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Abstract 

The Klebsiella pneumoniae Species Complex (KpSC) is an important group of human 

pathogens, of which, Klebsiella pneumoniae is most clinically important and frequently 

associated with antimicrobial resistance (AMR). K. pneumoniae gastrointestinal tract (GIT) 

colonisation is a key risk factor for infection and hub for AMR dissemination.  

Here, we investigated two molecular-based tools, the ZKIR-qPCR and whole metagenomic 

sequencing (WMS), to improve detection, quantification, and sequence type (ST) analysis of 

the KpSC from human faecal samples. These tools were then applied to longitudinally collected 

samples from 108 community-based adults recruited from the general population in Tromsø 

municipality to investigate key questions regarding KpSC ecology: the duration, dynamics, 

host- and microbiota-associations of KpSC GIT colonisation.  

In paper I, the ZKIR-qPCR demonstrated the highest detection sensitivity, positive in 52/52 

KpSC culture-positive samples, and 11/51 and 23/47 culture-negative samples, using a direct-

faecal and culture-enrichment method, respectively. Using a 0.01% abundance cut-off, WMS 

detected the KpSC in 37/52 culture-positive samples but was inclined to false positives at low 

KpSC abundances. Both tools accurately quantified the KpSC across a range of abundances.  

Paper II showed WMS performed accurate KpSC ST detection, agreeing with single colony 

whole genome sequencing in 44/49 and 46/49 culture-enriched faecal samples using two tools, 

StrainGE and mSWEEP, respectively. Both tools could detect within-sample ST diversity and 

StrainGE could recreate accurate phylogenetic relationships between closely related strains.  

In paper III, we found 27.1%, 69.4%, and 3.5% of participants were persistent (positive in all 

samples), transient (positive one to five times), or non-carriers of the KpSC, respectively 

Persistent carriers had higher KpSC GIT abundance and tended to retain the same ST for 

multiple months. KpSC GIT abundance associated positively with Bacteroides and 

Phocaeicola, and negatively with Bifidobacterium, Alistipes, Akkermansia, and multiple 

Bacillota (Firmicutes). Older age, travel abroad, and diabetes mellitus were positively 

associated with KpSC abundance, while antimicrobial use was negatively associated.  

This project shows that qPCR and WMS are valid tools for KpSC detection and analysis from 

human faecal samples, and demonstrated important findings regarding KpSC GIT colonisation 

duration, diversity, dynamics, and microbiota associations. This project lays the foundation for 
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future studies investigating mechanisms behind persistent KpSC GIT colonisation and the 

microbiota taxa influencing this, with potential to lead to important insights into decolonisation 

strategies.  
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Introduction 

Klebsiella pneumoniae (Kp) is a non-motile, encapsulated, facultative anaerobic gram-negative 

bacteria belonging to the Enterobacterales order that is found ubiquitously in humans, animals, 

and the environment1-3. In addition to being a common and serious cause of infection in humans, 

Kp is presenting major challenges to public health due to its high propensity for the acquisition 

and dissemination of antimicrobial resistance (AMR)2-4. The spread of AMR by Kp has become 

a global problem, with much of the burden effecting lower income countries3, 5, 6. Consequently, 

the World Health Organisation (WHO) has classified Kp as a critical priority pathogen for 

further research and development of new treatments5.  

Recently, genomic insights have demonstrated Kp belongs to the broader Klebsiella 

pneumoniae Species Complex (KpSC), consisting of seven closely related phylogroups sharing 

95-96% average nucleotide identity (ANI): Kp1 (K. pneumoniae sensu stricto), Kp2 and Kp4 

(K. quasipneumoniae subsp. quasipneumoniae and subsp. similipneumoniae, respectively), 

Kp3 and Kp5 (K. variicola subsp. variicola and subsp. tropica, respectively), Kp6 (K. 

quasivariicola), and Kp7 (K. africana) (Figure 1)3, 7-11. In addition to Kp1 (hereafter Kp), other 

members of this complex, in particular Kp3 (hereafter K. variicola), are increasingly recognised 

as important human pathogens and have been associated with carriage of AMR, also warranting 

further research12-14.  

Key questions, however, remain regarding much of the ecology of this group of pathogens, 

particularly with respect to niche specialisation, inter-niche strain cross talk, and of particular 

relevance to this project, colonisation dynamics within the human gastrointestinal tract (GIT). 

Furthermore, current surveillance methods for the detection of Kp and associated AMR 

determinants, while highly robust and validated, have limitations that could be complimented 

by new and cutting-edge molecular-based culture-independent techniques.  

This project evaluated two such molecular-based methods, quantitative polymerase chain 

reaction (qPCR) and the next-generation sequencing (NGS) technology, whole metagenomic 

sequencing (WMS). These methods were compared to conventional culture-based detection of 

the KpSC in complex microbiome samples from the human GIT. Analysis of WMS data was 

further evaluated for the ability to identify the KpSC in samples at the sequence type (ST) level. 

Comparative strengths and weaknesses of each method were identified. These methodologies 

were then applied to investigate a key knowledge gap in KpSC ecology with relevance to human 
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health and spread of AMR, namely, the duration, dynamics, microbiota- and host-associations 

of human GIT colonisation by the KpSC. 

This general introduction will therefore discuss: 1) the genetics and phylogenetics of Kp and 

the KpSC, followed by the role of Kp and the KpSC in human disease, spread of AMR, and 

colonisation of the human GIT, and 2) current and emerging AMR and pathogen surveillance 

and diagnostic methodologies, with a focus on the molecular-based methods, qPCR and NGS, 

particularly WMS. As Kp is the most clinically relevant member of the KpSC, both in terms of 

total burden of disease and carriage of AMR, this species will be the focus of the introduction, 

however, other KpSC members are discussed where relevant. 

 

 

Figure 1. Taxonomic relationships of the Klebsiella pneumoniae Species Complex. Whole-genome-

based phylogenetic tree displaying relationships between the KpSC (red branches), non-KpSC 

Klebsiella species (black branches), and other Enterobacterales (grey branches). Bar represents 

estimated average nucleotide divergence. Reprinted with permission from Nat. Rev. Microbiol3. 
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1. Klebsiella pneumoniae and the Klebsiella pneumoniae 
Species Complex (KpSC) 

1.1 The Genetics, Phylogenetics, and Lineage Classification of K. 
pneumoniae 

The population structure of Kp is highly diverse, composed of hundreds of deep branching 

lineages that differ by ~0.5% ANI15. The size of each Kp genome is a typically around 5-6 Mbp 

and contains around 5,000-6,000 genes3. Comparative genomics has demonstrated the core 

genome of Kp, which are the genes found in all Kp lineages, comprises around 1,700 genes, 

while the remainder are composed of accessory genes shared variably across lineages15. Within 

the phylogenetic framework of Kp, the sum of all core and accessory genes, known as the pan-

genome, is large and highly diverse, likely containing upwards of 100,000 genes with new gene 

continually being added3, 15. 

Lineage classification of Kp and the KpSC has classically been based on the multilocus 

sequence typing (MLST) scheme. This scheme uses the allele profiles of seven conserved 

house-keeping genes to cluster KpSC strains into sublineages known as sequence types (STs)16. 

While the MLST scheme is easy to use, well validated, and highly useful in epidemiology and 

public health surveillance, it can inaccurately classify lineages which have undergone recent 

large chromosomal recombination events3, 17, 18. Using comparative genomics, a core-genome 

multilocus sequence typing (cgMLST) scheme has therefore been developed, which currently 

consists of 629 core genome Kp genes and allows a more accurate definition of clonal groups 

(CGs) within the Kp phylogeny19, 20.  

Recently, Kp taxonomic classification has been further developed into a dual barcoding 

approach based on the cgMLST scheme20. This approach combines multilevel single linkage 

(MLSL) clustering and life identification numbers (LIN) to group KpSC genomes into clusters 

and subclusters, which includes subspecies, sublineages (SLs), and CGs, based on the number 

of cgMLST mismatches and applies a numerical LIN based on this grouping20. This approach, 

which is backwards compatible with the traditional MLST scheme, is designed to improve the 

accuracy of KpSC lineage classification and aid in strain identification for outbreak tracing, 

infection control, and epidemiological surveillance20. 

1.2.1 The KpSC in Human Disease 

Kp is well known as an opportunistic pathogen and leading cause of hospital-acquired 

infections (HAIs) of the urinary tract, lungs, soft tissue, and blood stream, and is a frequent 
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cause of hospital outbreaks1. In this setting, Kp is a major cause of sepsis in vulnerable and 

high-risk patients, including neonates, the elderly, and the immunosuppressed, with a reported 

mortality rate of up to 20%1, 21. As of 2022, Kp accounted for approximately 7-8% of all 

bacteraemia cases in Norway, the third most prevalent behind Escherichia coli and 

Staphylococcus aureus22.  

In addition to the typical opportunistic nature of infections caused by most Kp strains, often 

referred to as classical K. pneumoniae (cKp), distinct lineages of hypervirulent Kp (HvKp) have 

also emerged23, 24. HvKp often possess a hypermucoviscous phenotype and are defined by their 

ability to cause invasive community-acquired infections (CAIs) in otherwise healthy, typically 

younger, immunocompetent hosts, with diabetes mellitus and Asian ethnic background being 

the major associated risk factors23, 24. In contrast to cKp, HvKp can cause a different spectrum 

of clinical syndromes, including pyogenic liver abscesses, meningitis, necrotizing fasciitis, and 

endopthalmitis23-25. Although HvKp lineages have spread globally, they are of particular 

concern in Asian countries strongly driven by expansion of CG2324, 26, 27. HvKp is now the 

major cause of pyogenic liver abscess in many parts of Asia and is often associated with severe 

disease and metastatic spread of infection to additional sites25, 28-30.  

1.2.2 Virulence factors in K. pneumoniae 

Several acquired factors associated with HvKp have been shown to increase virulence of these 

lineages, including the iron-scavenging siderophores aerobactin (iuc), salmochelin (iro), and 

yersiniabactin (ybt), the regulators of mucoid phenotype rmpA and rmpA2, and the genotoxin 

colibactin (collectively known as virulence factors) (Figure 2)15, 31-35. In addition, HvKp are 

strongly associated with the polysaccharide capsule types K1 and K2, which are also associated 

with enhanced virulence, likely through resistance to phagocytosis25, 36-38. HvKp virulence 

factors are typically mobilised within the population in association with the integrative 

conjugative element ICEKp or virulence plasmids, particularly KpVP-1 and KpVP-239, 40.  

In contrast to HvKp, factors promoting infection in cKp lineages are not as well characterised 

and is an area requiring further study. Among those that have been identified are the ybt locus, 

which is associated with infections in both cKp and HvKp, and type 1 and 3 fimbriae, which 

are associated with urinary tract infections and biofilm formation, respectively (Figure 2)40-42.  

Evading and dampening host immune responses also appears to be an important strategy in Kp 

pathogenesis, particularly through attenuation of TLR-mediated inflammation by hijacking 
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various host anti-inflammatory pathways, such as by IL-10 induction43, 44. Moreover, in 

addition to the importance of K1 and K2 in HvKp lineages, the presence of the capsule in cKp 

strains has been shown to reduce phagocytosis and compliment mediated lysis/opsonization, 

and increase pathogenicity in murine models of pneumonia45, 46. Recently, a large case-control 

comparative genomics study of predominantly cKp lineages also identified several plasmid-

borne stress resistance and regulatory genes that were associated with invasive infection47. 

Intriguingly, among these, several antimicrobial resistance genes (ARGs) were associated with 

an increased infection rate, despite adjustment for antimicrobial exposure47. While it was 

speculated ARGs may enhance fitness in Kp even in the absence of antimicrobial exposure, it 

was considered more likely these ARGs are linked to other genes enhancing infection risk 

carried on the same plasmid, thereby potentially complicating treatment once the infection was 

initiated47. 

 

Figure 2. Illustration of the well-characterised virulence factors for both cKp and HvKp. All Kp 

lineages carry the chromosomally encoded siderophore Enterobactin, and acquisition of Yersiniabactin 

(cKp and HvKp), Salmochelin, and Aerobactin (HvKp) are associated with increased virulence. While 

cKp are associated with a variety of capsule types, HvKp are strongly associated with capsule types K1 

and K2 and can produce a thicker ‘hypercapsule’.  Lipopolysaccharide (LPS), a component of the outer 

membrane and containing an O antigen, is also associated with increased virulence and inflammation. 

Reprinted with permission from Microbiol Mol Biol Rev48. 



 

12 

 

1.2.3 Other KpSC Members in Human Disease 

In addition to Kp, K. variicola and K. quasipneumoniae are also relatively common causes of 

infection, particularly in the hospital setting10, 12, 13, 15. Indeed, genomic analysis has revealed 

many infections previously attributed to Kp were in fact caused by these closely related 

species10, 49, 50. K. variicola and K. quasipneumoniae generally cause the same spectrum of 

disease as Kp, including HAIs of the respiratory tract, urinary tract, and bloodstream, and both 

have been known to cause community-acquired liver abscesses10, 14, 51, 52. K. variicola in 

particular has been reported to account for up to one quarter of infections caused by the KpSC 

and has been associated with a higher mortality rate than that of Kp12, 13. Moreover, Potter et 

al, recently demonstrated the ability of K. variicola to cause urinary tract infections varied 

considerably between different strains, with one isolate demonstrating higher uropathogenicity 

than that of Kp53. Like Kp, K. variicola has also been known to acquire siderophores and the 

regulators of mucoid phenotype rmpA and rmpA254. Virulence determinants and pathogenic 

potential of different lineages within K. variicola and K. quasipneumoniae, however, remains 

an area in need of further study.  

1.2.4 K. pneumoniae and AMR in the Global and Norwegian Context 

Kp has emerged as one of the major perpetrators in the worldwide spread of AMR and is 

currently ranked third in terms of total burden of deaths attributed to or associated with resistant 

infections3, 4, 6. Kp is particularly strongly linked to the dissemination of extended spectrum 

beta-lactamases (ESBL) and carbapenemases, conferring resistance to third-generation 

cephalosporins and carbapenems, respectively (Figure 3)4, 5. ESBL- and carbapenemase-

producing Kp (CPKp) clones have spread globally and are of high clinical importance due to 

their ability to cause infections with limited treatment options and associated mortality rates up 

to 33% and 42%, respectively55, 56. In 2015, it was estimated ESBL-Kp and CPKp together 

accounted for approximately 85,000 infections and 6,000 deaths in Europe57. Infections with 

CPKp are of particular concern due to very limited treatment options and increasing global 

prevalence, now accounting for up to 68-70% of all Kp infections in Taiwan, India, and Greece, 

and are the fastest growing cause of death due to AMR in Europe57, 58.  

In Norway, while the prevalence of both ESBL-Kp and CPKp remain comparatively low, an 

increase in ESBL-Kp isolated from blood from 0% to 6.8% has been observed between 2001 

to 202222. This increase was largely facilitated by the introduction and expansion of the clonal 

groups CG15 and CG307 carrying the blaCTX-M-15 ESBL gene12. Both CG15 and CG307 are 
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recognised high-risk lineages which have spread throughout the world and are frequently 

associated with carriage of carbapenemases59-61. In addition, outbreaks of both ESBL-Kp and 

CPKp have been reported in Norway62, 63.  

Perhaps even more concerningly, 89 CPKp isolates were detected in Norway in 2022, 

representing a 216% increase from 202122. These were predominantly imported isolates 

detected through screening in relation to recent international conflicts, although two cases of 

secondary transmission within Norway were confirmed, as well as two isolates linked to a 

hospital outbreak22. The introduction and potential establishment of high-risk Kp lineages such 

as these in Norway highlights the need for continuous and vigilant surveillance through 

programs such as the NORM and NORM-Vet, for monitoring AMR in humans and animals, 

respectively, as well as access to cutting-edge technologies for high-resolution and timely strain 

detection and tracking.  
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Figure 3. The global burden of carbapenem and cephalosporin resistant Klebsiella pneumoniae. 

Modelled estimates of the proportion of Kp isolates resistant to third generation cephalosporins (upper 

panel) and carbapenems (lower panel) by country and territory (2019). Reprinted with permission, 

modified from The Lancet6. 
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1.2.5 Carriage and Spread of AMR by K. pneumoniae  

In addition to the chromosomally encoded SHV beta-lactamase gene, which provides intrinsic 

resistance to aminopenicillins and carboxypenicillins, most acquisition and spread of AMR by 

Kp is mediated by plasmids and other mobile genetic elements (MGEs)4, 15. Large, conjugative 

resistance plasmids carried by Kp often contain multiple resistance elements, creating multi-

drug resistant (MDR) strains, (defined as resistance toward three different antimicrobial 

classes)3, 4, 64, 65. In addition to third-generation cephalosporins and carbapenems, these MDR-

plasmids commonly encode resistance to other clinically important antimicrobial classes, 

including aminoglycosides and fluoroquinolones3, 4, 65. Spread of AMR by Kp is strongly linked 

to the expansion and global dissemination of a relatively small number of clonal lineages that 

are adept at acquiring and maintaining these MDR-plasmids. In addition to CG15 and CG307 

mentioned above, other high-risk lineages include CG258, CG20 (CG17), CG29, CG37, 

CG147, and CG101 (CG43)4, 65. These lineages predominantly spread within and between 

hospitals and are responsible for most of the global burden of carbapenem resistant Kp 

infections, with ST11 and ST258/512 (both belonging to CG258), ST15 (CG15), and ST101 

(CG101) accounting for 69.9% of all CPKp infections in Europe3, 66. 

In parallel to the expansion of high-risk clones, horizontal gene transfer (HGT) of AMR 

determinants frequently occurs between Kp lineages, as well as from Kp to other species within 

the Enterobacterales order, and even to more distantly related taxa2, 4, 10. HGT thus also plays 

an important role in the dissemination of AMR by Kp, with a complex and overlapping network 

of transmissions occurring at the level of ARGs, plasmids, and strains. The complexity of the 

interplay between these different ARG transmission routes was recently demonstrated in a 

European-wide genomic survey by David et al67. Here, three distinct modes of transmission of 

carbapenemase genes in Kp were identified, firstly involving stable linkage of the blaOXA-48-like 

genes to a single epidemic pOXA-48-like plasmid that has spread to multiple different Kp 

lineages, secondly by transmission of the blaVIM and blaNDM in diverse plasmids and numerous 

lineages, and thirdly by stable association of blaKPC to the single ST258/512 lineage, albeit on 

diverse plasmid backgrounds67. Similarly, León-Sampedro et al, recently demonstrated that 

within a single hospital, between-patient transfer of the high-risk clonal lineages ST11, ST307, 

and ST15, carrying the pOXA-48-like carbapenemase-encoding plasmid, as well as within-

patient transfer of the pOXA-48-like plasmid between Kp and E. coli, were both occurring 

simultaneously68. These studies highlight the pivotal role of high-resolution genomic analyses 
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in teasing out these complex transmission networks, and potentially identifying targets to focus 

infection control efforts to slow the dissemination of AMR by Kp.  

In addition to Kp, MDR strains of K. variicola and K. quasipneumoniae capable of acquiring 

both plasmid-borne ESBLs and carbapenemases have been reported, albeit at a lower 

frequency10, 14, 69, 70. Indeed Kp, K. variicola, and K. quasipneumoniae have large overlap in 

carriage of plasmids and MGEs encoding both AMR and virulence determinants, which are 

thought to be readily shared between these three species10. Like Kp, MDR-K. variicola strains 

have also been isolated worldwide, including Norway12, 14. Thus, in addition to the growing 

concern of MDR-Kp, MDR-K. variicola and MDR-K. quasipneumoniae are emerging as 

threats that will likely increasingly challenge patient care within healthcare systems.  

1.2.6 Pandrug-resistance and Convergence of Hypervirulence and Multi-
drug Resistance 

Arguably one of the most concerning trends with respect to AMR in Kp and global health is 

the emergence of extensively drug-resistant (XDR) and pandrug-resistant (PDR) Kp isolates. 

These refer to strains that have become either non-susceptible to all but one or two antimicrobial 

classes (XDR) or are non-susceptible to all currently available antimicrobials (PDR)64. In Kp, 

this typically occurs when resistance develops toward the last-line antimicrobials polymyxins 

and/or tigecycline in combination with carbapenem resistance71, 72. PDR-Kp have been reported 

world-wide, including in Norway, with a reported mortality rate of up to 55% in patients 

presenting with sepsis71-76. The global dissemination of a plasmid-borne polymyxin resistance 

gene mcr-1 raises further concerns of the potential for spread of XDR and PDR throughout the 

Kp population77. Newer conjugate antimicrobial strategies, such as the siderophore-beta-lactam 

conjugate cefiderocol, hold promise as alternate rescue therapies in the setting of PDR, 

however, resistance toward even this new antimicrobial has already been reported in Kp78. 

Thus, without the development of alternate treatment strategies to prevent infections and spread 

of AMR by Kp, PDR-Kp is likely to become an ever-increasing problem in hospitals world-

wide.  

Of similar concern to PDR-Kp is the convergence of hypervirulence traits and MDR within a 

single Kp strain. Historically, MDR-Kp and HvKp have remained two distinct evolutionary 

trajectories within different Kp clonal lineages79. Rates of acquisition of virulence plasmids by 

MDR-Kp and MDR-plasmids by HvKp, or alternatively, the convergence of virulence and 

AMR-determining factors on a single plasmid, however, are increasing80-83. Such merging of 
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resistance and virulence phenotypes in Kp often result in highly aggressive and difficult-to-

treat infections which are associated with poor clinical outcomes82. Although most prevalent in 

Asia, especially China, hypervirulent MDR-Kp have been reported world-wide, including in 

Norway81, 83. Importantly, a recently released Rapid Risk Assessment by the ECDC highlighted 

the emergence of hypervirulent MDR-Kp in Europe, with increasing reports of HvKp ST23 

isolates carrying carbapenemase genes from multiple EU/EEA countries, including an ongoing 

inter-hospital outbreak in Ireland84. Thus, the probability of widespread dissemination and 

establishment of hypervirulent MDR-Kp is now considered a very real threat requiring careful 

surveillance. 

1.3.1 KpSC Colonisation of the Human Gastrointestinal Tract (GIT) 

Members of the KpSC, in particular Kp, K. variicola, and K. quasipneumoniae, are common 

colonisers of the human GIT. The overall carriage prevalence of KpSC carriage within the GIT 

of adults varies considerably dependent on geographical setting, ranging from approximately 

4-6% in the USA and Australia, 40% and 65% in Senegal and Madagascar, and up to 65-87% 

in Cambodia, Taiwan, and Malysia85-88. KpSC GIT carriage rates have also been shown to 

increase dramatically following hospitalisation85. Recently, Raffelsberger et al., detected a 

carriage rate of 16.3% in a cross-sectional study of 2975 community-based adults in Tromsø, 

Norway, as part of the previous Tromsø7 study89. In addition to adults, Kp has also been found 

to be a frequent early coloniser of the neonatal GIT, common following both vaginal and 

caesarean section deliveries90. Similar to differences seen in the prevalence of KpSC species in 

infections, Kp is the most common species isolated from human GIT samples, accounting for 

approximately 60-75%, followed by K. variicola (15-30%), and K. quasipneumoniae (10-

30%)87, 89. Although the GIT is the major human reservoir for colonisation, Kp carriage has 

also been detected from the nares, nasopharynx, oropharynx, and skin1, 86, 91, 92. 

