
meaningful comparisons across various studies. This involves defining 
specific guidelines for test procedure, measurement methods, and the 

required input data. In addition, a standard framework of reporting the 
information such as properties of the tested batteries and utilized 
equipment and an agreed-upon grading system for dataset quality allows 
researchers to use consistent train and test datasets. This approach 
minimizes the diversity in the datasets, making it easier to compare the 
performance of ML approaches; therefore, any differences in perfor
mance could be attributed to the models themselves. 

ML algorithms are dependent on experiential data, which is labor- 
intensive, expensive, and time-consuming to acquire. Additionally, 
these algorithms cannot provide physical insight into the system when 
trained based on the measurable data obtained from battery experi
ments (voltage, current, temperature) since the system is regarded as a 
black box, meaning it treats data solely based on statistical analysis. To 
be able to utilize the information obtained from these methods to 
enhance LIBs performance, it is necessary to understand the underlying 
physical mechanisms. Combining physics-based and data-driven models 
could be the solution to this problem. 

The main idea here is to inform the ML algorithm of the physical 
relations inside the system so that it can map the inputs directly to the 
corresponding outputs without having to solve complex non-linear 
equations in each iteration. This way, accuracy will always be above 
90 % while results are achieved much faster [120]. As a result, it will not 
be necessary to simplify the electrochemical model’s governing equa
tions. Moreover, large experimental datasets will be eliminated when 
they are only required during model development, eliminating the need 
for such datasets. By incorporating ML algorithms, it is possible to 
develop an extensive, computationally inexpensive LIB DT that can be 
applied to battery modeling and control, as well as battery design and 
development. As an overview of the state-of-the-art in physics-based 
machine learning for LIBs, the following examples are presented. 

4. State-of-the-art in hybrid methods for batteries 

Hybrid modeling is referred to a novel modeling approach in which 
the machine learning algorithms are integrated with physics-based 

Fig. 5. Structure of commonly used ML algorithms in LIB applications. (a) Neural networks, (b) LSTM, (c) GPR, (d) SVM, (e) random forests, (f) decision tree.  
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models to harness the advantages of both methods. By combining the 
ability to learn the complicated patterns and fast computational capa
bilities of machine learning models with high predictability of physics- 
based models, a more flexible and robust framework for LIB research 
can be developed. 

A variety of hybrid methods for modelling batteries must be devel
oped and utilized to achieve a truly intelligent LIB DT. The purpose of 
this section is to describe selected hybrid methods for monitoring and 
controlling batteries. An overview of studies using hybrid methods to 
assess LIB design follows. Combined, these studies give us the founda
tion for building an intelligent LIB DT that can be used as a digital LIB 
lab. 

Table 1 
A summary of machine learning approaches for lithium-ion batteries 
applications.  

Machine 
learning 
approach 

Application Challenges Outcomes Reference 

FNN  
Electrode 
material design 

•Small available 
dataset 
•Large number of 
input features 
•Significant error 
for some data 
points at low 
redox potential 

•Redox 
potential 
prediction with 
average error of 
3.54 % 
•Ranking the 
importance 
input features 

[105] 

Electrode mass 
balancing 

•Limited 
available 
experimental 
dataset 

•The model 
could predict 
capacity of the 
battery for 
different 
current 
densities and 
active material 
mass ratios with 
average error of 
2 mAhg− 1 

[106] 

RNN SOH 
estimation 

•Utilized a large 
dataset from 
months of 
experiments 

•Capacity and 
resistance 
prediction with 
an MSE of 0.462 
and 0.296 

[107] 

SOC estimation •Required careful 
hyperparameter 
selection. 
•Higher error at 
longer discharge 
times 

•SOC 
estimation 
under different 
working 
condition with a 
prediction error 
of 6 % 

[108] 

LSTM SOC estimation •Complexity of 
problem due to 
strong relation 
between SOC and 
SOH 

•SOC 
estimation with 
maximum error 
of 0.016 

[109] 

SOH •Difficulty in 
hyperparameter 
selection 
•Need for 
eliminating the 
redundant 
information 

•SOH 
estimation with 
2 % RMSE 

[110] 

RUL •Need for 
regularization 
method to 
prevent 
overfitting 

•Better 
prediction 
capability 
compared to 
SVM and simple 
RNN. 
•RUL prediction 
based on a small 
portion of 
online data 
(20–25 %) 

[111] 

