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Abstract. Avalanche risk assessment is complex and chal-
lenging, with terrain assessment as one of the most
fundamental factors. To aid people’s terrain assessment,
Parks Canada developed the Avalanche Terrain Exposure
Scale (ATES), a system that classifies the severity of
avalanche terrain into five classes from non-avalanche terrain
to extreme terrain. Manual classification is laborious and de-
pendent on expert’s assessments. To ease the process Larsen
et al. (2020) developed an automated ATES model (Au-
toATES v1.0). Although the model allowed large-scale map-
ping, it had some significant limitations. This paper presents
an improved AutoATES v2.0 model improving the potential
release area (PRA) model, utilizing the new Flow-Py runout
simulation package. Furthermore, it incorporates forest den-
sity data in the PRA, in Flow-Py, and in a newly developed
post-forest-classification step. AutoATES v2.0 has also been
rewritten in open-source software, making it more widely
available. The paper includes a validation of the model mea-
sured against two consensus maps made by three experts at
two different locations in western Canada. For Bow Sum-
mit, the F1 score (a measure of how well the model per-
forms) improved from 64 % to 77 %. For Connaught Creek,
the F1 score improved from 40 % to 71 %. The main chal-
lenge limiting large-scale ATES classification is the determi-
nation of optimal input parameters for different regions and
climates. In areas where AutoATES v2.0 is applied, it can be
a valuable tool for avalanche risk assessment and decision-
making. Ultimately, our goal is for AutoATES v2.0 to enable

efficient, regional-scale, and potentially global ATES map-
ping in a standardized manner rather than based solely on
expert judgment.

1 Introduction

Snow avalanches lead to a yearly average of 140 fatal ac-
cidents in Europe and North America (Techel et al., 2016,
2018; Birkeland et al., 2017). More than 90 % of fatal
avalanche accidents are related to recreational activity and
triggered by the victim or someone in their party (Schweizer
and Lütschg, 2001; Techel and Zweifel, 2013; Engeset et al.,
2018). This means that avalanche accidents are not random
but rather a result of less-than-optimal decisions. Strength-
ening people’s ability to make better decisions by raising
awareness and providing information and education is impor-
tant and may ultimately save lives. To do so, many countries
have established avalanche forecasting services (Engeset et
al., 2018). However, despite access to updated avalanche
forecast, the complexity and variability of the of the snow-
pack still leaves avalanche risk management a complex task.
The inherent lack of feedback from the environment also
turns avalanche terrain into a wicked learning environment
(Fisher et al., 2022). Reliable information and decision-
making support are therefore crucial. The most efficient
method to mitigate the avalanche hazard is to choose appro-
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priate terrain for the given avalanche conditions (Thumlert
and Haegeli, 2018).

Assessing avalanche terrain may be intuitive for avalanche
professionals (Landrø et al., 2020); however, this may not be
the case for recreational users of avalanche terrain. To aid
non-professional terrain assessment Parks Canada developed
the Avalanche Terrain Exposure Scale (ATES v1.0). This is a
terrain classification system to communicate the potential ex-
posure to avalanches and thus how difficult avalanche man-
agement would be in different types of terrain (Statham et
al., 2006). The complexity of avalanche terrain is the result
of interactions of multiple release areas, tracks, and depo-
sition areas. Within these three areas, other factors like, for
example, terrain traps or forest density, could make terrain
management more complex due to a more severe outcome.

Originally, ATES v1.0 categorized popular backcountry
routes into three levels: simple (1), challenging (2), and com-
plex (3). With the growing adoption of ATES, its application
expanded beyond individual routes to spatial zones, such as
the initiative by Avalanche Canada, which mapped several
thousand square kilometers of avalanche terrain (Campbell
and Gould, 2013). An update to the system led to ATES v2.0,
which introduced two new classes: non-avalanche terrain (0)
and extreme (4). This revised version also expanded the
scope of ATES to include spatial representations like zones,
areas, and corridors. The updated scale is referred to as
ATES v2.0, and a more thorough description can be found in
Statham and Campbell (2023). ATES classification has been
used to provide guidelines for terrain use linked to people’s
specific avalanches management skills (CAA, 2016) or for
recreational purposes (Campbell and Gould, 2013; Thum-
lert and Haegeli, 2018; Larsen et al., 2020; Schumacher et
al., 2022). ATES mapping has also been used to describe
backcountry users’ terrain preferences recorded by GPS (i.e.,
Hendrikx et al., 2022; Johnson and Hendrikx, 2021; Sykes et
al., 2020).

The development of ATES maps for Avalanche Canada
from 2009 through 2012 was done using a combination of
manual mapping and a GIS-assisted workflow (Campbell
and Gould, 2013). ATES zoning was labor intensive, re-
lied heavily on expert judgment, and as a result ATES maps
were typically only available in high-use areas. Campbell and
Gould (2013) identified the limitations of this method and
presented a more quantifiable zonal model that could lever-
age GIS tools for more systematic terrain classification. An
automated model to classify avalanche terrain would need
the following components: (1) a model of potential release
areas (PRAs) for avalanches and (2) a runout simulation,
which is an estimation of where and how far an avalanche
would slide.

The first attempt at a fully automated ATES model was
made by Larsen et al. (2020) using a combination of the
zonal and technical model of ATES (Campbell and Gould,
2013; Statham et al., 2006). Larsen et al. (2020) developed
an automated ATES (AutoATES v1.0) model that was able

to make ATES zones for all of Norway, using only a digi-
tal elevation model (DEM) as input. This simple approach to
terrain characteristics does not take overhead exposure into
account, and the performance of the simple avalanche runout
simulation is also insufficient in flatter terrain. In addition,
the model did not account for forest density, which has been
found to be one of the most important factors for ATES clas-
sification (Delparte, 2008; Schumacher et al., 2022). A final
challenge was that the model was heavily dependent on pro-
prietary software (Larsen et al., 2020), thereby increasing the
monetary and computing costs to operate the model and lim-
iting open-source access.

