
Faculty of Science and Technology
Department of Computer Science

Guorrat
The Research and Development of a Real-Time System for Generation of Ball Positions
in Football

Fredrik Stenvoll Nylund
INF-3990 Master thesis in Computer Science, May 2024

Supervisors

Main supervisor: Dag Johansen UiT The Arctic University of Norway,
Faculty of Science and Technology,
Department of Computer Science

Co-supervisor: Martin Rypdal UiT The Arctic University of Nor-
way, Faculty of Science and Tech-
nology, Department of Mathematics
and Statistics

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2024 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Abstract
In contemporary football, advanced analysis techniques are increasingly im-
portant, enhancing clubs’ capabilities to make strategic in-game adjustments.
Central to this advancement is the availability of real-time analytics, which
relies heavily on accurate player and ball tracking technologies. While real-time
player tracking has become more accessible, automatic and reliable real-time
ball tracking remains a significant challenge. This challenge is particularly
acute for lower-tier football clubs that often lack the necessary resources and
infrastructure.

This thesis introduces Guorrat, a novel real-time system designed to generate
accurate ball positions throughout live football matches. Developed to serve
as a cost-effective alternative to existing real-time ball tracking technologies,
Guorrat uniquely combines manual event tagging with real-time player posi-
tional data, which is generated by a system developed in parallel with Guorrat.
This integration enables the system to produce precise ball location data during
live matches, addressing the gap faced by resource-constrained clubs.

The system’s effectiveness was evaluated in a series of experiments that demon-
strated Guorrat’s capability to provide frequent and precise ball position data
in real-time. The results indicate that Guorrat is not only feasible but also a
practical alternative for real-time ball tracking in football.

Acknowledgements
I would like to thank my supervisor, Dag Johansen, and co-supervisor, Martin
Rypdal, for their invaluable guidance and support throughout this thesis. I
would also like to send my gratitude to Tor-Arne Schmidt Nordmo, for his
valuable help and feedback throughout this thesis.

Additionally, I want to thank my fellow students, William Alexander Stimpson-
Karlsson and Børge Bårdsen, for all the discussion, support, and generally good
times over the past 9 months.

I also send my gratitude to my family and friends, which has been a constant
support throughout the duration this thesis.

Lastly, I would like to acknowledge the use of ChatGPT in various parts of this
thesis. This tool was employed to improve the grammar, language flow, and
overall readability of the thesis.

Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

List of Abbreviations xv

1 Introduction 1
1.1 Problem Definition . 2
1.2 Methodology . 3
1.3 Scope and Limitations . 5
1.4 Research Context . 5
1.5 Outline . 7

2 Background 9
2.1 Football Analysis . 9

2.1.1 Event Tagging . 10
2.1.2 Tracking Data . 11
2.1.3 Video Analysis . 11

2.2 Automatic Ball Detection 11
2.2.1 Sensor Based-Ball Tracking 12
2.2.2 Object Detection-Based Ball Tracking 13

2.3 Existing Systems . 14
2.3.1 Hudl . 14
2.3.2 Spiideo . 16
2.3.3 Nacsport . 17
2.3.4 Summary of Existing Systems 18

2.4 Technical Background . 19
2.4.1 HTTP Live Streaming 19
2.4.2 Homography Transformation 20

2.5 Summary . 21

vii

viii contents

3 Requirement Specification 23
3.1 Functional Requirements 23

3.1.1 Generate Real-Time Ball Positions 23
3.1.2 Retrieve Video Stream and Metadata from External

Source . 24
3.1.3 Provide Live Stream of Match with Synchronized Player

Rectangles . 24
3.1.4 Handle Event Tagging 25
3.1.5 Track Names of Players 25
3.1.6 Display Generated Ball and Event Tagging Data . . . 25

3.2 Non-Functional Requirements 25
3.2.1 Real-time Performance 26
3.2.2 Precision . 26
3.2.3 Usability . 26
3.2.4 Availability . 26
3.2.5 Reliability . 26
3.2.6 Maintainability . 27

3.3 Summary . 27

4 Design & Implementation 29
4.1 System Architecture . 29
4.2 Frontend . 30
4.3 Backend . 31
4.4 Data Storage . 32
4.5 Retrieving Video Stream and Metadata from External Source 33
4.6 Backend Streaming Server 33
4.7 Synchronizing Video and Metadata 34

4.7.1 Frontend vs Backend 36
4.7.2 Frontend Handling 37
4.7.3 Backend Handling 39

4.8 Event Tagging . 39
4.8.1 Configure Teams . 39
4.8.2 Event Registration 40
4.8.3 Possession Registration 44
4.8.4 Connect Player Names to Events 46
4.8.5 Display Data . 48

4.9 Generate Ball Positions . 49
4.10 ID Tracking Algorithm . 50
4.11 Non-Rectangle Click Registration 51
4.12 Summary . 53

