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Abstract 
Background: With the surge in popularity and competitiveness of women’s football, there is 
a call for further research to enhance the development and health of these athletes. For 
practitioners, understanding the performance characteristics of these athletes could be 
beneficial in informing training strategies. By establishing normative data for a given 
performance level, practitioners can readily assess their performance relative to these 
benchmarks, potentially shaping training goals and targets. Additionally, with the widespread 
use of external load monitoring, having reference values to identify deviations from typical 
performances becomes increasingly useful. Finally, there is a notable gap in the literature 
concerning the external training load of highly trained female football players in typical 
training cycles and in multi-team cohorts. Considering these issues, the objective of this thesis 
was to describe the activity profiles and training loads of highly trained female football 
players.  

Methods: We collected tracking data from four teams in the Norwegian premier division over 
the course of two seasons. In paper I, we assessed the activity profiles of highly trained 
female players according to playing position, while in paper II, we established reference 
values for unusual changes in these profiles. Paper III described the external training load in 
typical cycles and compared differences in external training load between starters and non-
starters.  

Results: Players covered mean match total distances ranging from 8934 to 10131 meters, 
high-speed running distances ranging from 1054 to 1894 meters, sprint distances ranging 
from 227 to 530 meters, acceleration distances ranging from 433 to 578 meters, deceleration 
distances ranging from 305 to 493 meters, and achieved peak speeds of 27 to 29 km×h-1. The 
largest differences in activity were observed between center-backs and the wide positions 
(full-backs and wide midfielders), where the latter covered greater high-speed- and- sprint 
distances. We also observed only trivial to small (Cohen’s Dz: 0.07-0.20) decreases in activity 
between post-peak periods and corresponding mean match periods. The observed match-to-
match variability in high-speed running distance, sprint distance, and acceleration- and 
deceleration distance ranged from 12 to 36%, while peak speed and total distance ranged from 
4.5 to 5%. In longer cycles, the majority of load was concentrated around mid-week in a 
pyramid-like fashion, with minimal differentiation in the load of starters and non-starters 
approaching match day. The peak speed achieved in training was approximately 93% of that 
recorded during matches.  

Conclusion: Activity profiles vary by playing position, and there is a wide range of 
performances that can be considered normal with regards to high-speed running and sprinting, 
but less so for total distance and peak speed. The pyramid-like distribution of the external 
training load aligns with established training principles, facilitating rest, loading, and peaking 
before a match. Nevertheless, practitioners should recognize the potential gap in achieving 
maximum running speed during training.   
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Sammendrag 
Bakgrunn: I takt med den økende populariteten og profesjonaliseringen av kvinnefotball er 
det et behov for ytterligere forskning for å styrke utviklingen og helsen til disse utøverne. For 
trenere utgjør arbeidskravsanalysen et viktig ledd i treningsplanleggingen. Ved å etablere 
normative data for et gitt prestasjonsnivå, kan trenere enkelt evaluere prestasjonen til sine 
egne utøvere i forhold til disse referansene. I tillegg, med den økende bruken av 
overvåkningsteknologi, blir referanseverdier for å identifisere avvik fra typiske prestasjoner 
stadig viktigere. Til slutt er det en betydelig mangel på forskning som har kartlagt den 
eksterne treningsbelastningen til kvinnelige fotballspillere i typiske treningssykluser og der 
kohortene består av flere lag. Med utgangspunkt i disse utfordringene var målet med 
avhandlingen å beskrive kamp- og treningsbelastningen til kvinnelige fotballspillere på 
toppnivå i Norge. 

Metode: Vi samlet data fra fire lag i Toppserien over to sesonger. I artikkel I analyserte vi 
belastningen i kamp på posisjonsnivå, mens vi i artikkel II etablerte referanseverdier for 
uvanlige endringer i kampbelastning. Artikkel III beskrev den ytre belastningen i typiske 
treningssykluser og sammenlignet forskjellene i ytre belastning mellom startende og ikke-
startende spillere. 

Resultater: Spillerne tilbakela i gjennomsnitt mellom 8934 og 10131 meter totalt i løpet av 
en kamp, samt gjennomførte høyhastighetsløp på mellom 1054 og 1894 meter, sprintløp på 
mellom 227 og 530 meter, akselerasjonsløp på mellom 433 og 578 meter, deselerasjonsløp på 
mellom 305 og 493 meter, og oppnådde topphastigheter på mellom 27 og 29 km×h-1. De 
største forskjellene i belastning ble observert mellom midtstoppere og kantposisjonene 
(backer og kant), der sistnevnte tilbakela større distanser med tanke på høyhastighetsløp og 
sprinter. Vi observerte også bare trivielle til små (Cohens Dz: 0.07-0.20) reduksjoner i 
aktivitet i periodene etter de mest intensive periodene sammenlignet med 
kampgjennomsnittet. Den observerte kamp-til-kamp-variabiliteten i 
høyhastighetsløpedistanse, sprintdistanse, og akselerasjon og deselerasjonsdistanse varierte 
fra 12 til 36%, mens topphastighet og total distanse varierte fra 4,5 til 5%. I lengre sykluser 
var det meste av belastningen konsentrert rundt midtuken, som en pyramide, med minimal 
differensiering i belastningen mellom startende og ikke-startende spillere imot kampdag. 
Toppfarten oppnådd i trening var omtrent 93% av det som ble registrert i kamp. 

Konklusjon: Kampbelastning varierer basert på posisjon. Høyhastighetsløp og sprintdistanse 
viser stor variasjon fra kamp til kamp, mens totaldistanse og topphastighet varierer mye 
mindre. Den observerte pyramideformede belastningsfordelingen samsvarer med etablerte 
treningsprinsipper, der hvile, belastning, og topping prioriteres i forberedelsene til kamp. 
Likevel, trenere bør være oppmerksomme på den tilsynelatende mangelen på toppfart i 
treningshverdagen.     
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1 Introduction 
1.1 Tracking technology and the training process 
Sports training, as defined by, Viru & Viru (2000) involves systematically performing 
exercises to enhance physical abilities and acquire skills related to the technique in a sports 
event. While there is a wealth of literature pertaining to this subject, Impellizzeri et al. (2019) 
offer a clear framework for understanding the training process and how this relates to the 
design of the overall training plan. According to the authors, achieving specific performance 
adaptations requires targeting the systems underlying performance. Once training targets are 
set, manipulating training load becomes crucial for eliciting the desired response.  

Drawing on the works of Coutts (2018), Impellizzeri (2019) describe training load as the 
input variable that is manipulated to elicit the desired training response. This classification of 
training load also depends on whether we are considering measurable aspects internally or 
externally to the athlete (Impellizzeri et al., 2019). External load, determined by the 
organization, quality, and quantity of exercises in the training plan, represents the prescribed 
physical work (Impellizzeri et al., 2019). In the context of football, external load is commonly 
monitored through tracking systems, with metrics such as total- and high-speed distance 
covered being prevalent indicators. Coaches use external load to tailor training, aiming to 
elicit specific physiological responses (Impellizzeri et al., 2019). This response corresponds to 
the internal training load, measured by indicators like heart rate and rate of perceived exertion 
(RPE). Reflecting the body's physiological response to the external load, internal load 
provides insight into the physiological strain experienced by the athlete during training 
(Impellizzeri et al., 2019).  

It is through the external load construct that tracking technology emerges as a central aspect 
in the training process of football players. For example, Buchheit & Simpson (2017) identify 
three main objectives for integrating tracking technology into training: providing an objective 
assessment of external training load for sessions or matches, aiding in team-level 
programming of external training load, and facilitating decision-making for individual player 
training programs to enhance performance and prevent injuries (e.g., top-up training vs. 
unloading sequences, return-to-play progression). Torres-Ronda et al. (2022) further 
categorize these objectives into three overarching and overlapping purposes: Describing, 
Planning, and Monitoring. In the overlap of Describing~Monitoring, descriptive data is 
gathered by sport and/or position. This information is then utilized to plan physical outputs in 
the intersection of Describing~Planning before comparing the resulting physical outcomes 
with the training plan in the intersection of Planning~Monitoring. Consequently, the purposes 
described in Torres-Ronda et al. (2022) provide a strong rational for describing the training 
and match loads of female football players, as the normative data generated can be utilized by 
practitioners, particularly in the intersections of Describing~Monitoring and 
Describing~Planning.  
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1.1.1 GNSS-based tracking systems 
A multitude of tracking systems are at the disposal of practitioners looking to monitor the 
external load of football players (Torres-Ronda et al., 2022). However, wearable devices that 
connect to one or several Global Navigational Satellite Systems (GNSS) – an umbrella term 
encompassing satellite constellations designed for positioning, navigation, and timing – rank 
among the most popular systems (Luteberget & Gilgien, 2020). Amid these, the USA-based 
Global Positioning System (GPS) stands out as the most widely integrated technology in 
commercially available tracking systems (J. J. Malone et al., 2017).  

GNSS units operate by transferring data between the unit located on the athlete, and the 
available satellites orbiting the Earth (Luteberget & Gilgien, 2020). This information/data is 
transferred using a sampling frequency measured in Hertz (Hz), meaning, the higher the 
sampling frequency, the more information transferred per second (J. J. Malone et al., 2017). 
In the context of player monitoring, the speed measured by these systems usually serves as 
basis for calculating tracking metrics. Speed is usually ascertained through the Doppler shift 
method (Ellens et al., 2022), which involves measuring shifts in satellite signal frequency 
attributable to the movement of the receiver (Larsson, 2003). This receiver is typically worn 
on the upper back of the player affixed to a snug vest. From Doppler-derived speed, other 
common metrics used for player monitoring, such as distance and acceleration, can then be 
derived and further used to calculate distances and number and distances of runs in different 
intensity zones.  

Currently, GNSS (or GPS) analysis remains the most effective and time-efficient for 
monitoring workload within the team sports. In addition, the validity and reliability of these 
systems are also improving with technological developments, such as advances in chipset 
technology and signal processing algorithms (Cardinale & Varley, 2017; J. J. Malone et al., 
2017). Collectively, a large body of evidence underscores the validity and reliability, 
especially of 10Hz GNSS-based tracking devices, as a dependable method for measuring 
distance and speed in team sports (Beato et al., 2018; Rampinini et al., 2014; M. TU. Scott et 
al., 2016).  

1.2 External training load metrics 
As stated by Torres-Ronda et al. (2022), practitioners are besieged with a multitude of metrics 
from tracking systems. However, as recommended by Buchheit & Simpson (2017), if a 
tracking system is to significantly contribute to a training program's effectiveness, it is 
recommended to concentrate on variables that are simple to interpret whilst offering utility to 
practitioners. Moreover, these variables should demonstrate both validity and reliability to 
instill confidence when crucial decisions need to be made. When surveying the practices and 
perceptions of high-level football clubs, Akenhead et al. (2016) found that distances covered 
at various speeds and the occurrences of high-speed movement, accelerations and 
decelerations were the most commonly used metrics. Another study by Nosek et al. (2021) 
found that coaches were most interested in metrics describing “high intensity” actions and 
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“work rate/intensity”. The same study also notes that players deemed feedback as positive to 
change their behavior, with total distance (TD), high-speed running (HSR) and sprint 
distances (SpD) as the information they would most likely act upon (Nosek et al., 2021). 
Furthermore, a survey by McCall et al. (2020) highlighted the importance of high-speed 
running, sprinting, and corresponding “worst-case scenarios” for preventing injuries. Taken 
together, these three studies provide valuable insights into what types of metrics sports 
scientists should prioritize if research is to translate into practice.   

1.2.1 Total distance, high-speed running, and sprinting 
All the metrics mentioned in the studies above correspond to several aspects of physical 
performance in football. While total distance does not differentiate between competitive 
levels (Choice et al., 2022; Mohr et al., 2008), it still serves as a valuable proxy for assessing 
overall training volume (Buchheit & Simpson, 2017). The volume of running at high speeds, 
however, seems to be of greater importance in terms of differentiating ability. For example, 
several studies have shown that players at higher competitive levels display greater volumes 
of high-speed running during match play compared to lower competitive levels (Andersson et 
al., 2010; Mohr et al., 2008). Though more recently, Scott et al. (2020) found few meaningful 
differences between international and domestic players. It is also interesting to note that the 
English Premier League, experienced a 12% increase in high-speed running- and a 15% 
increase in sprint distance from 2014/2015 to 2018/2019 (Allen et al., 2023), indicating that 
players are covering greater distances at higher speeds. Given the surge in competitiveness 
observed in the women’s game (de Araújo & Mießen, 2017), coupled with the paucity of 
scientific literature available (Kirkendall & Krustrup, 2022), one can speculate whether a 
similar, if not steeper, trend exists.  

Straight-line sprinting is one of the rarest events in football yet is the most frequent action 
before goals for both the scoring and assisting player (Faude et al., 2012). Thus, while being 
an outlier in turns of events, a single sprint can have a disproportional effect on the outcome 
of a game. Beyond its impact on match dynamics, the importance of sprint ability also 
extends to the players’ overall physical performance during a game. As showed by Mendez-
Vallanueva et al. (2011), the fastest players during sprint testing also reach the highest speeds 
during the game, and all players reach a high percentage of their maximal sprint speed 
regardless of position. Furthermore, the importance of high-speed running and sprinting is 
also underlined by its relation to injury. For example, both Buchheit et al. (2023) and Malone 
et al. (2018) found that male athletes who sprinted at high intensity (>95% of their maximal 
speed) during sport practice showed a lower risk of lower limb injuries than those who 
produced lower maximal speed (<85%). In another study, Buchheit et al. (2024) found that a 
weekly HSR-to-match ratio of 0.6 to 0.9, and a weekly SpD-to-match ratio of 0.6 to 1.1. was 
associated with reductions in injury occurrence. This has led to some authors suggesting that 
exposure to maximum speeds is a potential “vaccine” against hamstring injuries (Edouard et 
al., 2019), with exposure to high-speed football actions being suggested as a modifiable risk 
factor (Ekstrand et al., 2023).  
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Thus, the ability of total distance to gauge overall training volume, coupled with the 
association between high-speed running and sprinting, and game outcomes and injury 
prevention, underscore the importance of these metrics as integral parts in player monitoring.  

1.2.2 Acceleration and deceleration 
Another set of metrics that have gained more attention from sports practitioners and scientists 
in recent years are accelerations and decelerations. Several authors have noted that a 
significant part of the overall external load in team sports such as football are due to intense 
accelerations and decelerations (Harper et al., 2019; Vanrenterghem et al., 2017). These 
actions also impose distinct physiological and mechanical demands on the players (Harper et 
al., 2019; Vanrenterghem et al., 2017). For instance, Harper et al. (2019) write that 
accelerations incur a higher metabolic cost compared to decelerations, while decelerations 
result in a greater mechanical load (Dalen et al., 2016; Hader et al., 2016), often due to 
impactful peak forces and loading rates that can potentially cause more damage to soft-tissue 
structures if not efficiently mitigated (Harper & Kiely, 2018). The same authors also write 
that the frequency of high-intensity accelerations and decelerations during match play is 
commonly linked to declines in neuromuscular performance and signs of muscle damage 
post-match (De Hoyo et al., 2016; Gastin et al., 2019). Furthermore, Harper et al. (2019) also 
point to the differentiating ability of these metrics. For instance, elite athletes demonstrate a 
greater capacity to sustain a higher frequency and magnitude of accelerations and 
decelerations compared to their lower-performing counterparts (Draganidis et al., 2015). This 
capability could potentially contribute to improved match play performance, especially in 
situations requiring swift changes in velocity (Harper et al., 2019). Consequently, it is 
important that acceleration and deceleration can be appropriately quantified and monitored 
during training and competition to ensure athletes are adequately prepared for this load. 

1.2.3 Peak periods 
Practitioners also place value on metrics describing activity over shorter periods, particularly 
those related to high-speed running and sprinting (McCall et al., 2020). These types of metrics 
go by various names in the literature such as “peak periods”, “peak demands”, “peak 
locomotor demands”, “peak characteristics”, “duration-specific locomotor demands”, 
“maximal intensity periods”, or ‘worst-case scenarios” (Weaving et al., 2022). Regardless of 
nomenclature, the purpose is to capture the activity over a set period (e.g. 1-minute peak 
sprint distance, 2-minute peak sprint distance, etc.). Initially, these metrics were calculated by 
segmenting the data over predefined durations, often, per quarter or smaller predefined 
durations (e.g. 0 to 5, 5 to 10 minutes, etc.) (Weaving et al., 2022). However, as reported by 
Fereday et al. (2020), this approach underestimates 1–10-minute peak total distance and peak 
high-speed running distance by ∼7–10%, and ∼12–25% when compared to using a rolling 
average. This finding suggests that rolling averages may be a more suitable method of 
assessing peak periods in professional football (Fereday et al., 2020). Activity per minute 
during these periods also appears far greater compared to the match. For example, Riboli et al. 
(2022) demonstrated that the activity during 1-minute peak periods is 149%, 381%, 450%, 
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and 781% of mean match activity in terms of total, high-speed, very-high speed, and sprint 
distance, respectively. This discrepancy is due to the match as a whole containing periods of 
inactivity, exacerbated when compared against high-speed metrics and shorter epochs 
(Weaving et al., 2022).  

Compelling arguments for the use of peak periods in football practice are most notably 
articulated by Weaving et al. (2022). For instance, they reference a study by Barret et al. 
(2020) highlighting that position-specific-, possession-, small-sided game (SSG)-, tactical- 
and technical-based training modes account for 90% of total training drill prescription, with 
conditioning compromising the remaining 10%. According to Weaving et al. (2022), this 
finding underscores the need for strength and conditioning coaches to work within an 
environment where sport-specific practice compromises the bulk of training, and where the 
technical-tactical coach is in charge. For example, peak periods could serve as benchmark and 
evaluation tool during small-sided games when there is a greater emphasis on technical-
tactical elements. Task constraints, such as field dimensions, could then be manipulated to 
achieve the desired external intensity (Riboli et al., 2020). Interestingly, the authors also note 
that general SSG prescription seems to underload players in terms of high-speed running but 
overload them in terms of mechanical work. This notion is based on a study by Lacome et al. 
(2018), comparing match peak periods of 1 to 5 minutes with those obtained under different 
SSG formats (4v4, 6v6, 8v8; all with goalkeepers). The authors also compare results from 
Gaudino et al. (2014), investigating activity during 4-minutes of 5v5, 7v7 and 10v10 SSG 
with those of Noak et al (2021), studying 3-minute peak periods in official matches. Both 
studies looked at Premier League players, making them comparable samples. The comparison 
showed that the relative total distance (range: 100.5-116.5 vs. 146-167 m⋅min-1) and relative 
high-speed running distance (range: 0.25-4.0 vs. 12.3-20.2 m⋅min-1) reported in Gaudino et al 
(2014) were much lower compared to the corresponding 3-minute peak periods reported in 
Novak et al. (2021). The highest values in Gaudino et al. (2014) were also far below the 
average intra-individual match-to-match variation (6.8% and 25.2%) reported in Novak et al. 
(2021), even when considering the lowest values for both metrics (TD: 136-156 m⋅min-1; 
HSRD: 9.2-15.4 m⋅min-1).  

In summary, Weaving et al. (2022) suggest that peak periods can be valuable metrics for 
practitioners. This is because a) technical–tactical training modes constitute a significant 
portion of training, and b) technical–tactical coaches are primarily responsible for designing 
the task constraints in such training. As such, normative peak period data can be beneficial for 
practitioners in the evaluation and planning of external load in modes where there is a 
heightened emphasis on technical–tactical aspects and a reduced focus on physiological 
development.         

1.3 Activity profiles of female football players  
To reemphasize the framework by Torres-Ronda et al. (2022), tracking technology proves 
particularly valuable for acquiring descriptive data categorized by sport and position 
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(Describing~Monitoring). This data can then be utilized to plan physical outputs in the 
intersection of Describing~Planning before comparing the resulting physical outcomes with 
the training plan in the intersection of Planning~Monitoring. For practitioners working with 
female football players, descriptive data on match activity at different standards can therefore 
be a valuable resource, providing reference values or normative data that can help inform 
practice. For instance, authors such as Buchheit et al. (2024) have expressed the correlation 
with injury occurrence as a weekly training load to match ratio, while authors such as Baptista 
et al. (2020) and Stevens et al. (2017) have noted how scaling the session load based on the 
match load can provide context to the work performed. As an example, the sprint distance in a 
training session can be described both in terms of its absolute values (for example 250 
meters), but also relative to the mean match sprint distance (50%, if the mean match sprint 
distance is 500 meters). In this way, the match load contextualizes the session in a practical 
way for practitioners.  