GPR Capacity 
estimation 

•Contrasting 
results of model 
performance with 
regards to 
selected features 
when different 
datasets were 
used for training 

•2–3% 
prediction 
RMSE by using 
small voltage 
curve segments 
(10s) 

[112] 

SOC estimation •Both current and 
previous system 
states had to be 
used for accurate 
prediction 

•Higher 
computational 
time and lower 
prediction error 
compared to 
SVM and NN 

[113] 

SVM Prediction of 
crystal system 

•Difficulty in 
classifying the 
data due to lack 

•Correlation 
between the 
crystal system 

[114]  

Table 1 (continued ) 

Machine 
learning 
approach 

Application Challenges Outcomes Reference 

of cathode 
structure 

of evident 
correlation 
between features 
and crystal 
systems. 
•Limited 
available data 
prevented the 
improvement of 
prediction 
accuracy 

and cathode 
properties were 
found. 
•Lower 
prediction 
capability 
compared to NN 
and RF 

SOH 
estimation 

•Several feature 
selection methods 
were used but a 
significant 
improvement was 
not achieved 

•Slightly lower 
accuracy 
compared to NN 
but lower 
complexity 

[115] 

DT Lifetime 
estimation 

•Small available 
dataset 
•Large number of 
features 

•Highest 
accuracy (95.2 
%) compared to 
other 
algorithms such 
as GP and SVM 
to predict if the 
battery can 
maintain 80 % 
of capacity after 
550 cycles 

[116] 

Cycle life 
prediction 

•Large number of 
features 

•7 % error in 
lifetime 
prediction 
•Better 
prediction 
capacity 
compared to 
SVM, GPR, RF 
and simple DT 

[117] 

RF Capacity 
estimation 

•Cycling test of 
several cells 
under varying 
condition 
Selecting the 
most suitable 
features 

•Capacity 
estimation of 
different 
batteries with 
RMSE of less 
than 1.3 % 

[118] 

Manufacturing •Difficulty of 
collecting 
manufacturing 
data across all 
stages 

•F1 score of 
90.1 % for mass 
load. 
•F1 score of 
66.4 % for 
porosity. 
•Ranking the 
importance of 
each feature 

[119]  
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4.1. Battery monitoring and control 

4.1.1. Performance prediction 
P2D model can accurately predict battery dynamic behavior of the 

battery during operation but it is computationally expensive for real- 
time application. There have been efforts to reduce the time of this 
model to enable the implementation of it for battery management 
purposes. 

Dawson-Elli et al. [121] proposed a combination of a comprehensive 
pseudeo-two-dimensional model with a variety of ML algorithms 
including decision trees, random forests and gradient boosted machines 
to evaluate their execution time and accuracy. Using the P2D model, a 
dataset containing 24000 parameter combinations with variations 
across 27 parameters was created. All approaches had reasonable ac
curacy in predicting the voltage of the next time step using the four 
previous time steps during constant current discharge; however, the 
models were unable to predict voltage values for different current rates 
or battery chemistries rather than that of the training dataset. SOC 
prediction yielded low accuracy due to the high variances in the dataset, 
suggesting that the dataset should be restructured and comprehensive 
ML algorithms should enhance the results [121]. 

In another work by Li et al. [122] a modified version of LSTM called 
two-dimensional grid LSTM was used to map measurable battery data to 
internal spatial-temporal states. To generate training and test datasets, 
an electrochemical-thermal model was utilized. Using a SOC ranging 
from 5 to 95 %, and operating temperatures ranging from 0 to 40 ◦C, 
fifteen EV drive cycles were used as inputs for the P2D model. By uti
lizing different voltage, current and ambient temperature values, the 
physics-informed LSTM was able to predict internal LIB internal states. 
These states included average and surface Li+ concentration and po
tential in the electrode and electrolyte, which are essential for battery 
state estimation, safety, and lithium plating. A maximum error of 3.95 % 
was observed in the prediction of internal states using the proposed 
model when noisy input data was used. 

A schematic illustrating the proposed flowchart of these works is 
represented in Fig. 6. 

It is also possible to increase the accuracy of simple physics-based 
models such as SPM and ECM by combining them with machine 
learning algorithms using a hybrid architecture as shown in Fig. 7. 