Several host-related factors have been identified that are associated with an increased 

prevalence of KpSC detection from GIT samples, which also vary depending on geographical 

location and population demographics. In the study by Raffelsberger et al, age over 60, travel 

to Greece or Asia, presence of inflammatory bowel disease, or use of antimicrobials, proton 

pump inhibitors, or non-steroidal anti-inflammatory drugs, were positive predictors of KpSC 

carriage89. Conversely, in a cross-sectional study of pregnant women in lower- and middle-

income countries (LMIC) by Huynh, et al., antimicrobial therapy, dry fish consumption, and 

contact with chicken were associated with higher KpSC carriage in Madagascar, Cambodia, 
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and Senegal, respectively87. Furthermore, older age, alcohol, and smoking have been found to 

increase oropharyngeal Kp colonisation in adults in Vietnam91. Thus, efforts to reduce the 

burden of KpSC carriage through risk modification in hosts would clearly need to incorporate 

knowledge of predisposing factors at the local level. 

1.3.2 GIT colonisation of the KpSC and Extra-intestinal Infection 

Kp colonisation of the GIT is well-established as a major risk factor predisposing to HAIs, 

leading to a four-fold increase in risk of invasive extra-intestinal infection85, 93, 94. Genomic 

comparisons have demonstrated that Kp infections in hospitalized patients are caused by the 

patient’s own colonising strain in at least 50% of occasions85, 93. Indeed, Martin et al. 

demonstrated perfect concordances between infecting and colonising strains in n = 7 and n = 4 

patients with Kp-induced pneumonia and urinary tract infections, respectively93. Moreover, 

qPCR-based quantification studies have demonstrated a higher load of Kp in faecal samples 

predicts a higher infection risk95, 96. It has been postulated therefore, that KpSC overgrowth in 

the GIT microbiome, in combination with loss of immune control in the setting of old age or 

immunosuppressive therapy, may allow GIT escape followed by seeding and infection of extra-

intestinal sites3.  

In addition to this observed association between Kp abundance and infection risk, Lerner et al. 

demonstrated high CPKp load in the GIT is associated with an increased frequency of strain 

transmission in hospital97. This study identified the presence of a sub-group of high-abundance 

CPKp carriers, termed ‘super-spreaders’, consisting of 18% of the colonised patient population 

that were responsible for 80% of all spread within the local hospital environment97. Thus, 

interventions reducing the carriage load of KpSC within the GIT has potential to reduce a large 

burden of disease caused by these opportunistic pathogens within the hospital setting. 

1.3.3 Prolonged KpSC GIT Colonisation as a Reservoir for AMR 

Understanding duration of carriage within the GIT, as well as factors influencing this, is a major 

area within KpSC ecology in need of further research. Recently, a longitudinal Kp GIT carriage 

study by Lepuschitz et al., which repeat sampled six community-based adults each week for 

one year, observed carriage to be intermittent and of high turn-over, with the no strains detected 

longer than two consecutive weeks98. Furthermore, two study participants, who were colleagues 

that often shared meals, were found to carry the same Kp strain on multiple occasions, 

suggesting food as a potential source of exposure to new Kp strains98. Other studies focusing 

on carriage of ESBL- or CPKp following large hospital outbreaks or in returned travellers, 
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however, have found while most patients undergo spontaneous decolonisation within months, 

carriage in these settings can last up to one to four years99-103. Moreover, following a large 

outbreak of an ESBL-Kp ST17 strain in the neonatal intensive care unit in Stavanger University 

Hospital, Norway, Lohr et al., observed multiple transmission events occurred from persistently 

colonised infants to close household contacts99. The genome of the ESBL-Kp ST17 clones and 

the associated ESBL-encoding resistance plasmid carried by these infants also remained 

remarkably stable during the two-year follow-up period of this study99, 104. Similarly, in a study 

following prolonged GIT colonisation of a CPKp ST258 strain in two adult patients post-

discharge found high stability of the blaKPC-encoding resistance plasmid, despite multiple 

rearrangements of additional plasmids carried by this strain, as well as multiple HGT events to 

an additional ST37 Kp strain, as well as an ST127 E. coli strain100. These important studies 

demonstrate the potential role of prolonged KpSC GIT carriage as a reservoir for the 

dissemination of high-risk MDR-strains and HGT of AMR genes in the community, highlighted 

the need for further understanding of KpSC colonisation in this setting.  

1.3.4 KpSC Colonisation Factors  

Several factors carried by the KpSC have been shown to be important in promoting colonisation 

fitness in the GIT. Inhibiting these processes may therefore have potential as strategies for 

inducing decolonisation of the KpSC. Recently, Merciecca et al. demonstrated the presence of 

the type VI secretion system (T6SS), a molecular syringe capable of injecting toxic effector 

molecules into target cells, was important in long-term Kp colonisation of mice following 

streptomycin treatment105. Genome-wide analysis revealed the T6SS is widely carried by Kp 

and K. variicola (98% and 95% of strains examined), however, was only present in 20% of K. 

quasipneumoniae subsp. similipneumoniae strains analysed105. The T6SS may therefore 

represent a key colonisation advantage in Kp and K. variicola that has contributed to them 

becoming the dominant human pathogens within the KpSC. Similarly, the thick polysaccharide 

capsule produced by Kp, known as the K-antigen, in addition to being a known virulence factor, 

was shown by Favre-Bonte et al. to be important in allowing persistence and even distribution 

in the mucous-layer within the GIT of streptomycin treated mice106. The K-antigen has been 

identified as a potential target for Kp-based vaccine strategies, targeting of which may therefore 

have potential to reduce both the virulence and colonisation capacity of Kp107.  

In addition to these factors, the plasmid-borne ter operon, which is strongly associated with Kp 

infection in humans, was shown to have its action through promoting colonisation fitness in the 
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GIT rather than increasing virulence itself108. Interestingly, the ter operon is thought to enhance 

Kp colonisation fitness by increasing stress tolerance in the presence of short-chain fatty acids 

(SCFAs, discussed below)108. Acquisition of this trait may thus represent an evolutionary 

response by Kp to oppose GIT colonisation inhibition imposed by SCFA-producing bacteria 

(see below). Strategies inhibiting ter could therefore hold potential to enhance the natural 

resistance to Kp colonisation by commensals within the GIT.  

Finally, two studies generating large transposon mutagenesis libraries have also identified 

multiple genes important for colonisation by Kp109, 110. In both studies, several genes involved 

in metabolism of nutrients were shown to be crucial in competitive colonisation as well as 

achieving high density with the GIT. Moreover, different Kp strains have been found to rely on 

differing metabolic strategies for colonisation success in the GIT111. Understanding and 

inhibiting the metabolic pathways essential to colonisation by high-risk Kp clones may thus 

represent a potential strategy to preventing colonisation by these lineages. Despite the large 

therapeutic potential of identifying and targeting colonisation fitness factors in the KpSC, 

however, this remains an area in need of further study.  

A summary of known predisposing factors and consequences of KpSC GIT colonisation are 

presented in Figure 4 
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Figure 4. Summary of KpSC colonisation of the human GIT. Host-specific factors associated with 

increased KpSC colonisation includes older age, international travel, inflammatory bowel disease (IBD), 

hospitalisation, use of antimicrobials, proton pump inhibitors (PPIs), non-steroidal anti-inflammatory 

drugs (NSAIDs), contact with chickens, and dry fish consumption85, 87, 89. The capsule, type VI secretion 

system (T6SS), and ter operon in KpSC strains is associated with enhanced GIT colonisation105, 106, 108. 

GIT KpSC carriage is a risk factor for invasive extraintestinal infection, strain transmission, and HGT 

of AMR genes85, 97, 99, 100. A higher abundance of Kp in faecal samples has been associated with a higher 

risk of infection and strain transmission in hospitalised patients95-97. Created with BioRender.com 

 

1.3.5 The KpSC and the GIT Microbiota 

The human GIT microbiota, which is defined as the sum of all bacteria, archaea, and fungi in 

the GIT, is estimated to contain approximately 1013 bacteria112, 113. The total GIT microbiota 

plus all structural elements (proteins, lipids, polysaccharides, nucleic acids, viruses, 

bacteriophages), microbial metabolites, and physiochemical properties (pH, temperature, etc), 

then makes up the GIT microbiome113. Despite large interpersonal variation, a typical ‘healthy’ 

microbiota is dominated by the Bacteroidota (Bacteroidetes) and Bacillota (Firmicutes) phyla, 

which together make up approximately 80% of all bacterial species present114, 115. The 

remaining 20% is usually comprised of Actinomycetota (Actinobacteria), Verrucomicrobiota 

(Verrucomicrobia), and Pseudomonadota (Proteobacteria), which includes the Enterobacterales 

and the KpSC114, 115. Under normal circumstances, the KpSC is a very low abundance member 

of the GIT microbiota, typically making up less than 0.1%86, 114. Conditions which allow 

overgrowth of potential pathogens, with an associated loss of beneficial commensal species and 

an overall reduction in microbiota diversity is termed ‘dysbiosis’116.  
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Commensal bacteria within the GIT microbiota are thought to play a crucial role in limiting 

colonisation and expansion of potentially pathogenic species, such as the KpSC, through a 

process referred to a ‘colonisation resistance’ (Figure 5)117. Colonisation resistance can occur 

by direct mechanisms, such as through niche/nutrient competition, contact-inhibition, e.g. via 

the T6SS, and production of antimicrobial peptides and other inhibitory molecules, or through 

indirect mechanisms including stimulation of mucosal barrier production, oxygen limitation 

through production of SCFAs, and stimulation of the immune system117. Identifying 

commensal species able to inhibit KpSC colonisation, and the mechanisms they use, could 

potentially lead to microbiota-based decolonisation therapies, reducing the burden of disease 

and spread of AMR by this group of pathogens.  

Interestingly, in contrast to other opportunistic pathogens such as Clostrioides difficile, 

previous studies in both mice and humans have found no relationship between microbiota alpha 

diversity, i.e., the overall diversity of species within the microbiota, and Kp colonisation118-120. 

This suggests the specific microbiota composition rather than overall diversity may be essential 

for effective colonisation resistance against the KpSC. This notion is supported by a recent 

study by Spragge et al, who demonstrated effective colonisation resistance against Kp in vitro 

and in vivo (gnotobiotic mice) only occurred in the presence of specific species within a diverse 

consortium of GIT commensals through a process of nutrient blocking121.  

To date, identification of most potential inhibitors of KpSC colonisation have been through in 

vitro studies and in vivo mouse models, many of which use antibiotic exposure to facilitate Kp 

colonisation, with a current lack of association studies performed in human subjects. Amongst 

these previous studies, members of the Bifidobacterium genus, part of the Actinomycetota 

(Actinobacteria) phylum, have been identified as potentially important inhibitors of Kp GIT 

colonisation121, 122. Bifidobacterium species were also able to reduce inflammation and improve 

mortality in murine models of Kp-induced pneumonia, suggesting this genus may have an 

important protective role against both colonisation and infection caused by the KpSC123, 124. 

Inverse relationships between Kp colonisation density and presence of various members of the 

Bacillota (Firmicutes) phylum, including the Lactobacillus, Lachnoclostridium, and Roseburia 

genera have also been observed, suggesting an inhibitory relationship with members of this 

phyla119, 125. Somewhat conflicting these results, however, Sequira et al. showed following 

antimicrobial-induced microbiota depletion, only a consortium consisting of Bacteroidetes 

(Bacteroidota), rather than Bacillota (Firmicutes), Actinomycetota (Actinobacteria), or 

Pseudomonadota (Proteobacteria), were able to induce clearance of Kp colonisation from the 
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GIT through a IL-36-induced macrophage dependent mechanism requiring commensal 

colonisation factor (CCF)126. These differing findings are possibly due to the highly complex 

nature of microbiota interactions and possible redundancy of taxa able to inhibit the KpSC 

which may vary under different experimental conditions. 

Competition between members of the Enterobacterales order may also play an important role 

in limiting KpSC GIT colonisation. In particular, E. coli was identified as a keystone species 

within the Kp-inhibiting consortium identified by Spragge et al, likely resulting from the large 

metabolic overlap between these two species121. E. coli was also identified as a strong 

competitor of Kp colonisation in the developing neonatal microbiome, further suggesting an 

important inhibitory role for commensal strains of this species90. The non-KpSC species, 

Klebsiella oxytoca, has also been shown to induce decolonisation of Kp in mice with humanised 

microbiota, driven by competition for specific carbohydrates127. Interestingly, long-term 

clearance in this setting was only achieved in the presence of three additional species of the 

Bacillota (Firmicutes) phyla: Blautia coccoides, Enterococcus faecalis, and Enterocloster 

clostridioformis127. This finding gives further support to the notion that effective colonisation 

resistance against the KpSC likely results from the concerted action of multiple commensal 

species, with no one species sufficient in isolation. Given its importance and potential for 

therapeutic interventions, more studies in humans combining cutting-edge molecular and omics 

approaches, including WGS, WMS, metabolomics, and proteomics, are required to further 

understand the complex network of interactions between the KpSC and commensal microbiota 

and conditions required for effective colonisation resistance. 

1.3.6 The Role of Short Chain Fatty Acids in Colonisation Resistance 
Against the KpSC 

In addition to competition for nutrients and the induction of specific immune responses 

mentioned above, the potential role of SCFAs in colonisation resistance against the KpSC 

warrants specific mention. SCFAs are a group of carboxylic acids including acetate, butyrate, 

and propionate, produced by the fermentation of indigestible dietary polysaccharides by certain 

commensal bacteria, which have been shown to have multiple important roles in human 

health128. Major producers of SCFAs include members of the Bacillota (Firmicutes) phyla, in 

particular, Faecalibacterium prausnitzii, Roseburia, and Eubacterium species, as well as 

Bifidobacterium and members of the Bacteroidota (Bacteroidetes) phylum129. Among the 

proposed functions of SCFAs in the GIT is the ability to suppress the growth of multiple 

potential pathogens, including Kp, through several different mechanisms. Principally, SCFAs 



 

24 

 

can freely diffuse across cell membranes where they directly inhibit growth of Kp and other  

Enterobacterales by interfering with transmembrane potential and intracellular pH130. Butyrate 

is also aerobically metabolised as a major energy source by intestinal epithelial cells (IECs), 

leading to a reduction in oxygen concentration at the epithelial surface, creating an anaerobic 

environment that deprives facultative anaerobes like the Enterobacterales of this growth 

advantage131. Furthermore, SCFAs can enhance the integrity of tight junctions between IECs, 

preventing the translocation of pathogens into the extra-intestinal tissues, and are known to 

have anti-inflammatory effects by direct interaction with the immune system132, 133. Moreover, 

oral supplementation with SCFAs has been shown to improve survival rates of mice with Kp-

induced pneumonia, suggesting the protective effects of SCFAs extend beyond the GIT123. 

Further studies using metabolomics-based approaches in combination with experimental 

models, are warranted to improve our understanding of the role of SCFAs in colonisation 

resistance against the KpSC in the human GIT and evaluate their use as possible alternate 

therapeutic strategies.  

A summary of experimentally determined mechanisms of colonisation resistance against the 

KpSC is presented in Figure 5. 
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Figure 5. Summary of experimentally determined mechanisms of colonisation resistance against 

Kp within the GIT lumen. Briefly, from left to right: members of the Bacteroidota (Bacteroidetes) 

phyla inhibit Kp by a macrophage-dependent mechanism requiring IL-36 and CCF126. Specific 

microbiota consortia containing E. coli as a key species inhibit Kp colonisation by nutrient blocking121. 

K. oxytoca, in cooperation with several Bacillota (Firmicutes) inhibit Kp by outcompeting for beta-

glucosides via CasA127. Short chain fatty acids (SCFAs), produced by several commensal microbiota 

species, inhibit Kp directly by interfering with transmembrane potential and intracellular pH, as well as 

indirectly by lowering oxygen concentration in the GIT through aerobic metabolism by colonic 

epithelial cells130, 131. Created with BioRender.com 

 

1.3.7 GIT Decolonisation Strategies for MDR-Kp and other 
Enterobacterales 

Due to the risks of infection and AMR dissemination associated with GIT colonisation of MDR-

Kp and other MDR-carrying Enterobacterales, strategies to eradicate these pathogens from the 

GIT through inducing decolonisation have gained considerable interest134-136. Such strategies 

are aimed at eradicating potential pathogens through modification of the underlying microbiota 

and have potential to reduce reliance on antimicrobial use and prevent infections before they 
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occur. One such approach is selective decontamination of the digestive tract (SDD), which 

involves the oral administration of poorly absorbed antimicrobials, such as colistin, neomycin, 

streptomycin, and gentamicin136. SDD has been shown to be effective in preventing infections 

in critically ill ICU patients and may support a reduction in the burden of MDR-

Enterobacterales colonisation, however, so far this effect appears to be only temporary137-139.  

Faecal microbiota transplant (FMT) is another promising decolonisation strategy that involves 

infusion of stool from a healthy donor into the GIT of a patient with dysbiosis140. FMT is already 

in routine use for the treatment of recurrent Clostridioides difficile infection and a recent 

systematic review by Macareño-Castro et al. found a decolonisation rate of 78.7% in patients 

colonised with carbapenem-resistant Enterobacterales after one year140, 141. It should be noted, 

however, of the ten studies reviewed by Macareño-Castro et al, three were retrospective and 

only one was a randomised clinical trial, indicating the need for more comprehensive clinical 

evaluation of FMT in this setting141.  

Use of probiotics, typically involving oral administration of live Lactobacillus, Saccharomyces, 

or Bifidobacterium, or a combination of these, has also shown promise at reducing the burden 

of MDR-Enterobacterales colonisation. Probiotic treatment has been shown to be effective in 

reducing MDR-Enterobacterales colonisation in infants and children as well as protecting 

against necrotizing enterocolitis in premature infants142, 143. In adults, although probiotics have 

been associated with a reduction in the abundance of MDR-Enterobacterales colonisation, 

clinical trials have not yet shown their efficacy in inducing complete eradication from the 

GIT142, 144. 

Similarly, bacteriophages, which are viruses that can specifically target and lyse bacteria at the 

species or even strain-level, are also gaining interest as potentially highly specific inducers of 

decolonisation145. Decolonisation by bacteriophages targeting specific MDR-Enterobacterales, 

including Kp, have shown promise in in vivo models as well as a limited number of case studies 

and clinical trials145, 146. While this form of treatment appears safe and well tolerated, bacterial 

resistance against bacteriophage therapy can develop quickly and is a potential limitation to 

treatment145, 146.  

While all these approaches have shown some efficacy in inducing decolonisation of MDR-

Enterobacterales, including Kp, in case studies and a small number of clinical trials, results are 

variable, and there is a lack large high-quality randomised placebo controlled trials to support 
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their routine use in this setting134, 136, 147. These treatments are also not without risks. For 

example, selection of a colistin resistant CPKp has been reported following SDD148. Similarly, 

cases of Lactobacillus bacteraemia and endocarditis following probiotic administration in 

patients with underlying risk factors such as immunosuppression and inflammatory bowel 

disease has been reported136. Thus, further studies into the efficacy, safety, and better 

understanding of underlying mechanisms of these decolonisation strategies are required. 

1.4 K. pneumoniae in a OneHealth context: A Proposed Role as a Major 
Trafficker of AMR Genes from Environment to Clinic 

‘OneHealth’ is a holistic approach to improving health outcomes that recognises the 

interconnected nature of humans, animals, and the environment149. Examining KpSC within the 

OneHealth context, by investigating the movement of KpSC strains and associated AMR genes 

between different environmental, animal, and human niches, is critical to understanding major 

routes of transmission into the clinical and human niche, as well as the spread of AMR by this 

group of pathogens. It is well documented that Kp has a very wide ecological range, found in 

the terrestrial, freshwater, and marine environments, and has been isolated from mammals, 

birds, reptiles, insects, plants, soil, shellfish, and fish2, 150-153. This range is facilitated by the 

high genomic plasticity and large pan-genome of Kp, giving access to a wide range of genetic 

capabilities, including a large potential metabolic capacity, allowing survival and adaption in a 

diverse range of environmental niches2, 15, 154. In addition, Kp is known to carry a diverse 

plasmidome and is particularly adept at acquiring and maintaining high numbers of plasmids 

in comparison to other important AMR-associated pathogens, regularly carrying between two 

and five different plasmids, with up to ten reported2. Moreover, Kp is known to regularly 

engage in HGT and share ARGs with other members of the Enterobacterales order, as well as 

more distantly related taxa, including Streptomyces, Acinetobacter, Bacteroides, Bacillus, and 

Pseudomonas4, 15.  

It is this combination of wide ecological range, genetic flexibility, and ability to acquire, 

maintain, and transmit genetic material that has led to the proposed role of Kp as a major 

trafficker of important AMR genes from environmental bacteria to other clinically relevant 

pathogens2  (Figure 6). Evidence for this comes from the observation that many currently 

clinically relevant mobile AMR genes, including ESBL variants of TEM, the carbapenemases 

KPC, NDM-1, and OXA-48, and the quinolone resistance genes qnrA and qnrB, were first 

detected in Kp before appearing in other Enterobacterales, or even Acinetobacter and 

Pseudomona155-162. Kp, along with E. coli, was also one of the earliest identified carriers of the 
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widespread ESBL gene CTX-M and the mobile colistin resistance gene mcr-177, 163. Some of 

these AMR genes also have direct links to being mobilised from environmental bacteria, such 

as qnrA and OXA-48 from the marine species Shewanella, and CTX-M from Kluyvera163-165. 

The overlap in niches between Kp and these species further supports the proposed role of Kp 

as an important trafficker of AMR genes into humans and the clinical environment. 

 

 

 

 

 

 

 

 

Figure 6. Klebsiella pneumoniae as a major trafficker of AMR. Proposed model of how Kp traffics 

AMR genes and plasmids from environmental sources, such as soil and waterways, and transmits these 

into the human and animal niches. Kp strains carrying AMR determinants then return to the environment 

via sewerage and effluent where it can form reservoirs for ongoing transmission. Reprinted with 

permission from Curr Opin Microbiol2.  