1.3.1 Whole-match activity by position at the professional level 
The most comprehensive systematic review of match-play characteristics in female football 
players is found in Harkness-Armstrong et al. (2022). Of the 69 studies included in their final 
selection, 39 presented whole-match absolute values of the most frequently reported physical 
characteristics (i.e. total distance, high-speed running distance, very-high-speed running 
distance, sprint distance, peak speed, and number of accelerations and decelerations).  

Since activity increases the higher the playing standard, it is essential that normative data is 
created for each level. Activity is also likely dependent on player position; thus, one also 
needs to look at the interaction between playing standard and position. Diving deeper into the 
material of Harkness-Armstrong et al. (2022) one can find eight studies that fit these criteria 
(table 1). Of these studies, only four have measured physical performance using 10 Hz GPS, 
with thresholds differing between each study.   
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Table 1: Studies that have investigated the effect of position on physical performance in domestic and 
international level female football players. 

 

From figure 1, one can see that players within these categories typically cover total distances 
of 9000-11000 m (A), HSRD of 500-3000 m (C), SpD of 20-850 m (D), and reach peak 
speeds of 27-31.5 km×h-1, while performing 7 to 475 accelerations, and 13 to 473 
decelerations. Some of these ranges are quite broad, however, partly due to between-study 
differences in methodology, such as the tracking system and thresholds used.     
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Figure 1: A) Total distance, B) peak speed, C) HSRD, D) SpD, E) accelerations, and F) decelerations in domestic 
and international level female football players.  

 

1.3.2 Peak periods 
Out of the studies reported in Harkness-Armstrong et al. (2022), only six reported peak 
periods in women’s match play, with just one study applying a moving/rolling average 
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analysis. As mentioned previously, fixed periods tend to underestimate 1–10-minute peak 
total distance and peak high-speed running distance approximately by 7–10%, and 12–25%, 
respectively, compared to using a rolling average (Fereday et al 2020).    

Table 2: Studies in Harkness-Armstrong et al. (2022) that have described peak periods in domestic (DOM) and 
international (INT) level female football players. 

 

Another interesting aspect is whether activity decreases following peak periods, which may 
indicate fatigue or pacing strategy (Bradley & Noakes, 2013). While both Andersson et al. 
(2010) and Trewin et al. (2018) presented data on post-5-minute periods, neither of them 
actually compared the activity during these periods to the mean match activity. One could 
hypothesize that a substantial decrease in post peak period activity relative to the mean match 
activity to be indicative of fatigue or pacing.  

1.4 Variability and the smallest worthwhile change 
Another concept that should be important to practitioners is the smallest worthwhile change 
(SWC). This concept was most notably expanded upon in an article by Hopkins et al. (1999), 
wherein the SWC was described as the magnitude of performance enhancement required to 
make a difference to the model-winning prospect of an elite athlete. According to Hopkins et 
al. (1999), there are two factors that are important when deciding upon the SWC: the variation 
in an athlete's performance between events (also known as within-athlete variation or 
variability), and the variation in performance between athletes in the same event (also known 
as between-athlete variation or variability). For example, it could appear that a small 
enhancement in performance would be worthwhile for one of these athletes because it would 
put that athlete ahead of all the others. However, one also needs to consider within-athlete 
variation because this produces slightly different outcomes each time, unrelated to any true 
performance enhancements. To put it in a practical sense, a performance enhancement much 
smaller than the within-athlete variation would obviously have no effect on an athlete's 
chances of winning an event, while an enhancement much greater than the within-athlete 
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variation would guarantee the athlete first place (Hopkins et al., 1999). The enhancement that 
begins to make a difference to the athlete's chance of winning is somewhere between these 
two extremes. Between-athlete variation represents the true variation in ability between 
athletes (Hopkins et al. 1999). Between-athlete variation has an important effect on medal 
winning in individual sports because the greater the spread in ability relative to within-athlete 
variability, the greater the enhancement needed to lift an athlete to first place from a lower 
ranking (Hopkins et al. 1999).  

It is harder to discern what is worthwhile change in performance for a female football player, 
as there is no clear relationship between physical performance and match outcome. Instead, 
Hopkins (2004) recommends using 0.2 multiplied by the between-athlete standard deviation 
or CV% as a general guideline for setting the SWC for team-sport athletes. This 
recommendation is based on the effect size statistic and the associated guidelines (small: 0.2-
0.5, medium: 0.5-0.8, large: > 0.8) in Cohen (1988). Although Cohen (1988) outlined several 
variations of the effect size statistics dependent on study design, all are essentially dividing 
the difference or change in means by some form of uncertainty. By multiplying the between-
athlete standard deviation by 0.2, as Hopkins (2004) recommends, you get the difference or 
change in means equivalent to an effect size of 0.2. In practical terms this is equivalent to an 
athlete moving from the 50th to the 58th, from 80th to 85th, or from 95th to 97th percentile rank 
in a sample or population of athletes (Hopkins, 2004).   

An example of how the SWC can be used in combination with statistical concepts to provide 
practitioners with reference values for meaningful changes, is the article by Oliva-Lozano et 
al. (2021). They provide three measures that practitioners can use to interpret changes in 
individual players: the observed match-to-match variability, 80% and 90% limits of 
agreement (LoA), and values signifying statistically significant changes. Observed match-to-
match variability captures the variation in a player's performance across successive matches. 
This measure is derived using linear mixed models, which enable the partitioning of 
variability into components attributed to factors such as the match itself and within-player 
variability (Malcata & Hopkins, 2014). Importantly, observed match-to-match variability 
focuses solely on components relevant to monitoring individual performance, excluding 
variations stemming from differences between players or between teams (Oliva-Lozano et al. 
2021).  

The next measure, limits of agreement (LoA), denotes the range in which an individual’s 
change score would fall a certain percentage of the time in consecutive pairs of trials 
(Hopkins, 2000). For instance, in Oliva-Lozano et al. (2021) the 90% LoA for total distance is 
± 1333, meaning that from one game to the next, a male player has a 1 in 10 chance of 
running 1333 meters longer or shorter in the second game compared to the first. Finally, 
Oliva-Lozano et al. (2021) also reports values that would flag a change as statistically 
significant while considering the observed match-to-match variability, the SWC, and alpha 
levels of 0.10 and 0.05.  
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In summary, by integrating concepts such as observed match-to-match variability, LoA, and 
statistical significance, practitioners can gain insights into unusual changes in individual 
players' performance metrics across successive matches. 

1.5 In-season training 
The rational for exploring the in-season training of female football players is explained by us 
in paper III but will be reiterated here for introductory purposes. In the beginning of the paper 
we write how variations in training load in football are commonly observed at the microcycle 
level, where external load is typically manipulated based on the number of days between 
matches (Clemente et al., 2014; Morgans et al., 2014). The “horizontal alternation” principle 
(Buchheit et al., 2018, 2021) is often mentioned in tandem, which suggests targeting specific 
physical capacities like strength, endurance, or speed on designated days. This approach aims 
to develop each capacity while minimizing physiological interferences (Buchheit et al., 2018; 
Fyfe et al., 2014), and is often applied within the "days before the match" (MD-) / "days after 
a match" (MD+) framework. For instance, with six days between matches, three "acquisition" 
days (MD-4, MD-3, and MD-2) might be interspersed with one or two "recovery" days 
(MD+1 to MD+2) and one "tapering" day (MD-1), dedicating each "acquisition" day to a 
specific capacity, aiming for overall development whilst allowing adequate recovery time 
(Buchheit et al., 2018). 

Furthermore, few studies have explored the periodization of training load in female football 
teams. Karlsson et al. (2023) found a Norwegian team differentiating their training load in 
longer cycles (with 5-7 training days available), much in resembles to the horizontal 
alternation principle. On the other hand, Diaz-Seradilla et al. (2022) noted that with four days 
between matches, MD was more demanding than any training day, and all external training 
load variables were higher on MD-3 compared to other training days. Last, Romero-Moraleda 
et al. (2021) observed that in cycles with five days between matches, the match was the most 
demanding session, and MD-4 and MD-3 consistently produced the greatest physiological 
and biomechanical loads, with MD+1 showing the lowest values. In summary, while these 
papers have explored differences between training days in specific cycle lengths, limited 
information exists on training load across a broad range of cycles. Additionally, existing 
studies have focused solely on players with over 60 minutes of playing time, leaving gaps in 
our understanding of the training load for non-starters. 
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2 Aims of the thesis 
The primary objective of this dissertation was to conduct a comprehensive analysis of the 
match activity and training loads of highly trained female football players, with the goal of 
offering practitioners valuable insights and practical implications in the training of female 
footballers. To achieve this, we specifically aimed to:  

1. Describe the activity profiles of highly trained female football players by playing 
position and investigate fluctuations in activity following peak periods. 

2. Establish reference values for unusual changes in metrics commonly used in player 
monitoring. 

3. Track the microcycles of professional football teams and compare differences in 
external training load by day and by squad status (starter versus non-starter).   
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3 Methods 
This section provides an overview of the data collection process for the entire project, as well 
as individual summaries of the statistical analysis conducted for each paper.  

3.1 Ethical approval 
Before commencing the project, we applied for ethical approval through the Regional 
Committee for Medical and Health Research Ethics - Northern Norway (reference number 
53884) but were exempted since the data collection did not include a biobank, medical or 
health data related to illness, or interfered with the regular operation of the players. We also 
obtained approval from the Norwegian Centre for Research Data (reference number: 296155) 
before gathering written informed consent from the players in our studies. These players 
represented four teams in the Norwegian premier division, and one team in the Danish 
premier division, classified as highly trained according to the criteria outlined by McKay et al. 
(2022). Teams were pre-selected by the supervisors in cooperation with Toppfotball Kvinner 
(the organization responsible for organizing and overseeing women’s elite football in 
Norway) based on existing knowledge of the competence and consistency surrounding the 
sporting apparatus of these teams. This decision was rooted in the belief that prioritizing a 
more consistent data collection was preferable to random selection.  

3.2 Data sources 
Starting in March 2020, a prospective observational study was conducted in which tracking 
data from training and matches over two full seasons were collected using STATSports Apex 
(Newry, Northern Ireland), with a sampling 
frequency of 10 Hz. The validity and level of 
accuracy (bias <5%) of this tracking system have 
been demonstrated by Beato et al. (2018). All teams 
trained and played home matches on artificial grass, 
with only occasional away games on natural grass. 
Training sessions usually started between 10 AM 
and 4 PM, with matches typically played between 1 
PM and 9 PM during weekends. During training 
and matches, players wore their Apex unit on their 
upper back, adhering to manufacturer instructions 
(Figure 2). Furthermore, to minimize inter-device 
errors (Beato et al. 2018), each player used the 
same unit throughout data collection. Event data 
pertaining to fixtures and lineups were gathered via 
API-Football (2023) and NIFS (Norsk Internasjonal 
Fotballstatistikk) (2023) and merged with the 
tracking data during the processing of the files.   

Figure 2: Placement of the STATSports Apex 
unit. 
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3.3 Data processing 
All papers followed the reporting standards proposed by Malone et al. (2017) starting with 
raw GNSS data being exported from the manufacturer's software (STATSports Sonra, Newry, 
Northern Ireland) into a Python-based processing pipeline. The smoothing method, minimal 
effort duration, and thresholds used for calculating the metrics TD, HSRD, SpD, and 
accelerations and decelerations, are shown in Table 3, along with the most important 
independent variables used in each study. After processing, we performed statistical analysis 
on the aggregated data using the methods described in each paper, reiterated below.   

Table 3: Smoothing, minimum effort duration (MED), thresholds, and independent variables in each study.  

 

 

3.4 Statistical analysis 

3.4.1 Paper I 
This study included data from a single season compromising 60 matches, involving 108 
female football players (22 ± 4 years of age) from the four Norwegian clubs participating in 
the project. We included only players who completed a minimum of two full-time matches 
and excluded goalkeepers and observations where players had less than 90 minutes of playing 
time. This resulted in an initial sample of 501 observations with 108 missing values. These 
values were subsequently omitted in the complete case analysis, resulting in a final of 393 
match observations (Mobs) from 54 players. These players were categorized into different 
positions: center-backs (CB, n = 10, Mobs = 113), full-backs (FB, n = 11, Mobs = 84), central 
midfielders (CM, n = 16, Mobs = 105), wide midfielders (WM, n = 9, Mobs = 57) and forwards 
(FW, n = 8, Mobs = 34). The mean ± standard deviation of number of satellites and horizontal 
dilution of precision was 17.5 ± 2.8 and 1.4 ± 0.6, respectively.  

To examine between positional differences in full match and peak metrics, we created a 
statistical model for each metric with Position as the fixed effect and Team, Match ID´ Team 
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ID, and Position ´ Player ID as the random effects. These interaction terms were incorporated 
to address the nested structure of the data. For within-positional differences in peak, next, and 
mean periods we specified models with Position, Period, and the interaction term (Position ´ 
Period) along with the aforementioned random effects. We utilized the Tukey method to 
adjust for multiple comparisons, with an α-level set at 0.05 as the level of significance. Effect 
sizes were calculated using Cohen’s Dz (Lakens, 2013). All statistical analyses were 
conducted using the lme4 (Bates et al., 2015) and emmeans4 (Lenth et al., 2018) packages. 

3.4.2 Paper II 
For this study we utilized the same dataset as for paper I, ensuring that sample characteristics 
remained consistent across the two papers. To decompose the various sources of variability 
(including between-team, between-position, between-player, between-match, and the residual 
within-player variability) and to provide reference values for interpreting changes in match 
physical performance, we followed the methodology outlined by Oliva-Lozano et al. (2021).   

For each metric, we utilized a random effects model, specifying random intercepts for Team, 
Position, Player ID, and Match ID. Each random effect represented a source of variability and 
was expressed in raw units (as a standard deviation) by modelling the original data. 
Additionally, these effects were expressed as a percentage (CV%) by modelling the log-
transformed data before back-transformation of each estimate, as proposed Hopkins (2017).  

Like Oliva-Lozano et al. (2021), we utilized our estimates of variability to provide a 
framework for practitioners to interpret individual changes in match activity. Specifically, we 
calculated 80% and 90% LoA by multiplying the square root of 2 with the corresponding t-
values from a t-distribution with infinite degrees of freedom and the observed between-match 
variability (e.g., the pooled between-match and within-player variability). Furthermore, 
“practical” or more correctly statistically significant changes associated with a-levels of 0.10 
and 0.05 were calculated using the formula: 𝑐ℎ𝑎𝑛𝑔𝑒	 = 	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 + 	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑏𝑒𝑡𝑤𝑒𝑒𝑛 −
𝑚𝑎𝑡𝑐ℎ	𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦	 ×	√2	×	𝑡!,#. Here, the observed between-match variability was the 
same as described above, while the threshold term was equivalent to the smallest worthwhile 
change (0.2 * the observed between-player variability – or the pooled between-player and 
within-player variability). As in paper I, all statistical analyses were conducted using the lme4 
(Bates et al. 2015) and emmeans4 (Lenth et al. 2018) packages. 

3.4.3 Paper III 
This study included data from two seasons, involving 100 female football players (22.3 ± 3.7 
years of age) from the same four teams as in the previous studies. Unlike the previous papers 
we put a stronger emphasis on handling missing data by following the recommendations by 
Bache-Mathiesen et al. (2022), Borg et al. (2022), and J.J Malone et al. (2017). As described 
in the paper, we set all the metrics as missing on sessions with a mean horizontal dilution of 
precision > 5 or a mean number of satellites <12. We also set peak speed as missing if above 
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32 km⋅h-1 based on theoretical max speed values of 29.2 ± 1.4 km⋅h-1 in a similar cohort 
(Haugen et al., 2020). 

Furthermore, we described the initial dataset as including one observation for each squad 
player for each day throughout the competitive season (lasting 157 and 176 days in 2020 and 
2021, respectively), totaling 12879 observations, with 7646 missing. We opted to remove all 
observations on MD+1 since it typically was a day off with a substantial amount of missing 
data (2208 out of 2426 observations). We also removed all observations in cycles with four 
training days due to too few observations (171 in total with 132 missing). 

To impute missing data, we utilized multiple imputation with predicted mean matching, 
consistent with the recommendations by Bache-Mathiesen et al. (2022). Using the mice 
package (Van Buuren & Groothuis-Oudshoorn, 2011) in R, we applied the mice.impute.pmm 
function, including all dependent variables in addition to day number in the model, generating 
five imputed datasets for subsequent analysis.  

In the statistical analysis, we modeled duration, TD, peak speed, and AccDecdist in R using the 
lme4 package (Bates et al. 2015), while HSRD and SpD were modelled in the same software 
using glmmTMB (Magnusson et al., 2017). All models included the interaction between 
Match Day and cycle and Squad status (MDxCycle´SquadStatus) as fixed effects and Player 
ID and Team ID as random effects. In addition, HSRD and SpD were modelled using the 
tweedie family with a log link function. We also examined, only for the starters, the 
differences in training load between each day within each cycle before comparing differences 
in training load between starters and non-starters within each day. Here, the package 
emmeans (Lenth et al. 2018) was used to compute estimated marginal means, using the Sidak 
method to adjust for multiple comparisons between the days and the Tukey method for 
pairwise comparison between starter and non-starters. We also conducted the same statistical 
analysis on the non-imputed dataset with only complete cases for sensitivity purposes.  
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4 Results 
4.1 Paper I 

4.1.1 Whole-match and peak activity by position 
There were significant differences between playing positions across various metrics, 
highlighting a consistent pattern wherein players in wide positions covered more distance 
compared to those in central positions. Specifically, the results revealed that center-backs 
(CB) covered less distance than full-backs (FB) and central midfielders (CM) in terms of total 
distance (TD) and high-speed running distance (HSRD). Additionally, wide midfielders 
(WM) exhibited higher HSRD than CM and forwards (FW). Regarding SpD, CB covered less 
ground than FB, WM, and CM, while WM also surpassed FW in this aspect. Furthermore, 
WM outperformed FW in both TD and HSRD. Upon analyzing acceleration profiles, WM 
demonstrated higher acceleration distance (Accdist) than CB and CM, and higher deceleration 
distance (Decdist) than CB, CM, and FW (Figure 3 and 4). Peak speed, however, was not 
significantly different between any position.  

 

Figure 3: A) TD, B) HSRD, C) SPD, Acc, Dec, and D) peak speed, by playing position and period. 
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There were no significant differences between positions in 1-minute peak TD. However, in 
the case of peak 5-minute TD, three playing positions (FB, WM, and CM) displayed 
significantly higher values compared to CB (Figure 4). FB and WM also exhibited higher 1- 
and 5-minute peak HSRD than CB, with WM also surpassing CM and FW in the 5-minute 
peak (Figure 4). Similar trends were observed in terms of SpD. FB and WM had higher 
values in the 1-minute peak than CB and CM, and in the 5-minute peak than CB, CM, and 
FW. WM consistently had the highest values Accdist and Decdist in both 1- and 5-minute peak 
periods. Specifically, during the 1-minute peak, WM's results were significantly higher than 
CM, and during the 5-minute peak, they were higher than CB, CM, and FW. 

 

 

Figure 4: Statistically significant between-positional differences in TD, HSRD, SpD, Acc, and Dec for whole-
match, peak 5-, and peak 1-minute metrics.  

4.1.2 Activity following peak periods 
In the examination of peak, next, and mean 5-minute periods, a consistent trend was observed 
for every playing position, as depicted in Figure 5. Regardless of the variable under analysis, 
the results consistently showed higher intensities during the peak 5-minute period compared 
to both the subsequent and mean 5-minute periods. In 1-minute peaks, both CB, FB, CM, and 
FW exhibited significantly higher values for HSRD, SpD, Accdist, and Decdist compared to the 
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following 5-minute period (Figure 6). This trend was also observed for WM, except for 
HSRD, where the difference was not significant.  

Furthermore, and regardless of peak period length, the next 5-minute periods consistently 
presented lower values, compared to the mean 5-minute values for each variable, however 
these differences were trivial to small, with effect sizes (Cohen's Dz) ranging from 0.07 to 
0.20.  



 

 20 

 

Figure 5: Distance covered during 5-minutes peaks, the next 5 minutes, and the mean 5-minute period, for total 
distance (A), high-speed distance (B), sprint distance (C), acceleration distance (D), and deceleration distance 
(E). 
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Figure 6: Distance covered during 1-minute peaks, the next 5 minutes, and the mean 5-minute period, for TD (A), 
HSRD (B), SpD (C), acceleration distance (D), and deceleration distance (E). 
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4.2 Paper II 

4.2.1 Match-to-match variability 
The decomposed variability of whole match and 1-min peak metrics are presented in Table 4. 
The variability between players (mean CV% range: 4-37%) and between positions (mean 
CV% range: 2-39%) was greater than that observed between teams, where there was minimal 
variability. Sprint distance saw the highest variability in each grouping factor, while 
variability in general was lower for peak compared to whole match metrics.  

Table 4: Decomposed variability of whole-match and 1-minute peak metrics. 