1.1 Improving potential release areas (PRA) model

The PRA establishes the baseline for where avalanches may
release and is used as an input for the avalanche runout sim-
ulations. In AutoATES v1.0, Larsen et al. (2020) utilized
the PRA model by Veitinger et al. (2016), which outputs
a continuous range of values between 0 and 1. This model
considers factors such as wind shelter, terrain roughness,
slope angle, and forest density. Originally, forest density was
only a binary input, effectively categorizing areas as either
“forested” or “non-forested”. In the binary approach, any
“forested” area was not further processed by the PRA model
and was simply labeled as non-PRA. Sharp (2018) improved
the PRA model by including the forest density parameter in
what is known as a fuzzy logic operator. Fuzzy logic, unlike
binary, does not restrict inputs to yes-or-no values; instead, it
allows for degrees of truth (continuous). This method recog-
nizes the differences in forest density and treats it with equal
importance to other factors like roughness, slope angle, and
wind shelter.

1.2 Improvements for runout simulations

There are several avalanche runout simulation models avail-
able to estimate the potential track and deposition area, given
specific start zone inputs from the PRA model (Christen
et al., 2010; Sampl and Zwinger, 2004; Tarboton, 1997;
D’Amboise et al., 2022). In principle, these runout models
can be divided into two categories: (1) process-based, which
attempt to calculate all the physical properties involved, or
(2) empirical models, which are driven by data-based ob-
servations. Selecting an appropriate modeling approach de-
pends on the problem to be solved, data availability, the
required accuracy, and the spatial scale (D’Amboise et al.,
2022). Given access to highly detailed data and unlimited
computational power, the process-based models outperform
the data-based empirical models. However, given the lim-
itations in computational power when processing large ar-
eas and the need for more accurate digital elevation mod-
els (DEMs) in many countries, the data-based model is more
suitable for large-scale mapping applications.
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Two of the most common process-based simulation tools
for avalanche hazard assessment are the RAMMS (Christen
et al., 2010) and Samos-AT (Sampl and Zwinger, 2004) mod-
els. Both models are made to simulate an accurate prediction
of avalanche runout distances, flow velocities, and impact
pressures in a 3-dimensional space. These models are typi-
cally calibrated towards known avalanches with long return
periods and define potential avalanche terrain. These models
are suitable for avalanche terrain zoning, where the aim is
to divide the potential avalanche terrain into different zones.
Across large spatial areas such as regional forecast areas or
entire countries, these models are less suitable. Even though
the computational power required to apply the process-based
models over large areas is a factor, it could be done at re-
gional scales (e.g., Bühler et al., 2022).

In contrast to the process-based models, data-based mod-
els are computationally inexpensive and can more easily be
applied to large geographic areas. A common data-based
method to delineate avalanche runout is applying the classi-
cal runout angle concepts and path routing in 3-dimensional
terrain (D’Amboise et al., 2022). Comparison of the model
results to more computationally expensive simulation type
models shows that they respond adequately for the delin-
eation of broad-scale terrain classification.

In prior automated ATES mapping work, Larsen et
al. (2020) used the multiple flow direction model D-infinity
(Tarboton, 1997). This model is coupled with the alpha angle
(also known as travel angle). The D-infinity model identifies
the cells downslope of the starting cell for each PRA cell.
The model spreads downslope until a defined alpha angle is
reached from the starting cell (as per Heim, 1932; Lied and
Bakkehøi, 1980; Toft et al., 2023). While used in hydrology
applications, a substantial weakness of the D-infinity model
is that it cannot appropriately model avalanche movement,
which may occasionally flow in flat and uphill terrain.

Recently, D’Amboise et al. (2022) presented a new cus-
tomizable simulation package (Flow-Py) to estimate the
runout distance and intensity of dense core avalanches (not
considering powder clouds). The model utilizes persistence-
based routing instead of terrain-based routing, enabling the
simulation to respond appropriately to flat or uphill terrain.
Where the D-infinity model only considers flow direction,
the Flow-Py model also considers flow process intensity.
Both models use the same stopping criteria to estimate the
runout distance by defining the alpha angle from the initial
starting cell.

2 Model development

The main objective of the AutoATES v2.0 model is to im-
prove large-scale spatial ATES mapping, update the map-
ping to reflect recent changes in ATES v2.0, and improve the
model workflow. For AutoATES v2.0 to be a viable option

for large-scale ATES classification, the model performance
should be at least as accurate as manual mapping.

2.1 Implementation

To secure a broad adaptation of the new AutoATES model,
it is important that the model is open-source and easy to use.
The v1.0 model was written using proprietary software. We
have resolved this by rewriting the entire v2.0 model into the
programming language Python using widely available and
open-source modules. The AutoATES v2.0 model is avail-
able on GitHub (Toft et al., 2024).

2.2 Input data

The minimum input data required to run the full Au-
toATES v2.0 are a DEM and forest density raster (a digital
representation of the terrain/elevation and forest density) us-
ing the GeoTIFF format. It is also possible to run the model
with only a DEM as input, but the output would then only be
valid for open, non-forested terrain. Both rasters must have a
matching spatial resolution and extent and be defined using a
projected coordinate system. The model has been tested with
spatial resolutions ranging from 5 to 30 m (cell sizes), but it
should be possible to run other spatial resolutions.

Our parameterization for forest density allows for various
metrics of forest density inputs. The model is designed to
work with stem density, percent canopy cover, basal area,
or no forest (only for mapping of open terrain). The forest
type must be defined in the beginning of the Python script.
Forest density influences snow accumulation and snowpack
stability, with denser forests generally reducing the risk of
avalanches (Bebi et al., 2009).

2.2.1 Percent canopy cover

Canopy cover has a direct relationship with radiation balance
and can impact formation of persistent weak layers as well
as give an estimate of the degree of snowfall intercepted by
trees prior to falling onto the snowpack (Bebi et al., 2009).
Forest canopy also impedes wind transport of snow reduc-
ing the formation of wind slabs. Percent canopy cover is a
widely used metric that quantifies the extent of forest density
by measuring the proportion of the ground area obscured by
tree canopies when viewed from above. Percent canopy cover
can be estimated using various methods including aerial pho-
tography, satellite imagery, remote sensing techniques, and
ground-based measurements. The resultant parameter used
in our model has a value ranging from 0 to 100.