Tu et al. [123] proposed hybrid models by integrating physics-based 
models and a FNN algorithm. The goal was to enhance the prediction 
accuracy of a single particle thermal model (SPTM) and an ECM. The 
FNN was employed to capture voltage deviations between these models 
and the true voltage value. In the SPTM-FNN hybrid framework, the 
neural network is trained based on a simulated dataset generated using a 
full-order P2D model of an LCO-graphite cell. The current profile, initial 
SOC, and initial temperature were fed to the SPTM, to calculate bulk and 
surface SOC, and temperature profile as the outputs. The hybrid 

SPTM-FNN framework produced impressive improvements in prediction 
accuracy compared to the SPTM. Using experiments conducted on 
Samsung INR18650-25R LIB cells, the required variables for an ECM 
model called nonlinear double capacitor (NDC) as well as the training 
dataset for the FNN algorithm were derived. The initial SOC and current 
profile are inputs to the NDC model. The outputs include the voltages of 
the bulk inner regions of the electrode, electrode surface voltages, and 
transient voltages resulting from ion diffusion. These outputs and the 
current and temperature profiles were fed to the FNN to calculate the 
modified voltage. The NDC-based hybrid model has been enhanced to 
capture the effect of aging on battery voltage response. The proposed 
framework produces significantly lower voltage errors than the NDC 
model at all current rates by including state of health as an additional 
input to the FNN. 

For the accurate prediction of battery voltage and temperature, Feng 
et al. [124] have developed an electro-thermal neural network (ETNN). 
Based on surface temperature and current, an electrochemical-thermal 
sub model (ETSM) was applied to estimate terminal voltage and core 
temperature. The neural network was trained based on experimental 
dataset to capture the voltage residuals therefore the ETNN was able to 
deliver high precision under high C-rates (up to 10 ◦C) and wide tem
perature ranges (− 10 to 40 ◦C). The inputs to the neural network were 
the measured current and estimated voltage, and core temperatures 
from ETSM. Using an unscented kalman filter, a maximum RMSE of 0.9 
% was obtained at 40 ◦C for estimating SOC and 1.08 ◦C for estimating 
state of temperature at − 10 ◦C. 

Combining electrochemical models with ML techniques to enhance 
accuracy and reduce computational load in predicting LIB performance 
is a promising route towards LIB DTs. However, there is an ongoing 
requirement to optimize these hybrid models for accurate and efficient 
LIB modelling. Despite this, there is substantial potential of combining 
physics-based models with ML algorithms for improved LIB performance 
management. 

4.1.2. Parameter estimation 
Combining P2D with thermal and aging models can provide an un

derstanding of how battery parameters change during operation. While 
such a comprehensive model may take a considerable amount of time to 
run the use of machine learning can assist this model to make real-time 
predictions. 

An LSTM algorithm was also developed by Chun et al. [125] for 
real-time parameter estimation. The algorithm was trained to replicate 
the dynamics of a Nickel Manganese Cobalt Oxide (NMC) LIB cell using 
synthesized data of measurable parameters including, voltage, current, 
temperature, and SOC generated with a P2D model combined with 
thermal and aging models. This study considers anode electrolyte 
decomposition, cathode electrode decomposition, and battery volume 
change phenomena, which affect solid particle surface area and solid 

Fig. 6. Workflow of hybrid models for dynamics training.  
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particle conductivities for anode and cathode, normalized available 
capacity, and SEI layer thickness battery parameters. The training 
dataset was created by applying variations in the aging-related param
eters. The trained LSTM network was validated using experimental data 
from an NMC battery cell test. The experimental data included voltage, 
current, and temperature, while SOC was computed using the Coulomb 
counting method. This data was used as the input of the LSTM network 
to estimate aging-relevant parameters, where simulated voltage results 
matched experimentally obtained voltage results with an RMSE of 0.43 
%. The proposed parameter estimation workflow of this work is repre
sented in Fig. 8. 

In Table 1, this work summarize the existing research on physics- 
informed ML for battery control and monitoring, the models involved, 
the ML methods applied, the method of generating training data, the 
battery chemistry, and the application of the developed hybrid model. 

There is an increasing interest in utilizing ML techniques for 
parameter estimation and real-time predictions in LIB systems. The 
effectiveness of ML algorithms, such as LSTMs, in estimating crucial LIB 
parameters, enhancing the accuracy of predictions, and enabling real- 
time monitoring and control is promising. This underscores the poten
tial of combining physics-based LIB models with ML algorithms for ac
curate parameter estimation and efficient LIB management. 