5 Evaluation 55
5.1 Experiment Setup . 55

5.1.1 Hardware Specifications 55

contents ix

5.2 Measure Frequency and Precision in Generated Ball Positions 56
5.2.1 Experiment Setup 57
5.2.2 Results . 58
5.2.3 Discussion . 61

5.3 Generated Ball Position Improvement with Improved ID Track-
ing . 62
5.3.1 Experiment Setup 62
5.3.2 Results . 62
5.3.3 Discussion . 63

5.4 Generated ball position improvement with Non-Rectangle Click
Registration . 63
5.4.1 Experiment Setup 64
5.4.2 Results . 64
5.4.3 Discussion . 64

5.5 Measure ID Improvement with Changing Player Names . . . 65
5.5.1 Experiment Setup 66
5.5.2 Results . 67
5.5.3 Discussion . 68

5.6 In-Memory Metadata Caching 68
5.6.1 Experiment Setup 69
5.6.2 Results . 69
5.6.3 Discussion . 70

5.7 Frontend Video Processing Performance 70
5.7.1 Experiment Setup 71
5.7.2 Results . 71
5.7.3 Discussion . 72

5.8 Backend Video Processing Performance 72
5.8.1 Experiment Setup 72
5.8.2 Results . 72
5.8.3 Discussion . 73

5.9 Summary . 74

6 Discussion 75
6.1 Requirements . 75

6.1.1 Functional Requirements 75
6.1.2 Non-Functional Requirements 76

6.2 Selection of Streaming Protocol 78
6.3 Summary . 79

7 Conclusion & Future Work 81
7.1 Concluding Remarks . 81
7.2 Thesis Conclusion . 82
7.3 Future Work . 83

7.3.1 Integration with other Analysis Platforms 83

x contents

7.3.2 Deploy Guorrat for Commercial Use 83

List of Figures
2.1 Screenshot of Hudl’s manual tagging interface [21]. 16
2.2 Screenshot of Spiideo Perform’s tagging interface [49]. . . . 17
2.3 Screenshot of a Nacsport tagging interface from their official

YouTube channel[34] . 18
2.4 Visualization of a homography transformation between two

different perspectives. Source: [30] 21

3.1 Demonstration of how Guorrat should use tagged events to
determine the position of the ball during these events. 24

4.1 Overview of the system architecture for Guorrat. 30
4.2 Example of how a frame is represented in the JSON metadata. 35
4.3 Example of how a detection is represented in the JSON meta-

data. 35
4.4 The layout of the configure teams page. 40
4.5 Example of an Event object. 41
4.6 Layout of stream video window with player rectangles present. 42
4.7 Event popup when registering an event between two players

of the same team. 43
4.8 Event popup when registering an event between players on

different teams. 44
4.9 A flowchart representing the logic to determine a possession. 45
4.10 Example of a possession object. 46
4.11 Event popup where no player names have been associated

with the receiving player. 47
4.12 Menu for selecting player. 48
4.13 How the generated ball data is displayed. 49
4.14 How tagged passes are displayed. 49

5.1 A: This figure shows the ball positions generated by the exter-
nal source on top of the actual ball positions. B: A histogram
showing the distribution of the residuals. 59

xi

xii l ist of figures

5.2 A: This figure shows the ball positions generated by Iteration
1 of Guorrat on top of the actual ball positions. B: A histogram
showing the distribution of the residuals. 59

5.3 A: This figure shows the ball positions generated by Iteration
2 of Guorrat on top of the actual ball positions. B: A histogram
showing the distribution of the residuals. 60

5.4 A bar chart showing the calculated RMSE values for each so-
lution, both with and without outliers. 60

5.5 With original ID tracking. 63
5.6 With improved ID tracking. 63
5.7 Screenshot from VIK-TIL showing the situation evaluated in

Section 5.4. The mentioned Viking player is highlighted. . . 64
5.8 Registered passes without NRCR solution. 65
5.9 Registered passes with NRCR solution. 65
5.10 Example of an ID-challenging situation. 67
5.11 Time it takes for the client to receive a metadata segment

from the backend server. 69
5.12 Enter Caption . 71
5.13 Total time to process each segment at the backend server. . . 73
5.14 Percentage of total segment time to process the video seg-

ments at the backend server. 74

List of Tables
5.1 Number of generated ball positions by each solution. 58
5.2 Table showing number of times a user have to manually change

the associated player for a rectangle. Segments without ID-
challenging situations. 67

5.3 Table showing number of times a user have to manually change
the associated player for a rectangle. Segments with ID-challenging
situations. 68

xiii

List of Abbreviations
ABR Adaptive Bitrate Streaming

API application programming interface

CSG Cyber Security Group

FPS Frames per Second

GPS Global Positioning System

HLS HTTP Live Streaming

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IMU Inertial Measurement Unit

