

Faculty of Science & Technology

Department of Computer Science

Enhancing Investigative Journalism: Leveraging Large Language Models and Vector Databases

Muhammad Nauman Ali

Master’s thesis in Computer Science – INF-3990 – May 2024
Submitted on May 15, 2024

Supervisor – Lar Ailo Bongo Professor, Department of Computer Science,
The Arctic University of Norway

Co-Supervisor – Benjamin Ricaud Associate Professor, Department of Physics and
Technology,
The Arctic University of Norway

Co-Supervisor – Nicoali Bakkeli Utviklingssjef, Mediehuset iTromsø

We cannot solve problems with the kind of thinking we
employed when we came up with them. – Albert Einstein

Declaration of the Usage of AI tools
For myMaster Thesis work, I acknowledge the use of Generative Artificial Intelligence
ChatGPT for the following purposes:

• Improving text and removing grammatical mistakes.

• To understand the different concepts, doing the summarization.

v

https://chatgpt.com

Acknowledgements
I would like to express my deepest gratitude to my supervisors Lars Ailo Bongo, Ben-
jamin Ricaud andNicolai Bakkeli for their invaluable guidance and support throughout
the project. Their suggestions, insights and expertise have been instrumental in
shaping this thesis. I extend my appreciation to Health Data Lab, IFI, UiT and iTromsø
for providing the resources and facilities necessary for conducting this project.

This thesis would not have been possible without the contributions and support of
all these individuals, and for that, I am truly grateful.

Tromsø, May 2024
Muhammad Nauman Ali

vii

Abstract
The advancement in the field of Artificial Intelligence (AI) has brought revolution
in almost every field of life, and Journalism is also one of them. Which includes
prospective use in Investigating reports and uncovering information. This project
explores the avenue of integrating technologies such as Large Language Model (LLM)
with the Vector Databases. At the same time, the motive is to address two avenues:
Information Retrieval and LLM for summarization and finding information of interest
to the journalists.

We begin the study with an overview of related concepts/literature. Then, we
proposed a system based on the literature in the methodology. The proposed system
is based on Retrieval Augmented Generation (RAG) architecture employing Vector
Database and the integration of LLM. The vector database was employed to efficiently
retrieve relevant documents, and LLM for putting the information in concise form
and also identifying any irregularities in the cases. A series of queries and prompts
were presented by iTromsø, and the system was tested. The results, both documents
retrieved and the prompt answers were evaluated by iTromsø.

The results for documents retrieval, had varied varied degree of accuracy, with some
queries giving the most relevant and some completely fail to retrieve the document in-
tended. The quality of answers from also showed variance as expected and ChatGPT4
outperforming ChatGPT 3.5 turbo and GPT4All in answering the prompt with high
accuracy.

The duplication of documents and also the presence of special characters and void
spaces in the text effected the results for documents retrieval by not able to retrieve
most desired document in most cases. Except ChatGPT 4, ChatGPT 3.5 turbo and
GPT4All response was also effected due to special characters and white spaces.

While the proposed system showing advantage in assisting journalists with inves-
tigative process both in term of scalability and efficiency when compared to traditional
approaches. But the limitations in accurate document retrieval must be addressed by
cleaning the text data.

ix

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Objectives . 3
1.4 Thesis Structure and Organization . 3

2 Background and Terminology 5
2.1 Internet Searching . 5
2.2 Vector Space Model . 6
2.3 Word Embeddings . 7

2.3.1 Neural Network Based Embedding models 7
2.4 Hierarchical Navigable Small World (HNSW) Graph 9
2.5 Large Language Model (LLM) . 9

2.5.1 Architecture . 9
2.5.2 Encoder and Decoder Stack . 10
2.5.3 Attention . 11
2.5.4 Position-wise Feed-forward Networks 12

2.6 Retrieval Augmented Generation (RAG) 13
2.7 Big Data . 15

3 Methodology 17
3.1 Data . 17
3.2 Proposed Approach . 18
3.3 Architecture . 20

3.3.1 Frontend UI . 21
3.3.2 Backend/API . 21
3.3.3 Data Retrieval module . 22
3.3.4 Data Processing Module . 22
3.3.5 Data Ingestion Module . 22

4 Implementation 23
4.1 Tools & Technologies . 23

4.1.1 Frontend UI . 23
4.1.2 Frontend UI Application Content 23

xi

Contents

4.1.3 Frontend UI Application Layout 23
4.1.4 Frontend UI Application Logic 24
4.1.5 Backend/API . 24
4.1.6 Data Modules . 24
4.1.7 Database . 25

4.2 Deployment . 25
4.2.1 Azure AI search . 26
4.2.2 Azure OpenAI service . 26

4.3 Implementation Details . 26
4.3.1 Front-end . 26
4.3.2 Backend/API . 27

5 Results & Discussion 31
5.1 Evaluation . 31

5.1.1 Methodology . 31
5.2 Results . 32

5.2.1 Original Queries Results: . 32
5.2.2 Query Variations Results: . 35

5.3 Discussion . 36
5.3.1 Documents Retrieval . 36
5.3.2 LLM’s Response . 37

6 Conclusion 39
6.1 Summary . 39

6.1.1 Main Contributions . 39
6.2 Implications . 40
6.3 Future Work . 40

Bibliography 43

List of Figures 45

List of Abbreviations 47

xii

CHAPTER 1
Introduction

1.1 Background
Data is generated at an exponential speed every day, whether it is health, financial, or
any other sector of life. Since the age of digitization, the use of data has increased a lot.
This digital transformation has opened various avenues for searching for solutions to
the problems never thought of before. Now a single click on a link presents data which
can be further analyzed to identify the behavior of the user, his interests, inshort a
complete user profile can be computed based on his clicks on the different links during
web surfing.

In the past decade data was called the next black gold after petroleum. We are seeing
the use of data in almost every sector of life and has changed the way we used to deal
with problems. Advancements in Artificial Intelligence and Machine Learning have
made it possible to process and analyze this enormous amount of data in a very short
period of time with higher efficiency.

There has been a lot of research and development in the area of LLM in recent
years. LLM which has opened various avenues for integrating the capabilities of
LLM to different time consuming tasks. For instance, Transformers, a deep learning
architecture proposed in 2017 has significantly changed the whole scenario of natural
language processing. Since thenmany large languagemodels like GPT-2, GPT-3, GPT-4
and BERT has demonstrated the ability of transformers in tasks such as:

• Question Answering

• Paraphrasing

• Sentiment Analysis

• Language modeling

1

Chapter 1: Introduction

A fundamental element of Transformers is self-attention, where each token’s ’ego-
centric’ focus within a corpus is evaluated. This self-attention mechanism gauges
the relevance of neighboring words to the token at hand. LLM’s excel in their
intended purpose: generating coherent and contextually plausible text in response
to input. Furthermore, they are demonstrating proficiency in additional tasks such
as summarization, question answering, and text classification, often referred to as
emergent capabilities.