4.2. Battery design 

Hybrid models can be extremely beneficial when it comes to battery 
design, where complicated models must be run several times before the 
desired result is achieved. In Fig. 9, a general workflow is shown for 

combining physics-based models with machine learning algorithms for 
LIB design applications. Various applications of hybrid models are dis
cussed in this study. 

4.2.1. Improved energy and power 
A thermal-electrochemical model was combined with neural 

network algorithms in Wu et al.’s [126] study to determine the optimal 
design of an NMC-graphite cell to achieve high specific power and 
specific energy. Electrode thickness, volume fraction, Bruggeman con
stant, active material radius, and lithium concentration in the electrolyte 
were selected from those parameters of the positive electrode that can be 
controlled during manufacturing. For the proposed method, two neural 
networks were used. The first one served as a classifier that assessed 
whether an input parameter set was physically feasible. In this neural 
network, the six design parameters were inputs. As the algorithm’s 
output, a value ranging from 0 to 1 was generated, with 0 representing 
an abnormal input. A second neural network was used to calculate the 
specific power and specific energy of a given set of inputs. While C-rate 
is the most important factor affecting specific power, electrode thickness 
and porosity are the two most important factors affecting specific en
ergy. To obtain optimal design parameters that satisfy both the re
quirements for high specific power and energy, a total of 10000 Monte 
Carlo algorithms were performed on the trained networks. 

For a LIB with thick electrodes, Gao et al. [127] obtained an opti
mized electrolyte channel design, improving battery performance dur
ing fast charging and mechanical stability. Their study used 
electrochemical and mechanical models, deep neural networks, and 
Markov Chain Monte Carlo. To determine the effect of geometric 

Fig. 7. Workflow of hybrid models for improved prediction accuracy.  

Fig. 8. Workflow of hybrid models for parameter estimation.  
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parameters on cell performance, simulations were conducted using the 
electrochemical and mechanical model. Various electrolyte channel 
lengths and widths, and electrode material widths were simulated. Each 
set of simulations compared specific energy, power, capacity, and me
chanical stability with conventional electrodes without channels. Data 
generated by simulation was used to train DNN. To obtain the optimal 
channel design, the trained DNN was combined with a Markov Chain 
Monte Carlo optimization algorithm. By varying the length, width, and 
tapering degree of the cathode and anode electrolyte channels, specific 
energy, power, and capacity contours were calculated. A maximum 
error of 1.94 % was calculated from Ragone plots of possible specific 
energy and power values. Furthermore, by freely modifying all six 
channel geometrical parameters and choosing specific energy as the 
design goal, the optimal channel design improved by 74 %. 

A method developed by Deng et al. [128] for obtaining cathode 
active material distribution resulted in higher specific energy compared 
to an electrode with a uniform surface. To test the proposed method, 
they utilized an NMC-Li cell. In the NMC electrode, the average solid 
volume fraction was 50 %, and the rest was filled with electrolyte. Using 
a pseudo-three-dimensional model, cell energy was calculated by 
considering variations perpendicular to electrode thickness. DNN was 
used to learn the physics of the system and generalized simulated 
annealing was integrated with the DNN to find the optimal pattern. They 
fed the DNN with 100 values of volume fraction and their corresponding 
specific energy values based on the pseudo-three-dimensional model. 
The energy is calculated with the trained DNN instead of solving the 
equations of the electrochemical method, and a base value for volume 
fraction is calculated using generalized simulated annealing. A new set 
of volume fractions was then generated by adding noise to the base 
value. An updated training dataset was created with volume fraction 
values closer to the optimal region; therefore, training the DNN with this 
dataset would be more accurate. The optimal solid material distribution 
showed a periodic pattern with some channels filled with electrolyte, 
easing the transportation of lithium ions. 

To improve ionic transport and reduce voltage drop during high 
charging rates, Sui et al. [129] proposed a bio-inspired vascularized 
electrode design. The proposed structure reduces the transport resis
tance near the separator, reducing voltage drop. Comparing the capac
ities of homogenous, vertical channel electrodes, two-branched and 
four-branched vascularized electrodes confirmed this hypothesis, with 
the vascularized electrodes showing the highest capacity. An artificial 

neural network was employed to find the optimal geometry. Based on 11 
geometric parameters of the vasculature channels, a training dataset was 
generated. Each parameter combination represented a unique vascu
larized structure. COMSOL Multiphysics was employed to solve an 
electrochemical model with the finite element method (FEM). The final 
ANN model was 84 times more computationally efficient than the con
ventional FEM. By using the trained ANN’s efficient prediction capa
bility, a library of useful information was created to store charging 
curves, channel structure, charging rates, capacity, and porosity, as well 
as some electrochemical data, such as energy density, average voltage, 
and power density. Using this library, the optimal electrode structure 
design can be determined by defining manufacturing and operation 
limitations (channel radius, C-rate, and power density) and performance 
objectives. After successfully applying the vascularized graphite anode, 
the proposed structure was also applied to the cathode. The full cell 
vascularized structure showed a 66 % charging capacity enhancement 
compared to traditional homogenous electrodes. 