 

To identify the environmental niches which may be acting as potential sites for AMR 

acquisition and reservoirs for MDR-Kp, several OneHealth studies have been conducted 

sampling the KpSC from human, animal, and environmental niches in various geographical 

locations, including Italy, England, Brazil, French West Indies, Malawi, and Ghana166-171. A 

large OneHealth study is also currently underway in Norway, known as KLEB-GAP, 

investigating KpSC cross-talk in the human, animal, and marine environment, which also 

incorporates this project (https://www.nor-kleb.net/). Interestingly, these studies have shown 

ESBL-Kp is variably detected in the environment and animals, particularly livestock. As was 

found by Cocker et al., in a LMIC setting such as Malawi, where there can be increased direct 

contact with animals, higher use of antimicrobials in animal husbandry practises, as well as 

https://www.nor-kleb.net/
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poorer sanitation infrastructure, these can act as significant reservoirs for ESBL-Kp 

transmission to humans171. CPKp, however, appears largely restricted to the hospital 

environment, and overall limited movement of Kp strains from environmental or animal 

sources into humans or the clinical setting has been identified. The major reservoirs and sources 

of human acquisition of ESBL- and CPKp identified in these studies were in fact from other 

humans, i.e. person-to-person spread, or from the hospital environment itself, with hospital 

sinks identified as major potential reservoirs. Thus, although capture of AMR genes from 

environmental bacteria by Kp and spread of MDR-Kp from environmental and animal niches 

into both humans and hospitals are critical events with major clinical outcomes, these appear 

to occur only rarely and are highly context dependent. These observations support that 

surveillance and targeted interventions to prevent further spread of AMR by Kp may be best 

focused on the human niche and clinical setting. 

Notably, to date there have been few large Kp OneHealth-based studies preformed in either 

India or China, both of which have a heavy burden of CPKp infections, increased direct human-

animal contact, as well as pervasive use of antimicrobials in agriculture58, 172. These factors may 

create an environment favouring environmental acquisition of AMR genes by Kp and increased 

opportunities for movement of MDR-Kp strains from environmental reservoirs into the human 

niche. An important example of this which requires vigilant surveillance is spread of the 

plasmid-mediated colistin resistance mcr-1 gene. This gene was most likely mobilised from 

bacteria in livestock in China resulting from the previous widespread use of colistin in 

agriculture77. Although a decline in the prevalence of mcr-1 carrying E. coli in livestock, human 

carriage, and clinical infections has been reported since the ban of colistin in Chinese 

agriculture in 2018173, large environmental reservoirs of this gene may still exist. Supporting 

this, a recent study from 2022 found highly similar plasmids carrying the mcr-1 gene (>98.5% 

ANI) in Kp clinical isolates were also present in other Enterobacterales species in silver gulls, 

poultry, and wastewater in Australia, China, and Japan, respectively174. Thus, further 

OneHealth-based studies in these settings are warranted. 

 

 



 

30 

 

2 Methods for Detection of Pathogens and Associated AMR  

Bacterial pathogen and AMR detection in clinical microbiology encompasses surveillance 

programs as well as clinical diagnostics. Surveillance is aimed at the detection and monitoring 

of high-risk pathogens, such as Kp, and associated AMR and virulence determinants, and are 

essential for outbreak tracing, infection control, and understanding the local and global 

dissemination175. Clinical diagnostics involves identification of causative species and 

associated antimicrobial susceptibilities +/- virulence determinants from clinical samples176. 

Both surveillance and clinical diagnostics require up-to-date, robust, and validated detection 

methods that are highly sensitive and specific yet timely and cost-effective.  

2.1 Culture-based Methods  

Currently, culture-based and phenotypic methods are predominantly used in pathogen and 

AMR detection both in surveillance and clinical diagnostics177, 178. Culture-based methods have 

several advantages, including being relatively simple, inexpensive, and allowing recovery of 

viable isolates of further testing and analysis, including antimicrobial susceptibility testing 

(AST) and strain typing by whole genome sequencing (WGS)177, 179-181. Use of selective media, 

through addition of elements that are essential for growth of desired species and inhibition of 

undesired species, can facilitate accurate identification of suspect pathogens182. An advance on 

this is the development of chromogenic media, which targets organisms through specific 

metabolism of substrate which releases a chromogen, allowing faster identification of 

pathogens and AMR-phenotypes, and are particularly useful for surveillance and screening for 

MDR-pathogens178, 183. The recent widespread use of matrix-assisted laser 

desorption/ionization-time of flight (MALDI-TOF) mass spectrometry has further 

revolutionized species identification in this setting176. As has been exemplified by the KpSC, 

however, MALDI-TOF has limitations in discriminating between closely related bacteria at the 

species level10, 49.  

Coupled to culture-detection is phenotypic-based AST, which principally employs disc 

diffusion assays, gradient tests, and broth macro- and microdilution assays to give a phenotypic 

measure of the susceptibility of bacteria to different antimicrobials178. Broth dilution assays 

also allow quantification of the minimum inhibitory concentration (MIC) of a given 

antimicrobial, defined as the lowest concentration required to inhibit bacterial growth178. 

Further testing can then give insights into the underlying resistance mechanisms, for example, 

combination testing, colorimetric tests, detection of hydrolysis with MALDI-TOF, and lateral 
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flow assays can be used to confirm the presence of carbapenemases184-187. Thanks to thorough 

validation by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and 

the Clinical and Laboratory Standards Institute (CLSI), clinical breakpoints have been 

established that predict effectiveness of specific antimicrobials in treating infections caused by 

particular pathogens188, 189. The standardisation of these methods means AST results can be 

directly compared between different microbiology laboratories.  

While the information provided through these culture-based methods is critical for pathogen 

and AMR detection in both a surveillance and clinical setting, they have several shortcomings. 

Principally among these are time to diagnosis in culture-based detection, typically taking at 

least two days for species identification and AST results190. For fastidious organisms these 

times can extend to days or weeks, while many bacteria are also unable to be cultured by current 

methods191, 192. Delays in pathogen identification and AST can be critical in the clinical setting, 

leading to inappropriate and prolonged use of broad-spectrum antimicrobials or even 

ineffective therapy193. Since every hour before commencement of appropriate antimicrobial 

therapy is associated with an increased mortality in the setting of sepsis, such delays can have 

serious impacts on patient outcomes194. Automated systems that use optical changes for 

pathogen growth and AST, such as Vitek2 and Phoenix, have been shown to reduce turn-around 

times, capable of producing clinically usable results in as little as 4-18 hours178. Furthermore, 

the detection sensitivity and ability to capture the full microbial diversity, particularly in 

complex bacterial samples, is also an issue with culture-based detection195-197. Indeed, it has 

been shown culture-based detection of CPKp GIT carriage lacks sensitivity compared to 

molecular-based methods198.  

2.2 Molecular-based Methods  

Molecular-based, culture-independent methods have large potential to enhance pathogen and 

AMR detection, both in surveillance and the clinical setting, by complimenting many of the 

shortcomings of conventional culture-based detection methods181, 197, 199, 200. Typically, 

molecular-based methods are fast, highly sensitive and specific, and can give accurate gene-

level information199, 200. Major drawbacks to these methods include higher costs, as well as 

generally targeting only known pathogens and AMR genes means novel pathogens and 

resistance mechanisms can be difficult to detect178. AMR in pathogens may also be 

overestimated since the presence of an AMR gene does not always translate to phenotypic 

resistance178. Three major categories of molecular detection methods are currently in use today: 
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nucleic acid amplification technologies (NAAT), hybridisation-based microarray, and NGS. 

The following sections will give and overview of each of these categories, including a more 

detailed discussion of qPCR and NGS, particularly WMS, due to the relevance to this project. 

A more detailed description of the methods used in this study will then follow in the Choice of 

Methods section. 

2.2.1 Nucleic Acid Amplification Technology  

The most common NAAT in use currently are polymerase chain reaction (PCR)-based 

methods, which amplify target DNA sequences via specific DNA primers and DNA polymerase 

through thermocycling for successive rounds of amplification and denaturation201 (Figure 7). 

PCR-based methods are widely used for pathogen and AMR detection, capable of giving results 

with high sensitivity in as little as one hour178, 201, 202. Major PCR methods include qPCR, digital 

PCR (dPCR), and high-resolution melting (HRM), each of which incorporate fluorescent dyes 

into the PCR reaction to allow high-sensitivity detection +/- quantification in real time199, 200. 

Isothermal amplification is an additional emerging NAAT technology, which includes loop-

mediated isothermal amplification (LAMP), nucleic acid sequence-based amplification 

(NASBA), and transcription-mediated amplification (TMA). These methods allow nucleic acid 

amplification at a constant temperature, negating the need for expensive thermocyclers, and 

have become standard for diagnosis of gonorrhoea and chlamydial infection199, 200. One major 

disadvantage of NAAT are the limited number of pathogen or AMR targets that can be 

amplified in a single assay. Development of PCR-based panel arrays such as the BioFire 

FilmArray Panel improves this range by simultaneously assaying for up to 33 pathogens and 

10 associated AMR genes in selected panels of clinically important pathogens causing 

infections of the respiratory tract, bloodstream, and meningitis-encephalitis203-205.  
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Figure 7. Schematic representation of PCR. Double-stranded DNA is first denatured by heating to 

95oC (1). This is followed by primer annealing to specific complementary target sequences on the 

forward and reverse single stranded DNA molecules (2). DNA polymerase incorporates nucleotides to 

create a new copy of the targeted DNA (3). Newly synthesised double-stranded DNA then forms the 

template for the next cycle, resulting in exponential amplification of target DNA. Reprinted with 

permission from The Lancet201. 

 

The most widespread and validated NAAT in use in clinical microbiology is qPCR (also 

referred to as real-time PCR or RT-PCR), which has been shown to be highly rapid, accurate, 

and sensitive in detecting a variety of pathogens and ARGs202, 206. qPCR assays detect specific 

DNA sequences in samples, while a modification of qPCR, which first involves a reverse 

transcription step (known as RT-qPCR) is used to detect RNA201. Studies have shown qPCR 

has equal or greater sensitivity in detecting a number of important pathogens, such as Group A 

Strep, Haemophilus influenzae, Legionella pneumoniae, and Neisseria meningiditis, and ARGs 

including ESBLs, than conventional methods with faster turnaround times206. Two major qPCR 

methods currently exist: (i) fluorescent dyes that intercalate non-specifically to the newly 

synthesised double stranded DNA molecules and (ii) sequence-specific fluorescently labelled 

probes which emit fluorescence once the probe is incorporated into the synthesised double-

stranded DNA201. For both methods, a positive sample is reported once the fluorescence crosses 

above a threshold distinguishable from background207. The cycle at which this occurs, known 

as the quantification cycle (Cq) is directly proportional to the number of copies of target 
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sequence in the sample, and can be quantified by comparison to standard curve of known copy 

number207. Intercalating dye-based qPCR has the additional quality control step of a melting 

cycle, which measures the temperature at which the amplified double-stranded DNA denatures 

(melts)208. Although qPCR typically amplifies a single target sequence, multiplexing can be 

used to simultaneously amplify multiple targets201.  

Limitations of qPCR in clinical microbiology include false positives due to contamination, 

primer dimer formation, and incorrect baseline settings, as well as false negatives resulting from 

presence of inhibitors, incorrect primer sequences or annealing temperatures199. The potential 

for false positives through DNA contamination is a major potential drawback of qPCR and is 

directly related to its high sensitivity. Such false positives can easily occur since qPCR is 

capable of amplifying as little as a single copy of DNA target sequence207, 209. Indeed, DNA 

contamination was a large problem encountered in the early stages of this project. In a 

microbiology diagnostic setting, this could lead to important clinical implications such as 

incorrect diagnoses and implementation of inappropriate therapies. Major strategies to prevent 

contamination are use of UV-radiation and sodium hypochlorite to destroy any contaminating 

DNA in the environment, as well as treatment of reagents with DNA destroying enzymes such 

as DNase I which can then be heat inactivated prior to qPCR assay, although none of these are 

100% effective209. This risk of false positives in qPCR highlights the need for robust negative 

controls in all assay set-ups. 

2.2.2 Hybridisation-based Microarray Technologies  

Hybridisation-based microarrays detect gene sequences in samples through hybridisation to 

probes fixed on the surface of the microarray178, 199, 200. Like NAAT, hybridisation-based 

microarrays can detect specific pathogens and AMR determinants rapidly and with high 

sensitivity178, 199, 200. Due the proximity of fixed probes, hybridisation-based microarrays have 

the added advantage of simultaneous detection of a much larger spectrum of pathogens and 

AMR determinants than NAAT methods, including Kp strains and associated AMR 

determinants210. These methods, which include both solid-phase and liquid-phase arrays, are 

useful in rapid surveillance and screening for a large number of targets in complex samples, 

such respiratory and GIT samples199, 211, 212. The high cost and complexity of these methods, 

however, can be a limited factor in the widespread utilisation200. 
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2.2.3 Next-Generation Sequencing 

NGS refers to high throughput, massively parallel sequencing of millions of DNA fragments213. 

These technologies are rapidly advancing, becoming more readily available with reducing 

costs, making them increasingly attractive for use in pathogen and AMR surveillance and 

clinical microbiology laboratories214. NGS is generally divided into short-read and long-read 

technologies, also referred to as second and third generation sequencing, respectively, both with 

differing advantages and disadvantages213.  

Short-read NGS techniques sequence DNA fragments typically several hundred base pairs in 

length213. The major advantage of short-read NGS is higher base-call accuracy than that of long-

read sequencing, allowing for more accurate detection of single nucleotide polymorphisms 

(SNP) and small insertions and deletions (indels), which can be critical in identifying sources 

and transmission chains in clonal outbreaks215-217. The major short-read sequencing platform is 

Illumina, which uses adapter-ligated DNA fragments (known as DNA libraries) bound to the 

surface of a flow cell, followed by solid-phase bridge amplification creating clusters of clonal 

populations of forward and reverse DNA fragments (referred to as paired-end reads)213. 

Fluorescently labelled nucleotides are then added in successive sequencing cycles, known as 

‘Sequencing by Synthesis’, and base calls are made by signal intensity measurements during 

each cycle213.  

Another emerging short-read platform is MGIseq which has been shown to be highly 

comparable to Illumina in sequencing accuracy with considerably lower sequencing costs218-

220. MGIseq uses a similar approach of Sequencing by Synthesis, however, instead of 

sequencing DNA fragments bound to a solid flow cell, DNA fragments are circularised and 

amplified into DNA nanoballs (DNB)221. Each DNB consists of between 300-500 copies of the 

original DNA fragment amplified by rolling circle amplification (RCA)222. By using the 

original DNA circle as template for each successive amplification cycle, this approach 

reportedly reduces the exponential accumulation of errors seen in other amplification 

methods222. RCA also does not require precise titration of template concentrations preventing 

stochastic inefficiencies seen other sequencing platforms221, 222.    

In contrast to short-read sequencing, long-read sequencing can sequence DNA fragments up to 

thousands or tens of thousands of base-pairs223. The major advantage of this is the ability to 

sequence long repetitive DNA sequences that are not possible with short-read technologies, 

allowing sequencing and de novo assembly of entire bacterial genomes and plasmids224. The 
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two major long-read sequencing platforms are PacBio and Oxford Nanopore Technology 

(ONT), both of which use single molecule sequencing, albeit utilising different approaches. 

PacBio uses Single Molecule Real-Time (SMRT) technology to form large, closed hairpins 

from each DNA fragment that are individually immobilised in cells and sequenced213. 

Conversely, ONT feeds individual DNA fragments through thousands of nanopores embedded 

in a membrane and measures changes in ion current as different nucleic acids pass through the 

pore213. Two major advantages of ONT are the small size and portability of the sequencing 

devices, and the real-time generation of sequence data, opening the possibility for rapid point-

of-care clinical diagnostics and outbreak surveillance the can be performed either at the bedside 

or in the field225, 226. Although the base-call accuracy of ONT is lower than other sequencing 

platforms, this is continually improving with advancements in pore technology, base-calling 

algorithms, and sequence corrections, making ONT a very promising tool in the future of 

pathogen surveillance and clinical diagnostics213, 227, 228. 

2.2.4 Application of NGS in Clinical Microbiology I: Whole Genome Sequencing  

A major application of NGS in clinical microbiology is in WGS of bacterial pathogens for strain 

typing, phylogenetic analysis, and detection of associated AMR and virulence determinants229. 

WGS involves sequencing the genome of single cultured bacterial isolates, followed by 

bioinformatic processing to filter-out low-quality reads and remove adapters213, 214. Analysis 

can then be performed on the unassembled sequenced reads or joining reads together to form 

larger continuous DNA fragments known as ‘contigs’, and generally involves a combination of 

mapping reads to a reference genome or database of reference genes, and/or creating de novo 

genome assemblies from contigs214, 229. Combining both short-read and long-read technologies 

on a single isolate enables entire high-quality genomes and associated plasmids to be 

assembled, referred to as hybrid assemblies214. WGS thereby provides highly detailed strain-

level identification and SNP profiling, as well as analysis of the entire genetic content of 

bacteria including AMR and virulence determinants.  

The recent SARS-CoV-2 pandemic demonstrated the power of WGS in enabling rapid 

surveillance of viral spread and monitoring for emergence of new variants on a global scale230, 

231. In the setting of bacterial pathogen and AMR detection, WGS also has a major role in global 

epidemiological surveillance, allowing a precise picture and phylogenetic analysis of the spread 

and prevalence of high-risk MDR-bacterial lineages and associated AMR determinants at a 

national and international level232. Indeed, two large multi-country WGS-based epidemiologic 

studies investigating the prevalence and dissemination of high-risk Kp lineages discussed in the 
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previous section has recently demonstrated the power of WGS in this setting. The first of these 

was a recent study investigating CPKp dissemination in Europe by David et al., which 

identified key clonal lineages responsible for the majority of CPKp infections, predominantly 

driven by inter-hospital spread within, rather than between, countries66. Similarly, Wyres et al. 

demonstrated an alarmingly high prevalence hypervirulence and MDR convergence in diverse 

Kp lineages causing bloodstream infections in South Asia, including several examples of co-

carriage of hypervirulent and MDR determinants on the same plasmid80. Both studies have 

provided key insights into the global prevalence and trends in dissemination of high-risk Kp 

lineages that can directly inform public health measures.  

At the local level, WGS has also shown great promise in hospital outbreak tracing and infection 

control through high-resolution SNP tracking in strains. In this setting it has been employed to 

delineate sources, reservoirs, transmission chains, within and between patient plasmid and 

clonal transfer events, and identify high-risk wards to directly inform infection control 

measures217, 233. Indeed, WGS has been used to gain important insights and help control several 

CPKp hospital outbreaks in a variety of geographical settings234-236. Thus, with the continually 

improving availability and affordability of WGS, this technology is likely going to be 

increasingly integrated into routine clinical microbiology and public health laboratories.  

2.2.5 Application of NGS in Clinical Microbiology II: Whole Metagenomic Sequencing  

WMS is a rapidly developing NGS technology which involves the sequencing of the entire 

genomic content of complex microbial communities that is also showing promise at improving 

detection of bacterial pathogens and associated AMR determinants in both the surveillance and 

clinical diagnostic setting237, 238. The typical workflow of a WMS analysis parallels that of WGS 

and is outlined in Figure 8. Typically an WMS analysis pipeline involves processing of reads, 

mapping of unassembled reads or assembled contigs for detection of genes of interest such as 

AMR and virulence determinants, as well as creating de novo genome assemblies, known as 

metagenome-assembled genomes (MAGs), through a process of clustering reads belonging to 

a single genome (known as ‘binning’)239. Taxonomy profilers are also used to detect the 

presence and abundance of all species present in samples, with newer tools allowing accurate 

strain-level detection to relative abundances as low as 0.1%239, 240.  
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Figure 8. Workflow summary of WMS. (1) sample collection, DNA extraction and sequencing. (2) 

quality control, adapter removal, and read trimming. (3) read-based and assembly-based sequence 

analysis, including mapping reads to reference genomes or reference genes, and taxonomy profiling. (4) 

Data analysis/interpretation. Reprinted with permission, Nat. Biotechnol239. 

 

A key advantage of WMS over traditional culture-based and other targeted molecular-based 

methods is its ‘shotgun’-based culture-independent approach. This allows unbiased detection 

of bacterial pathogens, both culturable and unculturable, as well as associated AMR and 

virulence determinants, holding promise as a universal pathogen detection test241, 242. This has 

potential for diagnosis of causative infectious agents that have otherwise eluded detection by 

conventional culture or other molecular methods. Several real-world examples of the use of 

WMS in clinical diagnosis have already been demonstrated, including in the setting of 

meningoencephalitis, neuroleptospirosis, sepsis, and respiratory infections243-246. Furthermore, 

WMS has potential to greatly enhance diagnosis of polymicrobial infections247. The 

combination of WMS and the portability and real-time availability of sequencing results 

produced by ONT discussed above further supports the promise of rapid direct-from-sample 

diagnosis with clinically actionable results performed at the patient bedside. This possibility 
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was evidenced by a recent proof-of-concept study in neonates with necrotising enterocolitis by 

Leggett et al., which demonstrated diagnosis of causative pathogens, including Kp, and 

associated resistance profiles, could be achieved in less than five hours from sample collection 

by WMS, compared to 36 – 48 hours by conventional culture-based detection248.   

Similar to applications in clinical diagnostics, the untargeted, culture independent nature of 

WMS has potential to facilitate pathogen and AMR surveillance and inform public health and 

infection control measures. This has been demonstrated by previous WMS studies which have 

identified reservoirs for potential pathogens and AMR determinants in wastewater, coastal 

areas, livestock, and vegetables, with potential for movement into the human niche249-252. WMS 

surveillance of wastewater in particular has potential as an efficient method to monitor the total 

burden of AMR (known as the resistome) in different geographical regions and identify 

contributing factors. Illustrating this, a recent global sewage surveillance project identified 

AMR abundance, which included detection of the high-risk ARGs NDM and mcr, correlated 

with socioeconomic factors including a lower ranking in the human development index253. 

Another WMS-based study of wastewater treatment also found conventional treatments may 

not efficiently remove AMR-carrying bacteria and associated ARGs, and may even enrich for 

these, suggesting wastewater may be an important source for the dissemination of AMR254. 

Monitoring the microbiome and resistome within hospitals by metagenomics can also be used 

to identify and monitor reservoirs for ARGs and has demonstrated significant potential transfer 

of pathogens and AMR elements, including Kp, between the hospital environments, particularly 

sinks and other surfaces, patients and healthcare workers255-257. Additionally, WMS has 

potential to improve surveillance of high-risk non-MDR pathogens, such as HvKp. Such 

pathogens can be difficult to detect by conventional culture-based surveillance methods since 

they lack the AMR-markers that allows convenient selective enrichment of their MDR 

counterparts. Thus, WMS has large potential to support local and international surveillance 

efforts and enhance infection control. 