2.2.2 Stem density

Stem density is a metric used to quantify the number of tree
stems (trunks) per unit area, typically expressed as stems per
hectare or stems per square meter, which provides insight
into forest structure and composition. Stem density can in-
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fluence the snowpack stability and avalanche initiation, as a
higher stem density generally results in more trees obstruct-
ing and anchoring the snow, thereby reducing the likelihood
of avalanche occurrence (Bebi et al., 2009). Stem density can
be measured through various techniques, including field sur-
veys, aerial imagery analysis, or remote sensing data. The re-
sultant parameter used in our model can have a value ranging
from zero to a couple of thousands (depending on minimum
stem diameter) and is stated in number of stems per hectare.

2.2.3 Basal area

The basal area is a unit used to describe the sum of the cross-
sectional areas of all trees within a given space, specifically
those in the dominant, co-dominant, and high intermediate
positions within the forest canopy. It is a measure of the den-
sity of trees and is quantified in square meters per hectare
(Sandvoss et al., 2005). The advantage with basal area over
canopy cover and stem density is that it incorporates the size
of trees in addition to the number of trees and is a more direct
measurement of the density of the forest vegetation.

The basal area value can have any value starting from zero
upwards. While theoretically, there is no upper limit to this
value, practically it is generally capped at around 60 m2 ha−1

to reflect realistic forest conditions.

2.3 Model components

The AutoATES v2.0 model is split into two main compo-
nents: (1) pre-processing and (2) the AutoATES classifier. In
the pre-processing step, the DEM and forest density rasters
are used as input for the start zone PRA model. When the
PRA calculations are complete, the PRA and DEM are used
to calculate the avalanche runout using the Flow-Py compo-
nent. When all the key components are calculated, they are
used as input for the AutoATES classifier, which assigns the
final ATES classes for each raster cell (Fig. 1).

2.3.1 PRA

The PRA model uses a Cauchy membership function to de-
termine the importance of each parameter. A Cauchy mem-
bership value reflects how strongly an input variable belongs
within a certain set (Jang and Sun, 1997). A Cauchy mem-
bership value must be defined for each input variable (Eq. 1).

µ(x)=
1

1+
(
x−c
a

)2b , (1)

where µ(x) is the Cauchy membership value; x is an input
variable (e.g., slope angle, wind shelter, or forest); and a, b,
and c are parameters which control the weight of each in-
put variable. We use the membership values suggested by
Veitinger et al. (2016) for slope angle and wind shelter while
using the value suggested by Sharp (2018) for stem density
(Fig. 2). In our modified version of the PRA model (v2.0),

we have chosen to remove the roughness parameter due to
the scale issues with 5–30 m cell sizes (the original PRA
model was made to work with a 2 m cell size). The re-
moval of roughness makes it less ideal for higher-resolution
DEMs (< 5 m cell sizes); see Sect. 4.1.4 for a discussion
around this. We have also defined new membership func-
tions for canopy cover and basal area based on input from
Parks Canada avalanche experts and through testing of the
AutoATES model on our two study areas. These values could
be fine-tuned for specific datasets and applications to im-
prove the performance of the PRA model.

The Cauchy membership values from slope angle, wind
shelter, and forest density are used as inputs for the fuzzy op-
erator. We use the same “fuzzy AND” operator used by both
Veitinger et al. (2016) and Sharp (2018), originally defined
by Werners (1988). The PRA value is therefore defined as
follows in Eq. (2):

µPRA(x)= γ ·min(µs(x),µw(x)µf(x))

+
(1− γ )+ (µs(x),µw(x)µf(x))

3
x ∈X,γ ∈ [0,1], (2)

with three fuzzy sets slope angle µst (x), wind shelter µw(x),
forest density µf(xt), and with γ defined in Eq. (3) as

γ = 1−min(µs(x)µw(x)µf(x)) . (3)

The PRA output is a continuous layer ranging between 0 (not
likely) to 1 (very likely). Most data-based runout models
need release areas in a binary format where 0 is no potential
release areas, while the potential release areas are encoded
as 1. To convert the PRA layer to a binary format, we se-
lect a cutoff threshold (PRAthreshold) where all pixels above
this value are included in the potential release area for the
runout modeling. We found the PRAthreshold from Larsen et
al. (2020) to be too conservative for our study areas and have
therefore increased the value to 0.15. The PRAthreshold could
be adjusted depending on whether frequent or more extreme
avalanche scenarios are of interest.

We have also adjusted how the wind shelter index is cal-
culated. Using a 2 m DEM, Veitinger et al. (2016) resam-
pled the DEM by a factor of 5 (from 2 to 10 m) and applied
a 11× 11 sliding window (a technique where a fixed-size
segment of data moves over the entire dataset one step at a
time). This is according to the recommendations of Plattner
et al. (2006), who found the optimal radius to be 60 m, fol-
lowed by a secondary optimal radius of 250 m. To achieve
the same results, we removed the down sampling factor of 5
and used the 10 m DEM directly to calculate the wind shelter
index. If other DEM resolutions are to be used, the wind shel-
ter index should be adjusted accordingly to use either 60 m
(recommended) or 250 m as the radius around each cell. This
could be done by either resampling the spatial resolution or
changing the size of the sliding window.
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Figure 1. The main components of the AutoATES v2.0 model. First, a pre-processing step is completed to calculate all the necessary raster
layers using PRA and Flow-Py. Finally, the AutoATES classifier is used to assign the final ATES classifications.

Figure 2. The different Cauchy functions used by Veitinger et al. (2016) and Sharp (2018) for slope angle and stem density. The values a,
b, and c are inputs for the Cauchy membership value (Eq. 1). We have suggested new membership values for wind shelter, canopy cover (%),
and basal area. We recommend that these values are fine-tuned for specific datasets and applications. Read a more in-depth discussion of this
in Sect. 4.3.

