

Faculty of Biosciences, Fishery, and Economics

Life on Air: On the Physiological Basis of Atmospheric Methane Oxidizing Bacteria

Tilman Schmider A dissertation for the degree of Philosophiae Doctor, March 2024

Table of Contents

Acknowledgements				
Abstract				
List of papers				
Abbreviations	9			
1 Introduction	11			
1.1 Atmospheric methane	11			
1.2 Methanotrophs	12			
1.3 Why study atmMOB and the biological sink of atmospheric CH ₄ ?	13			
1.4 Atmospheric methane oxidizing bacteria	14			
1.5 Ecology and phylogeny of atmospheric methane oxidizing bacteria	14			
1.6 Physiology of atmospheric methane oxidizing bacteria	17			
1.6.1 (i) Oligotrophs	17			
1.6.2 (ii) Flush feeders	21			
1.6.3 (iii) Facultative CH ₄ oxidizers	22			
1.6.4 (iv) Ammonia oxidizers	22			
1.7 Main objectives	23			
1.8 Secondary objective	24			
1.9 The methanotrophic strains	24			
1.9.1 Methylocystaceae	24			
1.9.2 Methylocapsa	26			
1.10 Aerobic methane oxidation	28			
1.10.1 Activation of CH ₄	28			
1.10.2 Methanol oxidation	29			
1.10.3 Formaldehyde oxidation	30			
	2			

	1.1	0.4	Assimilation of carbon via the glycine cleavage system and the serine cycle 3	34
1.11 Oxidation of atmospheric hydrogen and carbon monoxide			Oxidation of atmospheric hydrogen and carbon monoxide	35
	1.12	N	V ₂ -fixation by methanotrophs	36
2	Ma	ateria	1 and Methods	38
	2.1	Filt	er cultivation	38
	2.2	Oxi	dation of atmospheric trace gases and energy yield estimation	39
	2.2	2.1	Quantification of cells in filter cultures	40
	2.2	2.2	Cellular dry mass estimation and carbon content	41
	2.3	N_2 t	fixation on air by atmMOB	41
	2.4	Atn	nMOB adjustments to growth on air	12
	2.5	Glo	bal distribution of atmMOB	45
 3 Results 3.1 Paper 1: Simultaneous Oxidation of Atmospheric Methane, Carbon Monoxide Hydrogen for Bacterial Growth 				46
			per 1: Simultaneous Oxidation of Atmospheric Methane, Carbon Monoxide, an	nd
			for Bacterial Growth	46
	3.2	Pap	er 2: Physiological Basis for Atmospheric Methane Oxidation and Methanotroph	ic
	Grow	th or	n Air	17
3.2.1 Colony formation, trace gas oxidation, and cellular energy		Colony formation, trace gas oxidation, and cellular energy yield during grow	th	
	on	air		17
3.2.2 Comparative proteomics		2.2	Comparative proteomics	18
	3.2	2.3	Specific affinity	49
	3.2	2.4	Growth on nitrogen from air	49
	3.2	2.5	Conclusions	50
	3.3	Glo	bal distrubtion of atmMOB	51
4	Dis	scuss	ion	52
	4.1	Phy	visiological strategies of atmMOB to oxidize atmospheric CH4	52
	4.2	Eco	blogy and phylogeny of atmMOB	55
4.3 Metabolic potential of atmMOB for biotechnology			tabolic potential of atmMOB for biotechnology	56 3

5	References	58
Publ	ications	72

Acknowledgements

Before I was allowed to work in the laboratories of UiT, I had to join a course about health, safety, environmental matters, and emergency preparedness. During this course, the lecture stated that "*my leader is the most important person in my life*" which is, especially for a German, a delicate statement. Of course, he was referring to my PI and Supervisor Alex. Even though I do not fully agree with the statement, amongst others, because my partner in life Andrea might read the acknowledgement, there is definitely a grain of truth if referred to the work life of a PhD candidate. When I first met Alex during my masters in Vienna, thinking I was talking to another master student (guess the fresh ocean air does not only conserve cod), I had no idea of his plans to recruit Andrea as postdoc for his research group in Tromsø. But with Andrea as arctic soil enthusiast and me as good and planless partner, it was quickly settled that I would end up in Tromsø. Luckily, I did not regret the decision at all. Alex, you did a great job not only scientifically but also socially as PI and supervisor, which, unfortunately, does not seem to be the default in science. Many thanks for that!

My original PhD topic addressed the methanotrophic community of a pingo system in Svalbard. As the pandemic rendered the sampling on Svalbard impossible, I was forced to change the PhD topic and focus on methanotrophic pure cultures that appear to grow on air. This change significantly minimized the risk of drowning in a dark, muddy pond or being assimilated by a polar bear. Also, it gave me the opportunity to continue the research on these fascinating bacteria, that was started by the group under Mette's leadership. Thus, Mette and Alex, many thanks that you enabled this unique opportunity.

Even though these fascinating bacteria I focused on can grow on air, they want to be wined and dined. Due to their special nature they demand to be grown on filters when fed with air which requires a lot of work. As Anne Grethe prepared most of the countless filter cultures that I have burned during my PhD and helped me a lot in general, a big thanks to you Anne Grethe.

If one starts to work at a new workplace, it is always helpful to have a person around that knows the lab, the infrastructure, and the right people. It is especially helpful if the person is as nice and willing to help as Bente. Bente, thank you for your help whenever it was needed.

Next, I want to thank my office mate Yin, all members of the CECO and the Microplants group which I am part of, and all co-authors contributing to the publications. It is nice to work in an environment mainly driven by curiosity as major motivation. You made my time as PhD really enjoyable!

Natürlich will ich auch meiner Familie, die mich in meinem bisherigen Werdegang immer unterstütz hat, danken. Phrasen wie diese erscheinen mir immer etwas leer, darum versuche ich es auf den Punkt zu bringen: Eintauschen will ich euch nicht.

And of course, I want to thank Andrea. I guess the lecturer confused Alex with you.

For those that I have not mentioned by name or forgotten, even though they have earned my thanks, many thanks and please excuse me. I am writing this section at the very end of my thesis. Most likely, your name was sacrificed to the submission deadline.

Abstract

Atmospheric methane oxidizing bacteria (atmMOB) constitute the only known biological sink for atmospheric methane (CH₄). By oxidizing the potent greenhouse gas CH₄ at its atmospheric concentration, they mitigate global warming. Despite the discovery of atmMOB in soils worldwide, the research on atmMOB stagnated as methanotrophs, that oxidize atmospheric CH4 enduringly, have escaped isolation for decades. In 2019, the isolation of an atmMOB Methylocapsa gorgona, capable of growing "on air" (i.e., with air as sole carbon and energy source), eventually succeeded. Building on this atmMOB isolate, the physiological strategies and metabolic traits enabling methanotrophic growth on air have been investigated during this PhD thesis. To do so, a set of methods, specifically designed for bacterial cultures growing on filters that float on medium, has been established, comprising trace gas oxidation experiments, cell quantification, comparative proteomics, and 15 N-based isotopic labelling. Besides M. gorgona, the capability of five additional methanotrophic species to grow on air and their physiological strategies were investigated. In total, four of the six methanotrophic species, including three outside the canonical atmMOB group USC α , could grow on air, quadrupling the number of known atmMOB in pure culture. Additionally, the atmMOB were found to cover their nitrogen requirements from air. A combination of three physiological characteristics was identified as basis of the atmMOB to grow on air: A mixotrophic lifestyle, as all species oxidized atmospheric hydrogen (H₂) and/or carbon monoxide (CO) in addition to CH₄; energy requirements for growth below the energy value previously assumed necessary for cellular maintenance; and high apparent specific affinities for CH₄. On a metabolic level, the atmMOB decreased investments in biosynthesis while increasing investments in trace gas oxidation during growth on air. As a first comprehensive work on atmMOB in pure culture, this thesis reveals strategies of atmMOB to grow on air, challenging previous notions of energy constraints for aerobic growth and the phylogeny of atmMOB. The findings suggest that the atmosphere supports larger atmMOB populations than assumed, indicating that their global distribution and impact on the global carbon cycle have been underestimated. Also, their role in mitigating global warming might be more important as they consume the indirect greenhouse gases H_2 and CO in addition to CH₄. The atmMOB pure cultures and the methods developed in this thesis, are promising steppingstones to model the interaction between rising atmospheric CH₄ levels, global warming, and the biological sink for atmospheric CH₄, and to evaluate the potential of atmMOB for the biofiltration of low-CH₄ emissions and other biotechnological applications.

List of papers

Paper 1:

Simultaneous Oxidation of Atmospheric Methane, Carbon Monoxide and Hydrogen for Bacterial Growth

Alexander Tøsdal Tveit, Tilman Schmider, Anne Grethe Hestnes, Matteus Lindgren, Alena Didriksen and Mette Marianne

Microorganisms 2021, 9, 153. https://doi.org/ 10.3390/microorganisms9010153

Paper 2:

Physiological Basis for Atmospheric Methane Oxidation and Methanotrophic Growth on Air

Tilman Schmider, Anne Grethe Hestnes, Julia Brzykcy, Hannes Schmidt, Arno Schintlmeister, Benjamin R. K. Roller, Ezequiel Jesús Teran, Andrea Söllinger, Oliver Schmidt, Martin F. Polz, Andreas Richter, Mette M. Svenning, Alexander T. Tveit

Manuscript accepted in Nature Communications

Abbreviations

a_A^0	_	specific apparent affinity
ANME	_	anaerobic methane oxidizing archaea
AtmMOB	_	atmospheric methane oxidizing bacteria
ATP	_	adenosine triphosphate
c	_	gas concentration
CH ₂ O	_	formaldehyde
CH ₃ OH	_	methanol
CH ₄	_	methane
C-mol	_	carbon mol
CO	_	carbon monoxide
CO ₂	_	carbon dioxide
CODH	_	carbon monoxide dehydrogenase
D ₂ O	_	deuterium oxide/heavy water
EMP	_	Earth Microbiome Project
Fae	_	formaldehyde-activating enzyme
Fch	_	formate-tetrahydrofolate ligase
Fdh	_	formate dehydrogenase
FolD	_	methylene-H ₄ F dehydrogenase/methylene-H ₄ F
		cyclohydrolase
GCS	_	glycine cleavage system
H ₂ O	_	water
H4F	_	tetrahydrofolate
H4MPT	_	tetrahydromethanopterin
HCOO ⁻	_	formate
Hhy	_	NiFe group 1h hydrogenase
kJ	_	kilojoule
K _m	_	half saturation constant
Km(app)	_	apparent half saturation constant
LEL	_	lower explosive level
MDH	_	methanol dehydrogenase
MMO	_	methane monooxygenase
MOB	_	aerobic methane oxidizing bacteria
MtdA	_	methylene-H ₄ F/ methylene-H ₄ MPT dehydrogenase
MtdB	_	methylene-H ₄ MPT dehydrogenase
N_2	_	dinitrogen
NanoSIMS	—	secondary ion mass spectrometry
NH ₃	_	ammonia
Nif	_	molybdenum-iron nitrogenase
O_2	_	dioxgen
OAA	_	oxaloacetate
OH	_	hydroxyl radicals
PBS	—	phosphate saline buffer
PHB	_	poly-β-hydroxybutyrate
рММО	_	particulate methane monooxygenase
ppb	_	parts per billion
ppm	_	parts per million

PPQ	_	pyrroloquinoline quinone
sMMO	_	soluble methane monooxygenase
SMR	_	suspended microchannel resonator
USCa	_	upland soil cluster alpha
USCγ	—	upland soil cluster gamma
V	—	oxidation rate
Vmax	—	maximal oxidation rate
Vmax(app)	_	apparent maximal oxidation rate

1 Introduction

1.1 Atmospheric methane

Despite low atmospheric concentrations, methane (CH₄) is a greenhouse gas with a strong impact on climate change. Over a time horizon of 100 years, its global warming potential is estimated to be 30 times higher than carbon dioxide (CO₂). On a 20-year timescale, the global warming potential of CH₄ surpasses the potential of CO₂ 80 times^{1,2}. This time dependent change in the global warming potential of CH₄ derives from its short atmospheric lifetime of ca. 12 years³. CH₄ is responsible for about 20% of the global warming induced by long-lived greenhouse gases. Since pre-industrial times, the atmospheric concentration of CH₄ has increased by 150% to 1911.81 \pm 0.59 parts per billion (ppb) in 2022^{1,4,5} (Fig.1).

CH₄ sources that cause the increasing atmospheric concentrations can be broadly categorized into pyrogenic, thermogenic, and biogenic groups⁶. Pyrogenic CH₄ originates from the partial combustion of fossil fuels and biofuels and of biomass and soil carbon during wildfires. Thermogenic CH₄ has been formed over millions of years through geological processes. It seeps from the subsurface to the atmosphere via mud volcanos, marine seeps, terrestrial seeps or 11

through exploitation of fossil fuels⁶. For a long time, strictly anaerobic microorganisms belonging to the domain of Archaea (methanogens) have been considered as the only considerable biogenic CH₄ source. However, a study demonstrated the generation of CH₄ by aquatic and terrestrial cyanobacteria under light, dark, oxic, and anoxic conditions, linking CH₄ production to phototrophic primary production⁷. In 2022, a study reported CH₄ formation in metabolic active organism triggered by free iron and reactive oxygen species, implying that all living cells possess the potential to generate CH₄⁸. Still, the major sources of biogenic CH₄ are inhabited by methanogens and comprise a wide range of anoxic anthropogenic and natural ecosystems, ranging from rice paddies, digestive systems of ruminants, organic waste deposits, and oxygen-poor freshwater reservoirs to wetlands, oceans, and termites^{6,7}. The major sink of atmospheric CH₄ is the chemical oxidation of CH₄ by hydroxyl radicals (OH) in troposphere and stratosphere accounting for approximately 95% of the loss^{6,9,10}. The remaining 5% of the estimated loss is caused by methanotrophic bacteria that constitute the sole biological sink of atmospheric CH₄.

1.2 Methanotrophs

Methanotrophs, that utilize CH₄ as energy and carbon source, are the only known biological CH₄ sink^{11,12}. They comprise a phylogenetically diverse group of anaerobic and aerobic prokaryotes that oxidize CH₄ to CO₂ and play a major role in the global CH₄ cycle as they mitigate CH₄ emissions before reaching the atmosphere. It is estimated that methanotrophs mitigate 500 - 798 Tg CH₄ per year^{9,13}. In anoxic environments, anaerobic CH₄ oxidizing archaea (ANME) oxidize CH₄ by coupling the oxidation to the reduction of the electron acceptors sulfate, nitrate, iron, or manganese. In addition, methanotrophic bacteria of the candidate phylum NC10 oxidize CH₄ in anoxic environments, aerobic methane oxidizing bacteria (MOB) oxidize CH₄ with O₂ to CO₂. Atmospheric methane oxidizing bacteria (atmMOB), a subgroup of MOB, constitute the above-mentioned biological sink for atmospheric CH₄ as they can oxidize CH₄ at its atmospheric concentration. The defining characteristic of MOB is the methane monooxygenase (MMO) that catalyzes the oxidation of CH₄ to methanol. Depending on their major pathway of carbon fixation, aerobic methanotrophs

Gammaproteobacteria, fix carbon via the ribulose monophosphate pathway. Type II methanotrophs use the serine pathway for carbon fixation and belong to the class of *Alphaproteobacteria*¹⁹. Some Type II methanotrophs within the family *Beijerinckiaceae* also encode the Calvin-Benson-Bassham Cycle although the functional role of the cycle in these methanotrophs remains unclear²⁰. Type III methanotrophs fix carbon via the Calvin-Benson-Bassham Cycle and belong to the *Verrucomicrobia*²¹. However, the finding of methanotrophs within the *Actinobacteria* that fix carbon also via the ribulose monophosphate pathway renders the classification based on carbon fixation pathways as outdated²². Additionally, a recent study suggests that aerobic methanotrophs might also be represented within the *Gemmatimonadota*²³. Thus, the classification of aerobic methanotrophs into *types* should be only considered as synonym for the phylogenetic groups¹⁹ and needs to be updated according to the latest scientific progress.

1.3 Why study atmMOB and the biological sink of atmospheric CH₄?

Since 2007, after a brief period of stability, the atmospheric CH₄ concentration started to increase rapidly³ (Fig. 1). This increase has been linked to several causes: The declining OH concentration in the atmosphere that weakens the major atmospheric CH₄ sink, the increase of anthropogenic CH₄ emissions from agricultural and fossil fuel sources, and the increasing microbial CH₄ production in wetlands. The increasing microbial production suggests that current increases in the atmospheric CH₄ concentration are also driven by microbial feedback responses to global warming $^{24-26}$. In contrast to the declining chemical sink for atmospheric CH₄, the biological sink has the potential to grow with increasing concentrations of atmospheric CH₄. As the biological sink is within reach of management practices, its natural potential might be maximized to increase the removal of atmospheric CH₄²⁷. Additionally, atmMOB might be promising biocatalyst for the biofiltration of CH₄ emissions²⁸. However, the ecology, phylogeny, and especially the physiology of atmMOB is subject to major uncertainties caused by a historical lack of atmMOB in pure culture. These uncertainties have therefore prevented efficient management of the biological sink; understanding and predicting feedback responses by atmMOB to increasing concentrations of atmospheric CH₄; and the utilization of atmMOB for the biofiltration of emissions containing CH₄. Thus, a better understanding of atmMOB might, in light of the climate crisis, offer a toolset to mitigate CH₄ emissions, convert mitigated CH₄ emissions efficiently into valuable carbon compounds, and cope with increasing atmospheric concentrations of CH₄.

1.4 Atmospheric methane oxidizing bacteria

Despite the discovery of aerobic methanotrophy by Kaserer and Söhngen in the early 20th century, the first indication of atmospheric CH₄ oxidation was reported in 1982²⁹. In that study, swamp soils were shown to emit CH₄ when waterlogged, but consume atmospheric CH₄ when dry. The discovery of biphasic CH₄ oxidation kinetics of soils by Bender and Conrad in 1992³⁰, was another early indication of the existence of atmMOB. They discovered that soils exposed to low and high CH₄ concentrations show different kinetic properties. At low CH₄ concentrations, they measured high affinity activities and low maximal methane oxidation rates (V_{max}). Exposing the same soil to high CH₄ concentrations led to low affinity activities and high V_{max}. They concluded that methanotrophs only cultivatable at high CH₄ concentrations (in literature also referred to as canonical or conventional methanotrophs) are responsible for the low affinity activity. The high affinity, however, was assigned to either an unknown group of methanotrophs or an activity of the "canonical" methanotrophs that had escaped discovery³¹. Either way, as the investigated soils, in contrast to autoclaved controls, showed oxidation activity at CH₄ mixing ratios of 1700 ppb, another evidence was supplied that methanotrophic bacteria can act as sink for atmospheric CH₄. Since the discovery of the biphasic CH₄ oxidation kinetics, two major, yet partially unanswered questions have shaped the research in the scientific field: Which methanotrophs are responsible for the oxidation of atmospheric CH₄ and how can these methanotrophs survive and grow with the apparent energy limitations inherent to the oxidation of the low atmospheric CH₄ concentrations?

1.5 Ecology and phylogeny of atmospheric methane oxidizing bacteria

Atmospheric CH₄ oxidation has been mainly linked to aerobic and dry soils that are often referred to as "upland soils". In these soils, atmMOB oxidize CH₄ that diffuses from the overlying atmosphere into the soil³². Examples for soil ecosystems in which net uptake of

atmospheric CH₄ has been measured are manifold, including forest soils^{33,34}, tropical soils³⁵, grasslands and meadows³⁶, landfill cover soils³⁷, deserts³⁸, heathlands³⁹, dryland rice soils^{40,41}, tundra soils^{42,43}, and dry swamp soils²⁹. However, also caves⁴⁴ and the surfaces of plants like birches, spruces⁴⁵, and mosses⁴⁶ can represent sinks for atmospheric CH₄. Studies, that coupled the *pmoA* gene of MOB (encodes the β subunit of the particulate methane monooxygenase) as functional marker to isotope or fluorescence labeling, assigned the oxidation of atmospheric CH₄ in upland soils to the activity of two clades within the *Alpha*- and *Gammaproteobacteria*, the upland soil cluster alpha (USC α) and the upland soil cluster gamma (USC γ)^{47–49}. Besides the abundance of USC α and USC γ , the *pmoA* of representatives within *Methylocystaceae*, *Beijerinckaceae*, *Methylococcaceae*, *Crenotrichaceae* and cluster 1 – 5, have been found in environments with net CH₄ uptake^{33,50,51}.

As summarized by Dunfield³² and Kolb³³, different environmental factors affect methanotrophic communities and the biological sink for atmospheric CH_4 in soils. These factors comprise, among others, temperature, diffusivity, water content, pH, nitrogen availability, and anthropogenic disturbances. It is important to keep in mind that these factors should not only be considered isolated but that their interactions modify their individual impact^{52,53}.

King et al. concluded from CH₄ oxidation rates of forest soils and methanotrophic communities at different temperatures and different CH₄ concentrations, that temperature has a rather weak effect on the uptake of atmospheric CH₄ by the methanotrophic community⁵⁴. According to the study, this low response to temperature changes by methanotrophs is caused by the limited diffusion of CH₄ into the soil at atmospheric CH₄ concentrations as methanotrophs exposed to high CH₄ concentrations showed a strong response to temperature change⁵⁴. The diffusion limitation at atmospheric CH₄ concentrations is also reflected by a gradient of decreasing CH₄ observed in soils (e.g., Whalen et al. 1992⁵⁵) as rapid diffusion of CH₄ from the atmosphere should not result in a gradient. A study modelling the uptake of atmospheric methane by soils between the years 1900 and 2100, also identified diffusion as a major factor driving atmospheric CH₄ oxidation but in addition pointed out that temperature became an important factor for the increasing methanotrophic rates in soils⁵⁶. Increasing temperature can stimulate or suppress CH₄ oxidation as it influences the enzyme activity⁵². However, the effect of temperature on growth, the physiological state of atmMOB cells, and the CH₄ oxidation rate has never been studied directly as isolates of atmMOB were unavailable. Besides direct impacts on CH₄

oxidation, temperature can change soil moisture, and thus cause water stress that decreases CH₄ oxidation or improve gas diffusion that increases CH₄ oxidation⁵⁷. The diffusion of CH₄ in water is 10 000 times slower than in air^{32,55}. Thus, the water content is a critical factor impacting CH₄ diffusion, CH₄ availability, and eventually oxidation rates by atmMOB at atmospheric CH₄ concentrations.

The pH does not seem to have a large effect on the oxidation of atmospheric CH₄ by soils as oxidation has been detected in wide range of soils with different pH³³. However, major shifts in pH can lead to a loss of CH₄ oxidation activity^{33,58}. Furthermore, pH is a main driver of the methanotrophic community composition in environments representing atmospheric CH₄ sinks as it influences the abundance of USC α and USC $\gamma^{33,47,50,59,60}$. USC α members are more likely to be abundant in acidic environments while members of the USC γ are abundant in alkaline environments, a trend also observed for "conventional" methanotrophs within the *Alpha*- and *Gammaproteobacteria*⁶¹.

Since the beginning of industrialization, the anthropogenic release of reactive nitrogen has more than doubled the nitrogen input into global ecosystems⁶². The increased input is mainly caused by fertilizer usage, combustion of fossil fuels, and industrial activities. Reactive nitrogen is also emitted to the atmosphere causing an increased nitrogen deposition to surfaces and thus impacts terrestrial and marine ecosystems globally by modifying the biogeochemical nitrogen cycle ^{63,64}. Amongst others, consequences of nitrogen deposition on ecosystems are fertilization, acidification, and accumulation of excess nutrients^{63,65}. How the increased nitrogen input and availability of reactive nitrogen in general influences the biological sink for atmospheric CH₄ sink is unclear⁶⁶. Often, nitrogen fertilization inhibits atmospheric CH₄ oxidation^{67,68}, but also stimulatory effects of nitrogen fertilization have been reported^{69,70}. Overall, the impact of nitrogen on CH₄ oxidation seems to depend on the diversity and activity of methanotrophic community, the type and amount of the reactive nitrogen, and the exposure time to the nitrogen fertilizer^{69,71,72}. In contrast to the extensively studied effect of increased reactive nitrogen on the biological sink for atmospheric CH₄, the effect of nitrogen limitation on atmMOB and the sink is unknown as a lack of atmMOB in pure culture has prevented research⁶⁶. Besides changes in the nitrogen input, other anthropogenic activities impact the biological sink for atmospheric CH4⁷³. For example, the conversion of ecosystems to agricultural sites disturbs the uptake of atmospheric CH₄ as agriculture practices can, among others, cause limitation of gas diffusion, water stress, soil compaction, disruption of the soil structure, and increased bulk density^{73–75}. Additionally, agrochemicals, logging, and soil acidification can decrease atmospheric CH₄ oxidation^{76–79}.

1.6 Physiology of atmospheric methane oxidizing bacteria

Dunfield³² summarized four potential strategies of atmMOB that might enable survival and growth with the apparent energy limitations inherent to the oxidation of the low atmospheric CH₄ concentrations in air:

- (i) atmMOB are oligotrophs that manage to grow and survive on atmospheric CH₄ alone.
- (ii) atmMOB are flush feeders that feed on CH₄ generated in deeper soil layers in addition to atmospheric CH₄.
- (iii) atmMOB grow on substrates in addition to atmospheric CH₄.
- (iv) atmMOB grow on other substrates than atmospheric CH₄ and the CH₄ is co-oxidized in a process that does not yield energy.

1.6.1 (i) Oligotrophs

Conrad reviewed⁸⁰ the theoretical constrains for microorganisms oxidizing CH₄, hydrogen (H₂), and carbon monoxide (CO) as substrate for their energy metabolism. Traces of all three gases are present in the atmosphere at mixing ratios of 1919 ppb for CH₄ (August 2023 <u>https://gml.noaa.gov/ccgg/trends_ch4/</u>), 530 ppb for H₂, and 90 ppb for CO^{81,82}. The Gibbs free energy resulting from the oxidation of mentioned gases at atmospheric concentrations add up to -797 kJ mol⁻¹ (assuming a CH₄ concentration of 1750 ppb), -199 kJ mol⁻¹, and -235 kJ, respectively. Therefore, the low atmospheric partial pressure of the gases does not constrain microorganisms thermodynamically. Rather, according to Conrad⁸⁰, the constraints are of kinetic nature. The oxidation of low gas concentration needs to proceed quick enough to generate sufficient energy for cellular maintenance and growth. Assuming Michaelis-Menten kinetics, this can be explained based on the following equation:

$$v = c \times \frac{V_{\max(app)}}{K_{m(app)}}$$
 (1)

In which v is the oxidation rate, c the gas concentration, $V_{\max(app)}$ the apparent maximal oxidation rate of the cell, and $K_{m(app)}$ the apparent half saturation constant of the cell. In general, the half saturation constant (K_m) (half saturation constant for an enzyme) displays the gas concentration at which the enzymes involved in the oxidation processes are half-saturated. Hence, the constant provides information about binding affinity of enzyme and substrate. The higher the binding affinity, the tighter the enzyme binds the substrate. The K_m is defined as dissociation constant and thus, a low K_m translates into a high affinity and vice versa. On a cellular level the apparent affinity K_{m(app)} (half saturation constant of a cell) needs to be coupled to a sufficiently high V_{max(app)} (which can be achieved by a high number of enzymes per cell) to meet cellular maintenance energy requirements at atmospheric gas concentrations. Thus, the apparent specific affinity that puts V_{max(app)} and K_{m(app)} into relation seems to be a valid measure of oligotrophy, while the high apparent affinity as measure is ambiguous since it doesn't give information about the oxidation rate and eventually the corresponding energy yield (Fig.2). The apparent specific affinity is defined as:

$$a_A^0 = \frac{V_{\max(app)}}{K_{m(app)}} \quad (II)$$

and represents the initial slope of a Michaelis-Menten hyperbolic curve and the pseudo firstorder rate constant⁸³. It directly indicates reaction rates at low substrate concentrations catalyzed by microorganisms⁸⁴. Since the oxidation rate v equals the product of ambient gas concentration c and specific affinity a_A^0 (equation I), a high apparent specific affinity is necessary to meet cellular maintenance energy requirements at atmospheric CH₄ concentrations. In a study by Tijhuis et al.⁸⁵, stating that maintenance energy is mainly influenced by temperature, the average microbial maintenance energy is estimated to be 4.5 kJ per C-mol biomass per hour at 25° C. The value is in so far important as it is the basic premise for later theoretical assumptions on how methanotrophs live on atmospheric CH₄ concentrations by Conrad⁸⁰.

Figure 2: Two different Michaelis Menten hyperbolic curves with the same $K_{m(app)}$ but different $V_{max(app)}$ to illustrate a_A^0 and the related energy yield. [A] substrate concentration (e.g. CH₄). The $K_{m(app)}$ is defined as the substrate concentration at which $V_{max(app)}$ is half ($V_{max(app)}/2$).

The lack of pure cultures has prevented evaluation of the theory that atmMOB are oligotrophs capable of growing on atmospheric CH₄ alone. However, the theory that atmMOB are oligotrophs capable of growing on atmospheric CH₄ alone is supported by low apparent half saturation constants ($K_{m(app)}$) < 0.1 µM found in upland soils (Fig. 3).

Figure 3. Box plot of $K_{m(app)}$ values for methane oxidation in pure cultures of methanotrophic bacteria and in different ecosystems. The upper and lower box lines represent the 25th and 75th percentile values (= 50% of all values). The horizontal line in the box represents the 50th percentile (median) and the square symbol the mean. Error bars denote the 5th and 95th percentiles and asterisks the upper and lower limits⁸⁶.

Until now, the only energy yield estimations for atmMOB at atmospheric CH₄ are derived from environmental studies. For example, a study⁸⁷ estimated the CH₄ oxidation rate by the MOB community in forest soils partly dominated by USC α . There, the rate was assessed by combining qPCR-based quantification of MOB and their CH₄ oxidation, amounting 540 – 800 x 10⁻¹⁸ mol CH₄ cell⁻¹ hour⁻¹. The value is more than 10 times higher than the oxidation rate needed (40 x 10⁻¹⁸ mol CH₄ cell⁻¹ hour⁻¹) to supply the above-mentioned maintenance energy (4.5 kJ per C-mol biomass per hour). Thus, the study supports the theory that atmMOB are oligotrophs, i.e., being able to survive and grow on atmospheric CH₄ alone. However, the authors revoked this energy estimation in later study stating that the qPCR-based approach likely overestimated the cell-specific CH₄ oxidation rates. In the later study, the authors reported atmospheric CH₄ oxidation rates of 1 – 14 x 10⁻¹⁸ mol CH₄ cell⁻¹ hour⁻¹ in forests soils⁸⁸.

1.6.2 (ii) Flush feeders

The second theoretical strategy described by Dunfield³² implies that atmMOBs are flush feeders. They feed on CH₄ periodically generated in deeper soil layers in addition to atmospheric CH₄. The CH₄ concentration in soil layers can be elevated during periods with increased soil water content (e.g. after rainfall) as the high soil water content restricts O₂ diffusion. The decreased O₂ tension creates suitable conditions for methanogens to generate CH4. The resulting increased CH4 concentration stimulates "conventional" methanotrophs to oxidize CH₄. After the CH₄ concentration has decreased to an atmospheric level, methanotrophs oxidize atmospheric CH₄ until they transition into an inactive state. Indications of flush feeding were, for example, observed in alpine tundra soils that were first exposed to H₂ and CO₂ to induce hydrogenotrophic CH₄ generation⁸⁸. After the CH₄ concentration fell back to atmospheric, the atmospheric CH₄ oxidation rates of these soils were three times higher than of soils serving as controls. A study targeting the methanotrophic community in paddy soils provided first evidence for flush feeding as "conventional" methanotrophs abundant in the paddy soils regained the ability to oxidize atmospheric CH₄ for several days after being exposed to high CH₄ concentrations⁸⁹. Additionally, it was shown that a *Methylocystis* strain oxidized atmospheric CH₄ for three months after being cultivated under a 10% CH₄ atmosphere⁹⁰. A potential process underlying flush feeding is the accumulation of storage compounds that allows MOB to stay active for a certain period of starvation. Presumably, during exposure to increased CH₄ concentrations, methanotrophs build up storage compounds such as poly-βhydroxybutyrate (PHB) or glycogen. These storage compounds can later be used as reducing equivalents and are together with the oxidation of atmospheric CH₄ sufficient to meet cellular growth and maintenance requirements. Several studies reported storage compound accumulation in methanotrophs and determined different reasons for the accumulation. PHB can be accumulated if reducing energy is excessive⁹¹, but also induced stress and nutrient- and nitrogen-limitation seem to trigger PHB accumulation^{89,92}. Pure culture-based studies reported PHB accumulation ranging between 7 - 68% of the total dry weight in Methylocystis and Methylosinus cells^{92,93}. In line with that, a recent study on the gammaproteobacterial methanotroph Methylobacter tundripaludum SV96 demonstrated accumulation of glycogen at high temperatures⁹⁴. While these data demonstrate that storage compounds are utilized by methanotrophs, there is still no direct evidence that such compounds play a role in the growth of MOB at atmospheric CH₄ concentrations.

1.6.3 (iii) Facultative CH₄ oxidizers

The third theory on how atmMOB grow, assumes that they are facultative methanotrophs, i.e. in addition to atmospheric CH₄, the organisms can utilize other substrates³². By showing that "conventional" methanotrophic Methyllocella species can grow on the multicarbon compounds acetate, pyruvate, succinate, malate, and ethanol, the conjecture that the single carbon intermediates of aerobic CH₄ oxidation, methanol, formaldehyde, and formate, are the only potential energy source, was proven wrong⁹⁵. Additionally, members of the genera Methylocystis and Methylocapsa were shown to grow on acetate and/or ethanol^{96–99}. Further, a representative of the genus Methylocystis has been shown to oxidize H₂ in addition to CH₄ as energy source¹⁰⁰. Methylocapsa gorgona MG08, central to this thesis as it represents the first methanotroph in pure culture found to grow with air as the only substrate, encodes not only a NiFe group 1h hydrogenase (Hhy) but also a MuCo class 1 carbon monoxide dehydrogenase $(CODH)^{101}$. Thus, it carries the potential to gain additional energy through the oxidation of H₂ and carbon monoxide (CO). The same study revealed the genomic potential to use these gases in several other members of the genera Methylocapsa, Methylocystis, and Methylosinus. However, whether the oxidation of mentioned gases at atmospheric trace concentrations contribute to the energy conservation by atmMOB remained unclear at that point.

1.6.4 (iv) Ammonia oxidizers

The last theory proposed by Dunfield³² to explain atmospheric CH₄ oxidation is based on ammonia-oxidizing bacteria. The key enzyme of ammonia oxidation, the ammonia monooxygenase, and the methane monoxygenase are very likely to share the same evolutionary origin^{102,103}. The two enzymes have been found to oxidize ammonia (NH₃) and CH₄ as both compounds are structurally analogous. However, there is no proof that the resulting toxic methanol can be further utilized by ammonia oxidizers¹⁰⁴. Nonetheless, ammonia oxidizers might contribute to atmospheric CH₄ oxidation by co-oxidizing CH₄ instead of NH₃, but their impact on atmospheric CH₄ oxidation seems to be neglectable³².

1.7 Main objectives

My PhD thesis builds up on the study "Widespread soil bacterium that oxidizes atmospheric methane" by Tveit et al.¹⁰¹ that was published in 2019. The study reports the isolation and an initial characterization of *Methylocapsa gorgona* MG08, the first known atmMOB able to grow with air as sole energy and carbon source, and the first member of the USC α in pure culture. The lack of atmMOB in pure culture has prevented the assessment of the above-mentioned potential strategies that enable growth on atmospheric CH₄ concentrations for many years. By finally having atmMOB in pure culture, my PhD thesis aimed at deciphering the physiological strategies of *M. gorgona* MG08 that enable its growth on air. Additionally, in growth tests prior to my project, it has been shown that not only M. gorgona MG08, but also five additional methanotrophic strains within the three different genera Methylocapsa, Methylocystis, and Methylosinus, all belonging to Alphaproteobacteria, form colonies when cultivated on filters floating on medium and with air as the only source of energy and carbon. These five strains are Methylocapsa acidiphila B2, Methylocapsa aurea KYG, Methylocapsa palsarum NE2, Methylocystis rosea SV97, and Methylosinus trichosporium OB3b. These strains, as well as M. gorgona MG08, encode functional complexes for the oxidation of H₂ and/or CO (Fig. 4) and thus the potential to oxidize these two gases in addition to CH₄. The physiology underlying colony formation of these methanotrophic strains is likely based on one or more of the three theoretical strategies described in detail in the previous chapter (see section 1.6): (i) AtmMOB as "Oligotrophs" that grow with methane as the sole carbon and energy source; (ii) AtmMOB as "Flush feeders"; (iii) AtmMOB as "Facultative oxidizers" of additional atmospheric gases. By investigating the six different methanotrophic strains and their physiological strategies to live on air, the PhD aimed to answer the following questions which represent my main objectives:

- What is the physiological basis for atmospheric CH₄ oxidation?
- Do the methanotrophic strains oxidize the atmospheric trace gases H₂ and CO in addition to CH₄?
- What is the energy yield per cell during oxidation of trace gases in air?
- Do the metabolic strategies of atmMOB vary between strains?
- Is atmospheric CH₄ oxidation geographically and phylogenetically more widespread than previously thought?

1.8 Secondary objective

In addition to my main objectives a secondary objective is based on the fact that the six strains encode all genes required for dinitrogen (N₂) fixation¹⁰¹ (Fig. 4) and show growth on nitrogenfree medium^{101,105-109} when cultivated at high concentrations of CH₄ implying N₂ fixation by the strains. Additionally, growth experiments with four of the MOB strains cultivated on filters while being exposed to air as sole substrate and nitrogen source resulted in colony formation indicating that the strains might be able to fix N₂ when grown with air as their only source of carbon, energy, and nitrogen. If true, the N₂ fixation could provide a crucial advantage for life in oligotrophic soils and atmMOB would not only play an important role in the carbon cycle as atmospheric CH₄ sink but also impact the nitrogen cycle and serve as potential nitrogen source in nitrogen limited environments. However, N₂ fixation is presumably too costly¹¹⁰ for atmMOB if the theoretical energy assumptions by Conrad⁸⁰ hold true. In addition to the energy costs for N₂-fixation, the nitrogenase, the key enzyme involved in the N₂ fixation process, is very O₂ sensitive. Given the fact that some of the mentioned strains only seem to fixate N₂ under reduced O₂ tension, N₂-fixation of the strains while being exposed to air seems to be rather unlikely. However, based on the observation of colony formation on nitrogen-free medium and air as sole substrate, the PhD targeted the following question representing my secondary objective:

- Do the atmMOB strains fix N₂ during growth with air as sole carbon, energy, and nitrogen source?

1.9 The methanotrophic strains

The following section comprises a description of the methanotrophic strains that were screened for their ability to grow with air as sole carbon and energy source during this PhD thesis.