In addition to detection and surveillance, WMS can give insights into the ecology of pathogens 

and the microbiota as well as their influence on human health in ways are not possible by other 

methods. For example, differences in GIT microbiota composition have already been linked to 

multiple human diseases, including diabetes, cardiovascular disease, depression/anxiety, and 

bowel cancer, suggesting new avenues for treatment of many chronic diseases could exist 

through modulation of the microbiota258. Detecting potentially pathogenic bacteria in the 

context of the wider microbiota by WMS also has potential to allow better understanding of 
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pathogen ecology and identify key inhibitors and promotors of colonisation through 

investigating associations with other taxa259. Furthermore, a key advantage of WMS over 

single-isolate WGS is the ability to detect multiple strains of the same species within a single 

sample90. This ability to analyse within-sample strain diversity has potential to allow better 

understanding of within-species competition, cooperation, and interactions including HGT of 

AMR determinants.  

Despite the potential advantages of WMS, there are several limitations that exist preventing 

widespread application of this technology, including increased costs relative to other methods, 

lack of standardisation, and limitations in detection sensitivity, which makes positive pathogen 

identification challenging238. Detection sensitivity in WMS is directly related to sequencing 

depth, pathogen abundance, and presence of related species leading to misassignment of 

sequence reads260-262. As many pathogens are found at low abundance in microbiomes, 

particularly if strain-level detection is required, reliable detection by WMS in these settings can 

often be challenging. The development of targeted metagenomics, however, through methods 

such as probe-hybridisation capture, has greatly improved detection sensitivity of both low 

abundance species and ARGs in complex metagenomes263, 264. Although the obvious trade-off 

to this approach is the loss of the unbiased and untargeted nature of WMS. Furthermore, due to 

the cell lysis and DNA fragmentation that occurs during metagenomic sample processing, 

placing ARGs in their genetic context and linking plasmids and other MGEs to their bacterial 

hosts is a major challenge in WMS265. Since knowledge of the bacterial hosts and chromosomal- 

or plasmid/MGE-association of ARGs are essential in assessing their clinical relevance and 

dissemination potential, this represents a major limitation of WMS266. Recent developments in 

chromosome conformation capture methods, known as Hi-C, which involves forming a 

covalent linkage between DNA fragments in close proximity (e.g. chromosome and plasmid) 

prior to bacterial cell lysis, shows promise at linking ARGs to plasmids and to bacterial hosts 

within metagenomes267. This, however, is an area of ongoing research.  
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Objectives of the Study 

The first objective of this study was to develop and validate qPCR and WMS-based methods 

to improve the detection and analysis of the KpSC, including to the level of ST, in complex 

microbial samples from the human GIT (Papers I and II). The second objective was to use 

these validated methods to investigate the duration and dynamics of KpSC colonisation of the 

human GIT, as well as associations with the GIT microbiota and host metadata (Paper III).  

Paper I 

Hypothesis: qPCR and WMS have high detection sensitivity of the KpSC from human GIT 

samples and have potential to supplement culture-based detection. 

Specific Objectives:  

➢ Determine the sensitivity and efficiency of KpSC detection by the ZKIR-qPCR in 

human faecal samples, including determination of the limit of detection (LOD) and limit 

of quantification (LOQ). 

➢ Determine the sensitivity of KpSC detection in human faecal samples by WMS using 

standard taxonomy profilers as well as detection of MLST genes and the ZKIR 

sequence. 

➢ Determine the effect of different faecal sample collection methods on taxonomy profile 

by WMS. 

➢ Assess KpSC detection by the ZKIR-qPCR and WMS, both direct from human faecal 

samples as well as following culture-enrichment, and compare to culture-based 

detection. 

➢ Compare quantification of KpSC abundance in human faecal samples by the ZKIR-

qPCR v. WMS 

➢ Explore KpSC ST-level detection by WMS direct from faecal samples. 

 

Paper II 

Hypothesis: KpSC ST typing by WMS from culture-enriched faecal metagenomes is 

equivalent to colony isolate WGS and allows investigation of within-sample strain diversity. 

Specific Objectives: 
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➢ Compare the accuracy of KpSC ST typing in culture-enriched faecal samples by two 

recently developed WMS tools, mSWEEP and StrainGE, to single colony WGS. 

➢ Evaluate the detection of within-sample KpSC ST diversity by mSWEEP and StrainGE. 

➢ Investigate the accuracy of StrainGE to reconstruct phylogenetic relationships between 

the same KpSC STs detected in faecal samples from different hosts compared to single 

colony WGS. 

 

Paper III 

Hypothesis: KpSC GIT carriage is typically of short duration and associates with KpSC 

abundance, carriage ST/s, other taxa within the microbiota, and host-related factors. 

Specific Objectives: 

➢ Determine the GIT carriage duration of the KpSC within a cohort of community-based 

adults over a six-month period. 

➢ Investigate the association between KpSC carriage duration and abundance within the 

GIT. 

➢ Investigate the duration and turn-over of KpSC GIT carriage at the ST-level and its 

association to KpSC carriage duration and GIT abundance. 

➢ Explore the GIT microbiota for taxa that positively and negatively associate with KpSC 

carriage. 

➢ Investigate the association of selected host-related metadata to KpSC GIT carriage 

abundance and duration. 
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Choice of Methods 

Appropriate experimental methodologies are a cornerstone of high quality, reliable, and 

reproducible scientific research. Selecting the correct methods to investigate a specific research 

question requires careful consideration of strengths and weaknesses of each. Experimental 

design should be logical, as straight forward as possible, with attention paid to good 

fundamental design, including robust positive and negative controls. The following is a 

description of the main methods used in this study, including a rationale for inclusion. More 

detailed descriptions of each method are subsequently included in papers I, II, and III. A 

summary of the project workflow is presented in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Overview of the project workflow. Created with BioRender.com 
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1.1 Study Participants and Samples 

All participants and samples in this study came from a previous cross-sectional culture-based 

study of KpSC GIT carriage, conducted from March 2015 to October 201689. This formed part 

of the seventh survey of the Tromsø Study (Tromsø7, https://uit.no/research/tromsostudy). The 

Tromsø Study is a repeat cross-sectional, epidemiological population-based study in the 

municipality of Tromsø, Norway, which is considered representative of a Northern European 

urban population268. As part of the previous cross-sectional KpSC GIT carriage study, faecal 

samples from 2975 participants were screened for KpSC carriage by culture-based detection, 

and all positive carriers underwent single colony WGS89. This therefore represented a highly 

suitable sample collection and study population for both the comparison of detection methods 

and investigation of the ecology of the KpSC within the GIT of community-based adults. For 

papers I and II, faecal samples from this previous cross-sectional study were re-analysed by 

qPCR and WMS (n = 103 for both papers), while for paper III, which was a longitudinal 

prospective study, participants were re-recruited (n = 108) and repeat sampled each month for 

six months (September 2021 to March 2022). Since the KpSC are primarily known as hospital-

associated pathogens, it could be argued that a hospital-based cohort would have been more a 

more clinically relevant study population. As exposure to hospitals is associated with changes 

to the GIT microbiome, however, including loss of diversity and accumulation of potential 

pathogens, such as Kp269, this would have been addressing a fundamentally different research 

question. Moreover, KpSC strains carried within the community likely represent a reservoir for 

KpSC infections once in hospital85.  

All KpSC detection and analysis were performed on faecal samples. Use of faecal samples in 

WMS-based studies represent a highly convenient, inexpensive, and non-invasive method of 

studying the GIT microbiota that is highly comparable to rectal swabbing/biopsy270, 271. It 

should be noted, however, the GIT microbiota is not uniform along its length, and significant 

difference have been found between faecal samples and samples taken from different regions 

of the colon, particularly the colonic mucosa270-272. Thus, faecal sampling should be regarded 

as a proxy for the GIT microbiota, particularly the colon/rectum. For papers I and II, faecal 

samples had been collected in nylon flocked ESwab 490CE.A tubes (Copan, Brescia, Italy). 

These are convenient sampling devices that can be self-sampled and transported at room 

temperature and are validated for viable collection of both aerobic and anaerobic bacteria for 

use in culture-based studies273. The results of paper I, however, demonstrated this collection 

method was not suitable for WMS-based studies due to bacterial overgrowth, particularly of E. 

https://uit.no/research/tromsostudy
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coli, biasing taxonomy profiles. Therefore, for paper III, both ESwabs and Norgen Nucleic 

Acid Preservation system (Norgen Biotek, Ontario, Canada) were used to allow both culture- 

and WMS-based studies to be performed. The Norgen Nucleic Acid Preservation system 

contains a preservative solution preventing further bacterial growth and stabilising genomic 

material and have been validated for use in WMS-based studies, including as part of the results 

of paper I274.  

Selection of samples and participants for papers I, II, and III was also not random but chosen 

to have an over-representation of KpSC culture-positive samples. During the previous cross-

sectional KpSC carriage study, 16.3% of the study population were KpSC positive by culture-

based detection89. For papers I and II, however, 50.4% (n = 52) of selected samples were KpSC 

positive, while for paper III, of the 108 participants recruited to the study, 51.9% had screened 

positive for the KpSC during the previous cross-sectional study. This increased proportion of 

KpSC positive samples in each of the studies was done for comparative purposes to improve 

study power. One drawback of this, however, was that the proportion of persistent carriers 

among the cohort we found in paper III could not be directly extrapolated back onto the 

underlying population. 

1.2 Sample Processing and DNA extraction 

All faecal samples collected during this study were self-sampled by participants. Upon arrival 

at the laboratory 200 µL 85oC glycerol was added to ESwab tubes prior to storage at -80oC, a 

method that has been validated previously89. Although Norgen samples can reportedly be stored 

at room temperature for up to two years (https://norgenbiotek.com/product/stool-nucleic-acid-

collection-and-preservation-system), these samples were also directly stored at -80oC until 

further processing to ensure stability of the genomic material.  

After thawing, most samples underwent DNA extraction directly from faecal material (referred 

to as Direct samples or direct fecal samples). In addition, ESwab samples were cultured on the 

Klebsiella-selective Simmon’s citrate agar with inositol (SCAI) for 48 hours at 37oC, after 

which a culture-sweep of all growth was taken (referred to as Sweep samples). SCAI media 

contains citrate and inositol as its sole carbon sources, both of which can be metabolised by the 

KpSC resulting in large yellow dome-shaped colonies275. This allows differentiation of the 

KpSC from many other potential competitors, particularly E. coli, which typically appear as 

small, greyish-blue colonies due to inability to utilise one or both carbon sources275. Thus, due 

to the generally low abundance of the KpSC in faecal samples, culture-sweep enrichment with 

https://norgenbiotek.com/product/stool-nucleic-acid-collection-and-preservation-system
https://norgenbiotek.com/product/stool-nucleic-acid-collection-and-preservation-system
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SCAI media was investigated as a potential method to increase detection sensitivity by both 

qPCR and WMS.  

All samples underwent whole microbiome DNA extraction and purification using the PureLink 

Microbiome DNA Purification Kit (Thermo Fisher Scientific, Massachusetts, USA). DNA 

extraction has shown to be a major potential biasing step in WMS-based studies due to 

differential bacterial cell lysis between different taxa276, 277. The PureLink Microbiome DNA 

Purification Kit uses a combination of heat, chemical, and mechanical (bead-beating) induced 

cell lysis and has been shown to perform well at giving an unbiased representation of the 

microbiota, comparable to the International Human Microbiota Consortium (IHMC) Protocol 

Q278. To ensure maximum cell lysis of both gram-negative and gram-positive bacteria was 

achieved, we made additional modifications to the protocol by: (i) adding a lysozyme-digestion 

step, (ii) increasing the temperature of the heat-induced lysis step to 95oC, and (iii) bead-beating 

samples using the Precellys Evolution tissue homogenizer (Bertin Technologies, Montigny Le 

Bretonneux, France).  

1.3 qPCR analysis of Samples 

The ZKIR-qPCR was chosen as a rapid, high sensitivity method to screen samples for the 

presence of the KpSC. The ZKIR-qPCR is a recently developed qPCR assay that amplifies a 

78 base-pair intergenic region (the zur-khe intergenic region) that was demonstrated to be 

highly conserved in the KpSC but absent in 88 non-KpSC species analysed, including the 

closely related non-KpSC Klebsiella species K. oxytoca and K. aerogenes150. This qPCR assay 

has been demonstrated to have very high sensitivity in detecting the KpSC in soil, plant, chicken 

meat, and salad samples150, 279. We defined limit of detection (LOD) and limit of quantification 

(LOQ) of the ZKIR-qPCR within human faecal samples as the lowest number of KpSC genome 

copies that could be detected in ten out of ten technical replicates (LOD) and quantified with a 

coefficient of variation (CV) ≤ 35% (LOQ) in accordance with previously published 

guidelines207, 280, 281. LOD and LOQ were determined for the four major human GIT colonising 

phylogroups within the KpSC (i.e. Kp1, Kp2, Kp3, and Kp4) to ensure the assay would not bias 

detection toward different KpSC members. Due to the very high sensitivity of qPCR, robust 

negative controls are essential to control for contamination with exogenous DNA during all 

qPCR assays. We therefore used non-template controls in all assays, and additionally assayed 

an E. coli strain that had been through all processing steps in parallel with Direct samples, and 

a K. oxytoca strain that was processed in parallel with Sweep samples, to control for DNA 
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contamination in all sample processing steps. All samples were assayed in technical triplicate 

to ensure reproducibility of the method and reporting of results was performed in line with the 

Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) 

Guidelines280. 

1.4 WMS of Samples 

Short read sequencing was chosen as our sequencing method for this study due to its well 

documented use in WMS studies and validated bioinformatic analysis tools. For papers I and 

II the Illumina NovaSeq 6000 (Illumina, San Diego, USA) platform were used, however, for 

paper III, as well as our comparison of microbiome profiles from ESwabs v. Norgen samples 

in paper I, the MGI G400 (MGI Tech Co, Shenzen, China) was used due to its equivalent 

quality of sequencing data and lower per sample sequencing costs218, 220. Sequencing depth in 

WMS studies is an important consideration, since deeper sequencing of samples improves 

detection sensitivity261, 262. This has to be balanced, however, against per sample sequencing 

costs, as well as data storage and analysis requirements, which also increase with sequencing 

depth. We chose 20 million 150bp paired-end reads as a trade-off between detection sensitivity 

and cost. Based on previously published comparative studies this would be expected to give 

sufficient species-level identification and reasonable ARG coverage261, 262, 282. Sample library 

preparation, sequencing, and demultiplexing were all performed as per the operating protocols 

of the respective sequencing facilities.  

1.5 Bioinformatic Sample Processing  

The raw short-read sequencing output, which comes in a FASTQ file format, must undergo 

several processing and quality control steps before analysis can be performed. Although a range 

of bioinformatic tools exist for these tasks, processing generally follows the same or similar 

steps. These will be briefly outlined. 

An initial important step in WMS sample processing is removal of human host DNA. In human 

faecal samples this mostly arises from desquamation of GIT epithelial cells and typically 

accounts for <1% total DNA content283. Human host DNA must be removed not only to 

improve down-stream analysis but also for participant safety and confidentiality, due to the 

potential risk that participant identification and important health-related information could be 

gleaned from this data284. Contaminating human DNA can be removed either pre-sequencing, 

using selective human cell lysis and DNase treatment or by DNA methylation-based target-

capture, as well as post-sequencing by selectively mapping and removing human reads from 
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samples285, 286. Several tools are available for the latter purpose, such as FastQ Screen, 

DeconSeq, Bowtie 2, and BWA287-290. We used FastQ Screen (version 0.14.0) against the 

GRCh39 human reference assembly to remove human DNA from our samples following 

sequencing288. FastQ Screen uses either Bowtie, Bowtie 2, or BWA to map reads against pre-

specified genomes, presenting mapping results in graphical format, and has been shown to be 

efficient at identifying and removing contaminating sequences of interest from samples288.  

Due to the high density of clusters of amplified DNA fragments that are generated during 

Illumina sequencing, these can sometimes be separated by the sequencer and misidentified as 

two or more individual clusters291. These artifacts are referred to as ‘optical duplicates’ and 

must be removed prior to down-stream analysis to prevent bias. For this task we used the 

Clumpify tool of the BBMap version 38.79 package which has the added advantage of grouping 

overlapping reads into ‘clumps’ to increase file compression and accelerate down-stream 

analysis292. 

Poor-quality sequences that occur during the sequencing process, as well as adapters used for 

DNA fragment amplification, must be also removed prior to down-stream analysis of 

sequenced reads213, 214. The FASTQ file format of raw sequenced reads contains ASCII-coded 

information on the quality and confidence of each base call293. The probability that a base call 

is correct (referred to as a Quality-score or Q-score) is expressed in Phred numerical format. 

Illumina reads typically have Q-scores of 30+ corresponding to a base call accuracy of 99.9% 

(i.e. probability of an incorrect base call is 1 in 1000)213. Several bioinformatic tools, such as 

FastQC, Trimmomatic and TrimGalore can decode this information and identify and remove 

(‘trim’) low quality sequences from reads294-296. Other tools such as CutAdapt and 

AdapterRemoval can be used for adapter removal297, 298. For our sample processing we used the 

package fastp (version 0.20.1) which can perform a quality check, adapter removal, and trim 

poor-quality reads as a single integrated pipeline, subsequently producing an easy-to-read 

quality control report for each sequence299. 

During the above processing steps, paired reads can become disordered. Down-stream analysis 

tools often will not accept these unsynchronized reads. Resynchronisation of paired reads was 

therefore performed using the Repair tool of the BBMap version 38.79 package292. 
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1.6 Bioinformatic Analysis 

Like sequence read processing, a large number of tools are available for analysis of processed 

metagenomic reads. Additionally, analysis can be performed on unassembled reads or by first 

assembling reads into larger contigs. In general, while both approaches can produce high 

quality, accurate information, metagenomic assemblies have the advantage of encompassing 

entire genes, with the trade-off that information can be lost during the assembly process, while 

unassembled reads retain all sequence information but may be prone to increased false 

positives239. Moreover, the assembly process itself is quite computationally intensive, making 

this step difficult in larger sample collections239. For our study, we predominantly analysed 

samples as unassembled reads due to the size of our sample collection, the potential for higher 

detection sensitivity, and the acceptable reported level of precision of this approach239. The only 

exception was in paper I, in which we investigated KpSC identification in metagenomic 

samples through detecting of the ZKIR sequence and the seven genes from the KpSC MLST 

scheme, which first required an assembly to be performed.  

A key step in most WMS studies is taxonomy profiling to obtain an accurate picture of the 

presence and relative abundance of different taxa within samples. One of the advantages of 

WMS over 16S rRNA metagenomics, which is an additional metagenomic-based approach 

involving targeted sequencing of 16S rRNA hypervariable regions, is significantly higher 

accuracy of species-level identification even at lower sequencing depths282. Unsurprisingly, 

there are a considerable number of taxonomic profiling tools available for short-read WMS 

taxonomic analysis, with some of the most widely used and validated being Kraken2/Bracken, 

Centrifuge, MetaPhlAn4, CLARK, and PathSeq300-305. For papers I and II, Kraken2/Bracken 

and Centrifuge were used, while Kraken2/Bracken only was used in paper III. Centrifuge uses 

Ferrangina-Manzini (FM) and Burrows-Wheeler transform (BWT) to create a highly 

compressed reference database that can rapidly and accurately perform species identification303. 

Kraken2 is a k-mer based taxonomy profiler that uses a lowest common ancestor (LCA) 

assignment approach to assign reads to the lowest taxonomic level within a certain level of 

confidence305. The Bayesian Re-estimation of Abundance with Kraken (Bracken) is an 

extension of Kraken which can then be used to improve abundance estimates304. A key issue 

with all WMS taxonomy profilers, however, is the generation of false positive assignments that 

occur at low species abundances306. This phenomenon was also demonstrated in the results of 

paper I. In this paper we saw the number of Kp false positives was low above 0.1% relative 
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abundance. This was therefore used as a cut-off for species identification when performing 

microbiota association studies in paper III to balance detection sensitivity against specificity.  

A key focus and aim of this study was to perform WMS-based ST-level detection of the KpSC 

both in Direct and Sweep metagenomic samples. Due to the high level of sequence similarity 

that occurs between two strains of the same species, differentiation of these by WMS methods 

is challenging307. Despite this, several sophisticated tools capable of performing accurate strain-

level detection in WMS have recently been developed. In this project we investigated and 

compared two such tools: StrainGST (part of the StrainGE toolkit) and mSWEEP240, 308. While 

a more detailed explanation and comparison of these tools is presented in paper II, briefly, 

StrainGST is a k-mer based tool that rapidly detects closest reference genomes in a customised 

database using relatively low computing resources, while mSWEEP identifies strains through 

pseudoalignments to genomes in a clustered database, infers probabilistic relative abundances, 

and adjusts for false positive detections240, 308. Although mSWEEP is comparatively slower and 

more resource intensive to run, its major advantage is a binning step that allows recovery of 

strain-specific reads for downstream analysis308. Similar to using a species detection limit for 

taxonomy profiling, in paper II we took an additional step of implementing a 5% relative 

abundance cut-off for strain identification for both tools to reduce false positives. 

1.7 Statistical Analysis  

Appropriate and accurate statistical analyses are essential in research to draw valid conclusions 

and generate tenable hypotheses from collected data. For papers I and II we used various 

standard non-parametric statistical tests such as the Mann Whitney U test and Spearman 

correlations depending on the specific research question and characteristics of the underlying 

data. The data collected for paper III, however, had a more complex structure due to the repeat 

sampling of participants. This required a more advanced statistical analytic approach due to 

violation of the assumption of independence between samples required for most conventional 

statistical tests. For this paper we employed linear mixed effects models (LMMs) to investigate 

associations between KpSC GIT abundance and predictor variables in our dataset. LMMs are 

powerful statistical modelling tools that allow investigation between response and predictor 

variables of interest (known as fixed effects) while accounting for non-independence between 

samples induced by a grouping or clustering variable, which in our case was repeat sampling 

of the same participants (known as random effects)309. In other words, LMMs can estimate 

variance in the response variable both within and between groups within a dataset309. Use of 
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random effects in LMMs control for non-independence typically by constraining groups of 

samples to have either the same intercept (known as a random intercept model), or the same 

intercept and the same slope (known as a random intercept and random slope model), with both 

approaches having their own pros and cons309. In general, random intercept models are simpler 

and easier to interpret but may have increased type I (false positives) and type II errors (false 

negatives), whereas combined random intercept and random slope models are more complex, 

which, while allowing for more accurate estimates, also risks overfitting data309, 310. Overfitting 

is a phenomenon where a model starts to fit the noise inherent to the dataset and therefore will 

not generalise well to new data310. As paper III is primarily aimed at exploring associations 

with KpSC GIT carriage to generate hypotheses for future testing, we chose random intercept 

LMMs to model our data due to simplicity and reduced risk of data overfitting.  