2.3.2 Avalanche simulation

The Flow-Py model developed by D’Amboise et al. (2022)
is used for the avalanche simulation of the potential track
and deposition area. Flow-Py is a dense core model; thus
AutoATES v2.0 is based on dense core runout extents and
does not consider powder clouds. It is similar to the Tau-
DEM model utilized in AutoATES v1.0, which uses the al-
pha angle to limit the flow (Larsen et al., 2020; Tarboton,
1997). Flow-Py also includes a flow process intensity param-
eter, which makes it able to handle mass movement in flat
and uphill terrain, significantly improving the output com-
pared to AutoATES v1.0. Another advantage of the Flow-
Py model is the additional output layers, which represent the
overhead exposure. We utilize the cell count and zdelta layer
by scaling the two layers from 0–100 and taking their aver-
age value, which represents the overhead exposure layer. In
the AutoATES v2.0 model it is possible to select cell count,
zdelta, or both to represent the overhead exposure. The layer
enables us to quantify the exposure from different release ar-
eas at every raster cell. We use the forest detrainment module
of Flow-Py, which makes it possible to use forest density as

an input layer to limit spreading and runout distance. An in-
depth description of the Flow-Py simulation package can be
found in D’Amboise et al. (2022).

2.3.3 AutoATES classifier

When the pre-processing of PRA and Flow-Py is completed,
the AutoATES classifier uses a set of map algebra equations
to define each ATES class. The following raster layers from
the pre-processing step are used as input in the AutoATES
classifier:

– slope angle (calculated from the DEM)

– forest density (provided by the user, as per Sect. 2.3.1–
2.3.3)

– PRA (calculated from the DEM and forest data)

– runout distance as a function of alpha angle (calculated
from PRA and Flow-Py)

– overhead exposure (cell count, zdelta or both) (calculated
from PRA and Flow-Py).
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Table 1. The recommended input parameters for AutoATES according to Sykes et al. (2023). The encoding describes the name of each
parameter in the AutoATES model.

Input parameter Class Range Encoding

Slope angle threshold (SAT)

Simple (1) < 18° SAT12= 18°
Challenging (2) 18–28° SAT23= 28°
Complex (3) 28–39° SAT34= 39°
Extreme (4) > 39°

Alpha angle threshold (AAT)
Simple (1) < 24° AAT12= 24°
Challenging (2) 24–33° AAT23= 33°
Complex (3) > 33°

Overhead exposure (OE)
Simple (1) < 5 OE12= 5
Challenging (2) 5– 0 OE23= 40
Complex (3) > 40

Island filter size (ISLsize) 30 000 m2

Table 2. The recommended input parameters for AutoATES according to Sykes et al. (2023). The encoding is the same for all three forest
types, but the forest input type can be defined by a string in the AutoATES script.

Input parameter Class Range Encoding

Canopy cover (%)

Open 0–20 TREE1= 20
Sparse 20–55 TREE2= 55
Moderate 55–75 TREE3= 75
Dense 75–100

Stem density (no. of stems per ha)

Open 0–100 TREE1= 100
Sparse 100–250 TREE2= 250
Moderate 250–500 TREE3= 500
Dense > 500

Basal area (m2 ha−1)

Open 0–10 TREE1= 10
Sparse 10–20 TREE2= 20
Moderate 20–25 TREE3= 25
Dense > 25

The first step of the AutoATES classifier is controlled by ad-
justable thresholds for slope angle, runout distance, overhead
exposure, and island filter size (Table 1). Using these parame-
ters, the AutoATES model outputs a preliminary, and conser-
vative, layer with the categorical classes (1) simple, (2) chal-
lenging, (3) complex, and (4) extreme terrain by keeping the
maximum value of the three input rasters.

The second step of the AutoATES classifier is to reduce the
exposure in certain ATES classes depending on forest den-
sity. The forest density is applied in a secondary step to in-
crease the importance of the forest density criteria. The forest
density layers are divided into four different categories with
different thresholds for each forest density input (Table 2).

Once the forest density parameter has been coded into the
four classes of forest density (i.e., open, sparse, moderate,
and dense), as a function of the forest density input parameter
used, we mapped these categorical descriptors on to ATES
classes (Table 3).

Finally, the island filter size is applied removing clusters
smaller than a specified area and incorporating it to the sur-
rounding class. The filter size is not a new addition to the
model as it is a part of the v1.0 model, but Sykes et al. (2023)
found that a filter size of 30 000 m2 (Table 1) was the optimal
filter size for all the spatial resolutions tested.

2.4 AutoATES outputs

The outputs from AutoATES v2.0 have the same spatial res-
olution as the input. The following outputs are available:

– continuous PRA

– Flow-Py raw outputs (D’Amboise et al., 2022)

– preliminary ATES classification of slope angle

– preliminary ATES classification of runout distance

Nat. Hazards Earth Syst. Sci., 24, 1779–1793, 2024 https://doi.org/10.5194/nhess-24-1779-2024
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Table 3. Forest criteria applied to the second step of the AutoATES.

Initial ATES rating

Forest criteria Simple (1) Challenging (2) Complex (3) Extreme (4)

Open PRA and runout Simple (1) Challenging (2) Complex (3) Extreme (4)

Sparse PRA and runout Simple (1) Simple (1) Challenging (2) Complex (3)

Moderate
PRA Simple (1) Simple (1) Challenging (2) Complex (3)
Runout Simple (1) Simple (1) Simple (1) Complex (3)

Dense
PRA Simple (1) Simple (1) Simple (1) Challenging (2)
Runout Simple (1) Simple (1) Simple (1) Complex (3)

– preliminary ATES classification of overhead exposure

– forest density criteria

– AutoATES v2.0

– AutoATES v2.0 with island size filter.