1.9.1 Methylocystaceae

Two of the strains that show colony formation when grown on filters exposed to air, namely *Methylosinus trichosporium* OB3b and *Methylocystis rosea* SV97, belong to the family *Methylocystaceae* within the class *Alphaproteobacteria*. As reviewed by Dedysh and Knief¹⁹, methanotrophs within this family of gram-negative bacteria fix carbon via the serine pathway.

Methylosinus trichosporium OB3b, one of the most extensively studied methanotrophs, is an exospore forming, mesophilic, motile, rod-shaped microorganism with the capability to fixate $N_2^{105,111}$. Depending on the copper availability it expresses either soluble methane monooxygenases (sMMO) or particulate methane monooxygenases (pMMO) (see section 1.10 below). Under N-limited growth conditions, the cells can accumulate up to 55,5% PHB^{112,113}. Besides the functional complex for pMMO and a nitrogenase, it also encodes all subunits of a Hhy hydrogenase and an incomplete CODH complex¹⁰¹ (Fig. 4).

Figure 4. Phylogeny of the six respective methanotrophic strains M. acidiphila B2, M. aurea KYG, M. palsarum NE2, M. gorgona MG08, M. rosea SV97, and M. trichosporium OB3b based on 34 marker genes, and the presence/absence of functional complexes encoded in the genome of the respective strains. The methanotrophic strains are highlighted by the grey box. Presence of a complete complex is indicated by a solid square. Complexes that are incomplete are indicated by an embedded diamond. Abbreviations for functional complexes: aca, carbonic anhydrase; acc, acetyl-CoA carboxylase; atp, ATP synthase; cox, carbon monoxide dehydrogenase; cyd, terminal c cytochrome oxidase; eno, enolase; fae, formaldehyde activating enzyme; fdh, formate dehydrogenase; fdx, ferredoxin,2Fe-2S; fhc, formyltransferase/hydrolase complex; fhs, formate-tetrahydrofolateligase; FNR, ferredoxin-NADP+oxidoreductase; fol, bifunctional 5,10-methylene-tetrahydrofolatedehydrogenase, and 5,10-methylenetetrahydrofolatecyclohydrolase; gck, 2-glycerate kinase; gcv, glycine cleavage complex; gly, serinehydroxymethyltransferase; hhy, [NiFe] hydrogenase; hpr, hydroxypyruvate reductase; mch, methenyl tetrahydromethanopterin cyclohydrolase; mcl, malyl-CoA lyase; mdh, malate dehydrogenase; mtd, NAD(P)dependent methylene tetrahydromethanopterin dehydrogenase; mtk, malate thiokinase; mxa,methanol dehydrogenase; nif, nitrogenase; nuo, NADH-quinone oxidoreductase; pet, ubiquinol-cytochromecreductase; pmo, particulate methane mono-oxygenase; ppc, phosphoenolpyruvate carboxylase; and sga, serine-glyoxylate aminotransferase¹⁰¹.

Methylocystis rosea SV97 is a non-motile, rod-shaped, 1.1-2.5 mm long and 0.8-1.1 mm wide, mesophilic methanotroph¹⁰⁶ (Fig. 5). It was isolated from a wetland soil showing minor CH₄ emissions near Ny-Ålesund, Svalbard, Norway. It grows at temperatures ranging from 5 to 37°C and a pH from 5.5 to 9.0. Like *M. trichosporium* OB3b, it accumulates PHB, fixes N₂ and encodes complete pMMO, nitrogenase, and Hhy complexes, and an incomplete CODH complex (Fig. 4).

Figure 5. Transmission electron micrograph of a cell of *Methylocystis rosea* SV97 showing the type II intracytoplasmic membranes aligned with the periphery of the cell and inclusions (white spot). Bar, 200 nm.¹⁰⁶

1.9.2 Methylocapsa

Methylocapsa acidiphila B2, *Methylocapsa aurea* KYG, *Methylocapsa palsarum* NE2, and *Methylocapsa gorgona* MG08 comprise, except the recently isolated *Methylocapsa polymorpha*^{114,115}, all the so far isolated species of the genus *Methylocapsa* and they all form colonies when incubated with air as the only carbon and energy source. The genus belongs to the family *Beijerinckiaceae* within the *Alphaproteobacteria*. Methanotrophic members of the family *Beijerinckiaceae* are gram-negative, moderately acidophilic, and use the serine pathway for carbon assimilation¹⁹.

Methylocapsa acidiphila B2 is a non-motile, curved coccoid shaped strain. The cells are $0.5 - 0.8 \mu m$ wide and $0.8 - 1.2 \mu m$ long. It grows within a temperature range of $10 - 30 \,^{\circ}$ C and a pH range of 4.2 - 7.2. It fixes N₂¹⁰⁷, accumulates PHB, possesses a full pMMO and nitrogenase complex, an incomplete Hhy complex and completely lacks the functional complex for CO oxidation¹⁰¹ (Fig. 4).

Methylocapsa aurea KYG was isolated from a soil sample collected from under a small ephemeral brook in a forest near Marburg, Germany. The cells are non-motile, slightly curved rods, $0.7 - 1.2 \mu m$ wide and $1.8 - 3.1 \mu m \log$ (Fig. 6). *M. aurea* KYG can fix N₂ under reduced

 O_2 tension. It grows at temperatures ranging from 2 – 33 °C¹⁰⁸ and a pH of 5.2 and can accumulate PHB. Its genome encodes complete complexes for a pMMO, a nitrogenase, and a Hhy. The CODH complex is incomplete.

Figure 6. Electron micrograph of an ultrathin section of a methane-grown cell of strain KYG. ICM, Intracytoplasmic membrane; PHB, poly- β -hydroxybutyrate. Bar, 1 μ m.¹⁰⁸

Methylocapsa palsarum NE2 was isolated from a wet moss collected at a collapsed palsa site in northern Norway ¹⁰⁹. It is non-motile and forms slightly curved, $1.0 - 1.2 \mu m$ wide and $1.6 - 2.4 \mu m$ long rods (Fig. 7). It grows within a range of 6 to 32 °C and a pH range of 4.1 - 8.0. *M. palsarum* NE2 can fix N₂ under reduced O₂ tension. The strain encodes complete complexes of pMMO, and nitrogenase. The CODH complex is incomplete and it does not carry genes encoding for Hhy.

Figure 7. A) Scanning electron micrograph of *Methylocapsa palsarum* NE2 cells. B) Electron micrograph of an ultrathin section of *Methylocapsa palsarum* NE2 cells. Bars, A) 1 μm. B) 0.5 μm.¹⁰⁹

Methylocapsa gorgona MG08 was isolated from cover soil sampled in a ditch at a retired subarctic landfill in northern Norway¹⁰¹. *M. gorgona* MG08 cells are non-motile, thick rods that are $0.6 - 0.8 \mu$ m wide and $0.8 - 1.5 \mu$ m long (Fig. 8). It grows within a range of 7 - 37 °C and a pH of 6 - 7.5. It can fix N₂ and encodes complete complexes for pMMO, nitrogenase, Hhy, and CODH.

Figure 8. A) Scanning electron micrograph of *M. gorgona* MG08 cells. B) Transmission electron micrograph of a *M. gorgona* MG08 cell showing intracytoplasmic membranes and inclusions that resemble PHB granules. ¹⁰¹

1.10 Aerobic methane oxidation

1.10.1 Activation of CH₄

Aerobic methanotrophs oxidize CH₄ to CO₂ using O₂ as electron acceptor¹¹. The first step of the oxidation is the activation and the conversion of CH₄ to methanol by the methane monooxygenase (MMO). Two forms of MMOs are known. The soluble methane monooxygenase (sMMO) that occurs in the cytoplasm of methanotrophs and the particulate methane monooxygenase (pMMO) which is bound to intracellular membranes¹¹⁶. In contrast to the sMMO, the pMMO is found in almost all methanotrophs¹¹⁷. The sMMO, an enzyme consisting of a hydroxylase, a reductase, and a regulatory protein, employs a diiron cluster as catalytic site ¹¹⁸. The pMMO, comprises the three subunits PmoA, PmoB, and PmoC that are organized in a trimer of PmoA, PmoB, and PmoC protomers, and requires copper for its activity^{119,120}. As enzyme preparation techniques for structural analysis caused structural 28

changes and decreasing activity of the pMMO, the location and composition of its active site in still uncertain. Recent attempts to reconstitute the pMMO on nanodiscs to mimic the cellular environment of the pMMO restored its activity and revealed its structure in a lipid (membrane like) environment substantially revising the view of the pMMO¹²⁰.

For the oxidation of CH_4 to methanol (CH_3OH), the MMOs need CH_4 , O_2 , and a reductant (Fig. 9) to reduce the excess oxygen atom of O_2 to water:

$$CH_4 + O_2 + 2H^+ + 2e^- \rightarrow CH_3OH + H_2O$$

NADH/H⁺ acts as the reductant for the sMMO. In case of the pMMO, hydroquinone derivates, NADH, methanol, succinate, and H₂ have been identified as electron donor *in vitro*^{121–123}, but how the electrons are transferred to the catalytic center of the pMMO is still unclear.

1.10.2 Methanol oxidation

The next step during the oxidation of CH_4 to CO_2 is the oxidation of the intermediate methanol to formaldehyde (CH_2O) (Fig. 9):

$$CH_3OH + PQQ \rightarrow CH_2O + PQQH_2$$

The reaction is catalyzed by a periplasmic, pyrroloquinoline quinone (PPQ) linked methanol dehydrogenase (MDH), a heterotetrameric enzyme consisting of two large and two small subunits¹²⁴. The catalytic center can either contain a calcium (Ca²⁺) or a lanthanide (Ln³⁺) ion^{125,126}. The MDH oxidizes methanol by reducing the prosthetic PQQ to the corresponding quinol and subsequently a two-step electron transfer to cytochrome c completes the oxidation. This oxidation step is accompanied by the generation of a proton gradient. The protons are retained in the cytoplasm while the electrons are transferred via cytochromes through a cytoplasmic membrane to a terminal oxidase. There, oxygen accepts the electrons and consumes protons from the cytoplasm. The electron transfer from MDH to oxygen is thought to operate several proton translocation segments¹¹⁷. Additionally, MDHs are known to oxidize methanol to formate (HCOO⁻), but with a considerably lower conversion rate and substrate affinity¹²⁴.

1.10.3 Formaldehyde oxidation

The formaldehyde that results from the oxidation of methanol is transported to the cytoplasm (Fig. 9). There, it can be utilized in two different ways as described by Trotsenko and Murrell¹¹⁷. Either it is oxidized via formate to CO₂, or it can be assimilated via two different pathways, the Quayle ribulose monophosphate pathway (RuMP) or the serine cycle. As the methanotrophs, emphasized on in this work, apply the serine cycle for formaldehyde assimilation and tetrahydromethanopterin- (H₄MPT) and tetrahydrofolate- (H₄F) dependent routes for formaldehyde oxidation, only these pathways are described in the following. It is assumed that the H₄MPT-dependent pathway is the major catabolic route for formaldehyde oxidation¹²⁷, while the enzymes involved in the H₄F-depentent route mainly seem to maintain a high level of intermediates to feed the assimilatory serine cycle¹²⁸.

The first step of the H₄MPT-dependent formaldehyde oxidation is the condensation of formaldehyde and H₄MPT to methylene-H₄MPT:

$$CH_2O + H_4MPT \rightarrow CH_2 = H_4MPT + H_2O$$

This condensation either occurs spontaneously or can be catalyzed by a methylene-H₄MPT-specific formaldehyde-activating enzyme (Fae)^{128–130}.

The second step is the oxidation of methylene-H₄MPT to methenyl-H₄MPT:

$$CH_2O = H_4MPT + NAD(P)^+ \rightarrow CH_2 \equiv H_4MPT + NADPH$$

The methylene-H₄MPT can be oxidized by the methylene-H₄MPT dehydrogenase MtdA, that also catalyzes the reversible dehydrogenation of methylene-H₄F, or the methylene-H₄MPT-specific dehydrogenase MtdB^{131,132}. The oxidation of methylene-H₄MPT to methenyl-H₄MPT by MtdA and MtdB is exergonic and thus, proceeds essentially irreversible. This plus the Fae activity supports an efficient and quantitative conversion of formaldehyde via the H₄MPT-dependent route¹²⁸.

Next, the methenyl-H₄MPT cyclohydrolase Mch hydrolyzes methenyl-H₄MPT to formyl-H₄MPT¹³³:

$$CH_2 \equiv H_4MPT + H_2O \rightleftharpoons CHO - H_4MPT$$

30

Then, the formyltransferase/hydrolase complex Fhc converts formyl-H₄MPT to formate (CHOO⁻)¹³⁴:

$$CHO - H_4MPT + H_2O \rightleftharpoons CHOO^- + H_4MPT$$

Finally, the resulting formate is oxidized to CO₂:

$$CHOO^- + NAD^+ \rightleftharpoons CO_2 + NADH$$

A NAD⁺-dependent formate dehydrogenase (Fdh) is involved in this last step of the CH₄ oxidation (Fig. 9). Fdhs have been considered to catalyze the oxidation of formate to CO_2 nearly irreversible¹³⁵. However, it has been shown that certain Fdhs reduce CO_2 to formate as well¹³⁶, and thus represent a potential entry point of CO_2 for carbon assimilation in non-phototrophic organisms.

The H₄F-dependent oxidation of formaldehyde to CO_2 (Fig. 9), that is thought to primarily feed the assimilatory serine cycle, operates in the oxidative or reductive direction depending on the requirements of the cell, as its reactions are fully reversible^{117,128,137}. The condensation of the reactive formaldehyde and H₄F proceeds spontaneously:

$$CH_2O + H_4F \rightleftharpoons CH_2 = H_4F + H_2O$$

The methylene-H₄F can either enter the glycine cleavage/synthesis (GCS) system that synthesizes glycine out of methylene-H₄F, NADH, NH₃, and CO_2^{138} , the serine cycle for further assimilation, or it can be oxidized. The oxidation is catalyzed by a MtdA or a bifunctional methylene-H₄F dehydrogenase/methylene-H₄F cyclohydrolase (FolD) to methenyl-H₄F:

$$CH_2O = H_4F + NAD(P)^+ \rightleftharpoons CH_2 \equiv H_4F + NADPH$$

During the next step of the oxidation, the resulting methenyl-H₄F is hydrolyzed to formyl-H₄F by a FolD or a methenyl-H₄F cyclohydrolase (Fch):

$$CH_2 \equiv H_4F + H_2O \rightleftharpoons CHO - H_4F$$

The formyl-H₄F is then oxidized to formate by a formate-tetrahydrofolate ligase (Fhs). The reaction is coupled to the formation of adenosine triphosphate $(ATP)^{139}$:

$$CHO - H_4F + ADP + P_i \rightleftharpoons CHOO^- + H_4F + ATP$$

In general, the dehydrogenases that take part in the oxidation from CH_4 to CO_2 are coupled to the energy conservation, while the oxidases are usually not energy conserving¹⁴⁰. In total, CH_4 oxidation yields six electrons usable for aerobic respiration, carbon fixation, or the activation of CH_4^{119} .

Figure 9. pMMO – particulate methane monooxygenase, MDH – methanol dehydrogenase (Mox) and putative lanthanide-dependent methanol dehydrogenase (XoxF), Hhy – [NiFe] group 1h hydrogenase, CODH – [MuCO] class I carbon monoxide dehydrogenase, Fae – formaldehyde activating enzyme, MtdB – NAD(P)-dependent methylene-tetrahydromethanopterin dehydrogenase, Mch – methenyl-tetrahydromethanopterin cyclohydrolase, Fhc – formyltransferase/hydrolase, Fdh **A** – NAD-dependent formate-dehydrogenase, Fdh **AB** – molybdopterin binding reversible formate dehydrogenase/CO₂ reductase, Fhs – formate-tetrahydrofolate ligase, FolD – bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/5,10-methenyl-tetrahydrofolate cyclohydrolase, FchA – methenyltetrahydrofolate cyclohydrolase, MtdA – NADP-dependent methylenetetrahydrofolate dehydrogenase, GcvH – glycine cleavage system H protein, GcvT – aminomethyltransferase, GcvP - glycine dehydrogenase, Lpd

– dihydrolipoyl dehydrogenase, GlyA – serine hydroxymethyltransferase, SgaA – Serine-glyoxylate aminotransferase, HprA – glycerate dehydrogenase, GarK – 2-glycerate kinase, Eno – enolase, Ppc – phosphoenolpyruvate carboxylase, Mdh – malate dehydrogenase, Mal – malate-CoA ligase, Mcl – L-malyl-CoA lyase, Acc – Acetyl-CoA carboxylase, NAD⁺ – nicotinamide adenine dinucleotide, NADP⁺ – nicotinamide adenine dinucleotide phosphate, ATP – adenosine triphosphate.

1.10.4 Assimilation of carbon via the glycine cleavage system and the serine cycle

As mentioned above, the formaldehyde that results from the oxidation of CH₄ and methanol can spontaneously condense with H₄F to methylene-H₄F and then enter the glycine cleavage system (GCS) or the serine cycle (Fig. 9). Alternatively, the formaldehyde is oxidized via the H₄MPT-mediated route to formate. The formate is then reduced via the H₄F-mediated route to methylene-H₄F before entering the GCS or the serine cycle. Studies involving *Methylorubrum extorquens* AM1 have demonstrated that mutants defective in any of the three enzymes involved in the H₄F mediated formaldehyde oxidation could not grow on methanol implying that this pathway plays an important role in carbon assimilation^{139,141}. Later, it was shown that the reductive pathway via formate to methylene-H₄F and not the spontaneous condensation of formaldehyde and H₄F represents the major assimilatory flux¹⁴². Another possibility to assimilate carbon is the reduction of CO₂ to formate by a reversible Fdh and the further reduction to methylene-H₄F¹⁴³.

The GCS consists of four loosely associated enzymes and converts the methylene- H_4F , NH_3 , CO₂, and NADH, to glycine, H_4F and NAD^+ :

$$CH_2O = H_4F + NH_3 + CO_2 + NADH \rightleftharpoons Glycine + H_4F + NAD^+$$

The conversion of formate and CO_2 to the C_2 -amio acid glycine is referred to as the core module of the reductive glycine pathway¹⁴⁴ (Fig. 9).

Next in carbon assimilation is the serine cycle (Fig. 9). As summarized by Anthony^{145,146}, the serine cycle differs from other formaldehyde assimilation pathways as its intermediates are carboxylic acids and amino acids instead of carbohydrates. It drives the conversion of the C_1 compound formaldehyde to C_3 and C_4 intermediates and thereby provides precursors for further biosynthesis. Two molecules of formaldehyde and two of glycine result in two molecules of phosphoglycerate. One phosphoglycerate is assimilated while the other is carboxylated to phosphoenolpyruvate and further converted via oxaloacetate to malyl-CoA. The malyl-CoA is 34

cleaved to glyoxylate and acetyl-CoA. The glyoxylate is converted to glycine, while there are two different variants of the serine cycle to oxidize the acetyl-CoA to glyoxylate^{145,146}. One variant involves the glyoxylate cycle (encoded by the *Methylocapsa* strains) to oxidize acetyl-CoA to glyoxylate, the other variant involves the ethylmalonyl-CoA cycle for the oxidation (encoded by the *Methylocystis rosea* SV97). The energy and carbon balances of both variants normalized to the production of oxaloacetate (OAA)¹⁴⁶ are:

$$2CH_2O = H_4F + 2CO_2 + 2NAD(P)H + FAD + 3ATP$$

$$\Rightarrow OAA + 2H_4F + 2NAD(P)^+ + FADH_2 + 2ADP + 2P_i + AMP + PP_i$$

for the glyoxylate cycle based serine cycle, and:

$$3CH_2O = H_4F + 5CO_2 + 6NAD(P)H + FAD + 5ATP$$

$$\approx 2OAA + 3H_4F + 6NAD(P)^+ + 2FADH_2 + 3ADP + 3P_i + 2AMP + 2PP_i$$

for the ethylmalonyl-CoA cycle.

1.11 Oxidation of atmospheric hydrogen and carbon monoxide

Besides CH₄, the most abundant atmospheric trace gases that represent potential energy sources for microorganisms are H₂ and CO with average atmospheric concentrations of 530, and 90 ppb^{81,119}, respectively. As reviewed by Greening and Grinter⁹³, hydrogenotrophic and carboxydotrophic microorganisms, that oxidize atmospheric concentrations of H₂ and CO, respectively, are assumed to grow heterotrophically while they oxidize H₂ and CO to cover their cellular maintenance energy to persist periods of starvation enabling long-term survival^{147–149}. To do so, these microorganisms have evolved enzymes with high affinities that are reflected in $K_{m(app)}$ values smaller than 150 nM for the respective gases¹¹⁹. The high affinity oxidation of H₂ and CO is attributed to [NiFe] hydrogenases within different and distantly related groups, named Hhy, Huc, Hyo, and Hyl and molybdenum-dependent carbon monoxide dehydrogenases (CODH), respectively¹¹⁹. Both enzymes are metalloenzymes consisting of multiple subunits. All known high affinity hydrogenases comprise two subunits, a small and a large one. In Hhy, the hydrogenase encoded in some of the six investigated methanotrophic strains, the two subunits are arranged in a protomer. Two of these protomers dimerize to the final hydrogenase¹⁵⁰. The high affinity CODH consist of three subunits, a small, a medium, and a 35
large subunit organized in a trimer. Two trimers dimerize to form the enzyme^{119,150,151}. Both of high affinity enzymes seem to be anchored at the cytolytic side of the inner membrane^{152–154}. Until recently, the measurements describing the high affinity oxidation of H₂ and CO were solely based on whole cell kinetics. However, in 2023, a Huc hydrogenase ($K_m = 129 \text{ nM}$) was successfully isolated, and its kinetics characterized¹⁵⁵. The electrons from the oxidation of H₂ are thought or, in case of the isolated hydrogenase, shown to be directly transferred into the respiratory chain^{119,155}:

$$H_2 \rightarrow 2H^+ + 2e^-$$

The same applies to the electrons from the oxidation of CO with H₂O to CO₂:

$$CO + H_2O \rightarrow CO_2 + 2H^+ + 2e^-$$

1.12 N₂-fixation by methanotrophs

The ability of MOB to fix N₂ has been confirmed for representatives within Alpha- and Gammaproteobacteria, and Verrucomicrobiota^{156,157}. Complete structural genes (*nifHDK*) for the molybdenum-dependent isozyme of the nitrogenase, the enzyme that catalyzes the biological reduction of N₂ to ammonia (NH₃), have been found in 98% of the methanotrophs within the Alphaproteobacteria and in 89% within the Gammaproteobacteria, suggesting that MOB play an important role in N₂-fixation^{158–160}. As methanotrophs require approximately 0.25 mole nitrogen per mole carbon assimilated, their nitrogen requirements are relatively high^{69,145}. Thus, the ability to fix N₂ seems to be a necessity to prevent cellular nitrogen limitations in oligotrophic environments. To fix N₂, MOB need to overcome two major obstacles, the irreversible inactivation of the nitrogenase by oxygen and the high energy requirements of the fixation of N₂¹⁶¹. Especially during the oxidation of atmospheric CH₄ by atmMOB, these obstacles seem to be problematic as atmMOB are exposed to high O₂ tensions while facing an apparent energy limitation. In free-living diazotrophs (N₂-fixing microorganisms), heterocysts, aggregation of individual bacteria, and a high respiratory activity can create a nearly anoxic environment to protect the nitrogenase from inactivation by $O_2^{162-164}$. Besides, a conformational protection, during which the nitrogenase forms a reversible state that is oxygen-tolerant but inactive, enables survival of nitrogenases during oxygen stress¹⁶⁵. The high energy requirements to break the N-N triple bond of N_2 that represents one of the strongest bonds in nature and the further reduction to ammonia is reflected by the optimal stoichiometry of the reaction^{160,166,167}:

$$N_2 + 8H^+ + 8e^- + 16MgATP \rightarrow 2NH_3 + H_2 + 16MgADP + 16P_i$$

All six strains investigated within this thesis encode a molybdenum-iron nitrogenase (Nif)^{101,168}. This nitrogenase is a two component metalloprotein that consists of an iron (Fe) and a molybdenum iron (MoFe) protein. The Fe protein is a homodimeric ATPase and the obligate reductase of the nitrogenase that couples ATP hydrolysis to the electron transfer to the MoFe protein^{160,166}. The MoFe protein is a $\alpha 2\beta 2$ tetramer with two metalloclusters and a MoFe cofactor being the active site where N₂ is bound and reduced¹⁶⁶. During N₂ fixation the MoFe protein undergoes various reduced states that are required to bind and reduce N₂. The binding of N₂ and the reduction of the triple bond follows a reductive elimination reaction that is associated with the evolution of H₂¹⁶⁹.

2 Material and Methods

2.1 Filter cultivation

Key to grow atmMOB with air as sole carbon and energy source (hereafter referred to as growth "on air") was the cultivation of cells on polycarbonate filters that float on a defined, carbonfree medium (hereafter "filter cultivation") (Fig. 10, 11, 12.1). This method is based on filter cultivation techniques that were originally invented to isolate "uncultivable" microorganisms by simulating natural environments^{170,171}. A major advantage of filter cultivation over conventional cultivation techniques using liquid media is the superior mass transfer of gases to the cells, as the cells are only surrounded by a thin boundary layer of medium (Fig. 10). This enables diffusion of atmospheric trace gases to the cells quick enough to support growth, while media is supplied. Further, the cells that are immobilized on the supporting filter cannot escaped detection. Thus, growth of cells leading to colony formation can be observed using microscopy (Fig. 10).

Figure 10. A) Light microscopic image of a *Methylocapsa gorgona* MG08 culture on a polycarbonate filter after a 12-month incubation period on a carbon- and nitrogen-free growth medium. B) Magnified image section of the filter colony shown in A). Single colonies of cells coated by thin boundary layer.

To create filter cultures, the methanotrophic strains were cultivated in a serum bottle using liquid medium and high CH_4 concentrations and used as inoculum (Fig. 12.1). A fraction of this inoculum was filtered on polycarbonate filter supported by a glass fiber filter using a filtration manifold (Fig. 12.1) and applying vacuum. During this step, the inoculum was rinsed in the manifold cylinder with a suitable washing solution (e.g., growth medium). After the filtration, the thinly populated filter (Fig. 12.1) was moved on growth medium in a petri dish. The petri

dish enabled aeration and by that constant substrate supply while keeping the filter culture sterile. Because of the slow growth of atmMOB on air, filter cultures needed to be incubated for several months to form colonies big enough to confirm growth and to accumulate sufficient biomass for further experiments (Fig. 12).

2.2 Oxidation of atmospheric trace gases and energy yield estimation

The oxidation of atmospheric CH₄, H₂, and CO and the estimation of the energy yield from the oxidation of these gases were assessed by conducting oxidation experiments. Therefore, filter cultures were moved to glass bottles containing a defined volume of growth medium. The bottles were sealed airtight with suitable caps (Fig. 12.2). By purging the headspace of the glass bottles with synthetic air containing 400 ppm CO₂ and adding CH₄, H₂, and CO manually using a gas syringe, a defined headspace was created (Fig. 12.2). To assess the oxidation rates, the filter cultures were incubated at a constant temperature and the change of the CH₄, H₂, and CO in the headspace over time was measured via gas chromatography. For each measurement, the gas from the headspace was sampled using a gas tight syringe. In addition, the pressure in the headspace was measured using a manometer. By knowing the gas volume and the gas pressure in the bottle headspace, the temperature during incubation, and the relative concentration of the respective gas species, the mass of each trace gas at the different sampling timepoints was calculated via the ideal gas law. As the low trace gas concentrations were rate-limiting (reflected by an oxidation rate proportional to the concentration of the trace gas), pseudo first order kinetics for the oxidation of atmospheric CH₄, H₂, and CO were assumed. By knowing the change in mass of the gases over time, the reaction rate constant could be calculated using the integrated rate law for first order reactions. By knowing the reaction rate constant, the oxidation rates of the respective gases by the filter cultures at atmospheric concentrations could be calculated. To determine the oxidation rates per cell, the number of cells within the filter cultures was quantified (see section 2.2.1). Under consideration of the Gibbs free energy changes for the oxidation of the respective gases at atmospheric concentrations and the cellular oxidation rates, the energy yield per cell was calculated. To compare the energy yield from substrate consumption and thus the energy sufficient for maintenance and growth of different microbial species, the energy yield per cell was normalized to dry mass carbon and hour (kJ C-

 $mol^{-1} h^{-1}$). This was achieved by considering the carbon content (see section 2.2.2), the cellular dry weight, and the cellular energy yield during trace gas oxidation of the respective species.

2.2.1 Quantification of cells in filter cultures

The quantification of the cell numbers in filter cultures is challenging due to the formation of multilayered colonies during growth (Fig. 11). This prevents direct quantification of cell numbers on the filter via microscopy. As consequence, two different approaches were employed to quantify cell numbers of filter cultures for the publications included in this thesis.

Figure 11. Stacked confocal images of SYBR green II stained *Methylocapsa palsarum* NE2 cells in colonies after long-term incubation on air.

For paper 1, the cell numbers were determined by comparing the DNA mass of filter cultures to the DNA masses of known cell numbers from liquid cultures of the same species. For paper 2, cells on the filters were stained using a fluorescent nucleic acid stain, washed from the filters, and collected in tubes. The collected and stained cells were counted using flow cytometry (Fig. 12.2).

2.2.2 Cellular dry mass estimation and carbon content

As for the cell quantification, the cellular dry mass of the methanotrophic strains was determined differently for both papers. For paper 1, the cell concentration of a liquid culture was determined via microscopy. A defined amount of this liquid culture with known cell concentration was pelleted in a tube via centrifugation and the supernatant discarded. The resulting pellet was dried in an oven and weighed. The cellular dry weight was calculated by dividing the weight of the dry pellet by the number of cells pelleted. For paper 2, the cellular dry weight was determined by measuring single-cell buoyant mass distributions of cells from filter cultures in H₂O-based and deuterium oxide (D₂O)-based solutions of phosphate saline buffer (PBS) using a suspended microchannel resonator (SMR)^{172–174}. The SMR is basically a "balance" that consist of a vibrating microcantilever with an internal microfluidic channel. The SMR oscillates at a frequency proportional to its mass. When a cell, that is transported by a solution of known density, passes through the channel, the resonance frequency of the cantilever changes by an amount proportional to the cells buoyant mass¹⁷³. To determine the cellular dry mass, buoyant mass measurements in two fluids of differing densities (H₂O-based and D₂O-based solutions of PBS) were required¹⁷⁴.

To determine the cellular carbon content, the methanotrophic strains were grown in stirred-tank bioreactors to receive sufficient biomass. The harvested biomass was washed to remove the growth medium and lyophilized. The cellular carbon content of the methanotrophic strains was determined using an elemental analyzer coupled to an isotope ratio mass-spectrometer.

2.3 N₂ fixation by atmMOB

To evaluate if the methanotrophic strains can fix N_2 during growth on air, filter cultures were incubated with air as sole carbon, energy, and nitrogen source. After accumulation of sufficient biomass, the filter cultures were incubated in sealed bottles with air and trace concentration of CH₄, H₂, and CO as mentioned (see section 2.2). Additionally, a known amount of ${}^{15}N_2$ was added to the bottle headspace. The rationale is that growing cells capable of fixing N₂, enrich ${}^{15}N$ isotopes in their biomass. These enriched ${}^{15}N$ isotopes can be detected using mass spectrometry. As growth on air by atmMOB is very slow, long incubation times for cellular ${}^{15}N_2$ headspace for two months. After, cells were harvested by washing from filters and lyophilized. The relative ¹⁵N to ¹⁴N ratio of the cellular biomass was detected using Nanoscale secondary ion mass spectrometry (NanoSIMS) (Fig. 12.3). During NanoSIMS an primary cesium ion beam erodes the surface of a sample releasing atoms and molecular fragments. A fraction of these secondary particles is ionized. The secondary ions are characteristics of the sample region eroded and can be manipulated with ion optics. Therefore, the secondary ions can be directed to a mass spectrometer where the ions are measured¹⁷⁵. Based on that, a quantitative atomic mass image of the analyzed sample region can be created. The NanoSIMS couples microscopy and isotopic analysis at high mass resolution and spatial resolution down to 50nm¹⁷⁶. This enabled the detection of low ¹⁵N enrichments in single atmMOB cells while only little biomass was required for analysis.

2.4 AtmMOB adjustments to growth on air

To assess the metabolic adjustments of atmMOB during growth on air, comparative proteomics experiments were performed. As proteins carry out a majority of cellular functions and are closely related to the phenotype of cells, comparative proteomics is a universal approach to unravel the differences between two cellular states with respect to the molecular mechanisms involved in various processes¹⁷⁷. During these experiments, the proteome of an atmMOB strain incubated at elevated CH₄ concentrations was compared to the proteome of the same strain at atmospheric CH₄ concentrations (Fig. 12.4). The comparison of these two physiological states enabled to investigate the allocation of cellular investments into biological processes relevant for growth on air and thus, to some extent, how the atmMOB species manage to grow on air. Filter cultures grown with air as sole carbon and energy source grow very slowly and accumulate only little amounts of biomass. Thus, to minimize loss of biomass, the filter cultures were washed from the filter, collected (Fig. 12.2), and concentrated by lyophilization. For the identification and the relative quantification of proteins, proteins were extracted from the biomass and then digested to peptides using the enzyme trypsin. The resulting peptides were separated via liquid chromatography and analyzed using tandem mass spectrometry. The resulting peptide spectra were compared to a strain specific protein library. If a peptide spectrum matched the spectrum of a specific amino acid sequence predicted from the protein library, the match was counted as peptide spectrum match and the peptide was assigned to the matching protein. Based on this approach for identification and quantification, the protein abundances of the two different treatments could be compared enabling the identification of major protein allocation, and thus metabolic adjustments, during growth on air.

Figure 12. Simplified overview of the most important methods and workflows used and established during the PhD to answer the research questions investigated. (1) Basic cultivation steps to create filter cultures with sufficient biomass for further analysis. (2) Simplified steps performed for the estimation of energy yields from the oxidation of the three trace gases CH₄, CO, and H₂ in air. (3) Simplified steps performed to test N₂ fixation of atmMOB exposed to air. (4) Simplified steps performed to determine the adjustments by atmMOB to growth on air via comparative proteomics.

2.5 Global distribution of atmMOB

To outline their global distribution, the environments atmMOB are found in, and eventually to gain a first impression of the ecological relevance of atmMOB, the publicly available 16S rRNA gene fragment collection of the Earth Microbiome Project (EMP) was screened for the atmMOB species investigated in this thesis as previously described⁹⁴. The EMP is a large-scale collaborative project employing standardized collection, curation, and analysis of environmental samples^{178–180}. Sample processing, sequencing, and core amplicon data analysis were performed by the EMP (www.earthmicrobiome.org), and all amplicon sequence data and metadata have been made public through the EMP data portal (qiita.microbio.me/emp). To obtain putative atmMOB 16S rRNA gene fragments, all EMP 16S rRNA gene fragments with >98.5% sequence identity to the 16S rRNA genes of M. gorgona, M. aurea, M. palsarum, and *M. rosea* were selected via BLASTN search¹⁸¹. In total, all the 23, 813 EMP samples from the three EMP datasets (emp deblur 90bp.qc filtered.biom, emp deblur 100bp.qc filtered, emp_deblur_150bp.qc_filtered.biom) that include sample location coordinates, representing 1294 unique geographic locations, were screened for the presence and abundance of the four atmMOB. R¹⁸² (version 4.1.3) was used to analyze the environmental distribution and relative abundances of M. gorgona, M. aurea, M. palsarum, and M. rosea like 16S rRNA gene fragments and to graphically display the results (Rstudio version 2022.02.2+485). This was done using the R packages tidyverse version 1.3.1 (https://cran.rproject.org/web/packages/tidyverse/), 3.4.0 version (https://cran.rmaps project.org/web/packages/maps/), mapdata 2.3.0 and version (https://cran.rproject.org/web/packages/mapdata/).

3 Results

3.1 Paper 1: Simultaneous Oxidation of Atmospheric Methane, Carbon Monoxide, and Hydrogen for Bacterial Growth

This study builds upon the previously reported findings that *M. gorgona* MG08, the first member of the USCa in pure culture, can grow on air by oxidizing atmospheric CH₄ concentrations. In addition to a pMMO, *M. gorgona* MG08 encodes a [NiFe] group 1 high affinity respiratory hydrogenase (Hhy) and a [MoCu] class I respiratory carbon monoxide dehydrogenase¹⁰¹. Based on this, the capability of *M. gorgona* MG08 filter cultures to oxidize the trace gases H₂ and CO at their atmospheric concentrations, in addition to atmospheric CH₄, was tested. The major finding of the study was the simultaneous oxidation of atmospheric CH₄, H₂, and CO to sub-atmospheric concentrations by *M. gorgona* MG08 during growth on air. This demonstrated that a mixotrophic lifestyle, based on the three most abundant trace gases in the atmosphere that represent energy sources, enables M. gorgona MG08 to grow on air. Furthermore, it was shown that the oxidation of atmospheric CH₄ does not depend on the oxidation of H₂ and CO, while the oxidation of H₂ and CO proceed without the presence of CH₄. Based on the trace gas oxidation rates measured for *M. gorgona* MG08, the study reports the first energy yield estimates for an atmMOB pure culture during growth on air, namely 0.38 kJ C-mol⁻¹ h⁻¹. This value, that represents an estimate for growth, is approximately 7.5 times lower than the basic premise assumed necessary for cellular maintenance stated in literature $(2.8 \text{ kJ C-mol}^{-1} \text{ h}^{-1} \text{ at } 20^{\circ}\text{C})^{80}$. However, the butyl rubber stoppers, used to seal the incubation bottles, emitted trace amounts of CO, and caused minor trace gases diffusion during the oxidation experiments. This might have impacted the accuracy of the estimations. Nevertheless, based on the study's findings, it was concluded that a metabolic flexibility enabling the mixotrophic oxidation of atmospheric CH_4 , H_2 , and CO and low energy requirements allow M. gorgona MG08 to grow on air.

3.2 Paper 2: Physiological Basis for Atmospheric Methane Oxidation and Methanotrophic Growth on Air

This study is based on two major questions that have remained partially unanswered since the discovery of atmospheric CH₄ oxidation by methanotrophs: Which methanotrophs are responsible for the oxidation of atmospheric CH₄? How can these organisms survive and grow despite the apparent energetic limitations inherent to the oxidation of the low atmospheric CH₄ concentrations? Besides the oxidation of atmospheric CH₄ by methanotrophs assigned to the proteobacterial USC α and USC γ , the presence of "conventional" methanotrophs in soils being net sinks for atmospheric CH₄ indicated that members of the genera Methylocapsa, Methylosinus, and Methylocystis might also contribute to atmospheric CH₄ oxidation. Therefore, the alphaproteobacterial, methanotrophic strains Methylocystis rosea SV97, Methylosinus trichosporium OB3b, Methylocapsa acidiphila B2, Methylocapsa aurea KYG, Methylocapsa palsarum NE2, in addition to M. gorgona MG08, and the gammaproteobacterial, methanotrophic strains Methylobacter tundripaludum SV96 were screened for their ability to grow with air as sole energy and carbon source. Further, by estimating the energy yield of atmMOB during growth on air via oxidation experiments, using comparative proteomics to investigate proteome allocations, and determining the a_A^0 for CH₄ during growth on air, the physiological basis of atmMOB was outlined. As the effect of nitrogen limitation on atmMOB has never been investigated, the ability of atmMOB to grow on nitrogen sources available in air was evaluated.