Another important consideration with relevance to paper III is multiple testing correction. This 

is a method of adjusting p-values to correct for the increased probability of observing type I 

errors when multiple statistical tests are performed311, 312. Two common methods for performing 

multiple testing correction are the Bonferroni Correction, which controls the probability of at 

least one type I error occurring across all statistical tests performed, known as the family-wise 

error rate (FWER), and the Benjamini-Hochberg Procedure, which controls the expected 

proportion of type I errors among all rejected null hypotheses, known as the false discovery rate 

(FDR)311, 312. In general, the Bonferroni Correction is more conservative and most appropriate 

when type I errors can’t be tolerated, e.g. in studies where type I errors can have serious 

consequences, but may produce more type II errors, whereas the Benjamini-Hochberg 

Procedure is preferred in studies where maximising discovery of true positives is important and 

some false discoveries can be tolerated311, 312. Like the choice of LMM above, since paper III 

was an exploratory study of associations with KpSC GIT carriage, we wished to maximise true 

positive associations and therefore the Benjamini-Hochberg Procedure was selected for 

multiple testing correction. 

1.8 Ethical Considerations 

Proper consideration of ethical issues is important to ensure participant safety as well as 

maintain public trust in scientific research. Two important considerations in studies involving 

participant sampling are maintaining privacy and confidentiality, as well as risks involved in 

the sampling process. To mitigate potential risks in this study, enrolled participants were de-

identified and given unique four-digit IDs, in addition, samples and WMS sequences were given 
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different unique codes. All data except WMS sequence data was stored electronically on the 

UiT OneDrive, protected with two-step authentication. WMS sequences were stored separately 

on the Norwegian academic high-performance computing and storage services maintained by 

the Sigma2 Norwegian Research Infrastructure Service (NRIS), as well as the Norwegian e-

infrastructure for Life Sciences (NeLS) maintained by ELIXIR Norway. Access to data storage 

was restricted to direct project members only. As discussed above, human DNA was removed 

upon receipt of all WMS sequence data. Collecting faecal samples is also non-invasive and 

posed no risk to participants. Finally, all participants were provided with detailed information 

regarding the purpose and importance of the study, the faecal sampling procedure, and the 

planned use of faecal material provided. Signed consent was obtained from all enrolled 

participants. Enrolment in the study was voluntary and participants could withdraw at any time. 

This study was approved by the Regional Committee for Medical and Health Research Ethics, 

North Norway (REC North reference: 2016/1799, 2014/940, and 137064). 
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Summary of Results 

Paper I  

Detection of Klebsiella pneumoniae human gut carriage: a comparison of culture, qPCR, 

and whole metagenomic sequencing methods 

➢ We found the ZKIR-qPCR had an amplification efficiency > 90% and R2 > 0.99 for 

representative strains of Kp1, Kp2, Kp3, and Kp4 in a linear dynamic range of 250,000 

to 3 genome copies per reaction in the presence of 25 ng human faecal microbiome 

DNA. 

➢ All four KpSC phylogroups could be detected to three genome copies per reaction 

(LOD) and quantified to 16 genome copies per reaction with CV ≤ 35% (LOQ) in the 

presence of 25 ng human faecal microbiome DNA. 

➢ The ZKIR-qPCR was positive in 52/52 Kp culture-positive samples and 11/51 (22%) 

and 23/47 (49%) KpSC culture-negative Direct and Sweep samples, respectively. 

Culture positive samples had a significantly higher abundance of Kp than culture 

negative samples when quantified by the ZKIR-qPCR (p < .001). 

➢ Faecal samples collected in ESwabs had a significantly higher abundance of 

Enterobacterales and E. coli compared to a sample from the same faecal material from 

the same participant collected in Norgen collection devices (median 38.2% vs 0.62% p 

= .002, and median 26.2% vs 0.16% p = .002, respectively). 

➢ When measured by WMS, the relative abundance of Kp was significantly higher in 

ZKIR-qPCR positive samples than negative samples for both Direct and Sweep samples 

(median 0.027% vs 0.00035% p < .001, and 6.05% vs 0.063% p < .001, respectively) 

but had considerable overlap.  

➢ Using a 0.01% relative abundance cutoff, WMS was positive in 37/52 (71.2%) of 

culture positive Direct samples but identified multiple qPCR- and culture negative 

samples as positive. 

➢ Kp false positives detected by WMS correlated strongly with the abundance of other 

Enterobacterales present in in silico binary species mixes. 

➢ The ZKIR sequence and 4/7 Kp MLST genes were detected directly from WMS 

assemblies in 20/103 and 17/103 Direct samples and 54/99 and 52/99 Sweep samples, 

respectively. All Direct ZKIR and MLST WMS positive samples were also positive by 

the ZKIR-qPCR and culture. Similarly, all Sweep ZKIR and MLST positive WMS 
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samples were also positive by the ZKIR-qPCR and 50/54 and 49/52 were positive by 

culture, respectively.     

➢ Kp relative abundance measured by WMS correlated strongly with abundance measured 

by the ZKIR-qPCR for both Direct and Sweep samples (Spearman’s R = 0.91 p < .001 

and R = 0.96 p < 0.001, respectively). 

➢ WMS performed accurate ST-level detection, agreeing with culture-isolate WGS 

detection in 16/19 Direct samples, and detected within sample ST diversity. 

Paper II  

Sequence type and strain level detection of Klebsiella pneumoniae in complex bacterial 

metagenomes: comparative performance of mSWEEP and StrainGE bioinformatic tools 

➢ In samples with a single Kp ST detected by single colony WGS we found the ST 

detected by both StrainGE and mSWEEP was concordant in 44/49 (89.8%) and 46/49 

(93.9%) Sweep samples, respectively. 

➢ In samples with two STs detected by WGS, StrainGE and mSWEEP detected the same 

two STs as single colony WGS in 2/3 (66.7%) samples. In the sample that was 

discrepant, only one of the STs detected by both StrainGE and mSWEEP agreed with 

single colony WGS (ST151).  

➢ Within sample ST diversity was detected in 15 and 19 samples by StrainGE and 

mSWEEP, respectively (max 3 STs/sample). Additional STs detected were concordant 

between StrainGE and mSWEEP in ten out of twelve samples. 

➢ In phylogenetic analysis, the ST detected by single colony WGS and the corresponding 

ST detected by StrainGE were assigned to the same clade for ST20 and ST26. For ST25 

the single colony WGS detected ST and StrainGE detected ST were assigned to different 

clades despite coming from the same sample. 

Paper III  

Longitudinal analysis of Klebsiella pneumoniae Species Complex human gut colonization 

identifies a subgroup of high-abundance persistent carriers with strong microbiota 

associations 

➢ Of the 85 participants that delivered all six samples, we found 69.4% (59/85) carried 

the KpSC between 1/6 - 5/6 months (collectively termed transient carriers), 27.1% 
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(23/85) were positive in all 6/6 months (persistent carriers), and 3.5% (3/85) were 

negative in all 6/6 months (non-carriers).  

➢ We found the abundance of the KpSC in samples from persistent carriers was 

significantly higher than all carriage durations of transient carriers (p-values .008, 

<.001, .008, .004, and .03, for 5/6, 4/6, 3/6, 2/6, and 1/6 months, respectively, Walt t-

distribution approximation). Persistent carriers also made up 14 of the top 15 

participants with the highest median KpSC carriage abundance.  

➢ The same KpSC ST was detected between 3/6 – 6/6 months in 15/21 (65.2%) persistent 

carriers. Four persistent carriers had the same ST was detected in all six months (ST405, 

ST26, ST13, and ST14) and five had the same ST detected in 5/6 months (ST27, ST643-

1LV, ST20, ST360, and ST876). Eight STs carried 3/6 – 6/6 months were among the 

3.5% most prevalent in the previous Tromsø7 KpSC cross-sectional carriage study. 

➢ Of the 25 transient carriers with an ST detected in at least two months, the same ST was 

detected two and three times in n = 7 and n = 3 participants, respectively. The remaining 

15 did not have the same ST detected in repeated samples. 

➢ Of the 21 STs detected in a participant between 3/6 – 6/6 months, 16 were Kp, three 

were K. variicola, and two were K. quasipneumoniae subsp. similipneumoniae. 

➢ We did not find a significant association between KpSC carriage abundance and alpha 

diversity (measured by the Shannon Index) by LMM analysis among our samples (β -

0.008, 95% CI: -0.02 – 0.002, p = .107, Walt t-distribution approximation).  

➢ Beta-diversity analysis using Bray-Curtis dissimilarity at the genus level and 

visualisation by Principal coordinate analysis (PCoA) demonstrated samples with high 

KpSC abundance were more predominant in the positive half of PCoA axis 1. 

➢ Biplot analysis of Bray-Curtis dissimilarities and hierarchical clustering demonstrated 

samples grouped into three distinct clusters based on different taxa abundances. 

Microbiome Cluster I was significantly higher in KpSC abundance and was higher in 

Bacteroides and Phocaeicola, while Microbiome Cluster II and III were higher in 

Bifidobacterium, Alistipes, Akkermansia, as well as multiple genera belonging to 

Bacillota (Firmicutes). 

➢ LMM analysis identified 103 microbiota species with significant positive or negative 

associations with the KpSC. There was strong agreement between positively and 

negatively associated species and the genera identified by biplot analysis and 

hierarchical clustering. Notably, five of the fifteen strongest negatively associated 

species all belonged to the Bifidobacterium genus. 
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➢ Significant associations were detected between the KpSC and ten Enterobacterales 

species. Of these five had positive associations (including the non-KpSC Klebsiella 

species K. michiganesis, K. grimontii, and K. oxytoca, as well as Citrobacter freundii 

and Enterobacter roggenkampii), and five had negative associations to the KpSC 

(Enterobacter asburiae, Salmonella enterica, Enterobacter kobei, Escherichia alberti, 

and Enterobacter cloacae). 

➢ Further investigation of the twenty microbiota species with the strongest negative 

associations to the KpSC demonstrated negative associations could also be observed 

dynamically within an average of 70.9% of participants (range 60.9% - 77.8%) that had 

at least one sample with KpSC abundance over 3 genome copies/ng DNA. 

➢ LMM analysis demonstrated a positive association between KpSC abundance and age, 

travel abroad, and diabetes. Use of antimicrobials within four weeks of sample taking 

was negatively associated with KpSC abundance. Microbiota species significantly 

associated with both diabetes and antimicrobial use strongly overlapped with microbiota 

species significantly associated with KpSC abundance. 

➢ A spike in KpSC abundance of at least three-fold was observed in all ten participants 

that reported at least one incident of antimicrobial use and delivered at least one sample 

post exposure. One participant underwent a one-hundred-fold increase in GIT 

abundance of the Kp strain ST643-1LV (from 0.35% to 32.3%) following penicillin 

exposure and sustained this high abundance for the following five months. 
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General Discussion 

Ever since the first reports of acquired carbapenem resistance during the 1990s, Kp has steadily 

emerged as a major threat to global health through the widespread acquisition and dissemination 

of resistance toward clinically important and last-line antimicrobials4. The resulting difficult-

to-treat nosocomial infections and frequent hospital outbreaks have resulted in serious 

consequences for patients, particularly those most vulnerable, and created a large burden on 

healthcare systems5, 6, 57. Coupled to this has been the establishment of HvKp lineages, able to 

cause aggressive community-acquired infections in younger hosts lacking the typical risk 

factors associated with opportunistic nosocomial Kp infections23, 24. The concerning rise of 

XDR- and PDR-Kp, the convergence of hypervirulence and AMR in single Kp lineages, as well 

as the emergence of other KpSC members, in particular K. variicola, as important human 

pathogens capable of acquiring AMR elements, further underlines the importance of this 

threat14, 71, 80. To meet this challenge, fast and accurate methods are required to improve our 

detection, surveillance, and understanding of this group of pathogens, as well as identify new 

targets and strategies for intervention. 

Kp colonisation of the GIT represents a major target for surveillance and intervention due to its 

importance as a risk factor for invasive infection and potential as a silent reservoir for 

dissemination of high-risk clones and AMR determinants85, 93, 99, 100. Despite this, much remains 

unknown regarding the ecology of KpSC within the GIT, and there is a need for new tools 

allowing more accurate detection and analysis of the KpSC in this setting. The aim of this study 

was therefore to investigate the molecular-based methods, the ZKIR-qPCR and WMS, to detect 

and analyse the KpSC from human faecal samples compared to culture-based detection (paper 

I), assess ST-level detection of the KpSC by WMS in culture-enriched faecal samples compared 

to single isolate WGS (paper II), and use the methods developed in papers I and II to 

investigate the duration, ST dynamics, microbiota and host associations of KpSC GIT 

colonisation in a longitudinal setting (paper III).  

qPCR has previously been demonstrated to be a highly sensitive method for the detection of 

pathogens from a range of clinical samples206. Accordingly, of the methods we investigated in 

paper I, our results demonstrated the ZKIR-qPCR had the highest KpSC detection sensitivity, 

with a remarkably low LOD of just three genome copies per reaction. We found the ZKIR-

qPCR was able to detect the KpSC directly from faecal material in all culture-positive samples, 

as well as 11/51 culture-negative samples. This sensitivity was further enhanced by performing 
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SCAI-culture sweep enrichment, which increased the detection to 23/47 culture-negative 

samples. In-line with our findings, Barbier et al. and Rodrigues et al. have also previously 

demonstrated a higher KpSC detection sensitivity by the ZKIR-qPCR compared to culture in 

soil, plant, chicken meat, and salad samples150, 279. Together, these findings indicate the ZKIR-

qPCR is a highly sensitive tool suitable for the rapid and accurate detection of the KpSC in a 

range of complex microbial samples. 

To date most studies investigating the KpSC GIT colonisation have used conventional single-

colony, culture-based approaches. While these studies have yielded invaluable insights into the 

ecology of the KpSC, several studies, including our work in paper I, have suggested such 

culture-based detection may have reduced detection sensitivity in complex microbial 

communities such as faecal samples195-198. Indeed, the results of paper I strongly suggest 

single-colony culture-based detection substantially underestimates the true prevalence of KpSC 

GIT carriage in faecal samples. Moreover, we demonstrated detection by culture was directly 

related to the abundance of the KpSC, suggesting an abundance threshold exists, below which 

detection by culture become increasingly difficult. Beyond studying the ecology KpSC GIT 

colonisation, the potential for reduced sensitivity of culture-based detection can have important 

public health implications. This was illustrated by Singh et al., in which culture-based screening 

of rectal swabs in a long-term acute care hospital failed to identify GIT carriage of CPKp in 9 

out of 66 patients198. This highlights the potential utility for high sensitivity detection methods 

such as the ZKIR-qPCR for infection control and screening purposes.  

The unbiased and untargeted nature of WMS has led to its proposed use as a universal test for 

detection of pathogens, as well as associated AMR and virulence determinants, in both clinical 

diagnostics and surveillance237, 241, 242. Indeed, studies have suggested WMS is potentially faster 

and has a higher overall detection rate than conventional methods, with key advantages being 

enhanced detection of fastidious/unculturable organisms, polymicrobial infections, and in the 

setting of prior antibiotic exposure247, 313, 314. Major hurdles preventing more widespread use of 

WMS, however, include high costs, uncertainties regarding sensitivity and specificity, and lack 

of standardisation, particularly regarding criteria for pathogen detection238, 314. A key aim of 

paper I was to therefore to assess the sensitivity and specificity of Kp detection by WMS in 

human faecal samples. Using a standard taxonomy profiler, we found WMS had strong 

agreement with both culture- and qPCR-detection at higher relative abundances, however, 

below approximately 0.1% abundance Kp detection by WMS became increasing difficult to 

distinguish from background noise. Moreover, using in silico binary species mixes we showed 
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the false positive rate of Kp detection by WMS was directly proportional to the abundance and 

relatedness of other Enterobacterales present. Performing a SCAI-sweep enrichment step also 

did not markedly improve detection specificity, presumably because other non-KpSC 

Klebsiella species were also enriched, leading to a proportional increase in false positives. 

Targeting KpSC-specific sequences, the ZKIR-regions and MLST genes, in assembled 

metagenomes did improve this specificity, with sensitivity similar to that of culture. Given that 

Kp abundance within the GIT has been shown to be predominantly below 0.1%, including in 

paper III, this is an important consideration that may limit the use of WMS with standard 

taxonomy profilers as a surveillance tool for monitoring GIT carriage of the KpSC86, 114. 

Previous studies have shown an increased abundance of the Kp within the GIT microbiota infers 

a higher infection risk and is associated with an increased rate of strain transmission in 

hospitalised patients95-97. Infection in this setting is likely driven by translocation of bacteria 

from the GIT lumen across the intestinal epithelial layer into extraintestinal tissues315. As this 

is thought to be a mostly stochastic event in susceptible hosts, the probability of a translocation 

event occurring increases with increasing pathogen abundance in the GIT315. In addition to this, 

in paper III we found GIT abundance likely has an important role in determining success and 

longevity of KpSC colonisation (discussed below). These findings suggest an important role of 

high abundance GIT colonisation in both the pathogenesis and ecology of the KpSC. Our results 

of paper I indicate that while both WMS and the ZKIR-qPCR can be used to perform accurate 

KpSC quantification from faecal material, the ZKIR-qPCR could perform this faster and was 

accurate to lower abundances, with a CV ≤ 35% at just 16 genome copies per reaction. Thus, 

the rapid and accurate quantification of KpSC by the ZKIR-qPCR could have potential roles in 

both the research setting, investigating KpSC colonisation ecology and responses to 

interventions and exposures, as well as the clinical setting, as an efficient means of identifying 

and stratifying patients at risk of KpSC infection and strain transmission. 

The global spread of AMR by Kp is predominantly driven by the expansion and dissemination 

of a relatively small number of high-risk CGs3. Moreover, within hospitals, Kp outbreaks are 

typically clonal in nature and can rapidly spread between hosts and form reservoirs in the 

hospital environment that hamper infection control efforts and facilitate ongoing 

transmission234-236. Identification and analysis of Kp at the sub-species and strain-level is 

therefore essential to understand colonisation dynamics and spread, identify reservoirs, and 

target infection control interventions to prevent further dissemination. Our results indicate the 

accuracy of ST detection by WMS, using the tools StrainGE and mSWEEP, is comparable to 
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that of single colony WGS. As shown in paper I, however, ST detection by WMS direct from 

faecal material was limited by the generally low abundance of the KpSC (<0.1%). Paper II 

demonstrated ST detection was greatly enhanced by performing an SCAI-sweep culture-

enrichment step. Using this method, ST detection agreed with single colony WGS detection in 

44/49 and 46/49 samples analysed by StrainGST (part of StrainGE) and mSWEEP, 

respectively. Moreover, in samples that had two KpSC STs detected by WGS, WMS correctly 

identified both in 2/3 and 2/2 samples in paper II and paper III, respectively. Notably in the 

sample that was not concordant, one ST detected by both StrainGST and mSWEEP agreed with 

culture (ST151). Furthermore, in this sample, StrainGST detected an additional ST that was the 

same phylogroup as that detected by single colony WGS (K. variicola) but different ST. 

Moreover, in paper II, STs detected in addition to the WGS detected ST were concordant 

between StrainGST and mSWEEP in ten out of twelve samples. The ability to detect multiple 

STs within the same sample is a key potential advantage of WMS-based strain detection over 

single colony detection by WGS. Indeed, in paper III, using StrainGST we were able to show 

multiple pairs of KpSC STs, including ST20/ST1832, ST36/ST360, ST507/ST5084, and 

ST10/ST641, were capable of stable co-colonisation within the same participant for prolonged 

periods, demonstrating the advantage of WMS in understanding ST colonisation dynamics in 

this setting. 

Paper II also demonstrated the relative strengths and weaknesses of StrainGE and mSWEEP 

in ST detection by WMS. StrainGST was able to perform rapid ST detection (within hours) 

using low computing resources. Furthermore, StrainGE could reconstruct accurate 

phylogenetic relationships between the same STs found in different samples for 2/3 STs 

analysed (ST20 and ST25 but not ST26). Conversely, while mSWEEP was slower and more 

resource intensive, the inclusion of a binning step means mSWEEP has the potential for 

recovery of complete or near complete strain-level genomes for in-depth down-stream analysis. 

Despite the many barriers already outlined preventing the current use of WMS in clinical 

microbiology, this work nonetheless demonstrates the potential of this technology as a useful 

tool in the future of pathogen and AMR surveillance and infection control. In particular, the 

ability to perform rapid ST detection with tools like StrainGST, combined with the real-time 

availability of sequencing data from ONT platforms, hints at the exciting potential for future 

point-of-care outbreak screening and infection control, producing actionable results in a 

clinically relevant timeframe. 
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The duration of KpSC GIT colonisation represents a large knowledge gap in our current 

understanding of KpSC ecology. Previous small sample-sized studies have suggested GIT 

colonisation by the KpSC is of short-duration with high strain turn-over98, 153. Studies of MDR-

Kp acquired in hospital or during international travel, however, have demonstrated prolonged 

GIT colonisation up to four years is possible99-103. Furthermore, during prolonged colonisation, 

strain transmission of MDR-Kp to household contacts as well as HGT of AMR-contained 

plasmids to other Kp species, as well as E. coli, has been observed99, 100. The aim of paper III 

was to therefore utilise the methods we had developed in papers I and II to answer key 

questions regarding the duration of KpSC GIT colonisation. By analysing faecal samples from 

85 community-based participants collected monthly for six months using the ZKIR-qPCR, we 

demonstrated KpSC GIT colonisation is indeed predominantly transient, lasting between one 

and five months in 69.4% (n = 59) of participants, with only 3.5% (n = 3) of participants 

persistently negative for the KpSC in all samples. The remaining 27.1% (n = 23) of participants, 

however, were persistently positive for the KpSC in all six months, indicating prolonged GIT 

colonisation of the KpSC is possible even in the absence of predisposing risk factors such as 

recent hospitalisation or international travel. Further to this, quantifying KpSC by the ZKIR-

qPCR demonstrated persistent GIT colonisation was significantly associated with a higher 

KpSC abundance compared to transient carriage.  

Performing ST-detection using StrainGST, we found the same ST was present in 3 – 6 out of 6 

months in 65.2% (15/21) of persistent carriers. This contrasted to transient carriers, in which 

only 40% (10/25) of participants analysed had the same ST detected either two or three times 

(n = 7 and 3, respectively), while the remaining 15 did not have the same ST detected in repeated 

samples. In addition, we found a significantly higher abundance of KpSC among participants 

that maintained the same ST between 4 – 6 months compared to those that had highest ST 

turnover (at least three different STs in three different months). These findings indicate a strong 

trend toward ST retention among high-abundance persistent KpSC carriers and suggests a role 

for high abundance carriers as reservoirs for long-term ST maintenance within the community.  

Interestingly, of the four STs detected in all six participant samples, three were global high-risk 

lineages associated with the carriage of ESBLs and carbapenemases (ST405, ST13, and ST14) 

316-318. This suggests these STs may be particularly well adapted to prolonged colonisation of 

the human GIT and may explain at least part of the global success of these lineages by providing 

more frequent opportunities for dissemination and acquisition of AMR +/- virulence 

determinants. Further studies elucidating the strategies used to achieve prolonged colonisation 
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may therefore offer potential targets for intervention to slow the dissemination and spread of 

AMR by high-risk lineages such as these. 