2.5 Model validation

To evaluate the performance of AutoATES v2.0, we use
two Canadian benchmark maps made explicitly for Con-
naught Creek (British Colombia) and Bow Summit (Alberta),
Canada (Fig. 3). These are the only locations that have man-
ually mapped maps using the ATES v2.0 model (Sykes et al.,
2023). The benchmark maps were made by combining indi-
vidual maps from a panel of three experts, utilizing method-
ologies such as a geographic information system (GIS), re-
mote sensing imagery, local knowledge, and field-based in-
vestigations. Sykes et al. (2023) provide an in-depth descrip-
tion of how the benchmark maps were developed.

For the model validation, the benchmark maps are com-
pared against the AutoATES v2.0 model described above us-
ing the optimized parameters from Sykes et al. (2023). In-
put data for the validation model are a 26 m ALOS DEM
combined with forest density data (basal area) from the
British Columbia Vegetation Resource Inventory (BC VRI).
For more information about the input data, see Sykes et
al. (2023).

We use the metrics accuracy, precision, recall, and F1
score to evaluate the performance of the model. These met-
rics provide a more detailed assessment, accounting for class
imbalance and varying prediction results. They have been
widely used in various fields, including avalanche literature
(e.g., Keskinen et al., 2022). For a more in-depth understand-
ing of these metrics and their sources, see Liu et al. (2012),
who provides a comprehensive review of evaluation metrics
for classifiers.

3 Results and validation

3.1 Model accuracy

There is no true validation dataset for AutoATES due to dif-
ferences in scale between automated and manual methods,
but we believe the new benchmark maps made by Sykes et
al. (2023) provide the best spatial validation maps to date. In
Fig. 4, we visualize the differences between AutoATES v1.0,
v2.0, and the ATES benchmark maps for Connaught Creek
and Bow Summit.

We use a confusion matrix for each study area to com-
pare the ATES benchmark, which serves as the ground truth,
against the results generated by the AutoATES v2.0 model
(Table 4). The confusion matrices enable us to evaluate the
performance of the AutoATES v2.0 model by calculating
various metrics, such as accuracy, precision, recall, and F1
score. For Bow Summit, the model performs well for sim-
ple terrain with 91.97 % accuracy, but the accuracy for chal-
lenging terrain is much lower at 65 %. Complex terrain and
extreme terrain are closer to the average, both with an accu-
racy of 79 % (Table 4). The accuracy distribution between
the four classes is slightly different for Connaught Creek.
The v2.0 model performs the worst in simple terrain with
an accuracy of 63 %. Challenging terrain has an accuracy of
71.0 %, complex has an accuracy of 78.0 %, and extreme ter-
rain has an accuracy of 83 % (Table 4).

3.2 Ablation study

The performance of the AutoATES v2.0 model has improved
compared to the AutoATES v1.0. The transition from v1.0
to v2.0 has been marked by numerous internal iterations, fea-
turing improvements such as an optimized PRA model ac-
counting for forest data, incorporating the Flow-Py runout
model, considering forest data in the final terrain class model,
and more. To fully understand the underlying factors behind
the improvements of AutoATES v2.0, it is crucial to examine
each of the components that have been modified. This will
help clarify how each modification contributes to the overall
performance of the model.
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Figure 3. Two areas where benchmark maps for the updated ATES are available in Glacier National Park and Banff National Park. An
overview of the greater area with the study areas in 3D view and overview photo (adapted from Sykes et al., 2023).

To do this, we utilize the concept of an ablation study,
which is a common method used to evaluate the importance
or contribution of individual components within a system or
model. It is a type of sensitivity analysis that aims to un-
derstand the impact of removing or ablating specific compo-
nents on the overall performance or output of the system. Ab-
lation studies are commonly employed in machine learning,
computational neuroscience, and other scientific disciplines
to analyze and understand the roles and relationships of dif-
ferent elements in a complex system (Meyes et al., 2019).

The general procedure for an ablation study involves the
following steps:

1. Train or develop the full model or system with all its
components and parameters intact and measure its per-
formance on a given task or dataset.

2. Systematically remove or disable one component or pa-
rameter at a time, keeping the rest of the model un-
changed.

3. Measure the performance of the modified model with-
out the removed component or parameter.

4. Compare the performance of the modified model to the
performance of the original, complete model.
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Figure 4. A visual comparison between AutoATES v1.0, v2.0, and the ATES benchmark maps for Connaught Creek and Bow Summit using
the European ATES color scheme (Statham and Campbell, 2023). AutoATES v1.0 does not use the extreme (4) class.

Table 4. A confusion matrix is used to compare the ATES benchmark maps with AutoATES v2.0. Bow Summit is presented above, while
Connaught Creek is presented below. The accuracy of each terrain class is marked out with gray shading (area or percent of pixels correctly
identified).

AutoATES v2.0

Simple (1) Challenging (2) Complex (3) Extreme (4)

Bow Summit

Simple (1) 4 527 848 m2 (91.97 %) 140 608 m2 (10.78 %) 16 900 m2 (1.01 %) 0 m2 (0.00 %)
ATES Challenging (2) 391 404 m2 (7.95 %) 852 436 m2 (65.34 %) 179 816 m2 (10.75 %) 0 m2 (0.00 %)
benchmark Complex (3) 4056 m2 (0.08 %) 310 960 m2 (23.83 %) 1 316 172 m2 (78.70 %) 110 188 m2 (21.03 %)

Extreme (4) 0 m2 (0.00 %) 676 m2 (0.05 %) 159 536 m2 (9.54 %) 413 712 m2 (78.97 %)

Connaught Creek

Simple (1) 1 364 844 m2 (63.31 %) 263 640 m2 (10.64 %) 76 388 m2 (1.03 %) 0 m2 (0.00 %)
ATES Challenging (2) 683 436 m2 (31.30 %) 1 757 600 m2 (70.96 %) 884 208 m2 (11.92 %) 676 m2 (0.05 %)
benchmark Complex (3) 102 752 m2 (4.77 %) 449 540 m2 (18.15 %) 5 787 236 m2 (78.00 %) 237 276 m2 (17.01 %)