3.2.1 Colony formation, trace gas oxidation, and cellular energy yield during growth on air

Filter cultures of *M. rosea* SV97, *M. trichosporium* OB3b, *M. acidiphila* B2, *M. aurea* KYG, *M. palsarum* NE2, and *M. gorgona* MG08 formed colonies during incubation with air as sole energy and carbon source, while no colonies were formed by *M. tundripaludum* SV96 (thus, M. tundripaludum was not further investigated). Additionally, filter cultures of *M. gorgona* MG08 exposed to synthetic air without trace gases did not form colonies. During trace gas oxidation experiments, filter cultures of *M. rosea* SV97, *M. aurea* KYG, *M. palsarum* NE2, and *M. gorgona* MG08, incubated on air for six- and 12-months, enduringly oxidized atmospheric concentration of CH₄, H₂ and/or CO with strain specific oxidation patterns, while

filter cultures of *M. trichosporium* OB3b and *M. acidiphila* B2 were inactive. The absence of colony formation by *M. gorgona* MG08 in synthetic, trace gas free air and the enduring trace gas oxidation by *M. rosea* SV97, *M. aurea* KYG, *M. palsarum* NE2, and *M. gorgona* MG08 confirmed that these strains can live and grow with air as the sole energy and carbon source. Furthermore, the oxidation experiments revealed mixotrophy by all four strains, showed substantial metabolic differences between the strains, and demonstrated that the enduring oxidation of atmospheric CH₄ is not restricted to members of the USC α and USC γ .

The energy yield estimates from the oxidation of trace gases in air ranged from 0.38 to 0.71 kJ C-mol⁻¹ h⁻¹, values 3.9 - 7.4 times lower than the reported average energy requirements for cellular maintenance in aerobic bacteria (2.8 kJ C-mol⁻¹ h⁻¹ at 20°C). This contradicted and revised the basic maintenance energy premise for atmMOB.

3.2.2 Comparative proteomics

To investigate the metabolic adjustments of M. gorgona MG08, M. rosea SV97, and M. palsarum NE2 during growth on air, the proteome allocation by filter cultures of the respective strains exposed to atmospheric CH₄ were compared to the proteome allocation to filter cultures exposed to 1000 ppm CH₄. This revealed major proteome shifts related to their core metabolism including transcription, translation, growth, energy metabolism, and amino acid and carbohydrate transport as adjustments during growth on air. In depth analysis of the abundance of proteins involved in trace gas oxidation demonstrated distinct metabolic strategies to oxidize trace gases. While M. palsarum NE2 allocated protein investments to CH₄ oxidation, M. gorgona MG08 and M. rosea SV97 increased investments in H₂ and CO oxidation during growth on air. This implied that the strains allocated resources to increase their a_A^0 for the respective trace gases as adjustments to grow on air as well as niche differentiation. Additionally, investments into carbon assimilation via the serine cycle and into the electron transport chain were decreased by all three strains during growth on air compared to the 1000 ppm CH₄ treatment. Overall, the three strains increased the expression of enzymes for the oxidation of at least one trace gas to maximize uptake rates and energy yield during growth on air, while investments in energy conservation and energy-intensive carbon assimilation were decreased.

3.2.3 Specific affinity

To test if atmMOB have a high specific affinity (a_A^0) for CH₄ (expressed by the fraction V_{max(app)}) and $K_{m(app)}$) and thus the capacity to efficiently oxidize CH₄ at low concentrations, the a_A^0 of *M*. palsarum NE2 and M. gorgona MG08 when grown on air were measured. Additionally, it was tested if the increased investments in pMMO by M. palsarum NE2 and the decreased investments by *M. gorgona* MG08 at atmospheric CH₄ concentrations (see section 3.2.2) translate into a higher and lower a_A^0 for CH₄, respectively. The K_{m(app)} of *M. gorgona* MG08 was 48.54 nM CH₄ and the V_{max(app)} 4.91 x 10⁻⁸ nmol cell⁻¹ h⁻¹ resulting in a a_A^0 of 1.01 x 10⁻⁹ L cell⁻¹ h⁻¹. The $K_{m(app)}$ of 48.54 nM CH₄ was the first observation of a $K_{m(app)}$ by a methanotroph in pure culture similar to the low K_{m(app)} values of upland soils demonstrating a high apparent affinity for CH₄. The K_{m(app)} of *M. palsarum* NE2 was 402.08 nM CH₄ and the V_{max(app)} 133 x 10^{-8} nmol cell⁻¹ h⁻¹ resulting in a a_A^0 of 3.30 x 10^{-9} L cell⁻¹ h⁻¹. This high a_A^0 suggested that the upregulation of the pMMO at atmospheric CH₄ concentrations in *M. palsarum* NE2 led to a higher CH₄ oxidation capacity compared to *M. gorgona* MG08, which downregulated its pMMO. The results demonstrated that the two atmMOB have a significantly higher a_A^0 for CH₄ than most methanotrophs in pure culture. Additionally, the results demonstrated that a high affinity for CH₄ (expressed by a low $K_{m(app)}$) is not a prerequisite for methanotrophic growth on air, as *M. palsarum* NE2, despite having an eight times higher K_{m(app)}, oxidized atmospheric CH₄ quicker than *M. gorgona* MG08. Thus, it was concluded that the a_A^0 is the better model to determine the efficiency of atmospheric CH₄ utilization by atmMOB.

3.2.4 Growth on nitrogen from air

As the atmMOB, *M. gorgona* MG08, *M. palsarum* NE2, *M. rosea* SV97, and *M. aurea* KYG encode all genes required for N₂ fixation and grow on nitrogen-free medium at high CH₄ concentrations, the potential of the four strains to grow with air as sole nitrogen, carbon, and energy source was tested. Filter cultures of all strains formed colonies on air without bioavailable nitrogen source in the medium, suggesting that all strains covered their nitrogen requirements either by N₂ fixation and/or utilization of reactive nitrogen in air. NanoSIMS-based ¹⁵N₂ fixation experiments resulted in cellular ¹⁵N enrichments higher than theoretically possible from the ¹⁵N₂ gas used during the experiments. This pointed to reactive nitrogen contamination of the ¹⁵N₂, despite purity test of the gas prior to the experiment resulting in

contamination levels below detection limit. Therefore, N_2 fixation during growth on air could not be confirmed. However, based on the growth on nitrogen-free medium and the NanoSIMS experiments, it was concluded that atmMOB can cover their nitrogen requirements for growth, like energy and carbon, from air.

3.2.5 Conclusions

Major conclusions drawn from the study:

- Growth on air and enduring oxidation of atmospheric CH₄ is not restricted to members of the clades USCα and γ, but more widespread than previously assumed.
- Former liquid culture-based cultivation approaches underestimated the potential of methanotrophic pure cultures to oxidize atmospheric CH₄.
- The strain specific oxidation patterns and the estimations of the a_A^0 for CH₄ demonstrate that both the mixotrophic oxidation of atmospheric trace gases and a high a_A^0 for CH₄ are key to obtain sufficient energy for growth on air.
- Energy requirements for growth of atmMOB are substantially lower than the maintenance energy value used as basic premise for the theory that atmMOB have an oligotrophic lifestyle.
- atmMOB can grow on air by decreasing investments in enzymes involved in energyintensive processes combined with increasing investments in enzymes for the oxidation of trace gases.
- Differing expression patterns of enzymes for trace gas oxidation and the strain-specific trace gas oxidation patterns indicate that a diverse metabolic repertoire has evolved to enable life on air.
- atmMOB cover not only their energy and carbon but also their nitrogen requirements from the atmosphere.

3.3 Global distrubtion of atmMOB

Α

Figure 13. **A)** All geographically unique sample locations and environments accessible in the EPM database and the presence of 16S rRNA gene fragments from putative atmMOB closely related to *M. gorgona, M. aurea, M. palsarum, and M. rosea* within these locations and environments (indicated in red). **B)** Presence and relative abundance of 16S rRNA gene fragments from putative atmMOB closely related to *M. gorgona, M. aurea, M. palsarum, and M. rosea* in EMP samples derived from various environments.

The blast search of the three EMP databases identified 16S rRNA gene fragments of putative atmMOB closely related to *M. gorgona*, *M. aurea*, *M. palsarum*, *and M. rosea* in 44.7% of all geographically unique sample locations within various climate zones (Figure 13A). The 16S rRNA gene fragments of putative atmMOB were present in non-saline samples from soil, plant

rhizosphere, freshwater, sediments, surfaces (dust, house dust, freshwater biofilms), but also in saline and animal associated samples with abundances ranging from less than 0.001% to more than 1% (Figure 13B).

4 Discussion

The following discussion aims to put the results reported in paper 1 and 2 into a broader scientific context. A thorough discussion of the individual results can be found in the respective papers.

4.1 Physiological strategies of atmMOB to oxidize atmospheric CH₄

The finding that "conventional" MOB can temporarily gain the ability to oxidize atmospheric CH₄ after exposure to high CH₄ concentrations^{41,90} demonstrated that flush feeding (ii) (see section 1.6.2) enables a variety of MOB to oxidize atmospheric CH₄ for short periods until becoming inactive. However, the discovery of the atmospheric CH₄ oxidation by *M. gorgona* MG08 and its genomic potential to oxidize H₂ and CO in 2019¹⁰¹ suggested that a second physiological strategy to oxidize atmospheric CH₄ besides flush feeding exists. The simultaneous oxidation of CH₄, H₂, and CO at their atmospheric trace gas concentration by *M*. gorgona MG08, reported in Paper 1 of this thesis, proofed its metabolic flexibility and mixotrophic nature. This confirmed the hypothetical strategy summarized by Dunfield³² that facultative methanotrophs (iii) are responsible for oxidation of atmospheric CH₄, as *M. gorgona* MG08 consumes other substrates in addition to CH₄. However, even though the genetic potential to assimilate CO_2 using the reductive glycine pathway (see section 1.10.4) is given, it is unclear if *M. gorgona* MG08 can grow on H₂ and CO in absence of CH₄. Also, the mixotrophy based on trace gases in air differs from the substrates previously assumed to support survival (e.g., intermediates of aerobic CH₄ oxidation or multi carbon compounds like acetate or ethanol) (see section 1.6.3) and enables *M. gorgona* MG08 to utilize the atmosphere as constant and sole source of energy and carbon for growth. Additionally, Paper 1 reported first indications that the energy yield necessary to support cellular maintenance of atmMOB is significantly lower than assumed in literature^{80,85}. This was especially intriguing as the low energy yields from the oxidation of trace gases in air seemed even sufficient for growth. The mixotrophy based on trace gases and these low energy requirements were further investigated in Paper 2 by screening six additional MOB species for their ability to grow with air as sole energy and carbon source. As result, the list of known atmMOB in pure culture able to grow on air was extended by M. rosea SV97, M. palsarum NE2, and M. aurea KYG. Like M. gorgona MG08, the three other species also consume atmospheric H₂ and/or CO in addition to CH₄ suggesting that mixotrophy on trace gases might be a common physiological trait of atmMOB able to grow on air. The strongly improved methodology to estimated energy yields from the oxidation of trace gases in air applied in Paper 2 resulted in energy values within the same range of the energy value reported in Paper 1. Thus, not only M. gorgona MG08 but also M. rosea SV97, M. palsarum NE2, and *M. aurea* KYG show energy requirements for growth far below the energy value stated in literature, strongly suggesting that the energy assumed necessary for cellular maintenance of atmMOB has been overestimated. A major problem with this maintenance energy value in literature used to describe the theoretical constraints for microbes utilizing trace gases⁸⁰ is that it is not derived from experiments involving atmMOB. It represents the average maintenance energy estimated for a wide range of aerobic and anaerobic microorganisms at different temperatures. The main conclusion of the study reporting this energy value is the correlation of maintenance energy and temperature and not the value itself. Even the authors of the study refer to the energy value as "first approximation"⁸⁵. However, due to the absence of atmMOB pure cultures and thus, the possibility to study their energy requirements, the maintenance energy value was used as anchor point to theorize the constrains of microbes utilizing trace gases⁸⁰. Despite their theoretical nature, these constraints that, amongst others, led to the assumption that atmMOB need a high affinity for CH₄ (K_m of 1 pM to 100 nM) for cellular maintenance, were accepted. As consequence, the research field's perspective on how atmMOB survive on air was restricted. For example, a study reported atmospheric CH4 oxidation rates of the methanotrophic communities in beech and spruce forest soils ranging between 1 x 10⁻¹⁸ and 14 x 10⁻¹⁸ mol CH₄ cell⁻¹ h⁻¹. These values are in the range of the CH₄ oxidation rates measured in Paper 2 (2 x 10⁻¹⁸ to 7.3 x 10⁻¹⁸ mol CH₄ cell⁻¹ h⁻¹) and too low to meet the maintenance energy value in literature. Instead of questioning the maintenance energy value, the authors of the study concluded that the oxidation rates are "...lower than required for maintenance of methanotrophic biomass..." and that methanotrophs of the "...USCa might rely on additional carbon sources to conserve enough energy for cell maintenance and growth "⁸⁸. Another example is, as criticized by Dunfield, that the term "*'high-affinity oxidizer'* is frequently used interchangeably with 'atmospheric methane oxidizer'... "³². The specific affinity measurements conducted in Paper 2, demonstrated that a high affinity for CH₄ does not necessarily reflect the capability to efficiently oxidize atmospheric CH₄ concentrations. *M. gorgona* MG08 exhibited a high apparent affinity for CH₄ that is within the range of the values theorized for the hypothesis that atmMOB are oligotrophs (see section 1.6.1). However, it oxidized atmospheric CH₄ significantly slower than *M. palsarum* NE2, which exhibited a lower apparent affinity. Taken together, the findings of Paper 1 and 2 strongly suggest to step away from the theorized maintenance energy and affinity assumptions for atmMOB.

The hypothesis that atmMOB are oligotrophs (see section 1.6.1) that can sustain cellular maintenance and growth by only oxidizing atmospheric CH_4 has not been investigated yet. However, considering the low energy values estimated for the four atmMOB studied in Paper 1 and 2 and the predictions that atmospheric CH_4 represents the major energy source for all four strains during growth on air, as shown in Paper 2, it seems likely that atmMOB can live on atmospheric CH_4 as sole energy source.

As the first assessment of the physiological strategies enabling atmMOB in pure culture to grow on air, the findings reported in Paper 1 and 2 revise our understanding of the energy limitation for aerobic growth with major implications for the research field. Considering the omnipresence of atmospheric trace gases, the low energy requirements of atmMOB, and their ability to utilize air as sole carbon and energy source, these organisms could grow in a wide range of surface environments. Additionally, the low energy requirements suggest that the atmosphere as energy source can support the growth of a significantly larger atmMOB population than previously assumed⁸⁰. If true, a higher amount of CH₄ and CO₂ could be sequestered in atmMOB (see section 1.10.4 for carbon assimilation) increasing their impact on the global carbon cycle. Furthermore, if the trace gas based mixotrophy is a common trait of atmMOB, their role in greenhouse gas mitigation, besides the oxidation of atmospheric CH₄, could even be of greater importance as H₂ and CO represent indirect greenhouse gases that deplete the atmospheric OH pool (see section 1.1). Especially the ability to efficiently oxidize H₂ might become valuable since a hydrogen-based economy as part of the industrial decarbonization could lead to increased H₂ emissions^{183,184}.

4.2 Ecology and phylogeny of atmMOB

Based on the results of Paper 2, the growth on air and the enduring oxidation of atmospheric CH₄ is not restricted to members of the clades USC α and γ , but more widespread than previously assumed. The applied filter cultivation has proven as a suitable tool to assess the capability of MOB to utilize atmospheric trace gases and revealed that the atmMOB M. palsarum NE2, M. rosea SV97, and M. aurea KYG formerly considered as "conventional" methanotrophs can grow on air. Neither their 16S rRNA (see Paper 2) nor their pmoA genes¹⁰¹ cluster within the USCa. This represents a valuable addition to the ecological understanding of atmMOB. On one hand, the diversity of MOB capable to enduringly oxidize atmospheric CH₄ has been underestimated, on the other, a broader range of pmoA gene sequences might be indicative for the potential to oxidize atmospheric CH₄. To get a first impression of the ecological relevance of the atmMOB investigated in Paper 2, their global distribution and abundance based on 16S rRNA gene fragments was investigated using EMP databases (see section 2.5 and 3.3). This screening suggested that close relatives of *M. gorgona* MG08, *M.* palsarum NE2, M. rosea SV97, and M. aurea KYG and thus putative atmMOB are widespread over various climate zones (Fig. 13A) and inhabit not only uplands soils, plants, and caves but are highly abundant in various environments (Fig. 13B). If true, the range of environments contributing to atmospheric CH₄ uptake would be more comprehensive than previously thought as well as the role of atmMOB in carbon cycling and CH₄ mitigation. However, the screening approach used for the global distribution is based on databases containing short 16S rRNA gene fragment sequences (90, 100, and 150 bp). Therefore, the resolution of the results is limited and should be treated with caution as high similarity in 16S rRNA gene fragments does not necessarily translate into the capability to oxidize atmospheric CH₄. To get more reliable results the methodology should base on datasets combing long 16S rRNA sequences and the pmoA as functional markers. Nevertheless, the finding in Paper 2 that the atmMOB can utilize the atmosphere as nitrogen source, in addition to carbon and energy, renders the widespread distribution of atmMOB more plausible. Yet, it remains unclear whether the four atmMOB strains can meet their nitrogen requirements by the fixation of N₂ or the assimilation of reactive nitrogen species in the atmosphere or both.

With the rapidly increasing atmospheric CH_4 concentrations and the ongoing depletion of the chemical sink for atmospheric CH_4 , (see section 1.1 and 1.3) the importance of the biological sink might increase. However, to investigate and model the response of the biological sink to 55

the increasing atmospheric CH₄ concentrations and the associated increase in substrate availability, it is crucial to further investigate the diversity and abundance of atmMOB across various environments. Additionally, the impact of other environmental factors on atmMOB (see section 1.5), especially in the context of global warming, needs to be scrutinized. Furthermore, gaining a deeper understanding of how anthropogenic activities, such as practices in agriculture, affect atmMOB is essential to successfully manage or maybe even restore biological sinks for atmospheric CH₄. The four atmMOB pure cultures, along with the methods established throughout this PhD to research them, might be promising steppingstones to do so.

4.3 Metabolic potential of atmMOB for biotechnology

Despite the mixotrophy based on trace gases by all four atmMOB that are capable to grow with air as sole energy and carbon source, their metabolic adjustments to grow on air differ. This is illustrated by the repeatedly measured strain-specific trace gas oxidation patterns reported in Paper 1 and 2. These oxidation patterns were further investigated in Paper 2 that describes the proteome adjustments of atmMOB to grow on air. The results demonstrate that the investigated strains allocated resources to enzymes for the oxidation of trace gases differently. M. palsarum NE2 allocated resources towards CH₄ oxidation when grown on air, while *M. gorgona* MG08 and *M. rosea* SV97 allocated resources towards H₂ and CO or H₂ oxidation, respectively. This suggests that the three strains increase their specific affinities for the respective gases on air to maximize trace gas oxidation. The measurements of the specific affinities for CH₄ in Paper 2 are in line with the observed enzyme allocation and show that M. palsarum NE2 has the highest specific affinity for CH₄ measured so far. As the specific affinity indicates reaction rates at low substrate concentrations⁸⁴, *M. palsarum* NE2 might be an ideal candidate for the biofiltration of emissions containing very low CH₄ concentrations. In contrast to M. palsarum NE2, M. gorgona MG08 and M. rosea SV97 increased their resource allocation towards CH₄ oxidation at "high" CH₄ concentrations (1000 ppm) suggesting high CH₄ oxidation rates at elevated CH₄ concentrations. The enzymatic variability between the strains could enable efficient biofiltration of emission containing a wide range CH_4 concentrations (0.00019 - 5%). This potential for biofiltration of low CH₄ emissions might be of great value as more than 55% of the anthropogenic CH₄ emissions contain CH₄ concentrations below the lower explosive level (LEL) $(5\% \text{ CH}_4 \text{ in air})^{28,185}$ and thus cannot be combusted for energy recovery. Additionally, based on its short half-life, the mitigation of CH₄ is considered to be an effective strategy to achieve substantial near-term temperature benefits and to rapidly decelerate global warming^{186,187}. Besides the potential of atmMOB to mitigate CH₄ below the LEL, the three strains investigated in detail can utilize the indirect greenhouse gases H₂ and/or CO at atmospheric concentrations. This metabolic flexibility plus their ability to fix CO₂ (see section 1.10.4) might qualify them to efficiently utilize waste gases that contain only minor amounts of CH₄, H₂, or CO as feedstock for biomass production. Thus, atmMOB offer the potential to couple the mitigation of greenhouse gases to the production of compounds with relevance in industry. Examples for methanotrophy-based compounds are, amongst others, byproducts of their metabolism such as methanol or formaldehyde, lipids that could be used as fuel, PHA as precursor for bioplastics, and protein-rich food for humans or animals¹³. In addition, the oligotrophy of the atmMOB, enabling growth with minimal nutrient supply, and their ability to utilize the atmosphere as nitrogen source promises low cultivation costs. Furthermore, by having atmMOB in pure culture, genetic engineering approaches might even optimize their metabolic traits suitable for applications in biotechnology. Overall, especially with regards to the climate crisis, atmMOB appear to offer metabolic traits that could greatly contribute to sustainability.

5 References

1. IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, R.K. Pachauri and L.A. Meyer (2014). doi:10.1017/CBO9781107415324.004.

2. Intergovernmental Panel on Climate Change. The Earth's Energy Budget, Climate Feedbacks and Climate Sensitivity. in Climate Change 2021 – The Physical Science Basis 923–1054 (Cambridge University Press, 2023). doi:10.1017/9781009157896.009.

3. Mar, K. A., Unger, C., Walderdorff, L. & Butler, T. Beyond CO2 equivalence: The impacts of methane on climate, ecosystems, and health. Environ Sci Policy **134**, 127–136 (2022).

4. Reay, D. S., Smith, P., Christensen, T. R., James, R. H. & Clark, H. Methane and Global Environmental Change. Annu Rev Environ Resour **43**, 165–192 (2018).

5. Lan, X., K.W. Thoning & E.J. Dlugokencky. Trends in globally-averaged CH4, N2O, and SF6 determined from NOAA Global Monitoring Laboratory measurements. Trends in globally-averaged CH4, N2O, and SF6 determined from NOAA Global Monitoring Laboratory measurements (2023) doi:https://doi.org/10.15138/P8XG-AA10.

6. Kirschke, S. et al. Three decades of global methane sources and sinks. Nature Geoscience vol. 6 813–823 Preprint at https://doi.org/10.1038/ngeo1955 (2013).

7. Bižić, M. et al. Aquatic and terrestrial cyanobacteria produce methane. Sci Adv **6**, eaax5343 (2020).

8. Ernst, L. et al. Methane formation driven by reactive oxygen species across all living organisms. Nature 2022 603:7901 **603**, 482–487 (2022).

9. Saunois, M. et al. The Global Methane Budget 2000–2017. Earth Syst Sci Data **12**, 1561–1623 (2020).

10. Ehhalt, D. H. The atmospheric cycle of methane. Tellus **26**, 58–70 (1974).

11.Hanson, R. S. & Hanson, T. E. Methanotrophic Bacteria. MICROBIOLOGICAL
REVIEWSREVIEWSvol.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC239451/pdf/600439.pdf (1996).

12. McGlynn, S. E. Energy Metabolism during Anaerobic Methane Oxidation in ANME Archaea. Microbes Environ **32**, 5–13 (2017).

13. Guerrero-Cruz, S. et al. Methanotrophs: Discoveries, Environmental Relevance, and a Perspective on Current and Future Applications. Frontiers in Microbiology vol. 12 Preprint at https://doi.org/10.3389/fmicb.2021.678057 (2021).

14. Valentine, D. L. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: A review. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology **81**, 271–282 (2002).

15. Ettwig, K. F. et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature **464**, 543–548 (2010).

16. Ettwig, K. F. et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci U S A **113**, 12792–12796 (2016).

17. Haroon, M. F. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature **500**, 567–570 (2013).

18. Leu, A. O. et al. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. ISME Journal **14**, 1030–1041 (2020).

19. Knief, C. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker. Front Microbiol **6**, (2015).

20. Hakobyan, A. & Liesack, W. Unexpected metabolic versatility among type II methanotrophs in the Alphaproteobacteria. Biol Chem **401**, 1469–1477 (2020).

21. Khadem, A. F. et al. Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum solv uses the calvin-benson-bassham cycle for Carbon Dioxide Fixation. J Bacteriol **193**, 4438–4446 (2011).

22. van Spanning, R. J. M. et al. Methanotrophy by a Mycobacterium species that dominates a cave microbial ecosystem. Nat Microbiol **7**, 2089–2100 (2022).

23. Bay, S. K. et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nat Microbiol **6**, 246–256 (2021).

24. Rigby, M. et al. Role of atmospheric oxidation in recent methane growth. Proceedings of the National Academy of Sciences **114**, 5373–5377 (2017).

25. Jackson, R. B. et al. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environmental Research Letters **15**, 071002 (2020).

26. Peng, S. et al. Wetland emission and atmospheric sink changes explain methane growth in 2020. Nature **612**, 477–482 (2022).

27. Tate, K. R. Soil methane oxidation and land-use change – from process to mitigation. Soil Biol Biochem **80**, 260–272 (2015).

28. La, H., Hettiaratchi, J. P. A., Achari, G. & Dunfield, P. F. Biofiltration of methane. Bioresour Technol **268**, 759–772 (2018).

29. Harriss, R. C., Sebacher, D. I. & Day, F. P. Methane flux in the Great Dismal Swamp. Nature **297**, 673–674 (1982).

30. Bender, M. & Conrad, R. Kinetics of CH4 oxidation in oxic soils exposed to ambient air or high CH4 mixing ratios. FEMS Microbiol Ecol **10**, 261–269 (1992).

31. Bender, M. & Conrad, R. Kinetics of CH, Oxidation in Oxic Soils Exposed to Ambient Air or High CH, Mixing Ratios. Microbiology Ecology vol. 101 https://academic.oup.com/femsec/article/10/4/261/477403 (1992).

32. Dunfield, P. F. The soil methane sink. in Greenhouse gas sinks 152–170 (CABI, UK, 2007). doi:10.1079/9781845931896.0152.

33. Kolb, S. The quest for atmospheric methane oxidizers in forest soils. Environ Microbiol Rep 1, 336–346 (2009).

34. Täumer, J. et al. Divergent drivers of the microbial methane sink in temperate forest and grassland soils. Glob Chang Biol **27**, 929–940 (2021).

35. Seiler, W., Conrad, R. & Scharffe, D. Field studies of methane emission from termite nests into the atmosphere and measurements of methane uptake by tropical soils. J Atmos Chem **1**, 171–186 (1984).

36. Liu, Y. et al. Atmospheric methane oxidation is affected by grassland type and grazing and negatively correlated to total soil respiration in arid and semiarid grasslands in Inner Mongolia. Soil Biol Biochem **173**, (2022).

37. Bogner, J., Spokas, K., Burton, E., Sweeney, R. & Corona, V. Landfills as atmospheric methane sources and sinks. Chemosphere **31**, 4119–4130 (1995).

38. Striegl, R. G., McConnaughey, T. A., Thorstenson, D. C., Weeks, E. P. & Woodward, J. C. Consumption of atmospheric methane by desert soils. Nature **357**, 145–147 (1992).

39. Kruse, C. W. & Iversen, N. Effect of plant succession, ploughing, and fertilization on the microbiological oxidation of atmospheric methane in a heathland soil. FEMS Microbiol Ecol **18**, 121–128 (1995).

40. Singh, S., Singh, J. S. & Kashyap, A. K. Methane consumption by soils of dryland rice agriculture: Influence of varieties and N-fertilization. Chemosphere **38**, 175–189 (1999).

41. Cai, Y., Zheng, Y., Bodelier, P. L. E., Conrad, R. & Jia, Z. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat Commun **7**, 11728 (2016).

42. Whalen, S. C. & Reeburgh, W. S. Consumption of atmospheric methane by tundra soils. Nature **346**, 160–162 (1990).

43. Yun, H. et al. Consumption of atmospheric methane by the Qinghai-Tibet Plateau alpine steppe ecosystem. Cryosphere **12**, 2803–2819 (2018).

44. Webster, K. D., Mirza, A., Deli, J. M., Sauer, P. E. & Schimmelmann, A. Consumption of atmospheric methane in a limestone cave in Indiana, USA. Chem Geol **443**, 1–9 (2016).

45. Sundqvist, E., Crill, P., Mlder, M., Vestin, P. & Lindroth, A. Atmospheric methane removal by boreal plants. Geophys Res Lett **39**, (2012).

46. Liebner, S. et al. Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra. Journal of Ecology **99**, 914–922 (2011).

47. Knief, C., Lipski, A. & Dunfield, P. F. Diversity and Activity of Methanotrophic Bacteria in Different Upland Soils. Appl Environ Microbiol **69**, 6703–6714 (2003).

48. Holmes, A. J. et al. Characterization of Methanotrophic Bacterial Populations in Soils Showing Atmospheric Methane Uptake. Appl Environ Microbiol **65**, 3312–3318 (1999).

49. Pratscher, J., Vollmers, J., Wiegand, S., Dumont, M. G. & Kaster, A. Unravelling the Identity, Metabolic Potential and Global Biogeography of the Atmospheric Methane-Oxidizing Upland Soil Cluster α . Environ Microbiol **20**, 1016–1029 (2018).

50. Cheng, X.-Y. et al. USC γ Dominated Community Composition and Cooccurrence Network of Methanotrophs and Bacteria in Subterranean Karst Caves . Microbiol Spectr (2021) doi:10.1128/SPECTRUM.00820-21.

51. Täumer, J. et al. Linking transcriptional dynamics of CH4-cycling grassland soil microbiomes to seasonal gas fluxes. ISME J **16**, 1788–1797 (2022).

52. Rafalska, A., Walkiewicz, A., Osborne, B., Klumpp, K. & Bieganowski, A. Variation in methane uptake by grassland soils in the context of climate change – A review of effects and mechanisms. Science of the Total Environment vol. 871 Preprint at https://doi.org/10.1016/j.scitotenv.2023.162127 (2023).

53. Wang, Y. et al. Precipitation determines the magnitude and direction of interannual responses of soil respiration to experimental warming. Plant Soil **458**, 75–91 (2021).

54. King, G. M. & Adamsen, A. P. S. Effects of Temperature on Methane Consumption in a Forest Soil and in Pure Cultures of the Methanotroph Methylomonas rubra. Appl Environ Microbiol **58**, 2758–2763 (1992).

55. Whalen, StephenC., Reeburgh, WilliamS. & Barber, ValerieA. Oxidation of methane in boreal forest soils: a comparison of seven measures. Biogeochemistry **16**, (1992).

56. Murguia-Flores, F., Ganesan, A. L., Arndt, S. & Hornibrook, E. R. C. Global Uptake of Atmospheric Methane by Soil From 1900 to 2100. Global Biogeochem Cycles **35**, (2021).

57. Von Fischer, J. C., Butters, G., Duchateau, P. C., Thelwell, R. J. & Siller, R. In situ measures of methanotroph activity in upland soils: A reaction diffusion model and field observation of water stress. J Geophys Res Biogeosci **114**, (2009).

58. Amaral, J. A., Ren, T. & Knowles, R. Atmospheric Methane Consumption by Forest Soils and Extracted Bacteria at Different PH Values. APPLIED AND ENVIRONMENTAL MICROBIOLOGY vol. 64 (1998).

59. Kou, Y. et al. Deterministic processes dominate soil methanotrophic community assembly in grassland soils. Geoderma **359**, (2020).

60. Cai, Y., Zhou, X., Shi, L. & Jia, Z. Atmospheric Methane Oxidizers Are Dominated by Upland Soil Cluster Alpha in 20 Forest Soils of China. Microb Ecol **80**, 859–871 (2020).

61. Zhao, J., Cai, Y. & Jia, Z. The pH-based ecological coherence of active canonical methanotrophs in paddy soils. Biogeosciences **17**, 1451–1462 (2020).

62. Fowler, D. et al. The global nitrogen cycle in the Twentyfirst century. Philosophical Transactions of the Royal Society B: Biological Sciences **368**, (2013).

63. Kanakidou, M. et al. Past, Present, and Future Atmospheric Nitrogen Deposition. (2016) doi:10.1175/JAS-D-15-0278.s1.

64. Galloway, J. N. et al. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science (1979) **320**, 889–892 (2008).

65. Driscoll, C. T. et al. Nitrogen pollution in the northeastern United States: Sources, effects, and management options. BioScience vol. 53 Preprint at https://doi.org/10.1641/0006-3568(2003)053[0357:NPITNU]2.0.CO;2 (2003).

66. Bodelier, P. L. E. & Steenbergh, A. K. Interactions between methane and the nitrogen cycle in light of climate change. Current Opinion in Environmental Sustainability vols 9–10 26–36 Preprint at https://doi.org/10.1016/j.cosust.2014.07.004 (2014).

67. Steudler, P. A., Bowden, R. D., Melillo, J. M. & Aber, J. D. Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature **341**, 314–316 (1989).

68. Gulledge, J. & Schimel, J. P. Low-Concentration Kinetics of Atmospheric CH $\langle sub \rangle 4 \langle sub \rangle$ Oxidation in Soil and Mechanism of NH $_4$ ⁺ Inhibition. Appl Environ Microbiol **64**, 4291–4298 (1998).

69. Bodelier, P. L. E. & Laanbroek, H. J. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiology Ecology vol. 47 265–277 Preprint at https://doi.org/10.1016/S0168-6496(03)00304-0 (2004).

70. Mohanty, S. R., Bodelier, P. L. E., Floris, V. & Conrad, R. Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl Environ Microbiol **72**, 1346–1354 (2006).

71. Dam, B., Dam, S., Kim, Y. & Liesack, W. Ammonium induces differential expression of methane and nitrogen metabolism-related genes in Methylocystis sp. strain SC2. Environ Microbiol **16**, 3115–3127 (2014).

72. Bodelier, P. L. E. & Steenbergh, A. K. Interactions between Methane and Nitrogen Cycling: Current Metagenomic Studies and Future Trends. in.

73. Shukla, P. N., Pandey, K. D. & Mishra, V. K. Environmental determinants of soil methane oxidation and methanotrophs. Crit Rev Environ Sci Technol **43**, 1945–2011 (2013).

74. Keller, M., Mitre, M. E. & Stallard, R. F. Consumption of atmospheric methane in soils of central Panama: Effects of agricultural development. Global Biogeochem Cycles **4**, 21–27 (1990).

75. Knief, C. et al. Diversity of methanotrophic bacteria in tropical upland soils under different land uses. Appl Environ Microbiol **71**, 3826–3831 (2005).

76. Priemé, A. & Ekelund, F. Five pesticides decreased oxidation of atmospheric methane in a forest soil. Soil Biol Biochem **33**, 831–835 (2001).

77. Boeckx, P., Van Cleemput, O. & Meyer, T. The influence of land use and pesticides on methane oxidation in some Belgian soils. Biol Fertil Soils **27**, 293–298 (1998).

78. Yashiro, Y., Kadir, W. R., Okuda, T. & Koizumi, H. The effects of logging on soil greenhouse gas (CO2, CH4, N2O) flux in a tropical rain forest, Peninsular Malaysia. Agric For Meteorol **148**, 799–806 (2008).

79. Nanba, K. & King, G. M. Response of Atmospheric Methane Consumption by Maine Forest Soils to Exogenous Aluminum Salts †. APPLIED AND ENVIRONMENTAL MICROBIOLOGY vol. 66 https://journals.asm.org/journal/aem (2000).

80. Conrad, R. Soil microorganisms oxidizing atmospheric trace gases (CH4, CO, H2, NO). Indian J Microbiol **39**, 193–203 (1999).

81. Novelli, P. C. et al. Molecular hydrogen in the troposphere: Global distribution and budget. Journal of Geophysical Research: Atmospheres **104**, 30427–30444 (1999).

82. Novelli, P. C., Masarie, K. A. & Lang, P. M. Distributions and recent changes of carbon monoxide in the lower troposphere. Journal of Geophysical Research Atmospheres **103**, 19015–19033 (1998).

83. Dunfield, P. F. & Conrad, R. Starvation Alters the Apparent Half-Saturation Constant for Methane in the Type II Methanotroph Methylocystis Strain LR1. Appl Environ Microbiol **66**, 4136–4138 (2000).

84. Button, D. K. Kinetics of nutrient-limited transport and microbial growth. Microbiological Reviews vol. 49 270–297 Preprint at https://doi.org/10.1128/mmbr.49.3.270-297.1985 (1985).

85. Tijhuis, L., Van Loosdrecht, M. C. M. & Heijnen, J. J. A thermodynamically based correlation for maintenance gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol Bioeng **42**, 509–519 (1993).

86. Knief, C., Kolb, S., Bodelier, P. L. E., Lipski, A. & Dunfield, P. F. The active methanotrophic community in hydromorphic soils changes in response to changing methane concentration. Environ Microbiol **8**, 321–333 (2006).

87. Kolb, S., Knief, C., Dunfield, P. F. & Conrad, R. Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Environ Microbiol **7**, 1150–1161 (2005).

88. Degelmann, D. M., Borken, W., Drake, H. L. & Kolb, S. Different Atmospheric Methane-Oxidizing Communities in European Beech and Norway Spruce Soils. Appl Environ Microbiol **76**, 3228–3235 (2010).

89. Cai, Y., Zheng, Y., Bodelier, P. L. E., Conrad, R. & Jia, Z. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat Commun **7**, (2016).

90. Knief, C. & Dunfield, P. F. Response and adaptation of different methanotrophic bacteria to low methane mixing ratios. Environ Microbiol **7**, 1307–1317 (2005).

91. Sipkema, E. M., de Koning, W., Ganzeveld, K. J., Janssen, D. B. & Beenackers, A. A. C. M. NADH-regulated metabolic model for growth of Methylosinus trichosporium OB3b. Model presentation, parameter estimation, and model validation. Biotechnol Prog **16**, 176–188 (2000).