 
 
 
SWCs, observed match-to-match variability, and values indicating statistically significant 
changes activity are summarized in Table 5. Except for SpD (29.4 vs. 31.9%), all other 
metrics exhibited higher observed match-to-match variability in 1-minute peaks compared to 
the match (6.5 vs. 4.6%; 18.7% vs. 15.9%; 12.9 vs. 11.7%; for TD, HSRD and AccDec, 
respectively). Based on these findings, changes of ±9% (a = 0.10) and ±12% (a = 0.05) in 
whole match metrics of TD and peak speed are necessary to flag a change as unusual. For 
HSRD (33%; 42%), SpD (68%; 84%) and AccDec (25%; 31%) these thresholds (a = 0.10; a 
= 0.05; respectively) are notably higher. Except for SpD, relatively larger changes are 
required in 1-min peaks compared to whole match values to reach the same a-level.  
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Table 5: Smallest worthwhile change (SWC), observed match-to-match variability, and values indicating 
statistically significant changes within players between matches. 
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4.3 Paper III  

4.3.1 In-season training 

4.3.1.1 Match vs. training 
Starters exhibited significantly higher values (p < 0.001) for TD, HSRD, SpD, AccDecdist, and 
peak speed on MD compared to any training session independent of cycle length. The 
duration of MD was approximately 88 ± 1 minutes (min), shorter (7 ± 4 to 18 ± 4 min, p < 
0.001) than training on most acquisition days (MD-5 to MD-3) in cycles with 5-7 days 
between matches. 

4.3.1.2 Three days between matches 
With three days available (1280 observations), there were no significant differences in 
duration and TD between MD+2 and MD-1. However, AccDecdist, HSRD, SpD, and peak 
speed were slightly higher on MD-1 compared to MD+2, with differences of 108 ± 91 meters 
(m) (p = 0.005), 77 ± 38 m (p < 0.001), 21 ± 13 (p < 0.001), and 2.2 ± 1.2 km⋅h-1 (p = 0.01), 
respectively. 

4.3.1.3 Five days between matches 
In cycles with five days between matches (2192 observations), TD, HSRD, SpD, AccDecdist, 
and peak speed were all lower on MD+2 compared to the other training days, except for TD 
(81 ± 493 m, p = 1.000) and AccDecdist (47 ± 115 m, p = 1.000) on MD-1. Differences in TD 
and mean peak speed ranged from 2728 ± 434 to 1005 ± 597 m, and from 2.9 ± 1.9 to 5.0 ± 
1.5 km⋅h-1, respectively, while differences in HSRD and SpD ranged from 82 ± 49 to 356 ± 
74 m and from 24 ± 13 to 108 ± 30 m. Differences in AccDecdist ranged from 668 ± 122 to 
251 ± 121 m. All metrics displayed greater values (p < 0.001) on MD-3 compared to the other 
days of the cycle, with the largest differences observed when compared to MD+2 and MD-1, 
respectively. 

4.3.1.4 Six days between matches 
In six-day cycles (3002 observations), all metrics showed greater values on MD-4 to MD-2 
compared to MD+2 (p < 0.001). Similarly, both TD (ranging from 1712 ± 430 to 3087 ± 380 
m), HSRD (82 ± 42 to 353 ± 111 m), SpD (20 ± 15 to 102 ± 27), and AccDecdist (320 ± 137 to 
721 ± 110 m) were greater on MD-4 to MD-2 compared to MD-1. However, statistically non-
significant differences in peak speed (0.7 ± 0.8 km⋅h-1, p = 0.158) were found between MD-4 
and MD-1. Furthermore, MD-3 saw prolonged duration (11 ± 5 min, p < 0.001) and higher 
peak speeds (1.5 ± 1.0 km⋅h-1, p < 0.001) compared to MD-4, and greater TD (1323 ± 370 and 
1374 ± 463 m, p ≤ 0.001), HSRD (245 ± 65 and 188 ± 84 m, p < 0.001), SpD (81 ± 26 and 58 
± 29 m, p < 0.001), and AccDecdist (244 ± 103 and 408 ± 182 m, p < 0.001) compared to both 
MD-4 and MD-2. The only difference between MD-4 and MD-2 was in AccDecdist (157 ± 
156 m, p = 0.047) and peak speed (1.1 ± 1.1 km⋅h-1, p = 0.047), with greater AccDecdist 

covered on MD-4, and higher peak speed on MD-2. 



 

 25 

4.3.1.5 Seven days between matches 
Seven-day cycles (1872 observations) showed a similar pattern to five- and six-day cycles, 
with all variables being greater on MD-5 to MD-3 compared to MD+2. There were also 
differences in the tapering stage of the cycle, with extended (11 ± 10 min, p ≤ 0.015) practice 
time on MD-2 compared to MD-1, coupled with more TD (1021 ± 602 m, p < 0.001) and 
AccDecdist (162 ± 142 m, p = 0.009) covered. TD, HSRD, SpD, and AccDecdist were higher 
on MD-4 than any other training day. AccDecdist was greater on MD-5 versus MD-3 (211 ± 
171 m, p = 0.004). 

4.3.1.6 Starters vs. non-starters 
Starters vs. non-starters displayed mostly small and non-significant differences in external 
training load, except on MD+2. Non-starters trained longer (7 ± 5 to 13 ± 4 min, p ≤ 0.001) in 
cycles with 3-6 days between matches, resulting in more TD (731 ± 246 to 1197 ± 218 m, p < 
0.001), AccDecdist (176 ± 68 to 346 ± 106 m, p < 0.001), HSRD (28 ± 23 to 51 ± 26 m, p ≤ 
0.019), and higher peak speeds (1.2 ± 1.2 to 1.7 ± 0.7 km⋅h-1) on those days compared to 
starters. 

 

Figure 7: External training load by match day and cycle length. 
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5 Discussion 
This chapter provides a concise overview of the main results from each paper, along with 
additional insights and perspectives that extend beyond the scope of individual papers.   

5.1 Activity profiles by position 
Paper I presented novel data on activity profiles from a large cohort of highly trained 
Norwegian female football players, along with fluctuations in activity following peak periods. 
Our findings align with previous studies (Figure 1), indicating that CD covers the least 
amount of distance irrespective of metric, while FB and WM cover the most HSRD and SpD. 
This discrepancy may stem from distinct positional responsibilities. For instance, FB and WM 
are likely tasked with maintaining width whilst contributing both offensively and defensively, 
while CD and FW are more likely to adopt stationary roles (Ju et al., 2023). 

Greater distances were covered in peak periods relative to subsequent periods and the overall 
match. However, although subsequent periods generally exhibited statistically lower activity 
levels compared to the mean match periods, these differences were negligible or minimal at 
best. Figures 5 and 6 also illustrate the wide range of responses observed in the subsequent 
periods, indicating very large fluctuations in activity levels around the corresponding mean. 
These figures corroborate the findings of Trewin et al. (2018), who reported match-to-match 
variations in post 5-minute peak metrics ranging from 14 to 262%, with higher thresholds 
(such as SpD) associated with greater variability in response. Overall, this suggests that 
activity levels following peak periods tend to return to mean match level or lower but can 
vary considerably.  

Furthermore, the overall output during each peak period may be considered low. For instance, 
the mean 5-minute- and mean 1-minute TD covered by a WM were 712 and 191 meters, 
respectively, translating to average speeds 8.5 km⋅h-1 and 11.46 km⋅h-1 during these periods. 
Additionally, there was a relative decrease in distance covered from peak 1-minute to peak 5-
minute periods, consistent with findings by Riboli et al. (2023), who demonstrated an 
exponential decrease in distance covered as epoch length increases (see Figure 8).  

Regarding the methods, one limitation is our decision to exclude observations under 90 
minutes, which constrained our sample size unnecessarily. The better approach would have 
been to include all observations and control for the minutes played by each player, along with 
whether they were a starter or substitute. This would likely have reduced the confidence 
intervals around our estimates further, thus providing more precise activity profiles.    
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Figure 8: Decrements in distance- or counts per minute by epoch length. 

The discussion section in paper I contains some conjecture that warrants clarification. One 
example is our assertion that “preparing players to cope with the 5-min peak periods of the 
match do not necessarily mean that these players will be ready for the most demanding 1-min 
peaks, since the demands of 5-min peaks are not evenly distributed across every minute”. 
This is a convoluted way of saying that there could be a substantial amount of low activity in 
5-minute peak periods, potentially masking any instances of higher activity. Conversely, the 
shorter epoch lengths of 1-minute peak periods makes it less likely for instances of higher 
activity to be obscured.  

We also conjecture on presumed demands and fatigue solely based on the distances of the 
peak periods, which in hindsight seems somewhat misguided. Making definitive statements 
on these aspects would require insights into the players’ internal load, which we did not 
include in our study. Additionally, while a sprint effort in the 15th minute may register as "the 
peak period" it is probably the sprint in the 90th minute, when glycogen is depleted, that truly 
represents the peak demand, despite lower output. Conversely, it would not be inaccurate to 
suggest that the peak periods could contribute towards fatigue. For instance, Krustrup et al. 
(2022) observed a marked decrease in muscle glycogen (318 ± 105 and 248 ± 101 mmol⋅kg 
d.w-1) and a marked increase in muscle lactate (14.3 ± 4.6 and 9.8 ± 3.7 mmol⋅kg d.w-1) 
following intense periods in the first and second halves when compared to baseline (pre-
match glycogen: 409 ± 62 mmol⋅kg d.w-1, pre-match muscle lactate: 6.4 ± 3.7 mmol⋅kg d.w-

1). Additionally, repeated sprint ability was notably reduced following these periods, with 
moderate correlations to reductions in muscle glycogen and elevations in lactate concentration 
(Krustrup et al. 2022). While these periods were vaguely defined by the authors as “as a 
period with a high number of high-intensity runs and sprints, evaluated by a UEFA Pro-
License coach”, the authors note that intense periods could be related to peak periods. As 
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indicated by the authors, their findings underscore that anaerobic energy production is 
markedly elevated during intense periods in women’s match play (Krustrup et al. 2022).        

While our reported distances for each peak period may seem low, it is important to consider 
that these distances can be accumulated in highly intensive ways. For instance, despite the 
mean peak 1-minute SpD for a WM being only 54 meters, various concurrent activities such 
as changes of direction, accelerations, and decelerations are likely taking place in this short 
span of time (Ade et al., 2016). Our suggestion that “…the high intensity in the SpD 1-min 
peak period adds support to the prescription of speed endurance activities during training”, 
is based on these assumptions, and, assuming the corresponding internal load aligns with 
Krustrup et al. (2022), would indicate that speed endurance training could effectively prepare 
players for these types of periods. Such training typically involves 20-90 seconds all-out 
bouts interspersed with recovery periods of 40 to 120 seconds, depending on the modality 
(Iaia & Bangsbo, 2010). Here, male players typically cover 125 to 131 meters of total distance 
in position-specific 30-second bouts, with very high-speed running (19.7 to 25.2 km⋅h-1) 
distances of 38 to 57 meters, combined with high lactate levels (~18 mmol⋅L-1) (Ade et al., 
2021). This has further been shown to improve intense and repeated high-intensity exercise 
(Iaia & Bangsbo, 2010).  

The above discussion highlights an important point for future studies, as more studies should 
try to explore how distance is accumulated within these periods in combination with internal 
load. These potential findings could serve as a basis for setting up position-specific courses.     

5.2 Reference values for use in monitoring 
Paper II presented reference values for three measures that practitioners can utilize to flag 
unusual or surprising changes in match performance: the observed match-to-match variability, 
limits of agreement, and the change required to achieve statistical significance. Additionally, 
this dissertation also adds the smallest worthwhile change (SWC) based on pure between-
player variability and the SWC based on observed between-player variability to table 4, 
alongside raw scores. 

It is noteworthy that the results for the observed match-to-match variability closely align with 
those reported in Trewin et al. (2018). For instance, Trewin et al. (2018) reported CVs of 
6.4%, 33%, 53%, and 16% for TD, HSRD, number of sprints, and number of accelerations, 
respectively; while in our study, we found comparable figures of 5%, 16%, 32%, and 12% 
using similar metrics. Furthermore, the SWCs in Trewin et al. (2018) exhibit similarity to the 
SWC derived from the observed between-player in our study (1.8%, 7.5%, 9.4%, and 3.8% 
versus 1.1%, 4.6%, 9.8%, and 3.5%). Any disparities between our studies are likely 
attributable to differences in methodology and/or the fact that Trewin et al. (2018) sampled 
data over a more extended period (five years versus one season) which could account for the 
higher estimates.  
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The reported observed match-to-match variability has implications for precision in future 
studies or when monitoring players (Hopkins, 1997). For example, practitioners or 
researchers might be interested in comparing changes in match activity between two 
competition periods, such as the difference before and after a mid-season break, or after 
changes in coaching staff – scenarios common in modern football. In such cases the 
investigators aim to estimate the mean change between periods along with the uncertainty 
surrounding this estimate. When planning such studies, the sample size or number of 
measurements required can be determined based on the desired confidence interval (Rothman 
& Greenland, 2018). For crossovers or simple experiments without a control group, a 95% 
confidence interval can be calculated using the formula: 95%	𝐶𝐼 = 	 x̄ ± √2	×	𝑡0.975,𝑑𝑓 ×
	𝑆𝐷
√𝑛, where x̄ is the sample mean, SD is the standard deviation, n is the sample size, t is the 

value of the t statistic for cumulative probability of 0.975, and df is the degrees of freedom 
(equal to n-1) (Hopkins, 1997). By isolating the margin error of error (MOE) (𝑀𝑂𝐸 =

	√2	× 𝑡0.975,𝑑𝑓 ×	
𝑆𝐷
√𝑛) and rearranging the formula to solve for n, we obtain 𝑛 =

%&!.#$%,'()'()

)*+)
. Since the investigators are interested in changes in match activity, the observed 

match-to-match variability can be used as the SD in the formula. If investigators consider a 
margin of error equivalent to the observed match-to-match variability appropriate, and 
approximate t0.975, df to 2, the estimated sample size is eight change scores. For greater 
precision, if the margin of error is desired to be half of the observed match-to-match 
variability, the estimated sample size would be 32 changes scores. Consequently, metrics such 
as TD and peak speed are more reliable for detecting changes over shorter periods of time 
compared to HSRD and SpD, due to their lower CV%.    

In hindsight, there are several methodological considerations that could have strengthened the 
paper. For instance, just like in paper I, the inclusion of minutes played as a fixed effect in our 
models would have increased the sample size considerably. Additionally, we specified 
position as a random effect when it just as well could have been specified as a fixed effect. 
Fixed effects, as explained by Malcata (2014), are predictors that affect the entire population 
in the same way, with all possible levels represented in the data. On the other hand, random 
effects are predictors whose levels are a random sample of the population and are often used 
to account for repeated measurements or clustering within each level of the random effect 
(Malcata 2014). In our context, position likely qualifies as a fixed effect since the demands 
and role responsibilities of a particular playing position likely affects each player similarly. 
Also, all levels of playing position are present in our sample (CD, FB, CM, WM, FW), and 
even if we operationalized this factor differently (for example, by splitting CM further into 
CAM, CM, and CDM) we still would have all levels represented.  

We also chose to utilize the observed between-player variability to calculate the SWC, in 
contrast to the approach of Oliva-Lozano et al. (2021) who used the pure between-player 
variability. This decision resulted in a slightly larger threshold for determining significance, 
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where for example a player transitioning from the 50th to the 58th percentile considers both 
differences between players and within-player variability. Furthermore, like Oliva-Lozano et 
al. (2021), we denote the change required to be statistically significant as “practically 
significant”, which should be clarified. According to Greenland et al. (2016), the p-value can 
be viewed as a continuous measure of the compatibility between the data and the entire model 
used to compute it, ranging from 0 for complete incompatibility to 1 for perfect compatibility. 
The smaller the p-value, the more unusual the data would be if every single model assumption 
(such that the effect is 0) were correct (Greenland et al. 2016). Extending this concept to the 
“practically significant changes” would mean that a change equal to or more extreme than this 
is unusual given the observed match-to-match variability and the SWC. Though whether this 
“unusualness” translates into practicality is unknown. As such the term “statistically 
significant changes” is a better term compared to “practically significant changes”.      

In line with previous studies on variability in competitive performance (Malcata & Hopkins, 
2014), we referred to the residual term in our models as “within-subject” or “within-player 
variability”. While this terminology is common in within-subject designs (Weir, 2005), it is 
important to recognize that the residual may encompass not only the true within-subject 
variability but also uncontrolled sources of variability.  If we had included factors such as  
match date, minutes played, team and opposition Elo rating (originally used in Chess and 
subsequently as the basis for FIFA ratings (Hvattum & Arntzen, 2010)), and competition type 
in our models, the residual term may have been lower and more reflective of the true within-
player variability.  

Moreover, we could have added the intraclass correlation coefficient (ICC) to our results, 
which would have two main advantages. First, the ICC provides insights into to the 
proportion of variance explained by between-group difference (Weir, 2005), offering a 
measure of how much each random effect contributes to the overall variability. Second, the 
ICC also serves as a measure of repeatability (Malcata & Hopkins, 2014), and would have 
allowed us to assess whether the groups in each random effect consistently perform 
differently from each other.  

5.3 In-season training 
Paper III presented novel data on the external training load across various cycle lengths in 
highly trained female footballers along with differences between starters and non-starters. 
Two key findings emerged from our study. Firstly, teams adjusted their external load based 
on the number of days between matches, concentrating most of the training load towards the 
mid-week, succeeding, and preceding days of lower loads. Secondly, there was minimal 
differentiation in training load between starters and non-starters after MD+2 and onwards, 
regardless of cycle length. Our data suggests that teams typically incur the highest combined 
external load around three to four days before a match. This period of higher load precedes 
and succeeds days of lower load, aligning with common periodization principles. However, in 
shorter cycles with only two or three days between matches, most of the time is spent at lower 
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loads, awaiting a mid-week game. Notably, there was less difference in AccDecdist compared 
to SpD on these days, possibly due to preferences for small-sided games. 

Regarding training day differentiation, we observed no significant differences in SpD between 
MD-4 and MD-2, nor between MD-5 and MD-3 in longer cycles. However, there were 
significantly more AccDecdist covered on MD-4 and MD-5 versus MD-2 and MD-3. Notably, 
the highest estimated mean peak speed in training was approximately 93% of the estimated 
mean peak speed on match day for starters. Assuming that peak match speed is typically 
below the players’ maximum speed, this finding suggests a potential shortfall in reaching 
maximum running speeds during training. In terms of load compensation for substitutes, 
differences between starters and substitutes in training duration, TD, peak speed, and 
AccDecdist on MD+2 were observed in most cycles, which could be due to residual fatigue 
from the last match in starters (Goulart et al., 2022) and/or recovery strategies from the 
coaching staff (Buchheit et al., 2021). However, there were no pronounced differences in 
HSRD and SpD, and overall load was considerably lower than on any other day also for non-
starters.  

Our results align with previous studies on female football players and male players, showing 
similar loading patterns and distances covered in relation to match days. However, there are 
limitations to our approach, including the lack of context surrounding each training day and 
the crude categorization of starters and non-starters. 

5.4 Internal validity, external validity, and bias 
Researchers needs to consider both internal and external validity when conducting or 
interpreting a study. Internal validity refers to the study’s ability to measure what it wants to 
measure (Grimes & Schulz, 2002), which for this dissertation refers to the correctness of the 
estimates in each study. A second concern is the external validity, meaning whether the 
results can be extrapolated or generalized to real world settings (Grimes & Schulz, 2002).  

The term bias in the context of research denotes deviation from the truth and undermines the 
internal validity of research (Grimes & Schulz, 2002). All observational studies have built in 
bias, thus a challenge for investigators is to ferret these out and judge how they might have 
affected results (Grimes & Schulz, 2002). One can broadly classify bias into two categories: 
selection bias and information bias.   

5.4.1 Selection bias 
Selection bias results from procedures used to select subjects and from factors that influence 
study participation (Rothman, 2012). Regarding the selection of our participants, it is quite 
evident that we did not perform a random selection from the base population of highly trained 
female football players, which would also be unrealistic. Rather, the teams were chosen based 
on the supervisors’ pre-existing knowledge of the competence and consistency surrounding 
the sporting apparatus of Norwegian and Danish teams in close collaboration with 
Toppfotball Kvinner. This decision was rooted in the belief that prioritizing a more consistent 
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data collection was preferable to random selection, wherein significant financial resources 
might be allocated to a team that, due to unforeseen factors, might not have contribute data as 
expected. In hindsight, the data collection period is a testament to the fact the future cannot be 
accurately predicted, as the Covid-19 epidemic was the root cause in destabilizing the 
infrastructure surrounding one of our teams, which in the end did not contribute data to a 
single study.  