Although LLM are mostly used for text generation. But they have the capabilities
beyond just text generation. For instance, LLM have recently found application in
creating sentiment detectors, toxicity classifiers, image descriptions,and recommender
systems etc.

1.2 Motivation
To get the information about what is happening around these days we use some form
of media either it is newspaper, radio, television or even social media. News became
very important in our daily life from the past century because of different events
political, business. And more specifically the events happening locally are also very
much important in the sense of new development projects, investigating local living
conditions. To cover all those developments and present it as a news story, this is the
job of a Journalist. A journalist’s job is to collect information, which involves reading
press releases, reading documents, verifying statements and facts.

The Journalist goes through different documents, stats and facts, to investigate the
local living conditions and disparities in social and economic aspects. This process is
a time consuming process because of going through a variable number of documents
individually almost every day. Then looking into each document to get an overview
of it and find the disparities and consider it as a news story. But sometimes this
could get a hectic process, which might lead to missing some important data in those
different documents which might be of interest to the journalists. For a small number
of documents this wont make any difference but what if there is a high number of
documents being generated every day from multiple authorities.

Now with recent development in Deep Learning. LLM has shown some promising
results in tasks related to question answering, summarization. So they are capable
and there is a potential to leverage vector stores and integrate with LLM to solve the
problem faced by journalists.

2

1.3 Objectives

1.3 Objectives
The main objective we want to achieve is to make the job of a journalist easier in a way
that involves designing a system for efficient and fast retrieval of documents based on
the keywords search from vector stores.

In this project, our focus is on building an application that aids journalists in
investigating local living conditions and disparities in social and economic aspects.
We leverage a large dataset comprising various types of documents, including text.
The additional objective of our application is to classify documents as newsworthy for
journalists. Additionally, the system can recommend related documents from different
sources to address user queries.

1.4 Thesis Structure and Organization
This thesis provides a comprehensive overview of the LLM based application for the
Journalists. It is structured in a way that following chapters provides brief overview
of concepts, methodology, implementations, experimental results, discussions and
conclusion and future recommendations.

3

CHAPTER 2
Background and Terminology

2.1 Internet Searching
Since the introduction of the internet and search engines, it has completely changed
the way we look for information in today’s modern age. It has become an integral part
of our daily lives. We now have a term called Google for searching on the internet
because of the very high usage of the Google search engine in the whole world for
searching anything on the internet. In one way, It has brought ease in having access to
open information and data. But if we look at it the other way around, at the same time,
there is a very high volume of information that makes it sometimes quite difficult to
get the most desired information.

While there are quite sophisticated search engines that retrieve the highly desired
information, there is a chance that one might miss the content of the retrieved data
because of the few lines displayed on the search engine page. In some scenarios, let’s
say there is a relevant result displayed, and when you open the link, the information is
not in the interests of the user because of the very inadequate amount of info displayed
from a search result.

An estimate from 2022 suggests that data on the internet has reached 175 trillion
gigabytes of information or data, which can and in some way might hide the informa-
tion that might be of interest to 1 percent or less than that of the user’s queries. In a
way, it can also contribute to hiding useful results from users because of the search
engine mechanism.

5

Chapter 2: Background and Terminology

Figure 2.1: A figure representing two document vectors.

2.2 Vector Space Model
Representing documents in the high dimensional vector space concept was first intro-
duced in 1975 by Salton, G., Wong, A., & Yang, C. S. in the paper "A Vector Space Model
for Automatic Indexing" Communications of the ACM[1]. A method for representing
documents and queries in a high-dimensional vector space was proposed. It describes
a term or a definition in vocabulary corresponding to unique dimensions. A term
presence or absence in a document is represented as binary values. The similarity
between documents and queries has to be computed using vector-based techniques.
Those vector-based techniques involve cosine similarity. Vector Space Model involves
components such as:

• Term Frequency: Term Frequency can be defined as the frequency of each term
or query in a document, representing its importance.

• Inverse Document Frequency: Inverse document frequency or IDF is calculated
by the log of an inverse fraction of documents containing the term. It is the
measure of the document and how much information it provides.

• Weighting Scheme: The weighting scheme is by combining term frequency TF
and inverse document frequency IDF in order to assign weights to a term. It
basically captures the relevance.

6

2.3 Word Embeddings

2.3 Word Embeddings
The traditional method of word representation lacks the capability of capturing seman-
tics, i,e. The meaning of the word and their similarity with others words. Although
the traditional methods were simple and were easy to implement but lacked one of the
very powerful features.

Word embeddings can be defined as a representation of words for text analysis[2],
typically in the form of a real-valued vector, encoding the meaning of the word as a
number. In simple words, we can define word embeddings as numerical representa-
tions of words, capturing semantic syntactic relationships between words based on
their context in a text corpus, which is given as an input.

Because of word embeddings algorithms can understand the text better by inferring
the semantics together with syntactics. Which in turns enables algorithms to better
process natural language (NLP) tasks. The words are encoded in continuous vector
space, in which similar words are located closely and show relativity, in terms of
semantics. By capturing theword semantics it has several advantages and applications.

• Semantic Similarity: In vector space words and concepts that share similarities
in terms of their meaning are located close, which allows algorithms to calculate
the similarity by their differences in vectors.

• Contextual Information: In word embeddings, not only the meaning of the
word is captured, but also the context in which it is used is also captured.

• Dimensionality Reduction: Embeddings have much lower dimensions as
compared to the original document.It involves the capturing or encoding in high
dimensional space.

• Feature Representation: The vector space representation of words or docu-
ments can be used as an input features for machine learning models for various
tasks such as text classification, information retrieval, sentiment analysis etc.

2.3.1 Neural Network Based Embedding models
Various embedding models based on neural networks have been developed over the
past years e,g ada-002, Bidirectional Encoder Representations fromTransformers (BERT).
However, the concept gained attention after a Google researcher presented the paper
Efficient Estimation of Word Representations in Vector Space in 2013. In that paper,
they present two efficient architectures, both based on Neural Networks, for learning
high-quality word-embeddings[3]. The following are the two architectures:

7

Chapter 2: Background and Terminology

Figure 2.2: CBOW and Skip Gram models architecture[3].

• Continuous Bag of Words Model

• Continuous Skip Gram Model

Continuous Bag of Words Model

In the Continous Bag ofWords (CBOW)Model architecture, all the words are projected
to the same position, and their vectors are averaged. And the output is to correctly
classify or predict the middle word. This architecture uses the continuous distribution
of the context[3].

Continuous Skip Gram Model

The Continuous Skip Gram Model architecture is quite similar to CBOW. A log-linear
classifier with a projection layer takes a word as an input, and the output is the before
and after words in a given range[3].

It was reported that when trained on a large amount of data, the generated or
resulting vectors can identify semantic relationships very accurately. This could make
a breakthrough in various NLP applications[3].