92. Asenjo, J. A. & Suk, J. S. Microbial Conversion of Methane into poly- β -hydroxybutyrate (PHB): Growth and intracellular product accumulation in a type II methanotroph. Journal of Fermentation Technology **64**, 271–278 (1986).

93. López, J. C., Arnáiz, E., Merchán, L., Lebrero, R. & Muñoz, R. Biogas-based polyhydroxyalkanoates production by Methylocystis hirsuta: A step further in anaerobic digestion biorefineries. Chemical Engineering Journal **333**, 529–536 (2018).

94. Tveit, A. T. et al. Thermal acclimation of methanotrophs from the genus Methylobacter. The ISME Journal 2023 1–12 (2023) doi:10.1038/s41396-023-01363-7.

95. Dedysh, S. N., Knief, C. & Dunfield, P. F. Methylocella species are facultatively methanotrophic. J Bacteriol **187**, 4665–4670 (2005).

96. Belova, S. E. et al. Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp. Environ Microbiol Rep **3**, 36–46 (2011).

97. Bordel, S. et al. Genome scale metabolic modeling reveals the metabolic potential of three Type II methanotrophs of the genus Methylocystis. Metab Eng **54**, 191–199 (2019).

98. Dedysh, S. N. & Dunfield, P. F. Facultative and obligate methanotrophs: How to identify and differentiate Them. in Methods in Enzymology vol. 495 31–44 (Academic Press Inc., 2011).

99. Im, J., Lee, S. W., Yoon, S., Dispirito, A. A. & Semrau, J. D. Characterization of a novel facultative Methylocystis species capable of growth on methane, acetate and ethanol. Environ Microbiol Rep **3**, 174–181 (2011).

100. Hakobyan, A., Zhu, J., Glatter, T., Paczia, N. & Liesack, W. Hydrogen utilization by Methylocystis sp. strain SC2 expands the known metabolic versatility of type IIa methanotrophs. Metab Eng **61**, 181–196 (2020).

101. Tveit, A. T. et al. Widespread soil bacterium that oxidizes atmospheric methane. Proceedings of the National Academy of Sciences **116**, 8515–8524 (2019).

102. Holmes, A. J., Costello, A., Lidstrom, M. E. & Murrell, J. C. Evidence that participate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett **132**, 203–208 (2006).

103. Tavormina, P. L., Orphan, V. J., Kalyuzhnaya, M. G., Jetten, M. S. M. & Klotz, M. G. A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ Microbiol Rep **3**, 91–100 (2011).

104. Su, Y. C., Sathyamoorthy, S. & Chandran, K. Bioaugmented methanol production using ammonia oxidizing bacteria in a continuous flow process. Bioresour Technol **279**, 101–107 (2019).

105. Murrell, J. C. & Dalton, H. Nitrogen Fixation in Obligate Methanotrophs. Microbiology (N Y) **129**, 3481–3486 (1983).

106. Wartiainen, I., Hestnes, A. G., McDonald, I. R. & Svenning, M. M. Methylocystis rosea sp. nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (78° N). Int J Syst Evol Microbiol **56**, 541–547 (2006).

107. Dedysh, S. N. et al. Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol **52**, 251–261 (2002).

108. Dunfield, P. F., Belova, S. E., Vorob'ev, A. V., Cornish, S. L. & Dedysh, S. N. Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa. Int J Syst Evol Microbiol **60**, 2659–2664 (2010).

109. Dedysh, S. N. et al. Methylocapsa palsarum sp. nov., a methanotroph isolated from a subArctic discontinuous permafrost ecosystem. Int J Syst Evol Microbiol **65**, 3618–3624 (2015).

110. Inomura, K., Bragg, J. & Follows, M. J. A quantitative analysis of the direct and indirect costs of nitrogen fixation: a model based on Azotobacter vinelandii. The ISME Journal 2017 11:1 **11**, 166–175 (2016).

111. Whittenbury, R. & Wilkinson, J. F. Enrichment, Isolation and Some Properties of Me thane-utilizing Bacteria. J Gen Microbiol **61**, 205–218 (1970).

112. Singh, R., Ryu, J. & Kim, S. W. An Overview on Methanotrophs and the Role of Methylosinus trichosporium OB3b for Biotechnological Applications. Biotechnology and Bioprocess Engineering 2022 **27**, 1–14 (2022).

113. Zhang, T., Zhou, J., Wang, X. & Zhang, Y. Poly- β -hydroxybutyrate Production by Methylosinus trichosporium OB3b at Different Gas-phase Conditions. Iran J Biotechnol **17**, 10–16 (2019).

114. Belova, S. E. et al. Methylocapsa polymorpha sp. nov., a Novel Dinitrogen-Fixing Methanotroph from a Subarctic Wetland. Microbiology (N Y) **92**, S107–S113 (2023).

115. Danilova, O. V. et al. One Step Closer to Enigmatic USC α Methanotrophs: Isolation of a Methylocapsa-like Bacterium from a Subarctic Soil. Microorganisms **11**, (2023).

116. Strong, P. J., Xie, S. & Clarke, W. P. Methane as a resource: Can the methanotrophs add value? Environ Sci Technol **49**, 4001–4018 (2015).

117. Trotsenko, Y. A. & Murrell, J. C. Metabolic Aspects of Aerobic Obligate Methanotrophy*. Adv Appl Microbiol **63**, 183–229 (2008).

118. Semrau, J. D., Dispirito, A. A. & Yoon, S. Methanotrophs and copper. FEMS Microbiol Rev **34**, 496–531 (2010).

119. Greening, C. & Grinter, R. Microbial oxidation of atmospheric trace gases. Nat Rev Microbiol **20**, 513–528 (2022).

120. Koo, C. W., Tucci, F. J., He, Y. & Rosenzweig, A. C. Recovery of particulate methane monooxygenase structure and activity in a lipid bilayer. Science (1979) (2022) doi:10.1126/SCIENCE.ABM3282.

121. Baba, T. & Miyaji, A. Catalysis and the Mechanism of Methane Conversion to Chemicals: C-C and C-O Bonds Formation Using Heterogeneous, Homogenous, and Biological Catalysts. Catalysis and the Mechanism of Methane Conversion to Chemicals: C-C and C-O Bonds Formation Using Heterogeneous, Homogenous, and Biological Catalysts (Springer Singapore, 2020). doi:10.1007/978-981-15-4132-2.

122. Miyaji, A., Nitta, M. & Baba, T. Influence of copper ions removal from membrane-bound form of particulate methane monooxygenase from Methylosinus trichosporium OB3b on its activity for methane hydroxylation. J Biotechnol **306**, 100001 (2019).

123. Shiemke, A. K., Cook, S. A., Miley, T. & Singleton, P. Detergent solubilization of membrane-bound methane monooxygenase requires plastoquinol analogs as electron donors. Arch Biochem Biophys **321**, 421–428 (1995).

124. Keltjens, J. T., Pol, A., Reimann, J. & Op Den Camp, H. J. M. PQQ-dependent methanol dehydrogenases: Rare-earth elements make a difference. Appl Microbiol Biotechnol **98**, 6163–6183 (2014).

125. Anthony, C. The quinoprotein dehydrogenases for methanol and glucose. Arch Biochem Biophys **428**, 2–9 (2004).

126. Chistoserdova, L. Lanthanides: New life metals? World J Microbiol Biotechnol **32**, 1–7 (2016).

127. Marx, C. J., Chistoserdova, L. & Lidstrom, M. E. Formaldehyde-detoxifying role of the tetrahydromethanopterin-linked pathway in Methylobacterium extorquens AM1. J Bacteriol **185**, 7160–7168 (2003).

128. Vorholt, J. A. Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch Microbiol **178**, 239–249 (2002).

129. Kallen, R. G. & Jencks, W. P. The Mechanism of the Condensation of Formaldehyde with Tetrahydrofolic Acid. Journal of Biological Chemistry **241**, 5851–5863 (1966).

130. Vorholt, J. A., Marx, C. J., Lidstrom, M. E. & Thauer, R. K. Novel Formaldehyde-Activating Enzyme in Methylobacterium Extorquens AM1 Required for Growth on Methanol. JOURNAL OF BACTERIOLOGY vol. 182 https://journals.asm.org/journal/jb (2000).

131. Vorholt, J. A., Chistoserdova, L., Lidstrom, M. E. & Thauer, R. K. The NADPdependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol **180**, 5351–5356 (1998).

132. Hagemeier, C. H., Chistoserdova, L., Lidstrom, M. E., Thauer, R. K. & Vorholt, J. A. Characterization of a second methylene tetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1. Eur J Biochem **267**, 3762–3769 (2000).

133. Pomper, B. K., Vorholt, J. A., Chistoserdova, L., Lidstrom, M. E. & Thauer, R. K. A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1. Eur J Biochem **261**, 475–480 (1999).

134. Pomper, B. K., Saurel, O., Milon, A. & Vorholt, J. A. Generation of formate by the formyltransferase/hydrolase complex (Fhc) from Methylobacterium extorquens AM1. FEBS Lett **523**, 133–137 (2002).

135. Moon, M., Park, G. W., Lee, J., Lee, J.-S. & Min, K. Recent progress in formate dehydrogenase (FDH) as a non-photosynthetic CO2 utilizing enzyme: A short review. Journal of CO2 Utilization **42**, 101353 (2020).

136. Hartmann, T. & Leimkühler, S. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate. FEBS J **280**, 6083–6096 (2013).

137. Maden, B. E. H. Tetrahydrofolate and Tetrahydromethanopterin Compared : Functionally Distinct Carriers in C 1 Metabolism. Biochem. J vol. 350 (2000).

138. Kikuchi, G., Motokawa, Y., Yoshida, T. & Hiraga, K. Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proceedings of the Japan Academy, Series B **84**, 246–263 (2008).

139. Marx, C. J., Laukel, M., Vorholt, J. A. & Lidstrom, M. E. Purification of the Formate-Tetrahydrofolate Ligase from Methylobacterium extorquens AM1 and Demonstration of Its Requirement for Methylotrophic Growth. J Bacteriol **185**, 7169–7175 (2003).

140. Lidstrom, M. E. Aerobic Methylotrophic Prokaryotes. The Prokaryotes 618–634 (2006) doi:10.1007/0-387-30742-7_20.

141. Marx, C. J. & Lidstrom, M. E. Development of an insertional expression vector system for Methylobacterium extorquens AM1 and generation of null mutants lacking mtdA and/or fch. Microbiology (N Y) **150**, 9–19 (2004).

142. Crowther, G. J., Kosály, G. & Lidstrom, M. E. Formate as the Main Branch Point for Methylotrophic Metabolism in Methylobacterium extorquens AM1. J Bacteriol **190**, 5057–5062 (2008).

143. Sánchez-Andrea, I. et al. The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans. Nat Commun **11**, (2020).

144. Claassens, N. J. Reductive Glycine Pathway: A Versatile Route for One-Carbon Biotech. Trends Biotechnol **39**, 327–329 (2021).

145. Anthony, C. The Biochemistry of Methylotrophs. (Academic Press, 1982).

146. Anthony, C. How Half a Century of Research was Required to Understand Bacterial Growth on C1 and C2 Compounds; the Story of the Serine Cycle and the Ethylmalonyl-CoA Pathway. https://doi.org/10.3184/003685011X13044430633960 **94**, 109–137 (2011).

147. Cordero, P. R. F. et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. The ISME Journal 2019 13:11 **13**, 2868–2881 (2019).

148. Islam, Z. F. et al. Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. The ISME Journal 2019 13:7 **13**, 1801–1813 (2019).

149. Greening, C., Berney, M., Hards, K., Cook, G. M. & Conrad, R. A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygendependent [NiFe] hydrogenases. Proc Natl Acad Sci U S A **111**, 4257–4261 (2014).

150. Schäfer, C. et al. Structure of an Actinobacterial-Type [NiFe]-Hydrogenase Reveals Insight into O 2 -Tolerant H 2 Oxidation. Structure **24**, 285–292 (2016).

151. Dobbek, H., Gremer, L., Kiefersauer, R., Huber, R. & Meyer, O. Catalysis at a dinuclear [CuSMo(=O)OH] cluster in a CO dehydrogenase resolved at 1.1-Å resolution. Proc Natl Acad Sci U S A **99**, 15971–15976 (2002).

152. Greening, C., Berney, M., Hards, K., Cook, G. M. & Conrad, R. A soil actinobacterium scavenges atmospheric H $_2$ using two membrane-associated, oxygendependent [NiFe] hydrogenases. Proceedings of the National Academy of Sciences **111**, 4257–4261 (2014).

153. Cordero, P. R. F. et al. Two uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence. Journal of Biological Chemistry **294**, 18980–18991 (2019).

154. Rohde, M., Mayer, F. & Meyer, O. Immunocytochemical localization of carbon monoxide oxidase in Pseudomonas carboxydovorans. The enzyme is attached to the inner aspect of the cytoplasmic membrane. Journal of Biological Chemistry **259**, 14788–14792 (1984).

155. Grinter, R. et al. Structural basis for bacterial energy extraction from atmospheric hydrogen. Nature 2023 615:7952 **615**, 541–547 (2023).

156. Auman, A. J., Speake, C. C. & Lidstrom, M. E. nifH Sequences and Nitrogen Fixation in Type I and Type II Methanotrophs. Appl Environ Microbiol **67**, 4009–4016 (2001).

157. Khadem, A. F., Pol, A., Jetten, M. S. M. & Op den Camp, H. J. M. Nitrogen fixation by the vertucomicrobial methanotroph 'Methylacidiphilum fumariolicum' SolV. Microbiology (N Y) **156**, 1052–1059 (2010).

158. Hara, S. et al. In Vivo Evidence of Single 13C and 15N Isotope–Labeled Methanotrophic Nitrogen-Fixing Bacterial Cells in Rice Roots. mBio **13**, (2022).

159. Raymond, J., Siefert, J. L., Staples, C. R. & Blankenship, R. E. The Natural History of Nitrogen Fixation. Mol Biol Evol **21**, 541–554 (2004).

160. Seefeldt, L. C. et al. Reduction of Substrates by Nitrogenases. Chemical Reviews vol. 120 5082–5106 Preprint at https://doi.org/10.1021/acs.chemrev.9b00556 (2020).

161. Poole, R. K. & Hill, S. Respiratory Protection of Nitrogenase Activity in Azotobacter vinelandii —Roles of the Terminal Oxidases. Biosci Rep **17**, 303–317 (1997).

162. Gallon, J. R. Reconciling the incompatible: N2 fixation And O2. New Phytologist **122**, 571–609 (1992).

163. Gebhardt, C., Turner, G. L., Gibson, A. H., Dreyfus, B. L. & Bergersen, F. J. Nitrogen-fixing Growth in Continuous Culture of a Strain of Rhizobium sp. Isolated from Stem Nodules on Sesbania rostrata. Microbiology (N Y) **130**, 843–848 (1984).

164. Fay, P. Oxygen Relations of Nitrogen Fixation in Cyanobacteria. MICROBIOLOGICAL REVIEWS vol. 56 https://journals.asm.org/journal/mr (1992).

165. Schlesier, J., Rohde, M., Gerhardt, S. & Einsle, O. A Conformational Switch Triggers Nitrogenase Protection from Oxygen Damage by Shethna Protein II (FeSII). J Am Chem Soc **138**, 239–247 (2016).

166. Threatt, S. D. & Rees, D. C. Biological nitrogen fixation in theory, practice, and reality: a perspective on the molybdenum nitrogenase system. FEBS Letters vol. 597 45–58 Preprint at https://doi.org/10.1002/1873-3468.14534 (2023).

167. Kalescky, R., Kraka, E. & Cremer, D. Identification of the strongest bonds in chemistry. in Journal of Physical Chemistry A vol. 117 8981–8995 (2013).

168. Roberts, G. P., Macneil, T., Macneil, D. & Brill, W. J. Regulation and Characterization of Protein Products Coded by the Nif (Nitrogen Fixation) Genes of Klebsiella Pneumoniae. JOURNAL OF BACTERIOLOGY https://journals.asm.org/journal/jb (1978).

169. Lukoyanov, D. et al. Reductive Elimination of H2 Activates Nitrogenase to Reduce the N \equiv N Triple Bond: Characterization of the E4(4H) Janus Intermediate in Wild-Type Enzyme. J Am Chem Soc **138**, 10674–10683 (2016).

170. Ferrari, B. C., Binnerup, S. J. & Gillings, M. Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl Environ Microbiol **71**, 8714–8720 (2005).

171. Svenning, M. M., Wartiainen, I., Hestnes, A. G. & Binnerup, S. J. Isolation of methane oxidising bacteria from soil by use of a soil substrate membrane system. FEMS Microbiol Ecol **44**, 347–354 (2003).

172. Burg, T. P. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature **446**, 1066–1069 (2007).

173. Grover, W. H. et al. Measuring single-cell density. Proceedings of the National Academy of Sciences **108**, 10992–10996 (2011).

174. Feijó Delgado, F. et al. Intracellular Water Exchange for Measuring the Dry Mass, Water Mass and Changes in Chemical Composition of Living Cells. PLoS One **8**, e67590 (2013).

175. Lechene, C. et al. High-Resolution Quantitative Imaging of Mammalian and Bacterial Cells Using Stable Isotope Mass Spectrometry. http://jbiol.com/content/5/6/20 (2006).

176. Herrmann, A. M. et al. Nano-scale secondary ion mass spectrometry - A new analytical tool in biogeochemistry and soil ecology: A review article. Soil Biol Biochem **39**, 1835–1850 (2007).

177. Deracinois, B., Flahaut, C., Duban-Deweer, S. & Karamanos, Y. Comparative and quantitative global proteomics approaches: An overview. Proteomes vol. 1 180–218 Preprint at https://doi.org/10.3390/proteomes1030180 (2013).

178. Thompson, L. R. et al. A communal catalogue reveals Earth's multiscale microbial diversity. Nature **551**, 457–463 (2017).

179. Gilbert, J. A., Jansson, J. K. & Knight, R. The Earth Microbiome project: Successes and aspirations. BMC Biology vol. 12 Preprint at https://doi.org/10.1186/s12915-014-0069-1 (2014).

180. Gilbert, J. A. et al. Meeting Report: The Terabase Metagenomics Workshop and the Vision of an Earth Microbiome Project. Stand Genomic Sci **3**, 243–248 (2010).

181. Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinformatics **10**, (2009).

182. R Core Team. R: A Language and Environment for Statistical Computing. Preprint at https://www.R-project.org/ (2022).

183. Ocko, I. B. & Hamburg, S. P. Climate consequences of hydrogen emissions. Atmos Chem Phys **22**, 9349–9368 (2022).

184. Dincer, I. Hydrogen 1.0: A new age. International Journal of Hydrogen Energy vol. 48 16143–16147 Preprint at https://doi.org/10.1016/j.ijhydene.2023.01.124 (2023).

185. Avalos Ramirez, A., García-Aguilar, B. P., Jones, J. P. & Heitz, M. Improvement of methane biofiltration by the addition of non-ionic surfactants to biofilters packed with inert materials. Process Biochemistry **47**, 76–82 (2012).

186. Smith, S. J. et al. Impact of methane and black carbon mitigation on forcing and temperature: a multi-model scenario analysis. Clim Change **163**, 1427–1442 (2020).

187. Ocko, I. B. et al. Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming. Environmental Research Letters **16**, (2021).
Publications

Paper 1

Article Simultaneous Oxidation of Atmospheric Methane, Carbon Monoxide and Hydrogen for Bacterial Growth

Alexander Tøsdal Tveit ^{1,*,†}, Tilman Schmider ^{1,†}, Anne Grethe Hestnes ¹, Matteus Lindgren ², Alena Didriksen ¹ and Mette Marianne Svenning ¹

- ¹ Department of Arctic and Marine Biology, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; tilman.schmider@uit.no (T.S.); anne.hestnes@uit.no (A.G.H.); alena.didriksen@uit.no (A.D.); mette.svenning@uit.no (M.M.S.)
- ² CAGE—Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT, The Arctic University of Norway, 9010 Tromsø, Norway; matteus.lindgren@uit.no
- * Correspondence: alexander.t.tveit@uit.no
- † These authors contributed equally to this work.

Abstract: The second largest sink for atmospheric methane (CH₄) is atmospheric methane oxidizingbacteria (atmMOB). How atmMOB are able to sustain life on the low CH₄ concentrations in air is unknown. Here, we show that during growth, with air as its only source for energy and carbon, the recently isolated atmospheric methane-oxidizer *Methylocapsa gorgona* MG08 (USC α) oxidizes three atmospheric energy sources: CH₄, carbon monoxide (CO), and hydrogen (H₂) to support growth. The cell-specific CH₄ oxidation rate of *M. gorgona* MG08 was estimated at ~0.7 × 10⁻¹⁸ mol cell⁻¹ h⁻¹, which, together with the oxidation of CO and H₂, supplies 0.38 kJ Cmol⁻¹ h⁻¹ during growth in air. This is seven times lower than previously assumed necessary to support bacterial maintenance. We conclude that atmospheric methane-oxidation is supported by a metabolic flexibility that enables the simultaneous harvest of CH₄, H₂ and CO from air, but the key characteristic of atmospheric CH₄ oxidizing bacteria might be very low energy requirements.

Keywords: methane; carbon monoxide; hydrogen; energy; growth; atmospheric trace gases

1. Introduction

Atmospheric methane-oxidizing bacteria (atmMOB) remove 9–47 Tg methane (CH₄) from the atmosphere annually [1]. The most common hypothesis for explaining how these bacteria can sustain life by oxidizing atmospheric CH₄ is the "high affinity" model, in which a special form of particulate CH₄ monooxygenase allows atmMOB to oxidize the low atmospheric CH_4 concentrations at a high rate [2]. Other hypotheses include the utilization of alternative energy sources or a high specific affinity $(V_{max(app)}/K_{m(app)})$ [3,4]. AtmMOB are found globally in soils [4] and belong to the two phylogenetic clusters USC α (Alphaproteobacteria) and USC γ (Gammaproteobacteria) [5]. The lack of pure cultures from USC α and USC γ has prevented studies of the energy metabolism of atm-MOB [3]. Conventional methane oxidizing bacteria (MOB) are expected to oxidize around $0.2-17 \times 10^{-18}$ mol CH₄ cell⁻¹ h⁻¹ at atmospheric CH₄ concentrations at 25 °C, but such rates have been considered too low to provide sufficient energy for growth [6]. Thus, atmMOB were expected to either utilize alternative energy sources or have high affinities for CH₄ [3]. The latter is supported by observations reporting apparent high affinity CH₄ oxidation by microbial communities in oxic soils [7]. Additionally, oxidation rates of 800×10^{-18} mol CH₄ cell⁻¹ h⁻¹ were measured in forest soils, far surpassing the cellspecific activity of 40×10^{-18} mol CH₄ cell⁻¹ h⁻¹ assumed to be necessary to support minimum cell maintenance requirements [6,8]. At 20 °C, these minimum requirements would demand an energy supply of 2.8 kJ Cmol h^{-1} . It is assumed that the high forest soil rates at atmospheric CH₄ concentrations are achieved by the combination of methane

Citation: Tveit, A.T.; Schmider, T.; Hestnes, A.G.; Lindgren, M.; Didriksen, A.; Svenning, M.M. Simultaneous Oxidation of Atmospheric Methane, Carbon Monoxide and Hydrogen for Bacterial Growth. *Microorganisms* 2021, *9*, 153. https://doi.org/ 10.3390/microorganisms9010153

Received: 1 December 2020 Accepted: 7 January 2021 Published: 12 January 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). monooxygenases (MMO) with very low half-saturation constants (K_m) and high cellular abundances of these enzymes.

The recently described USC atmMOB species Methylocapsa gorgona MG08 has the highest specific affinity $(V_{\max(app)}/K_{m(app)})$ for CH₄ of all tested MOB at $195 \times 10^{-12} \text{ L} \cdot \text{cell}^{-1} \cdot \text{h}^{-1}$. However, this translates into a cell-specific CH₄ oxidation rate of only 10×10^{-18} mol CH_4 cell⁻¹ h⁻¹ at atmospheric CH₄ concentration [4], seemingly too low to support cellular maintenance [6]. Nevertheless, M. gorgona MG08 is able to grow at atmospheric (1.87 p.p.m.v.) CH_4 concentrations [4]. It also carries a [NiFe] group 1 h high-affinity respiratory hydrogenase (hhyL and hhyS) and a [MoCu] class I respiratory carbon monoxide dehydrogenase, similar to those identified in atmospheric carbon monoxide (CO) and hydrogen (H₂)-oxidizing microorganisms [4,9–12]. Recent studies have identified the utilization of atmospheric CO and H_2 as energy sources for growth and survival in bacteria [9,11–13], and as support for bacterial primary production in Antarctic and Arctic environments [10,14]. Atmospheric CH₄ concentrations are currently 1.87 p.p.m.v. [15], while the concentrations of atmospheric CO and H₂ are lower. CO concentrations vary, with estimates for uninhabited areas around 0.1 p.p.m.v., while urban areas contain higher concentrations, often above 0.2 p.p.m.v. [16–19]. Atmospheric H₂ concentrations are stable at approximately 0.53 p.p.m.v. [20]. Many MOB carry genes for carbon monoxide and hydrogen oxidation [4], and recently it has been shown that the thermoacidophilic *Methylacidiphilum fumariolicum* SolV can oxidize sub-atmospheric H_2 with a high-affinity, membrane-associated [NiFe] hydrogenase [21], while the strain *Methylocystis* sp. SC2 oxidizes hydrogen at higher concentrations [22]. However, the oxidation of atmospheric CO and H_2 to support growth has never been demonstrated for *M. gorgona* MG08 or any other MOB. We have studied how the atmospheric CH₄ oxidizer *M. gorgona* MG08, in pure culture, harvests energy from the atmosphere for growth.

2. Materials and Methods

2.1. Cultivation

A young stationary culture of *M. gorgona* MG08 was prepared as follows. A 20 mL culture (1:10 (NMS:MilliQ) in diluted liquid nitrate mineral salts (NMS) medium (pH 6.8) (DSMZ medium 921) without EDTA) with a headspace of 20% CH₄ in air (20 mL 100% CH4 mixed with 80 mL of air) was incubated for 12 days, reaching several days (2-4) into the stationary phase. Inoculum from this culture was precultured in 1:10 (NMS:MilliQ) diluted liquid nitrate mineral salts (NMS) medium (pH 6.8) (DSMZ medium 921) without EDTA under a headspace atmosphere of ~20 p.p.m.v. CH_4 in air for two weeks. The headspace was created by injecting 20 μ L of 100% CH₄ into the 100 mL ambient air headspace of 120 mL serum bottles containing 20 mL medium, sealed with a butyl rubber stopper and crimp cap. This was used as a start culture for colony growth on filters. The cell concentration in the suspension was determined by fluorescence microscopy after filtration on Anodisc filters (Whatman 6809-6022, Merck, Darmstadt, Germany) and $1000 \times$ SYBRgreen I (Molecular probes S-7567, ThermoFisher, Waltham, MA, USA) staining as previously described [4]. For staining, filters were transferred (bacteria side up) on top of 200 μ L droplets of 1000 \times SYBR green and incubated for 10 minutes. In the next step, filters were washed twice by transferring them onto 1 mL milliQ water and then air-dried. The whole procedure was performed at room temperature and in the dark. A fresh-made anti-fading solution consisting of 0.1% p-phenylenediamine dihydrochloride in 1:1 glycerol and PBS (phosphate buffered saline pH 7.2) was used for mounting the filters on slides with cover slips.

From the start cultures, the required volume and cell density needed to achieve a cell density of ~20 cells per $63 \times$ photo area, for a total of ~1 × 10⁶ cells per filter, was selected for filter cultivation. For the transfer of cells onto the 47 mm polycarbonate filter, an autoclaved Millipore vacuum filter holder system (cat no XX1004700, Merck, Darmstadt, Germany) with 300 mL glass funnels was used. Firstly, a GF/C filter (Whatman 1822-047, Merck, Darmstadt, Germany) was added as support filter. A polycarbonate filter

(Whatman, Nucleopore 111106, Merck, Darmstadt, Germany) was then added and the funnel was clamped on top. Even distributions of cells on the filters were obtained by pouring 100 mL of autoclaved milliQ-water into the funnel before mixing in 0.1 mL of the start culture cell suspension and applying vacuum. The funnel walls were rinsed twice with 15 mL sterile water during suction. The polycarbonate filters were then transferred into 250 mL bottles (DURAN, Merck, Darmstadt, Germany) in a Holten LaminAir bench and left floating on 50 mL of 1:10 (NMS:MilliQ) diluted liquid NMS medium (pH 6.8) without EDTA. Finally, the bottles were covered with gas permeable parafilm (Merck, Darmstadt, Germany). These bottles were incubated in a ventilated room at 20 °C in darkness for nine months (experiment 1) or 4.5 months (experiment 2), after which the gas uptake experiments were initiated. In Experiment 1, an additional inspection of a filter was performed after eight months. This included a visual inspection and counting of 60 colonies on two different filters to show that the number of generations in almost all growing colonies had surpassed seven (64 cells), indicating that the filters had sufficient biomass to initiate gas uptake experiments.

2.2. Temperature Selection

All cultivations and experiments were carried out at 20 °C. This temperature was chosen as it is in the middle of the optimum temperature range for growth (\sim 15– \sim 27 °C) of *M. gorgona* MG08 and was the temperature at which previous experiments were carried out [4].

2.3. Gas Uptake and Leakage Experiments

Three experiments were carried out: two gas uptake experiments that included controls and one control experiment. Experiment 1 consisted of 53×120 mL bottles, some containing cultures of *M. gorgona* MG08 on filters floating on liquid media. Experiment 2 consisted of 15 bottles. The control experiment consisted of 18 bottles.

In all experiments, the bottles contained 50 mL of 1/10 diluted NMS medium without EDTA. All gases used were of the highest available quality (6.0) (all gases were supplied by AGA). For the first gas uptake experiment, a total of 7 different setups (A–G) of five replicates each were created: A–E contained filters with *M. gorgona* MG08 cells, and F and G did not contain *M. gorgona* MG08 cells. (A) five bottles with 2–4 p.p.m.v. CH₄, 2–4 p.p.m.v. H₂ and 2–4 p.p.m.v. CO in synthetic air. (B) five bottles with 2–4 p.p.m.v. H₂ and 2–4 p.p.m.v. CO in synthetic air: (D) five bottles with an atmosphere of ambient air (compressed outdoor air); (E) five bottles with synthetic air. (G) five bottles with 2–4 p.p.m.v. H₂ and 2–4 p.p.m.v. CO in synthetic air atmosphere.

For the second gas uptake experiment, one condition included cells; five bottles with ~4 p.p.m.v. CH_4 , ~4 p.p.m.v. H_2 and ~4 p.p.m.v. CO in synthetic air. Two conditions included sterile filters; five bottles with ~4 p.p.m.v. CH_4 , ~4 p.p.m.v. H_2 and ~4 p.p.m.v. CO in synthetic air and five bottles with synthetic air atmospheres.

The control experiment to determine gas leakages (18 bottles) included six different types of liquids and headspace compositions: (A) 50 mL MilliQ water and 200 mL headspace of pure helium. (B) Sterile floating polycarbonate filter on 50 mL of 1/10 diluted NMS medium without EDTA and 200 mL headspace with 2–5 p.p.m.v. CH₄, H₂, CO in synthetic air. (C) 50 mL of milliQ water and synthetic air. (D) 50 mL of 1/10 diluted NMS medium without EDTA and 2–5 p.p.m.v. CH₄, H₂, CO in synthetic air. (E) 50 mL of milliQ water and 2–5 p.p.m.v. CH₄, H₂, CO in synthetic air. (F) Empty glass bottle with 250 mL of 2–5 p.p.m.v. CH₄, H₂, CO in synthetic air.

To create the mentioned atmospheres, the bottles were sealed with halogenated bromobutyl rubber stoppers (DURAN, Merck, Darmstadt, Germany) and plastic screw caps under a sterile bench. Before usage, the rubber stoppers had been boiled ten times and then autoclaved. The sealed bottles were flushed for 15 min with ambient, high quality synthetic air (N₂: 78%, O₂: 21%, CO₂: 400 p.p.m.v.) or pure helium by using a gassing manifold connected to sterile single-use needles. The final pressure in the bottles was adjusted to one bar absolute pressure. Afterwards, 1 mL of additional respective gases (CH₄, CO and H₂) was added by using a gas tight syringe (VICI AG International, Schenkon, Switzerland) to create the required atmospheres. To prevent contamination, each gassing step was carried out by interconnecting a sterile 0.2 μ m cellulose acetate filter (VWR Collection, Lutterworth, UK) between needle and hose or syringe.

The prepared bottles were incubated at 20 °C for 57 days in the first experiment. The headspace concentrations of CH_4 , CO and H_2 were measured the day after preparing the headspace atmospheres and after 7, 17 and 57 days. In the second experiment, the incubation lasted 145 h. In the control experiment, the incubations lasted 6, 54 or 70 days.

For combined measurements of CH₄, CO and H₂, 1 mL headspace gas was sampled with a gastight GC syringe (VICI AG International, Schenkon, Switzerland). The contained gas was injected manually into a gas chromatograph (ThermoScientific Trace 1310 with column TG-BOND Msieve 5A, ThermoFisher, Waltham, MA, USA). Detection was achieved by using a PDD detector. A high-quality gas containing 5 p.p.m.v. H₂, 5 p.p.m.v. CH₄, and 5 p.p.m.v. CO in N₂ served as standard. To create standard curves, 2×0.1 mL, 2×0.5 mL, and 2×1 mL of the mentioned standard were injected on every measurement day. Bottle gas concentrations were calculated using the standard curve. Masses were calculated by applying the ideal gas law and adjusted for changes in bottle pressure due to gas removal.

2.4. Cell Quantification

Due to several layers of cells forming colonies on the filters after 9 months and 57 days of incubation, the number of cells on four filters per condition A–E in the gas uptake experiment could not be estimated reliably by cell counts. Instead, cell numbers were estimated using DNA extractions and comparison to a standard of DNA extraction yields for known cell numbers of *M. gorgona* MG08 on polycarbonate filters. Cells for a standard were prepared as follows. A 20 mL culture (1:10 (NMS:MilliQ) diluted liquid nitrate mineral salts (NMS) medium (pH 6.8) (DSMZ medium 921) without EDTA) with a headspace of 20% CH₄ in air (20 mL 100% CH₄ mixed with 80 mL of air) was incubated for 12 days, reaching several days (2–4) into the stationary phase. The culture was then exposed to atmospheric concentrations of CH_4 for one additional day during which the number of cells in the culture was estimated using cell counts. Then, the cells were filtered out and the filters were prepared for extractions. With this approach, our aim was to extract DNA from cells in a slow growth state where the cells do not contain multiple partial genomes. Filters for the standard and those from the experiment incubation were cut into 12 pieces and put into 2 mL safelock tubes, after which DNA was extracted from the filters using DNA IQTM Casework Pro Kit for Maxwell[®] 16 following the manufacturer's instructions. In brief, we crushed the 12 filter pieces with a metal bead in a tissue lyser (Qiagen, Hilden, Germany) six times, 30 s each, applying liquid nitrogen prior to the first and between each round in the tissue lyser. Prior to extraction, the crushed pieces were spun down. After, 400 μ L of extraction buffer containing proteinase K and thioglycerol followed by 400 μ L lysis buffer was added. Then, the mixture was transferred into a cartridge of the Maxwell 16 system and processed. DNA extracts were quantified using Qubit (dsDNA HS Assay, Thermo Fisher, Waltham, MA, USA). Cell numbers on filters from the experiment were subsequently determined by comparing the extract yields per filter to those of the standard, converting the values from nanograms of DNA to cell numbers.

2.5. Contamination Tests and Microscopy

In addition to the start of the pre-incubation and after eight months, we inspected filters by fluorescence microscopy at the beginning and end of the first gas uptake experiment. At the end of the experiment, one filter from each of the five treatments was used for contamination tests and fluorescence microscopy. For the second gas uptake experiment, we inspected filters at the beginning and end of the pre-incubation after 4.5 months, in addition to contamination tests after the experiment. Preparation for fluorescence microscence microscence microscence microscence microscence microscence microscence microscence at the beginning and end of the pre-incubation after 4.5 months, in addition to contamination tests after the experiment.

croscopy was carried out as described for the pre-incubation above. Contamination tests were carried out by cutting filters in pieces and placing them on TGYA plates for 15 days. TGYA plates contained 5 g tryptone, 2.5 g of yeast extract, 1 g of glucose, and 20 g of agar per 1 L of water. Presence and growth of heterotrophic microorganisms was then evaluated by visual inspection. The contamination tests were negative and cell sizes and cell shapes were the same as prior to the experiment, confirming the purity of the culture.

2.6. Plotting and Statistics

All plotting was performed using the R [23] package ggplot.2 [24].

2.7. Cell-Specific Oxidation Rates and Free Energy Yield Calculations

Oxidation rates were estimated by first order rate kinetics models. We log transformed the concentrations over time and fitted linear regression models to the transformed plots. The slope of the linear models corresponds to the rate constants. By multiplying the respective rate constant by the atmospheric concentrations of CH4, H2 and CO, we obtained the rates of oxidation at atmospheric gas concentrations. The fit of the linear models was evaluated and considered to have satisfactory coefficients of determination, giving the following values: $R^2 - CH_4 = 0.93$, $R^2 - H_2 = 0.82$, $R^2 - CO = 0.68$ (Experiment 1), and $R^2 - CH_4 = 0.99, R^2 - H_2 = 0.99, R^2 - CO = 0.99$ (Experiment 2). The oxidation rates of H₂ and CO were subsequently corrected by adjusting for the abiotic gas leakages. Due to the first order rate kinetics nature of the CO (R^2 of linear models = 0.77, n = 5) and H₂ $(R^2 \text{ of linear models} = 0.99, n = 5)$ leakages, their respective rate constants were estimated the same way as for the oxidation rates. The rate constants for the biological H_2 and CO oxidation were subsequently adjusted by subtracting or adding the rate constants of the leaks of H₂ (leakage out of the bottle) and CO (leakage into), respectively. For each condition A, B, C, D and E, cell numbers on three filters were estimated. Cell-specific oxidation rates were subsequently calculated by dividing the estimated oxidation rates by the corresponding cell numbers.

The expected maintenance requirements at 20 °C were calculated according to Tijhuis et al. [8]. The Gibbs free energy changes ($\Delta_r G$) were calculated for the following reactions and Gibbs free energies of formation ΔG_f° (kJ/mol), assuming atmospheric concentrations and 20 °C: [CH₄ + 2O₂ \rightarrow CO₂ + 2H₂O]; [2CO + O₂ \rightarrow 2CO₂]; [2H₂ + O₂ \rightarrow 2H₂O]. CO: -137.16 kJ/mol, O₂: 0 kJ/mol, CO₂: -394.39 kJ/mol, H₂: 0 kJ/mol, H₂O: -237.13 kJ/mol, CH₄: -50.6 kJ/mol. From the oxidation rates and free energy change of the reactions, we could estimate the amount of energy obtained per mol of biomass carbon per hour, applying the dry weight and carbon content of *M. gorgona* MG08 (see below) as previously shown [2,6]. All calculations, raw data and literature data needed for input in the calculations are provided in a detailed format. The data and calculations are provided as excel formulas that can be intuitively followed and inspected. These can serve as a template for those wishing to repeat our calculations for similar experiments and compare those to our data (See Supplementary dataset Table S1, tabs "Experiment 1", "Experiment 2", "Gibbs_free_energy" and "Maintenance_energy").