In addition to the selection process, there are several factors that might have influenced study 
participation. For example, we saw that changes in coaching staff resulted in less data for 
specific teams. The consistency in coaching staff could also be hypothesized to be dependent 
on success, suggesting that the study estimates are skewed towards teams that are successful, 
because these teams contributed to the bulk of non-missing data. Another contributing factor 
influencing study participation is the availability of club resources. For instance, one of the 
teams lacked a dedicated physical performance coach, significantly restricting the utilization 
of the tracking system and subsequently limiting the data collected. Consequently, these 
biases likely affect the studies’ internal validity by skewing the estimates towards successful 
and resourceful teams characterized by consistent coaching staff that integrates tracking 
systems as an integral component of their training regimen. In addition, these biases also 
extend to external validity, limiting the broader applicability of the results to teams within this 
specific demographic. 

5.4.2 Information bias 
Grimes & Schultz (2002) states that information bias, also known as observation, 
classification, or measurement bias, results from incorrect determination of exposure or 
outcome, or both. External training load can be understood as exposure or dose in a causal 
framework (Impellizzeri et al., 2023). Meaning, a distal cause preceding a proximal cause 
(internal load), which in turn may result in beneficial training adaptations (Impellizzeri et al., 
2023). Thus, it is important that the equipment used to collect external load (exposure) is both 
valid and reliable, and that any classification is based on physiological and performance 
considerations. 

5.4.2.1 Validity of STATSports Apex 10 Hz 
All studies utilized the STATSports Apex 10 Hz system, an athlete-tracking system released 
in August 2017 and widely adopted by professional clubs (Beato et al., 2018). This system 
uses 10 Hz multi-GNSS augmented units capable of acquiring and tracking multiple satellite 
systems (GPS, GLONASS, Galileo, and BeiDou) concurrently to provide accurate positional 
information. The validity of this system has only been investigated once in a peer-review 
study by Beato et al. (2018), and once by FIFA. In the study by Beato et al. (2018) the 
validity of the STATSports APEX system was tested against the criterion distance of 400 
meters athletic track, a specific team sports circuit of 128 meters, and a 20-meter trial. In 
addition, the authors also assessed the validity of peak speed by comparing it against the 
criterion of a radar gun. The bias (%) in each trial was 1.05 ± 0.87%, 2.3 ± 1.1%, 1.11 ± 
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0.99%, and 2.36 ± 1.67%, respectively, which, according to Hopkins (2009) indicates a 
“good” rating. However, it should be noted that this study used a relatively simple field-based 
design, which is common in many validation studies of tracking systems (Luteberget & 
Gilgien, 2020). The issue with using distance as criteria is that they are not error free. As 
explained by Aughey (2011), the inherent error in the ability of a trundle wheel or tape 
measure to accurately measure distance, and difficulty in accurately determining the starting 
point for movement in the tracking system software. Another source of error is the difficulty 
in following the marked course for the participants (Linke et al., 2018). Hence, although the 
system’s validity is supported by the study conducted by Beato et al. (2018), there remains a 
necessity for validation through more robust methodologies.    

The authors also did not investigate the validity of acceleration metrics, which, as elaborated 
upon in the introduction section, is a key performance indicator in football. This has been 
examined most notably by Delaney et al. (2019) and Linke et al. (2018), albeit using a 
different brand of GPS (GPSports, Melbourne, Australia). However, this system also used the 
Doppler-method to calculate speed with a sampling rate of 10hz, meaning results can be 
somewhat extrapolated. Both studies also validated this system in sport-specific courses 
against a camera-based motion analysis system (VICON, Oxford, UK), which is a better 
criterion measure compared to set distance. Delaney et al. (2019) found that software-derived 
average acceleration showed larger bias than deriving this metric from the raw data, 
underlining the importance of considering smoothing/filtering techniques when processing 
data. Meanwhile, Linke et al. (2018) reported small to large differences in high accelerations 
(≥3 m⋅s-2) and high decelerations (≤3 m⋅s-2) during both a sport-specific course, a shuttle run, 
and a small-sided-game, when comparing said GPS system to VICON. Together, these 
studies add to the skepticism of acceleration and deceleration metrics by Buchheit et al. 
(2014), indicating that acceleration and deceleration metrics should be interpreted cautiously.  

The STATSports APEX system is one of the few providers that has been approved by FIFAs 
Quality Programme for Electronic Performance Tracking Systems (FIFA, 2022). While not a 
peer-reviewed study, the testing protocols described in the report are quite rigorous and were 
performed by an independent academic institution (FIFA, 2022). The protocol included 
several test blocks: a circuit consisting of self-paced walking and jogging, maximal 
accelerations, and changes of direction; 2v2 and 5v5 small-sided games; sprints; and full pitch 
coverage. The protocol also used the motion capture system VICON, which is a better 
criterion compared to using set distances. The measure of accuracy was the root mean square 
difference (RMSD) between The STATSports APEX system and VICON; however, the exact 
value is never stated in the actual report. Instead, the system is rated on a z-scale based on the 
industry standard, where a score of 1.5 times the IQR is considered well-above industry 
standard. The STATSports APEX scored well-above industry standard in speed zones 0-7 and 
7-15 km⋅h-1, and above industry standards for zones 15-20 and 20-25 km⋅h-1. However, the 
report states that data for >25km⋅h-1 are not available due to a lack of data collection, which is 
odd considering the inclusion of a sprint protocol.  
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In summary, the STATSports APEX system appears to be a valid tool for measuring distance 
and speed in football players, which strengthens the internal validity of our studies. However, 
special consideration needs to be taken when deriving acceleration metrics, as the validity of 
these metrics has not been rigorously tested and their accuracy is highly dependent on data 
processing.     

5.4.2.2 GNSS signal quality and constellation 
Bias can also result from factors affecting the quality of GNSS data. These factors have most 
notably been expanded upon by Malone et al. (2017) and includes signal quality, constellation 
of satellites, and sampling rate. Signal quality refers to the strength of the signal between the 
satellites and the device and may change depending on location and environmental 
obstruction (i.e., stadiums). Signal quality can be judged based on the number of satellites 
interacting with the receiver along with their orientation in the atmosphere, and should, 
always be recorded to ensure that longitudinal analysis can be carried out with confidence 
(Malone et al., 2017). GPS devices require a minimum of 4 satellites for adequate connection, 
with a higher number of connected satellites resulting in better coverage of the device 
(Larsson, 2003; J. J. Malone et al., 2017). Devices connecting to multiple GNSS, like 
STATSports APEX, have better coverage and signal strength compared to devices connecting 
to GPS only (Malone et al., 2017).  

Another important factor is the horizontal dilution of precision (HDOP), which measures the 
accuracy of the horizontal positional signal determined by satellite geometry (Malone et al., 
2017). As explained by Malone et al. (2017), when satellites are bunched together HDOP is 
high and precision is good, whereas when satellites are spread out HDOP is low, and 
precision is poor. Ideally, HDOP should be below 1, with values ranging from 0 to 50. 
Additionally, the sampling rate, i.e., the number of samples taken per second, plays an 
important role, with higher rates generally improving measurement precision.   

In paper I and II, the mean ± SD number of satellites and HDOP was 17.5 ± 2.8 and 1.4 ± 0.6, 
respectively. In paper III, the mean HDOP ranged from 1 to 2, while the mean number of 
satellites ranged from 17.7 to 19.8. These findings, along with the sampling rate (10 Hz), 
suggests that the overall data quality in the project was sound, further bolstering the internal 
validity of our studies.  

5.4.2.3 Data processing 
Another source of bias that may have affected the results is the processing of the GNSS files. 
For example, many match files did not include precise indicators for when the match ended, 
or when a player was substituted. As such we had to approximate these end points using the 
available event data. We also chose the five outside positions (CD, FB, CM, WM, FW) based 
on convention. However, like Scott et al. (2020) we could have increased the granularity by 
splitting CM further into central defensive midfielder (CDM), CM, and central attacking 
midfielder (CAM). We also interpret playing position rather crudely, and it is highly likely 
that players within the same position can have different tactical roles. For example, one FB 
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could have the tactical role of inverted wingback, while another could be a more complete 
wingback. It is highly likely that the estimates for the position FB does not capture the 
different activities of these roles, with the pure wingback covering more SpD compared to the 
inverted wingback or a pure FB (Ju et al., 2023). Consequently, this is an opportunity for 
future study. 

5.4.2.4 Pre-selected (absolute) versus individual (relative) thresholds 
The selected speed thresholds may have led to misclassification of activities, influencing the 
accuracy and interpretation of the data. For instance, a sprint threshold of 20 km×h-1 is not 
experienced the same by every player; for some, this may be closer to their maximal capacity 
than for others. In contrast, individualizing the thresholds based on a player’s physiological 
ability, such as 80 or 90% of maximal sprinting speed or 100% of maximal aerobic speed, 
logically provides a more valid measure of effort. To illustrate, Abt & Lovell (2009) found 
that high-speed running thresholds based on the second ventilatory threshold were 
significantly lower than those used as the default setting within the ProZone match analysis 
system. This led the authors to conclude that distance run at high speeds can be substantially 
underestimated. In a subsequent study, Lovell & Abt (2013) identified a 41% difference in the 
high-speed distance covered between two players in the same position when using 
individualized zones based on ventilatory thresholds. In contrast, the absolute thresholds 
yielded negligible (5–7%) differences in total and high-speed distances covered. Together 
these findings highlight the importance of tailoring speed thresholds to individual 
physiological capacities for more accurate performance assessment. 

However, there are several drawbacks to this approach. First, there is a lack of consensus 
concerning which tests and how many should be chosen to establish these thresholds (Bradley 
& Vescovi, 2015). Nevertheless, a study by Hunter et al. (2014) suggests avoiding the use of 
singular fitness characteristics to individualize thresholds and, instead, opting for a 
combination of players’ anaerobic threshold, maximal aerobic speed, and maximal sprint 
speed characteristics. While this approach would be theoretically beneficial, the logistical 
challenges of testing multiple teams several times throughout the season would be 
considerable. Moreover, there is little evidence to suggest that adopting individualized speed 
thresholds adds significant value in determining the internal load of female football players 
(D. Scott & Lovell, 2018). For example, when testing the correlation between individualized 
thresholds using a range of methods, and RPE, Edwards training impulse score (TRIMP), and 
minutes spent above 80% of heart rate maximum, D. Scott & Lovell (2018) did not observe 
stronger correlations compared to those of absolute thresholds. Considering the logistical 
feasibility and the limited adoption of individualized threshold in high-level football 
(Akenhead & Nassis, 2016), it supports the use of absolute thresholds in our studies.         

5.4.2.5 Sprinting 
Our sprint threshold set at 20 km×h-1 was mostly inspired by a paper by Bradley & Vescovi 
(2015), wherein they consider both sex differences in activity profiles and normative test data 
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as important indicators for where thresholds should be set. For example, in their paper they 
draw on comparisons of activity profiles of men’s versus women’s UEFA Champions League 
using the same thresholds (18-25 km×h-1 and > 25 km×h-1) which shows that male players 
cover 986 and 200 meters, respectively, while female players cover 718 meters and 59 meters 
(Bradley et al., 2014). They also point to the fact that most sprints in football are initiated 
from a moving start and are only 5 meters in length (Di Salvo et al., 2009, 2010). 
Furthermore, they also highlight that the 70% percentile for a 15-meter flying sprint (5-meter 
run in, 15-meter sprint) is 25 km×h-1 (Vescovi, 2012), which obviously mean that a lot of the 
sprint efforts are not captured if this is the threshold. Instead, Bradley & Vescovi (2015) argue 
for a threshold set at 20 km×h-1 based on the minimum speed reached in a flying 5-meter 
sprint (5 meter run-in, 5 meter sprint) in the study by Vescovi, 2012. Limited corroborative 
data on sprint profiles in female soccer players have since been published. However, Haugen 
et al. (2014) compiled test records from the Norwegian Olympic Training Center of 165 
female elite football players between 1995 and 2010. While the test records did not contain 5-
meter split times, estimated 5-meter performance can still be generated by modelling sprint 
performance using the mono-exponential equation set forth by Furusawa (1927) and 
expanded upon by Jovanović and Vescovi (2022) and Jovanović (2023). When using the 
reported 10th percentile data in Haugen et al. (2014) the model estimates flying 5-meter sprint 
time to be 0.8 seconds (Figure 9B) resulting in an average speed over the segment of 22.5 
km×h-1. Considering that the speed difference between the minimum and the 10th percentile in 
Vescovi (2012) was 1 km×h-1 this gives a rough estimate of 21.5 km×h-1 as the minimal speed 
reached during a flying 5-meter sprint in Norwegian elite female football players. 
Furthermore, while the aim of Pedersen et al. (Pedersen et al., 2019) was to examine the effect 
of maximal strength training on sprint speed and jump height in high-level female football 
players (at level 2 and 3 in Norway), their data on 5-, 10-, and 15-meter split times is quite 
useful for modelling sprint performance. Using the mean pre-test performance of the 
intervention group, the model estimates a flying 5-meter performance of 0.83 seconds 
resulting in a mean speed of 21.7 km×h-1 over the segment (Figure 9C).        
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Figure 9: Modelled time~distance, corrected for starting procedure, using timing gate data from A) Vescovi 
(2012), B) Haugen et al. (2014), and C) Pedersen et al. (2019). 

A point not considered by Bradley & Vescovi (2015) is the contrast in how speed is recorded 
in most GNSS-based tracking systems and how it is calculated when testing speed using 
timing gates. In most GNSS-based tracking systems Doppler-derived speed is recorded based 
on the sampling frequency, while speed from timing gates is calculated by dividing the known 
distance between two gates by the time it takes the athlete to traverse the distance. Thus, in 
the former approach speed can be recorded instantaneously, while the latter approach results 
in an average speed over the segment. The difference in the speed between these two 
approaches are only minor when measuring the maximal speed of an athlete, as this typically 
occurs between 20 and 30 meters for female football players where there is near zero 
acceleration (figure 10). In fact, both timing gates and 10 Hz GPS have showed to be valid 
tools for measuring maximal sprinting speed (Roe et al., 2017; Waldron et al., 2011). 
However, if we want to record a 5-meter flying sprint using a tracking system with the 
inherent assumption of a 5-meter lead-in from a static start, it might be more appropriate to 
set the threshold based on the instantaneous speed at 5 meters rather than the average speed 
between 5 and 10 meters. This would result in a slightly lower entry speed for sprinting (20.6 
km×h-1, 20.1 km×h-1, 20.7 km×h-1). Taken together, this approach supports the use of sprint 
thresholds set at 20 to 22.5 km×h-1.     
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Figure 10: Modelled speed~distance, corrected for starting procedure, using data from A) Vescovi (2012), B) 
Haugen et al. (2014), and C) Pedersen et al. (2019). 

5.4.2.6 High-speed running 
Bradley & Vescovi (2015) also argue for the potential use of maximal aerobic speed when 
deciding upon individual or absolute thresholds for high-speed running. For instance, they 
point to evidence showing maximal aerobic speed of approximately 14.5 km×h-1 in elite 
female players (Haugen, Tønnessen, Hem, et al., 2014; Ingebrigtsen et al., 2011). The authors 
also highlight the use of intermittent field tests, specifically YoYo IR1, as having a potential 
for approximating maximal aerobic speed. As noted by the authors, these tests moderately to 
largely correlate with maximal aerobic speed (r = 0.69) and peak treadmill speed once VO2max 
has been reached (r = 0.71) (Castagna et al., 2006). YoYo IR1 performance also significantly 
correlate (r = 0.762) with the total amount of high-intensity running (> 18 km×h-1), and the 
amount of high-intensity running in the last 15 minutes of each half (r = 0.83) during match 
play in elite female players (Krustrup et al., 2005). The latter study also reported a mean 
YoYo IR1 value of 1379 meters, with a range from 600 to 1960 meters (Krustrup et al., 
2015), which is equivalent to speeds of around 15.5 km×h-1 (range 14.5 – 16.5 km×h-1) based 
on the test protocol in the original validity study by Krustrup et al. (2003). Similarly, Mujika 
et al.(2009) reported mean ± SD YoYo IR1 values of 1224 ± 255 in an elite cohort, equivalent 
to speeds of approximately 15.5 km×h-1. Furthermore, based on the data from the English 
Football Association’s national developmental program (479 elite youth and senior players), 
Datson et al. (2022) reported median YoYo IR1 of 1795 meters for 25 year old females, with 
25th and 75th percentiles of 1480 and 2080 meters, corresponding to speed of 16, 15.5, and 
16.5 km×h-1, respectively. The lowest reported percentile in the dataset (0.9th percentile) for 
this group was 580 meters, equivalent to 14.5 km×h-1.  
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Finally, to reiterate the reasoning of Bradley & Vescovi (2015), since intermittent bouts of 
high-intensity running during matches are associated with large anaerobic contributions and 
elevations in blood lactate concentration (Bangsbo et al., 2006), it seems logical that an 
absolute threshold should be situated around the onset of blood lactate accumulation. Thus, 
anchoring the threshold around the maximal aerobic speed, or YoYo test performance, 
appears to be a reasonable and sound approach, corresponding to 15-16 km×h-1 in elite female 
football players.  

5.4.2.7 Acceleration and deceleration 
We ended up using three different iterations of acceleration and deceleration metrics from the 
start to the end of the project. However, unlike 60% of studies (Ellens et al., 2022), and 
commensurate with best practice (Delves et al., 2021; J. J. Malone et al., 2017), we reported 
in each study the smoothing method, thresholds, and minimum effort duration used to ensure 
replicability.  

In the first article we defined these metrics as “…the distance covered with a positive or 
negative change in speed of more than ±2.26 m×s-2, with a minimal effort duration of 0.3 s, 
finishing when the rate of acceleration/deceleration reached 0 m×s-2”. In contrast to most 
other studies, we chose to count the acceleration using three event markers. This allowed us to 
capture both the initial effort of accelerating or decelerating from 0 to ± 2.26 m×s-2, and any 
subsequent submaximal acceleration or deceleration following exceeding the threshold. As 
explained by Varley et al. (2017), this may be a more practical definition for identifying 
acceleration deceleration efforts in contrast to purely quantifying the extremely short duration 
spent accelerating or deceleration above or below the required threshold and may better 
represent the perception of an acceleration held by practitioners. Furthermore, this method 
also allows the use of lower minimal effort durations (e.g. 0.3 seconds), as this ensures that a 
single effort will not be registered as multiple efforts (Varley et al., 2017). However, a 
possible drawback is that a new rise in acceleration or deceleration will not be registered as a 
new effort while the last event marker (0 m×s-2) is not crossed (Varley et al., 2017).     

The threshold of 2.26 m×s-2 was based on Trewin et al. (2018) wherein they state that this 
represents 80% of a player’s acceleration over 10 meters during a 40-meter sprint testing. 
This was apparently determined during a pilot study. Unfortunately, this data was never 
published, and we had to take their word for it at the time. However, after checking against 
the modeled data from Haugen et al. (2014), Vescovi (2012), and Pedersen et al. (2019), this 
threshold does indeed seem plausible. In Table 6, one can see that the thresholds align with 
Pedersen et al. (2019), although it is somewhat lower than Haugen et al. (2014) and Vescovi 
(2012), which could be due to methodological dissimilarities.  

It is also important to note that we derived these metrics from raw acceleration calculated 
over 0.6 seconds, which we did to provide a slight smoothing factor to the signal. The reason 
for choosing 0.6 seconds was that this resulted in each acceleration and deceleration lasting 
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approximately 1.3 seconds, with players covering a mean distance of 6 meters. The reasoning 
here was that this matched what an acceleration would look like from a standing start, 
considering the pilot described by Trewin et al. (2018). In hindsight however, we should also 
have noted the initial- and end speed of each effort, as this would have provided more context 
to these metrics. The inherent assumptions are also based on accelerations from a standing 
start, abstracting away numerous accelerations while athletes are moving, and neglects to add 
any assumptions on decelerations.  

Table 6: Time, time correction for starting procedure, speed, and 80% of acceleration at 10 meters. 

 

For the second paper we switched to a) combining acceleration and deceleration into one 
metric, and b) reporting this as a count. The main reason for combining the two was for 
practical reasons. While accelerations and decelerations put distinct physiological and 
mechanical demands on the players (Harper et al., 2019), we considered it unlikely that these 
would be differentiated in a practical setting since so much of football training consists of 
specific exercises (Barrett et al., 2020). In addition, since there are so many ways these 
metrics can be reported (for the whole session, per minute, 1–10-minute peak periods, etc.) 
combining these metrics into one reduces the numbers of metrics reported by a factor of two. 
The reason for reporting this as a count was mostly to replicate the methodology by Oliva-
Lozano et al. (2021) combined with the fact that most studies report accelerations and 
decelerations as a count (Figure 1E and 1F). Though, in hindsight we should have stuck with 
reporting this in meters, as counts treat each effort equally, irrespective of intensity or 
duration. To remedy this, we added combined acceleration and deceleration in meters to the 
results section of this dissertation.  