The effectiveness of ML techniques in optimizing LIB designs for 
improved energy and power is a new and exciting frontier in LIB 
research. There is a clear synergy between physics-based models, ML 
algorithms, and optimization strategies in enhancing battery perfor
mance, providing novel insights into designing electrodes, electrolyte 
channels, and active material distributions. Such integrations enable the 
efficient exploration of vast design spaces, resulting in significant en
hancements in LIB performance metrics, as demonstrated by these 
studies. However, as this field develops and expands, it is reasonable to 
assume that the digital LIB experimental space will transcend physical 
laboratory experimentation, leading to challenges in verifying results 
obtained digitally. Therefore, it is imperative that validation with 
physical experimentation is maintained to validate promising digital 
developments. 

4.2.2. Improved thermal management 
A nail penetration model, ML regressor algorithm, and genetic al

gorithm were used in Yamanaka et al.’s [130] study to identify battery 
design parameters for higher safety. Through nail penetration simula
tions within the range of input variables, including cell design param
eters, test conditions, and performance indicators, the training database 
was created. By multiplying the finite element parameters by 0.5 and 
1.5, upper and lower limits were set for the design and test parameters. 
This method generated 368 datasets. Descriptors include electrical, 

Fig. 9. workflow of integration of physics-based modeling and machine learning for LIB design applications.  
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electrochemical, and dimensional parameters, and battery test condi
tions such as nail velocity, position, and diameter, while predictors 
include combustion volume, capacity, and averaged internal resistance. 
By analyzing the relationship between descriptors and predictors, cor
relation factors were calculated that indicate parameter dependency. 
For each predictor, a GPR algorithm was constructed. Using regression 
models, the values were predicted with high accuracy with a R2 of 0.9 or 
greater. To find the design parameters leading to better performance, a 
genetic algorithm was used. Cell width, cell height, cell thickness, 
negative electrode layer thickness, negative active material diameter, 
negative porosity, and negative active material Li+ diffusion coefficient 
were optimized, which resulted in 3.3 times greater capacity and 0.78 
times lower internal resistance as well as a minimized combustion 
volume. 

Li et al. [131] used a multilayer perceptron neural network to find 
the optimal battery pack configuration for enhancing battery thermal 
management. A 3D electrochemical model was used to simulate battery 
pack temperature distribution and heat transfer to the ambient envi
ronment. Nine pack configurations with variations in the gaps among 
battery pairs were formed. Each configuration’s temperature distribu
tion was analyzed under various operating conditions to create 130 
datasets of inputs and outputs for the ANN. The inputs to the ANN 
included gap dimensions in two directions as the configuration param
eters and air velocity and ambient temperatures as the operating con
ditions. The model outputs are the maximum temperature of a battery 
cell and the difference between its highest and lowest temperature. The 
developed hybrid model calculated 6,250,000 data of different battery 
configurations under various operating conditions and identified the 
optimal configuration. A 1.9 % reduction in maximum temperature and 
a 4.5 % reduction in maximum temperature difference improved battery 
cooling efficiency and performance. 

The efficacy of ML approaches linked with LIB modelling methods 
has been shown to improve thermal management within LIB designs. 
This allows the improvement of LIB designs to optimize safety, tem
perature distribution, and cooling efficiency within LIBs. Although the 
application of ML-driven approaches demonstrates their potential in 
enhancing thermal management strategies, offering insights into 
optimal battery designs for improved safety and performance, further 
research should focus on improving the accuracy of these methods. In 
addition, there is still a requirement for these approaches to be applied 
to the knowledge gained from LIBs used in real-world applications 
considering the various climates and environments LIBs are routinely 
used in. 