Extreme (4) 4732 m2 (0.22 %) 6084 m2 (0.25 %) 671 944 m2 (9.06 %) 1 156 636 m2 (82.94 %)

5. Repeat steps 2–4 for each component or parameter of
interest.

For AutoATES v2.0, we have identified six components
of the model that have been developed since v1.0. Using
the concepts of an ablation study approach, we have calcu-

lated the precision, recall, and F1 score by removing differ-
ent components of the model (Table 5). The reference model
is the final AutoATES v2.0. A lower F1 score for a model
compared to the reference indicates that an important com-
ponent has been removed. In Bow Summit, the most impor-
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Table 5. The results from the ablation study where different components are removed to measure the effect for Bow Summit. The term dev1–
6 defines the development model being evaluated, SAT34 is the slope angle threshold between complex and extreme terrain, and AAT23 is
the α angle threshold between challenging and complex terrain.

Version Component removed Pixel Precision Recall F1 score F1 score
accuracy change

B
ow

Su
m

m
it

v1.0∗ 67.40 % 68.75 % 66.07 % 64.06 % −13.24 %
dev1* SAT34 threshold 87.63 % 78.74 % 76.05 % 81.81 % 4.51 %
dev2 AAT23 threshold 84.20 % 82.82 % 80.97 % 77.16 % −0.14 %
dev3 Forest data from PRA v1.0 78.40 % 78.6 % 75.90 % 70.21 % −7.09 %
dev4 Forest data from PRA v2.0 76.80 % 71.29 % 70.61 % 68.03 % −9.27 %
dev5 Flow-Py (back to TauDEM) 79.10 % 69.82 % 68.99 % 72.66 % −4.64 %
dev6 Post-forest classification 80.30 % 73.38 % 72.12 % 75.49 % −1.81 %
v2.0 Reference 84.40 % 75.74 % 76.19 % 77.30 % 0.00 %

C
on

na
ug

ht
C

re
ek

v1.0∗ 49.44 % 40.21 % 38.70 % 38.70 % −32.68 %
dev1∗ SAT34 threshold 80.20 % 72.43 % 74.73 % 72.79 % 1.41 %
dev2 AAT23 threshold 74.70 % 73.65 % 70.89 % 71.30 % −0.08 %
dev3 Forest data from PRA v1.0 71.80 % 71.23 % 64.12 % 66.71 % −4.67 %
dev4 Forest data from PRA v2.0 72.70 % 73.33 % 64.68 % 67.73 % −3.65 %
dev5 Flow-Py (back to TauDEM) 65.50 % 66.78 % 67.55 % 65.87 % −5.51 %
dev6 Post-forest classification 59.90 % 56.40 % 48.20 % 48.30 % −23.08 %
v2.0 Reference 74.90 % 73.80 % 70.94 % 71.38 % 0.00 %

∗ AutoATES v1.0 and dev1 use the old ATES v1.0 framework with three terrain classes, which could lead to higher F1 scores. See
Sect. 4.1.1 for an in-depth discussion.

tant component is the inclusion of forest data in the PRA
model (dev4). In Connaught Creek, the most important fac-
tor is the post-forest classification (dev6). In general, all new
components in AutoATES v2.0 improve the model by several
percent, except the inclusion of the alpha angle threshold be-
tween challenging and simple terrain (dev2), which only im-
proves by 0.08 %–0.14 % for the two study areas.

4 Discussion

One of the primary challenges when developing Au-
toATES v2.0 has been to create a robust process for validat-
ing the output. Initial attempts by Larsen et al. (2020) com-
pared AutoATES v1.0 to available linear and spatial ATES
ratings in Norway; however the validity of these ratings was
uncertain because they were developed with limited peer re-
view and could be biased.

In contrast, the approach by Sykes et al. (2023) attempts
to address these deficiencies and create benchmark maps for
two regions in Canada. Their approach – which used three
experts to map each study area and then create benchmark
maps based on their individual output – is a more compre-
hensive methodology to address this issue. For the purpose
of our analysis, we consider these benchmark ATES maps as
the standard to which we will measure any AutoATES mod-
els.

While the benchmark maps provide the best available val-
idation dataset, there are still fundamental differences in how
terrain rating experts create ATES maps versus AutoATES.

The scale of analysis for terrain rating experts is generally
focused on terrain features, classifying an entire ridgeline,
bowl, or gulley as a single unit of analysis. In contrast, Au-
toATES is a raster-based model which operates on a pixel-
by-pixel analysis scale. The size of the pixels depends on
the DEM data available for a given study area. Variability in
DEM resolution and quality is one of the biggest challenges
of applying AutoATES in data-sparse regions (e.g., western
Canada). The scale mismatch between terrain rating experts
and AutoATES is a persistent difference and an issue that
needs to be thoroughly considered with further validation ef-
forts. The optimal scale of use for AutoATES is outside the
scope of this current work, but detailed analysis by Sykes et
al. (2023) has considered the impact of DEM resolution on
AutoATES and notes that there is no real difference in perfor-
mance using DEM datasets with a spatial resolution ranging
from 5–26 m. We therefore recommend that the spatial reso-
lution of the DEM and forest data is between 5 and 30 m.

4.1 Model performance

We investigated the performance of the AutoATES v2.0
model compared to the v1.0 model both designed to iden-
tify potential release and runout areas. Although the under-
lying concept remains consistent between the two versions,
numerous components have been altered or refined in the lat-
est iteration.
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4.1.1 Extreme terrain (dev1)

The first modification to the AutoATES v2.0 model was to in-
clude the extreme terrain class from ATES v2.0. We incorpo-
rated the new class by including another slope angle thresh-
old (SAT). We measured the importance of this change by
using the results from the ablation study (Table 5, dev1). The
result is that the ablated model performs better with regards
to F1 score (e.g., 4.51 % improvement for Bow Summit and
1.41 % for Connaught Creek) than the reference model. This
means that excluding the SAT34 threshold (e.g., complex/ex-
treme threshold) increases the accuracy of the model. How-
ever, without it, the model would be using the old ATES v1.0
classification excluding extreme terrain. This implies that ex-
cluding the SAT34 threshold enhances the model’s numerical
accuracy. Nonetheless, its absence would cause the model to
employ the outdated ATES v1.0 classification, which does
not account for extreme terrain and therefore diminishes its
value for ATES v2.0.