2.8. Estimating Cell Dry Weight

In order to estimate the dry weight of *M. gorgona* MG08, we cultivated 10×10 mL of *M. gorgona* MG08 culture as described for a young stationary culture in the cultivation section above. This provided ten replicates from which 1 mL was used for cell counts and 9 mL for drying overnight at 110 °C. Based on this, we calculated that the weight of one *M. gorgona* MG08 cell is 8.8×10^{-14} g dry weight per cell (SD = 3.1×10^{-14}). We assume that half of the cell consists of carbon [2]. This weight and size (length 1.2 µm and width 0.7 µm) makes *M. gorgona* MG08 the lightest known Alphaproteobacteria MOB, compared to previously weighed strains [2]. While the size of *M. gorgona* MG08 cells do not change when growing with air as its energy and carbon source, compared to higher CH₄ concentrations (it retains its size of length ~1.2 µm and width ~0.7 µm), we acknowledge

that the content, density and thus dry weight of the cells growing in air may differ from that of *M. gorgona* MG08 cultivated at high CH_4 concentrations. Such differences could affect the estimates of kJ Cmol h⁻¹. However, due to the low biomass, we were not able to estimate cell weights from filters cultivated in air.

3. Results and Discussion

Cells of *M. gorgona* MG08 were pre-incubated on filters under an atmosphere of ambient air (~1.84 p.p.m.v. CH₄, ~0.39 p.p.m.v. CO and ~0.7 p.p.m.v. H₂) for eight months. The filters floated on diluted mineral medium within bottles to enable optimal gas transfer. After four months, a subset of the cells had developed into microcolonies of more than 100 cells (Figure 1), while some cells had not divided. Visual inspection and counting showed that the number of generations in the majority of the colonies had surpassed seven (64 cells) (Figure 1C), matching previous observations [4]. Studies have shown that up to three generations can be supported by intracellular storages [4,25,26], confirming that the eight-month pre-incubation was sufficient to ensure growth with carbon and energy harvested solely from air. After nine months of pre-incubation, the filter-containing glass bottles were sealed with rubber stoppers before defined headspace atmospheres were created (Figure 2).

Figure 1. Microcolony growth of *M. gorgona* MG08 at different times during pre-incubation and gas uptake experiments. **(A)** Cells after filtration on polycarbonate filters, prior to incubation. **(B)** Microcolonies after 4 months of pre-incubation under ambient air. **(C)** Microcolonies after 8 months of pre-incubation under ambient air. **(D)** Microcolonies after 9 months of pre-incubation under ambient air and 57 days of gas uptake experiment incubation under synthetic air (**(D)**, upper panel), and synthetic air +2-4 p.p.m.v. CH₄, CO and H₂ (**(D)**, lower panel). For fixation, the filters were transferred to fresh-made 2% paraformaldehyde in $1 \times PBS$ in the refrigerator overnight. For staining, filters were transferred (side with bacteria up) on top of 200 µL droplets of $1000 \times SYBR$ green I ($10 \times$ dilution of the stock concentration provided by Thermo Fisher Scientific, Invitrogen, Molecular probes) and incubated for 10 min, washed, and air dried.

Figure 2. Experimental setup for experiment 1 to determine gas uptake by *M. gorgona* MG08. NMS: Nitrate mineral salts. Synthetic air containing less than 0.2 p.p.m.v. of CH₄, CO and H₂. Ambient air containing 1.84 p.p.m.v. CH₄, 0.4 p.p.m.v. CO and 0.7 p.p.m.v. H₂. All injections of CH₄, CO and H₂ resulted in a final concentration between 2 and 4 p.p.m.v of the respective gas.

In a 57-day experiment, we could show that *M. gorgona* MG08 is able to oxidize ambient air to sub-atmospheric concentrations of CH_4 and H_2 (Figure 3). In several of the incubations, CH_4 and H_2 concentrations reached below atmospheric levels already after 7 days, while CO concentrations did not decrease below ~0.45 p.p.m.v., which is close to the atmospheric levels in urban areas [16–19] and similar to the average ambient air concentrations measured in the laboratory (0.39 p.p.m.v.). Furthermore, the CH_4 oxidation rates did not depend on the CO and H_2 concentrations (Figure 3A,C,D), while CO and H_2 oxidation proceeded without the presence of CH_4 (Figure 3B).

The stabilization of the CO concentrations around 0.45 p.p.m.v. in bottles with M. gorgona MG08 cells, irrespective of the start concentrations, was unexpected (Figure 3A,B,D,E). In the cell-free controls, we observed increasing CO concentrations, reaching 2 p.p.m.v. during 57 days of incubation (Figure 3F,G), suggesting these observations to be due to an abiotic CO source. To identify the CO source, we measured CO, H₂ and CH₄ in several cell-free controls, including empty bottles (Figure 4). CO accumulation was detected in these liquid-free bottles, and even in headspaces exposed to only glass and rubber stoppers. Thus, we concluded that CO was released from the rubber stoppers, meaning that the stabilization of CO concentrations at ~0.45 p.p.m.v. in the presence of *M. gorgona* MG08 was a confirmation of continuous CO oxidation at near ambient air concentrations of ~0.45 p.p.m.v. The decreasing or increasing CH_4 and H_2 concentrations in abiotic controls (Figure 3F,G and Figure 4A–F), on the other hand, could be explained by leakage during long incubation times, as previously observed [27,28]. In addition to the fact that such long-term leakages have been observed previously, the rationale for this conclusion is that the concentrations inside the bottles always increased when the outside concentrations were higher, and decreased when the outside concentrations were lower.

Figure 3. Oxidation of CH_4 , CO, and H_2 by *M. gorgona* MG08. (A–E) contained polycarbonate filters with *M. gorgona* MG08 floating on nitrate mineral salts medium. (F,G) contained sterile filters. The lower H_2 concentrations at the start of the ambient air incubations with cells (D) compared to those without cells (F) are due to leaving prepared bottles overnight before measuring the first time point T_0 , allowing some oxidation to already occur. All gases used were of the highest commercially available quality, 6.0 (99.9999% purity). The multiple data points in each color represent different biological replicates from the same condition. Synthetic air contained less than 0.2 p.p.m.v. of CH_4 , CO and H_2 .

Cell-Specific Oxidation Rates and Energy Yield

In order to estimate the CH₄, CO and H₂ uptake rates by *M. gorgona* MG08 at atmospheric concentrations, we tested and confirmed that the rate change of CH₄ uptake fulfilled the assumptions of first order rate kinetics (linear regression through the natural logarithm (LN) of rates over time $R^2 = 0.93$, n = 15). As microcolonies contained more than one layer of cells, filter cell counts were not possible. Instead, we performed DNA extractions and cell quantification with a DNA to cell count standard for a subset of the incubation bottles, showing that all but one floating filter contained between 38.1 and 68 million cells (Table S1). Based on these estimates, we calculated the cellular CH₄ oxidation rates at atmospheric CH₄ concentrations to 0.7–2.8 \times 10⁻¹⁸ mol cell⁻¹ h⁻¹ at 20 °C (n = 9). Similarly, the H₂ and CO oxidation rates at atmospheric concentrations (average H₂ linear model $R^2 = 0.82$, n = 10, CO $R^2 = 0.68$, n = 10) were estimated to be 0.17–0.36 and $0.20-0.34 \times 10^{-18}$ mol cell⁻¹ h⁻¹, respectively (*n* = 6). These rates were corrected for the leakage and release of H₂ and CO, respectively. The CH₄ oxidation rates reflect the lower end of the atmospheric oxidation rates estimated for conventional MOB, which range from 0.2 to 17×10^{-18} mol cell⁻¹ h⁻¹ at 25 °C [6]. However, the rates of conventional MOB forming the basis for these estimates were measured at high CH₄ concentrations and thus do not necessarily represent the rates that would be obtained at atmospheric conditions.

Figure 4. Gas leakage and other abiotic gas sources. (**A**,**B**) Long incubations of cell-free controls were performed to identify signs of CO and CH₄ leakage or release into or out of the bottles. (**C**–**F**) Short incubations of cell-free controls were considered sufficient to identify the same patterns of gas leakage and accumulation irrespective of bottle liquid and headspace composition. MQ: MilliQ. Synth. Air: Synthetic air. NMS: nitrate mineral salts. The multiple data points in each color represent different biological replicates from the same condition. Synthetic air contained less than 0.2 p.p.m.v. of CH₄, CO and H₂.

Based on the specific affinity estimated from oxidation rates at higher than atmospheric concentrations, the expected cell-specific CH₄ oxidation rate at atmospheric concentrations can be calculated [2]. From the oxidation rates measured at concentrations between 823 p.p.m.v. and 6% [4], we found that M. gorgona MG08 would have a cell specific CH4 oxidation rate of 10×10^{-18} mol cell⁻¹ h⁻¹ when growing at atmospheric concentrations. However, these estimates are more than five times higher than the actual rate measurements at atmospheric concentrations provided in our current study. Thus, M. gorgona MG08 may not sustain the same catalytic properties or amount of particulate methane monooxygenase (pMMO) enzymes per cell during growth in air. At concentrations between 823 p.p.m.v. and 6%, we estimated the K_{m(app)} of M. gorgona MG08 to be 4.905 [4], similar to that of various, presumed low affinity, MOB [2]. Although this indicated that M. gorgona MG08 has a low affinity for CH₄, the dependency of $K_{m(app)}$ on the V_{max} prevents us from determining the exact affinity unless we perform comparative kinetic experiments for purified enzymes from several MOB strains, or compare the CH₄ oxidation rates and pMMO concentrations of several different MOB. Thus, it seems plausible that life at atmospheric CH₄ concentrations can be sustained by low affinity enzymes, but it is still uncertain whether this is the case.

The energy yields per mol of CH₄, CO and H₂ under the provided experimental conditions (ambient air at 20 °C) were approximately -814, -522 and -472 kJ/mol, respectively, assuming the following reactions: [CH₄ + 2O₂ \rightarrow 2H₂O + CO₂], [2CO + O₂ \rightarrow 2CO₂], [2H₂ + O₂ \rightarrow 2H₂O]. Based on the measured rates, we find that *M. gorgona* MG08 is able to conserve approximately 0.47 kJ Cmol h⁻¹ from the combined oxidation of CH₄, H₂ and CO

during growth in air at 20 °C (see data and full calculation in Table S1). This calculation implements our dry weight estimates for *M. gorgona* MG08 (Table S1). Interestingly, these estimates show that *M. gorgona* MG08 cells (length ~1.2 µm and width ~0.7 µm) are three times lighter $(0.88 \times 10^{-13} \text{ gDW cell}^{-1})$ than the lightest reported MOB [2]. The mass of a cell could affect its energy budget, as more energy might be needed to supply maintenance in a heavier cell, leaving less for growth. Additionally, a heavier cell might require more energy for growth. Thus, the low weight of *M. gorgona* MG08 may reflect a strategy to reduce energy costs for growth. In contrast to our findings, the previously reported soil CH₄ oxidation rates of 800×10^{-18} mol cell⁻¹ h⁻¹ [6] would provide 179 kJ Cmol h⁻¹. In order to examine this contradiction and test the validity of our data, we repeated parts of our experiment (condition with 5 p.p.m.v. of each gas CH₄, H₂ and CO) with shorter pre-incubation (4.5 months) to minimize growth stagnation and the possibility for the accumulation of dead cells on the floating filters.

Furthermore, we shortened the gas uptake experiment to less than one week of incubation to prevent gas leakage effects on rate estimates. This new setup provided highly precise estimates of CH₄, H₂ and CO uptake rates (Figure 5), which confirmed their first order nature (linear regression through LN of rates over time; $CH_4 R^2 = 0.99$, n = 5; H₂ $R^2 = 0.99$; CO $R^2 = 0.99$). Within this timeframe, the leakage of H₂ and CH₄ was negligible (Figure 5B,C), but the release of CO from the rubber stoppers occurred and was corrected for. Interestingly, similar but slightly lower cellular oxidation rates at atmospheric gas concentrations were estimated. The CH₄ uptake ranged from 0.32 to 1.3×10^{-18} mol cell⁻¹ h⁻¹, the H₂ uptake from 0.63 to 2.1×10^{-18} mol cell⁻¹ h⁻¹, and the CO uptake from 0.24 to 0.69×10^{-18} mol cell⁻¹ h⁻¹ at 20 °C. We suspect the differences were due to the higher accuracy of the uptake rates, and higher cell number estimates (average 9.54×10^7 ; Table S1), despite shorter incubation time (4.5 months). The number of initial cells that form colonies on the filters may vary between experiments, possibly due to small differences in the physiological state of the inoculum. This, and the possibility that colonies of a certain size reach a growth stagnation phase due to limiting concentrations of CH₄, H₂ and CO around the colony, can explain how additional pre-incubation time in the first experiment did not lead to higher cell numbers per filter than in the second experiment.

Figure 5. Oxidation of CH_4 , CO, and H_2 by *M. gorgona* MG08. (**A**) filters with *M. gorgona* MG08 floating on nitrate mineral salts medium. (**B**,**C**) sterile filters floating on nitrate mineral salts medium. All gases used were of the highest commercially available quality, 6.0 (99.9999% purity). The multiple data points in each color represent different biological replicates from the same condition.

With these new numbers, we find that *M. gorgona* MG08 is able to conserve approximately 0.38 kJ Cmol h^{-1} (close to the 0.48 kJ Cmol h^{-1} estimated from the first experiment) during growth in air at 20 °C (Table S1). This is more than seven times lower

than the estimated average maintenance requirement of a bacterial population at 20 °C (2.8 kJ Cmol h⁻¹) [8]. However, this amount of energy is apparently sufficient to sustain the growth of *M. gorgona* MG08. Thus, we question whether the average maintenance requirement of bacteria [8] appropriately describes the constraints for growth on atmospheric trace gases by *M. gorgona* MG08 and other atmMOB.

With our numbers, the 2.8 kJ Cmol h^{-1} minimum requirement mentioned above could be achieved if approximately 14 million out of the ~100 million cells on a filter were active [8]. Alternatively, if cell density and thus weight (cell sizes do not seem to vary with CH₄ concentration) were lower during growth in air, an energy yield of 2.8 kJ Cmol h^{-1} or higher, could be achieved. The reason is that the same amount of energy would be distributed on less cellular mass than assumed for our empirical estimate of 0.38 kJ Cmol h⁻¹. Regardless, the rates of *M. gorgona* MG08 are substantially lower than those in high upland soils, where CH₄ oxidation rates of up of 800×10^{-18} mol cell⁻¹ h⁻¹, almost 500 times faster than M. gorgona MG08, were measured. However, these were based on soil cell numbers estimated from DNA extractions and pmoA qPCR [6]. Thus, the numbers have possibly been underestimated, as DNA extractions from soils may provide less than 100% yields, qPCR quantification can be inhibited by soil-derived impurities in the DNA extract, and primer mismatches can result in an underrepresentation of copy numbers. Methanogenic archaea and acetogenic bacteria were recently found to require much less maintenance energy (0.2 kJ Cmol h^{-1}) than previously believed (9.8 kJ Cmol h^{-1}) [29]. According to the authors, the low maintenance energy was based on the low growth rates of these organisms, a feature that had not previously been taken into account. If true, low maintenance requirements at low growth rates could also explain how M. gorgona MG08 can sustain its slow growth at a limited energy budget.

We conclude that *M. gorgona* MG08 oxidizes the atmospheric trace gases CH_4 , CO and H_2 to harvest energy for growth in air. The ability of *M. gorgona* MG08 to grow using air as its only source of energy and carbon relies not only on this metabolic flexibility, but also on its low energy requirements. Our findings suggest that a high CH_4 affinity is not a prerequisite to live on atmospheric CH_4 .

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-260 7/9/1/153/s1, Table S1: Supplementary data and calculations.

Author Contributions: A.T.T. conceived the study with input from T.S., M.M.S. and A.G.H. A.G.H. and M.M.S. established methods for filter cultivation and performed strain cultivation with input from A.T.T. T.S., M.L. and A.T.T. established methods for gas uptake experiments. T.S. performed gas uptake experiments with assistance from M.L. A.D. established and performed method for cell quantification. A.T.T. and T.S. analyzed the data. A.T.T. wrote the manuscript with input from all authors. All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by the Research Council of Norway FRIPRO Mobility Grant Project Time and Energy (251027/RU) to ATT, co-founded by ERC under Marie Curie Grant 606895, and Tromsø Research Foundation starting grant project Cells in the Cold (16_SG_ATT) to ATT.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

- 1. Van Amstel, A. Methane. A review. J. Integr. Environ. Sci. 2012, 9, 5–30. [CrossRef]
- Knief, C.; Dunfield, P.F. Response and adaptation of different methanotrophic bacteria to low methane mixing ratios. *Environ. Microbiol.* 2005, 7, 1307–1317. [CrossRef] [PubMed]
- Dunfield, P.F. The Soil Methane Sink. Greenhouse Gas. Sinks; Reay, D.S., Hewitt, C.N., Smith, K.A., Grace, J., Eds.; CABI: Wallingford, UK, 2007; pp. 152–170.
- Tveit, A.T.; Hestnes, A.G.; Robinson, S.L.; Schintlmeister, A.; Dedysh, S.N.; Jehmlich, N.; Von Bergen, M.; Herbold, C.; Wagner, M.; Richter, A.; et al. Widespread soil bacterium that oxidizes atmospheric methane. *Proc. Natl. Acad. Sci. USA* 2019, *116*, 8515–8524.
 [CrossRef] [PubMed]
- 5. Knief, C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. *Front. Microbiol.* **2015**, *6*. [CrossRef]

- 6. Kolb, S.; Knief, C.; Dunfield, P.F.; Conrad, R. Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. *Environ. Microbiol.* **2005**, *7*, 1150–1161. [CrossRef]
- Bender, M.; Conrad, R. Kinetics of CH₄ oxidation in oxic soils exposed to ambient air or high CH₄ mixing ratios. *FEMS Microbiol.* Lett. 1992, 101, 261–270. [CrossRef]
- 8. Tijhuis, L.; Van Loosdrecht, M.C.M.; Heijnen, J.J. A thermodynamically based correlation for maintenance gibbs energy requirements in aerobic and anaerobic chemotrophic growth. *Biotechnol. Bioeng.* **1993**, *42*, 509–519. [CrossRef]
- 9. Cordero, P.R.F.; Bayly, K.; Leung, P.M.; Huang, C.; Islam, Z.F.; Schittenhelm, R.B.; King, G.M.; Greening, C. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. *ISME J.* **2019**, *13*, 2868–2881. [CrossRef]
- 10. Ji, M.; Greening, C.; VanWonterghem, I.; Carere, C.R.; Bay, S.K.; Steen, J.A.; Montgomery, K.; Lines, T.; Beardall, J.; Van Dorst, J.; et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. *Nature* **2017**, *552*, 400–403. [CrossRef]
- Greening, C.; Carere, C.R.; Rushton-Green, R.; Harold, L.K.; Hards, K.; Taylor, M.C.; Morales, S.E.; Stott, M.B.; Cook, G.M. Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging. *Proc. Natl. Acad. Sci. USA* 2015, *112*, 10497. [CrossRef]
- Greening, C.; Berney, M.; Hards, K.; Cook, G.M.; Conrad, R. A soil actinobacterium scavenges atmospheric H₂ using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. *Proc. Natl. Acad. Sci. USA* 2014, 111, 4257. [CrossRef] [PubMed]
- Greening, C.; Biswas, A.; Carere, C.R.; Jackson, C.J.; Taylor, M.C.; Stott, M.B.; Cook, G.M.; Morales, S.E. Genomic and metagenomic surveys of hydrogenase distribution indicate H₂ is a widely utilised energy source for microbial growth and survival. *ISME J.* 2016, 10, 761–777. [CrossRef] [PubMed]
- Ray, A.E.; Zhang, E.; Terauds, A.; Ji, M.; Kong, W.; Ferrari, B.C. Soil Microbiomes With the Genetic Capacity for Atmospheric Chemosynthesis Are Widespread Across the Poles and Are Associated With Moisture, Carbon, and Nitrogen Limitation. *Front. Microbiol.* 2020, 11. [CrossRef] [PubMed]
- 15. World Meteorological Organization. The State of Greenhouse Gases in the Atmosphere Using Global Observations through 2018. *WMO GHG Bullet.* **2019**, *15*, 1–8. ISSN 2078-0796.
- Khalil, M.A.K.; Rasmussen, R.A. The global cycle of carbon monoxide: Trends and mass balance. *Chemosphere* 1990, 20, 227–242. [CrossRef]
- 17. Novelli, P.C.; Masarie, K.A.; Lang, P.M. Distributions and recent changes of carbon monoxide in the lower troposphere. *J. Geophys. Res. Atmos.* **1998**, *103*, 19015–19033. [CrossRef]
- Chi, X.; Winderlich, J.; Mayer, J.-C.; Panov, A.V.; Heimann, M.; Birmili, W.; Heintzenberg, J.; Cheng, Y.; Andreae, M.O. Long-term measurements of aerosol and carbon monoxide at the ZOTTO tall tower to characterize polluted and pristine air in the Siberian taiga. *Atmos. Chem. Phys.* 2013, 13, 12271–12298. [CrossRef]
- Petrenko, V.V.; Martinerie, P.; Novelli, P.; Etheridge, D.M.; Levin, I.; Wang, Z.; Blunier, T.; Chappellaz, J.; KaiseriD, J.; Lang, P.; et al. A 60 yr record of atmospheric carbon monoxide reconstructed from Greenland firn air. *Atmos. Chem. Phys.* 2013, *13*, 7567–7585. [CrossRef]
- 20. Novelli, P.C.; Lang, P.M.; Masarie, K.A.; Hurst, D.F.; Myers, R.; Elkins, J.W. Molecular hydrogen in the troposphere: Global distribution and budget. *J. Geophys. Res. Atmos.* **1999**, *104*, 30427–30444. [CrossRef]
- Schmitz, R.A.; Pol, A.; Mohammadi, S.S.; Hogendoorn, C.; Van Gelder, A.H.; Jetten, M.S.M.; Daumann, L.J.; Camp, H.J.M.O.D. The thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV oxidizes subatmospheric H₂ with a high-affinity, membrane-associated [NiFe] hydrogenase. *ISME J.* 2020, *14*, 1223–1232. [CrossRef]
- 22. Hakobyan, A.; Zhu, J.; Glatter, T.; Paczia, N.; Liesack, W. Hydrogen utilization by Methylocystis sp. strain SC2 expands the known metabolic versatility of type IIa methanotrophs. *Metab. Eng.* **2020**, *61*, 181–196. [CrossRef] [PubMed]
- 23. R Development Core Team. *R: A Language and Environment for Statistical Computing;* R Foundation for Statistical Computing: Vienna, Austria, 2013. Available online: http://www.R-project.org/ (accessed on 23 January 2020).
- 24. Wickham, H. *Ggplot2: Elegant Graphics for Data Analysis*; Springer: New York, NY, USA, 2016. Available online: https://ggplot2.tidyverse.org (accessed on 23 January 2020).
- 25. Pieja, A.J.; Sundstrom, E.R.; Criddle, C.S. Poly-3-Hydroxybutyrate Metabolism in the Type II Methanotroph Methylocystis parvus OBBP. *Appl. Environ. Microbiol.* **2011**, *77*, 6012–6019. [CrossRef] [PubMed]
- 26. Ratcliff, W.C.; Kadam, S.V.; Denison, R.F. Poly-3-hydroxybutyrate (PHB) supports survival and reproduction in starving rhizobia. *FEMS Microbiol. Ecol.* **2008**, *65*, 391–399. [CrossRef]
- 27. Lange, S.F.; Allaire, S.E.; van Bochove, E. Transfer of CO₂, N₂O and CH₄ to butyl rubber (polyisobutylene) septa during storage. *J. Environ. Monit.* **2008**, *10*, 775–777. [CrossRef] [PubMed]
- 28. Magnusson, T. A method for equilibration chamber sampling and gas chromatographic analysis of the soil atmosphere. *Plant Soil* **1989**, 120, 39–47. [CrossRef]
- Bonk, F.; Popp, D.; Weinrich, S.; Sträuber, H.; Becker, D.; Kleinsteuber, S.; Harms, H.; Centler, F. Determination of Microbial Maintenance in Acetogenesis and Methanogenesis by Experimental and Modeling Techniques. *Front. Microbiol.* 2019, 10. [CrossRef]

Paper 2

1	Physiological	Basis	for	Atmospheric	Methane	Oxidation	and
2	Methanotrop	nic Grov	wth o	n Air			

3	Tilman Schmider ^{a*} , Anne Grethe Hestnes ^a , Julia Brzykcy ^b , Hannes Schmidt ^c , Arno						
4	Schintlmeister ^d , Benjamin R. K. Roller ^d , Ezequiel Jesús Teran ^{e,f} , Andrea Söllinger ^a , Oliver						
5	Schmidt ^a , Martin F. Polz ^d , Andreas Richter ^c , Mette M. Svenning ^a , Alexander T. Tveit ^{a*}						
6	^a Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics						
7	UiT - The Arctic University of Norway, 9037 Tromsø, Norway;						
8	^b Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University o						
9	Warsaw, 02-096 Warsaw, Poland						
10	^c Department of Microbiology and Environmental Systems Science, Division of Terrestrial						
11	Ecosystem Research, University of Vienna, 1030 Vienna, Austria;						
12	^d Department of Microbiology and Environmental Systems Science, Division of Microbia						
13	Ecology, University of Vienna, 1030 Vienna, Austria;						
14	^e Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aire						
15	(CIFICEN-UNCPBA-CONICET-CICPBA), Pinto 399, Tandil (7000), Argentina						
16	^f Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Exactas						
17	Instituto de Física Arroyo Seco (IFAS), Pinto 399, Tandil (7000), Argentina						

*Corresponding author. Email: <u>tilman.schmider@uit.no</u>; <u>alexander.t.tveit@uit.no</u>

20 Abstract

21 Atmospheric methane oxidizing bacteria (atmMOB) constitute the sole biological sink for 22 atmospheric methane and have been discovered worldwide over the past decades. Still, the 23 physiological basis allowing atmMOB to grow "on air" is not understood. Here we assess the 24 ability and strategies of seven methanotrophic species to grow with air as sole energy, carbon, 25 and nitrogen source. Four species, including three outside the canonical atmMOB group USCa, 26 enduringly oxidized atmospheric methane, carbon monoxide, and hydrogen during 12 months 27 of growth on air. These four species exhibited distinct substrate preferences implying the 28 existence of multiple metabolic strategies to grow on air. Despite simultaneous oxidation of 29 atmospheric methane, carbon monoxide, and hydrogen, the estimated energy yields of the 30 atmMOB were substantially lower than previously assumed necessary for cellular 31 maintenance in atmMOB and other aerobic microorganisms. Moreover, the atmMOB also 32 covered their nitrogen requirements from air. During growth on air, the atmMOB allocated 33 their proteome by decreasing investments in biosynthesis while increasing investments in 34 trace gas oxidation. Additionally, we demonstrate high apparent affinities for methane by 35 atmMOB in pure culture, similar to the affinities observed in upland soils more than two decades ago. Nevertheless, we show that the apparent specific affinity, rather than the 36 37 apparent affinity, is the appropriate model to assess the efficiency of atmospheric methane 38 utilization. Our work shows that atmMOB grow on the trace concentrations of methane, 39 carbon monoxide, and hydrogen present in air and outlines the metabolic strategies that 40 enable atmMOB to mitigate important greenhouse gases.

41

43 Introduction

During the first two decades after emission to the atmosphere, methane (CH₄) is a greenhouse 44 gas 80 times more potent than carbon dioxide $(CO_2)^{1,2}$. Since 2007, the atmospheric CH₄ 45 46 concentration (1905 p.p.b.v. in July 2022 https://gml.noaa.gov/ccgg/trends ch4/), that is 47 responsible for approximately 20% of the direct radiative forcing, has been increasing rapidly¹. The CH₄ increase further accelerated in 2014 and is linked to several causes: A decline in the 48 49 atmospheric concentration of hydroxyl radicals (OH) which is the main sink of atmospheric 50 CH₄, as OH oxidize CH₄ in the atmosphere^{3–5}; anthropogenic emissions from fossil fuel, agricultural, and waste sources⁶; increased microbial CH₄ production in wetlands which 51 52 suggests that current increases are also driven by feedback responses to global warming⁷. 53 Atmospheric CH₄ oxidizing bacteria (atmMOB), a subgroup of aerobic methanotrophs, that oxidize CH₄ at its atmospheric trace concentration are the only known biological sink of 54 55 atmospheric CH₄. Compared to the OH sink (~500 Tg), the biological sink is rather small as it 56 removes approximately 30 Tg (11 – 49 Tg) CH₄ from the atmosphere every year⁴. However, 57 the biological sink has the potential to grow with increasing CH₄ concentrations. This is of 58 particular importance as the decline of atmospheric OH, caused by reaction with atmospheric 59 hydrogen (H₂) and other gases, might accelerate due to increasing H₂ emissions from a hydrogen-based economy^{8,9}. Additionally, the biological sink is within reach of management 60 practices devised to maximize its natural potential and harness it for CH₄ removal^{10,11}. Yet, 61 62 substantial uncertainties concerning the size of the biological sink, and the ecology and metabolic basis for growth on atmospheric CH₄ by atmMOB, caused by a historical lack of 63 atmMOB in pure culture, has impeded our ability to study, manage, and exploit the sink¹⁰. In 64

this study, by screening seven methanotrophic species, we have outlined the physiological
basis that enables atmMOB to grow on atmospheric CH₄ and serve as an atmospheric CH₄ sink.

In 1992, ten years after Harriss *et al.* reported the first indications of atmospheric CH₄ oxidation by microorganisms¹², Bender and Conrad concluded from biphasic CH₄ oxidation kinetics of soils that an unknown group of methanotrophs might be responsible for atmospheric CH₄ oxidation¹³. Since then, two major questions have remained partially unanswered: Which methanotrophs are responsible for oxidation of atmospheric CH₄? How can these organisms survive and grow despite the apparent energetic limitations inherent to the oxidation of the low atmospheric CH₄ concentrations?

74 Isotopic labeling studies revealed that members of Alpha- and Gammaproteobacteria 75 contributed to atmospheric CH₄ oxidation and assigned them to the upland soil clusters alpha and gamma (USC α and USC γ)^{14–16}. Several environmental and ecological studies have ascribed 76 atmospheric CH₄ oxidation mainly to these two clusters^{17–20}. However, over the years, studies 77 targeting methanotrophs in upland soils have reported the presence of alphaproteobacterial 78 methanotrophs outside the USC $\alpha^{14,21-24}$. These observations suggest that also "conventional" 79 80 methanotrophs (methanotrophs assumed to grow only at high CH₄ concentrations), from genera like Methylocapsa, Methylosinus and Methylocystis, could contribute to the 81 82 atmospheric CH₄ sink.

Dunfield²⁵ summarized three potential lifestyles of atmMOB that might enable cellular maintenance and growth at the low CH₄ concentrations in air and the associated energy limitation: (i) Flush feeding on high CH₄ concentrations generated periodically in deeper soil layers, in addition to atmospheric CH₄ oxidation; (ii) An oligotrophic lifestyle based on

atmospheric CH₄ as sole carbon and energy source; (iii) A mixotrophic lifestyle to utilize other
substrates for energy conservation in addition to CH₄.

89 Flush feeding (i) is supported by the declining potential of methanotrophs to oxidize atmospheric CH₄ after several months of CH₄ starvation^{25,26}. A study on conventional 90 methanotrophs in rice paddy soils showed that methanotrophs regained the ability to oxidize 91 atmospheric CH₄ after exposure to high CH₄ concentrations²⁷. A high specific affinity (a_4^0) for 92 93 CH₄ has been suggested as the key trait of oligotrophic atmMOB (ii) to enable growth with air as their only energy and carbon source^{25,28}. This assumes that cellular energy requirements 94 for maintenance are 4.5 kJ per carbon mole of biomass per hour (C-mol⁻¹ h⁻¹) (at 25°C)²⁹. Thus, 95 96 to survive, oligotrophic atmMOB presumably need an atmospheric CH₄ oxidation rate high 97 enough to meet these energy requirements. Such a rate can be achieved by the combination 98 of a high affinity for CH₄, reflected in a low half saturation constant (K_m), and a high maximum CH₄ oxidation rate (V_{max}), the fraction of V_{max} and K_m being referred to as a_A^0 ³⁰. This theory is 99 supported by low K_m values for CH₄ found in several soils¹³. However, in a later study the cell 100 101 specific CH₄ oxidation of USC members was estimated to be 2.9 to 40 times lower than the presumed rate needed for cellular maintenance³¹. Therefore, the authors considered that a 102 103 mixotrophic lifestyle (iii) could be the basis for atmospheric CH₄ oxidation. In line with this, a 104 recent study reported the simultaneous oxidation of atmospheric H_2 , carbon monoxide (CO), 105 and CH₄ by *Methylocapsa gorgona* MG08, the first known methanotroph and USC α member in pure culture that can grow "on air" (with air as sole energy and carbon source)^{32,33}. Despite 106 107 its mixotrophic lifestyle, M. gorgona MG08 did not conserve enough energy (0.38 kJ C-mol⁻¹ 108 h⁻¹) to cover the 2.8 kJ C-mol⁻¹ h⁻¹ theoretically required to support maintenance at 20°C (2.8 kJ C-mol⁻¹ h⁻¹ at 20°C correspond to 4.5 kJ C-mol⁻¹ h⁻¹ at 25°C)^{29,32}, questioning whether this 109 maintenance energy value and thus a high a_A^0 is a relevant benchmark for the physiological 110

111 capabilities of trace gas oxidizing bacteria. While the initial isolation and study of M. gorgona 112 MG08 led to important advancements in our understanding of atmMOB, our knowledge of 113 the metabolic basis allowing atmMOB to grow on atmospheric CH₄ remained limited. Recent 114 energy estimates relied on the untested assumptions that all cells remained active over time 115 and could not grow on air without CH₄, H₂ and CO. Furthermore, these methodologically 116 limited of estimates had only been carried out on one strain, M. gorgona MG08, and had not 117 been combined with other methods to reveal the metabolic strategies associated to the 118 energy yields. On this background and to test if methanotrophs outside the USC α and USC γ 119 can grow by oxidizing atmospheric CH₄, H₂ and CO, we used filter cultivation to screen six 120 alphaproteobacterial, methanotrophic strains and one gammaproteobacterial, 121 methanotrophic strain for their ability to grow on air. We selected the six alphaproteobacterial 122 strains Methylocapsa gorgona MG08, Methylosinus trichosporium OB3b, Methylocystis rosea 123 SV97, Methylocapsa aurea KYG, Methylocapsa acidiphila B2, and Methylocapsa palsarum NE2^{33–38} since members of *Methylocapsa*, *Methylosinus* and *Methylocystis* have been 124 125 observed in net sinks for atmospheric CH₄ (upland soils). As representative methanotroph 126 from the Gammaproteobacteria we included Methylobacter tundripaludum SV96. To outline 127 the physiological basis for growth on air, we performed trace gas oxidation experiments, 128 estimated energy yields from the oxidation of trace gases in air, used comparative proteomics to investigate proteome allocation, and determined the a_A^0 for CH₄ during growth on air. Based 129 on the lack of knowledge about nitrogen limitation of atmMOB³⁹, we also evaluated their 130 131 ability to grow on the nitrogen sources available in air.

132 Results and Discussion

133 Colony formation, trace gas oxidation, and cellular energy yield during growth on air

134 To test the ability of the seven selected methanotrophs to grow on air, we incubated each 135 strain on filters floating on carbon free medium with ambient air as the sole carbon and energy 136 source, hereafter referred to as filter culture. Microscopy demonstrated that all strains except 137 Methylobacter tundripaludum SV96, the gammaproteobacterial strain, formed colonies 138 during six months of incubation (Fig. 1A). To test the metabolic activity of the six months old 139 strains, we performed trace gas oxidation experiments (Fig. 1A, 1B). During these 140 experiments, filter cultures were floating on mineral medium in bottles with trace 141 concentrations of CH₄, H₂, and CO in the headspace. The strains, *M. aurea* KYG, *M. gorgona* 142 MG08, M. palsarum NE2, and M. rosea SV97, hereafter referred to as atmMOB, oxidized CH₄, 143 CO, and H₂, or CH₄ and CO to sub-atmospheric concentrations showing strain-specific 144 oxidation patterns (Fig. 1A, Supplementary Fig. 1). M. aurea KYG oxidized CO at the highest 145 rate, followed by CH₄ and H₂. *M. gorgona* MG08 oxidized H₂ at the highest rate, followed by 146 CO and CH₄. *M. rosea* SV97 oxidized CO at the highest rate, followed by CH₄ and H₂. *M.* 147 palsarum NE2 oxidized CH₄ and CO at similar rates but did not oxidize H₂. The gas oxidation 148 patterns were similar after 12 months of incubation with air (Supplementary Fig. 1). To verify 149 growth on the three trace gases in air, we incubated *M. gorgona* MG08 cells on filters under 150 two different atmospheres: One of synthetic air without the trace gases CH_4 , CO, and H_2 (Gas 151 composition: 400 p.p.m.v. CO_2 and 20.9% O_2 in N_2) and another of ambient air. Growth by 152 colony formation was only observed in the ambient air control, whereas no growth was 153 observed in synthetic air (Supplementary Fig. 2). This and the repeated observations of trace 154 gas oxidation confirm that these strains can live and grow with air as the sole energy and 155 carbon source. The observed oxidation of at least one atmospheric trace gas in addition to

156 CH₄ demonstrates that all four strains are mixotrophic, matching the proposition by Dunfield that mixotrophy could be a physiological basis for atmMOB²⁵. Additionally, the strain-specific 157 trace gas uptake patterns demonstrate substantial metabolic differences between these four 158 159 strains, indicating that multiple metabolic strategies can support oxidation of atmospheric CH₄ 160 for growth. These results also demonstrated that the enduring oxidation of atmospheric CH₄ 161 after 12 months of growth on air is not restricted to members of the USC α and USC γ , but also 162 include members from the genera Methylocystis and Methylocapsa: M. aurea KYG, M. 163 palsarum NE2, and M. rosea SV97 (Fig. 2).