In the final paper we defined combined acceleration and deceleration as“…the distance 
covered with a positive or negative change in speed of more than ± 2.26 m×s-2, finishing when 
the rate of acceleration/deceleration reached 0 m×s-2”. The decision to remove the minimal 
effort duration was based on a paper by Silva et al. (2023) showing that using minimal effort 
durations of 0.2 and 0.3 seconds underestimates accelerations and decelerations by 36% and 
34%, respectively. Instead, the authors recommend that acceleration and deceleration efforts 
should be counted until the rate reachs 0 m×s-2, and any spikes in acceleration or deceleration 
passed the specified thresholds, however short, should be considered meaningful. We also 
switched back to expressing combined acceleration and deceleration in terms of distance 
instead of counts, simply because the former considers the intensity and duration of each 
effort. Moreover, acceleration was this time derived from speed smoothed using a 1 second 
rolling average. The decision to derive acceleration from smoothed speed was inspired by 
Elmer & Martin (2009) highlighting the importance of smoothing the original signal before 
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differentiation, while the decision to use a rolling average over other smoothing methods 
(such as median or exponential filters) was due to its simplicity. The rolling window of 1 
second was chosen after using match data as a pilot to model the mean distance, duration, 
initial speed, and final speed per acceleration and deceleration effort, along with the total 
count and distance at 94 minutes of playing time. As shown in Figure 11, this smoothing 
window results in estimates that beats the “eye” test. For example, using this smoothing 
window, most accelerations are initialized from walking speeds (4.1 km×h-1), where the 
players accelerate a short distance (6.7 meters) in a short amount of time (2.2 seconds), before 
finishing when the speed crosses 15.2 km×h-1 .  

 

Figure 11: Effect of varying the rolling average window on A) acceleration, and B) deceleration metrics. 

The utilization of three different iterations of acceleration and decelerations metrics 
throughout the project underscores a critical point: operationalizing these metrics into a 
seemingly valid framework proves to be exceptionally challenging, and there exists an 
extensively range of options in terms of how these metrics can be processed and defined. This 
challenge is particularly evident in Figure 11, which demonstrates how even slight variations 
in the smoothing window for a single method (rolling average) can severely impact the 
reported outputs. Therefore, it is imperative that future studies delve into the processing of 
acceleration and deceleration metrics to enhance their validity further. 
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5.4.2.8 Peak, next, and mean periods 
We utilized epoch lengths of 1 and 5 minutes to describe peak, next, and mean periods. While 
these epoch lengths have consistently been used in the literature (Fransson et al., 2017; 
Harkness-Armstrong et al., 2022), the choice of exactly these two is rather arbitrary. For 
instance, in paper II we state that “The epoch length for the peak locomotor demands was 
chosen according to the findings of Doncaster et al. (2020), where 1 min epochs produced the 
highest relative intensities when compared with 3- and 5-min epochs”. However, this rational 
is not inherently sound, as distance or counts per minute decreases exponentially with 
increasing epoch length, as shown in Figure 9. Thus, using our own rationale, one might 
question why we did not use even shorter epoch length. Furthermore, one could argue that 
these epoch lengths are representative of the periods used by practitioners when prescribing 
work-to-rest ratios in small-sided games. However, using study protocols as a proxy for what 
practitioners are doing reveals that work periods of 4 minutes are mostly used (Hill-Haas et 
al., 2011).   

A better approach would be to model the activity of peak periods as a function of epoch 
length using the formula: 𝑀𝑒𝑡𝑒𝑟𝑠	𝑝𝑒𝑟	𝑚𝑖𝑛𝑢𝑡𝑒 = 	𝛽,𝑡-.*, as proposed by Delaney et al. 
(2018) . For example, using the data in Riboli et al. (2021), a practitioner could calculate the 
4-minute peak period by calculating 164 ∗ 4-,.0%1, which equals 142 m×min-1 or 568 meters. 
Thus, future studies should instead adopt this approach when describing the peak periods of 
women’s match play.  

5.4.3 Generalizability (external validity) 
The female players included in the studies were broadly classified as highly trained according 
to the definitions of McKay et al. (2022). Thus, our findings are more representative of this 
tier than others. In contrast to previous studies, our sample included data from four teams, 
which is a step forward with regards to reporting normative data for female football players, 
as most studies have utilized single-team designs (Harkness-Armstrong et al., 2022). The 
rating progression of the four teams in the final period of data collection is shown in Figure 
12. 
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Figure 12: Elo rating for the four teams in the final period of data collection. 

Furthermore, the data processing methods utilized in our research, including the selection of 
thresholds, epoch lengths, and smoothing techniques, heavily influence generalizability of the 
reported results. While we employed methods using a sound rational, variations in data 
processing approaches across studies may impact comparability. Practitioners should be 
aware that findings may not be directly applicable unless they use the exact same data 
processing methods as utilized in our study. Future research could benefit from standardizing 
data processing methods to enhance comparability and facilitate meta-analyses. 

Additionally, the impact of playing styles and tactical approaches adopted by teams may 
influence the results observed in our study. League-specific variations in style of play and 
coaching may result in different activity profiles and training loads among players. Therefore, 
caution should be taken when generalizing our findings to teams employing different playing 
styles. 

In summary, while our research provides valuable insights into the activity profiles and 
training loads of highly trained female football players, caution should be exercised when 
extrapolating these findings to broader populations. Future studies with larger and more 
diverse samples, standardized data processing methods, and consideration of playing styles 
and conditions are warranted to enhance the external validity and generalizability of findings 
in this field. 
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6 Conclusions, implications, and future research 
6.1 Conclusions 
Main conclusion 1: Activity profiles vary by playing position. 1 and 5-minute post-peak 
periods show minimal reductions in mean activity compared to mean 1 and 5-minute 
periods.  

• The largest differences in activity are observed between CB and the wide positions 
(FB and WM), where the latter cover greater distances in terms of HSRD and SpD.   

• Only trivial to small decreases in activity are observed between post-peak periods and 
corresponding mean match periods.  

Main conclusion 2: There is considerable match-to-match variability in metrics that 
practitioners consider important.   

• The observed match-to-match variability in HSRD, SpD, and AccDecdist ranges from 
12 to 36%, while peak speed and TD ranges from 4.5 to 5%.  

Main conclusion 3: Teams adjust their external load based on the number of days 
between matches, concentrating most of the load around mid-week in a pyramid-like 
fashion, while also minimally differentiating the load of starters and non-starters as 
match day approaches. 

• The highest external loads occur three to four days before a match, succeeding and 
preceding days of lower load.  

• Shorter cycles with fewer days between matches exhibited predominantly lower loads. 
• Minimal differentiation in training load between starters and non-starters are observed 

from MD-5 onwards, irrespective of cycle length. 
• Lower peak training speed relative to peak match speed, and a higher ratio of 

AccDecdist compared to SpD suggest preferences for small-sided games throughout the 
training week.  

6.2 Practical implications 
• The estimates provided in paper I can serve as normative data for practitioners, 

allowing them to compare the training and match activity of their own players against 
a large cohort of female football players. If used, practitioners are advised to consider 
the processing methods utilized for each metric, as numbers may not be universally 
applicable across all tracking systems. As a general recommendation, practitioners 
should consider both the mean values and confidence intervals when interpreting and 
scaling to our data.   
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• The considerable match-to-match variability in HSRD, SpD, and AccDecdist indicates 
that an extended monitoring period is needed to attain precision surrounding changes 
in these metrics. Conversely, the stability of TD and peak speed suggest that these 
metrics can reliably detect changes in match activity over a relatively shorter period.  

• The pyramid-like distribution of the external training load aligns with established 
training principles, facilitating rest, loading, and peaking before a match. Coaches are 
advised to continue following this template.   

• Practitioners should recognize the potential gap in achieving maximum running speed 
during training, as indicated by peak speeds reaching only approximately 93% of the 
estimated mean peak speed on match days. It's likely that this peak match speed is 
even lower than the players’ maximal sprint speed. The relatively high ratio of 
AccDecdist to SpD further implies a preference for small-sided games, which alone 
may not provide a powerful enough stimulus for sprint adaptations. Practitioners 
should instead consider implementing sprint top-ups.  

6.3 Future research 
• We originally wanted to broaden the generalizability of the studies by including a 

Danish team in the cohort. However, due to unforeseen consequences of Covid-19, 
this team suffered an economic downturn with subsequent changes in coaching staff. 
Therefore, the data collection became insufficient, and we could not include them in 
the data material. However, incorporating and investigating the activity profiles of 
different leagues is an avenue for future study.    

• There is a dire need for research attempting to validate and standardize processing 
methods for acceleration and deceleration metrics. The lack of consensus on 
processing methods hinders the comparability and generalizability of findings across 
studies. 

• More studies should look at the interaction between determinants of performance, 
external load, and internal load, in accordance with the framework presented by 
Impellizzeri et al. (2019). Understanding these interactions can provide valuable 
insights into factors influencing player performance and injury risk, leading to more 
effective training and injury prevention strategies. 
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Abstract
The purpose of the present study was to investigate the physical performance of 
elite female football players during match play along with transient alterations 
in running performance following 1- and 5-min univariate peak periods. 54 elite 
female players from four top-level Norwegian teams were monitored for one sea-
son (n = 393 match observations), and physical performance data collected using 
STATSport GPS APEX. Results revealed significant differences in physical perfor-
mance between the positions during full match play, particularly between wide 
and central players. Both full backs (FBs) and wide midfielders (WMs) covered 
more total distance (TD), high-speed running distance (HSRD), and sprint dis-
tance (SpD) than center backs (CBs) (p < 0.05–0.001), while WMs also covered 
more HSRD than both central midfielders (CMs) (p < 0.01) and forwards (FWs) 
(p < 0.05), and more acceleration -and deceleration distance (Accdist and Decdist) 
than both CBs and CMs (p  <  0.01–0.001). A similar pattern was observed for 
the peak period analysis, with FBs and WMs covering more SpD in peak 1 min 
than CBs and CM (p < 0.001) and more SpD in peak 5-min than CBs, CMs, and 
FWs (p  <  0.001). Irrespective of the variable analyzed, greater distances were 
covered during the peak 5-min period than in the next-5 and mean 5-min periods 
(p < 0.001). Significant (p < 0.001), but small to trivial (Cohen's Dz: 0.07–0.20), 
decreases in distance covered were also observed for each variable following each 
univariate peak 5-min period. In conclusion, practitioners should account for dif-
ferences in physical performance when developing training programs for female 
football players and be aware of transient reductions in physical performance fol-
lowing univariate peak 1- and 5-min periods. Specifically, the very high intensity 
in 1-min peak periods adds support to the principal of executing speed endurance 
activities during training to mirror and be prepared for the physical demands of 
match play.

K E Y W O R D S

global positioning system, peak periods, physical performance, women's football

www.wileyonlinelibrary.com/journal/sms
mailto:﻿
https://orcid.org/0000-0001-5864-3445
https://orcid.org/0000-0002-0192-8981
https://orcid.org/0000-0002-1461-9838
https://orcid.org/0000-0003-4700-0529
http://creativecommons.org/licenses/by/4.0/
mailto:andreas.k.winther@uit.no
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fsms.14105&domain=pdf&date_stamp=2021-11-26


106  |      WINTHER et al.

1   |   INTRODUCTION

Women's football has surpassed an undeniable trans-
formation during the last decade, and its development 
has been a priority for the Fédération Internationale de 
Football Association.1 This increased professionalism and 
growing popularity have impacted the scientific commu-
nity with focused research increasing the body of knowl-
edge regarding the women's game. Nevertheless, studies 
about player positioning monitoring and match physical 
performance are still scarce, since most of the research 
topics in women's football are related to injury.2

Time-motion analysis involving the intermittent ac-
tivity pattern of women's football is necessary to assess 
the locomotor and mechanical demands of match play, 
which in turn is essential for specific training prescrip-
tion.3,4 Women's football has been described as a sport 
with multiple brief intense actions separated by low-
intensity activities, with mean values for total distance 
(TD) and high-speed running distance (HSRD) ranging 
from 9.2–11.3 km to 1.2–2.7 km, respectively.5–7 However, 
it is well documented in male football that different play-
ing positions accumulate different external match load8–11 
and that such load presents large individual variations.4,12 
Therefore, to describe and characterize physical demands 
of football competitions, it is recommended to present 
these analyses by playing positions rather than reporting 
only the team averages.13

The majority of the studies that aim to analyze the 
external load of match play through locomotor activity 
do not account the energy cost associated with accel-
erations (Acc) and decelerations (Dec),14 which may 
underestimate match load by 6%–8%.15,16 To the best of 
our knowledge, only three studies women's football17–19 
have included the metrics of Acc and Dec in their anal-
ysis, while simultaneously adopted a more detailed cat-
egorization of the playing positions (into 4–6 positions) 
instead of the commonly used categorization into de-
fenders, midfielders, and attackers.4,5,7,20–23 However, 
the study of Mara et al.17 included a considerably small 
sample size (12 players across 7 matches) and their inten-
tion was to focus only on Acc and Dec profiles, excluding 
other important variables such as HSRD and sprints from 
the analysis.

The reporting of absolute or average demands has 
been advantageous to profile the players’ overall physical 
loading. However, it must be noted that football presents 
a stochastic nature24 and training programs designed to 
replicate these average demands of competition will likely 
lead to players being underprepared for the more intense 
periods of a football match.25 While high-intensity phases 
have received particular attention in men's football in re-
cent years,26–32 sparse information has been provided in 

relation to the peak demands of different playing positions 
in women's football. Another interesting aspect is whether 
decrements in high-intensity running occur following 
these periods, which may be indicative of physiological fa-
tigue or pacing strategy.33 However, while several studies 
on men have found transient decrements following high-
intensity phases of 1 and 5 min,34,35 no study to date has 
investigated this in women.

The most intense periods have been studied using 
different methodologies, including different temporal 
durations (epochs) and analysis techniques. Studies ini-
tially started by examining fixed-time periods of 1524,36 or 
5 min.33,35 However, in a systematic review of the meth-
odologies used to quantify the peak match demands, 
Whitehead et al.37 concluded that pre-defined time pe-
riods lack sensitivity to find the true peaks of physical 
outputs when compared with a rolling average method. 
Indeed, in a study with elite male football players, Varley 
et al.38 reported that fixed compared with rolling 5-min 
epochs underestimated peak running demands by up to 
25%, which is in line with more recent research that also 
analyzed shorter time periods (eg, 1 and 3  min).27,35,39 
Despite Trewin et al.19 having studied the most intense pe-
riods in match play of elite female football players using 
a rolling average approach, the authors only analyzed 5-
min epochs, resulting in limited information for training 
prescription.37

Therefore, the aims of the present study were twofold. 
We first aimed to characterize the physical performance in 
elite women's football by position. Secondly, we aimed to 
investigate transient alterations in running demands fol-
lowing rolling peak periods of 1 and 5 min.

2   |   METHODS

With ethical institutional approval from the Norwegian 
Centre for Research Data (reference number: 296155) 
and written informed consent from the participants, 108 
female football players (22  ±  4  years of age) from four 
top-level Norwegian clubs were included in the study. 
Locomotor data from the four clubs´ official matches in 
the 2020  season (60  matches) were collected using GPS 
APEX (STATSports), with a sampling frequency of 10 Hz. 
The validity and levels of accuracy (bias <5%) of this 
tracking system have been previously presented.40 During 
matches, each player wore a tight vest with the GPS unit 
on the back of their upper body between scapula as de-
scribed by the manufacturer. The microsensor devices 
were activated 15 min prior to the start of each match, in 
accordance with the manufacturer's recommendations 
and previous research,41 with this period of time being ex-
cluded from analyses. To minimize inter-devices error,40 
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      |  107WINTHER et al.

each player used the same GPS unit during the entire 
season.

Doppler derived speed data was exported from man-
ufacturer software (STATSport Sonra 2.1.4) into Python 
3.7.6. for processing (linearly interpolating any missing 
raw data) and to derive metrics. Raw acceleration was 
then calculated over a period of 0.6  s. After deriving all 
the metrics, the data were transferred to R (R.4.0.5, R Core 
Team, 2021) for statistical analysis.

2.1  |  Physical performance variables

The physical parameters analyzed included total distance 
(TD), high-speed running distance (HSRD) (>4.44  m.
s−1), sprint distance (SpD) (>5.55 m.s−1), acceleration and 
deceleration distances (Accdist/Decdist), and peak speed 
(Peakspeed). Accdist and Decdist were defined as the distance 
covered with a positive or negative change in speed of 
more than ±2.26 m.s−2, with a minimal effort duration of 
0.3 s, finishing when the rate of acceleration/deceleration 
reached 0  m.s−2. The speed thresholds were chosen ac-
cording to the previous research.19,20 Except for Peakspeed, 
all other variables were used to analyze both full match 
(absolute values) and peak locomotor demands (1- and 
5-min peak periods rolling analysis periods). The epoch 
length for the peak locomotor demands was chosen ac-
cording to the findings of Doncaster et al.,39 where 1-min 
epochs produced the highest relative intensities when 
compared with 3- and 5-min epochs.

2.2  |  Statistical analysis

Both between-positional differences during full match 
and within-positional differences between peak, next, 
and mean periods, were determined using linear mixed-
modelling. To deal with the nested structure of the data, 
we treated matches in which two of our teams met as 
separate matches, and, due to positional differences in lo-
comotor demands, the same player in a new position as 
a new player. Furthermore, to get a representative sam-
ple, we only included players who completed, at least, 
two full-time (90 min) matches. Also, match performance 
data of <90 min were treated as missing, and goalkeep-
ers were excluded from analysis. This resulted in an ini-
tial sample of 501 observations with 108 missing values, 
which were subsequently removed in the complete case 
analysis (CCA). The final sample included 393  match 
observations (Mobs) from 54 players (center backs, CB, 
n  =  10, Mobs  =  113; full backs, FB, n  =  11, Mobs  =  84; 
central midfielders, CM, n = 16, Mobs = 105; wide mid-
fielders, WM, n = 9; Mobs = 57 and forwards, FW, n = 8, 

Mobs = 34). These positions were chosen according to pre-
vious research.35 The mean number of satellites and hori-
zontal dilution of precision was 17.5 ± 2.8 and 1.4 ± 0.6, 
respectively. For the full match between-positional analy-
sis, we specified for each physical parameter a model with 
Position as the fixed effect and Team, Match ID, and Player 
ID, as the random effects. Similarly, to investigate within-
positional differences between peak, next, and mean pe-
riods, we specified for each physical parameter a model 
with Position, Period, and an interaction term as the fixed 
effects, and Team, Match ID, and Player ID, as the random 
effects. Moreover, the Tukey method was applied to adjust 
the multiple comparisons, with an α-level set at 0.05 as the 
level of significance. To calculate effect sizes (ES) we used 
Cohen's Dz.

42 All statistical analyses were done using the 
lme443 and emmeans44 packages. Unless otherwise stated 
all results are estimate marginal means ± 90% confidence 
intervals.

3   |   RESULTS

3.1  |  Full match activity profiles

There were significant differences between certain play-
ing positions across all metrics except for peak speed 
(Table  1). The results obtained for TD and HSRD re-
vealed that CB covered less distance than both FB and 
CM. Moreover, also WM performed higher HSRD than 
CM and FW. Regarding sprint distance, CB covered less 
distance than FB, WM, and CM, with WM also present-
ing higher values than FW. Significant higher values were 
also observed for WM than FW for total distance and high-
speed distance (Table 1).

No significant differences in peak speed were observed 
between outfield positions. Regarding the acceleration 
profiles, WM performed higher Accdist than CB and CM, 
and higher Decdist than both CB, CM, and FW (Table 1).

3.2  |  1- and 5-min peak period profiles

No significant differences were observed between posi-
tions in 1-min peaks for TD. However, three playing posi-
tions (FB, WM, and CM) performed significantly higher 
peak 5-min TD compared with CB (Table 2). FB and WM 
performed more 1- and 5-min peak HSRD than CB during 
both periods, with WM also performing more HSRD than 
CM and FW in the 5-min peak (Table 2). The results ob-
tained for SpD revealed a similar trend, with FB and WM 
presenting higher values in the 1-min peak, than CB and 
CM, and in the 5-min peak than CB, CM, and FW. WM 
was the playing position with the highest values observed 
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108  |      WINTHER et al.

for Accdist and Decdist, both in 1- and 5-min peak periods, 
with results being significantly higher, during 1-min peak, 
than CM, and higher than CB, CM, and FW during 5-min 
peak (Table 2).