8

2.4 Hierarchical Navigable Small World (HNSW) Graph

2.4 Hierarchical Navigable Small World (HNSW)
Graph

K-nearest neighbor has been widely used for information searches. However, advance-
ments in computing have led to new methods of storing data and information. The
volume of data is continuously increasing at an exponential speed. This constantly
growing amount of data has caused us to have scalable and efficient similarity search
data structures. So In 2018, Yu. A. Malkov, D. A. Yashunin presented a new approach
using HNSW graphs in the paper "Efficient and robust approximate nearest neighbor
search using Hierarchical Navigable Small World graphs" [4]. In which the objective
was to address the challenges associated with the nearest neighbor searches in high-
dimensional space. The main issues were scalability and retrieval quality.

The HNSW graph was introduced as a novel approach for approximate neighbor
search, which resulted in improved retrieval quality and efficient retrieval. The paper
presents the HNSW graph construction algorithm. The algorithm partitions the data
space recursively into smaller regions and, based on their similarity, connects the data
points from each region. The paper also describes a search algorithm that finds the
approximate nearest neighbor efficiently within the graph structure.

The results from various tests on high dimensional data sets for experimental
evaluation of Hierarchical Neighbor Small World had shown promising results with
significant improvements in retrieval quality and scalability[4].

2.5 Large Language Model (LLM)
LLM is an artificial neural network/deep learning algorithm capable of performing
a variety of natural language processing tasks. The main purpose of LLM is to
understand and generate human-like text based on its knowledge of being trained
on vast amounts of data. The most interesting feature of LLM is the processing and
comprehension of natural languages with very remarkable accuracy and efficiency.

2.5.1 Architecture
The base for LLM is the groundbreaking transformer[5] architecture, which has brought
the revolution in the field of NLP. Transformers work with multiple layers of self-

9

Chapter 2: Background and Terminology

Figure 2.3: A figure showing transformer architecture[5].

attention mechanisms combined with feed-forward neural networks, which makes the
model learn things more quickly than other neural network-based models.

Transformer follows an encoder-decoder structure[5]. Where the encoder maps
an input sequence to a sequence of continuous representation z. The decoder then
generates an output sequence. At each step, the model consumes the previously
generated symbol as an additional input[5].

2.5.2 Encoder and Decoder Stack
The encoder consists of multiple identical N layers stack, where N=6[2]. Every layer is
further divided into two sub-layers. The first one is a multi-head self-attention mech-
anism. And the second one is position-wise fully connected feed-forward network[5].

The decoder also consists of the same N=6 identical layers, with the addition of
two sub-layers in each layer having another third sub-layer for performing multi-head
attention from the output of the encoder[5].

10

2.5 Large Language Model (LLM)

Figure 2.4: Scaled Dot-Product Attention and Multi-Head Attention[5].

2.5.3 Attention
In the attention function, a query and set of key-value pairs are mapped, where all of
them, including query, key-value pairs, and output, are all vectors. A compatibility
function of the query computes the weight of each value. The output is computed as
a weighted sum of the values[5]. The importance of different words in a sequence is
weighted while generating the text while also allowing the model to understand the
text.

Scaled Dot Product Attention

The input for the particular scaled product attention is queries of dimension d and keys
with dimension d. The dot product of the query with all keys is divided by dk, and then
the softmax function is applied to get the weights[5].

Multi-Head Attention

In multi-head attention query, keys and value are linearly projected h times to learned
linear projections to dk, dk, and dv dimensions. The attention function is performed in
parallel on the projected version of queries, keys, and values, which results in output
values of dv dimensional. These output values are concatenated and projected again,
resulting in the final values[5].

11

Chapter 2: Background and Terminology

Figure 2.5: Optimization methods for enhancing LLM capabilities[6].

2.5.4 Position-wise Feed-forward Networks
Each of the layers in the encoder and decoder also contains one fully connected feed-
forward network. It consists of two linear transformations with ReLU activation in
between[5].

Embeddings and softmax

Learned embeddings is used to convert the input tokens and output tokens to vectors
of dmodeldimension. The decoder output is converted to predicted next-token using
the learned linear transformations and softmax function[5].

Positional Encoding

Positional encoding of the dimension, same as dmodel of embeddings, is added to the
input embeddings at the end of the encoder and decoder stack. The positional encoding
is actually information about the absolute or relative position in the sequence. The
positional information of the word is incorporated into the embeddings. This way, the
model understands the order of words in a sentence[5].

12

2.6 Retrieval Augmented Generation (RAG)

2.6 Retrieval Augmented Generation (RAG)
Large language models have shown some promising results in NLP tasks, but they
also come with some problems related to text generation, question answering, etc.
Some of the problems so far encountered are Hallucination, Outdated Knowledge, and
an untraceable reasoning process[6]. Retrieval Augmented Generation, or RAG, an
advanced natural language processing technique, has come into play to solve this issue
and has presented a promising solution by providing the capability of incorporating
knowledge from external sources.

In this way, the generated text content has greater credibility in the context of
knowledge-intensive tasks and domain-specific knowledge. The generated text can
also be cross-checked because RAG also provides the source of information, which
comes in handy when verifying the information. The positive aspect of RAG is to keep
the LLM up-to-date with domain-specific knowledge[6].

In terms of optimization techniques for enhancing the response from LLM, there
are various techniques, such as:

• Prompt Engineering

• Fine Tuning

• RAG

• Combination of all of above

As shown in Fig. 2.5, the RAG has an advantage over other optimization techniques in
that it gives real-time knowledge and information. The choice between fine-tuning,
RAG, and prompt engineering depends on the problem to be addressed. But the
combination of all these approaches can lead to the most optimal performance[6].

The RAG concept was presented by researchers from Facebook (now Meta) back
in 2020 in the paper "Retrieval-Augmented Generation for Knowledge-Intensive NLP
Tasks." The approach is simple yet powerful in generating knowledge. A pre-trained,
parametric-memory generation model is concatenated with non-parametric memory
through general-purpose fine-tuning and is referred to as Retrieval Augmented Gener-
ation. Parametric memory is a pre-trained transformer, and non-parametric memory
is sparse vector index[7].

The RAG model works on a simple approach of combining elements of retrieval-
based and generation-based approaches together for a more detailed and verifiable
response for knowledge-intensive tasks[6]. The following below is the breakdown:

13

Chapter 2: Background and Terminology

Figure 2.6: An example workflow in RAG[6].

Retrieval Module

This is the first step in the RAG sequence, where knowledge is gathered to form a large
corpus of text or knowledge base[6].

Generation Module

In the RAG sequence, the second or next step is the Generation-based model, which is
an LLM, general purpose pre-trained model capable of generating text from scratch[6].

So, what basically happens is the data is retrieved from the knowledge base and is
given to a generation-based model to produce the text as a result. That knowledge is
the serve as the context for the generation of response form the LLM.