4.2.3. Mesoscale design 
In their study, Takagishi et al. [132] developed a physicochemical 

based data-driven approach to find the mesoscale structure of LIB 
electrodes, resulting in lower specific resistance and higher capacity and 
power. A simplified physicochemical model was used to simulate the 
specific resistance during charge-discharge processes for 2100 randomly 
generated 3D structures. Analyzing the model’s results, the relationship 
between active material volume ratio, particle radius, matrix binder 
conductivity, additives volume ratio, and pressure in the compaction 
process was constructed. To create regressions between process pa
rameters and total specific resistance, an ANN algorithm was developed. 
A Bayesian optimization method was used to find the optimal electrode 
structure. Electrodes with a 50 % volume ratio and a binder/additive 
volume ratio less than 0.1 % give lower total specific resistance than 
other electrode structures. 

Kabra et al. [133] used physics-constrained ML algorithms to char
acterize electrode microstructural properties. A dataset of 17,000 elec
trode microstructures was generated by varying ellipsoidal particle 
shapes, sizes, orientations, and active material and binder phase 
composition. A 3D physics-based pore-scale simulation method was 
used to characterize these electrode structures. Electrode properties 
included effective electronic conductivity, tortuosity of the pore 

network in three directions representing Li+ transport in the pore 
network, and volume-specific surface area, which represents the inter
facial area for electrochemical reactions. The method was also applied to 
a graphite cathode, but it can be applied to other porous electrode 
materials as well. Based on the created dataset, linear regression, lasso 
regression, elasticnet, ridge regression, decision tree, adaboost, and 
gradient boost algorithms were trained to map physical descriptors 
(inputs) to electrode properties (outputs). Predictions of different 
properties were more than 90 % accurate. 

A summary of hybrid methods used in research for LIB design ap
plications on a variety of scales and objectives is presented in Table 2. 

Optimizing electrode structures at the mesoscale is a promising route 
for improved LIB performance, where ML-driven modelling approaches 
are effective (see Table 3). The integration of physics-based models and 
ML algorithms has provided insights into the relationships between 
electrode structure and performance metrics in LIBs. However, there is a 
limitation in the validation of some approaches. Designing intricate 
structural changes digitally can yield performance gains but can be 
difficult to verify experimentally if there structure is not straight- 
forward to engineer using current technologies. Although the state-of- 
the-art demonstrates the potential for ML techniques to guide the 
design of mesoscale electrode structures, thereby enhancing specific 
resistance, capacity, and power in lithium-ion batteries, there is still the 
requirement for further physical verification of these findings. 

4.3. Hybrid modelling roadmap 

Designing batteries utilizing hybrid modelling methods involving 
physics-based models and machine learning is an emerging field and 
requires a comprehensive approach. The authors suggest the following 
concise roadmap based on current research and future prospects. 

Data collection and preprocessing is required to gather diverse 
datasets encompassing battery characteristics, performance, and aging 
under various conditions. It is imperative to ensure data quality, 
standardisation, and compatibility for subsequent modelling stages, 
allowing the adaptation of modelling results between fields. Physics- 
based modelling must be developed or refined into simpler models 
based on electrochemical principles, incorporating material properties, 
kinetics, and thermodynamics. These must be simplified so they can be 
integrated with machine learning algorithms for improved accuracy and 
efficiency in real-time. Machine learning integration into hybrid models 
requires the identification of appropriate machine learning techniques 
(e.g., neural networks, ensemble methods) for coupling with physics- 
based models. The machine learning methods must then be trained 
using the combined datasets (use by both the physics-based models and 
machine learning), leveraging machine learning to enhance predictive 
capabilities and model robustness. 

Hybrid model validation and optimization using experimental and 
usage data to assess their accuracy and reliability. This can be chal
lenging for designs that are not yet developed physically, and therefore 
lacking experimental data. This can be alleviated by optimizing the 
hybrid models iteratively, fine-tuning parameters and architectures for 
better performance. Following this, the application and scaling of hybrid 
models can be performed. This will involve the implementation of the 
validated hybrid models in practical scenarios for battery design, opti
mization, and predictive maintenance. This will also open opportunities 
for the models to be applied to broader applications across different 
battery chemistries and configurations. This will result in robust hybrid 
models that may give insight into designs of batteries that have not yet 
been validated experimentally. 