3.3  |  Running intensity fluctuations 
(peak, next and mean periods)

Both CB, FB, CM, and FW presented significantly higher 
values during the 1-min peak than in the following 5-min 
periods, for HSRD, SpD, Accdist, and Decdist (Figure 1). A 
similar trend was seen for WM, who also presented sig-
nificantly higher peak 1-min versus next 5-min values, 
except for HSRD. Furthermore, small but significant de-
creases in distance covered. Furthermore, both CB, FB, 
and WM covered less distance, during the 5-min period 
following the peak 1-min compared to the mean 5-min pe-
riod. For CM, there were no differences between these two 
epochs in Accdist, while for FW the same was observed in 
TD, HSRD, and SpD. With exception of TD, CB presented 
significantly higher values during the peak 1-min period 
compared to the mean 5-min period. Similarly, FB and 
CM presented higher SpD and Accdist during the 1-min 
peak. For WM and FW, significantly differences between 
those moments were observed only in SpD.

With respect to the analysis of peak, next, and mean 
5-min, the same trend, without exception, was observed 
for every playing position (Figure 2). Irrespectively of the 

variable analyzed, the results revealed higher intensities 
during the peak 5-min than in both next and mean 5-min 
periods. Next 5-min periods also presented lower values 
compared to the mean 5-min of each variable (ES range: 
0.07–0.20).

4   |   DISCUSSION

For the first time, running intensity fluctuations using 
1- and 5-min peak periods have been studied in detail in 
elite women's football. The major findings are that that 
HSRD, Accdist and Decdist in the 1-min peak correspond 
to ~50% of the distances covered in the 5-min peak and 
that the peak 1-min sprint period is significantly higher, 
in every playing position, than the mean 5-min period for 
the same variable. In addition, these differences between 
1- and 5-min peaks are even smaller in SpD, with the most 
demanding minute of the match corresponding to ≥60% of 
the SpD performed in the 5-min peak.

These findings are in line with previous research in 
professional male footballers29 and may be important for 
practitioners during training prescription. As an example, 
it may allow coaches to make evidence-based decisions 
regarding durations for exercises that aim to replicate, or 
to prepare, the players to cope with these peak periods of 
the match. Preparing players to cope with the 5-min peak 
periods of the match do not necessarily mean that these 
players will be ready for the most demanding 1-min peaks, 

T A B L E  1   Full match activity profiles by position

CB FB CM WM FW Contrasts

TD (m) 8934 ± 264 9590 ± 255 9982 ± 229 10131 ± 284 9376 ± 311 FB > CB (656 ± 557)*; WM > CB 
(1197 ± 591)*;

WM > FW (755 ± 646)*; CM > CB 
(1048 ± 525)*

HSRD (m) 1054 ± 148 1573 ± 144 1483 ± 130 1894 ± 160 1429 ± 174 FB > CB (519 ± 308)***; WM > CB 
(840 ± 327)***;

WM > CM (411 ± 300)**; WM > FW 
(465 ± 359)*;

CM > CB (429 ± 290)**

SpD (m) 227 ± 54 413 ± 53 293 ± 47 530 ± 59 380 ± 65 FB > CB (187 ± 118)*; WM > CB 
(303 ± 126)***;

WM > CM (237 ± 116)***; FW > CB 
(154 ± 134)*

Peak speed 
(km/h)

27 ± 1 28 ± 1 27 ± 1 29 ± 1 28 ± 1 No sig. differences

Acc (m) 427 ± 42 488 ± 41 433 ± 36 578 ± 46 506 ± 51 WM > CB (151 ± 97)**; WM > CM 
(145 ± 90)**

Dec (m) 305 ± 34 406 ± 33 361 ± 30 493 ± 38 382 ± 42 FB > CB (101 ± 75)**; WM > CB (188 ± 80)***;
WM > CM (132 ± 73)***; WM > FW 

(111 ± 88)*

*p < 0.05.; **p < 0.01.; ***p < 0.001.
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      |  109WINTHER et al.

since the demands of 5-min peaks are not evenly distrib-
uted across every minute.

Interestingly, the performance in the 5-min period fol-
lowing the peak 5-min in SpD is similar to the performance 
observed after the peak 1-min, suggesting that the 1-min 
peak period is so physically demanding that it requires a 
long recovery period with lower intensity. Furthermore, 
the high intensity in the SpD 1-min peak period adds 
support to the prescription of speed endurance activities 
during training to mirror and be prepared for the physical 
demands of match play.45,46

Corroborating previous studies regarding the presence 
and development of temporary fatigue47 after peak peri-
ods,29,48 our results revealed a significant decrease of high-
intensity actions in the 5-min period following the peak 
1-min, across several playing positions. The next 5-min 
period was also less demanding, in every variable (except 
for Accdist), than the 5-min rolling average, for CB, FB, 
CM, and WM. However, while this decrease was signifi-
cant, it is important to note that the differences in distance 
covered were quite small and that post 5-min periods are 
quite variable.19

It is important to have reference values by playing 
position for the demands of match play in elite women's 
football, since comparisons to men's football are not com-
mensurable. To date, only two other studies18,19 have si-
multaneously described the distribution of both running 
and acceleration patterns in elite women's football. In our 
study, apart from TD, a pattern emerged in the full match 
analysis in which external positions covered more distance 
in all speed zones, compared with central positions. This 
was especially apparent for SpD where both FB and WM 
covered significantly more distances than CB and CM, 
which partly supports the conclusions of Panduro et al.18 
where CB was considered the playing position with the 
lowest overall physical match demands. A similar trend 
was observed in the analysis of the 5-min peak periods, 
where FB and WM presented the highest values in high-
speed variables, while CB was the playing position with the 
lowest work-rate in every variable analyzed. These results 
are somewhat similar with previous research in elite male8 
and female13 footballers; however, in the study of Panduro 
et al.,18 the authors reported CM as one of the most de-
manding playing positions regarding high-speed activities, 

T A B L E  2   Peak period (1 and 5 min) profiles by position

CB FB CM WM FW Contrasts

Peak 1-min period

TD (m) 174 ± 15 192 ± 16 189 ± 14 191 ± 19 178 ± 23 No sig. differences

HSRD (m) 71 ± 9 93 ± 9 85 ± 9 93 ± 11 77 ± 12 FB > CB (22 ± 15)**; WM > CB (21 ± 16)*

SpD (m) 37 ± 4 53 ± 4 40 ± 4 54 ± 5 44 ± 6 FB > CB (16 ± 7)***; FB > CM (13 ± 7)***; 
WM > CB (18 ± 8)***;

WM > CM (14 ± 8)***

Acc (m) 28 ± 2 32 ± 3 28 ± 2 34 ± 3 31 ± 3 WM > CM (6 ± 5)*

Dec (m) 20 ± 2 24 ± 2 21 ± 2 27 ± 2 23 ± 3 WM > CB (7 ± 4)*; WM > CM (6 ± 4)**

Peak 5-min period

TD (m) 634 ± 21 688 ± 22 706 ± 20 712 ± 26 658 ± 31 FB > CB (54 ± 37)**; WM > CB (78 ± 41)***; 
CM > CB (72 ± 35)***

HSRD (m) 139 ± 13 190 ± 13 179 ± 12 210 ± 14 164 ± 16 FB > CB (52 ± 21)***; WM > CB (71 ± 23)***; 
WM > CM (30 ± 21)**;

WM > FW (45 ± 26)***; CM > CB (41 ± 20)***

SpD (m) 54 ± 6 82 ± 6 63 ± 6 92 ± 7 67 ± 8 FB > CB (28 ± 11)***; FB > CM (19 ± 10)***; 
FB > FW (15 ± 12)*;

WM > CB (38 ± 11)***; WM > CM (29 ± 11)***; 
WM > FW (25 ± 13)***

Acc (m) 56 ± 4 66 ± 4 56 ± 3 74 ± 4 62 ± 5 FB > CB (10 ± 7)**; FB > CM (10 ± 6)**; 
WM > CB (18 ± 7)***;

WM > CM (17 ± 7)***; WM > FW (12 ± 8)**

Dec (m) 41 ± 3 50 ± 3 45 ± 3 59 ± 3 46 ± 4 FB > CB (10 ± 5)***; FB > CM (6 ± 5)*; 
WM > FB (9 ± 5)***;

WM > CB (19 ± 5)***; WM > CM (14 ± 5)***; 
WM > FW (13 ± 6)***

*p < 0.05.; **p < 0.01.; ***p < 0.001.
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110  |      WINTHER et al.

F I G U R E  1   Distance covered during the peak 1-min, the next 5-min, and the mean 5-min period, for total distance (A), high-speed 
distance (B), sprint distance (C), acceleration distance (D), and deceleration distance (E)
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      |  111WINTHER et al.

F I G U R E  2   Distance covered during the peak 5-min, the next 5-min, and the mean 5-min period, for total distance (A), high-speed 
distance (B), sprint distance (C), acceleration distance (D), and deceleration distance (E)
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which is not in line with the findings of this research. In 
fact, 5-min peaks present larger differences between posi-
tions than 1-min peaks, which may be explained by the ac-
cumulation of differences within 5 min. The three studies 
used different tracking systems, and direct comparisons 
between studies should be done with care.

This study gathered performance data from top quality 
players (three teams ranked Top-4 in the National League), 
resulting in a large dataset, which is both rare and novel 
in studies on elite athletes. However, the dataset was not 
evenly distributed across playing positions, with FW pre-
senting a considerably smaller sample size than the other 
positions. In fact, the inclusion criteria chosen for the 
present study (players had to play the full match—90 min) 
together with the fact that FW were the players more often 
substituted in match, resulted in a smaller sample size for 
this group and hence lower statistical power for the run-
ning intensity fluctuation analysis.

5   |   PERSPECTIVES

The results of this study emphasize that peak 1-min SpD 
in all positions and Acc- and Dec distance in some posi-
tions are significantly higher than the mean 5-min period 
in these variables, which should have implications in the 
planning of training content with specific emphasis on in-
dividualized physical preparation relative to position and 
peak demands.
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ABSTRACT
Peak locomotor demands are considered as key metrics for conditioning drills prescription and training 
monitoring. However, research in female football has focused on absolute values when reporting match 
demands, leading to sparse information being provided regarding the degrees of variability of such 
metrics. Thus, the aims of this study were to investigate the sources of variability of match physical 
performance parameters in female football players and to provide a framework for the interpretation of 
meaningful changes between matches.
54 female players from four top-level clubs were monitored during one season. GPS APEX (STATSports, 
Northern Ireland), with a sampling frequency of 10 Hz, were used in 60 official matches (n = 393) to 
determine the full-match and 1-min peak locomotor demands of total distance (TD), high-speed running 
distance (HSRD), sprint distance (SpD), accelerations and decelerations (Acc/Dec) and peak speed 
(Pspeed). For each variable, the between-team, between-match, between-position, between-player, 
and within-player variability was estimated using linear mixed-effect modelling.
With exception to SpD (29.4 vs. 31.9%), all other metrics presented a higher observed match-to-match 
variability in the 1-min peaks than in the full-match (6.5 vs. 4.6%; 18.7% vs. 15.9%; 12.9 vs. 11.7%; for TD, 
HSRD and Acc/Dec, respectively). With the exception of SpD, higher changes in 1-min peaks than in full- 
match values are required to identify meaningful changes in each variable.
Different sources of variability seem to impact differently the match physical performance of female 
football players. Furthermore, to identify meaningful changes, higher changes in 1-min peaks than in full- 
match values are required.
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Introduction

The use of technology for monitoring match physical 
demands has become a common practice in professional 
football (Carling 2013). In recent years, the assessment of 
external load during official matches has evolved, partly due 
to the increasing prevalence of Global Positioning Systems 
(GPS) among football clubs (Whitehead et al. 2018), and the 
rule change in 2015 introduced by the International 
Football Association Board (IFAB) allowing the use of these 
technologies during official matches (FIFA 2015). Despite 
the growing body of knowledge within the match demands 
domain, the majority of the studies underestimate the true 
physical demands of competition, since several sport- 
specific movements (e.g., heading, tackling, accelerations 
and decelerations) are often omitted, leading to an under
estimation of match-load by 6–8% (Osgnach et al. 2010). 
The detailed performance data obtained through the analy
sis of match running activity and acceleration metrics can 
be used by practitioners to profile the player’s game 
requirements and consequently guide decision-making 
throughout the microcycle, such as the adjustment of recov
ery sessions or to establish physical targets during the week 
(Al Haddad et al. 2018).

Football performance is a multifactorial construct with 
a dynamic and stochastic nature, where players’ physical per
formances (e.g., high-speed activities) are affected by external 
factors (e.g., ball possession and period of the season) which 
consequently causes a fluctuation of these metrics between 
consecutive matches (Gregson et al. 2010). The variability in 
a football player’s performance from match to match can pro
vide estimates of the smallest worthwhile change, an important 
piece of information for sport scientists monitoring players or 
for scientists designing and analysing studies on factors affect
ing performance (Hopkins et al. 1999). This concept has been 
deeply studied in men’s football (Bush et al. 2015; Carling et al. 
2016; Gonçalves et al. 2018; Oliva-Lozano et al. 2021) and 
demonstrated by the coefficient of variation (CV) of 
a particular physical performance parameter (Novak et al. 
2021). Previous studies have shown that this match-to-match 
variability can be caused by internal (e.g., fitness characteristics) 
and external factors (ball possession in match-play) (Carling 
et al. 2016) including the method used for match analysis 
(Randers et al. 2010; Pettersen et al. 2018). Previous research 
in men’s football has been unanimous when reporting high- 
speed running as the most inconsistent variable from match-to- 
match (Bush et al. 2015; Carling et al. 2016; Trewin et al. 2017) 
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with Gregson et al. (Gregson et al. 2010) adding that this 
variability (CV~15% to 30%) is higher for central positions 
than for wide positions.

However, little research has been done within this field in 
the women’s football context. Although both men and women 
play the same game, research in other sports, such as weigh
tlifting (McGuigan and Kane 2004) and cycling (Paton and 
Hopkins 2006) has shown a tendency for greater variability in 
women compared to men. In a recent study of a women’s 
national team, Trewin et al. (Trewin et al. 2018) reported 
a higher occurrence and lower variability of accelerations 
(CV = 17%), when compared to high-speed running and sprint 
efforts (CV = 34% and 56%, respectively). These results are in 
line with research in men’s football (Dalen et al. 2019) where 
accelerations have been proposed to be a more stable and 
sensitive measure of physical performance than high-speed 
running activities. The study of female national team players 
(Trewin et al. 2018) also presented the high-speed running and 
sprint efforts of centre backs (CB) as the metrics with the great
est variation when compared to other playing positions 
(CV = 41–65%). Despite the novelty of the study, Trewin et al. 
(Trewin et al. 2018) analysed data from a single national team, 
across five consecutive seasons, which should be considered as 
a possible bias of the results, since within this time span 
changes in the physical condition of the players are very likely 
to occur (Mohr et al. 2003). Moreover, a multiple team analysis 
would be beneficial in order to reduce the possible bias caused 
by certain contextual factors (i.e., team) in the match-to-match 
variability observed.

Research within the match analysis domain is no longer 
bound to the analysis of absolute (full match) values, and the 
concept of peak locomotor demands has been gathering 
researchers’ attention over the last years (Weaving et al. 
2019). Previous research has suggested that match average 
demands are not the most informative outcomes for players 
preparation, since the use of such values to characterize match 
physical demands will most likely underestimate the most 
intense periods of the match (Delaney et al. 2015). Although, 
more common terms, such as peak period (Baptista et al. 2019a, 
most demanding passages of play (Martin-Garcia et al. 2018; 
Castellano et al. 2020) and worst-case scenarios (Cunningham 
et al. 2018; Fereday et al. 2020) have been used to refer to this 
concept. Researchers and practitioners should also be aware 
that only univariate locomotor measurements have been pre
sented and that such an approach does not represent the total 
amount of activity (Novak et al. 2021). Therefore, to minimize 
such misinterpretation of the concept, this paper will use the 
term suggested by Weaving et al. (Weaving et al. 2019) and 
further supported by Novak et al. (Novak et al. 2021) – peak 
locomotor demands. Despite the growing interest in studying 
the training and match demands in female football (Gabbett 
and Mulvey 2008; Mohr et al. 2008; Andersson et al. 2010; 
Vescovi 2012; Gabbett et al. 2013; Hewitt et al. 2014; Vescovi 
and Favero 2014; Datson et al. 2017; Mara et al. 2017; Vescovi 
and Falenchuk 2019), this representation of external load has 
focused on absolute values (full-match) or long fixed-periods 
(i.e., 15 minutes), with sparse information provided about 
shorter peak locomotor demands (e.g., 1, 3 or 5 minutes) of 
female competitions(Trewin et al. 2018; Harkness-Armstrong 

et al. 2020; Panduro et al. 2021). This can in turn lead to limited 
information for training prescription, since peak locomotor 
demands have been suggested as key-metrics for the prescrip
tion of conditioning drills and the monitoring of training inten
sities.(Whitehead et al. 2018)

Irrespectively, the random factors (i.e., match, position, 
players, and team) become important to determine the differ
ent degrees of variability of key physical variables, so practi
tioners can make more evidence-based decisions in their daily 
practices. Quantifying the match-to-match variability of differ
ent physical variables may be used to determine whether 
a change in match demands can be considered as normal or 
unusual (Oliva-Lozano et al. 2021). Therefore, the aim of this 
study was twofold: 1) to investigate the different sources of 
variability of selected match physical performance parameters 
in elite football player cohorts, using full match values and 
1-min peak locomotor demands; and 2) to provide reference 
values for interpreting changes in match physical performance.

Methods

Participants and match samples

With ethical institutional approval and written informed con
sent from the participants, 108 female football players 
(22.4 ± 4.0 years of age) from four elite-level (top tier division) 
Norwegian clubs participated in the study. Player movement 
data from one season (2020) including 60 official matches was 
collected using GPS APEX (STATSports, Northern Ireland), with 
a sampling frequency of 10 Hz. The validity and acceptable 
levels of accuracy (bias <5%) of this tracking system have 
previously been presented (Beato et al. 2018). During matches, 
each player wore a tight vest with a GPS unit on the back of 
their upper body between scapula as described by the manu
facturer. The microsensor devices were activated 15 min before 
the start of each match, in accordance with the manufacturer’s 
recommendations and previous research (Lozano et al. 2020), 
with this period of time excluded from analyses. To minimize 
inter-devices error (Beato et al. 2018), each player used the 
same GPS unit for the entire season. The mean number of 
satellites and horizontal dilution of precision was 17.5 ± 2.8 
and 1.4 ± 0.6, respectively.

Data processing

Doppler derived speed data were exported from manufacturer 
software (STATSport Sonra 2.1.4) into Python 3.7.6. for proces
sing (linearly interpolating any missing raw data), and to derive 
metrics. Raw acceleration was then calculated over a period of 
0.6 seconds. Matches were treated in which two of our teams 
played against each other as separate matches, and, because of 
positional differences in locomotor demands, the same player 
in a new position was treated as a new player. Goalkeepers 
were excluded from analysis and the selected playing positions, 
(central defenders, full-backs, midfielders, wide midfielders, and 
forwards), were chosen according to previous research.(Schuth 
et al. 2016; Baptista et al. 2018) To get a representative sample, 
players were included only if: a) completed, at least, two full- 
time (90 min) matches; b) and played the entire match in the 
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same playing position. Match performance data of <90 min was 
treated as missing. This resulted in an initial sample of 501 
observations with 108 missing values, which were subse
quently removed in the complete case analysis. The final sam
ple included 393 match observations (Mobs) from 54 players 
(central defenders, n = 10, Mobs = 113; full-backs, n = 11, Mobs 

= 84; central midfielders, n = 16, Mobs = 105; wide midfielders, 
n = 9; Mobs = 57 and central forwards, n = 8, Mobs = 34).

Physical performance variables

The physical parameters analysed included: total distance 
(TD), high-speed running distance (HSRD) (>4.44 m.s−1), 
sprint distance (SpD) (>5.55 m.s−1), number of accelerations 
and decelerations (Acc/Dec), and peak speed (Pspeed). In 
accordance with Trewin et al. (Trewin et al. 2017), accelera
tions and decelerations were defined as a positive or nega
tive change in speed of more than ±2.26 m.s−2, with 
a minimal effort duration of 0.3 seconds, finishing when 
the rate of acceleration/deceleration reached 0 m.s−2. The 
speed thresholds were chosen according to previous 
research.(Trewin et al. 2018; Strauss et al. 2019) Except for 
Pspeed, all other variables were used to analyse both full 
match (absolute values) and peak locomotor demands 
(1-min rolling analysis period). The epoch length for the 
peak locomotor demands was chosen according to the 
findings of Doncaster et al. (Doncaster et al. 2020), where 
1 min epochs produced the highest relative intensities 
when compared with 3- and 5-min epochs.