14

2.7 Big Data

Figure 2.7: RAG dataflow diagram[6]

2.7 Big Data
The term Big Data is associated with huge and massive amounts of data. Dealing with
such a large amount of data has its own variable challenges. However, with continuous
advancement and development, new solutions are being developed to address those
different challenges. With such advancements in the solutions, the availability of
massive amounts of data on the internet has drawn huge attention from researchers
in the area of decision-making, governance, and business[8].

Big data can be defined by 5V’s, i.e., volume, velocity, variety, veracity, and value.

• Volume: Volume of the data is the size of the data or information.

• Velocity: Velocity is the speed, or intervals at which the data is generated.

• Variety: The different types of data being generated, e,g. structured, unstruc-
tured etc.

• Veracity: Veracity corresponds to the accuracy of the data.

• Value: It is the most V’s of all, which is the worth of the data, the potential of
the data in any process, decision.

15

Chapter 2: Background and Terminology

Dealing with such kinds of data has profound implications and can significantly
influence the process of decision-making, governance, etc. The vast amount of data
can give actionable insights, which can lead to data-driven decisions. In business, it
can identify market trends, preferences of any group, and future opportunities.

In governance, this vast amount of data can be used to efficiently use the resources,
improve the processes, and allocate resources to some fields. These, in turn, contribute
to the enhancement of public services. For example, Government agencies can use
data to address problems in society, such as health, education, and societal challenges.
These things in themselves are huge, diverse areas to discover, to learn how to take
effect of the data that is available and address those problems that need to be solved.

16

CHAPTER 3
Methodology

This chapter provides a comprehensive overview of our data, approach, design, and
methodologies for the problemwe aim to solve, serving as a blueprint for the proposed
system, serving as a blueprint for the proposed system.

3.1 Data
The data available in this project is:

• Unstructured text data from housing permits cases.

This data was made available via file transfer. Around 200,000 files in Text File
Document (TXT) format were obtained from different cases, with each case containing
at least two text files. The original format of those was Portable Document Format
(PDF) and were converted to TXT format after scraping.

The data from Byggesak has been made available in this project by iTromsø Me-
diehuset. Byggesak Tromsø Kommune is the authority responsible for building and
construction-related cases. The data is scraped from "https://innsyn.tromso.kommune.no
/byggsak" for the duration of the last ten years till June 2022. The

The metadata contains some essential information about the document, such as
document ID, case serial number, URL, etc. Where each document is related to a
property or building case. The cases are applications, complaints from the public, or
from the Byggesak to the landlord about any issue or complaints. Then, there is a
reply document from Byggesak or the landlord with the same case serial number as
the applicant or complainee. Examples of metadata attributes are:

17

Chapter 3: Methodology

"document id", "case serial number", "document recorded timestamp", "document recorded
date", "property address", "title", "to form", " case responsible", "case the legal basis for re-
striction", "document unit", "document type", "document responsible", "source", "document
type code", "document category".

The data available is open information for the public and can be accessed by anyone
from anywhere. So there is no big implication of any potential GDPR rule violations
or breach of data while processing it on Azure OpenAI and storing it on Azure cloud.

3.2 Proposed Approach
The LLM based application for journalists we design and develop is a kind of system,
where we leverage the capabilities of an LLM with our own data. The data which
includes unstructured text documents.

To get to our goal, the steps would be:

• Maintaining a vector database

• Interface for querying

• Retrieval of the nearest document in vector store based on query

• Processing the retrieved documents by an LLM based on a prompt

The desired goal for this thesis is to explore the possibilities of LLMs in utilizing tasks
related to journalism, which include scraping information from a corpus of documents
efficiently and correctly. So far, the problem that journalists face every day is that they
go through a large number of documents to scan for potential news stories related to
their interests. This time consuming process can lead to missing some information in
documents. Since there are multiple documents.

Here, we want to leverage the capabilities of LLM and vector stores. The vector store
index documents in vector stores, which store data as high dimensional vectors. Vec-
tors are mathematical representations of features created by applying an embedding
function on text, image, audio, and video data. Then, indexed data in the vector store
is retrieved and fed to an LLM for summarization and presentation in a concise form
for the journalist. Compared to traditional databases, which have predefined criteria
for exact matches, vector stores allow for searching the most relevant documents in
terms of semantics and context, which makes it ideal for a wide range of applications.

18

3.2 Proposed Approach

The main component for our system would be User Interface (UI) for the user which
is the journalists at iTromsø, data storage component, data retrieval component, and
LLM. These are the main components of the system we have aimed for. By this
approach we want to solve both problems for precise and efficient retrieval and also
with analyzing documents through an LLM for summarization, checking for violations
of rules and regulations.

Given the proposed approach to solving our problem, we would need to gather all
those open, unstructured text documents. The data should be stored in a data storage
solution. However, the challenge here lies in the selection of storage solutions for this
enormous amount of data. We have to keep in mind the functionality of the system
and the issue that needs to be solved. So, In this case, we have to consider all available
options in view of both system functionality and the problems we want to address.

We chose to employ a vector database or vector store as a backbone of the system
because it handles high-dimensional data efficiently. Azure Vector Store is highly
scalable and optimized for handling vector data. The reason for moving forward
with vector databases is they provide a robust framework for querying and managing
unstructured data based on similaritymetrics. By structuring our data in vector format,
we not only streamline the storage but also do the groundwork for more nuanced
analysis and insights by an LLM.

Given that we have problems involving the retrieval of documents, So it entails tasks
such as similarity tasks, and having this functionality is critical for the efficient and
precise retrieval of documents. By employing vector-based solutions, similarity can be
efficiently and effortlessly calculated.

After deciding with the storage solution for our approach, the next step involved
will be the choice of LLM for the solution of the problems related to hallucination,
summarization, and question answering over a document. Here we have multiple
possibilities of having an LLM based locally or cloud, and the selection is strictly based
on the type of data we want to use, performance and results.

In order to be able to upload the document data to the vector store, we must convert
it into its vector embeddings. For that purpose, the whole data should be converted,
and the new incoming documents, generated day by day, should also be treated as
such. The embeddings for text data can be generated by the text embeddings model.
The choice of selecting such a model for generating embedding depends on the type
of LLM we will use for the system.

19

Chapter 3: Methodology

Figure 3.1: The figure represents the architecture of our proposed system.

3.3 Architecture
This section describes the overall architecture of the system, with different services on
which it is based and uses for its functionality.

The proposed system is based upon RAG(Retrieval Augmented Generation) archi-
tecture. The retrieval of documents is based on RAG. RAG incorporates retrieved
documents into a generative model. In which the retrieval component retrieves the
document or information and then passes it on to the generative model for response
generation. In 2020, researchers from Facebook(now Meta) presented a framework
called Retrieval Augmented Generation in order to give the LLM access to data and
information on which it hasn’t been trained and make it able to answer questions in a
more accurate and precise way.