Despite the therapeutic potential of colonisation resistance to induce decolonisation of Kp and 

other Enterobacterales from the GIT through microbiota-modulating therapies, current 

approaches to utilise this, such as through FMT and probiotics, have not yet proved 

efficacious134, 136, 147. One possible reason for this is the lack of fundamental studies identifying 

the combinations of commensal species required to induce efficient decolonisation of Kp and 

other Enterobacterales. For example, most probiotics used in clinical trials are Saccharomyces, 

Lactobacillus, and Bifidobacterium, or a combination of these, however, Spragge et al. 

demonstrated colonisation resistance of Kp requires the collective action of a diverse 

community of specific bacteria, with single species in isolation unable to induce efficient 

decolonisation121, 136. To further investigate this, we found the microbiota of participants in 

paper III could be grouped into three distinct clusters based on taxa abundance. Of these, 

Microbiota Clusters II and III, which were abundant in Bifidobacterium, Akkermansia, 

Alistipes, and multiple Bacillota (Firmicutes) including Faecalibacterium, Christensenella, 

Oscillibacter, Intestinimonas, and Eubacterium, were associated with a lower abundance of the 

KpSC compared to Microbiome Cluster I. This suggests the taxa abundant in these clusters may 

be able to collectively suppress KpSC expansion in the GIT. These observations were supported 

by univariate linear regression investigating individual KpSC-microbiota associations at the 

species level, both across the cohort and within individual participants. Notably, many of the 

taxa we identified are major producers of SCFAs in the adult GIT, supporting the proposed role 

for this group of molecules in inhibiting KpSC expansion129. Future studies investigating 

colonisation resistance against the KpSC involving combinations of these taxa, and the 

mechanisms involved, such SCFA production, may therefore have potential to lead to more 

tailored and effective microbiota-based decolonisation strategies. 

Competition for nutrients is also a major mechanism driving colonisation resistance117. 

Moreover, most nutrient competition occurs between closely related species due to a larger 

potential metabolic overlap117. Nutrient competition between members of the Enterobacterales 

is therefore thought to be important in inhibiting colonisation by several pathogens within this 

order, including Kp127, 319, 320. Conversely, it is conceivable that Enterobacterales species that 

can stably co-inhabit the same nutrient niche for extended periods may be more likely to engage 

in HGT through prolonged shared proximity. Thus, understanding the colonisation dynamics 

between the KpSC and other Enterobacterales members may have potential to improve our 
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understanding of mechanisms that inhibit KpSC colonisation, as well as conditions in which 

the KpSC may be more likely to participate in HGT of AMR determinants. In paper III, we 

found positive associations between the KpSC and the non-KpSC Klebsiella species K. 

michiganesis, K. oxytoca, and K. grimontii within microbiome samples. This was somewhat 

surprising, given the close evolutionary relationship between these species, it may have been 

predicted that negative associations would have predominated due to the potentially large 

overlap in shared nutrient requirements. Indeed, Osbelt et al. previously demonstrated K. 

oxytoca can induce decolonisation of Kp in mice by outcompeting for specific carbohydrates127. 

One possible explanation for these conflicting results is that while antagonistic interactions such 

as these may be occurring at the micro-level, on the macro scale, a microbiome with sufficient 

nutrients could plausibly support multiple different Klebsiella species. Additionally, although 

Osbelt et al. observed this inhibitory interaction for two different Kp STs, the high metabolic 

diversity of the KpSC may mean other strains are able to overcome this form of nutrient 

inhibition.  

Another potential inhibitor of the KpSC is E. coli, which was identified as a key species in 

blocking Kp colonisation by Spragge et al., while Mäklin et al. found E. coli to be an important 

competitor of Kp in the developing infant microbiome90, 121. Although we did not identify E. 

coli as significantly associated with the KpSC in paper III, five Enterobacterales species were 

identified as being negatively associated with the KpSC suggesting other species within the 

order may be able to fill this antagonistic role in the adult GIT microbiota. It should be noted, 

however, as we demonstrated in paper I, WMS-based detection of closely related low 

abundance species such as the Enterobacterales may have limitations in accuracy due to read 

misassignment between species. Future studies investigating the dynamics between the KpSC 

and other Enterobacterales using more sensitive methods such as species-specific qPCR in 

addition to the ZKIR-qPCR are therefore warranted.  

Although several cross-sectional studies have identified host factors that are associated with an 

increased prevalence of KpSC detection in GIT samples, the underlying mechanisms by which 

these factors may promote KpSC colonisation are not well understood87, 89. Investigation of 

previously identified KpSC carriage risk factors in paper III demonstrated positive 

associations between KpSC GIT abundance and age, international travel, and diabetes. This 

may suggest achieving high abundance within the GIT microbiota is an important mechanism 

in increased KpSC colonisation in the presence of these factors. Additionally, investigating 

associations within the microbiota demonstrated species negatively associated with diabetes 
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strongly overlapped with those negatively associated with the KpSC, including Bifidobacterium 

and multiple Bacillota (Firmicutes). Similar microbiota changes have previously been 

described in the presence of diabetes and are thought to contribute to disease progression 

through promoting a chronic inflammatory state within the GIT321. It is possible that this 

chronic inflammation may also promote the increased KpSC colonisation seen in diabetics. 

Moreover, probiotic supplementation with Bifidobacterium, Clostridium, and Akkermansia has 

been shown to improve glycaemic control in mice322. This suggests that appropriate probiotic 

therapy may have potential to provide additional health benefits beyond promoting 

decolonisation of the KpSC. 

Antimicrobial therapy has been associated with an increase in the prevalence of KpSC GIT 

carriage and is a risk factor for Kp HAIs87, 89, 323, 324. In paper III, we observed a significantly 

lower KpSC abundance within four weeks of antimicrobial exposure, with an associated 

reduction in taxa negatively associated with the KpSC, including Akkermansia mucinophila, 

Bifidobacterium, Alistipes, and multiple Bacillota (Firmicutes). This was followed by a relative 

‘spike’ in KpSC in the subsequent months. Although this observation was based on only ten 

participants in our cohort that delivered at least one sample post antimicrobial exposure, it was 

nonetheless suggestive of a post-antimicrobial bloom, which have been reported previously for 

several Enterobacterales, including Kp325, 326. Such blooms are thought to be the result of 

increased nutrient availability, and reduction in SCFAs, leading to increase oxygen 

availability131, 326, 327. Importantly, while the abundance of KpSC returned to pre-spike levels in 

most participants, one participant underwent a large increase from <1% to 32% relative 

abundance of the Kp strain ST643-1LV, which was sustained for the following five months. 

Although further studies are required to confirm and further investigate this phenomenon, this 

suggests antimicrobial exposure may represent an important source of high abundance 

persistent carriage of the KpSC. 

This project had several key strengths, including the use of the highly sensitive and specific 

ZKIR-qPCR, allowing accurate detection and quantification of the KpSC within samples, and 

was a robust tool for analysing carriage duration, abundance, and microbiota associations in 

paper III. The recent cross-sectional KpSC carriage study, part of the Tromsø7 Study, also 

allowed access to a large number of samples already analysed by culture and WGS. This was 

an excellent basis for our development and comparison of KpSC detection methods in papers 

I and II. It also facilitated recruitment of participants for paper III for further analysis of KpSC 

GIT carriage.  



 

65 

 

The study had some important limitations. In paper I, Centrifuge was used as our standard 

taxonomy profiler to investigate the KpSC detection sensitivity of WMS. Although Centrifuge 

is well validated and has performed well in comparative studies in terms of detection 

accuracy303, 306, 328, it is possible using another profiler with a different database may have 

proved more sensitive and specific at detecting the KpSC. Additionally, in paper II our 

investigation of accuracy of StrainGE to recreate phylogenetic strain relationships was limited 

by the number of samples we had containing the same ST. Moreover, the SNP distances of 605 

to 1678 between ST20 isolates suggested these strains were not especially closely related. 

Paper III was also limited by non-random participant selection, potentially being 

underpowered to find associations between KpSC carriage and participant factors, use of 

questionnaire data, and being a single population-based study of older age of participants 

(median age 69 y), which are all discussed in more detail in this paper. 

Conclusions and Future Prospectives 

This study has demonstrated the ZKIR-qPCR and WMS are powerful tools to detect and 

analyse the KpSC in human faecal samples that can complement culture-based detection in 

studying the ecology of KpSC GIT colonisation and may have potential to support more clinical 

applications. The ZKIR-qPCR and WMS were complimentary in their respective possibilities 

and limitations. This was evidenced by the speed and accuracy of the ZKIR-qPCR in detecting 

and quantifying the KpSC, allowing more in-depth microbiota analysis and ST-detection by 

WMS. Applying these methods to the study of KpSC GIT carriage in a longitudinal setting 

demonstrated a pervasive, predominantly transient pattern of carriage, with a subset of the 

population susceptible to high-abundance prolonged colonisation and ST retention. Our 

identification of taxa consistently associated with KpSC abundance, both positively, including 

Bacteroides and Phocaeacola, and negatively, including Bifidobacterium, Alistipes, 

Akkermansia, and multiple Bacillota (Firmicutes), suggests these may be important facilitators 

and inhibitors of KpSC colonisation, respectively. Understanding the mechanisms by which 

these taxa may influence KpSC colonisation has potential to inform novel decolonisation 

strategies that could reduce the burden of infection and spread of AMR by this important group 

of pathogens.  

This study has generated a number of hypotheses which has created the foundation for future 

studies. In paper II, while we showed both StrainGE and mSWEEP had good accuracy at 

KpSC ST detection from culture-enriched faecal samples, it would be very interesting to apply 
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these tools to samples from a real-life Kp hospital outbreak as a ‘proof of principle’ study. This 

would allow direct comparison of the accuracy and speed of outbreak strain detection, as well 

as the ability to contribute to accurate elucidation of transmission chains and identify outbreak 

sources compared to conventional methods, allowing further evaluation of the future potential 

and utility of WMS in the clinical setting. Moreover, investigation into the use of probe-target 

enrichment WMS is currently underway in our lab, which is showing promise for further 

improvement of KpSC and associated AMR detection by WMS in the surveillance and clinical 

setting. 

Our findings and dataset we have created in paper III have also laid the basis for further 

investigations, many of which are already underway. Currently, we have begun the process of 

isolating KpSC strains we identified as both persistent and transient colonisers. Using 

comparative genomics and potentially in vitro or even in vivo studies, we hope to identify and 

test acquired traits within these strains that may predispose to prolonged GIT colonisation. 

Moreover, analysis of within-host evolution of persistently colonising strains across the six-

month study period may provide insights into microbiome adaption allowing their prolonged 

colonisation. Additionally, in vitro and in vivo competition assays using the taxa identified as 

either positively or negatively associated with KpSC colonisation may allow identification of 

the minimum consortia required for effective colonisation resistance and the mechanisms by 

which this is achieved.  

In combination with the ongoing and planned studies outlined above, metabolomic-based 

studies, both at the level of individual KpSC strains and the microbiota/microbiome are also 

underway to identify the metabolic conditions that may promote or inhibit KpSC GIT 

colonisation. Here, in silico metabolic profiling of KpSC strains and comparison between 

persistent and transient colonisers, using tools such as the recently developed Bactabolize329, 

may identify key KpSC metabolic traits that promote GIT colonisation persistence, which could 

be tested in vitro and in vivo. In silico metabolomic profiling of the GIT microbiota in high 

KpSC abundance compared to low KpSC abundance samples is also ongoing to test whether 

the microbiota of low abundance KpSC samples are more able to consume nutrients required 

by the KpSC, and thus blocking nutrient access and restricting GIT expansion of the KpSC as 

hypothesised by Spragge et al121. Lastly, metabolomic profiling of the faecal microbiome itself 

is being performed to identify metabolites that associate positively and negatively with KpSC 

presence and abundance, with a particular focus on SCFAs, to investigate the role of different 

microbiome metabolites as potential promoters and inhibitors of KpSC colonisation.  
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ABSTRACT
Klebsiella pneumoniae is an important opportunistic healthcare-associated pathogen and major 
contributor to the global spread of antimicrobial resistance. Gastrointestinal colonization with 
K. pneumoniae is a major predisposing risk factor for infection and forms an important hub for 
the dispersal of resistance. Current culture-based detection methods are time consuming, give 
limited intra-sample abundance and strain diversity information, and have uncertain sensitivity. 
Here we investigated the presence and abundance of K. pneumoniae at the species and strain level 
within fecal samples from 103 community-based adults by qPCR and whole metagenomic sequen-
cing (WMS) compared to culture-based detection. qPCR demonstrated the highest sensitivity, 
detecting K. pneumoniae in 61.2% and 75.8% of direct-fecal and culture-enriched sweep samples, 
respectively, including 52/52 culture-positive samples. WMS displayed lower sensitivity, detecting 
K. pneumoniae in 71.2% of culture-positive fecal samples at a 0.01% abundance cutoff, and was 
inclined to false positives in proportion to the relative abundance of other Enterobacterales present. 
qPCR accurately quantified K. pneumoniae to 16 genome copies/reaction while WMS could estimate 
relative abundance to at least 0.01%. Quantification by both methods correlated strongly with each 
other (Spearman’s rho = 0.91). WMS also supported accurate intra-sample K. pneumoniae sequence 
type (ST)-level diversity detection from fecal microbiomes to 0.1% relative abundance, agreeing 
with the culture-based detected ST in 16/19 samples. Our results show that qPCR and WMS are 
sensitive and reliable tools for detection, quantification, and strain analysis of K. pneumoniae from 
fecal samples with potential to support infection control and enhance insights in K. pneumoniae 
gastrointestinal ecology.

PLAIN LANGUAGE SUMMARY
What is the context?

● Klebsiella pneumoniae is a major cause of healthcare-associated infections and a key contributor 
to the spread of resistance to last-line antimicrobials.

● Gastrointestinal colonization by K. pneumoniae is a risk factor for developing infection and can 
facilitate the spread of antimicrobial resistance.

● Culture-based detection may lack sensitivity and is ill-suited to detecting within-sample 
K. pneumoniae abundance and diversity.

● Developing molecular methods to improve K. pneumoniae abundance and strain diversity 
detection are essential in understanding human gut colonization and ecology.
What is new? 

● We compared culture-based detection of K. pneumoniae within human fecal samples to two 
molecular-based techniques: 1) qPCR, which amplifies K. pneumoniae species complex-specific 
DNA targets with high sensitivity, and 2) whole metagenomic sequencing (WMS), which 
sequences the entire DNA content of complex microbial communities.
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● Our findings show:
● qPCR had the highest sensitivity, detecting K. pneumoniae in all (52/52) culture-positive samples 

and 11/51 and 23/47 culture-negative samples, using a direct-fecal and culture-sweep method, 
respectively. qPCR could accurately quantify K. pneumoniae to 16 genome copies/reaction.

● WMS had lower sensitivity, positive in 37/52 culture-positive samples, and demonstrated false 
positives arising from closely related bacterial species. Relative abundance estimates could be 
performed to 0.01%.

● WMS performed accurate strain-level detection of K. pneumoniae to 0.1% relative abundance 
and could detect within-sample strain diversity.
What is the impact?
qPCR and WMS are valid methods for the detection and characterization of colonizing 

K. pneumoniae with potential to enhance our understanding of the gastrointestinal ecology of 
this important pathogen.

Introduction

Klebsiella pneumoniae (Kp) is a critical priority 
pathogen that has become a major contributor in 
the spread of antimicrobial resistance (AMR) 
within and between sectors.1–4 Multidrug-resistant 
(MDR) Kp clones have disseminated globally and 
are a leading cause of opportunistic healthcare- 
associated infections, with limited treatment 
options and high morbidity and mortality rates.5–8 

In parallel, ‘hypervirulent’ (Hv) Kp clones have 
emerged which are typically non-MDR, however, 
can cause invasive community-acquired infections 
in otherwise healthy individuals.9

Kp is part of the phylogenetically broader 
Klebsiella pneumoniae species complex (KpSC), 
consisting of the seven closely related taxa (or phy-
logroups): K. pneumoniae sensu strictu (Kp1), 
K. quasipneumoniae subsp. quasipneumoniae 
(Kp2) and subsp. similipneumoniae (Kp4), 
K. variicola subsp. variicola (Kp3) and subsp. tro-
pica (Kp5), ‘K. quasivariicola’ (Kp6), and 
K. africana (Kp7).8,10–13 Kp1 (referred to here as 
Kp) is of most clinical relevance and consists of 
a highly diverse population structure correspond-
ing to thousands of unique sequence types (STs) as 
defined by the seven-gene multi-locus sequence 
typing (MLST) scheme; https://bigsdb.pasteur.fr/ 
klebsiella/.8,14

Kp is a common colonizer of the human gastro-
intestinal tract. The prevalence of gastrointestinal 
colonization in the community can range from 4% 
and 6% in the USA and Australia, 40% and 65% in 
Senegal and Madagascar, and up to 75% and 87% in 
Taiwan and Malaysia.15–18 We recently described 
a KpSC carriage rate of 16.3% among 2975 adults in 

a general urban population in Northern Norway 
using the KpSC selective Simmon’s citrate agar 
with inositol (SCAI).19,20 Gastrointestinal coloniza-
tion itself is a major risk factor for invasive infec-
tion in hospitalized patients and an increased 
relative abundance corresponds to a higher infec-
tion risk.15,21–23 The gut is also an important reser-
voir for the spread of AMR through clonal 
dissemination and horizontal gene transfer 
(HGT).24,25

Despite the clinical and epidemiological impor-
tance of gastrointestinal carriage, significant knowl-
edge gaps regarding the prevalence, abundance, 
and diversity of Kp in human gut colonization 
remain. Kp detection is generally performed by 
culture-based screening of fecal samples or rectal 
swabs, which is time-consuming and gives limited 
information regarding abundance and intra-sample 
strain diversity. Culture-based detection has also 
been shown to lack sensitivity in detection of 
Gram-negative pathogens from fecal samples.26,27 

Molecular methods such as quantitative PCR 
(qPCR) and shotgun whole metagenomic sequen-
cing (WMS) offer a potential to compensate for 
these shortcomings. Both qPCR- and metage-
nomics-based methods have demonstrated equiva-
lent or improved detection sensitivity for 
pathogenic bacteria and AMR genes in clinical 
and environmental samples compared to 
culture.26–30

The aim of this study was to evaluate and com-
pare WMS, qPCR, and culture for the detection and 
quantification of Kp from human fecal samples at 
both the species and strain level. Using the exten-
sive culture and whole-genome sequencing (WGS) 
data gathered during our previous culture-based 
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Kp carriage study, we analyzed a representative 
selection of Kp culture-positive and negative fecal 
samples by both qPCR and WMS. Results were 
compared to culture for Kp detection sensitivity 
and analyzed for Kp relative abundance and intra- 
sample strain diversity.

Results

Efficiency and sensitivity of the ZKIR-qPCR in human 
fecal samples

We employed the recently developed ZKIR-qPCR 
for Kp detection in this study due to its high sensi-
tivity and specificity for KpSC detection in envir-
onmental and food samples.30,31 BLAST analysis of 
the 78 bp ZKIR-qPCR target sequence revealed 
high sequence conservation in all 484 KpSC gen-
omes from our previous cross-sectional carriage 
study, with 98.6% (477/484) having three or less 
bp mismatches in the forward primer, and a single 
conserved A to G substitution at the 5’ end of the 
reverse primer region.20 Importantly the 3’ ends of 
both forward and reverse primer regions were per-
fectly conserved, except for a single Kp2 isolate with 
an A to G substitution at the 3’ terminal end of the 
forward primer (Suppl. Figure 1). Calculated melt-
ing temperatures (TM) of the PCR product of each 
sequence variant ranged from 78.8 to 79.9°C.

The ZKIR-qPCR had an amplification efficiency 
> 90% and R2 > 0.99 in a linear dynamic range from 
250,000 to 3 genome copies per reaction, both in 
the presence and absence of 25 ng KpSC-negative 
fecal microbiome DNA, when assessed against 
representative strains of each of the four human- 
associated KpSC subspecies (Kp1-4, Suppl. Table 1, 
Suppl. Figure 2). Each selected KpSC strain had the 
most prevalent number of forward primer mis-
matches seen for that subspecies in the BLAST 
analysis (Kp1 = 1, Kp3 = 3, Kp2 = 2, Kp4 = 2, 
Suppl. Figure 1). In-line with Poisson distribution, 
dilutions below three genome copies per reaction 
only intermittently detected the ZKIR amplicon.32

Limit of Detection (LOD) was three genome 
copies per reaction for all four KpSC subspecies, 
both in the presence and absence of 25 ng KpSC- 
negative fecal microbiome DNA (Suppl. Table 2). 
At 16 genome copies, copy number could be quan-
tified to a coefficient of variation (CV) ≤ 35%, 

a previously reported Limit of Quantification 
(LOQ).33

Detection of Kp in human fecal samples by the 
ZKIR-qPCR

To determine the Kp detection sensitivity of the 
ZKIR-qPCR in human fecal samples, 52 Kp cul-
ture-positive and 51 KpSC culture-negative human 
fecal samples were selected from our previous 
study.20 DNA was prepared as a direct fecal micro-
biome extraction (Direct samples), as well as from 
a plate-sweep of each sample re-grown on SCAI 
media (Sweep samples). Four culture-negative sam-
ples failed to grow on SCAI media. A total of 61.2% 
(63/103) Direct and 75.8% (75/99) Sweep samples 
were positive by the ZKIR-qPCR (Table 1). All 
culture-positive samples (52/52) were positive by 
the ZKIR-qPCR in both Direct and Sweep sample 
preparations. Of the ZKIR-qPCR positive Direct 
samples, 6.4% (4/63) were not detected after 
Sweep enrichment. Sanger sequencing performed 
on seven Direct sample amplicons confirmed the 
correct ZKIR sequence.

Quantification of genome copy number in Direct 
samples demonstrated that culture-positive sam-
ples had a significantly higher KpSC abundance 
than culture-negative samples (median 33.72 and 
0.17 genome copies/ng DNA, respectively, 
p < .001), (Figure 1a, Suppl. Table 3). This differ-
ence was amplified by Sweep enrichment (culture- 
positive median: 40,865 genome copies/ng DNA, 
culture-negative median: 0.15 genome copies/ng 
DNA, p < .001), (Figure 1b, Suppl. Table 3).

Table 1. Comparison of KpSC detection by SCAI culture com-
pared to the ZKIR-qPCR in 103 fecal samples using the Direct 
fecal microbiome (Direct) and SCAI sweep enrichment (Sweep) 
DNA extraction methods.