Statistical Methods

After deriving all the metrics, the data were transferred to 
R (R.4.0.5, R Core Team, 2021) for statistical analysis. To estimate 
the sources of variability (between-team, between-position, 
between-player, between-match, and the residual within- 
player variability) and to provide reference values for 

interpreting changes in match physical performance, we used 
a similar approach as Oliva-Lozano et al. (Gonçalves et al. 2018). 
The design located units of analysis (individual match observa
tions) nested within clusters of units (players), further nested 
within playing positions and teams. To account for this hier
archical (correlated) nesting, and to quantify the variability in 
match physical performance, data were analysed using linear 
mixed-effect modelling with the package lme4 (Bates et al. 
2015). For each physical parameter, the model was specified 
to include a random intercept for the random effects: team, 
position, player ID, and match ID. All models were estimated via 
Restricted Estimated Maximum Likelihood (REML), and model 
appropriateness was verified by examining the QQ-plots of the 
studentized residuals. Each random effect represented a source 
of variability and was expressed in raw units (standard devia
tion – SD) by modelling the original data, and in percentage 
units (CV%) by first log-transforming the original data before 
modelling, and then back-transforming each estimate after 
modelling was done (Hopkins et al. 2009).

Similar to Oliva-Lozano et al. (Oliva-Lozano et al. 2021), 
variability estimates were used to provide a framework for 
practitioners to interpret individual changes in indicators of 
match physical performance. Here, 80% and 90% limits of 
agreement (LoA) were calculated by multiplying the square 
root of 2 with the appropriate values from the t-distribution 
(with infinite degrees of freedom) and the observed 
between-match variability expressed (e.g., the pooled 
between-match and within-player variability). Furthermore, 
practical significant changes associated with alpha levels of 
0.10 and 0.05 were calculated using the formula: * observed 
between-match variability * t-statistic + threshold. Here, the 
observed between-match variability was the same as 
described above, while the threshold term was equivalent 
to the smallest worthwhile change (0.2 * the observed 
between-player variability – or the pooled between-player 
and within-player variability).

Table 1. Variability of full match and 1-min peak locomotor demands expressed in raw units and coefficients of variation (%).

Variability

Metric Between-match Between-team Between-position Between-player Within-player

SD (90% CI)a TD (m) Full match 335 (278–393) 37 (0–212) 456 (132–749) 473 (379–547) 259 (239–277)
1’ peak 6 (4–7) 2 (0–4) 8 (2–14) 7 (5–8) 10 (10–11)

HSRD (m) Full match 132 (103–154) 51 (0–137) 288 (95–446) 272 (222–323) 160 (148–171)
1’ peak 7 (5–8) 2 (0–6) 10 (2–15) 8 (6–10) 13 (12–14)

SpD (m) Full match 40 (29–49) 0 (0–39) 111 (31–172) 103 (84–122) 73 (68–78)
1’ peak 3 (0–4) 1 (0–3) 8 (3–12) 6 (4–7) 11 (10–12)

Acc/Dec (#) Full match 12 (10–15) 0 (0–11) 19 (0–32) 28 (23–33) 20 (18–21)
1’ peak 0.3 (0.0–0.4) 0.0 (0.0–0.3) 0.8 (0.2–1.2) 0.7 (0.5–0.9) 1.3 (1.2–1.3)

Peakspeed (m/s) Full match 0.1 (0.0–0.1) 0.0 (0.0–0.1) 0.1 (0.0–0.9) 0.3 (0.3–0.4) 0.3 (0.3–0.3)
CV (90% CI)b TD (m) Full match 3.6 (3.0–4.2) 0.2 (0.0–2.2) 4.9 (1.7–8.0) 4.9 (4.0–5.8) 2.8 (2.6–3.0)

1’ peak 3.1 (2.3–3.8) 0.7 (0.0–2.2) 4.7 (1.5–7.3) 3.7 (2.7–4.5) 5.7 (5.3–6.1)
HSRD (m) Full match 10.2 (8.1–12.2) 1.1 (0.0–7.3) 22.8 (7.1–37.4) 18.9 (15.0–22.8) 11.7 (10.9–12.5)

1’ peak 7.6 (5.5–9.7) 1.4 (0.0–5.2) 12.8 (2.6–20.9) 10.7 (7.9–13.3) 16.7 (15.5–17.9)
SpD (m) Full match 13.8 (10.0–17.5) 0.0 (0.0–13.1) 39.3 (8.8–66.9) 37.2 (28.4–46.2) 27.7 (25.6–29.7)

1’ peak 6.4 (0.0–9.7) 0.0 (0.0–7.2) 20.0 (6.6–32.1) 14.9 (10.0–19.0) 28.4 (26.4–30.6)
Acc/Dec (#) Full match 6.2 (4.7–7.6) 0.0 (0.0–6.0) 9.2 (0.0–15.6) 14.2 (11.0–17.0) 9.7 (9.1–10.4)

1’ peak 0.3 (0.0–0.4) 0.0 (0.0–3.2) 7.1 (0.8–11.3) 7.3 (5.1–9.0) 12.6 (11.7–13.5)
Peakspeed (m/s) Full match 0.1 (0.0–0.1) 0.0 (0.0–1.7) 1.9 (0.0–3.7) 4.4 (3.4–5.2) 4.4 (4.0–4.7)

SD = Standard deviation; CI = Confidence Intervals; CV = Coefficient of variation. 
aValues presented in the metric’s unit of measurement; 
bValues presented as a percentage of the mean
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Results

The decomposed variability of full match and 1-min peak 
match analysis metrics are presented in Table 1. All esti
mates of between-position, between-match, between- 
player, within-player, and between-team are expressed in 
raw (SD) and percentage (CV) units. CV values of full 
match variables ranged from 0.0% to 39.3%, with the lowest 
CVs associated with between-team variability of Pspeed 
(0.0%) and the highest with between-position variability of 
SpD (39.3%). With the exception of between-team variabil
ity, which presented low values for all metrics, all sources of 
variability of full match metrics were greater for SpD (13– 
39%) when compared with all other external load variables. 
Between-player (for TD, Acc/Dec and Pspeed) and between- 
position analysis (for HSRD and SpD) present higher CVs, in 
the full match variables analysed, relative to the other 
sources of variability. CV values of 1-min peak variables 
ranged from 0.0% to 28.4%, with the lowest CVs associated 
with the between-team variability of Acc/Dec (0.0%) and the 
highest with the within-player variability of SpD (28.4%). 
The within-player variability assumes the largest CVs for 
the 1-min peak variables.

The observed match-to-match variability (combined 
between-match and within-player) and reference values for 
interpreting individual changes are presented in Table 2. 
With exception to SpD (29.4 vs. 31.9%), all other metrics 
presented a higher observed match-to-match variability in 
the 1-min peaks than in the full match (6.5 vs. 4.6%; 18.7% 
vs. 15.9%; 12.9 vs. 11.7%; for TD, HSRD and Acc/Dec, respec
tively). Based on the model used to identify significant 
changes (see methods section), between-match individual 
changes of ±9% (α = 0.10) and ±12% (α = 0.05) in full 
match metrics of TD and Pspeed would be considered 
unusual and suggest practical significance. For HSRD (33%; 
42%), SpD (68%; 84%) and Acc/Dec (25%; 31%) these 
thresholds (α = 0.10; α = 0.05; respectively) are considerably 
higher. Regarding 1-min peaks, and with exception to SpD, 
higher changes than in full-match values are required to 
identify meaningful difference.

Discussion

Full-match vs. 1-min peak variability

This study is novel, being the first that decomposes and compares 
the variability of absolute (full-match) and relative (1-min peak) 
match external load metrics in elite women’s football. A novel 
finding was the higher observed match-to-match variability in 
1-min peaks when compared to the full match, in TD (6.5% vs. 
4.6%), HSRD (18.7% vs. 15.9%) and Acc/Dec (12.9% vs. 11.7%). This 
difference may be caused by external factors (e.g., match result 
and opponent) alongside the dynamic and stochastic nature of 
a football match, which in this case seasonal fluctuations appear to 
have had a higher influence in the most demanding periods than 
in the mean match values.(Gregson et al. 2010) While not having 
reference to female football, previous research in male football 
(Novak et al. 2021) presented CV values of 3-min peaks similar to 
our study, for TD (~7%), HSRD (~21-31%) and SpD (~35-56%). This 
information is particularly relevant since the study of univariate 
peak locomotor demands has been used by practitioners to 
inform training prescription (Baptista et al. 2019a), and conse
quently as a strategy to better prepare their players to cope with 
these peaks during match-play. However, as previously observed 
in absolute values (Carling et al. 2016), peak locomotor demands 
are also unstable across matches. The poor consistency of specific 
peak high-speed metrics presented in men’s football (Novak et al. 
2021), and here corroborated for women’s football, may raise 
questions regarding its practical applicability. Although the analy
sis of peak locomotor demands in matches has become 
a common trend among practitioners, its applicability as bench
marks for training sessions may be controversial.

Sources of variability

After decomposing the variability into five different sources 
(between-match, between-position, between-player, within- 
player and between-team), we observed that all sources were 
greater for SpD than for the other physical metrics, both in full 
match (13.8–39.3%) and 1-min peaks (6.4–28.4%), with a minor 
exception in the between-team variability, where HSRD (~1%) 
presented slightly higher CV than SpD (~0%). These results are in 
line with previous research in male football, where the highest CV 
values were observed in high-speed metrics (Gregson et al. 2010; 

Table 2. Reference values for interpretation of individual changes in match physical performance in full match and 1-min peak periods.

Metric
Observed match-to-match variabilityb ± Limits of agreement (%)c Change (±) required to be practically significant (%)c

CV (90% CI)a 80% 90% α = 0.10 α = 0.05

TD Full match 4.6 (4.1–5.0) 8.3 10.6 9.4 11.8
1’ peak 6.5 (6.0–7.0) 11.8 15.1 13.2 16.5

HSRD Full match 15.9 (14.3–17.7) 28.8 36.9 33.3 41.5
1’ peak 18.7 (17.2–20.1) 33.9 43.5 38.0 47.6

SpD Full match 31.9 (29.1–34.5) 57.7 74.1 67.5 83.9
1’ peak 29.4 (27.1–31.6) 53.3 68.4 59.9 75.0

Acc/Dec Full match 11.7 (10.8–12.6) 21.2 27.2 24.7 30.7
1’ peak 12.9 (12.1–13.8) 23.4 30.0 26.3 33.0

Pspeed Full match 4.5 (4.2–4.8) 8.1 10.4 9.4 11.7

CV = Coefficient of variation. 
aValues presented as a percentage of the mean. 
bBased on the combined between-match and within-player variability. 
cBased on the observed match-to-match variability
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Carling et al. 2016). For instance, Carling et al. (Carling et al. 2016) 
presented greater variability for distances above 7.0 m.s−1 (37%) 
than for distances between 5.5 and 7.0 m.s−1 (18.1%). These dis
crepancies between locomotor categories (full-match values) are 
somewhat similar to those presented in our study, where the 
observed match-to-match variability of SpD (31.9%) presented 
twice the magnitude of HSRD (15.9%).

Using a similar approach of previous research (Oliva- 
Lozano et al. 2021), we separately analysed the elements 
occurring at the match and player level by partitioning the 
observed match-to-match variability into between-match 
and within-player variability. Our full match results for TD 
(3.6% vs. 2.8%) and Pspeed (1.0% vs. 4.4%) were identical to 
those reported by Oliva-Lozano et al. (Oliva-Lozano et al. 
2021) (4.3% vs. 3.7% and 1.5% vs. 4.9%; for TD and Pspeed, 
respectively), where these metrics appeared relatively stable 
both for between-match and within-player variability. 
However, regarding Acc/Dec our study presents a lower 
CV for between-match than for between-position variability 
(6.2% vs. 9.7%), while the study of Oliva-Lozano et al. (Oliva- 
Lozano et al. 2021) reported an opposite trend (4.9% vs. 
2.6%). We conjecture that the presence of a high between- 
position variability could be caused by the divergent indivi
dual characteristics within the playing position. In fact, our 
study presented a higher sample size, and consequently 
more players per position than the study of Oliva-Lozano 
et al. (Oliva-Lozano et al. 2021), meaning the presence of 
a larger diversity of players within each position. 
Furthermore, the between-match (10.2%) and within-player 
(11.7%) variability of HSRD observed in our study were 
considerably lower than reported in men’s teams (19% 
and 23%, respectively) (Oliva-Lozano et al. 2021). We con
jecture that this discrepancy between studies is caused by 
the different high-speed running thresholds used in female 
(>4.44 m.s−1) and male teams (>5.8 m.s−1), which is asso
ciated with the fact that variability tends to increase with 
running intensity,(Carling et al. 2016) justifies such 
differences.

Individual changes interpretation

By partitioning the match physical performance variability 
into different sources, we provide valuable information that 
may assist football coaches to make more evidence-based 
decisions regarding the monitoring of between-match 
changes. The reference values for interpreting the individual 
changes presented in Table 2 were obtained by 
a combination of between-match and within-player variabil
ity, resulting in 80% and 90% LoA, which were then com
plemented with thresholds for practical significance (see 
Methods section). For example, according to our results, 
a player’s positive or negative variation in the match 
Pspeed of >9.4% (α = 0.10) should be considered unusual, 
while a change in HSRD peak period of <47.6% (α = 0.05) 
could be interpreted as usual. Previous research(Stevens 
et al. 2017; Baptista et al. 2019a) have suggested that the 
interpretation of training load data is facilitated if match 

load is used as a reference, allowing a more appropriate 
training prescription and communication between practi
tioners. Therefore, understanding the meaningfulness and 
practical significance of match physical performance varia
bility may help coaches during the training load manage
ment process. For instance, a marked decrease in HSRD 
from one match to another does not necessarily mean 
a lower physical condition of the player. Consequently, 
before making hasty conclusions, practitioners may firstly 
confirm if such variation falls within the practical significant 
range.

Limitations and further research

Following the suggestion of Oliva-Lozano et al. (Oliva- 
Lozano et al. 2021) for the necessity to conduct a multi- 
club study, we included four different top-level teams. This 
strategy has the added benefit of likely increasing the data 
heterogeneity and consequently diminishing the risk of bias 
caused by a specific style of play and/or training period
ization (Baptista et al. 2019b). However, the low values for 
between-team variability may suggest that our data contain 
too few and too homogenous clusters. Future studies 
should try to remedy this by including more teams from 
a broader range of performance level within a division. 
Other limitations include the fact that GPS may present 
lower accuracy than radio-based local positioning systems 
(Pettersen et al. 2018), particularly for high-speed measures 
like HSRD, SpD and Pspeed (Buchheit and Simpson 2017). 
We also recognize that positional differences will likely 
affect the magnitude of the variability and thus, future 
research should also attempt to present results by playing 
position. Despite the deliberate exclusion of the warm-up 
data, at a finer granularity, this pre-match period might 
influence the players’ readiness and preparedness for the 
game. Furthermore, in this study only univariate peak loco
motor demands were considered and, therefore, different 
conclusions could be drawn if multivariate peak periods 
were analysed.

Conclusion

In general, match physical performance of female football 
players seems to be affected differently by the different 
sources of variability. Moreover, the high-speed metrics pre
sented a higher observed match-to-match variability than 
the other key-metrics analysed. Finally, higher changes in 
1-min peaks than in full-match values are required to be 
considered meaningful. The outcomes of the present study 
may address reference values that allow coaches to better 
interpret the inevitable variation of match physical perfor
mance. Practitioners must consider performance variability 
as advantageous and keep in mind that such 
a phenomenon is part of the team sports nature. 
Therefore, training prescription should avoid using specific 
benchmarks to achieve, but rather promote the presence of 
varied training stimulus and intensities, as well as use 
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reference values for interpreting individual changes in 
match physical performances.
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Abstract 21 

This observational study aimed to analyze external training load in highly trained female 22 

football players, comparing starters and non-starters across various cycle lengths and training 23 

days. 24 

Method: External training load [duration, total distance [TD], high-speed running 25 

distance [HSRD], sprint distance [SpD], and acceleration- and deceleration distance 26 

[AccDecdist] from 100 female football players (22.3 ± 3.7 years of age) in the Norwegian 27 

premier division were collected over two seasons using STATSports APEX. This resulted in a 28 

final dataset totaling 10498 observations after multiple imputation of missing data. Microcycle 29 

length was categorized based on the number of days between matches (2 to 7 days apart), while 30 

training days were categorized relative to match day (MD, MD+1, MD+2, MD-5, MD-4, MD-31 

3, MD-2, MD-1). Linear mixed modeling was used to assess differences between days, and 32 

starters vs. non-starters.  33 

Results: In longer cycle lengths (5-7 days between matches), the middle of the week 34 

(usually MD-4 or MD-3) consistently exhibited the highest external training load (~21-79% of 35 

MD TD, MD HSRD, MD SpD, and MD AccDecdist); though, with the exception of duration 36 

(~108-120% of MD duration), it remained lower than MD. External training load was lowest 37 

on MD+2 and MD-1 (~1-37% of MD TD, MD HSRD, MD SpD, MD AccDecdist, and ~73-88% 38 

of MD peak speed). Non-starters displayed higher loads (~137-400% of starter TD, HSRD, 39 

SpD, AccDecdist) on MD+2 in cycles with 3 to 7 days between matches, with non-significant 40 

differences (~76-116%) on other training days. 41 

Conclusion: Loading patterns resemble a pyramid or skewed pyramid during longer 42 

cycle lengths (5-7 days), with higher training loads towards the middle compared to the start 43 

and the end of the cycle. Non-starters displayed slightly higher loads on MD+2, with no 44 

significant load differentiation from MD-5 onwards.  45 
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Introduction 46 

In high-performance sports, a key challenge for coaches and players is striking the right 47 

balance between training and recovery. On the one hand, increases in duration, frequency, and 48 

intensity of training are often associated with an enhancement in performance [1-3]. On the 49 

other hand, increases in training load without adequate recovery may hinder performance and 50 

increase the potential risk of injury [4]. In order to find this balance, the periodization of training 51 

is considered to be a critical tool [5]. This involves sequencing the overall training plan into 52 

units of different lengths (i.e., macro- and microcycles) and planning specific training activities 53 

and intensities for each unit [6, 7]. Through careful planning and monitoring, players are 54 

believed to maintain a healthy balance between pushing their physical limits and allowing for 55 

adequate recovery [5].  56 

In football, variations in training load are most frequently seen at the microcycle level 57 

[8]. This is because microcycles can easily be manipulated based on the number of days 58 

between matches, allowing practitioners to plan loads that provide a physical stimulus to the 59 

players and facilitate recovery [8, 9]. More recently, a principle known as “horizontal 60 

alternation” [10] has often been mentioned in tandem. This principle encompasses the idea that 61 

physical capacities such as strength, endurance, or speed are targeted on specific days, 62 

potentially maximizing the stimuli of each capacity while at the same time minimizing any 63 

physiological interferences[11]. This is often done within “days before the match” (MD-) 64 

and/or “days after a match” (MD+) framework. To give an example, with six days between 65 

matches, three “acquisition” days (MD-4, MD-3, and MD-2) could be placed in between one 66 

or two “recovery” days (MD+1 to MD+2) and one “tapering” day (MD-1), where then each 67 

“acquisition” day could be dedicated to a specific capacity. In this way, all capacities are 68 

maintained or further developed while allowing players enough time to recover between 69 

matches.  70 
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In professional football, the widespread adoption of Global Positioning System (GPS)-71 

based tracking systems has become prevalent for monitoring the players’ activity profiles. 72 

These systems can provide practitioners with numerous metrics about a player’s external 73 

training load and are considered valid and reliable in this respect [12]. Regarding the metrics 74 

themselves, both total distance and metrics describing distances covered at various speeds and 75 

accelerations and decelerations are typical metrics that both coaches and players want to see 76 

[13, 14]. This extends to the planning and monitoring of training, where said metrics could be 77 

used as indicators for whether a physical capacity was appropriately targeted. For example, one 78 

could expect a more “strength” oriented day to coincide with more accelerations and 79 

decelerations [15] due to smaller pitch sizes allowing for more duals and changes of direction. 80 

In the same manner, a more endurance-focused day could coincide with longer training 81 

durations and total distance covered and a “speed” day with more distance covered at higher 82 

speeds [16].     83 

To date, only a few studies have analyzed the periodization of training load in women’s 84 

football. Most recently, Karlsson et al. [15] found that a Norwegian team differentiated their 85 

training load in longer cycles (with 5-7 training days available), closely resembling the 86 

horizontal alternation principle. In cycles with four days between matches, Diaz-Seradilla et al. 87 

[17] found that MD was more demanding than any training day, while all external training load 88 

variables were higher on MD-3 compared to any other training day. Romero-Moraleda et al. 89 

[18] also found that the match was the most demanding session in cycles with five days between 90 

matches while observing that the training load followed a pyramid shape in which the MD-4 91 

and MD-3 consistently produced the greatest physiological and biomechanical loads, and 92 