The following are the components of the systems we intend to implement:

• Frontend UI

• Backend/API

20

3.3 Architecture

Figure 3.2: Architecture diagram showing the working of Data Ingestion Module

• Data Retrieval Module

• Data Processing Module

• Data Ingestion Module

3.3.1 Frontend UI
The client-side component represents the main UI or the frontend part of the ap-
plication. This is a simple interface with different text boxes and different filter
dropdowns for search and chat functionality for a user to interact with documents like
question and answering and summarization tasks. The client-side interacts with the
backend through Application Programming Interface (API). Basically, the client side
mainly takes the different arguments from the user and sends them to the backend for
processing based on the data.

3.3.2 Backend/API
The backend/API layer is responsible for receiving queries from the front end, which is
the data entered by the user via anAPI request. It is responsible for routing the requests
to the responsible modules and serves as the intermediary between the frontend UI and
the rest of the modules.

21

Chapter 3: Methodology

3.3.3 Data Retrieval module
The data retrieval module is responsible for retrieving the data for the requests, from
the storage, the vector store. The retrieval is based on the requests from the frontend
UI. It serves as a bridge for retrieving the relevant document and providing it to the
front end UI.

3.3.4 Data Processing Module
So, after the relevant data/documents are retrieved from the vector store, this module
processes them according to the requirements of the queries, e.g., prompts from the
user. It involves prompting the LLM based on the context provided by the retrieved
documents.

3.3.5 Data Ingestion Module
The purpose of the data ingestion module is to collect new documents from the various
sources, might bemore than one source. It loads the document, creates the embeddings
for the documents, and finally uploads it to the vector store, together with the original
text document.

22

CHAPTER 4
Implementation

This chapter describes the overall implementation process and the tools and technolo-
gies used for the development of the system. The implementation gives us the ground
for a system that can be designed and developed to assist journalists.

4.1 Tools & Technologies
This sction gives an overview on the tools and technologies e,g languages and frame-
works, employed to implement our solution.

4.1.1 Frontend UI
The following tools and technologies are used to implement the frontend or client-side
application.

4.1.2 Frontend UI Application Content
In the development of the client side application content is based on the HTML (Hyper
Text Markup Language). Hyper Text Markup Language (HTML) provides the founda-
tion for creating the overall structure of web pages, allowing for the arrangement of
text, links and other elements in a structured manner.

4.1.3 Frontend UI Application Layout
In order to enhance the visual representation and keep the UI principles in mind, the
layout is based on the Cascading Style Sheet (CSS). The appearance of the HTML
elements are customized by CSS, which include color, font etc.

23

Chapter 4: Implementation

4.1.4 Frontend UI Application Logic
For implementing the logic of the front end application JavaScript is used. Javascript
plays an important role in the implementation of the logic of frontend applications.
Interactivity and dynamic behavior of pages is made possible by Javascript.

4.1.5 Backend/API
Python and Flask Framework

The backend/API layer serves as the crucial component The whole application logic
for the server side is implemented in Python and Flask framework. Python serves
the primary purpose of our choice, i.e., processing data and uploading it into storage,
retrieving it, handling incoming requests, and generating responses. The reason for
choosing Python over the other languages is because of its simplicity and functional-
ities and the presence of a wide range of libraries compared to other languages, thus
making it well-suited for implementing complex server-side logic.

In the Backend/API, we used Flask which is a lightweight Python framework for the
web. It establishes a robust foundation for handling API requests from the Frontend UI
We defined endpoints for handling the requests through Flask’sFlask’s routing system.
The different kinds of requests from the Frontend UI involve investigating cases or
simply prompting LLM.

Error Handling Mechanism

Also for reliability and usability of the API, error handling mechanism is implemented
for ensuring the smooth working of the system and handling of exceptions and
providing appropriate response.

4.1.6 Data Modules
Several modules were developed to streamline data retrieval, processing and ingestion
with each one serving specific function in the system. We have made use of Lanchain,
an open-source Python library for developing modules. It has provided us with a
modular and extensible framework for building our application.

Data Retrieval Module

The data retrieval module is also implemented in using Python, a sophisticated system
is implemented for the interaction with Azure Vector Store API and retrieving relevant
documents from the store. It also uses Azure OpenAI API for converting the query to

24

4.2 Deployment

vector representations through ada-002 embeddings model. This module serves as the
bridge between the backend and Azure Vector Store.

Data Processing Module

The data processing module is also implemented in Python to interact with Azure
OpenAI API for GPT 3.5 turbo and GPT 4. This module extracts meaningful insights
from the retrieved documents and enhances the system’s capabilities.

Data Ingestion Module

Themodule for ingesting the documents from external sources, i.e., Tromsø Kommune,
is also implemented in Python. This module consumes both Azure OpenAI for the ada-
002 embeddings model and Azure Vector Store API as it both generates embeddings
and uploads them together with documents to the vector store.

4.1.7 Database
The database infrastructure plays an important role in not only storing and managing
but also in retrieving system data efficiently:

Vector Store

The database we are using is Vector Store or Vector Database. In which we are
storing the documents with their associated metadata and embeddings. The reason for
choosing vector storage is because of our requirements to have an efficient retrieval of
documents. This aspect is quite crucial for the seamless performance of the solution,
ensuring quick access to relevant data.

4.2 Deployment
In our deployment, the whole application, including the database and LLM, was
deployed and hosted on an Azure cloud platform. This setup includes Azure Vector
Store, which is Azure AI search, private instances of GPT 3.5 turbo, GPT 4, and ada-002.
Additionally, we have tested a local machine-based LLM, such as the GPT4All.

25

Chapter 4: Implementation

4.2.1 Azure AI search
The purpose of Azure AI search is to store all of our data, including the embeddings for
them together. After the ingestion of documents from various sources, the embeddings
are generated and uploaded to the Azure AI search. This integration streamlines the
whole process of retrieval and analysis of data, which in turn enhances the overall
functionality of our system.

4.2.2 Azure OpenAI service
Within the Azure environment, the Azure Open A.I. service is used to deploy various
versions of GPT, including GPT 3.5 turbo, GPT 4 and ada-002 the text embedding
model, for generation of embeddings for the documents.

4.3 Implementation Details
This section shed light on overall working of the system, how different modules and
components interact to process the queries.

4.3.1 Front-end
In the frontend/client-side application, an interface for search queries is designed and
implemented. In which there is a simple HTML form for queries together with a
prompt. The form also includes optional factors such as option for filtering based on
specific metadata, and number of results to be included. This form serves as the basis
for search functionality, by providing users with a simple straightforward mean for
queries and prompts input.

The optional features such as number of results and metadata filtering are incorpo-
rated for enhancing the customization and search precision. This kind of feature gives
the users greater control over search query by enabling them to efficiently navigate
and manage the information retrieved.