Future research directions should focus on investigating novel data- 
driven techniques and advancements in machine learning for further 
improving hybrid modelling accuracy and efficiency. This includes the 
exploration of the integration of AI-driven optimization algorithms for 
advanced battery design, control, and monitoring. To achieve this, it will 
be required that many scientific disciplines collaborate in a 
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multidisciplinary manner to address challenges in scalability, inter
pretability, and transferability of hybrid models. An essential require
ment for this knowledge transfer and collaboration will include 
establishing knowledge-sharing platforms, workshops, and collabora
tions to disseminate findings and facilitate cross-disciplinary in
teractions in Lithium-ion battery hybrid modelling. 

This field of research is rapidly evolving and advancing, and this 
roadmap should adapt to evolving research, technological advance
ments, and emerging challenges in battery technology, ensuring flexi
bility to incorporate novel methodologies and insights as they arise. 

5. Future outlook and conclusions 

More efficient deployment of LIBs is essential for a carbon emission- 
free future. For this to be achieved, more improvements must be made to 
develop and engineer high-performing LIBs. Employing digital tools for 
LIB research and development can accelerate the discovery of more 
effective battery designs by providing the opportunity to virtually test 
the impact of new design ideas on battery performance during its whole 
lifetime and under various working conditions. By evolving from simple 
empirical and ECMs to precise electrochemical models, simulations of 
LIBs have reached a high level of maturity. It is now possible to develop 
realistic 3D digital models of LIBs that consider the effect of degradation 

modes, heat generation, and material inhomogeneities and can closely 
imitate an actual battery’s behavior. Such high-precision models can 
provide valuable information regarding how internal battery parameters 
are affected throughout a battery’s life. However, the high computa
tional cost of these models is the primary obstacle to their widespread 
use. Physics-informed machine learning has been proven to perform 
well as a surrogate for complicated physics-based battery models by 
reducing computation costs while maintaining accuracy. The applica
tion of physics-informed ML within the field of LIBs has primarily 
focused on developing fast models suitable for battery monitoring and 
state estimation during operation. It has also been proven that physics- 
informed ML surrogates can be used to achieve the optimal design 
leading to improved performance from pack to mesoscale level. 

Despite this, some aspects of the current research can be improved to 
maximize the potential of hybrid methods. The models used in research 
for training dataset generation are not the most accurate and suffer from 
shortcomings. Integrating more precise multi-physics models with 
intensive details that simulate battery electrochemical reactions, ther
mal, aging, and mechanical behavior during the system’s operation with 
ML algorithms can lead to more reliable results. In addition, large 
datasets of synthetic data are used to train ML algorithms to find the 
mapping between the LIB structure and property. Including the physics 
of the system more precisely by enforcing physical constraints to the loss 

Table 2 
Summary of works on hybrid methods for battery controlling applications.  

Reference Physics-based model ML method Train and test dataset Chemistry Functionality 

Dawson-Elli 
et al. [121] 

P2D-thermal decision tree, random forests, 
gradient boosted machines 

Synthetic data from P2D-thermal NMC Terminal voltage and SOC 
prediction 

Tu et al. [123] P2D-thermal, SPM- 
thermal, ECM 

FNN Synthetic data from P2D-thermal and 
SPM-thermal, experimental data 

LCO Improving the accuracy of SPM and 
ECM 

Feng et al. [124] SPTM FNN Synthetic data from SPM-thermal, 
experimental data 

LFP Improving the accuracy of SPTM 

Li et al. [122] P2D-thermal LSTM Synthetic data from P2D-thermal NMC Internal battery state estimation 
under real-world condition 

Chun et al. 
[125] 

P2D-thermal model and 
SEI dynamic model 

LSTM Synthetic data from P2D-thermal and SEI 
dynamic model 

NMC Real-time parameter estimation  

Table 3 
Summary of works on hybrid methods for battery design applications.  

Reference Physics-based model ML method Scale Design variables Chemistry Objective 

Wu et al. 
[126] 

Electrochemical-thermal 
model 

ANN Battery cell Positive electrode thickness, 
volume fraction, Bruggeman 
constant and particle radius, 
electrolyte Li+ concentration, 
applied C-rate 

NMC Improved specific energy, 
specific power, and specific 
capacity 

Gao and Lu 
[127] 

P2D and mechanical 
stress model 

DNN Battery cell 6 geometric channel parameters – Improved specific energy, 
specific power, and specific 
capacity 

Deng and Lu 
[128] 

pseudo-three-dimensional DNN Battery cell Solid volume fraction NMC-Li Improved specific energy 

Sui et al. 
[129] 