No. (%) of samples positive by ZKIR-qPCR

Culture resulta Direct Sweep

positive n = 52 52 (100) 52 (100)
negative n = 51 11 (22) 23 (49)b

Direct, Direct fecal microbiome DNA extraction; Sweep, DNA extraction from 
a plate sweep of fecal samples cultured 48 hours on SCAI media. 

aSCAI culture detection result as per our previous culture-based Kp gut 
carriage study20 

bFour culture negative samples failed to grow on SCAI media, thus % Sweep 
positive was calculated using n = 47 culture negative samples.
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Profiling WMS samples and effect of sample 
collection kit

Taxonomic profiling of whole metagenomic 
sequenced Direct samples demonstrated the pre-
sence of the major human gut associated phyla 
(Suppl. Table 4A).34,35 Enterobacterales, which 
dominated the Proteobacteria phyla, had a mean 
of relative abundance of 17.2% (Suppl. Table 4B). 
This was considerably higher than previously 
reported mean of ≤ 2% relative abundance for 
Enterobacterales within gut microbiomes from 
healthy adults.34,35 As expected, Enterobacterales 
abundance increased to almost complete domina-
tion of metagenomes following SCAI sweep enrich-
ment, (mean 95.6%, SD 9%) (Supplementary 
Table 4C).

To investigate whether our sampling method 
had caused an artificially increased 
Enterobacterales abundance, we performed repeat 
sampling, WMS, and taxonomy profiling of ten 
participants from our previous culture-based Kp 
carriage study using the original collection method 
(ESwabs) and compared these to a validated pre-
servative microbiome sample collection kit 
(Norgen) (Suppl. Table 5A-D).36 Taxonomic com-
parison revealed significant expansion of 
Enterobacterales in ESwab samples compared to 
Norgen samples, (ESwab median 38.2% vs Norgen 

median 0.62%, p = .002, Suppl. Table 5C and D). 
This was predominantly driven by Escherichia coli 
overgrowth, (median 26.2% vs 0.16% in ESwabs 
and Norgen samples, respectively, p = .002), 
which constituted a median of 86.8% of total 
Enterobacterales in ESwabs, compared to 39.8% in 
Norgen samples. While Kp abundance also under-
went a significant increase in ESwabs compared to 
Norgen samples (median 0.42% vs 0.03%, respec-
tively, p = .006), its total relative abundance within 
Enterobacterales reduced (median 0.99% vs 4.2% in 
ESwabs and Norgen samples, respectively). The 
biased microbiome profile caused by collection in 
ESwabs prevented any Kp-microbiome association 
analyses to be included as part of this study.

Detection of Kp by WMS

To determine the sensitivity and specificity of Kp 
detection by WMS, samples were analyzed using 
the taxonomic profiler Centrifuge and compared to 
the ZKIR-qPCR and culture. Reads were assigned 
to Kp in all except four Direct samples (n = 99) and 
all Sweep samples that had grown (n = 99). Two 
additional Direct samples had < 10–5% Kp relative 
abundance, so were considered as negative. Kp 
relative abundance in qPCR positive samples (med-
ian 0.027% and 6.05% in Direct and Sweep samples, 

Figure 1. Comparison of KpSC abundance between culture-positive (teal) and culture-negative (red) samples detected by the ZKIR- 
qPCR using the Direct fecal method (a) and SCAI sweep enrichment (b). *** = p < .001 (Mann Whitney U test).
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respectively), was significantly higher than qPCR 
negative samples, (median 0.00035% and 0.063% 
for Direct and Sweep samples, respectively, both 
had p < .001) (Figure 2, Suppl. Table 3). Despite 
this, considerable overlap in abundances was 
observed between qPCR- and culture-positive and 
negative groups, precluding easy distinction of Kp 
presence or absence by WMS from either the Direct 
or Sweep preparations.

We hypothesized many of the qPCR and culture- 
negative samples with high Kp relative abundance 
by WMS were false positives misassigned from 
closely related Enterobacterales species. To investi-
gate this further, two non-Kp containing in silico 
binary species mixes were constructed and Kp 
abundance measured. Each species mix consisted 
of reads from Bacteroides fragilis and either E. coli 
or Klebsiella aerogenes in increasing proportions 
from 0.1% to 100% relative abundance. An increas-
ing rate of Kp false positives were observed as the 
abundance of both Enterobacterales species 
increased, with a higher effect observed for 
K. aerogenes (Suppl. Figure 3), which is the species 
most closely related to the KpSC. Kp false positives 
exceeded 0.01% between 10–15% and 30–35% 
K. aerogenes and E. coli relative abundance, respec-
tively. At 100% K. aerogenes or E. coli relative 
abundance, Kp false positives were 0.20% and 
0.056%, respectively.

E. coli was the most abundant Enterobacterales 
species in our Direct samples, with mean relative 
abundance of 12.1% (Suppl. Table 3). Since Kp false 
positives over 0.01% did not to appear in our in 
silico species mix until E. coli relative abundance 
was greater than 30%, 0.01% relative abundance 
was used as a cutoff to report Kp presence to opti-
mize detection sensitivity and specificity. Using this 
cutoff, Kp was detected in 66.7% (42/63) and 71.2% 
(37/52) of ZKIR-qPCR and culture-positive Direct 
samples, respectively (Figure 2a, Suppl. Table 3). Of 
the 49 Direct samples with Kp WMS abundance 
above 0.01%, 85.7% (42/49) and 75.5% (37/49) were 
positive by the ZKIR-qPCR and SCAI culture, 
respectively. Of the seven Direct samples negative 
by both qPCR and culture with a Centrifuge Kp 
abundance above 0.01%, six had Enterobacterales 
abundances above 15%, suggestive of false posi-
tives. Due to the high Enterobacterales abundance 
in Sweep samples (mean 95.6%), which would be 
expected to generate high Kp false positives, no 
such detection cutoff was applied (Suppl. Table 3).

Screening assembled metagenomes for Kp-specific 
sequences

To use a more specific approach for WMS-based 
detection, assembled metagenomes were 
screened for the seven Kp MLST genes and the 

Figure 2. Kp abundance detected by Centrifuge compared to ZKIR-qPCR and SCAI culture detection in (a) Direct and (b) Sweep 
samples. Teal = SCAI culture positive, Red = SCAI culture negative. RA = relative abundance. Dotted-line line in Figure 2a represents 
0.01% abundance detection cutoff used in Direct samples. *** = p < .001 (Mann Whitney U test).
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ZKIR sequence. The ZKIR sequence was 
detected in 54.5% (54/99) of Sweep samples, all 
of which were positive by qPCR and 92.6% (50/ 
54) were positive by culture (Figure 3b, Suppl. 
Table 3). Similarly, using a detection cutoff of 4/ 
7 MLST genes, 52.5% (52/99) Sweep samples 
were positive, all of which were also positive by 
qPCR and 94.2% (49/52) were positive by cul-
ture (Figure 3d, Suppl. Table 3). Detection sen-
sitivity was considerably lower in Direct samples, 
with 19.4% (20/103) and 16.5% (17/103) positive 

by ZKIR sequence and 4/7 MLST gene detection, 
respectively. All Direct ZKIR and MLST positive 
samples, however, were positive by both qPCR 
and culture (Figure 3 a and c, Suppl. Table 3). 
All Sweep and Direct samples with at least 4/7 
MLST genes detected were also positive for the 
ZKIR sequence. Detection by these methods had 
clear dependence on Kp abundance, with the 
ZKIR sequence detected in only two samples 
below approximately 400 genome copies/ng 
DNA by qPCR and 0.1% relative abundance by 

Figure 3. Kp detection from assembled metagenomes using KpSC specific 78bp ZKIR sequence (green) and 4/7 Kp MLST genes (purple) 
in Direct and Sweep samples. (a) and (b): ZKIR sequence detected in Direct and Sweep samples, respectively. (c) and (d): 4/7 Kp MLST 
genes detected in Direct and Sweep samples, respectively. Red = ZKIR/MLST sequences not detected. RA = relative abundance. Dotted 
line at 0.1% Centrifuge abundance represents approximate threshold for detection by these methods.
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WMS, while 4/7 MLST genes were not detected 
in any samples below this threshold.

Kp relative abundance estimation by WMS and 
correlation with qPCR

KpSC abundance measured by qPCR had a strong 
correlation with Kp relative abundance measured 
by Centrifuge in both ZKIR-qPCR positive Direct 
and Sweep samples (Spearman’s rho = 0.91, and 
0.96 respectively, both with p < .001), (Figure 4). 
Sweep samples also demonstrated clear separation 
between culture-positive and negative samples by 
both qPCR and Centrifuge (Figure 4b). In these 
samples, below a limit of approximately 2000 
copies/ng by qPCR and 0.6% by Centrifuge, only 
9.5% (2/21) of samples were detected as positive by 
culture, compared to 92.5% (50/54) above this 
threshold.

The accuracy of Kp abundance quantification by 
WMS was investigated using two in vitro Kp-spiked 
microbiomes that consisted of: 1) a mock micro-
biome of six bacterial species representing the 
major gut taxa, including 1% E. coli to represent 
total Enterobacterales, and 2) a KpSC-negative 
human fecal microbiome with 0.52% total 
Enterobacterales abundance. Both microbiomes 
were spiked with Kp at 1%, 0.1%, 0.01%, and 
0.001%, and 0% relative abundance. The mock 

microbiome was spiked with a single strain 
(ST11), while the fecal microbiome was spiked 
with a combination of three Kp strains (ST11, 
ST23, and ST101), at a ratio of 60:30:10, respec-
tively (Suppl. Table 1).

Centrifuge achieved close estimations of all Kp 
relative abundances, differing from spiked abun-
dances by a factor of 0.46 to 0.86 and 3.52 to 4.79 
in the mock and fecal microbiomes, respectively 
(Table 2 and Table 3). Background Kp abundances 
measured in the non-spiked mock and fecal micro-
biomes were 0.0004% and 0.00068%, respectively, 
which were close to the observed Kp false positives 
in the in silico binary species mixes containing 0.5% 
and 1% total Enterobacterales abundances (Suppl. 
Figure 3). These findings suggest in ‘healthy’ micro-
biomes, which typically contain <1% total 
Enterobacterales abundance, Kp quantification 
can be performed to as low as 0.01% without sub-
stantial influence from false positives.34,35

Figure 4. Correlation of Kp abundances quantified by qPCR vs WMS (Centrifuge) in Direct samples (a) and Sweep samples (b). 
R = Spearman’s rho. Blue = SCAI culture positive, Red = SCAI culture negative.

Table 2. K. pneumoniae abundance in the spiked mock micro-
biome measured by WMS (Centrifuge) and the ZKIR-qPCR.

Sample

Kp 
spike 
(%)

WMS measured 
abundance (%)

Ratio spiked/ 
measured

ZKIR-qPCR ave 
copies/reaction

M1 0.00 0.0004 NA 0
M2 0.001 0.00086 0.86 41
M3 0.01 0.0046 0.46 412
M4 0.1 0.050 0.50 4776
M5 1.0 0.59 0.59 61395
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The average genome copy numbers measured by 
the ZKIR-qPCR in the 0.001% spiked mock and 
fecal microbiomes of 41 and 16 genome copies/ 
reaction, respectively, were close to the measured 
LOQ for this assay. This suggests at 0.001% relative 
abundance the ZKIR-qPCR is approaching the 
lower limit at which it can accurately quantify Kp 
abundance.

Kp strain-level detection from metagenomic data

Metagenomic Kp strain-level analysis of Direct 
samples was performed with StrainGST, part of 
the StrainGE toolkit.37 To examine the tool’s accu-
racy, we explored our Kp-spiked mock and fecal 
microbiomes described above (Table 4 and 
Table 5). The spiked Kp isolate ST11 was correctly 
identified in the mock microbiome at 1% and 0.1% 
abundance. In the fecal microbiome, the three 

spiked isolates, ST11, ST23, and ST101, were all 
correctly identified at 1%, while ST11 and ST23 
only were identified at 0.1%. No strains were 
detected in either spiked microbiome at abun-
dances below 0.1%, in line with the reported lower 
detection limit for this tool.37 A spiked mock 
microbiome sample containing 1% Kp (ST11) and 
1% Kp3 (ST697) was also tested, in which both 
strains were identified correctly. Estimated abun-
dances of each spiked strain by StrainGST were 
close approximations of the true abundances. No 
false positives were reported in the spiked fecal 
microbiome samples. In the Kp spiked mock 
microbiomes ST12 and ST340 were reported in 
the samples spiked with 1% and 0.1% ST11, respec-
tively. Comparison of the MLST profiles revealed 
ST12 and ST340 are single and double locus var-
iants of ST11, respectively.

Since no spiked Kp strains were detected below 
0.1%, all Direct samples with Centrifuge Kp relative 
abundance ≥ 0.1%, including two Kp culture-negative 
samples, were selected for StrainGST analysis, (n = 21 
samples, median Kp relative abundance: 2.64%, range: 
0.1% – 39.55%, Suppl. Table 3). Kp strains were 
detected in all culture-positive samples (n = 19), and 
matched culture detected strains in 84.2% (16/19) 
(Table 6). Kp strains detected which did not match 
culture were either four or five locus variants of their 
culture detected counterparts, suggesting these were 

Table 3. K. pneumoniae abundance in the spiked fecal micro-
biome measured by WMS (Centrifuge) and the ZKIR-qPCR.

Sample

Kp 
spike 
(%)

WMS measured 
abundance (%)

Ratio spiked/ 
measured

ZKIR-qPCR ave 
copies/reaction

F1 0.00 0.00068 NA 0
F2 0.001 0.0035 3.52 16
F3 0.01 0.038 3.78 235
F4 0.1 0.43 4.34 2905
F5 1.0 4.79 4.79 31925

NA = not applicable

Table 4. Metagenomic Kp strain-level detection performed using StrainGST in a Kp-spiked mock microbiome sample.
Spiked Microbiome StrainGST result

Mock Spiked strain(s) Spiked abundance (%) Strain(s) detected Strain est. abundance (%) Total est. abundance (%) Confidence Score

M1 none NA ND 0 0 NA
M2 ST11 0.001 ND 0 0 NA
M3 ST11 0.01 ND 0 0 NA
M4 ST11 0.1 ST12a, ST11 0.051, 0.166 0.217 0.207, 0.044
M5 ST11 1.0 ST11, ST340a 0.429, 0.762 1.191 0.760, 0.027
M6 ST11, ST697b 1:1 ST11, ST697, ST340a 0.798, 0.377, 0.756 1.93 0.705, 0.591, 0.03

aST340 and ST12 are single and double locus variants of ST11, respectively 
bKlebsiella variicola 
NA = not applicable 
ND = not detected.

Table 5. Metagenomic Kp strain-level detection performed using StrainGST in a Kp-spiked fecal microbiome sample.
Spiked Microbiome StrainGST result

Fecal Spiked strains (ratio 60:30:10) Spiked abundance (%) Strain(s) detected Strain est. abundance (%) Total est. abundance (%) Confidence Score

F1 none NA ND 0 0 NA
F2 ST11, ST23, ST101 0.001 ND 0 0 NA
F3 ST11, ST23, ST101 0.01 ND 0 0 NA
F4 ST11, ST23, ST101 0.1 ST11, ST23 0.056, 0.028 0.084 0.245, 0.029
F5 ST11, ST23, ST101 1.0 ST11, ST23, ST101 0.398, 0.171, 0.2 0.769 0.747, 0.230, 0.082

NA = not applicable
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not closely related. No strains were detected in either 
of the two culture-negative samples. Both of these 
samples had high Enterobacterales abundance 
(59.6% and 63.9%), while one was qPCR negative 
and the other had only seven genome copies/ng 
DNA detected, suggestive of falsely high relative abun-
dance estimated by Centrifuge. Multiple strains were 
reported in four samples, three with two strains and 
one had three strains. Three of these samples had 
strains matching culture-detection, which were the 
highest confidence and abundance strain in each 
case. The three strains detected in sample 45 and the 
two strains in sample 75 were double and triple locus 
variants of each other, respectively, and considered 
possibly to be one strain that had been assigned to 
multiple reference genomes in the database. The two 
strains detected in both samples 46 and 100 shared 
only a single MLST locus each, likely representing true 
microbiome Kp strain diversity.

NA = not applicable

Discussion

The purpose of this study was to investigate WMS 
and the ZKIR-qPCR as methods for the detection 

and analysis of Kp from human fecal samples and 
compare these to culture-based detection. Overall, 
the ZKIR-qPCR demonstrated the highest Kp 
detection sensitivity which was reflected in the 
very low LOD of this assay of just three genome 
copies per reaction. This corresponds to the lowest 
possible limit for qPCR according to Poisson dis-
tribution, indicating the very high efficiency of this 
assay.32 The fact that no culture-positive samples 
were negative by the ZKIR-qPCR indicates a low 
false negative rate. Our findings suggest SCAI- 
based detection may underestimate the true preva-
lence of KpSC gastrointestinal carriage. This may 
be related to technical challenges identifying KpSC 
given other common Enterobacterales, including 
Enterobacter, Citrobacter, Serratia, and other non- 
KpSC Klebsiella species, are capable of growth on 
SCAI media often with similar morphologies to 
KpSC.19,38,39 In-line with our findings, the ZKIR- 
qPCR has previously demonstrated a higher KpSC 
detection sensitivity compared to SCAI culture in 
plant, soil, chicken meat, and salad samples.30,31 

Similar to the findings by Barbier et al.30 we found 
a culture enrichment step prior to qPCR signifi-
cantly enhanced detection sensitivity. Together 

Table 6. Metagenomic Kp strain-level detection performed using StrainGST in 21 adult fecal samples with Kp relative abundance ≥ 
0.1%.

T7 Sample SCAI culture resulta Kp Abundance StrainGST result

Number Kp detected? Strain WMS (%)b qPCR (copies/ng DNA) Strain(s) detected est. abundance (%) Confidence Score

89 yes ST14 39.55 45900 ST14 30.639 0.94
101 yes ST2042 26.04 39390 ST2039 27.521 0.94
75 yes ST485 22.09 18240 ST485, ST35c 6.146, 3.875 0.86, 0.66
92 yes ST35 20.55 18660 ST35 12.651 0.96
74 yes ST27 17.81 9120 ST27 4.061 0.98
18 yes ST4039 15.29 9940 ST4039 5.27 0.85
91 yes ST1496 14.73 21240 ST1496 14.655 0.98
45 yes ST25 8.39 7400 ST25, ST2549, ST4039c 0.37, 2.75, 1.16 0.76, 0.1, 0.02
97 yes ST704 6.02 9410 ST704 7.38 0.74
12 yes ST70 4.37 5290 ST70 6.922 0.65
44 yes ST23 2.64 1716 ST23 1.524 0.67
100 yes ST375 1.73 2785 ST2042, ST1660 2.07, 0.6 0.63, 0.03
46 yes ST25 1.56 920 ST25, ST461 0.29, 0.09 0.58, 0.16
2 yes ST3043 1.12 604 ST3043 0.32 0.84
90 yes ST1106 0.98 1612 ST1106 1.84 0.28
84 yes ST200 0.95 926 ST200 0.98 0.67
80 no NA 0.30 0 ND NA NA
72 yes ST20 0.22 298 ST20 0.59 0.18
21 yes ST151 0.13 492 ST151 1.85 0.22
35 yes ST25 0.13 217 ST10 0.13 0.33
62 no NA 0.10 7 ND NA NA

Samples in bold represent ST matches between culture detection and strainGST detection 
aSCAI culture detection result as per our previous culture-based Kp gut carriage study20 

bWMS relative abundance measured by Centrifuge 
cSTs detected in these samples were double (sample 45) and triple (sample 75) locus variants of each other which may have resulted from assignment a single 

strain to multiple closely related reference genomes in the database rather than true intra-sample strain diversity. 
NA = not applicable
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these results demonstrate the ZKIR-qPCR is a rapid 
and highly accurate tool for KpSC detection in 
a range of sample types, thereby facilitating targeted 
selection of samples for further culture- or metage-
nomics-based analysis.

It is noteworthy that the high detection sensitiv-
ity of the ZKIR-qPCR was achieved despite our 
tested KpSC strains having one (Kp1), two (Kp2 
and Kp4), and three (Kp3) bp mismatches within 
15 nucleotides of the 5’ end of the forward ZKIR 
primer and one mismatch at the penultimate posi-
tion of the 5’ end of the reverse primer. In accor-
dance with these findings, it has been shown up to 
five bp mismatches within primers can be well 
tolerated provided the 3’ primer region is well 
conserved.40–42

Accurate species-level profiling is essential for 
high quality shotgun WMS analyses. Using the 
taxonomic profiling tool Centrifuge with a 0.01% 
relative abundance cutoff, Kp was detected at the 
species level in 66.7% and 71.2% of qPCR and 
culture-positive Direct samples, respectively. 
Despite the comparatively high reported sensitivity 
and specificity of Centrifuge, however, like other 
metagenomic classifiers it is known to generate 
false positives at lower species abundances.43–45 

Using in silico binary species mixes, we demon-
strated the rate of Kp false positives is proportional 
to the abundance and relatedness of other 
Enterobaterales species present in the sample, sur-
passing 0.01% Kp false positives at 10–15% 
K. aerogenes and 30–35% E. coli relative abundance, 
respectively. Within a ‘healthy’ gut microbiome, in 
which the average Enterobacterales abundance is 
≤2%, this may not significantly impact Kp detection 
specificity.34,35 Much higher Enterobacterales 
abundance can occur in dysbiotic states including 
inflammatory bowel disease, type 2 diabetes melli-
tus, and following antimicrobial therapy.46–48 

Detection of low abundance Kp by taxonomic clas-
sifiers in these settings would therefore need careful 
interpretation.

Gastrointestinal microbiomes with an increased 
Kp relative abundance are associated with an 
increased risk of Kp bacteremia, nosocomial trans-
mission, and may predispose to prolonged 
colonization.22,23,49,50 Accurate measurement of 
Kp abundance could therefore provide important 
clinical information relevant for infection risk 

stratification and infection control purposes. In 
our Kp spiked microbiomes, which contained 
≤1% total Enterobacterales, we found WMS gave 
close estimations of Kp relative abundance to 
0.01%, below which false positives began to have 
a substantial influence. The ZKIR-qPCR, however, 
accurately quantified Kp to as low as 16 genome 
copies/reaction, corresponding to approximately 
0.001% relative abundance in the Kp-spiked micro-
biomes, with the additional advantage of providing 
quantification information in a clinically relevant 
timeframe.

The spread of AMR by Kp is predominantly 
driven by the expansion of MDR high-risk clones 
disseminating between hospitals and across 
borders.1,8,51–55 The utility of WMS in Kp infection 
control thus requires timely and sensitive Kp 
strain-level detection. Using StrainGST, part of 
the StrainGE toolkit, we demonstrated fast and 
accurate strain-level detection can be achieved 
from fecal metagenomes to Kp abundances as low 
as 0.1%, matching culture-detected strains in 16/19 
samples.37 Interestingly, only one ST type was 
detected in most samples, suggesting gut micro-
biomes may be largely dominated by a single Kp 
strain. This contrasts with recent small sample sized 
culture-based studies in which multiple carriage 
strains were found with much higher 
frequency.56–58 More robust longitudinal studies 
are needed to determine whether these culture- 
detected strains represent true gastrointestinal 
colonizers versus low abundance transitory passen-
gers that are being enriched by culture. 
Alternatively, the partial enrichment of 
Enterobacterales, including Kp, as shown in 
ESwab compared to DNA preserved Norgen sam-
ples, may have led to a single ST-type selection 
overwhelming strain diversity in our Direct 
samples.