In the HTML form, except the query, all the fields are kept optional and have some
default values if the user does not choose or enter a specific argument. The entered
data in the form is collected and sent to the backend through API calls to the backend
via Hypertext Transfer Protocol (HTTP) protocol. But before making any API call, the

26

4.3 Implementation Details

Figure 4.1: A Frontend screenshot of the system.

data format is checked for all the values in order to ensure the type and minimum and
maximum limits are met if there are any for any of the values.

In our frontend implementation, simplicity, functionality, and interaction are priori-
tized. The front end serves as the seamless gateway for accessing and getting the most
out of the capabilities of the application.

4.3.2 Backend/API
In the backend implementations, one single file is designated to handle the requests
from the client side. The received requests from the front end are processed accord-
ingly, i.e., routing to different endpoints based on the operation. The first step is to
start executing the business logic i,e from the incoming query; Vector Store is queried
throughAzure Vector Store API for retrieval of specific documents, which is amatter of
interest to the user. If the user has specified additional inputs, such as metadata filters
and a number of documents, the documents, together with their associated metadata,
are retrieved within those constraints.

When a query is submitted, the query is first converted to vector by using the same
algorithm, in our case, ada-002, that was used for generating the embeddings for the
documents in the store previously ingested. The data in the vector store is structured
by Hierarchical Navigable Small World Graph (HNSW) to facilitate fast and efficient
retrieval. The search algorithm, which has been set in the vector store when creating
the index profile, starts for similarity search.

27

Chapter 4: Implementation

The retrieval of documents is strictly based on similarity search. In the context of
vectors and natural language processing (NLP), similarity can be defined as how two
different vectors are closely related in terms of direction. For similarity, the two must
be in vectors, i,e document, and query. The formula for calculating the cosine similarity
is given below for a document D and a query Q:

cosinesimilarity(D,Q) = D.Q/||D||||Q||

The Q.D. is the dot product, and D.Q. is the Euclidean length of vectors D and Q. The
range of cosine similarity is from -1 to 1.

– 1 is perfectly similar.
– 0 is no similarity.
– -1 is exactly opposite to each other.

In the next step, after the documents are retrieved from the store, the resulting doc-
uments are passed to the Data Processing Module and given to an LLM for performing
operations based on the prompt from the front end. This seems fairly a simple process
in which LLM takes in the document or text and the prompt. However, the generation
of response from an LLM is completely based on the context provided. In this way, the
response is highly optimized, meeting the needs of the client, which any other way
LLM couldn’t have processed the prompt, resulting in an irrelevant response or failure
to process the request.

This is the phase where LLM’s potential for investigating the document or case can
be used. The potential to investigate any regularity or any potential violation of the
rules and also for considering it as a new story. The prompt to the LLM from the user
is optional, meaning it should have one prompt as a default set from before. So, by
default, it will evaluate the document based on it.

Also, on the server side, we also have the module for ingesting a document and
creating embeddings for that ingested document, the Data Ingestion Module. Which
will look for a new document after a certain time interval; if there is some new entry,
it will start loading it, create the embeddings through Azure OpenAI API, and upload
it to the Vector Store via Azure Vector Store API. In case there is some entry, it will
load the document and create the embeddings through ada-002, a model for creating
embeddings to be consumed by the GPT. The created embeddings, together with the
text, are uploaded to the Vector Store in JavaScript Object Notation (JSON) format.

28

4.3 Implementation Details

Database

The database we used was Azure AI search, which was deemed the most convenient
option for implementing this system. We must keep in mind our prerequisites to have
efficient and precise storage and retrieval. In our case, both can be comprehended and
fulfilled by Azure AI search. Our goal is to set up semantic retrieval of documents in
query execution. It adds language understanding for the processing of search results.
So, in turn, promoting the most similar results to the top.

To implement the vector store index for our solution, various configurations, and
settings have been carefully selected, including the BM25 similarity algorithm for
search accuracy. The search efficiency is optimized with HNSW algorithm, which is
used for creating the index structure. Moreover, the search-ability through metadata
is also enabled to filter documents based on specific metadata arguments.

29

CHAPTER 5
Results & Discussion

In this chapter we presented the methodology for evaluation which is being adapted
to assess the performance and accuracy of the system and the results are discussed.

5.1 Evaluation
For a system to be able to judge its applicability in the field, the very common practice
is to evaluate its performance based on some factors.

5.1.1 Methodology
The methodology for evaluation chosen for testing the effectiveness of this system is
that a team of Journalists at iTromsø will present a list of questions and queries, which
requires access to the documents. So, the retrieval of documents and the response
from the LLM will be evaluated by the iTromsø. We have tested our solution with
multiple LLMs, which are GPT4All, GPT 3.5 turbo, and GPT 4. The reason for doing
testing with GPT4all is that we wanted to test local LLM, so if we include both private
and confidential data in the future, it won’t be an issue. GPT 3.5 and GPT 4 are easily
available in the cloud on Azure and are some of the most advanced solutions with very
promising results. The goal was to identify the most suitable solution for the task.

Evaluation Metrics

• Accuracy: The accuracy of the solution is measured as the ability to retrieve the
relevant docs is graded by the journalists at iTromsø.

31

Chapter 5: Results & Discussion

• User Feedback: The response from the LLMs is evaluated by journalists, as-
sessing and answering the prompt correctly or making sense of the documents
provided.

5.2 Results
This section explains the tests we performed, and the gradings of those results from
the iTromsø team. A list of prompts presented by iTromsø are given below:

• Propmt1: Du tar rollen som kommunal saksbehandler av plan og byggesak for kom-
munen og skal se over følgende dokument. Oppsummer dokumentet og konkretiser
hvilke utfordringer som eksisterer for å kunne godkjenne søknaden.

• Prompt2: Du tar rollen som kommunal saksbehandler av plan og byggesak for
kommunen og skal se over følgende dokument. Hvilken dispensasjon bes det om,
hva er det som normalt er stridig med loverk som utbygger ber kommunen om
untagelse fra. Hvilke konsekvenser kan dette ha?

• Propmt3: Du tar rollen som lokal journalist og skal se finne hvilke nyhetsverdige
poeng som kommer frem. Oppsummer kort korrespondansen og påpek hva klagen
dreier seg om og på hvilket grunnlag klagen avises.

• Propmt4: Oppsummer og kommed vedtak som benyttes. Hvile poeng har betydning
for befolkningen i nærområdet?

5.2.1 OriginalQueries Results:
The figure 5.1 depicts the results from the query as the documents retrieved. In figure
5.1There each color represents a separate query. On the x-axis we have the documents
(D1, D2, D3) and on the y-axis is the score in terms of relevancy. One thing that should
be noted is the same score for different documents for the same query represents the
duplication of document. The list of queries are given below:

• Q1: Mangler ved søknad om ferdigattest CONSEPT EIENDOM AS

• Q2: Dispensasjon Juldagan Skir Peab Bjørn Bygg

• Q3: Kræmer Eiendom klage avises

32

5.2 Results

Figure 5.1: The retrieved documents score for each query from the original list of
queries.