MD+1 the lowest values. 93 

 While research has examined differences between training days in some cycle lengths, 94 

little is known about the training load across a broad range of cycles. Furthermore, all previous 95 
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studies have only investigated players with over 60 minutes of playing time, meaning little is 96 

known about the training load of non-starters. Thus, this study aimed to analyze the external 97 

training load across a range of typical cycle lengths in professional football, including potential 98 

differences between starters and non-starters. We hypothesized that teams differentiated their 99 

training load, especially during longer cycles, and that non-starters had higher training loads on 100 

MD+1 and MD+2.  101 

Methods 102 

Before commencing the study, we applied for ethical approval through the Regional 103 

Committee for Medical and Health Research Ethics - Northern Norway (reference number 104 

53884). We were exempted since the data collection did not include a biobank, medical or 105 

health data related to illness, or interfered with the regular operation of the players. After 106 

approval from the Norwegian Centre for Research Data (reference number: 296155), we 107 

obtained written informed consent from 100 female football players (22.3 ± 3.7 years of age) 108 

representing four teams in the Norwegian premier division, classified as highly trained 109 

according to the criteria outlined by McKay et al. [19]. Starting in March 2020, a prospective 110 

observational study was conducted in which tracking data from training and matches over two 111 

full seasons were collected using STATSports Apex (Newry, Northern Ireland), with a 112 

sampling frequency of 10 Hz. The validity and level of accuracy (bias <5%) of this tracking 113 

system have been previously presented [20]. All teams trained and played home matches on 114 

artificial grass, with only occasional away games on natural grass. Training sessions were 115 

usually started between 10 AM and 4 PM, with matches typically played between 1 PM and 9 116 

PM. During training and matches, players wore their GPS unit on their upper back, adhering to 117 

manufacturer instructions. Furthermore, to minimize inter-device errors [20], each player used 118 

the same GPS unit throughout data collection. For the study, we only included outfield players 119 
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and players with at least one appearance in an official match lineup, either as a starter or as a 120 

bench player.   121 

Data pre-processing 122 

Following GPS reporting standards [21], we exported raw GPS data from the 123 

manufacturer's software (STATSports Sonra 2.1.4, Newry, Northern Ireland) into a Python 124 

(3.9.12) script for pre-processing. Here, we applied a 1-second moving average to smooth 125 

doppler-derived speed and derive distance and acceleration. Next, another custom script 126 

calculated the physical performance variables. These included duration (measured using 127 

timestamps from the raw data), peak speed, total distance (TD), high-speed running distance 128 

(HSRD) (>16 km×h-1), and sprint distance (SpD) (>20 km×h-1) based on previous research [22-129 

24]. In addition, combined acceleration- and deceleration distance (AccDecdist) was defined as 130 

the distance covered with a positive or negative change in speed of more than ± 2.26 m×s-2, 131 

finishing when the rate of acceleration/deceleration reached 0 m×s-2. 132 

 After deriving all the metrics, the data were transferred to an R 4.0.5 [25] script for missing 133 

data imputation and statistical analysis. All variables included in the final analysis are listed in 134 

Table 1. 135 

 136 

Table 1. Overview of variables included in the final analysis. 137 

Variable Threshold Type Units 

Duration  Continuous Minutes (min) 

TD  Continuous Meters (m) 

HSRD   >16 km•h-1 Continuous m 

SpD >20 km•h-1 Continuous m 

AccDecdist, >2.26 m•s-2 Continuous m 

Peak speed  Continuous Meters per seconds (m×s-1) 
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Match day and cycle  Nominal MD, MD+2x3, MD-1x3, MD+2x5, MD-3x5, MD-2x5, 

MD-1x5, MD+2x6, etc. 

Squad status  Nominal Starter, non-starter 

Player ID  Nominal  

Team ID  Nominal  

TD – Total distance; HSRD – high-speed running distance; SpD – Sprint distance; AccDecdist – Acceleration and Deceleration 138 
distances; MD – Match-day 139 
 140 

Handling of missing data 141 

To handle missing data, we followed recommendations by Bache-Mathiesen et al. [26], 142 

Borg et al. [27], and Malone et al. [21]. First, we set all physical performance variabbles as 143 

missing on sessions with a mean horizontal dilution of precision >5 or a mean number of 144 

satellites <12. We also set peak speed as missing if above 32 km×h-1 based on theoretical max 145 

speed values of 29.2 ± 1.4 km×h-1 in a similar cohort [28].  146 

The initial dataset included one observation for each squad player for each day 147 

throughout the competitive season (lasting 157 and 176 days in 2020 and 2021, respectively), 148 

totaling 12879 observations, with 7646 missing. We opted to remove all observations on MD+1 149 

since it typically was a day off with a substantial amount of missing data (2208 out of 2426 150 

observations). We also removed all observations in cycles with four training days due to too 151 

few observations (171 in total with 132 missing). An overview of missing values in the final 152 

dataset is shown in Table 2.  153 
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 154 

Table 2. Number of missing and non-missing observations. 155 

MD (+-) Cycle Total non-

missing 

Total 

missing 

# of players Mean # of non-

missing obs. p/player 

Mean 

HDOP 

Mean # of 

satellites 

MD  1158 527 100 11.9 1.3 18.7 

MD + 2 2 181 106 95 3.5 2.0 19.8 

MD + 2 3 228 413 100 2.9 1.5 19.6 

MD - 1  392 247 100 4.8 1.7 19.6 

MD + 2 5 133 415 100 1.8 1.7 18.5 

MD - 3  333 215 100 3.4 1.6 19.1 

MD - 2  208 340 100 2.7 1.6 18.9 

MD - 1  314 234 100 3.3 1.8 19.4 

MD + 2 6 210 391 99 2.7 1.5 18.7 

MD - 4  366 235 99 3.9 1.5 18.5 

MD - 3  346 254 99 3.8 1.5 18.6 

MD - 2  145 455 99 3.5 1.1 17.7 

MD - 1  280 320 99 3.7 1.6 19.5 

MD + 2 7 69 243 100 1.6 1.4 17.6 

MD - 5  174 138 100 2.0 1.6 18.7 

MD - 4  127 185 100 1.7 1.5 18.9 

MD - 3  103 209 100 1.7 1.7 19.8 

MD - 2  56 256 100 1.1 2.0 18.9 

MD - 1  153 159 100 2.1 1.5 19.8 

MD – match-day; # - number; HDOP – horizontal dilution of precision; p/player – per player 156 

 157 

We used multiple imputation with predicted mean matching (PMM) to impute the 158 

missing data, consistent with Bache-Mathiesen et al. [26]. Using the mice package [29] in R, 159 

we applied the PMM (mice.impute.pmm) method, including all dependent variables in addition 160 

to day number, to generate five imputed datasets for subsequent analysis.  161 

 162 
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Statistical analysis 163 

Duration, TD, peak speed, and AccDecdist were modelled in R using the lmer package [30], 164 

while HSRD and SpD were modelled in the same software using glmmTMB [31]. All models 165 

included the interaction between match day, cycle, and squad status as fixed effects and player 166 

ID and team ID as random effects. In addition, HSRD and SpD were modelled using the tweedie 167 

family with a log link function. Next, we examined, only for the starters, the differences in 168 

training load between each day within each cycle and then compared the differences in training 169 

load between starters and non-starters within each day. Here, the package emmeans [32] was 170 

used to compute estimated marginal means, using the Sidak method to adjust for multiple 171 

comparisons between the days and the Tukey method for pairwise comparison between starter 172 

and non-starters. We also conducted the same statistical analysis on the non-imputed dataset 173 

with only complete cases for sensitivity purposes. Unless otherwise stated, all results are 174 

reported as estimated marginal means ± 95% confidence intervals.  175 

Results 176 

Results from the imputed datasets and subsequent models are shown in supplementary 177 

tables S1-S3, and Fig 1. Overall, both multiple imputation and complete case analysis gave 178 

similar results, and thus only the multiple imputation results are described below. The results 179 

for the complete case analysis can be found in supplementary tables S4-S6, and S1 Fig.  180 

 181 

Fig 1. External training load by number of days between matches and in proximity to match day (imputed data). 182 

[INSERT FIG 1 HERE] 183 

 184 
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Match vs. training 185 

Starters displayed significantly higher values (p < 0.001) for TD, HSRD, SpD, 186 

AccDecdist and peak speed on MD compared to any other day. MD duration was approximately 187 

88 ± 1 min, shorter (7 ± 4 to 18 ± 4 min, p < 0.001) than training on most acquisition days (MD-188 

5 to -3) in cycles with 5-7 days between matches.  189 

Three days between matches 190 

 With three days available (1280 observations), there were no significant differences in 191 

duration and TD between MD+2 and MD-1. However, AccDecdist, HSRD, SpD and peak speed 192 

were slightly higher on MD-1 compared to MD+2, with differences of 108 ± 91 (p = 0.005), 77 193 

± 38 m (p < 0.001), 21 ± 13 ( p < 0.001), and 2.2 ± 1.2 km×h-1 (p = 0.01), respectively.  194 

Five days between matches 195 

 In cycles with five days between matches (2192 observations), TD, HSRD, SpD, 196 

AccDecdist and peak speed were all lower on MD+2 compared to the other training days, except 197 

for TD (81 ± 493 m, p = 1.000) and AccDecdist (47 ± 115 m, p = 1.000) on MD-1. Differences 198 

in TD and mean peak speed ranged from 2728 ± 434 to 1005 ± 597 m, and from 2.9 ± 1.9 to 199 

5.0 ± 1.5 km×h-1, respectively, whilst differences in HSRD and SpD ranged from 82 ± 49 to 356 200 

± 74 m and from 24 ± 13 to 108 ± 30 m. Differences in AccDecdist ranged from 668 ± 122 to 201 

251 ± 121 m. All variables were higher (p < 0.001) on MD-3 compared to the other days of the 202 

cycle, with the largest differences observed when compared to MD+2 and MD-1, respectively. 203 

Six days between matches  204 

In six-day cycles (3002 observations), all variables were higher on MD-4 to MD-2 205 

compared to MD+2 (p < 0.001). Similarly, both TD (ranging from 1712 ± 430 to 3087 ± 380 206 

m), HSRD (82 ± 42 to 353 ± 111 m), SpD (20 ± 15 to 102 ± 27 m), and AccDecdist (320 ± 137 207 



 

 11 

to 721 ± 110 m) were higher on MD-4 to MD-2 compared to MD-1. However, statistically non-208 

significant differences in peak speed (0.7 ± 0.8 km×h-1, p = 0.158) were found between MD-4 209 

and MD-1. Furthermore, MD-3 had higher duration (11 ± 5 min, p < 0.001) and higher peak 210 

speeds (1.5 ± 1.0 km×h-1, p < 0.001) compared to MD-4, and higher TD (1323 ± 370 and 1374 211 

± 463 m, p ≤ 0.001), HSRD (245 ± 65 and 188 ± 84 m, p < 0.001), SpD (81 ± 26 and 58 ± 29 212 

m, p < 0.001) and AccDecdist (244 ± 103 and 408 ± 182 m, p < 0.001) compared to both MD-4 213 

and MD-2. The only difference between MD-4 and MD-2 was in AccDecdist (157 ± 156 m, p = 214 

0.047) and peak speed (1.1 ± 1.1 km×h-1, p = 0.047), with higher AccDecdist covered on MD-4, 215 

and higher peak speed on MD-2.  216 

Seven days between matches 217 

 Seven-day cycles (1872 observations) saw a similar pattern to that of five and six, with 218 

all variables being higher on MD-5 to MD-3 compared to MD+2. There were also differences 219 

in the tapering stage of the cycle, with longer (11 ± 10 min, p ≤ 0.015) practice time on MD-2 220 

compared to MD-1, coupled with more TD (1021 ± 602 m, p < 0.001) and AccDecdist (162 ± 221 

142 m, p = 0.009) covered. TD, HSRD, SpD and AccDecdist were higher on MD-4 than any 222 

other training day. AccDecdist was higher MD-5 versus MD-3 (211 ± 171 m, p = 0.004). 223 

Starters vs non-starters 224 

Starters vs. non-starters displayed mostly small and non-significant differences in 225 

external training load, except on MD+2. Non-starters trained longer (7 ± 5 to 13 ± 4 min, p  ≤ 226 

0.001) in cycles with 3-6 days between matches, resulting in more TD (731 ± 246 to 1197 ± 227 

218 m, p < 0.001), AccDecdist (176 ± 68 to 346 ± 106 m, p < 0.001), HSRD (28 ± 23 to 51 ± 26 228 

m, p ≤ 0.019) and higher peak speeds (1.2 ± 1.2 to 1.7 ± 0.7 km×h-1) on those days.  229 
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Discussion 230 

Our study aimed to analyze the external training load across a range of typical cycle 231 

lengths in professional football, including potential differences between starters and non-232 

starters. We hypothesized that teams differentiated their training load, especially during longer 233 

cycles, and that non-starters had higher training loads on MD+1 and MD+2. In line with this, 234 

two major findings were apparent from this study. First, the results indicate that the teams in 235 

our study altered their external load based on the number of days between matches, with most 236 

of the training load clustered towards the mid-week, succeeding and preceding days of lower 237 

loads. Secondly, there was little to no differentiation in training load between starters and non-238 

starters from MD-5 and onwards, regardless of cycle.  239 

 Our data indicates that teams perform the highest combined external load at least three 240 

to four days pre-match in a typical match fixture. This period of higher load succeeds and 241 

precedes days of lower load, which makes sense from a periodization standpoint. This forms a 242 

basic structure where the first few days post-match are usually geared towards recovery, mid-243 

week towards acquisition, and pre-match towards tapering. However, in shorter cycles with 244 

only two or three days between matches, our data indicates that most of the time is spent at 245 

lower loads awaiting a mid-week game. Regardless of metric, however, the loads are lower than 246 

match day, though there is less difference for AccDecdist than for SpD. For example, AccDecdist 247 

on MD-3 and MD-4 in longer cycles (5-7 days between matches) is 59-79% of MD, while SpD 248 

is only 22-51%. This could be due to a preference for small-sided games, which often involve 249 

a smaller area, hence giving insufficient space to accumulate distances at higher speeds [33].  250 

Regarding the training day differentiation, we found no apparent differences in SpD 251 

between MD-4 and MD-2 and between MD-5 and MD-3 in cycles of six and seven days 252 

between matches. However, for AccDecdist, we did find significantly more distance covered on 253 

MD-4 and MD-5 versus MD-2 and MD-3, which could suggest a day with smaller spaces, while 254 
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there was a tendency for higher peak speeds on MD-2 and MD-3. It is also interesting to note 255 

that the highest estimated mean peak speed in training was 24.2 km×h-1 or ~93% of the estimated 256 

mean peak speed on MD for starters (26.0 km×h-1). Considering that Haugen et al. [28] found 257 

theoretical peak speed values of 29.2 ± 1.4 km×h-1, or roughly ~112% of match day, we are 258 

looking at a difference of ~19% between what players could be physically able to achieve versus 259 

what they are achieving in training. Added to the fact that training load decreases throughout 260 

the season [15, 34], this could explain why we also see a concurrent decrease in sprint ability 261 

during this period [34]. From a specificity standpoint, coaches should be aware of the 262 

importance of training at maximum running speed to enhance this capacity [35]. In addition, 263 

being exposed to maximum speeds could also be important from an injury prevention 264 

standpoint, as exposure to high-speed football actions has been suggested to be a modifiable 265 

risk factor for hamstring injuries [36, 37].   266 

Continuing with the second finding, it is more challenging to discern whether load 267 

compensation is given for the substitutes in the combination of cycles and days available. 268 

Although there were some differences between starters and substitutes in training duration, TD, 269 

peak speed, and AccDecdist on MD+2 in most cycles, this could be due to residual fatigue from 270 

the last match in the starters. There were also no pronounced differences in HSRD and SpD, 271 

and the overall load was considerably than any other day. However, this does not exclude the 272 

fact that substitute compensation could have occurred at MD or MD+1 or both. For example, 273 

training could be executed in forms that do not require tracking equipment since there were 274 

huge amounts of missing data at MD+1. Of note is that the teams in our sample had both a 275 

second team and a junior team, and it is likely that match play at these competitive levels was 276 

given as compensation, again, without it being tracked.     277 

Our results are comparable to other studies on female football players, most notably to 278 

Karlsson et al. [15], which also included a team from the Norwegian premier division. Overall, 279 
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the loading patterns and distances covered were fairly similar, with MD-4 and MD-3 dependent 280 

on cycle, equivalent to MD-3 in Karlsson et al. [15], being the training day with the highest 281 

external load for most metrics. That external training load is higher on MD-3 in cycles with five 282 

days between matches is also consistent with Diaz-Seradilla et al. [17]. Karlsson et al. [15] also 283 

found a higher number of accelerations and decelerations on the day preceding and more sprint 284 

distance covered on the day succeeding the highest overall day, which we did not observe 285 

considering SpD covered, although metrics are not directly comparable. That MD contains the 286 

highest external load is also supported by previous studies [15, 17, 18]. Compared to studies on 287 

male players, however, our results are similar to Akenhead et al. [38] and Anderson et al. [39], 288 

who examined the external training load of English Premier League teams. Together, they both 289 

show a pattern of higher loads preceding and succeeding days of lower loads irrespective of 290 

metric, similar to our study. In addition, in a study on a team from the Eredivisie, Stevens et al. 291 

[40] noted that relative to match values (100%), accelerations and decelerations (39-90%) were 292 

much higher compared to the other metrics, which mirrors our study (27-79%).         293 

 A major strength of this study is that we utilized a multi-team, multi-season approach, 294 

in contrast to most other observational studies in football, which usually are one-team, one-295 

season. We also examined external training load across a range of cycle lengths with different 296 

numbers of days between matches. This complements Karlsson et al. [15], who concatenated 297 

similar days in cycles with five, six, and seven days between matches while adding to Diaz-298 

Seradilla et al. [17] and Romero-Moraleda et al. [18], who studied cycles with four and six days 299 

available, respectively. Another strength is that we compared external training load for both 300 

starters and non-starters, which, as far as we know, has not been investigated in women’s elite 301 

football.  302 

 There are also some limitations to our approach. Mainly, we lacked context surrounding 303 

each training day, thus making it very hard to discern whether training had occurred or not on 304 
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observations with missing data. Therefore, some observations were likely imputed when they 305 

should have been removed from the dataset. Also, the categories of starters and non-starters 306 

could be viewed as somewhat crude. For example, we put starters who were subbed out early 307 

and those who played the whole game within the starter category. However, if we were to 308 

dichotomize further, this would only run into the problem of where to set the cut-off point, and 309 

thus, we thought it was better to leave this category as it was.   310 

 Our study serves as a springboard for future research endeavors to refine our 311 

understanding of external training load dynamics in professional football. To enhance precision, 312 

future studies should gather contextual information surrounding each training day, including 313 

details on specific drills and focus areas. Refining player categories to capture more nuanced 314 

distinctions, such as players substituted early versus those playing the whole game, can provide 315 

additional insights into training load variations. In addition, longitudinal studies spanning 316 

multiple seasons and teams can reveal evolving trends influenced by changes in coaching staff, 317 

coaching strategies, or other external factors. Finally, investigating the impact of different 318 

training formats, including small-sided games and specific drills, on external training load can 319 

guide coaches in designing more effective training sessions.  320 

Practical applications 321 

The insights gained from our study have several practical implications for the training 322 

and management of professional football players. First, our study identifies a sound approach 323 

to training load periodization, wherein the emphasis of a high load day, succeeding and 324 

preceding days of lower load, is well within the recommendations of contemporary training 325 

theory. Practitioners can thus leverage the findings of our study as a template or starting point 326 

when designing their training programs. Furthermore, our observation of a possible disparity 327 

between the players’ maximum achievable speed and their training speeds highlights an area 328 

for improvement. Combined with the fact that the volume of sprinting is comparably low 329 
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especially regarding acceleration, this could point to a neglect of speed work in the daily 330 

training regimen of female football players. Thus, coaches should be mindful of incorporating 331 

exercises that allow players to reach top speeds. This not only enhances speed-specific 332 

capacities but may also contribute to injury prevention. Finally, our findings raise awareness of 333 

potential load compensation for non-starters, prompting coaches to explore compensatory 334 

strategies for optimal player development.  335 

Conclusion 336 

These results provide further evidence regarding how highly trained female football 337 

teams adjust their external training load across various microcycles. Loading patterns typically 338 

take on a shape similar to a pyramid, or a skewed pyramid, during longer cycle lengths, with 339 

higher training loads towards the middle compared to the start and the end of the cycle. Non-340 

starters reached higher peak speeds and covered more total distance and combined acceleration- 341 

and deceleration distance on MD+2 in cycles with 3-6 days between matches. However, there 342 

was no significant load differentiation from MD-5 and onwards.  343 
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