Although we demonstrated high accuracy of Kp 
strain detection by WMS in our samples, two false 
positive STs, ST12 and ST340, were detected in our 
mock microbiome in addition to the spiked strain, 
both of which were closely related to the spiked 
ST11. These may have arisen from the stricter data-
base clustering we used to increase resolution 
between closely related ST types, e.g., ST11 and 
ST258, resulting in assignment of a single strain to 
multiple closely related reference genomes. 
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Mismatches between the Kp strain detected by cul-
ture and WMS also occurred on three occasions. 
Whether these differences were the result of mis-
assignment by StrainGE, or alternatively, over-
growth of a low abundance non-dominant strain 
induced by culture, requires further study.

Our findings suggest a lower limit of 0.1% rela-
tive abundance for reliable retrieval of Kp-specific 
strain and allele-level information from metagen-
omes, as metagenomic detection of the ZKIR 
sequence, the Kp MLST alleles, and Kp ST-level 
detection occurred very seldomly below this level. 
While this is a considerable level of sensitivity, it 
nevertheless represented less than half of our Direct 
samples, which had a median Kp relative abun-
dance of 0.007%, suggesting Kp gastrointestinal 
carriage typically occurs at lower abundances than 
this threshold. Our target sequencing depth of 
20 million paired-end reads per sample, while 
shown to be sufficient for species-level detection, 
may have limited the amount of information reco-
verable from our samples at the subspecies- 
level.59,60 Performing deeper sequencing in large- 
scale metagenomic studies, however, is challenging 
due to high costs and data storage and processing 
requirements. Strain-level detection performed on 
culture-enriched samples, such as our SCAI Sweep 
samples, using tools such as StrainGST or the 
recently described mSweep/mGEMS pipeline, or 
through targeted enrichment of metagenomes by 
RNA-probe hybridization-capture, may provide 
the most sensitive and cost-effective method for 
high-resolution strain analysis from 
metagenomes.61,62 Studies are currently underway 
to explore these important possibilities.

Samples used in this study were initially collected 
for culture-based purposes, thus ESwab collection 
devices were used to maintain bacterial viability. The 
extensive KpSC culture and associated single colony 
WGS data gathered from these samples made them 
ideal for the purpose of this study. This collection 
method was also a major limitation, as it resulted in 
significant overgrowth of Enterobacterales, particu-
larly E. coli, as shown when compared to the validated 
Norgen collection method. The resultant biased 
ESwab microbiome meant no Kp-microbiome asso-
ciation analyses could be performed from this data, 
nor any strong conclusions drawn regarding the nor-
mal relative abundance range of Kp gastrointestinal 

carriage. Further studies are currently underway uti-
lizing the methods described here using validated 
microbiome collection devices to address these 
important questions.

In conclusion, we have shown the ZKIR-qPCR 
and WMS are reliable tools for detection and 
quantification of Kp within human gastrointest-
inal samples. Both methods exhibited differing 
and complementary strengths and weaknesses. 
This is evidenced by the speed, high sensitivity, 
and low cost of the ZKIR-qPCR, allowing tar-
geted selection of samples for WMS, which, 
although less sensitive and more time and 
resource intensive, can provide in-depth micro-
biome and strain-level Kp analysis. Future stu-
dies using the methods evaluated herein 
therefore have great potential to enhance our 
understanding of Kp gastrointestinal ecology. 
Placed into a One Health context, these 
approaches will help in elucidating the role of 
the gastrointestinal tract of humans and animals 
in the spread of Kp and associated AMR genes 
between niches.

Materials and Methods

Human fecal samples

Fecal samples were drawn from a collection of 
2975 KpSC culture-screened samples obtained 
during our cross-sectional KpSC carriage study 
and the seventh survey of the Tromsø Study, 
(The Tromsø Study: Tromsø7).20 Briefly, sam-
ples were self-collected from community-based 
adult participants using a nylon-flocked ESwab 
490CE.A (Copan, Brescia, Italy). Upon arrival to 
the laboratory, 200 μL of 85% glycerol was 
added and samples were stored at −80°C. 
Samples were screened for KpSC on SCAI 
media and suspect colonies underwent KpSC 
identification by MALDI-TOF.19 Confirmed 
KpSC isolates underwent WGS and MLST- 
typing by Kleborate.63 103 samples were selected 
for the current study based on i) the presence/ 
absence of Kp as confirmed by WGS, (n = 52 
and 51, respectively) and ii) less than 2 days 
transit time from initial collection to freezing 
at −80°C. Prior to this study samples had under-
gone one freeze-thaw cycle.
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Sample preparation and DNA isolation

After thawing on ice, 50 μL of each fecal sample was 
plated on SCAI media (Sigma-Aldrich, cat # 85462– 
500 G and I5125-500 G) and incubated at 37°C for 
48 hours. Remaining sample was centrifuged (4000 
x g for 10 minutes at 4°C) and pellet used for 
a whole microbiome DNA extraction (Direct sam-
ple). All growth on SCAI plates was scraped using 
a 10 μL inoculation loop, and approximately 50 μL 
(one loaded inoculation loop) used for a SCAI cul-
ture sweep DNA extraction (Sweep sample). DNA 
extractions were performed using the Purelink 
Microbiome DNA Purification kit (Thermo Fisher 
Scientific, cat# A29790), according to the manufac-
turer’s instructions, with the following minor mod-
ifications: Step 1a) samples resuspended in 800 μL 
S1 Lysis Buffer plus 20 mg/mL lysozyme (Thermo 
Fisher Scientific, cat# 89833) and incubated at 37°C 
for 10 minutes. Step 1c) following addition of S2 
Lysis Enhancer, samples were incubated at 95°C for 
10 minutes. Step 1e) samples were homogenized in 
lysing matrix E tubes (MP Bio, cat# 6914050) using 
a Precellys Evolution tissue homogenizer 
(6500 rpm for 2 × 23 s at 4°C) (Bertin 
Technologies, Montigny Le Bretonneux, France), 
followed by 2 rounds of centrifugation at 14000 
x g for 5 min. Step 1 h) prior to addition of S3 
Cleanup Buffer, 2 μL of 10 mg/mL RNase 
A (Thermo Fisher Scientific, cat# EN0531) was 
added and samples were incubated at room tem-
perature for 5 minutes. Quality control of purified 
DNA was performed using Nanodrop 2000 spec-
trophotometer (Thermo Fisher Scientific, 
Waltham, USA) and concentration determined 
with Qubit 3.0 fluorometer (Thermo Fisher 
Scientific).

In silico analysis of ZKIR target region

BLAST analysis of the 78 bp ZKIR region was 
performed against the 484 assembled KpSC gen-
omes from our previous carriage study (BioProject: 
PRJEB42350) using default nucleotide-nucleotide 
BLAST parameters (NCBI-blast v2.10.0+).20,64 

Melting temperature (TM) for each ZKIR variant 
was calculated using the oligo analysis tool available 
at: https://eurofinsgenomics.eu/en/ecom/tools/ 
oligo-analysis/. Final amplicon sequences for TM 

calculation consisted of forward and reverse ZKIR 
primers plus the 30 bp intervening region from 
each ZKIR sequence variant found by BLAST 
analysis.

ZKIR-qPCR assays

Reaction mixture, primers, and cycling conditions
PCR mixture, ZKIR primers, and cycling condi-
tions were as described by Barbier et al.30 All 
qPCR reactions were performed on an Applied 
Biosystems 7500 Real-Time PCR System (Thermo 
Fisher Scientific).

Standard curve
ZKIR-qPCR standard curves were prepared using 
whole genome sequenced representatives of each of 
the four human-associated KpSC members: Kp1, Kp2, 
Kp3 and Kp4 (Suppl. Table 1). Strains were grown 
overnight on tryptose blood agar with lactose/bro-
mothymolblue (Thermo Fisher Scientific cat# 
CM0233, Thermo Fisher Scientific cat# LP0070, 
VWR cat# 1.03026.0025) at 37°C, and DNA extraction 
performed as described. Seven five-fold dilutions of 
genomic DNA (gDNA) were made for each isolate at 
2.5x105, 5x104, 104, 2x103, 400, 80, 16 and 3 genome 
copies per qPCR reaction, according to the equation: 
genome copy number = [(mass of input DNA in ng) * 
(6.0221*1023 molecules/mole)]/(length of genome in bp 
* 660 g/mol * 109ng/g), where length of Kp 
genome = 5.5x106 bp.65 Each dilution point was per-
formed in technical triplicate. Reactions were per-
formed both with and without addition of 25 ng of 
human fecal microbiome DNA from a healthy donor 
which was KpSC-negative by the ZKIR-qPCR. Slope, 
reaction efficiency, R2, Y-intercept, and melting tem-
peratures (TM) were calculated using 7500 Real-Time 
PCR Analysis Software v2.3 (Applied Biosystems, Life 
technologies, Waltham, USA).

Limit of Detection (LOD) and Limit of Quantification 
(LOQ)
Limit of Detection (LOD) is defined by the 
Minimum Information for the Publication of 
Quantitative Real-Time PCR Experiments as the 
lowest concentration of target detectable with rea-
sonable certainty.66 LOD was therefore taken as the 
lowest number of genome copies detectable in ten 
out of ten technical replicates. LOQ was estimated 
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as the lowest dilution at which the coefficient of 
variation (CV) of genome copy number of ten 
technical replicates was ≤ 35%, where genome 
copy number = [1+(efficiency/100)]y-Cq, and 
CV = [(standard deviation of genome copy num-
ber)/(average of genome copy number)] * 100.33 

LOD and LOQ were performed using gDNA from 
each of the four KpSC strains above with and with-
out addition of 25 ng KpSC negative human fecal 
microbiome DNA. ZKIR-qPCR assays were per-
formed as described for Standard Curve, with an 
additional dilution point at eight genome copies/ 
reaction, and dilution points 16, 8 and 3 genome 
copies/reaction were performed in 10 technical 
replicates.

Detection of Kp by the ZKIR-qPCR

All Direct and Sweep DNA samples diluted to 10 
ng/μL and 2.5 μL (25 ng) was used as input for each 
qPCR reaction. Reaction mixture and cycling con-
ditions were as described previously.30 Samples 
were assayed in technical triplicate and considered 
positive if amplicons were produced in at least two 
with a TM between 78.3°C and 80.4°C and Cq < 40. 
TM range was based on values from the in silico 
analysis of KpSC isolates (described above) ± 0.5°C 
for inter-assay variability between predicted and 
measured values. Although microbial detection by 
qPCR requires amplicons to be present in only 
a single technical replicate, we increased this 
threshold to two positive replicates to minimize 
false positives.32,33 Non-template controls were 
used in all qPCR experiments. Additionally, E. coli 
underwent all processing steps from DNA extrac-
tion to ZKIR-qPCR assay in parallel with Direct 
samples, and Klebsiella oxytoca underwent all 
steps from culture on SCAI media, DNA extraction 
and ZKIR-qPCR in parallel with Sweep samples 
(Suppl. Table 1). As both these species do not con-
tain the ZKIR sequence, this controlled for cross- 
contamination of KpSC DNA between samples at 
any of the sample processing steps.

WMS sample processing and analysis

Library preparations and sequencing
DNA was fragmented using the Focused- 
ultrasonicator M220 (Covaris, Woburn, USA). 

100ng of fragmented DNA underwent library pre-
paration using TrueSeq Nano DNA Library Prep 
Kit (Illumina, cat# 20015965) and Swift Turbo 2S 
flex DNA Library Prep Kit (Swift Biosciences, cat# 
45096) in accordance with the manufacturer’s 
instructions. Sequencing was performed on the 
NovaSeq 6000 platform (Illumina, San Diego, 
USA) to a target depth of 20 × 106 pair-end reads 
at 150 bp.

Data processing
FASTQ files underwent removal of optical dupli-
cates using Clumpify (version 38.82), a part of the 
BBmap package (version 38.79), removal of adap-
ters and poor-quality sequences by fastp (version 
0.20.1), and removal of human DNA residues by 
FastQ Screen (version 0.14.0) against the GRCh38 
reference assembly (accession number 
GCF_000001405.39).67–69 Unpaired reads were 
synchronized by the Repair tool of BBmap package 
(version 38.79).67

WMS assembly and Taxonomic profiling
Paired-end and singleton reads were assembled 
into contigs using MetaSPAdes (v3.13.0) with 
default parameters.70 Kp detection and estimation 
of abundance was performed using the taxonomy 
profiler Centrifuge (version 1.0.4) with the default 
database, p_compressed+h + v.44 Centrifuge uses 
a Burrows-Wheeler transform (BWT) and 
Ferragina-Manzini (FM) index to create 
a comparatively small reference database by con-
catenating and compressing multiple genomes of 
the same species for rapid and accurate species 
identification.44 For other taxonomic profiling, 
Kraken 2 (version 2.1.2) and Bracken (version 
2.6.1) with the MiniKraken DB_8GB v202003 
were used.71,72

Screening WMS assemblies for Kp-specific sequences
The seven Kp MLST alleles, downloaded from the 
PasteurMLST database, and the 78bp ZKIR 
sequence were used as reference databases for iden-
tification of Kp in the WMS-assembled contigs.14 

To screen the contigs, nucleotide BLAST (v2.10.1) 
was used with DNA identity and coverage para-
meters set to ≥ 95% (MLST allele detection) or 
default parameters (ZKIR sequence detection).64
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Computational resources
All computational analyses were performed on the 
Norwegian academic high-performance computing 
and storage services maintained by the Sigma2 
Norwegian Research Infrastructure Service 
(NRIS).73 Data was stored and shared in the 
Norwegian e-infrastructure for Life Science (NeLS) 
maintained by ELIXIR Norway.

Validation of ESwab versus Norgen collected fecal 
samples

Ten previous Tromsø7 participants were re-recruited 
as part of an ongoing longitudinal Kp gut carriage 
study. Participants were sampled using ESwabs, under 
the same conditions as the original collection includ-
ing less than 2 days from sample collection to arrival 
at the laboratory, and compared to collection taken at 
the same time using the Norgen Nucleic Acid 
Preservation system (Norgen Biotek, cat# 53700). All 
samples underwent library preparation using 
MGIEasy FS DNA Library Prep Set v2.1 (MGI Tech 
Co, cat# 1000005254) on the 7-MGISP-960 auto-
mated library preparation system (software version: 
V1.2.0.163, automation version: V1.0), as per manu-
facturer’s instructions (MGI Tech Co, Shenzen, 
China). Sequencing was performed on the G400 plat-
form (MGI Tech Co). Processing of sequenced reads 
and taxonomic profiling was performed as described.

In silico binary species mixes

FASTQ sequence reads from B. fragilis, K. aerogenes, 
and E. coli (Suppl. Table 1) were retrieved from the 
Sequence Read Archive (NCBI) and subsampled 
using SEQTK (https://github.com/lh3/seqtk/blob/ 
master/README.md). Subsampled reads were 
combined to create two binary species mixes con-
taining reads from B. fragilis and either K. aerogenes 
or E. coli in the following ratios: 99.99/0.01, 99.95/ 
0.05, 99/1, 95/5, 90/10, 75/25, 50/50, 25/75, 0/100. 
Binary species mixes underwent processing and tax-
onomy profiling as described samples above.

Kp-spiked microbiomes

Kp-spiked mock microbiome
The mock microbiome was constructed from six 
bacterial strains: Bacteroides vulgatus, Clostridium 

septicum, Bifidobacterium longum, Helicobacter 
pylori, Aeromonas hydrophila, and E. coli (Suppl. 
Table 1). gDNA was extracted from each strain and 
combined in the following relative abundance cal-
culated on genome copy numbers: 40% B. vulgatus, 
40% C. septicum, 10% B. longum, 5% H. pylori, 4% 
A. hydrophila, and 1% E. coli. Abundances repre-
sented typical relative abundance of major phyla 
found in a healthy adult gut microbiome.34,35 Kp 
ST11 gDNA was spiked into six mock microbiome 
aliquots at relative abundance: 0%, 0.001%, 0.01%, 
0.1%, and 1%, as well as 1% Kp ST11 plus 1% Kp3 
ST697 (Suppl. Table 1).

Kp-spiked fecal microbiome
Whole microbiome DNA was extracted from 
a fecal sample collected from a healthy adult 
donor using the Norgen Stool Nucleic Acid 
Preservation system (Norgen Biotek, cat# 53700) 
and confirmed KpSC negative by the ZKIR-qPCR. 
Total bacterial abundance was estimated by qPCR 
quantification of the bacterial 16S gene using the 
universal 16S primers described by Clifford et al.65 

qPCR reaction mixture, cycling conditions were as 
described by Barbier et al.30 0.25ng microbiome 
DNA was used as input, and standard curve was 
set up as for the ZKIR-qPCR above except the 
following five-fold dilution series was used: 
1.25x106, 2.5x105, 5x104, 104, 2x103, 400, 80, and 
16 genome copies per qPCR reaction. gDNA from 
Kp ST11, ST23, and ST101 (Suppl. Table 1) were 
combined in the ratio 60:30:10, respectively, and 
spiked into aliquots of the donor microbiome 
DNA at 0%, 0.001%, 0.01%, 0.1%, and 1%. All Kp- 
spiked mock and fecal microbiome samples under-
went WMS sequencing, sample processing, and 
taxonomic analysis as described.

Kp strain analysis

Kp strain analysis was performed using StrainGST, 
part of the Strain Genome Explorer (StrainGE) 
toolkit.37 A custom database of KpSC genomes 
(n = 3604) was constructed with default k-mer size 
23. The database consisted of i) all Kp genomes from 
refseq (NCBI) (n = 1010), downloaded on the 02/02/ 
2022 using NCBI Genome Downloading Scripts, 
(https://github.com/kblin/ncbi-genome-download), 
ii) 484 KpSC genomes from our KpSC carriage study 
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(303 Kp1, 134 Kp3, 31 Kp2, and 16 Kp4 genomes), 
and iii) 2109 KpSC genomes from the recent SPARK 
study (1705 Kp1, 279 Kp3, 76 Kp2, and 49 Kp4 
genomes).20,74 The default lower limit for database 
clustering of 0.90 k-mer similarity resulted in closely 
related ST types co-clustered (e.g., ST11 and ST258), 
thus, a lower limit of 0.95 was used for final database 
clustering.

Statistical analysis

Statistical differences between sample groups were 
determined using a one-tailed Mann Whitney 
U test (independent samples) or one-sided 
Wilcoxon signed-rank test (paired samples) using 
Jasp version 0.14.1 (University of Amsterdam, 
Amsterdam, Netherlands) (https://jasp-stats.org/ 
download/). Correlation analysis of qPCR and 
Centrifuge Kp abundances was performed using 
R Studio version 3.6.1. p-values <0.05 were 
regarded as statistically significant.
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Supplementary Table 1. Bacterial strains used in this study 

Strain Species Use Reference 

K47-25 (ST258) Kp1 ZKIR qPCR reaction efficiency/standard curve 1 

T7-004 (ST681) Kp3 ZKIR qPCR reaction efficiency 2 

T7-071 (ST4653) Kp2 ZKIR qPCR reaction efficiency 2 

T7-021 (ST4625) Kp4 ZKIR qPCR reaction efficiency 2 

ATCC 25922 E. coli ZKIR qPCR negative control (Direct samples) NA 

ATCC 43863 K. oxytoca ZKIR qPCR negative control (Sweep samples) NA 

DSM 2151 B. fragilis In silico binary species mix SRR16258999 

DSM 30053 K. aerogenes In silico binary species mix SRR15076202 

ETEC H10407 E. coli In silico binary species mix ERR2910163 

ATCC 8482 B. vulgatus Mock microbiome NA 

ATCC 12464 C. septicum Mock microbiome NA 

UNN S1 B. longum Mock microbiome ERS15072143 

ATCC 43504 H. pylori Mock microbiome NA 

ATCC 7966 A. hydrophila Mock microbiome NA 

ATCC 35218 E. coli Mock microbiome NA 

K66-45 (ST11) Kp1 Kp-spike strain 4 

T7-263 (ST697) Kp3 Kp3-spike strain 2 

T7-442 (ST23) Kp1 Kp-spike strain 2 

P19-10 (ST101) Kp1 Kp spike strain 5 

 

 

 

 

 

 

 

 

 

 



 

 

Supplementary Table 2. Comparison of Limit of Detection (LOD) and Limit of 

Quantification (LOQ) of four human-associated KpSC members (Kp1-4) by the ZKIR-qPCR. 

Species  

Limit of Detection (LOD)a Limit of Quantification (LOQ)a 

gDNA only  gDNA with 

microbiome DNAb 

gDNA only gDNA with 

microbiome DNAb 

K. pneumoniae (Kp1) 3 genomes 3 genomes 16 genomes  

CV = 23.5% 

16 genomes 

CV = 16.7% 

K. variicola (Kp3) 3 genomes 3 genomes 16 genomes  

CV = 28.2% 

16 genomes 

CV = 28.51% 

K. quasipneumoniae subsp. 

quasipneumoniae (Kp2) 

3 genomes  3 genomes 16 genomes  

CV = 35.2% 

16 genomes 

CV = 27.5% 

K. quasipneumoniae subsp. 

similipneumoniae (Kp4) 

3 genomes  3 genomes 16 genomes   

CV = 23.5% 

16 genomes 

CV = 21.78% 

aLimits were defined as lowest genome copy number which could be detected (LOD) or quantified (LOQ) in 10/10 technical 

replicates.  

bAssays were performed as isolate genomic DNA (gDNA) only as well as challenged by the presence of 25 ng KpSC 

negative faecal microbiome DNA.  

CV = coefficient of variation. 

 

Supplementary 3, 4, and 5. Provided as Excel table 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Supplementary Figure 1: Blast analysis of the 78bp ZKIR-qPCR target sequence against the 

484 KpSC isolates detected during our previous Kp population carriage study.2 Base-pair 

mismatches are highlighted. Calculated amplicon melting temperatures (TM) (oC) for each 

sequence variant are shown. Results visualised using AliView Alignment Viewer and Editor 

(v1.26). 



 Supplementary Fig 2: ZKIR-qPCR standard curves generated from representative isolates of 

each of the four human associated KpSC species. Assays were performed on isolate gDNA only 

(A) and in the presence of 25 ng KpSC negative faecal microbiome DNA (B) in technical 

triplicates from 250,000 genomes/reaction to 3 genomes per reaction.  Cq = Quantification 

Cycle 

  



  

Supplementary Figure 3: Proportion of reads misassigned to the Kp genome by Centrifuge 

from related Enterobacterales in in silico binary species mixes containing B. fragilis and 

increasing abundance of either E. coli (teal) or K. aerogenes (orange). 
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