• Q4: Rammetillatelse Quadrat Eiendom AS

The analysis of the original queries (Q1, Q2, Q3, Q4) revealed insightful patterns
regarding the relevance of retrieved documents. Here’s a summary of the findings:

• Query 1 (Q1): All documents received relatively high scores, indicating general
relevance to the query.

• Query 2 (Q2): Consistently high scores but duplication of documents in all three.

• Query 3 (Q3): Document 2 exhibited the highest score, while Document 1 & 3
got the same score.

• Query 4 (Q4): Again, Document 2 has the highest score of all, suggesting
irregular relevance.

The analysis of query-score has provided insights according to the relevance and
effectiveness of our proposed system in retrieving documents based on journalist
queries. So from the figure 5.1 we see that most of the queries scores depicts out of
order retrieval, and also shows that in only two cases the most intended document
has been retrieved. Which cannot be seen as a great result to be expected. The
expected result we were hoping for is the maximum relevance of the document to the
query. The analysis of query-score has provided insights according to the relevance
and effectiveness of our proposed system in retrieving documents based on journalist
queries.

33

Chapter 5: Results & Discussion

It is observed that except for theQ1 all other queries have mixed varied results. The
retrieved documents not showing relevance as supposed to be in similarity search in
decreasing order, the relevance score graded by journalists. We have also tested the
queries with multiple different prompts, and the results were satisfactory according to
the journalists as the LLM answered reasonably.

Figure 5.2: The results of the queries generated from original list of queries with
ChatGPT.

34

5.2 Results

5.2.2 Query Variations Results:
After testing the original list of queries, a list of queries from each of the original
queries was generated through ChatGPT 3.5 turbo. The generated queries were
semantically similar to the original query. The generated semantically similar queries
are given below:

Query1 Variations:

• Mangler dokumentasjon ved søknad om ferdigattest CONSEPT EIENDOM AS

• Behov for ytterligere informasjon ved søknad om ferdigattest CONSEPT EIENDOM
AS

• Ufullstendig søknad om ferdigattest CONSEPT EIENDOM AS

Query2 Variations:

• Søknad om dispensasjon Juldagan Skir Peab Bjørn Bygg

• Spørsmål vedrørende dispensasjon Juldagan Skir Peab Bjørn Bygg

• Informasjon angående dispensasjon Juldagan Skir Peab Bjørn Bygg

Query3 Variations:

• Kræmer Eiendom klage avises uten grunn

• Avvist klage fra Kræmer Eiendom uten begrunnelse

• Ugyldig avslag på klage fra Kræmer Eiendom

Query4 Variations:

• Rammetillatelse nektet for Quadrat

• Eiendom AS Avslag på rammetillatelse for Quadrat Eiendom AS

• Manglende rammetillatelse for Quadrat Eiendom AS

Some of the key observations from query variations (V1, V2, V3) from figure 5.2 are
explained below.

• Variations of Query 1 (Q1 V1, Q1 V2, Q1 V3): Consistently high scores across
all documents indicate that these variations maintained relevance to the original
query, showing the same trend as the original query retrieved documents.

35

Chapter 5: Results & Discussion

• Variations of Query 2 (Q2 V1, Q2 V2, Q2 V3): Similar to Query 1 variations, these
variations also showed high scores across all documents, suggesting consistent
relevance, but here, the problem is all the retrieved documents are the same,
duplicates. Again, the results were the same as the original query retrieved
documents, which were also the same but, this time, more relevant.

• Variations of Query 3 (Q3 V1, Q3 V2, Q3 V3): Variations yielded lower scores for
documents, indicating varied impacts of semantic variations on relevance. Also,
the V3 yielded the same duplicate documents.

• Variations of Query 4 (Q4 V1, Q4 V2, Q4 V3): Mixed results were observed, with
some variations performing better for certain documents while others performed
worse for different documents.

5.3 Discussion
The testing and analysis of the system, both with the original list of queries and the
semantically similar queries generated from original queries, has shed light on the
effectiveness of the retrieval system and the impact of semantics variation on the
relevance. Below, we first discuss the testing of retrieved documents from Vector Store
and then LLM’s responses.

5.3.1 Documents Retrieval
The accuracy of the documents retrieved is not quite good, although the documents
retrieved from the 1st query and its different variations were quite comfortably the
most relevant ones; duplication is the issue seen in its variations. Similarly, the
variations of the queries also result in duplication. And for the rest of the original
queries and the different versions of them, the results weren’t very much of interest to
the journalists by not finding the most relevant document.

After testing the system on a list of semantically similar queries generated from an
original query, it was also observed that the documents retrieved were not the same
as those in the original query. This might be because of the following reasons:

• Semantic Ambiguity: Similar terms may still have differences in meaning even
if they are most semantically relevant because natural language is complex, and
even if there is a slight change in words, it leads to a complete change in the
meaning.

36

5.3 Discussion

• Vectorization: The process of converting queries to vectors may not always
capture the specific intent behind the query and are not close enough together
to retrieve the same document.

The duplication is seen as one of the major problems in retrieving documents. This
is due to the uploading and presence of multiple copies of the same documents in the
data corpus. As in similarity search, the document is retrieved based on similarity, so
if it sees one of the duplicate documents as the most relevant, the next most similar
would also be the duplicate of the first one because both of them would have the same
relevancy to the query.

We tried to solve the problem of duplication through identifying the documents
through "document id" and other attributes but that also didn’t help because there
majority of documents have missing metadata values.

The uncleaned text data seem to be the cause behind the inaccurate retrieval of
documents from vector store as those special characters and large white spaces were
also taken into account during the creation of embedding. The embedding algorithm
takes into account them also which results in not able to truly capture the document
vector. So in turn it effected the document vector representation and for that reason
the document most closer to the query is not retrieved.

By applying metadata filters the retrieved documents were most relevant and are of
interests to journalists. For example when specifying the date range, or case id or any
sort of metadata attribute the retrieval were according to expectations with the desired
documents.

5.3.2 LLM’s Response
Assessing the results from different LLMs I,e GPT4All, ChatGPT 3.5 turbo, and Chat-
GPT 4. There was a significant difference in the response between all of them.

The overall results from LLM were in the following order:

• ChatGPT 4: Outperformed both others in all aspects.

• ChatGPT 3.5 turbo: Found difficulties in getting the sense out of uncleaned
documents from special characters.

• GPT4All: Could not answer the prompts in any case.

37

Chapter 5: Results & Discussion

GPT4All performed the worst of all in very imprecise results for the prompt and also
very high time complexity while running locally. We have tested GPT4All in RAG, but
the results were below par. Also, because of the very high complexity of the time, it
wasn’t tested very much.

The results from ChatGPT 3.5 turbo were also not satisfactory, as the structure of
the document created problems for it, and it wasn’t able to do the summarization or
find any irregularities in the documents. The text documents were converted from
PDF to text files, due to which there were a lot of special characters and white spaces.
And here, the ChatGPT 3.5 turbo failed.