Figure 1. A) Images of SYBR green I stained cells and colonies formed by *M. acidiphila* B2, *aurea* KYG, *M. gorgona* MG08, *M. palsarum* NE2, *M. trichosporium* OB3b, and *M. rosea* SV97 at incubation start (t0) and after six months of incubation on air as sole energy and carbon source and the related CH₄, H₂, and CO oxidation at atmospheric pressure (Supplementary table
S1). B) Mean estimated energy yield per cell from the oxidation of atmospheric CH₄, H₂, and CO by *M. aurea* KYG, *M. gorgona* MG08, *M. palsarum* NE2, *and M. rosea* SV97 (Supplementary table S3). Dots represent the energy yield of the respective replicates and error bars the standard deviation (n = 5).

171 Despite formation of colonies when exposed to air only, M. acidiphila B2 and M. trichosporium 172 OB3b did not oxidize trace gases after six months of incubation (Fig. 1A). The ability of these two strains to produce polyhydroxyalkanoates (PHA) as storage compounds^{36,40} might serve 173 as an explanation for the initial colony formation. Possibly, the two strains accumulated PHA 174 175 during pre-cultivation at 20% CH₄, and then sustained their growth on air by utilizing PHA and 176 atmospheric CH₄ as energy and carbon sources until the depletion of their storage 177 compounds. A study showing that both strains could not stay active at low CH₄ concentrations²¹ supports our observations, but further studies are needed to clarify whether 178 179 the initial colony formation is based on storage compounds.

- 183 which the associated taxa clustered together is shown next to the branches. NCBI accession numbers are given in brackets.
- 184

Next, we asked whether atmMOB can obtain enough energy from growth on air to meet the 185 basic maintenance energy of 2.8 kJ C-mol⁻¹ h⁻¹ at 20°C postulated previously²⁸. To calculate 186 187 the strain-specific energy yields in C-mol, we first estimated the cellular energy yields based on the measured CH₄, H₂, and CO oxidation rates. *M. aurea* KYG yielded 6.89 x 10⁻¹² J cell⁻¹ h⁻¹ 188 $(n = 5, SD = 3.22 \times 10^{-12}), M. gorgona MG08 2.21 \times 10^{-12} J cell^{-1} h^{-1} (n = 5, SD = 4.36 \times 10^{-13}), M.$ 189 palsarum NE2 3.09 x 10⁻¹² J cell⁻¹ h⁻¹ (n = 5, SD = 2.90 x 10⁻¹³), and *M. rosea* SV97 3.879 x 10⁻¹² 190 191 J cell⁻¹ h⁻¹ (n = 5, SD = 1.57×10^{-12}) by the oxidation of either two or three trace gases in air 192 (Fig. 1B). Due to the higher free energy potential and atmospheric concentration of CH₄ compared to atmospheric H₂ and CO, the energy estimates predict CH₄ as the major energy 193 194 source for all four strains. Our estimates derive from the Gibbs free energy change of the following reactions at atmospheric conditions: $CH_4 + 2O_2 \rightarrow 2H_2O + CO_2$, $2H_2 + O_2 \rightarrow 2H_2O + CO_2$, $2H_2 + O_2 \rightarrow 2H_2O + CO_2$ 195 $2H_2O$, and $2CO + O_2 \rightarrow 2CO_2$ that amount to -797.4 kJ mol⁻¹, -236.8 kJ mol⁻¹, and -199.9 kJ 196 197 mol⁻¹, respectively. However, these numbers do not account for the energy required for 198 activation of CH₄ by the pMMO or production cost of the enzymes involved in energy conservation from the gases. While the oxidation of H_2 and CO is catalyzed by one enzyme⁴³, 199 200 the oxidation of CH₄ to CO₂ by atmMOB involves at least seven enzymes (Fig. 4). Thus, due to 201 the larger investments required for energy conservation from CH₄, the gases CO and H₂ might 202 play more important roles as energy sources for growth on trace gases in air than indicated 203 by the energy calculations alone. Considering the cellular dry masses and carbon content (Supplementary table S3) of M. gorgona MG08, M. aurea KYG, M. palsarum NE2, and M. rosea 204 SV97, the energy yields per cell and hour translates to 0.40 kJ C-mol⁻¹ h⁻¹ (SD = 0.08 kJ C-mol⁻¹ 205

h⁻¹), 0.71 kJ C-mol⁻¹ h⁻¹ (SD = 0.33 kJ C-mol⁻¹ h⁻¹), 0.38 kJ C-mol⁻¹ h⁻¹ (SD = 0.04 kJ C-mol⁻¹ h⁻¹), and 0.65 kJ C-mol⁻¹ h⁻¹ (SD = 0.26 kJ C-mol⁻¹ h⁻¹), at 20°C, respectively (Fig. 3). These estimated energy yields for *M. gorgona* MG08, *M. aurea* KYG, *M. palsarum* NE2, and *M. rosea* SV97 are 3.9 - 7.4 times lower than the reported average energy requirements for cellular maintenance in aerobic bacteria (2.8 kJ C-mol⁻¹ h⁻¹ at 20°C correspond to 4.5 kJ C-mol⁻¹ h⁻¹ at 25°C)^{29,32}.

The energy estimation assumes that all cells of the filter cultures actively contributed to the observed oxidation rate. Thus, in case of inactive cells, the cellular oxidation rates and the energy yields might have been underestimated. However, while the applied cell quantification (see "Methods") considers only intact cells without assessing cellular activity, Nanoscale secondary ion mass spectrometry (NanoSIMS) based ¹⁵N incorporation confirmed activity of all measured cells (see section below: "Growth on nitrogen from air"), supporting our approach for energy yield estimations.

Thus, our observations contradict the basic energy premise for atmospheric CH₄ oxidizing bacteria²⁸. Our energy estimations correspond to the similarly low energy estimates previously reported for *M. gorgona* MG08³² and that of acetogenic and methanogenic microorganisms (0.2 kJ C-mol⁻¹ h⁻¹ at 37°C)⁴⁴.

222

Figure 3. Total energy yield of *M. aurea* KYG, *M. gorgona* MG08, *M. palsarum* NE2, *M. rosea* SV97 from the oxidation of atmospheric CH₄, H₂, and CO in kJ per mol cellular carbon (C-mol) and hour (Supplementary table S3). Colors indicate the contribution of the individual trace gases to the total energy yield. Error bars represent the standard deviation (n = 5). Black dots indicate the total energy yield from H₂, CO, and CH₄ of the respective replicates.

227 Comparative proteomics

228 We further investigated the cellular adjustments required for life on air by *M. gorgona* MG08, 229 *M. rosea* SV97, and *M. palsarum* NE2 by comparing the proteomes of the three strains when 230 exposed to air (~1.9 p.p.m.v. CH₄) and when exposed to high CH₄ concentrations (~1000 231 p.p.m.v. CH₄) in air. Correspondence analyses (CA) of relative protein abundances at the two 232 CH₄ concentrations revealed a clear difference in proteome allocation. This is shown by the 233 separation of samples from the two conditions along the first CA dimension, which accounted 234 for 79.3%, 76.5%, and 69.6% of the total inertia for *M. gorgona* MG08, *palsarum* NE2, and *M.* 235 rosea SV97, respectively (Supplementary Fig. 3). Thus, the CA indicate that the largest shifts 236 in the proteomes occurred as responses to changes in CH₄ concentration. To identify which 237 proteins contributed most to these shifts, we identified the proteins (top 10 %) with the 238 largest contribution to the first-dimension inertias of the CA and plotted their abundances 239 across the two conditions (Supplementary Fig. 4). We found major protein expression shifts within a variety of functional categories (based on hierarchical EggNOG⁴⁵ annotations), but for 240 241 all three strains, a large proportion was related to core metabolisms, including transcription, 242 translation, growth, energy metabolism, and amino acid and carbohydrate transport. A prominent trend observed for all three strains was that proteins associated with the 243 categories "Cell cycle control, cell division, chromosome partitioning" and "Cell 244 245 wall/membrane/envelope biogenesis" shifted towards lower relative abundances, hereafter 246 referred to as "downregulation", at atmospheric CH₄ compared to the 1000 p.p.m.v. CH₄ 247 treatment. This pattern suggests that atmMOB lower the allocation of resources for growth 248 when CH₄ availability is low, which is in line with previously reported differences in colony 249 growth over time when comparing incubations on atmospheric and 1000 p.p.m.v. CH4 concentrations²⁸. We also observed major shifts in protein abundances for the categories 250 "Energy production and conversion" and "Carbohydrate transport and metabolism", including 251 252 proteins involved in trace gas oxidation and carbon assimilation (Supplementary tables S12-253 14). Based on that and the differences in trace gas oxidation patterns between the strains (Fig. 254 1), the relative abundances of proteins involved in trace gas oxidation, carbon assimilation via 255 the serine cycle (Fig. 4), and the electron transport chain (Supplementary Fig. 5) were further 256 investigated.

258 Comparative proteomics: Trace gas oxidation

260 Figure 4. Comparative proteomics of *M. gorgona* MG08, *M. rosea* SV97, and *M. palsarum* NE2 exposed to 1000 p.p.m.v. CH₄ 261 (High) in air and 1.9 p.p.m.v. (Atm) CH₄ in air (Supplementary table S5). Normalized and standardized expression of enzymes 262 involved in the central carbon and energy metabolism is shown. High relative abundance = orange, low relative abundance 263 expression = blue. * indicates significant difference in expression between treatments (two-sided t-test). Horizontal lines in 264 the heatmaps separate operons of enzymes catalyzing the same reaction. ? = unknown enzyme. Abbreviations: pMMO -265 particulate methane monooxygenase, MDH - methanol dehydrogenase (Mox) and putative lanthanide-dependent methanol 266 dehydrogenase (XoxF), Hhy – [NiFe] group 1h hydrogenase, CODH – [MuCO] class I carbon monoxide dehydrogenase, Fae – 267 formaldehyde activating enzyme, MtdB – NAD(P)-dependent methylene-tetrahydromethanopterin dehydrogenase, Mch – 268 methenyl-tetrahydromethanopterin cyclohydrolase, Fhc – formyltransferase/hydrolase, Fdh A – NAD-dependent formate-269 dehydrogenase, Fdh AB – molybdopterin binding reversible formate dehydrogenase/CO₂ reductase, Fhs – formate-270 tetrahydrofolate ligase, FoID – bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methenyl-271 tetrahydrofolate cyclohydrolase, FchA – methenyltetrahydrofolate cyclohydrolase, MtdA – NADP-dependent 272 methylenetetrahydrofolate dehydrogenase, GcvH – glycine cleavage system H protein, GcvT – aminomethyltransferase, GcvP 273 - glycine dehydrogenase, Lpd – dihydrolipoyl dehydrogenase, GlyA – serine hydroxymethyltransferase, SgaA – Serine-274 glyoxylate aminotransferase, HprA – glycerate dehydrogenase, GarK – 2-glycerate kinase, Eno – enolase, Ppc – 275 phosphoenolpyruvate carboxylase, Mdh – malate dehydrogenase, Mal – malate-CoA ligase, Mcl – L-malyl-CoA lyase, Acc – 276 Acetyl-CoA carboxylase, NAD⁺ – nicotinamide adenine dinucleotide, NADP⁺ – nicotinamide adenine dinucleotide phosphate, 277 ATP – adenosine triphosphate.

278 All three strains expressed a particulate methane monooxygenase (pMMO) that catalyzes the 279 hydroxylation of CH₄ to methanol (CH₃OH). M. gorgona MG08 and M. rosea SV97 contained higher relative abundances, hereafter referred to as "upregulation", of pMMO at 1000 280 p.p.m.v. CH₄, whereas *M. palsarum* NE2 upregulated pMMO at atmospheric CH₄ 281 282 concentrations. Furthermore, both M. gorgona MG08 and M. rosea SV97 upregulated a high 283 affinity [NiFe] hydrogenase (Hhy), and *M. gorgona* MG08 a molybdenum-dependent carbon 284 monoxide dehydrogenase (CODH), when exposed to air. These differences in enzyme 285 expression patterns demonstrate different metabolic strategies to grow on air: M. rosea SV97 286 and *M. gorgona* MG08 compensate for energy limitation by upregulating enzymes for energy 287 conservation from H₂ or H₂ and CO, while *M*. *palsarum* NE2 compensates for the limitation by 288 upregulating pMMO. The Hhy increase is similar to the Hhy increase in Mycobacterium 289 smegmatis enabling long-term persistence after carbon limitation⁴⁶. The observed upregulation of pMMO, Hhy, or CODH implies that the strains allocate resources to increase 290 their a_A^0 (specific apparent affinity) for the respective trace gases as adaptations to growth on 291 292 air. Additionally, the distinct strategies to grow on air by the closely related strains *M. gorgona* 293 MG08 and *M. palsarum* NE2 suggest niche differentiation between atmMOB in nature. 294 Furthermore, our observations of the consumption of multiple trace gases by atmMOB and 295 adjusted resource allocation for trace gas uptake driven by changes in CH₄ concentration, are 296 in line with earlier observations of a negative correlation between soil H₂ concentrations and the uptake of atmospheric CH₄⁴⁷. Despite the ability of *M. rosea* SV97 and *M. palsarum* NE2 297 298 to oxidize CO (Fig. 1A), we were not able to determine the responsible protein complex(es) or 299 the corresponding gene expression responses. In M. rosea SV97, candidate genes for CODH 300 were identified by blasting the genome sequences against a non-redundant CODH sequence database created by using the Identical Protein Groups resource⁴⁸ (Supplementary table S11). 301 302 However, not all the potential CODH subunits necessary to form a functional CODH were 303 detected in the proteomes. The same blast-based approach did not result in potential 304 candidate genes that could encode a functioning CODH in *M. palsarum* NE2 (Supplementary 305 table S10). Thus, our results indicate that distantly related or previously undiscovered 306 enzymes catalyze atmospheric CO oxidation in *M. palsarum* NE2.

The expression of the methanol dehydrogenase (MDH), which catalyzes the second step in CH₄ oxidation, the oxidation of methanol (CH₃OH) to formaldehyde (CH₂O), matched the pMMO expression patterns for all three strains. This indicates a close interaction between these two enzymes as previously suggested for *Methylococcus capsulatus*⁴⁹. MDHs were upregulated at high CH₄ concentrations by *M. gorgona* MG08 and *M. rosea* SV97, but not by *M. palsarum* NE2 (Fig. 4). Only the putative lanthanide-dependent methanol dehydrogenase (XoxF) of *M. palsarum* NE2 did not follow the pMMO pattern.

Formaldehyde is a key intermediate of both catabolism and anabolism in methanotrophs. The enzymes involved in the catabolic oxidation of formaldehyde via methylenetetrahydromethanopterin (-H₄MPT), methenyl-H₄MPT, and formyl-H₄MPT to formate (CHOO⁻), were downregulated in the air treatment of the three strains (Fig. 4). The toxic and highly

318 reactive formaldehyde condenses spontaneously to methylene-H₄MPT⁵⁰ and methylenetetrahydrofolate (H₄F)⁵¹ and thus, higher concentrations of formaldehyde 319 320 activating enzymes (Fae) may not be required for the oxidation of formaldehyde during 321 growth on air. This may explain why enzymes involved in formaldehyde oxidation, despite the 322 upregulation of pMMO and MDH, were downregulated in *M. palsarum* NE2 at atmospheric 323 CH₄ concentrations. At high CH₄ concentrations, the upregulation of Fae and downstream 324 enzymes for further oxidation to formate could represent a cellular detoxification mechanism to avoid high cellular formaldehyde concentrations and to increase NADH synthesis⁵². 325

326 Two different formate dehydrogenases (Fdh A and Fdh AB) that catalyze the energy-327 conserving oxidation of formate to CO₂ were expressed by *M. gorgona* MG08 and M. *palsarum* 328 NE2 (Fig. 4). The metal-free and potentially irreversible NAD⁺-dependent Fdh A^{33,53} was 329 upregulated at atmospheric CH₄ concentrations in *M. gorgona* MG08 and M. *palsarum* NE2. 330 Possibly, the upregulation of a one-directional enzyme minimizes back-flow of CO₂ to formate 331 at high CO₂ concentrations and thus prevents energy loss by CO₂ reduction. Fdh AB, which was 332 expressed by all three strains, is molybdopterin-dependent and homologous to the reversible Fdh found in *Rhodobacter capsulatus*⁵⁴. It catalyzes, in addition to formate oxidation, the 333 334 reduction of CO₂ to formate^{54,55}. The Fdh AB was upregulated in all three strains at high CH₄ concentration. Under these conditions, when excess reducing power is available, the Fdh AB 335 might enable the reduction of CO₂ for carbon assimilation via the reductive glycine pathway 336 337 and serine cycle, but further investigations are needed to test whether CO₂ reduction to formate truly occurs in atmMOB. 338

339 Comparative proteomics: Carbon assimilation

340 Carbon assimilation was downregulated in all three strains at atmospheric CH₄ concentrations. 341 In the three strains, formaldehyde can condense with H_4F to methylene- H_4F and then be 342 further assimilated through the glycine cleavage system and serine pathway. Additionally, 343 formaldehyde can be first oxidized via the H_4MPT -mediated pathway to formate and then 344 enter, instead of being oxidize to CO₂, the H₄F-mediated reductive pathway to methylene-H₄F 345 (Fig. 4). The increased expression of enzymes involved in the reduction of formate via formyl-346 H₄F and methenyl-H₄F to methylene-H₄F in the high CH₄ treatment indicates an enhanced 347 investment into carbon assimilation. Since formaldehyde spontaneously condenses with H₄F 348 to methylene-H₄F, the upregulated enzymes for H₄F-mediated formaldehyde oxidation could 349 also contribute to formate formation. However, experiments with Methylobacterium 350 extorquens demonstrated that formaldehyde oxidation occurred through its H₄MPT-mediated 351 pathway while the reductive pathway via formate to methylene-H₄F represented the major assimilatory flux^{52,56}. Therefore, we consider this as the most likely explanation for the 352 353 expression patterns in *M. gorgona* MG08, *M. rosea* SV97, and *M. palsarum* NE2.

The glycine cleavage/synthase system (GCS)^{57,58} catalyzes the oxidative cleavage of glycine to NADH, NH₃, CO₂, and a methylene group. It also catalyzes the reverse reaction, the synthesis of glycine from NADH, NH₃, CO₂, and methylene-H₄F. The upregulation of the GCS by *M. rosea* SV97 and *M. palsarum* NE2 at high CH₄ concentrations suggests an increased synthase activity and thus increased carbon assimilation, corresponding to the overall upregulation of the reductive glycine pathway (Fig. 4). However, we lack a plausible explanation for the increased expression of the GCS by *M. gorgona* MG08 at atmospheric CH₄ concentrations. As the next step in carbon assimilation, the bidirectional serine hydroxymethyltransferase (GlyA) condenses glycine with methylene-H₄F to serine, representing the first step of the serine cycle (Fig. 4). The enzymes involved in the serine cycle were upregulated by the strains when exposed to high CH₄ concentrations, indicating investment into carbon assimilation at this condition.

366 Comparative proteomics: Electron transport chain

367 The relative abundances of protein complexes involved in the electron transport chain for ATP 368 synthesis was lower in atmospheric CH₄ compared to the high CH₄ treatment (Supplementary 369 Fig. 5). The NADH-quinone oxidoreductase, cytochrome c oxidase, and the ATP synthase were 370 all highly expressed at high CH₄ concentrations indicating increased investment into energy 371 conservation at high substrate supply. We propose that to overcome energy limitations when 372 exposed to air, all three strains upregulate the expression of enzymes for the oxidation of at 373 least one trace gas to maximize uptake rates and energy yield, while investments in energy 374 conservation and energy-intensive carbon assimilation are reduced. This reduced investment 375 in assimilation is in line with the low concentrations of the trace gases, low uptake rates, and overall slow growth of atmMOB when incubated with air as energy and carbon source³³. 376

378 Specific affinity

The a_A^0 for CH₄, expressed as the fraction of V_{max(app)} and K_{m(app)}, directly represents the 379 380 capacity to oxidize CH₄ at low concentrations. To test if the pMMO upregulation in M. 381 palsarum NE2 and downregulation in M. gorgona MG08 at atmospheric CH₄ concentrations translate into a higher a_A^0 for CH₄ by *M. palsarum* NE2 compared to *M gorgona* MG08, we 382 measured the a_A^0 of the two strains when grown on air. To avoid increases in the apparent half 383 384 saturation constant (K_{m(app)}) estimates at high CH₄ concentrations⁵⁹, we pre-incubated the 385 cultures on filters floating on carbon-free medium for five months with air as sole energy and 386 carbon source.

387 By measuring the CH₄ oxidation per cell and hour at different CH₄ concentrations, we estimated a $K_{m(app)}$ of 48.54 nM CH₄ and a $V_{max(app)}$ of 4.91 x 10⁻⁸ nmol cell⁻¹ h⁻¹ resulting in a a_A^0 388 of 1.01 x 10⁻⁹ L cell⁻¹ h⁻¹ for *M. gorgona* MG08 (Supplementary Fig. 6). A K_{m(app)} of 48.54 nM 389 390 CH₄ is within the range of the K_{m(app)} values measured for fresh oxic soils reported by Bender and Conrad (30 – 51 nM)¹³, which led to the theory that atmMOB are oligotrophs with a high 391 392 affinity for CH₄. This is the first observation of a methanotroph in pure culture showing a K_{m(app)} that is in the range of the low $K_{m(app)}$ values measured in upland soils^{25,60}. Our a_A^0 estimate for 393 *M. gorgona* MG08 (1.01 x 10⁻⁹ L cell⁻¹ h⁻¹) is approximately five times higher than the a_A^0 394 reported by Tveit et al. 1.95 ×10⁻¹⁰ L cell⁻¹ h^{-1 33}. However, the $K_{m(app)}$ and $V_{max(app)}$ reported by 395 Tveit et al. amount 4905 nM and 95.4 x 10⁻⁸ nmol cell⁻¹ h⁻¹, respectively, values approximately 396 397 100 and 20 times higher than in the current study. These differences might derive from the use of liquid cultures pre-incubated at 20% CH₄ by Tveit et al. Such a high CH₄ concentration 398 399 could have influenced the cellular pMMO concentration, as indicated by the pMMO 400 upregulation by *M. gorgona* MG08 at 1000 p.p.m.v. CH₄ described above (Fig. 4), and thus increased the K_{m(app)} and V_{max(app)} estimates. Dunfield and Conrad reported a similar alteration 401

402 of $K_{m(app)}$ and $V_{max(app)}$ for *Methylocystis* strain LR1 after comparing starved cells to cells 403 exposed to 10% CH₄ while the a_A^0 was more constant⁵⁹.

The K_{m(app)} of *M. palsarum* NE2 was 402.08 nM CH₄, which is approximately eight times higher 404 than the $K_{m(app)}$ of *M. gorgona* MG08. Despite this higher $K_{m(app)}$, the a_A^0 of *M. palsarum* NE2 405 was 3.30 x 10⁻⁹ L cell⁻¹ h⁻¹, three times higher than estimated for *M. gorgona* MG08. This high 406 a_A^0 derives from its substantially higher V_{max(app)} of 133 x 10⁻⁸ nmol cell⁻¹ h⁻¹ (Supplementary 407 Fig. 6) and aligns with the proteomic data. The upregulation of the pMMO at atmospheric CH4 408 concentrations by *M. palsarum* NE2 seem to translate into higher a a_A^0 for CH₄ compared to 409 M. gorgona MG08 that downregulated its pMMO. This is also reflected in the CH₄ oxidation 410 411 rate of *M. palsarum* NE2 at atmospheric concentrations, which surpassed the rate of *M.* 412 gorgona MG08, despite having a lower apparent affinity for CH₄ (Supplementary Fig. 6).

An apparent affinity of 402.08 nM CH₄ is not considered as high affinity ^{28,43}. Thus, as both 413 strains grow on air, a high apparent affinity for CH₄ cannot be considered a prerequisite for 414 this lifestyle. The a_A^0 of *M. gorgona* MG08 and *M. palsarum* NE2 are approximately equally 415 416 high and three times higher, respectively, than the recently reported a_A^0 of Methylotuvimicrobium buryatense 5GB1C⁶¹ and 30 and 100 times higher, respectively, than 417 the a_A^0 of *Methylocystis* sp. SC2 (3.4 × 10⁻¹¹ L cell⁻¹ h⁻¹) ²⁶, the MOB with the fourth highest a_A^0 418 for CH₄ known so far. However, the different experimental setups and CH₄ concentrations 419 used to determine a_A^0 might render the comparisons invalid^{26,61}. Nevertheless, our results 420 show that⁵⁸ the specific affinity (a_A^0) , rather than the affinity $(K_{m(app)})$, is the appropriate model 421 422 to determine the efficiency of atmospheric CH₄ utilization by atmMOB. This is in line with the work on oligotrophic substrate uptake at low concentrations by Button⁶². 423
425 Growth on nitrogen from air

The four atmMOB, M. gorgona MG08, M. palsarum NE2, M. rosea SV97, and M. aurea KYG, 426 encode all genes required for dinitrogen (N₂) fixation³³ and grow in nitrogen-free medium at 427 high CH₄ concentrations^{34,35,37,63}. To test the potential for growth on nitrogen from air, we 428 429 incubated filter cultures of these strains with air as the sole energy, carbon, and nitrogen 430 source. The colony formation of all four strains after three months, and trace gas uptake by 431 M. gorgona MG08 after one year, demonstrates growth in the absence of bioavailable 432 nitrogen sources in the medium (Fig. 5A, 5B, and Supplementary Fig. 7). This suggests that all 433 four strains can either cover their nitrogen requirements by the fixation of N₂, by the 434 utilization of atmospheric reactive nitrogen during growth on air, or both. While the N2 435 concentration in air is approximately 78 %, ammonia concentrations, for example, have been 436 observed to range between 0.2 and 24 p.p.b.v.⁶⁴.

437 To test for N₂ fixation during growth on air by *M. gorgona* MG08, we incubated filter cultures 438 in air enriched with ¹⁵N-N₂ (~23 atom % (at%) of the total N₂) and CH₄, H₂, and CO 439 concentrations fluctuating between 0.03 and 3 p.p.m.v. for two months. Afterwards, we measured cellular ¹⁵N₂ fixation using NanoSIMS (Fig. 5C). All cells (n = 379) measured during 440 441 NanoSIMS incorporated ¹⁵N (Table S15 and S16) indicating that all cells have been active 442 during incubation. This supports the validity of our energy estimations (as mentioned above) and demonstrates growth on trace gases in air. The cellular ¹⁵N ranged from 2.99 at% to 61.89 443 444 at% with an average of 30.79 at% (SD = 7.82 at%) (Supplementary table S15) while the control without ${}^{15}N_2$ enrichment averaged at 0.37 at% (SD = 0.04) (Supplementary table S16). Since 445 the ¹⁵N₂ in the headspace amounted to approximately 23 at% of the total N₂ during incubation, 446 447 the ¹⁵N average of the cells should not have amounted to more than 23 at%. The high values might issue from bioavailable ¹⁵N-species in the ¹⁵N₂ gas used for incubation⁶⁵. Purity tests of 448

the ¹⁵N₂ gas prior to the ¹⁵N₂ fixation experiments revealed only a minor NO_x contamination 449 450 of 101.59 (nmol ml⁻¹) with a very low ¹⁵N fraction of 0.0014 at% and ammonia levels below detection limit (1 nmol ml⁻¹), and thus do not provide indications that contamination can 451 explain our observations. However, even undetectable trace amounts of ¹⁵N ammonia 452 453 contaminating the ¹⁵N₂ might be sufficient to cause high cellular ¹⁵N-enrichments given the 454 low amount of biomass of the filter cultures and the long incubation times. Thus, despite not being able to detect any ¹⁵N-contaminants, we cannot exclude contamination and thereby 455 cannot confirm N_2 fixation. However, considering the growth on nitrogen-free medium 456 457 (Supplementary Fig. 7) and the NanoSIMS experiment, we can conclude that *M. gorgona* 458 MG08 either fixes N₂ or trace concentrations of reactive nitrogen species. This demonstrates 459 that atmMOB can cover their nitrogen requirements for growth, in addition to energy and 460 carbon, from air. Additionally, it suggests that atmMOB may not be nitrogen limited under most natural conditions, partially answering the question by Bodelier and Steenberg regarding 461 conditions that can be nitrogen limiting to atmMOB³⁹. 462

Figure 5. A) Images of SYBR green I stained colonies formed by *M. gorgona* MG08, *M. palsarum* NE2, *M. rosea* SV97, and *M. aurea* KYG after three months of incubation with air as sole energy, carbon, and nitrogen source B) Trace gas oxidation of *Methylocapsa gorgona* MG08 filter cultures after 12 months of incubation with air as sole carbon, energy, and nitrogen source. Error bars indicate standard deviation (n = 4) (Supplementary table S1). C) NanoSIMS visualization of ¹⁵N incorporation by *M. gorgona* MG08 after two months of incubation under a ¹⁵N₂-enriched atmosphere. Fraction values of ¹⁵N/(¹⁴N + ¹⁵N) are given in at%.

473 Conclusion

474 Growth on air and enduring oxidation of atmospheric CH₄ is not restricted to members of the 475 clades USC α and γ , but more widespread than previously assumed. Our data shows that 476 former liquid culture-based cultivation approaches lead to an underestimation of the true 477 potential of methanotrophic pure cultures to oxidize atmospheric CH₄. The appearance of 478 atmMOB outside the USCa and y revises our understanding of the biological atmospheric CH₄ 479 sink and should be considered in future studies. The strain specific oxidation patterns and the estimations of the a_A^0 for CH₄ demonstrate that both the mixotrophic oxidation of atmospheric 480 trace gases and a high a_A^0 for CH₄ are key to obtain sufficient energy for growth on air. The 481 482 estimated energy requirements for growth of the four atmMOB are substantially lower than 483 the maintenance energy value used as basic premise for an oligotrophic lifestyle of MOB. 484 Additionally, atmMOB seem to cover not only their energy and carbon but also their nitrogen 485 requirements from the atmosphere. This opens a new perspective on physiological limitations 486 of atmospheric trace gas oxidizers and suggests that atmMOB may carry an ideal set of properties needed for pioneering species to initiate primary succession in unfavorable 487 environments. Additionally, the high a_A^0 for CH₄ enables atmMOB to utilize trace 488 489 concentrations of CH₄ as energy and carbon source for growth while being extremely 490 oligotrophic. This bears the potential for cost-effective and efficient biofiltration of anthropogenic emissions containing CH₄ concentrations far below the lower explosive limit. 491 492 The common metabolic strategy to grow on air seems to be the downregulation of enzymes 493 involved in energy-intensive processes combined with the upregulation of enzymes for the 494 oxidation of trace gases. However, the differing expression patterns of enzymes for trace gas 495 oxidation and the strain-specific trace gas oxidation patterns indicate that a diverse metabolic 496 repertoire has evolved to enable life on air.

497 Acknowledgements

We thank Alena Didriksen from the University of Tromsø for her involvement in cell quantification, Toril Anne Grønset and Jack-Ansgar Bruun from PRiME for their contributions to the comparative proteomics analysis and Cornelia Rottensteiner, Judith Prommer, and Margarete Watzka from the University of Vienna for the carbon content analysis and ¹⁵N₂ gas purity test.

Funding: This study was supported by the Research Council of Norway FRIPRO Young Researcher Grant 315129, Living on Air, and Tromsø Research Foundation starting grant project Cells in the Cold 17_SG_ATT to ATT. Mass spectrometry-based proteomic analyses were performed by UiT Proteomics and Metabolomics Core Facility (PRIME). This facility is a member of the National Network of Advanced Proteomics Infrastructure (NAPI), which is funded by the Research Council of Norway INFRASTRUKTUR-program (project number: 295910).

510 Authors contributions

T.S., M.M.S. and A.T.T. conceived the study. T.S., A.G.H., J.B., H.S., A.Sch., B.R., E.J.T, O.S., and
A.T.T. performed experiments. T.S., H.S., A.Sch., A.S., A.R. and A.T.T. analyzed data. T.S. and
A.T.T. created the figures. T.S., H.S., A.Sch., B.R., A.R., A.S., M.P, M.M.S, and A.T.T. contributed
to methods. T.S. and A.T.T. wrote the manuscript with inputs from all authors.

515 Competing interests

516 The authors declare no conflict of interest.

518 Data availability

519 The proteomics data have been deposited to the ProteomeXchange Consortium via the 520 PRIDE⁶⁶ partner repository with the dataset identifier PXD046190. The data used in this study 521 are provided in the excel file "Supplementary tables".

522

523 Methods

524 Filter-based cultivation with air as the sole carbon and energy source

525 The strains were pre-incubated in liquid cultures in 100 mL serum bottles containing 10 mL of 526 10x diluted, EDTA-free NMS medium (DSMZ medium 921 with 10x the iron concentration and 527 1 μ M lanthanum) and a headspace of 20% CH₄ in air. The Fe-EDTA stated in the original DSMZ 528 recipe was substituted with FeSO₄. Depending on the strain, the medium was adjusted to a 529 pH of 6.8 (Methylocapsa gorgona MG08, Methylosinus trichosporium OB3b, Methylocystis 530 rosea SV97, Methylobacter tundripaludum SV96) or 5.8 (Methylocapsa aurea KYG, 531 Methylocapsa acidiphila B2, and Methylocapsa palsarum NE2). The serum bottles were sealed 532 using butyl rubber stoppers (Chromacol 20-B3P, Thermo Fisher Scientific, Waltham, 533 Massachusetts, USA) and crimp caps, and incubated at 20°C in dark, until the strains were in 534 an exponential growth phase. Strain purity was controlled routinely via microscopy and by 535 confirming the absence of heterotrophic growth on agar plates with a rich medium containing 536 tryptone, yeast extract, and glucose³². After reaching exponential growth phase, the strains 537 were diluted with the described medium and filtered on 25 mm polycarbonate (PC) filters (Whatman 10417006, Cytiva, Massachusetts, Marlborough, USA) using a filtration manifold 538 (EQU-FM-10X20-SET, DHI, Hørsholm, Denmark)²⁸. The final cell density on the filters 539 amounted approximately 20 cells per photo area (630x magnification). The filters were 540

541 transferred into Petri dishes containing 10x diluted, EDTA-free NMS medium (DSMZ medium 542 921 with 10x the iron concentration and 1 μ M lanthanum) and left floating on the medium 543 with the cells facing upwards. The Petri dishes enable constant ventilation of the filter cultures 544 with ambient air while keeping the cultures sterile. The cultures were incubated at 20°C in 545 dark, with air as the sole energy and carbon source, for at least three months until initiation 546 of experiments. All cultivation steps were carried out under sterile conditions. Before 547 experiments, colony formation and microcolony morphology of the strains was routinely checked via microscopy as previously described³³. To verify that atmMOB grow on the three 548 549 trace gases CH₄, CO, and H₂ in air, we incubated *M. gorgona* MG08 cells on filters floating on 550 10x diluted EDTA-free NMS medium in glass bottles sealed with Safety-Caps (JR-S-11011, VICI 551 AG International, Schenkon, Switzerland) under two different atmospheres: One of synthetic 552 air without the trace gases CH₄, CO, and H₂ (Gas composition: 400 p.p.m.v. CO₂ and 20.9% O₂ 553 in N₂) and another of ambient air. After an incubation period of 15, 20, and 50 days at 20°C, the growth of cells in the different treatments was compared via microcopy³³ (Supplementary 554 555 Fig. 2). To create the synthetic air atmosphere, the bottles were gasses as written in "Trace 556 gas oxidation experiments".

557 Trace gas oxidation experiments

For all trace gas oxidation experiments, filter cultures of the respective strains, pre-incubated with air as the sole carbon and energy source, were transferred into 250 mL glass bottles containing 50 mL 10x diluted EDTA-free NMS medium (DSMZ medium 921 with 10x the iron concentration and 1 μM lanthanum). The bottles were capped with Safety-Caps (JR-S-11011, VICI AG International). To create a defined atmosphere within the bottles, the headspace of each bottle was flushed for 10 minutes with high-purity synthetic air containing 400 p.p.m.v. CO₂ (HiQ, AGA, Sweden) using a gassing manifold. The headspace pressure was adjusted to 565 approximately 1.05 bar. Then, 1 mL 1000 p.p.m.v. CH₄ in N₂ (HiQ, AGA, Sweden), 1 mL 1000 566 p.p.m.v. H₂ in N₂ (HiQ, AGA, Sweden), and 1 mL 1000 p.p.m.v. CO in N₂ (HiQ, AGA, Sweden) 567 were added to the headspace using a gas tight syringe. To assess the oxidation rate of the respective strains, the cultures were incubated at 20°C and the change in CH₄, H₂, and CO 568 569 concentrations within bottle headspaces were measured. For each measurement, 2 mL of the 570 gas in the headspace were sampled using a gas tight syringe. The gas samples were analyzed 571 with a gas chromatograph (ThermoScientific Trace 1300, Thermo Fisher Scientific) equipped 572 with a sample loop, a Hayesep column (SU12875, RESTEK, Bellefonte, Pennsylvania, USA), a 573 Molsieve 5A column (PKC17080, RESTEK), a pulsed discharge detector, and a flame ionization 574 detector. A high-quality gas containing 2.5 p.p.m.v. CH₄, 2.5 p.p.m.v. H₂, and 2.5 p.p.m.v. CO 575 in N₂ served as standard (HiQ, AGA, Sweden). To determine the gas concentrations in the 576 bottle headspaces, standard curves were created every day of measurement. The headspace 577 pressure was measured at the end of the experiment using a manometer (LEO1, Keller, 578 Winterthur, Switzerland). The mass of each trace gas was calculated by applying the ideal gas 579 law and adjusted for changes in pressure caused by gas removal during measurement.

580 Cell quantification

For quantification, cells from filters were processed as follows: The filters were placed on 150 581 582 µL 25x SYBR green I (10463252, Thermo Fisher Scientific) with cells facing upwards and incubated for 10 minutes in dark. Next, the cells were washed twice by letting the filters float 583 584 on milliQ water for 5 minutes in dark. To remove the cells from the filters, the filters were 585 transferred into 5 mL tubes (0030122321, Eppendorf, Hamburg, Germany) containing 2 mL 586 10x diluted solution 1 (DSMZ medium 921), so that the filters sticked to the tube wall and the 587 cells faced inwards⁶⁷. The tubes were vortexed for 10 minutes at medium speed. After 588 vortexing, remaining cells on the filters were washed off and collected by rinsing the filters 589 with 1 mL solution 1 (DSMZ medium 921). The washed filters were dried in dark, and the cell 590 removal controlled via fluorescence microscopy. The 3 mL cell suspension resulting from the 591 cell removal was spiked with 50 µL absolute counting beads (Invitrogentm CountBrighttm Plus, 592 Thermo Fisher Scientific). After, the cells in suspension were immediately counted using a flow 593 cytometer (BD FACSAria III, BD Biosciences, Franklin Lakes, New Jersey, USA). The flow 594 cytometer was set up to capture SYBR Green I (excitation = 498 nm, emission = 522 nm) in the green channel and the Invitrogentm CountBrighttm Plus Absolute Counting Beads (excitation = 595 596 350 – 810 nm, emission = 385 – 860 nm) in the blue channel. Unstained cells of M. gorgona 597 MG08, M. palsarum NE2, M. rosea SV97, and M. aurea KYG were used to define the 598 autofluorescence threshold in the different channels. Size beads (NPPS-4K, Spherotech, Lake 599 Forest, Illinois, USA) were used to draw the forward scatter gate covering events between 0.58 600 and 4 µm (Supplementary Fig. 11). SYBR green I stained cells and absolute counting beads 601 were counted to determine

the cell number within filter cultures, using the following equation:

$$x_{filter} = \frac{b_{abs}}{b_c} \times x_c$$

Where x_{filter} is the absolute cell number of the filter culture, b_{abs} the number of counting beads added, b_c the number of counting beads counted, and x_c the number of SYBR green I stained cells counted.