P2D ANN and the bagging 
ensemble algorithm 

Battery cell 11 geometric channel parameters LCO Improved capacity and 
charging time 

Yamanaka 
et al. 
[130] 

Nail penetration (coupled 
1D electrochemical-2D 
electrical-3D thermal) 

GPR Cell stack Cell width, height and thickness, 
negative material thickness, 
particle radius, porosity, and Li+

diffusion coefficient 

NMC Minimized combustion 
volume and internal 
resistance, improved safety, 
and thermal management 

Li et al. 
[131] 

Simplified 
electrochemical model 
and lumped thermal 
model 

Multilayer perceptron 
neural network 

Battery pack Gap between battery pairs LFP Enhance battery thermal 
management 

Takagishi 
et al. 
[132] 

3D structure simulation, 
Simplified physico- 
chemical model 

ANN and Bayesian 
optimization 

Electrode 
mesostructure 

Active material volume fraction 
and radius, binder/additive 
volume ratio, compaction process 

NMC Minimizing specific 
resistance 

Kabra et al. 
[133] 

Stochastic 3D electrode 
generation, 3D physics- 
based pore scale 
simulation 

linear regression, lasso 
regression, elasticnet, ridge 
regression, decision tree, 
adaboost, and gradient 
boost 

Electrode 
mesostructure 

Electrode composition (e.g. active 
material volume fraction), active 
material shape (e.g. equivalent 
radius), mean pore size, 
orientation 

Graphite 
anode 

Relationship between 
electrode mesostructures and 
physical properties  
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function can increase the reliability of the results by reducing the risk of 
producing physically unfeasible data when extrapolating beyond the 
training data [134]. Using a database of previous experiments or sim
ulations of novel LIB structures can be useful for the model parameter
ization process and ML training [135]. Including experimental data in 
the training process of ML can increase the accuracy of the results by 
considering the effect of battery processes that might not be captured in 
the multi-physics model [136]. Also, when trying to find the optimal 
design of a battery component such as electrodes, it would be more 
accurate to extract the initial parameters of the multi-physics model 
from the performance curves of similar structures. 

There are some challenges involved in developing a hybrid digital 
framework for LIB design. Development and parameterization of the 
multi-physics battery models are challenging due to the complexities 
involved in the system and large sets of required parameters. There are 
several coupled partial differential equations describing the behavior of 
the battery that must be solved simultaneously. It might be difficult to 
add all these equations to the loss function. Given that the challenges are 
addressed, combining three elements of high-fidelity multi-physics 
modeling, intelligent ML algorithms, and large experimental and simu
lation data can lead to developing a computationally efficient LIB 
simulation framework that can be used as a digital battery lab. Using this 
tool, electrode structures that satisfy different performance criteria 
simultaneously (e.g., high energy and power density, reduced lithium 
plating, and increased safety) can be obtained, leading to the develop
ment of the next generation of LIBs. 

Verifying advanced digital LIB hybrid models through physical 
verification poses significant challenges due to the complexity and fi
delity of digital designs. Recreating these digitally developed models in a 
laboratory setting can be difficult due to complexity of designs, high 
dimensionality and multivariate nature, resource and time constraints, 
accuracy and calibration challenges, and the dynamic and evolving 
nature of the LIB research and development field. To overcome these 
challenges, interdisciplinary collaborations involving experts in 
modelling, experimental analysis, and ML are essential. By combining 
aspects of hybrid modelling with targeted physical experiments can 
provide validation and refinement of digital results. Moreover, ad
vancements in technology and innovative experimental techniques are 
continuously sought, and can prove to bridge the gap between digital 
models and physical verification in advanced LIB research. This pro
cedure can be enhanced by collecting and sharing multiple datasets from 
various studies in a standard and interpretable manner, providing re
searchers with valuable information derived from both simulations and 
experiments. 

With the need to electrify the energy sector with renewable energy to 
prevent climate change, batteries will play a significant role. The work 
presented here is of particular importance to the development of high- 
performance LIBs. By leveraging digital tools for LIB experimentation, 
it will allow research in the field of LIBs to progress faster than through 
traditional laboratory-based experimentation. At minimum, digital tools 
for battery experimentation can help guide further research in the lab
oratory to reduce development time. By expediting development of LIBs 
using digital tools, battery properties (e.g., power and energy) can be 
improved in a shorter time-frame. This is of interest for batteries used in 
transport applications, where battery size and mass are of importance. 
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