The results regarding the use of ChatGPT 4 were according to the expectations and
performed very much better in all aspects compared to the other two LLM’s. The
ability to summarize the documents containing special characters and white spaces
didn’t affect its capability. And has also done well accordingly in the prompting.

Overall, the results from LLM’s are satisfactory, but the problem lies in the retrieval
of required documents. When there is no metadata field specified, the results are not
optimal, but after specifying the additional metadata filters like date e,g from-to, case
serial number, etc. The results were according to expectations.

38

CHAPTER 6
Conclusion

In this chapter, we bring our research to a close by reflecting on our findings and
observations. Also, it gives recommendations for future work.

6.1 Summary
In this study, we designed and developed a system leveraging an LLM’s and vector
store for assisting Journalists in their investigative journalism work. By outlining the
objective of our project work, described the methodology used in implementing such
a system, and key findings from the work were presented.

6.1.1 Main Contributions
The main contributions of our project to the Journalism field and some of the applica-
tions are:

• A system developed for efficient retrieval and analysis of documents, resulting
in aiding the journalists in identifying relevant information quickly.

• The capabilities of different LLM’s were explored in summarizing and processing
unstructured documents.

• A vector store-based architecture, implementation for fast and efficient retrieval
based on similarity search.

39

Chapter 6: Conclusion

6.2 Implications
For this project, the media industry has several implications and can be integrated into
the journalistic processes.

• The adaption of such kinds of systems can significantly improve the processes
involving analyzing documents, summarizing them according to prompts, and
thus streamlining the process of investigative journalism.

• The introduction of LLM and vector databases can significantly help in uncov-
ering hidden insights from a large corpus of unstructured documents. This can
lead to more enhanced, comprehensive reporting that can be more impactful
both in terms of readers’ interests and problems to be addressed.

6.3 Future Work
The project implementation and testing has uncovered limitations, findings, and po-
tential for improvements as a future research and developments.

• The data should be in cleaned form the TXT files should not have any special
character and white spaces while the issue of missing metadata should also be
taken care of by finding ways to not effect the retrieving process. By addressing
these issues the overall quality of the data can be significantly enhanced, leading
to more accurate and robust retrieval.

• One of the potential areas for research is to further optimize and customize, fine-
tuning an LLM for journalistic purposes in order to be able to clearly recommend
stories for news. For this purpose, collaboration with technology experts and
data scientists can help tailor such a system specifically for journalism.

• Multiple data sources can be integrated into vector store e,g government open
databases, social media posts feeds. This will provide journalists with compre-
hensive relevant information for investigating local living conditions. The user
interface could be further enhanced keeping in view of multiple data sources
made available to investigate any case.

• Further ethical considerations and the public’s private data privacy should be
prioritized before any data gathering and analysis can be performed. This should
be in accordance with and following General Data Protection Regulation (GDPR)
guidelines.

40

6.3 Future Work

In conclusion, the continuation to develop such kind of systems by following the
recommendations can put the media industry at the forefront of today’s digital age
while producing impactful journalism.

41

Bibliography

[1] G. Salton, A. Wong, and C. S. Yang, “A vector space model for automatic indexing,”
Communications of the ACM, vol. 18, no. 11, pp. 613–620, 1975. → [p6]

[2] D. Jurafsky and J. H. Martin, Speech and language processing: An introduction
to natural language processing, computational linguistics, and speech recognition.
Prentice Hall series in artificial intelligence, Prentice Hall, 2000. → [p7]

[3] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” 2013. → [p7], [p8], [p45]

[4] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs,” 2018. → [p9]

[5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” 2023. → [p9], [p10], [p11], [p12], [p45]

[6] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, M. Wang, and H. Wang,
“Retrieval-augmented generation for large language models: A survey,” 2024.

→ [p12], [p13], [p14], [p15], [p45]

[7] A. Piktus, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W. tau Yih, T. Rocktäschel,
and D. Kiela, “Retrieval-augmented generation for knowledge-intensive nlp tasks,”
2020. → [p13]

[8] H. B. Abdalla, “A brief survey on big data: technologies, terminologies and data-
intensive applications,” 2022. → [p15]

43

List of Figures

2.1 A figure representing two document vectors. 6
2.2 CBOW and Skip Gram models architecture[3]. 8
2.3 A figure showing transformer architecture[5]. 10
2.4 Scaled Dot-Product Attention and Multi-Head Attention[5]. 11
2.5 Optimization methods for enhancing LLM capabilities[6]. 12
2.6 An example workflow in RAG[6]. 14
2.7 RAG dataflow diagram[6] . 15

3.1 The figure represents the architecture of our proposed system. 20
3.2 Architecture diagram showing the working of Data Ingestion Module . 21

4.1 A Frontend screenshot of the system. 27

5.1 The retrieved documents score for each query from the original list of
queries. 33

5.2 The results of the queries generated from original list of queries with
ChatGPT. 34

45

List of Abbreviations

AI Artificial Intelligence
API Application Programming Interface

BERT Bidirectional Encoder Representations from Transformers

CBOW Continous Bag of Words
CSS Cascading Style Sheet

GDPR General Data Protection Regulation

HNSW Hierarchical Navigable Small World Graph
HTML Hyper Text Markup Language
HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

LLM Large Language Model

PDF Portable Document Format

RAG Retrieval Augmented Generation

TXT Text File Document

UI User Interface

47

You yourself are your own obstacle, rise above yourself.

– Hafez

48

	Epigraph
	Affidavit
	Acknowledgements
	Abstract
	Contents
	Introduction
	Background
	Motivation
	Objectives
	Thesis Structure and Organization

	Background and Terminology
	Internet Searching
	Vector Space Model
	Word Embeddings
	Neural Network Based Embedding models

	Hierarchical Navigable Small World (HNSW) Graph
	Large Language Model (LLM)
	Architecture
	Encoder and Decoder Stack
	Attention
	Position-wise Feed-forward Networks

	Retrieval Augmented Generation (RAG)
	Big Data

	Methodology
	Data
	Proposed Approach
	Architecture
	Frontend UI
	Backend/API
	Data Retrieval module
	Data Processing Module
	Data Ingestion Module

	Implementation
	Tools & Technologies
	Frontend UI
	Frontend UI Application Content
	Frontend UI Application Layout
	Frontend UI Application Logic
	Backend/API
	Data Modules
	Database

	Deployment
	Azure AI search
	Azure OpenAI service

	Implementation Details
	Front-end
	Backend/API

	Results & Discussion
	Evaluation
	Methodology

	Results
	Original Queries Results:
	Query Variations Results:

	Discussion
	Documents Retrieval
	LLM's Response

	Conclusion
	Summary
	Main Contributions

	Implications
	Future Work

	Bibliography
	List of Figures
	List of Abbreviations