607 Cell-specific oxidation rates and energy calculation

The gas-specific oxidation rates of the different strains at atmospheric CH₄, H₂, and CO concentrations and pseudo first order kinetics were calculated and tested as described by Tveit et al³². The oxidation rate per cell was calculated by dividing the oxidation rate of the filter culture by the corresponding cell number. The Gibbs free energy changes ($\Delta_r G$) for the following reactions: $CH_4 + 2O_2 \rightarrow 2H_2O + CO_2$, $2H_2 + O_2 \rightarrow 2H_2O$, $2CO + O_2 \rightarrow 2CO_2$, at 20°C, 1.013 bar absolute, and atmospheric concentrations of CH₄ (1.87 p.p.m.v.), H₂ (0.5 p.p.m.v.), and CO (0.2 p.p.m.v.) amount to -797.4 kJ mol⁻¹, -236.8 kJ mol⁻¹, and -199.9 kJ mol⁻¹ respectively. The values are based on the values for Gibbs free energy of formation found in literature^{32,68} and the following equation:

$$\Delta_r G = \Delta_r G^{\circ} + RT lnQ_r$$

617 where $\Delta_r G^{\circ}$ is the Gibbs free energy change at standard conditions, *R* the gas constant, *T* the 618 temperature, *ln* the natural logarithm, and Q_r the reaction quotient. The estimates of energy 619 yield per cell were obtained from the trace gas oxidation per cell and the $\Delta_r G$. The energy 620 yield from trace gas oxidation per carbon mol of biomass and hour (kJ C-mol⁻¹ hour⁻¹) was 621 estimated including the strain specific carbon content and dry weight as previously shown²⁶.

623 Cellular dry mass and carbon content estimations

624 The strain-specific cellular dry mass was determined by measuring single-cell buoyant mass 625 distributions of the strains in H₂O-based and deuterium oxide (D₂O)-based solutions of phosphate saline buffer (PBS) using a suspended microchannel resonator (SMR)^{69,70}. To do so, 626 filter cultures of M. gorgona MG08, M. rosea SV97, M. palsarum NE2, and M. aurea KYG were 627 628 incubated on 10x diluted, EDTA-free NMS medium (DSMZ medium 921 with 10x the iron 629 concentration and 1 µM lanthanum) under an atmosphere of 1000 p.p.m.v. CH₄ in air for three 630 weeks. After, cells of filter cultures were fixed by incubating the filters on 150 µl formaldehyde 631 in 1×PBS (4% w/v) for an hour at room temperature. The cells were washed twice by letting the filters float on water for 5 minutes. The fixed cells were harvested as described in "Cell 632 quantification". The resulting cell suspension was stored at 4°C until measurements of the 633 634 buoyant cell mass. For the measurements, two aliquots with the same volume of each cell 635 suspension were created. The water of the aliquots was replaced by H_2O -based (1x PBS in H_2O)

and D₂O-based (1x PBS in 9:1 D₂O:H₂O) solutions of known density (1.0043 g cm⁻³ and 1.1033 636 g cm⁻³ at 20°C, respectively). To do so the aliquots were dried in a vacuum concentrator at 637 638 37°C. After, the cells of one of the two alignots were resuspended in 50 μ l of the H₂O-based 639 solution. The cells of the second aliquot were resuspended in 50 μ l of the D₂O-based solution. 640 The buoyant mass of the cells in the aliquots were measured with a SMR (LifeScale, Affinity 641 Biosensors, Santa Barbara, California, USA). The precision and accuracy of the SMR was verified by creating calibration curves using NIST-certified polystyrene beads (ThermoFisher 642 Scientific) as performed previously⁷¹. 643

The buoyant mass data were exported from the LifeScale instrument and further analyzed using the Python 3⁷² packages Pandas⁷³, Matplotlib⁷⁴, and Seaborn^{72,75} (Supplementary Fig. 10). The dry mass of the strains was calculated as described⁶⁹ using the median of the singlecell buoyant mass distributions in H₂O-based and D₂O-based solutions and the following equation:

649
$$m_{dry} = \frac{\rho_{D_2O} \times m_{b.H_2O} - \rho_{H_2O} \times m_{b.d_2O}}{\rho_{D_2O} - \rho_{H_2O}}$$

650 Where m_{dry} is the dry mass, ρ_{D_2O} the density of the D₂O-based solution, $m_{b.H_2O}$ the cell's 651 buoyant mass in the H₂O-based solution, ρ_{H_2O} the density of the H₂O-based solution, and 652 $m_{b.d_2O}$ the cell's buoyant mass in the D₂O-based solution.

The cellular carbon contents of the atmMOB were analyzed using an elemental analyzer coupled to an isotope ratio mass spectrometer (EA-IRMS; EA1110 coupled via a ConFlo III interface to a DeltaPLUS IRMS, Thermo Fisher Scientific). Biomass for the carbon content analysis was derived from stirred-tank bioreactor (DASbox[®] Mini Bioreactor System, Eppendorf) cultures. The cultures were grown in 10x diluted, EDTA-free NMS medium (DSMZ 658 medium 921 with 10x the iron concentration and 1 μ M lanthanum) at 80 rpm (marine 659 impeller), 20°C, pH 6.8 (CO₂ controlled) and a gassing rate of 0.24 vessel volumes per minute 660 (6000 p.p.m.v. CH₄ in air) using a microsparger (78530205, Eppendorf). After harvest, cultures 661 were washed three times with milliQ water and lyophilized.

662 Comparative proteomics

663 For the atmospheric CH₄ treatment, filter-cultures of *M. gorgona* MG08, *M.* rosea SV97 and 664 *M. palsarum* NE2 were incubated with air as the only carbon and energy source for seven 665 months. After, the cells on filters were harvested as described in "Cell quantification", 666 lyophilized, and stored at -80°C until further processing. The 1000 p.p.m.v. CH₄ treatment of 667 the respective strains was processed the same way as the atmospheric CH₄ treatment with 668 the difference that filter cultures had been exposed to approximately 1000 p.p.m.v. CH₄ in air 669 for two weeks before harvest. Samples of lyophilized cells were lysed by sonication in 20 µL 670 buffer containing 4 M urea, 2.5 % sodium deoxycholate (SDC) and 100 mM triethylammonium 671 bicarbonate (TEAB). Samples were sonicated for 25 cycles (1 min on, 30 sec off) with maximum 672 amplitude in a cup horn sonicator with a recirculating chiller (Cup horn: model 413C2, Qsonica, Newtwon, Connecticut, USA; Sonicator: Fisherbrandtm FB705, Thermo Fisher Scientific; 673 674 Recirculating chiller: model 4905 Qsonica). Then, disulfide bridges were reduced with 1,4-675 dithiothreitol (DTT) at a final concentration of 5 mM and incubation at 54°C for 30 min. 676 Cysteines were alkylated with 15 mM iodoacetamide (IAA) and incubated for 30 min at room 677 temperature in dark. To remove excess IAA, DTT solution corresponding to a final concentration of 5 mM was added. Calcium chloride solution (final concentration of 1 mM) 678 679 and 1 µg Lysyl Endopeptidase (125-05061, FUJIFILM Wako Chemicals Europe, Neuss, 680 Germany) were added to the samples and incubated for 5 hours under gentle agitation at 37°C 681 for enzymatic digestion. After, samples were diluted with a buffer containing 100 mM

682 triethylammonium bicarbonate (TEAB) and 1 mM CaCl₂ to lower the urea and sodium deoxycholate (SDC) concentration to 1 M and 0.65 % v/v, respectively, resulting in a final 683 684 sample volume of 80 μL. For digestion, 2 μg trypsin (V511A, Promega, Wisconsin, USA) were 685 added and the samples incubated on a gently agitated shaker at 37°C for 16 hours. After 686 digestion, SDC was precipitated by adding 50% formic acid to the sample (final concentration 687 of 2.5% v/v). Samples were then incubated for 10 min and centrifuged at 16200 rcf for 15 min. 688 Supernatants containing peptides were transferred to low-protein-binding tubes. The 689 peptides were concentrated and cleaned up using DPX C18 pipette tips (DPX Technologies, 690 XTR tips 10 mg C18AQ 300Å) on a Tecan Fluent pipetting robot (Tecan Group Ltd., Männedorf, 691 Switzerland). Purified peptide samples were dried in a vacuum concentrator and dissolved in 692 12 µL 0.1% formic acid. Peptide concentrations were measured on a spectrophotometer 693 (Nanodrop ONE, Thermo Fisher Scientific) at 205 nm. 0.25 µg peptides per sample were loaded 694 onto a liquid chromatograph (EASY-nLC1200, Thermo Fisher Scientific) equipped with an EASY-Spray column (C18, 2μm, 100 Å, 50μm, 50 cm). Peptides were fractionated using a 5 – 695 80% acetonitrile gradient in 0.1 % formic acid over 120 min at a flow rate of 300 nL min⁻¹. The 696 697 separated peptides were analyzed using a mass spectrometer (Orbitrap Exploris 480, Thermo 698 Fisher Scientific). Data was collected in data dependent mode using a Top40 method. Annotated genomes of the three strains downloaded from MicroScope⁷⁶ served as databases 699 700 for the CHIMERYS-based data search using Proteome Discoverer 3.0. Normalized abundances 701 (scaling mode: On All Average) of proteins were further processed via Perseus⁷⁷. Normal 702 distribution of Log2 fold transformed data was visually screened using histograms. Proteins 703 were filtered using a threshold of at least three valid values in at least one treatment (n = 4 704 per treatment). Proteins that passed the filtering were included in downstream analyses. 705 Missing values were imputed from normal distribution using default settings (width = 0.3,

706 down shift = 1.8). The Pearson correlation coefficient ranged from ρ = 0.918 to ρ = 0.989 707 between replicates and from 0.68 to 0.799 between replicates of the different treatments. 708 Imputed protein abundance results of the 1.9 p.p.m.v. and 1000 p.p.m.v. treatments were used for correspondence analysis (CA). CA was conducted in R⁷⁸ using the "ca" function of R 709 710 package "ca"79. The top 10% of proteins that contributed most to the inertia of the CA's first 711 dimension were extracted using the function "get ca row" of the R package "factoextra"⁸⁰. 712 To map the abundances and the hierarchical EggNOG⁴⁵ annotations of the top 10% proteins, 713 the EggNOG annotations of the three strains were downloaded from MicroScope. For the in-714 depth analysis of trace gas oxidation, carbon assimilation, and the electron transport chain, 715 the differences between treatments were tested using a two-sided t-test (s0 = 2) and 716 permutation-based false discovery rate (FDR = 0.01). From the z-score normalized results, the 717 proteins involved in trace gas oxidation, carbon assimilation via the serine cycle, and the 718 electron transport chain were selected for further analysis using Python 3⁷². The core carbon 719 and energy metabolism of *M*. rosea SV97 and *M*. palsarum NE2 were reconstructed manually using MicroScope annotations, the published metabolism entries of *M. gorgona* MG08³³, 720 KEGG⁸¹, and protein BLAST searches⁸². To conduct a thorough screening for putative carbon 721 722 monoxide dehydrogenase subunits a blast-searchable database was constructed out of all sequences retrieved from the NCBI Identical Protein Groups resource⁴⁸ (accessed May, 30th 723 724 2023) using the search term "carbon monoxide dehydrogenase" (54076 amino acid sequence 725 entries). Entries with an amino acid sequence length <30 were removed from the database 726 prior to the blastp search. The annotated genomes of *M. rosea* SV97 and *M. palsarum* NE2, 727 downloaded from MicroScope, were used as blastp queries (default settings, -outfmt 6 728 including slen). After a pre-filtering removing hits with an E-value >1 and an alignment length

<50% of the aligned database entry, the blastp output tables were manually evaluated(Supplementary table S10-11).

731 Specific affinity

732 Filter cultures of *M. gorgona* MG08 and *M. palsarum* NE2 were pre-incubated on 10x diluted, EDTA-free NMS medium (DSMZ medium 921 with 10x the iron concentration and 1 μ M 733 lanthanum) for five months with air as sole energy and carbon source. The filter cultures were 734 735 transferred into 250 mL glass bottles containing 250 mL of the mentioned medium. The glass 736 bottles were capped with Safety-Caps (JR-S-11011, VICI AG International). For each strain, the CH₄ concentrations in the 50 mL headspace were adjusted to approximately 1.9, 14, 30, 70, 737 738 and 175 p.p.m.v. by adding 0 – 2.5 mL 1000 or 5000 p.p.m.v. CH₄ in N₂ (HiQ, Linde, Sweden). 739 The headspace pressure of all bottles was adjusted to approximately 1.1 bar using air. After, 740 the strains were incubated for 48 hours at 20°C. The change in CH₄ was measured at 741 incubation start, after 24 hours and 48 hours as described above. Standard curves were 742 created using 2.5 and 50 p.p.m.v. CH₄ in N₂ (HiQ, AGA, Sweden). At the end of the oxidation 743 experiment, cells in filter cultures were quantified as described above. The change in mass of 744 CH₄ in the headspace was calculated by applying the ideal gas law and adjusted for changes in 745 pressure caused by gas removal during measurement. The mass of dissolved CH₄ at different 746 CH₄ partial pressures in the headspace was calculated by applying the Henry's law solubility constant for CH4 at 20°C. The Michaelis-Menten CH4 oxidation kinetics were modelled using 747 the "nls" function of the "nlstools" R package⁸³, specifying the "michaelis" model and 748 providing start values for $K_{m(app)}$ and $V_{max(app)}$. The a_A^0 was calculated by dividing V_{max} by K_m . 749

750 Growth on nitrogen from air

Filter cultures of *M. gorgona* MG08, *M. palsarum* NE2, *M. rosea* SV97, and *M. aurea* KYG were pre-incubated on 10x diluted, EDTA-free, and potassium nitrate (KNO₃)-free NMS medium (DSMZ medium 921 with 10x the iron concentration and 1 μM lanthanum) with air as sole energy, carbon, and nitrogen source. After three months, colony formation was checked via microscopy³³. After 12 months, the activity of *M. gorgona* MG08 was measured as described in the section "Trace gas oxidation experiments" with the only difference that the KNO₃-free medium was used.

758 For the detection of ¹⁵N₂ fixation via NanoSIMS, filter cultures were pre-incubated on 10x 759 diluted, EDTA-free, and potassium nitrate (KNO₃)-free NMS medium with air as sole energy, 760 carbon source, and nitrogen source. After three months, the filters were transferred into 250 761 ml glass bottles containing 50ml of the KNO₃-free NMS medium. The bottles were capped with 762 Safety-Caps (JR-S-11011, VICI AG International) and the headspace of each bottle was flushed 763 for five minutes with compressed air using a gassing manifold. Afterwards, 50 ml of 98+ at% 764 ¹⁵N₂ gas (NLM-363-1-LB, Cambridge Isotopes Laboratories, Tweksbury, Massachusetts, USA) were added using a gas syringe so that the ¹⁵N-N₂ in headspace atmosphere amounted 765 766 approximately 23 at% of the total N₂. The headspace pressure was adjusted to 1.05 bar and 767 0.5 mL 1000 p.p.m.v. CH₄ in N₂ (HiQ, AGA, Sweden), 1 mL 1000 p.p.m.v. H₂ in N₂ (HiQ, AGA, Sweden), and 1 mL 1000 p.p.m.v. CO in N_2 (HiQ, AGA, Sweden) were added to the headspace 768 using a gas syringe. To account for the natural abundance of ¹⁵N-N₂, a control without the 769 addition of ¹⁵N₂ gas was prepared accordingly. The filter cultures were incubated at 20°C for 770 two months. The headspace concentration of CH₄, H₂, and CO during incubation was 771 772 measured once a week as mentioned in the "Trace gas oxidation experiments" section and

replenished if the concentration of CH₄, H₂, and CO dropped below 1.9 p.p.m.v., 0.5 p.p.m.v.,
0.2 p.p.m.v., respectively.

775 After two months, the cells of the filter cultures were fixed by incubating the filters on 150 µl 776 formaldehyde in 1×PBS (4% w/v) for an hour at room temperature. The cells were washed 777 twice by letting the filters float on water for 5 minutes. The fixed cells were harvested as described in "Cell quantification", lyophilized, and stored at -80°C until further processing. For 778 779 NanoSIMS analysis the lyophilized cells were resuspended in 20 µl MilliQ water. 10 µl of the 780 cell suspensions were deposited on antimony-doped silicon wafer platelets (7.1 × 7.1 × 0.75 781 mm, Active Business Company, Germany) and dried in air. The following two samples were 782 prepared accordingly for NanoSIMS analysis: i) The unlabeled *M. gorgona* MG08 cells, serving 783 as control for the natural abundance of ¹⁵N₂; and ii) the *M. gorgona* MG08 cells incubated with 784 ¹⁵N₂ gas and trace concentrations of CH₄, H₂, and CO that were analyzed to see whether the 785 strain is capable of fixing atmospheric nitrogen during growth with air as sole energy and 786 carbon source.

787 The NanoSIMS measurements were performed on a NanoSIMS 501 (Cameca, Gennevilliers, 788 France) at the Large-Instrument Facility for Advanced Isotope Research at the University of 789 Vienna. Before the data acquisition, analysis areas were preconditioned in situ by rastering of 790 a high-intensity, defocused Cs⁺ ion beam in the following sequence of high and extreme low 791 ion impact energies (HE/16 keV and EXLIE/50 eV, respectively): HE at 25 pA beam current to a Cs+ fluence of 5.0E14 ions cm⁻²; EXLIE at 400 pA beam current to a fluence of 5.0E16 ions cm⁻²; 792 and HE at 25 pA to a fluence of 5.0E14 ions cm⁻². Data were acquired as multilayer image 793 794 stacks by repeated scanning of a finely focused Cs⁺ primary ion beam (c. 80 nm probe size at

approx. 2 pA beam current) over areas between 34×34 and $72 \times 72 \ \mu\text{m}^2$ at 512×512 -pixel image resolution and a primary ion beam dwell time of 5 ms pixel⁻¹.

NanoSIMS images were generated and analyzed with the OpenMIMS plugin⁸⁴ in the image processing package Fiji⁸⁵. All images were auto-tracked for compensation of primary ion beam and/or sample stage drift, and secondary ion signal intensities were corrected for detector dead-time and quasi-simultaneous arrival (QSA) of secondary ions, utilizing sensitivity factors ('beta' values) of 1.06, and 1.05 for C₂⁻, and CN⁻ ions, respectively. Regions of interest (ROIs) were defined in the ¹²C⁻-ion image where each ROI corresponded to an individual cell. Cells touching the border of the image were omitted from the selection.

Acquisition cycles of all three analysis areas were reduced to 27 each to improve comparability among the measurements. Regions of interest were analyzed for their ¹⁵N content by calculating the average value across acquisition cycles per analysis area, referred to by the ¹⁵N/(¹⁴N + ¹⁵N) isotope fraction designated as at% ¹⁵N, which was calculated from the ¹²CN⁻ signal intensities via:

809
$$at\%^{15}N = \frac{{}^{12}C^{15}N^{-}}{{}^{12}C^{15}N^{-} + {}^{12}C^{14}N^{-}}$$

The natural abundance of ¹⁵N in cellular biomass was inferred from unlabeled cells yielding 0.369 ± 0.043 at% (mean ± 1 SD).

812

813 Plotting

Plots were created using the Python 3⁷² packages Pandas⁷³, Matplotlib⁷⁴, and Seaborn⁷⁵ and
R packages ggplot2⁸⁶. Figures were finalized using Adobe Illustrator 2023.

816 References

- Intergovernmental Panel on Climate Change. The Earth's Energy Budget, Climate
 Feedbacks and Climate Sensitivity. In: *Climate Change 2021 The Physical Science Basis*.
 Cambridge University Press; 2023:923-1054. doi:10.1017/9781009157896.009
- Mar KA, Unger C, Walderdorff L, Butler T. Beyond CO2 equivalence: The impacts of
 methane on climate, ecosystems, and health. *Environ Sci Policy*. 2022;134:127-136.
 doi:10.1016/j.envsci.2022.03.027
- 8233.Ehhalt DH. The atmospheric cycle of methane. *Tellus*. 1974;26(1-2):58-70.824doi:10.1111/j.2153-3490.1974.tb01952.x
- Saunois M, Stavert AR, Poulter B, et al. The Global Methane Budget 2000–2017. *Earth Syst Sci Data*. 2020;12(3):1561-1623. doi:10.5194/essd-12-1561-2020
- 827 5. Rigby M, Montzka SA, Prinn RG, et al. Role of atmospheric oxidation in recent methane
 828 growth. *Proceedings of the National Academy of Sciences*. 2017;114(21):5373-5377.
 829 doi:10.1073/pnas.1616426114
- Backson RB, Saunois M, Bousquet P, et al. Increasing anthropogenic methane emissions
 arise equally from agricultural and fossil fuel sources. *Environmental Research Letters*.
 2020;15(7):071002. doi:10.1088/1748-9326/ab9ed2
- Peng S, Lin X, Thompson RL, et al. Wetland emission and atmospheric sink changes
 explain methane growth in 2020. *Nature*. 2022;612(7940):477-482.
 doi:10.1038/s41586-022-05447-w
- 836 8. Ocko IB, Hamburg SP. Climate consequences of hydrogen emissions. *Atmos Chem Phys.* 837 2022;22(14):9349-9368. doi:10.5194/acp-22-9349-2022
- Bincer I. Hydrogen 1.0: A new age. *Int J Hydrogen Energy*. 2023;48(43):16143-16147.
 doi:10.1016/j.ijhydene.2023.01.124
- Tate KR. Soil methane oxidation and land-use change from process to mitigation. Soil
 Biol Biochem. 2015;80:260-272. doi:10.1016/j.soilbio.2014.10.010
- La H, Hettiaratchi JPA, Achari G, Dunfield PF. Biofiltration of methane. *Bioresour Technol*. 2018;268:759-772. doi:10.1016/j.biortech.2018.07.043
- Harriss RC, Sebacher DI, Day FP. Methane flux in the Great Dismal Swamp. *Nature*.
 1982;297(5868):673-674. doi:10.1038/297673a0
- Bender M, Conrad R. Kinetics of CH4 oxidation in oxic soils exposed to ambient air or
 high CH4 mixing ratios. *FEMS Microbiol Ecol.* 1992;10(4):261-269. doi:10.1111/j.15746941.1992.tb01663.x
- Knief C, Lipski A, Dunfield PF. Diversity and Activity of Methanotrophic Bacteria in
 Different Upland Soils. *Appl Environ Microbiol*. 2003;69(11):6703-6714.
 doi:10.1128/AEM.69.11.6703-6714.2003
- 85215.Holmes AJ, Roslev P, McDonald IR, Iversen N, Henriksen K, Murrell JC. Characterization853of Methanotrophic Bacterial Populations in Soils Showing Atmospheric Methane

- Uptake. Appl Environ Microbiol. 1999;65(8):3312-3318. doi:10.1128/AEM.65.8.33123318.1999
- Roslev P, Iversen N. Radioactive Fingerprinting of Microorganisms That Oxidize
 Atmospheric Methane in Different Soils. *Appl Environ Microbiol*. 1999;65(9):4064-4070.
 doi:10.1128/AEM.65.9.4064-4070.1999
- Täumer J, Kolb S, Boeddinghaus RS, et al. Divergent drivers of the microbial methane
 sink in temperate forest and grassland soils. *Glob Chang Biol*. 2021;27(4):929-940.
 doi:10.1111/gcb.15430
- 862 18. Zhao R, Wang H, Cheng X, Yun Y, Qiu X. Upland soil cluster γ dominates the
 863 methanotroph communities in the karst Heshang Cave. *FEMS Microbiol Ecol*.
 864 2018;94(12):192. doi:10.1093/FEMSEC/FIY192
- Cai Y, Zhou X, Shi L, Jia Z. Atmospheric Methane Oxidizers Are Dominated by Upland
 Soil Cluster Alpha in 20 Forest Soils of China. *Microb Ecol*. 2020;80(4):859-871.
 doi:10.1007/s00248-020-01570-1
- Pratscher J, Vollmers J, Wiegand S, Dumont MG, Kaster A. Unravelling the Identity,
 Metabolic Potential and Global Biogeography of the Atmospheric Methane-Oxidizing
 Upland Soil Cluster α. *Environ Microbiol*. 2018;20(3):1016-1029. doi:10.1111/1462 2920.14036
- 872 21. Täumer J, Marhan S, Groß V, et al. Linking transcriptional dynamics of CH4-cycling
 873 grassland soil microbiomes to seasonal gas fluxes. *ISME J*. 2022;16(7):1788-1797.
 874 doi:10.1038/s41396-022-01229-4
- 22. Deng Y, Che R, Wang F, et al. Upland Soil Cluster Gamma dominates methanotrophic
 communities in upland grassland soils. *Science of The Total Environment*. 2019;670:826836. doi:10.1016/j.scitotenv.2019.03.299
- 878 23. Knief C. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic
 879 Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker. Front
 880 Microbiol. 2015;6(DEC). doi:10.3389/fmicb.2015.01346
- 24. Dunfield PF, Liesack W, Henckel T, Knowles R, Conrad R. High-Affinity Methane
 Oxidation by a Soil Enrichment Culture Containing a Type II Methanotroph. *Appl Environ Microbiol.* 1999;65(3):1009-1014. doi:10.1128/AEM.65.3.1009-1014.1999
- Base 25. Dunfield PF. The soil methane sink. In: *Greenhouse Gas Sinks*. CABI; 2007:152-170.
 doi:10.1079/9781845931896.0152
- Knief C, Dunfield PF. Response and adaptation of different methanotrophic bacteria to
 low methane mixing ratios. *Environ Microbiol*. 2005;7(9):1307-1317.
 doi:10.1111/j.1462-2920.2005.00814.x
- 27. Cai Y, Zheng Y, Bodelier PLE, Conrad R, Jia Z. Conventional methanotrophs are
 responsible for atmospheric methane oxidation in paddy soils. *Nat Commun*.
 2016;7(1):11728. doi:10.1038/ncomms11728
- 28. Conrad R. Soil microorganisms oxidizing atmospheric trace gases (CH4, CO, H2, NO). *Indian J Microbiol.* 1999;39:193-203.

- Tijhuis L, Van Loosdrecht MCM, Heijnen JJ. A thermodynamically based correlation for
 maintenance gibbs energy requirements in aerobic and anaerobic chemotrophic
 growth. *Biotechnol Bioeng*. 1993;42(4):509-519. doi:10.1002/bit.260420415
- Button DK. Differences between the kinetics of nutrient uptake by micro-organisms,
 growth and enzyme kinetics. *Trends Biochem Sci.* 1983;8(4):121-124.
 doi:10.1016/0968-0004(83)90232-3
- 900 31. Degelmann DM, Borken W, Drake HL, Kolb S. Different Atmospheric Methane-Oxidizing
 901 Communities in European Beech and Norway Spruce Soils. *Appl Environ Microbiol*.
 902 2010;76(10):3228-3235. doi:10.1128/AEM.02730-09
- 32. Tveit AT, Schmider T, Hestnes AG, Lindgren M, Didriksen A, Svenning MM. Simultaneous
 Oxidation of Atmospheric Methane, Carbon Monoxide and Hydrogen for Bacterial
 Growth. *Microorganisms*. 2021;9(1):153. doi:10.3390/microorganisms9010153
- 33. Tveit AT, Hestnes AG, Robinson SL, et al. Widespread soil bacterium that oxidizes
 atmospheric methane. *Proceedings of the National Academy of Sciences*.
 2019;116(17):8515-8524. doi:10.1073/pnas.1817812116
- Wartiainen I, Hestnes AG, McDonald IR, Svenning MM. Methylocystis rosea sp. nov., a
 novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (78° N). *Int J Syst Evol Microbiol*. 2006;56(3):541-547. doi:10.1099/ijs.0.63912-0
- 912 35. Dunfield PF, Belova SE, Vorob'ev A V., Cornish SL, Dedysh SN. Methylocapsa aurea sp.
 913 nov., a facultative methanotroph possessing a particulate methane monooxygenase,
 914 and emended description of the genus Methylocapsa. *Int J Syst Evol Microbiol*.
 915 2010;60(11):2659-2664. doi:10.1099/ijs.0.020149-0
- 916 36. Dedysh SN, Khmelenina VN, Suzina NE, et al. Methylocapsa acidiphila gen. nov., sp.
 917 nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from
 918 Sphagnum bog. *Int J Syst Evol Microbiol*. 2002;52(1):251-261. doi:10.1099/00207713919 52-1-251
- 920 37. Dedysh SN, Didriksen A, Danilova O V., Belova SE, Liebner S, Svenning MM.
 921 Methylocapsa palsarum sp. nov., a methanotroph isolated from a subArctic
 922 discontinuous permafrost ecosystem. *Int J Syst Evol Microbiol*. 2015;65(Pt_10):3618923 3624. doi:10.1099/ijsem.0.000465
- 38. Whittenbury R, Phillips KC, Wilkinson JF. Enrichment, Isolation and Some Properties of
 Methane-utilizing Bacteria. J Gen Microbiol. 1970;61(2):205-218.
 doi:10.1099/00221287-61-2-205
- 39. Bodelier PLE, Steenbergh AK. Interactions between methane and the nitrogen cycle in
 light of climate change. *Curr Opin Environ Sustain*. 2014;9-10:26-36.
 doi:10.1016/j.cosust.2014.07.004
- 40. Zhang T, Zhou J, Wang X, Zhang Y. Poly-β-hydroxybutyrate Production by Methylosinus
 trichosporium OB3b at Different Gas-phase Conditions. *Iran J Biotechnol*.
 2019;17(1):10-16. doi:10.21859/IJB.1866

- 41. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control
 region of mitochondrial DNA in humans and chimpanzees. *Mol Biol Evol*.
 1993;10(3):512-526. doi:10.1093/oxfordjournals.molbev.a040023
- 936 42. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis
 937 Version 11. Battistuzzi FU, ed. *Mol Biol Evol*. 2021;38(7):3022-3027.
 938 doi:10.1093/molbev/msab120
- 939 43. Greening C, Grinter R. Microbial oxidation of atmospheric trace gases. *Nat Rev*940 *Microbiol*. 2022;20(9):513-528. doi:10.1038/s41579-022-00724-x
- 941 44. Bonk F, Popp D, Weinrich S, et al. Determination of Microbial Maintenance in
 942 Acetogenesis and Methanogenesis by Experimental and Modeling Techniques. *Front*943 *Microbiol.* 2019;10(FEB). doi:10.3389/fmicb.2019.00166
- Gantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOGmapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at
 the Metagenomic Scale. Tamura K, ed. *Mol Biol Evol*. 2021;38(12):5825-5829.
 doi:10.1093/molbev/msab293
- 948 46. Cordero PRF, Grinter R, Hards K, et al. Two uptake hydrogenases differentially interact
 949 with the aerobic respiratory chain during mycobacterial growth and persistence.
 950 Journal of Biological Chemistry. 2019;294(50):18980-18991.
 951 doi:10.1074/jbc.RA119.011076
- 952 47. Piché-Choquette S, Khdhiri M, Constant P. Dose-response relationships between
 953 environmentally-relevant H2 concentrations and the biological sinks of H2, CH4 and CO
 954 in soil. Soil Biol Biochem. 2018;123:190-199. doi:10.1016/J.SOILBIO.2018.05.008
- 48. Agarwala R, Barrett T, Beck J, et al. Database resources of the National Center for
 Biotechnology Information. *Nucleic Acids Res.* 2018;46(D1):D8-D13.
 doi:10.1093/nar/gkx1095
- 49. Culpepper MA, Rosenzweig AC. Structure and protein-protein interactions of methanol
 dehydrogenase from Methylococcus capsulatus (Bath). *Biochemistry*.
 2014;53(39):6211-6219. doi:org/10.1021/bi500850j
- 961 50. Escalante-Semerena JC, Wolfe RS. Tetrahydromethanopterin-dependent 962 methanogenesis from non-physiological C1 donors in Methanobacterium 963 thermoautotrophicum. J Bacteriol. 1985;161(2):696-701. doi:10.1128/jb.161.2.696-964 701.1985
- 51. Kallen RG, Jencks WP. The Mechanism of the Condensation of Formaldehyde with
 Tetrahydrofolic Acid. *Journal of Biological Chemistry*. 1966;241(24):5851-5863.
 doi:10.1016/S0021-9258(18)96350-7
- 968 52. Marx CJ, Chistoserdova L, Lidstrom ME. Formaldehyde-detoxifying role of the
 969 tetrahydromethanopterin-linked pathway in Methylobacterium extorquens AM1. J
 970 Bacteriol. 2003;185(24):7160-7168. doi:10.1128/JB.185.23.7160-7168.2003
- 971 53. Moon M, Park GW, Lee J pyo, Lee JS, Min K. Recent progress in formate dehydrogenase
 972 (FDH) as a non-photosynthetic CO2 utilizing enzyme: A short review. *Journal of CO2*973 *Utilization*. 2020;42:101353. doi:10.1016/j.jcou.2020.101353

974 54. Hartmann T, Leimkühler S. The oxygen-tolerant and NAD+-dependent formate
975 dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2
976 to formate. *FEBS J.* 2013;280(23):6083-6096. doi:10.1111/febs.12528

977 55. Yu X, Niks D, Mulchandani A, Hille R. Efficient reduction of CO2 by the molybdenum978 containing formate dehydrogenase from Cupriavidus necator (Ralstonia eutropha).
979 Journal of Biological Chemistry. 2017;292(41):16872-16879.
980 doi:10.1074/jbc.M117.785576

- 56. Crowther GJ, Kosály G, Lidstrom ME. Formate as the Main Branch Point for
 Methylotrophic Metabolism in *Methylobacterium extorquens* AM1. *J Bacteriol*.
 2008;190(14):5057-5062. doi:10.1128/JB.00228-08
- 57. Kikuchi G, Motokawa Y, Yoshida T, Hiraga K. Glycine cleavage system: reaction
 mechanism, physiological significance, and hyperglycinemia. *Proceedings of the Japan Academy, Series B.* 2008;84(7):246-263. doi:10.2183/pjab.84.246
- 58. Claassens NJ, Satanowski A, Bysani VR, et al. Engineering the Reductive Glycine
 Pathway: A Promising Synthetic Metabolism Approach for C1-Assimilation. In: Advances *in Biochemical Engineering/Biotechnology*. Vol 180. Adv Biochem Eng Biotechnol;
 2022:299-350. doi:10.1007/10_2021_181
- 59. Dunfield PF, Conrad R. Starvation Alters the Apparent Half-Saturation Constant for
 Methane in the Type II Methanotroph Methylocystis Strain LR1. *Appl Environ Microbiol*.
 2000;66(9):4136-4138. doi:10.1128/AEM.66.9.4136-4138.2000
- 99460.Knief C, Kolb S, Bodelier PLE, Lipski A, Dunfield PF. The active methanotrophic995community in hydromorphic soils changes in response to changing methane996concentration. Environ Microbiol. 2006;8(2):321-333. doi:10.1111/j.1462-9972920.2005.00898.x
- 998 61. He L, Groom JD, Wilson EH, et al. A methanotrophic bacterium to enable methane
 999 removal for climate mitigation. *Proceedings of the National Academy of Sciences*.
 1000 2023;120(35). doi:10.1073/pnas.2310046120
- Button DK. Nutrient-limited microbial growth kinetics: overview and recent advances.
 Antonie Van Leeuwenhoek. 1993;63(3-4):225-235. doi:10.1007/BF00871220
- 100363.Murrell JC, Dalton H. Nitrogen Fixation in Obligate Methanotrophs. *Microbiology (N Y)*.10041983;129(11):3481-3486. doi:10.1099/00221287-129-11-3481
- 100564.Nair AA, Yu F. Quantification of Atmospheric Ammonia Concentrations: A Review of Its1006Measurement and Modeling. Atmosphere (Basel). 2020;11(10):1092.1007doi:10.3390/atmos11101092
- 1008 65. Dabundo R, Lehmann MF, Treibergs L, et al. The Contamination of Commercial 15N2 1009 Gas Stocks with 15N–Labeled Nitrate and Ammonium and Consequences for Nitrogen 1010 Fixation Measurements. Love JB, ed. PLoS One. 2014;9(10):e110335. 1011 doi:10.1371/journal.pone.0110335
- 1012 66. Perez-Riverol Y, Bai J, Bandla C, et al. The PRIDE database resources in 2022: A hub for
 1013 mass spectrometry-based proteomics evidences. *Nucleic Acids Res.* 2022;50(D1).
 1014 doi:10.1093/nar/gkab1038

- 1015 67. Couradeau E, Sasse J, Goudeau D, et al. Probing the active fraction of soil microbiomes
 1016 using BONCAT-FACS. *Nat Commun.* 2019;10(1):2770. doi:10.1038/s41467-019-105421017 0
- 1018
 68.
 Dean JA. LANGE'S HANDBOOK OF CHEMISTRY. Materials and Manufacturing Processes.