When working with classification problems, decision
boundaries are the borders or thresholds that separate dif-
ferent classes (Lee and Landgrebe, 1993). The complexity
of the decision boundaries often depends on the number of
classes. When there are fewer classes, the decision bound-
aries tend to be simpler, as there are fewer regions to separate
in the feature space. With simpler decision boundaries, the
model may have an easier time making accurate predictions,
as there is less chance of overfitting or incorrectly assigning
data points to the wrong class. This could lead to higher pre-
cision, recall, and ultimately higher F1 scores. We believe the
fewer classes in the ATES v1.0 is the reason why it performs
better than the ATES v2.0 reference model.

4.1.2 Terrain traps (dev2)

To improve the model’s ability to identify terrain traps
such as depressions and gullies, another alpha angle thresh-
old (AAT) was added to be included in complex terrain. The
previous model only had AAT thresholds, which defaulted
terrain into simple and challenging terrain. The extra com-
ponent was added in the early stages of the development
of AutoATES v2.0. The ablation analysis shows that this
change has very little effect on the overall performance of the
model (Table 5, dev2) with a 0.14 % decrease for Bow Sum-
mit and 0.08 % for Connaught Creek. This method would not
help in modeling other common terrain traps such as cliffs,
crevasses, and forests. We have not made any attempts to
model other types of terrain traps because we believe it would
have a very limited effect on the overall performance given
our spatial resolution.

4.1.3 Forest data in PRA (dev3 and dev4)

Forest density is one of the most important parameters for
ATES classification. In the original PRA v1.0 from Veitinger

et al. (2016) it was not possible to include forest density as
one of the inputs. The modified PRA v2.0 used in the Au-
toATES v2.0 model builds on the work from Sharp (2018).

When comparing the importance of PRA v1.0 (dev3) and
PRA v2.0 (dev4) to the reference model, we see that the for-
est density into PRA is among one of the most important
components (Table 5, dev3-4) (e.g., 7.09 %–9.27 % decrease
for Bow Summit and 3.65 %–4.67 % for Connaught Creek).
Comparing the results between PRA v1.0 and PRA v2.0, we
can measure the difference between the two models without
forest input. We found that the PRA v1.0 performed better
than v2.0 in Bow Summit, but the opposite is the case in
Connaught Creek. However, given that Larsen et al. (2020)
did not adapt the PRA v1.0 model according to the recom-
mendations of Veitinger et al. (2016), we believe the changes
are conceptually still important even though there are no sub-
stantial differences between the two in the ablation valida-
tion.

4.1.4 Roughness in PRA

The PRA was initially developed and optimized for a 2 m
DEM, while we utilize a 10 m DEM as the default. If rough-
ness were calculated using a 10 m DEM, it would measure
the roughness at basin scale, instead of the roughness at the
slope scale (Blöschl, 1999; Blöschl and Sivapalan, 1995).
The roughness is also dependent of a snow depth value,
which is impossible to define without assessing the snow-
pack properties at a given time. Sykes et al. (2023) demon-
strate minimal value in running AutoATES v2.0 using high-
resolution DEMs (< 5 m). Sykes et al. (2023) further illus-
trate the impact of DEM scale on ATES mapping. We have
therefore chosen to remove the roughness parameter from
our version of the PRA model.

4.1.5 Flow-Py (dev5)

The previous iteration of AutoATES had some severe issues
with the runout simulation of avalanches where avalanches
were simulated using a flow model for water. The Flow-
Py simulation works in a similar fashion where the flow is
limited by an alpha angle threshold, but the flow model has
been changed to give more realistic outputs in terms of snow
avalanches. Some other advantages with the Flow-Py simu-
lation suite are that there are additional outputs such as cell
count and zdelta, which makes it possible to account for the
exposure of multiple overlapping paths and avalanche paths
with high kinetic energy. When we compare the Flow-Py out-
puts compared to the TauDEM, we see a substantial improve-
ment when using the Flow-Py outputs (Table 5, dev5), with a
4.64 % decrease for Bow Summit and 5.51 % for Connaught
Creek.
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4.1.6 Post-forest classification (dev6)

Even though the inclusion of forest density in the PRA model
improved the performance of AutoATES, we found the need
to reclassify sections that were obviously densely forested
and resulted in a higher ATES rating than needed. To improve
this, we added a post-forest classification criterion. This was
efficient for Connaught Creek but less efficient for Bow Sum-
mit (Table 5, dev6) (1.81 % decrease for Bow Summit and
23.08 % for Connaught Creek). The forest impact of dev6 is
minimal at Bow Summit but important for Connaught Creek.
The reason for this is unclear, but one hypothesis is that there
is more steep forested terrain in Connaught Creek, and the
model therefore relies more on the post-forest classification.
Connaught Creek also has more large runouts and overhead
hazard that rely on the post-forest classification.

In the future, we hope to be less reliant on the post-forest
classification criteria by optimizing the forest detrainment
module in Flow-Py. This module of Flow-Py makes it pos-
sible to reduce the runout length in areas with dense forest.

4.1.7 Discrepancies

The discrepancy in accuracy scores between the two study ar-
eas is mainly attributed to the complex terrain of Connaught
Creek with many smaller topographical features and the lim-
itations of the BC VRI forest data resolution in capturing
local forest characteristics (Sykes et al., 2023). This issue
significantly affects the assessment of overhead hazards and
the delineation of boundaries between ATES classes, with
challenging (2) terrain showing the lowest accuracy and high
rates of underprediction errors. Sykes et al. (2023) provide an
extended discussion of the differences between the two study
sites.

4.2 Application

AutoATES v2.0 is meant to be a stand-alone tool for map-
ping large-scale areas, but it should first be validated for a
smaller area by experts to assess whether there is a need to
make some changes to the input parameters. When the user
is confident with their maps, the parameters could be used to
generate ATES maps for a larger surrounding area.

While it is possible to run the presented version of Au-
toATES v2.0 without making any changes, we recommend
a workflow where the optimal parameters are first identi-
fied. The suggested parameters in this paper are valid for
the two test areas in western Canada. When applying Au-
toATES v2.0 for other areas, the parameters will likely need
to be re-evaluated. Applying the parameters presented in this
document to other regions without site-specific calibration
risks inaccurate ATES mapping and potentially catastrophic
outcomes. Users should apply this model at their own risk.
We therefore urge all future users of our code to conduct
a local validation before proceeding with the generation of

large-scale ATES maps. This is especially important when
the target group is the general public.

Begin with a relevant test area which should include a vari-
ety of terrain and all terrain classes. We recommend a work-
flow where the PRA model and Flow-Py are processed inde-
pendent of the AutoATES classifier. The output from PRA
and Flow-Py is easier to validate by local experts compared
to the AutoATES output. It is more intuitive as avalanche
experts have more tangible experience with identifying start
and runout zones. In our experience, we complete approxi-
mately 1–3 iterations of PRA and Flow-Py before moving on
to the AutoATES classifier. In general, we have experienced
that the “c” parameter in the Cauchy function for slope an-
gle combined with the max alpha angle for Flow-Py is the
most effective for customizing the output. We also recom-
mend fine-tuning all parameters in the Cauchy function for
PRA when using forest density data that are different than
what we used in this validation. This could be done by us-
ing a local avalanche terrain expert to review the output from
each Cauchy membership value and adjusting it until the out-
put is appropriate.

When these steps are done in advance, our experience is
that the output of the AutoATES classifier tends to be much
more accurate. The final AutoATES could then be shared
among local experts who provide further feedback. Changes
could then be made to the AutoATES classifier parameters
and improved during an iterative process. When the final in-
put parameters are set, they could be used to generate larger
areas. A description of the input parameters used should be
shared as metadata with the resulting spatial maps.

Large-scale application

We have used the DEM from ALOS at a spatial resolution
of 26 m. This dataset is available worldwide and could en-
able large-scale application of AutoATES v2.0 in the future.
The main limitation right now is that to our knowledge, there
are no global forest data available that have a suitable ac-
curacy and resolution. In all countries we have tested Au-
toATES (Norway, Canada, USA) there has been a consider-
able testing period to determine the best available forest data
and fine tuning of model parameters to work well with local
forest data. This is the rationale for providing multiple “de-
fault” settings for the input forest data including stem density,
canopy cover, and basal area. The PRA parameters used for
each of these are unique and need to be locally tested before
large-scale application of AutoATES v2.0.

4.3 Limitations

Despite the notable improvements of the AutoATES v2.0
model, there are still some limitations that should be ac-
knowledged.

In the context of large-scale ATES classification (e.g., Nor-
way, 385 207 km2), Flow-Py becomes computationally
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heavy, which may present challenges when processing large
datasets or applying the model in real-time applications. We
executed the Flow-Py algorithm across all of Norway on
an Amazon Web Services Elastic Cloud Compute Instance
(AWS EC2 c6g.metal), which took 30 d to complete at a cost
of USD 1600. This could potentially limit the scalability and
accessibility of the model for certain use cases and users with
limited computational resources.

Determining the optimal input parameters for the Au-
toATES model is important to get the best performance pos-
sible. The suitability of these parameters across different
snow climates and terrain types remains an open question.
Further research and validation are needed to ensure that the
chosen parameters provide accurate and reliable results in
various contexts. Users should not adopt the input parame-
ters stated in this paper.

The model does not account for changes in vegetation over
time such as natural events like landslides or forest fires.
Therefore, it is important to update the ATES mapping pe-
riodically to account for major changes in the landscape.

Due to the limited sample size of mapped class 0 ter-
rain in the validation datasets that we used to develop Au-
toATESv2.0, we do not feel that there has been sufficient re-
search on this topic to warrant publication at this time. Au-
toATES is a promising tool for estimating areas with no ex-
posure to avalanche terrain; however there is significant li-
ability associated with deeming an area safe from avalanche
hazard. Further development of the autoATESv2.0 model and
consultation with avalanche community stakeholders is nec-
essary before delving into automated mapping of class 0 ter-
rain.

Addressing these limitations in future work could enhance
the performance, applicability, and reliability of the Au-
toATES model, ensuring its effectiveness across a wide range
of climates and terrain characteristics.

5 Conclusion

In conclusion, the development of AutoATES v2.0 has fo-
cused on creating a more robust and accurate model for
mapping avalanche terrain into ATES ratings by incorporat-
ing new components to improve the model. This has been
achieved by integrating new components that enhance the
model’s performance, including the addition of an extreme
terrain class, improved PRA with support for multiple forest
density types, Flow-Py, and a post-forest classification cri-
terion. Moreover, a significant portion of the code has been
rewritten to increase efficiency and eliminate dependency on
proprietary software.

However, limitations related to the determination of op-
timal input parameters for different regions and climates
need to be considered for future model development. By
addressing these limitations and continuing to refine the
model through iterative testing and expert feedback, Au-

toATES v2.0 can serve as a valuable tool for avalanche risk
assessment and decision-making in a wide range of snow
climates and terrain types. Ultimately, our goal is for Au-
toATES v2.0 to enable efficient, large-scale, and potentially
global ATES mapping in a standardized manner.

Code and data availability. To reproduce the results from this
study, please find the AutoATES v2.0 model and valida-
tion data from the ablation study in the OSF repository
(https://doi.org/10.17605/OSF.IO/ZXJW5, Sykes et al., 2023. For
future application of AutoATES v2.0, a GitHub repository (https:
//github.com/AutoATES, Toft et al., 2024) will be maintained with
future iterations of the model available (Toft et al., 2024).
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