 1019
 1990;5(4):687-688. doi:10.1080/10426919008953291
- Feijó Delgado F, Cermak N, Hecht VC, et al. Intracellular Water Exchange for Measuring
 the Dry Mass, Water Mass and Changes in Chemical Composition of Living Cells.
 Polymenis M, ed. *PLoS One*. 2013;8(7):e67590. doi:10.1371/journal.pone.0067590
- 1023 70. Cermak N, Becker JW, Knudsen SM, Chisholm SW, Manalis SR, Polz MF. Direct single1024 cell biomass estimates for marine bacteria via Archimedes' principle. *ISME J*.
 1025 2017;11(3):825-828. doi:10.1038/ismej.2016.161
- 1026 71. Roller BRK, Hellerschmied C, Wu Y, et al. Single-cell mass distributions reveal simple
 1027 rules for achieving steady-state growth. Ruby EG, ed. *mBio*. Published online September
 1028 6, 2023. doi:10.1128/mbio.01585-23
- 1029 72. Van Rossum G, Drake FL. *Python 3 Reference Manual*. CreateSpace; 2009.
- 103073.The Pandas Development T, eam. pandas-dev/pandas: Pandas. Published online1031February 2020. doi:org/10.5281/zenodo.3509134
- 1032 74. Hunter JD. Matplotlib: A 2D Graphics Environment. *Comput Sci Eng*. 2007;9(3):90-95.
 1033 doi:10.1109/MCSE.2007.55
- 103475.Waskom M. Seaborn: Statistical Data Visualization. J Open Source Softw.10352021;6(60):3021. doi:10.21105/joss.03021
- 1036 76. Vallenet D, Calteau A, Dubois M, et al. MicroScope: An integrated platform for the
 1037 annotation and exploration of microbial gene functions through genomic, pangenomic
 1038 and metabolic comparative analysis. *Nucleic Acids Res.* 2019;48(D1):D579-D589.
 1039 doi:10.1093/nar/gkz926
- Tyanova S, Temu T, Sinitcyn P, et al. The Perseus computational platform for
 comprehensive analysis of (prote)omics data. *Nat Methods*. 2016;13(9):731-740.
 doi:10.1038/nmeth.3901
- 104378.R Core Team. R: A Language and Environment for Statistical Computing. Published1044online 2022. https://www.R-project.org/
- 104579.c ON, Greenacre M. Correspondence Analysis in R, with Two- and Three-dimensional1046Graphics: The ca Package. J Stat Softw. 2007;20(3). doi:10.18637/jss.v020.i03
- 1047 80. Kassambara A, Mundt F. factoextra: Extract and Visualize the Results of Multivariate
 1048 Data Analyses. Published online April 1, 2020. Accessed October 13, 2023.
 1049 http://www.sthda.com/english/rpkgs/factoextra
- 1050 81. Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. *Nucleic Acids Res.*1051 2000;28(1):27-30. doi:10.1093/nar/28.1.27
- 105282.Altschul S. Gapped BLAST and PSI-BLAST: a new generation of protein database search1053programs. Nucleic Acids Res. 1997;25(17):3389-3402. doi:10.1093/nar/25.17.3389

- 1054 83. Baty F, Ritz C, Charles S, Brutsche M, Flandrois JP, Delignette-Muller ML. A Toolbox for
 1055 Nonlinear Regression in *R*: The Package **nlstools**. *J Stat Softw*. 2015;66(5).
 1056 doi:10.18637/jss.v066.i05
- 105784.Gormanns P, Reckow S, Poczatek JC, Turck CW, Lechene C. Segmentation of Multi-1058Isotope Imaging Mass Spectrometry Data for Semi-Automatic Detection of Regions of1059Interest. Rogers S, ed. PLoS One. 2012;7(2):e30576. doi:10.1371/journal.pone.0030576
- 106085.Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for1061biological-image analysis. Nat Methods. 2012;9(7):676-682. doi:10.1038/nmeth.2019
- 106286.Wickham H. *Ggplot2*. Springer International Publishing; 2016. doi:10.1007/978-3-319-106324277-4

1066 Supplements

1067

1068Supplementary Figure 1. CH4, H2, and CO oxidation at atmospheric pressure by M. acidiphila B2, M. aurea KYG, M. gorgona1069MG08, M. palsarum NE2, M. trichosporium OB3b, M. rosea SV97, and M. tundripaludum SV96 after 12 months of incubation

1070 with air as sole carbon and energy source (Supplementary table S1).

1072 Supplementary Figure 2. SYBR green I stained cells of *M. gorgona* MG08 incubated for 15, 27, and 50 days under an atmosphere of ambient air and an atmosphere of synthetic air without the atmospheric trace gases CH₄, CO, and H₂.

Supplementary Figure 3. Correspondence analysis biplot of protein abundances of *M. gorgona* MG08, *M. palsarum* NE2, and
 M. rosea SV97 at 1.9 p.p.m.v. (atm) and 1000 p.p.m.v. (high) methane in air (Supplementary table S6-8). Replicates (n = 4)
 incubated at the two CH₄ concentrations are shown in blue. Proteins are shown in grey. Dim – dimension.

Supplementary Figure 4. Comparative proteomics of *M. gorgona* MG08, *M. rosea* SV97, and *M. palsarum* NE2 exposed to
 1000 p.p.m.v. CH₄ (high) in air and 1.9 p.p.m.v. CH₄ (atm) in air (Supplementary table S12-14). Normalized and standardized
 expression of top 10% proteins contributing most to the inertia of the correspondence analyses (Supplementary Figure 3).
 High relative abundance = orange, low relative abundance expression = blue. The proteins are grouped by the hierarchical
 EggNOG categories.

Supplementary Figure 5. Comparative proteomics of *M. gorgona* MG08, *M. rosea* SV97, and *M. palsarum* NE2 exposed to 1086
 1000 p.p.m.v. CH₄ (High) in air and 1.9 p.p.m.v. (Atm) CH₄ in air (Supplementary table S5). Normalized and standardized expression of enzymes involved in the electron transport chain. High relative abundance = orange, low relative abundance expression = blue. * indicates significant difference in expression between treatments (two sided t-test). Horizontal lines in the heatmaps separate operons of enzymes catalyzing the same reaction. I – NADH ubiquinone oxidoreductase, III – ubiquinol-cytochrome c reductase, IV – cytochrome c oxidase, V – ATP synthase.

Supplementary Figure 6. Michaelis-Menten hyperbolic curve fitted to the oxidation rate per cell of *M. gorgona* MG08 and *M. palsarum* NE2 at CH₄ concentrations ranging between 3 nM and 287 nM (Supplementary table S9). The nM CH₄ display CH₄
 concentrations dissolved in water and correlate with the partial pressure of CH₄ above the water. At 20°C and atmospheric pressure (1.013 bar), 2.98, 50, 100, and 250 nM CH₄ dissolved in water correspond to 1.9, 31.9, 63.7, and 159.3 p.p.m.v. in air.

1101 Supplementary Figure 7. Light microscopic image of a *Methylocapsa gorgona* MG08 culture on a polycarbonate filter after 12

	,					c) (0-
Methy	locapsa g	gorgona MG08	I	Viethylocys	stis rose	a SV97
Particulate methane monooxygenase gamma	MS08_v1_2140	•	Particulate methane monooxygenase gamma	MROSv2_10341 *		
Particulate methane monooxygenase beta	MS08_v1_2141	•	Particulate methane monooxygenase beta	MROSv2_11570 *		
Particulate methane monooxygenase alpha	MS08_v1_2142	•	Particulate methane monooxygenase alpha	MROSv2_11571 *		
Methanol dehydrogenase	MS08_v1_1597	•	Methanol dehydrogenase xoxF	MROSv2_10355		
Methanol dehydrogenase	MS08_v1_1600		Methanol dehydrogenase	MROSv2_10958 *	,	
Methanol dehydrogenase xoxF	MS08_v1_2918	•	Methanol dehydrogenase	MROSv2_10961 *	,	
Formaldehyde activating enzyme	MS08_v1_0172		Formaldehyde activating enzyme	MROSv2_10347 *		
Formaldehyde activating enzyme	MS08_v1_1181		Formaldehyde activating enzyme	MROSv2_10349 *		
D(P)-dependent methylenetetrahydromethanopterin dehydrogenase	MS08_v1_0177	•	Formaldehyde activating enzyme	MROSv2_21213 *	,	
Methenyltetrahydromethanopterin cyclohydrolase	MS08_v1_0175	•	NAD(P)-dependent methylenetetrahydromethanopterin dehydrogenase	MROSv2 40362 *		
Formyltransferase/hydrolase complex	MS08_v1_0155			MROS: 10244 *		
Formyltransferase/hydrolase complex	MS08_v1_0156		wethen yited any dromethan opter in cyclony drolase	WIK03V2_10344		
Formyltransferase/hydrolase complex	MS08_v1_0157		Formyltransferase/hydrolase complex	MROSv2_21081 *		
Formyltransferase/hydrolase complex	MS08_v1_0159		Formyltransferase/hydrolase complex	MROSv2_21082	- -	
NAD dependent Formate dehydrogenase	MS08_v1_1856	•	Formyltransferase/nydrolase.complex	MROSV2_21083		
molybdopterin dependent formate dehydrogenase	MS08_v1_2322	•	Pormylitansierase/nyuroiase.complex	WIRU3V2_21084	_	
molybdopterin dependent formate dehydrogenase	MS08_v1_2323	•	molybdopterin dependent formate dehydrogenase	MROSv2_11181		
molybdopterin dependent formate dehydrogenase	MS08_v1_2324		molybdopterin dependent formate dehydrogenase	MROSv2_11182 *		
molybdopterin dependent formate dehydrogenase	MS08_V1_2326		molybdopterin dependent formate dehydrogenase	MPOSv2_11163		
Formatetetrahydrofolate ligase	MS08_v1_1846	•	molybdopterin dependent formate dehydrogenase	MROSv2 11464		
methylene-tetrahydrofolate dehydrogenase	MS08_v1_3359	*	molybdopterin dependent formate dehydrogenase	MROSv2 11465 *		
Glycine cleavage system H protein	MS08_v1_0147	•	molybdopterin dependent formate dehydrogenase	MROSv2_11467 *		
Aminomethyltransferase	MS08_v1_0146	•	molybdopterin dependent formate dehydrogenase	MROSv2_21742		
Putative glycine dehydrogenase subunit 2	MS08 v1 0148		molybdopterin dependent formate dehydrogenase	MROSv2_21743		
Putative glycine dehydrogenase subunit 1	MS08_v1_0149		molybdopterin dependent formate dehydrogenase	MROSv2_40303 *		
Dihydrolipovl dehydrogenase	MS08_v1_0043	•	molybdopterin dependent formate dehydrogenase	MROSv2_40304		
Dihydrolipoyl dehydrogenase	MS08_v1_2839		Formatetetrahydrofolate ligase	MROSv2_10125 *	·	
Serine hydroxymethyltransferase	MS08_v1_0803	•	Methenyltetrahvdrofolate cyclohvdrolase	MROSv2_10121 *		
Serineelvoxvlate aminotransferace	MS08 v1 1844		Methylenetetrahydrofolate dehydrogenase	MROSv2_10122		
Chromate data	MS08 v1 194F		Glycine cleavage system H protein	MROSv2 10787 *	,	
uycerate denydrogenase	11/300_V1_1045		A mino motivity of the second s	MPOSu2 10700 *		
Z-glycerate kinase	IVISU8_V1_1843		Aminometnyitransferase	WR03V2_10/88 *		
enolase	MS08_v1_0494	•	Putative glycine dehydrogenase subunit 2	MROSv2_10785 *		
Phosphoenolpyruvate carboxylase	MS08_v1_0548		Putative glycine dehydrogenase subunit 1	MROSv2_10786 *		
Phosphoenolpyruvate carboxylase	MS08_v1_1840	•	Dihydrolipoyl dehydrogenase	MROSv2_11727		
Malate dehydrogenase	MS08_v1_2833	•	Dihydrolipoyl dehydrogenase	MROSv2_21499		
Malate dehydrogenase	MS08_v1_3207	*	Serine hydroxymethyltransferase	MROSv2_20893 *	,	
malate-CoA ligase alpha subunit	MS08_v1_1841	•	Serineglyoxylate aminotransferase	MROSv2_10124 *	•	
malate-CoA ligase beta subunit	MS08_v1_1842		Givcerate dehvdrogenase	MROSv2 10123 *	,	
malate-CoA ligase beta subunit malate-CoA ligase alpha subunit	MS08 v1 2834			MRO5+2 10114 *		
malate-cox ingase alpha suburit	NISOB_V1_2833		2-giycerate kinase	WIROSV2_10114		
L-maiyi-coA	WS08_V1_1839		enolase	MROSv2_11710 *		
Acetyl-CoA carboxylase, beta (carboxyltranferase) subunit	MS08_v1_0411		Phosphoenolpyruvate carboxylase	MROSv2_10118 *	·	
acetyl LOA carboxylase, BLLP subunit Acetyl-CoA carboxylase, biotin carboxylase subunit	MS08_V1_0479 MS08_V1_0480		Phosphoenolpyruvate carboxylase	MROSv2_11229 *	1	
Carbon monovido dobudrozonaso modium shain	M508 v1 1637		Malate dehydrogenase	MROSv2_11402 *	1	
Carbon monoxide denydrogenase medium chain	MS08 v1 1628		malate-CoA ligase alpha subunit	MROSv2_10119		
Carbon monoxide dehydrogenase large chain	MS08_v1_1630	•	malate-CoA ligase beta subunit	MROSv2_10120		
Ubiguinol-cytochrome c reductase cytochrome c subunit	MS08 v1 1135		malate-CoA ligase alpha subunit	MROSv2_10837		
Ubiquinol-cytochrome c reductase cytochrome c subunit	MS08_v1_1136		malate-CoA ligase beta subunit	MROSv2_11525		
Ubiquinol-cytochrome c reductase cytochrome c subunit	MS08_v1_1137		L-malyl-CoA	MROSv2_10117		
Cytochrome c oxidase subunit	MS08_v1_0079		L-malyl-CoA	MROSv2_10790 *		
Cytochrome c oxidase subunit	MS08_v1_0080		Acetyl-CoA carboxylase, biotin carboxylase subunit	MROSv2_20029 *		
Cytochrome c oxidase subunit	MS08_v1_0138	•	Acetyl CoA carboxylase, BCCP subunit	MROSv2_20030		
Cytochrome c oxidase subunit	MS08_v1_0139		Acetyl-CoA carboxylase, beta (carboxyltranferase) subunit	MROSv2_40350 *		
Cytochrome c oxidase subunit	MS08_V1_0141		Ubiquinol-cytochrome c reductase cytochrome c subunit	MROSv2_20521 *	•	
Cytochrome c oxidase subunit	MS08_v1_0698	· .	Ubiquinol-cytochrome c reductase cytochrome c subunit	MROSv2_20522		
Cytochrome c oxidase subunit	MS08_v1_0699		Ubiquinol-cytochrome c reductase cytochrome c subunit	MROSv2_20523 *		
Cytochrome c oxidase subunit	MS08_v1_0701		Cytochrome c oxidase subunit	MROSv2_10476 *	•	
Cytochrome c oxidase subunit	MS08_v1_3033		Cytochrome c oxidase subunit	MROSv2_10478 *		
Cytochrome c oxidase subunit	MS08 V1 2020		Cytochrome c oxidase subunit	MROSv2_10479 *		
[Nife] hudreeneese lerre suburit	MS08 v1 0323		Cytochrome c oxidase subunit	MROSv2_10598		
[NiFe] hydrogenase iarge Subunit [NiFe] hydrogenase small subunit	MS08 v1 0222		Cytochrome c oxidase subunit	MROSv2_11771 *		
[NiFe] hydrogenase small subunit	MS08_v1_2280	•	Cytochrome c oxidase subunit	WIRUSV2_11//6 *		
[NiFe] hydrogenase large subunit	MS08_v1_2281	•	[NiFe] hydrogenase large subunit	MROSv2_21381 *		
NADH-quinone oxidoreductase 17.2 kD subunit	MS08_v1_0921	•	[NIFe] hydrogenase small subunit	WRUSV2_21382 *		
NADH-quinone oxidoreductase subunit A	MS08_v1_2777	•	NADH-quinone oxidoreductase subunit B	MROSv2_11271 *		
NADH-quinone oxidoreductase subunit B	MS08_v1_2778	•	NADH-quinone oxidoreductase subunit C	MROSv2_11272 *		
NADH-quinone oxidoreductase subunit C	MS08_v1_2779		NADH-quinone oxidoreductase subunit D	MRUSV2_11273 *		
NADH-quinone oxidoreductase subunit D	MS08_V1_2780		NADH-quinone oxidoreductase subunit E	MROSv2_112/4 *		
NADH-quinone oxidoreductase subunit E	MS08 v1 2782		NADH-quinone oxidoreductase subunit G	MROSv2_11275 *	,	
NADH-quinone oxidoreductase subunit G	M508_v1_2783	· .	NADH-quinone oxidoreductase subunit I	MROSv2_11278 *		
NADH-quinone oxidoreductase subunit H	MS08_v1_2784	•	NADH-quinone oxidoreductase subunit J	MROSv2_11279 *		
NADH-quinone oxidoreductase subunit l	MS08_v1_2785	·	NADH-quinone oxidoreductase subunit L	MROSv2_11280 *		
NADH-quinone oxidoreductase subunit J	MS08_v1_2786		NADH-quinone oxidoreductase subunit M	MROSv2_11281 *		
NADH-quinone oxidoreductase subunit L	MS08_V1_2788		NADH-quinone oxidoreductase subunit N	MROSv2_11282 *		
NADH-quinone oxidoreductase subunit M	MS08 v1 2790		NADH-quinone oxidoreductase subunit L	MROSv2_11283 *		
ATD sunthese subunit	MS08 v1 0020		NADH-quinone oxidoreductase 17.2 kD subunit	MROSv2_20025 *		
ATP synthese subunit	MS08 v1 0021	•	ATP synthase subunit	MROSv2_11763		
ATP synthase subunit	MS08_v1_0022	•	ATP synthase subunit	MROSv2_11764 *		
ATP synthase subunit	MS08_v1_0023	•	ATP synthase subunit	MROSv2_11766 *		
ATP synthase subunit	MS08_v1_0024	•	ATP synthase subunit	MROSv2_11/6/ *		
ATP synthase subunit	NISU8_V1_1863		ATP synthase subunit	MROSv2 21467 *		
ATP synthese subunit	MS08 v1 1865		ATP synthase subunit	MROSv2_21468 *		
ATP synthase subunit	MS08_v1_1866	•	ATP synthase subunit	MROSv2_21469 *	2	
ATP synthase subunit	MS08_v1_1867	•	ATP synthase subunit	MROSv2_21470 *		

NA

Supplementary Figure 8. Comparative proteomics of *M. gorgona* MG08, *M. rosea* SV97exposed to 1000 p.p.m.v CH₄ (High) in air and 1.9 p.p.m.v. (Atm) CH₄ in air (Supplementary table S5). Normalized and standardized expression of enzymes involved in the central carbon and energy metabolism is shown. Same heatmaps as in Figure 4 and Supplementary Figure 5 but with protein name and MicroScope accession number. * indicates significant difference in expression between treatments (two sided t-test).

Methylocapsa palsarum NE2

		<u> </u>	
Particulate methane monooxygenase alpha	MPAL_v1_370178	۰	
Particulate methane monooxygenase beta	MPAL_v1_370179	*	
Particulate methane monooxygenase gamma	MPAL_v1_370180	*	
Mathemal debudeenees			
Mietnanol denydrogenase	WPAL_V1_350017	1	
Methanol dehydrogenase	MPAL_v1_350020	*	
Methanol dehydrogenase xoxF	MPAL_v1_370060	*	
Formaldehyde activating enzyme	MPAL v1 400110		
Formaldehyde activating enzyme	MADAL 11 460007		
Formaldenyde activating enzyme	MPAL_V1_460097		
NAD(P)-dependent methylenetetrahydromethanopterin dehydrogenase	MPAL_v1_460092		
Marthan destablished and the sector of a sector budget	MDAL1 460004		
wetnenvitetranydrometnanopterin cyclonydrolase	MPAL_V1_460094		
Formyltransferase/hydrolase complex	MPAL_v1_460109		
Formyltransferase/bydrolase.complex	MPAL v1 460110		
Formultum service of hydrolase complex	MADAL		
Formyltransferase/hydrolase complex	WPAL_V1_460111		
Formyltransferase/hydrolase complex	MPAL_v1_460112		
NAD dependent Formate dehydrogenase	MPAL v1 460020	*	
this dependent of have defined by			
molybdopterin dependent formate dehydrogenase	MPAL_v1_460471	٠	
molybdopterin dependent formate dehydrogenase	MPAL_v1_470008	*	
molybdopterin dependent formate dehydrogenase	MPAL v1 470009	*	
molybdopterin dependent formate debydrogenase	MPAL v1 470010		
morybuopterin dependent formate denydrogenase	WIFAL_V1_470010		
Formatetetrahydrofolate ligase	MPAL_v1_460080	*	
makkulana katushudasfalata dahudusasaa	MADAL	*	
metnylene-tetranydrofolate denydrogenase	WPAL_V1_400415		
Glycine cleavage system H protein	MPAL_v1_460544	*	
Aminomethyltransferase	MPAL_V1_460543		
Putative glycine dehydrogenase subunit 2	MPAL v1 460545	*	
Butativo glysino debudrogenase subunit 1	MADAL 11 460546	*	
Putative givenie deliverogenase subulit 1	WIFAL_V1_400340		
Dihydrolipoyl dehydrogenase	MPAL_v1_430048		
Dihydrolipoyl dehydrogenase	MPAL v1 470092		
Serine hydroxymethyltransferase	MPAL_v1_460398	*	
Serine-givoxylate aminotransferase	MPAL v1 460082	*	
Seine Sijoxijate annotanstelase	111712_12_100002		
Glycerate dehydrogenase	MPAL_v1_460081	٠	
2 alucerate kinase	MDAL v1 460092		
E-Biyeeinte kindse	NII AC_V1_400005		
enolase	MPAL_v1_470085		
Dharphoonal purporta corbovulara	MDAL 11 460097		
Phosphoenolpyruvate carboxylase	WIPAL_V1_460087		
Phosphoenolpyruvate carboxylase	MPAL_v1_470206	•	
Malate dehvdrogenase	MPAL v1 260182		
Malate dehydrogenase	MDAL 11 430053		
Walate denyulogenase	WIFAL_V1_430033		
malate-CoA ligase alpha subunit	MPAL_v1_430051		
malate-CoA ligase beta subunit	MPAL v1 430052		
malate CoA ligase bota subunit	MDAL 11 460095		
malate-coA ligase beta subulit	WIFAL_V1_400085		
malate-CoA ligase alpha subunit	MPAL_v1_460086	•	
L-malvi-CoA	MPAL v1 460088		
,			
acetyl-CoA carboxylase, biotin carboxylase subunit	MPAL_v1_550186		
Acetyl CoA carboxylase, BCCP subunit	MPAL_v1_550187	*	
Acetyl-CoA carboxylase, beta (carboxyltranferase) subunit	MPAL v1 560175		
Ubiquinol-cytochrome c reductase cytochrome c subunit	MPAL_v1_460461		
Ubiquinol-cytochrome c reductase cytochrome c subunit	MPAL_v1_460462		
Ubiquinol-cytochrome c reductase cytochrome c subunit	MPAL v1 460463		
Cytochrome c oxidase subunit	MPAL_v1_260166		
Cytochrome c oxidase subunit	MPAL_v1_260167		
Cytochrome c oxidase subunit	MPAL_v1_260169		
Cytochrome c oxidase subunit	MPAL v1 260170	٠	
Cutochromo o oxidado subunit	MPAL v1 270160		
Cytochrome c oxidase subdific	WIFAL_V1_370100	÷	
Cytochrome c oxidase subunit	MPAL_v1_370206		
Cytochrome c oxidase subunit			
	MPAL_v1_370207		
Cytochrome c oxidase subunit	MPAL_v1_370207 MPAL_v1_370209	•	
Cytochrome c oxidase subunit	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202	•	
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460202	•	
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460203	•	
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_550336	•	2.0
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit B	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_550336 MPAL_v1_550337	*	2.0
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit B NADH-guinone oxidoreductase subunit B	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_550336 MPAL_v1_550337 MPAL_v1_550337	* * * *	44
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit C NADH-quinone oxidoreductase subunit C	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_550336 MPAL_v1_550337 MPAL_v1_550338	* * * * *	11
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit D	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460203 MPAL_v1_460203 MPAL_v1_550336 MPAL_v1_550337 MPAL_v1_550338 MPAL_v1_550339	* * * * *	11
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit C NADH-quinone oxidoreductase subunit C	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_550336 MPAL_v1_550337 MPAL_v1_550338 MPAL_v1_550340	* * * * *	÷,
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit T NADH-quinone oxidoreductase subunit T	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_550336 MPAL_v1_550337 MPAL_v1_550338 MPAL_v1_550340 MPAL_v1_550340	* * * * *	Ť.
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit B NADH-quinone oxidoreductase subunit C NADH-quinone oxidoreductase subunit T NADH-quinone oxidoreductase subunit E NADH-quinone oxidoreductase subunit E NADH-quinone oxidoreductase subunit E	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_550336 MPAL_v1_550338 MPAL_v1_550388 MPAL_v1_550340 MPAL_v1_550342	* * * * * * *	Ť.
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit B NADH-quinone oxidoreductase subunit C NADH-quinone oxidoreductase subunit C NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_550336 MPAL_v1_550337 MPAL_v1_550339 MPAL_v1_550340 MPAL_v1_550341 MPAL_v1_550341		Ťį,
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit B NADH-quinone oxidoreductase subunit C NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_550336 MPAL_v1_550337 MPAL_v1_550339 MPAL_v1_550340 MPAL_v1_550341 MPAL_v1_550342 MPAL_v1_550342		î.
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit B NADH-quinone oxidoreductase subunit C NADH-quinone oxidoreductase subunit C NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_550337 MPAL_v1_550337 MPAL_v1_550340 MPAL_v1_550341 MPAL_v1_550341 MPAL_v1_550343 MPAL_v1_550344		i.
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit B NADH-quinone oxidoreductase subunit C NADH-quinone oxidoreductase subunit T NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_50336 MPAL_v1_550337 MPAL_v1_550338 MPAL_v1_550341 MPAL_v1_550342 MPAL_v1_550344 MPAL_v1_550345		Ì
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit B NADH-quinone oxidoreductase subunit C NADH-quinone oxidoreductase subunit E NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit I	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_550336 MPAL_v1_550337 MPAL_v1_550338 MPAL_v1_550341 MPAL_v1_550341 MPAL_v1_550343 MPAL_v1_550344 MPAL_v1_550346		j
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit B NADH-quinone oxidoreductase subunit C NADH-quinone oxidoreductase subunit T NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit I	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_550336 MPAL_v1_550337 MPAL_v1_550340 MPAL_v1_550340 MPAL_v1_550341 MPAL_v1_550343 MPAL_v1_550345 MPAL_v1_550345		
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit B NADH-quinone oxidoreductase subunit C NADH-quinone oxidoreductase subunit E NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit I	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_50336 MPAL_v1_550347 MPAL_v1_550349 MPAL_v1_550341 MPAL_v1_550344 MPAL_v1_550344 MPAL_v1_550345 MPAL_v1_550346		
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit E NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit J NADH-quinone oxidoreductase subunit J NADH-quinone oxidoreductase subunit J NADH-quinone oxidoreductase subunit J NADH-quinone oxidoreductase subunit J	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_550336 MPAL_v1_550337 MPAL_v1_550340 MPAL_v1_550340 MPAL_v1_550340 MPAL_v1_550344 MPAL_v1_550344 MPAL_v1_550345 MPAL_v1_550345		
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit B NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit E NADH-quinone oxidoreductase subunit E NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit K	MPAL_v1_370207 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_460203 MPAL_v1_50336 MPAL_v1_50337 MPAL_v1_50338 MPAL_v1_50340 MPAL_v1_50341 MPAL_v1_503445 MPAL_v1_50345 MPAL_v1_50346 MPAL_v1_50348 MPAL_v1_50348 MPAL_v1_50348 MPAL_v1_50348	* ********	
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit L NADH-quinone oxidoreductase subunit L NADH-quinone oxidoreductase subunit L	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_550336 MPAL_v1_550336 MPAL_v1_550339 MPAL_v1_550340 MPAL_v1_550340 MPAL_v1_550344 MPAL_v1_550345 MPAL_v1_550345 MPAL_v1_550345 MPAL_v1_550346 MPAL_v1_550347	* ******** * * *	
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit B NADH-quinone oxidoreductase subunit B NADH-quinone oxidoreductase subunit E NADH-quinone oxidoreductase subunit E NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit T NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit M	MPAL_v1_370207 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_460203 MPAL_v1_550336 MPAL_v1_550337 MPAL_v1_550340 MPAL_v1_550342 MPAL_v1_550345 MPAL_v1_550345 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_550349 MPAL_v1_550349 MPAL_v1_550349 MPAL_v1_550349 MPAL_v1_550349 MPAL_v1_550349 MPAL_v1_550349 MPAL_v1_550349 MPAL_v1_660647	* ******** * * * *	
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit T NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit H NADH-quinone oxidoreductase subunit H NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit I	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_50336 MPAL_v1_50336 MPAL_v1_50336 MPAL_v1_50340 MPAL_v1_50340 MPAL_v1_50344 MPAL_v1_50345 MPAL_v1_50345 MPAL_v1_50348 MPAL_v1_50348 MPAL_v1_50348 MPAL_v1_50348 MPAL_v1_50348 MPAL_v1_50348 MPAL_v1_50348	* * * * * * * * * * * * *	
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit B NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit E NADH-quinone oxidoreductase subunit E NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit I	MPAL_v1_370207 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_460203 MPAL_v1_550336 MPAL_v1_550337 MPAL_v1_550339 MPAL_v1_550340 MPAL_v1_550342 MPAL_v1_550343 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_550349 MPAL_v1_550349 MPAL_v1_550349 MPAL_v1_650348 MPAL_v1_650349 MPAL_v1_650349		
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit I	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_50336 MPAL_v1_50336 MPAL_v1_50337 MPAL_v1_50340 MPAL_v1_50340 MPAL_v1_50344 MPAL_v1_50345 MPAL_v1_50345 MPAL_v1_50348 MPAL_v1_50348 MPAL_v1_50348 MPAL_v1_50348 MPAL_v1_50348 MPAL_v1_60548 MPAL_v1_460548 MPAL_v1_460548		
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit B NADH-quinone oxidoreductase subunit C NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit I	MPAL_v1_370207 MPAL_v1_460202 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_50336 MPAL_v1_550337 MPAL_v1_550339 MPAL_v1_550342 MPAL_v1_550342 MPAL_v1_550342 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_650548 MPAL_v1_460548 MPAL_v1_460549		
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit F NADH-quinone oxidored	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_50336 MPAL_v1_50336 MPAL_v1_50337 MPAL_v1_50337 MPAL_v1_50340 MPAL_v1_50340 MPAL_v1_50341 MPAL_v1_50344 MPAL_v1_50345 MPAL_v1_50348 MPAL_v1_50348 MPAL_v1_50348 MPAL_v1_50349 MPAL_v1_50349 MPAL_v1_50349 MPAL_v1_50349 MPAL_v1_50349 MPAL_v1_50349 MPAL_v1_60549 MPAL_v1_460548	* * * * * * * * * * * * *	
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit B NADH-quinone oxidoreductase subunit C NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit I NADH-quinone I N	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460202 MPAL_v1_50336 MPAL_v1_550337 MPAL_v1_550339 MPAL_v1_550342 MPAL_v1_550342 MPAL_v1_550342 MPAL_v1_550343 MPAL_v1_550343 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_550348 MPAL_v1_550349 MPAL_v1_550349 MPAL_v1_650548 MPAL_v1_460549 MPAL_v1_460549 MPAL_v1_460549 MPAL_v1_460549 MPAL_v1_460549 MPAL_v1_650548		
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit T NADH-quinone oxidoreductase subunit L NADH-quinone boxidoreductase subunit L NADH-quinone boxidored	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_50336 MPAL_v1_550347 MPAL_v1_550349 MPAL_v1_550341 MPAL_v1_550345 MPAL_v1_550344 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_650347 MPAL_v1_650348 MPAL_v1_660549 MPAL_v1_460549 MPAL_v1_460549 MPAL_v1_660549		
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit C NADH-quinone oxidoreductase subunit E NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit I NADH-quinone subunit I NADH-quinone subunit I NADH-quinone I N	MPAL_v1_370209 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460202 MPAL_v1_50336 MPAL_v1_550337 MPAL_v1_550340 MPAL_v1_550342 MPAL_v1_550342 MPAL_v1_550342 MPAL_v1_550343 MPAL_v1_550346 MPAL_v1_550348 MPAL_v1_550348 MPAL_v1_550348 MPAL_v1_550349 MPAL_v1_550349 MPAL_v1_650548 MPAL_v1_650548 MPAL_v1_660549 MPAL_v1_660549 MPAL_v1_670111 MPAL_v1_570111	* ******** * * * *** * * *	
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit E NADH-quinone oxidoreductase subunit E NADH-quinone oxidoreductase subunit E NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit I NATP synthase subunit	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460203 MPAL_v1_460203 MPAL_v1_50336 MPAL_v1_50338 MPAL_v1_50338 MPAL_v1_50340 MPAL_v1_50341 MPAL_v1_50345 MPAL_v1_50346 MPAL_v1_50346 MPAL_v1_50346 MPAL_v1_50348 MPAL_v1_50348 MPAL_v1_50348 MPAL_v1_60549 MPAL_v1_460549 MPAL_v1_460549 MPAL_v1_460549 MPAL_v1_460549 MPAL_v1_460549 MPAL_v1_460549 MPAL_v1_60511 MPAL_v1_570111 MPAL_v1_570111		
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit I NADH-quinone oxidored	MPAL_v1_370209 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460202 MPAL_v1_50336 MPAL_v1_550337 MPAL_v1_550339 MPAL_v1_550340 MPAL_v1_550342 MPAL_v1_550343 MPAL_v1_550343 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_650548 MPAL_v1_660549 MPAL_v1_660549 MPAL_v1_670111 MPAL_v1_5701112 MPAL_v1_570112 MPAL_v1_570112 MPAL_v1_570112 MPAL_v1_570112 MPAL_v1_570112 MPAL_v1_570112 MPAL_v1_570112 MPAL_v1_570112 MPAL_v1_570112 MPAL_v1_570112 MPAL_v1_570112 MPAL_v1_570112 MPAL_v1_570112 MPAL_v1_570112 MPAL_v1_570112 MPAL_v1_570112 MPAL_v1_57011		
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit A NADH-quinone oxidoreductase subunit B NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit E NADH-quinone oxidoreductase subunit E NADH-quinone oxidoreductase subunit T NADH-quinone oxidoreductase subunit I NADH-quinone I NADH-quinone I NADH-quinone I NADH-quinone I NADH-quinone I NADH-quinone I NADH-quinone I NADH-quinone I NADH-quinone I NADH-qu	MPAL_v1_370207 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_460203 MPAL_v1_50336 MPAL_v1_50337 MPAL_v1_50338 MPAL_v1_50340 MPAL_v1_50341 MPAL_v1_50345 MPAL_v1_50346 MPAL_v1_50348		
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit I NATP synthase subunit NATP synthase subunit NATP synthase subunit NATP synthase subunit NATP synthase subunit NATP synthase subunit	MPAL_v1_370209 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460202 MPAL_v1_50336 MPAL_v1_550340 MPAL_v1_550340 MPAL_v1_550340 MPAL_v1_550343 MPAL_v1_550343 MPAL_v1_550343 MPAL_v1_550346 MPAL_v1_550346 MPAL_v1_550347 MPAL_v1_550347 MPAL_v1_550348 MPAL_v1_550348 MPAL_v1_550349 MPAL_v1_650349		
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit E NADH-quinone oxidoreductase subunit T NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit I NATP synthase subunit ATP synthase subunit	MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_460203 MPAL_v1_50336 MPAL_v1_50337 MPAL_v1_50339 MPAL_v1_50339 MPAL_v1_50342 MPAL_v1_50342 MPAL_v1_50343 MPAL_v1_50343 MPAL_v1_50343 MPAL_v1_50345 MPAL_v1_50346 MPAL_v1_50348 MPAL_v1_50348 MPAL_v1_50348 MPAL_v1_50349 MPAL_v1_50349 MPAL_v1_60549 MPAL_v1_460549 MPAL_v1_460549 MPAL_v1_60511 MPAL_v1_570113 MPAL_v1_570113 MPAL_v1_570114 MPAL_v1_570114 MPAL_v1_570114 MPAL_v1_570114 MPAL_v1_620021		
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit NADH-quinone oxidoreductase subunit A NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit F NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit I NATP synthase subunit NATP synthase subunit	MPAL_v1_370207 MPAL_v1_370209 MPAL_v1_460202 MPAL_v1_460202 MPAL_v1_50336 MPAL_v1_550387 MPAL_v1_550387 MPAL_v1_550389 MPAL_v1_550389 MPAL_v1_550387 MPAL_v1_550388 MPAL_v1_550388 MPAL_v1_550388 MPAL_v1_550388 MPAL_v1_550388 MPAL_v1_550388 MPAL_v1_550388 MPAL_v1_550388 MPAL_v1_550388 MPAL_v1_550388 MPAL_v1_650580 MPAL_v1_660580 MPAL_v1_660580 MPAL_v1_670112 MPAL_v1_570112 MPAL_v1_570112 MPAL_v1_570112 MPAL_v1_570112 MPAL_v1_570112 MPAL_v1_570112 MPAL_v1_570112 MPAL_v1_570112 MPAL_v1_570113		
Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit Cytochrome c oxidase subunit A NADH-quinone oxidoreductase subunit B NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit E NADH-quinone oxidoreductase subunit E NADH-quinone oxidoreductase subunit E NADH-quinone oxidoreductase subunit B NADH-quinone oxidoreductase subunit I NADH-quinone I NADH	MPAL_v1_370207 MPAL_v1_460202 MPAL_v1_460203 MPAL_v1_460203 MPAL_v1_50336 MPAL_v1_50337 MPAL_v1_50339 MPAL_v1_50339 MPAL_v1_50342 MPAL_v1_50342 MPAL_v1_50343 MPAL_v1_50343 MPAL_v1_50343 MPAL_v1_50343 MPAL_v1_50346 MPAL_v1_50348 MPAL_v1_50348 MPAL_v1_50349 MPAL_v1_50349 MPAL_v1_50349 MPAL_v1_50349 MPAL_v1_60548 MPAL_v1_60548 MPAL_v1_60549 MPAL_v1_570110 MPAL_v1_570113 MPAL_v1_570113 MPAL_v1_570124 MPAL_v1_570124		

Supplementary Figure 9. Comparative proteomics of *M. palsarum* NE2 exposed to 1000 p.p.m.v. CH₄ (High) in air and 1.9
 p.p.m.v. (Atm) CH₄ in air (Supplementary table S5). Normalized and standardized expression of enzymes involved in the
 central carbon and energy metabolism is shown. Same heatmaps as in Figure 4 and Supplementary Figure 5 but with protein
 name and MicroScope accession number. * indicates significant difference in expression between treatments (two sided t test).

Supplementary Figure 10. Median and buoyant mass distribution of cells of the respective strains in the D₂O-based (green) and H₂O-based (blue) solution. n - number of biological replicates pooled for analysis, Particles H2O - Number of cells measured in H₂O-based solution contributing to the median and distribution, Particles D2O - Number of cells measured in D₂O-based solution in femtogram, Median D2O – median of buoyant mass in H₂O-based solution in femtogram, Median D2O – median of buoyant mass in D₂O-based solution in femtogram.

Supplementary Figure 11. Flow cytometry gating strategy example for the cell quantification of filter cultures. SYBR green I stained *M. gorgona* MG08 cells in green. 4 μm counting beads in blue. "058 um" – gate defined using 0.58 μm size beads.
"132 um" – gate defined using 1.32 μm size beads. "4 um" - gate defined using 4 μm counting beads. P1 – events of interest for the quantification of cells. SSCA-A – side scatter. FSC- A – forward scatter. FITC-A – signal intensity of events detected in the green channel (*M. gorgona* MG08 cells + counting beads). V450-A – signal intensity of events detected in the blue channel (counting beads).