IQR Interquartile Range

JSON JavaScript Object Notation

KB Kilobytes

LPS Local Positioning System

NRCR Non-Rectangle Click Registration

POC Proof of Concept

RMSE Root Mean Squared Error

RTMP Real-Time Messaging Protocol

xv

xvi l ist of abbreviat ions

TIL Tromsø Idrettslag

TUIL Tromsdalen Ungdom- og Idrettslag

UiT The Arctic University of Norway

URI Uniform Resource Identifier

VIK Viking Fotballklubb

xG Expected Goals

1
Introduction
Football, heralded as the most popular sport globally, captivates billions with
its dynamic play and intense competition. The sport not only embodies a rich
cultural significance but also commands vast economic stakes,with a substantial
amount of money invested in club management and player performance. This
financial aspect heightens the incentives for clubs to excel, compelling them
to leverage every possible advantage to stay competitive. In this high-stakes
environment, football analysis has become an indispensable tool, providing
strategic insights that can significantly influence match outcomes.

Currently, top-tier football clubs invest heavily in comprehensive analytical
capabilities, employing advanced technologies to gather and interpret game
data. This disparity in resources leads to a competitive imbalance as smaller
clubs, constrained by budget limitations, struggle to access similar analytical
advantages. Despite the critical need for data-driven insights to enhance team
performance and tactical planning, the existing solutions are often prohibitively
expensive and complex, putting them out of reach for many clubs.

As technology advances, particularly in the fields of surveillance video systems,
positional systems, and wearable sensors, the possibilities for analyzing team
and individual performance continue to expand. As these technologies become
more affordable and widely available, they pave the way for more cost-effective
analysis systems. Such developments are crucial for narrowing the gap in
analysis capabilities between top-tier and lower-budget clubs. This is the gap
that this thesis aims to bridge.

1

2 chapter 1 introduction

1.1 Problem Definition

In modern football, the ability to analyze gameplay in real-time significantly
enhances in-game decision-making and post-match strategy development. Cur-
rent sensor-based technologies allow for extensive real-time positional tracking
of players primarily using Global Positioning System (gps) vests. However,
similar advancements in sensor-based ball tracking technology is not accessible
for most football clubs, for several reasons.

Technological advancements in the field of machine learning and object detec-
tion allows for sensor-less real time tracking of players and ball. However, such
systems depends on expensive infrastructure investment to reliably detect and
track the positions of both the players and ball, which acts as a barrier for most
football clubs.

Therefore, most football clubs, especially those at lower-level with limited
resources, lack access to affordable systems that provide both real-time and
precise ball tracking. Consequently, these clubs miss out on crucial tactical
and performance insight that could significantly influence their competitive
performance.

This thesis carries out research and development of a Proof of Concept (poc)
system that leverages generated player positional data to generate ball positions
in real-time by utilizing manual event tagging during a live football match.
This system should be able to function as an alternative to automatic real-time
ball detection methods used today. To make this possible, an event tagging
system must be created where users can tag ball related events, and the system
utilizes this tagged data to generate the ball’s position. The received player
positional data is generated by another system, Sadji[51], that is developed in
parallel with Guorrat.

The tagging system should use the generated player positional data received by
Sadji[51] to innovatively overlay interactive rectangles over player outlines in
the live video stream of a football match. These rectangles should contain the
metadata about each player, such as their position on the field and their team
affiliation, and can be clicked to register events, such as passes and tackles.
Guorrat should then use the players field positions associated with these events
to generate real-time ball positions.

Furthermore, the operational requirements for Guorrat should be minimal,
enhancing its appeal for clubs of all sizes, particularly those with constrained
resources. Primarily, to use Guorrat, it only requires a camera that can cover the
entire field, which should be obtainable for most clubs. Additionally, it requires
a computer to access the event tagging interface to generate ball positions. This

1.2 methodology 3

simplicity in setup eliminates the need for extensive hardware investments
and complex integration processes. By leveraging existing infrastructure in this
way, the system ensures that even clubs with limited technological capabilities
or budgets can benefit from advanced analytics, making sophisticated and
advanced analysis accessible without significant overhead costs.

Based on these points regarding the problem and how we attempts to solve it,
the thesis statement is as follows:

This thesis will carry out research and development of an alternative to
state-of-the-art real-time ball detection systems. This poc (Proof of
Concept) will utilize player positional data in combination with manual
event tagging to generate ball positions, with focus on real-time and
precision properties.

The name ’Guorrat’ is derived from the Northern Sami language, meaning ’to
track.’ Given that this system is engineered to track the ball during football
matches, ’Guorrat’ was selected as an apt name.

1.2 Methodology

The latest report of the ACM Task Force[10] introduces a comprehensive frame-
work for understanding computer science through three paradigms: Theory,
Abstraction and Design. These paradigms represent distinct approaches to the
discipline, highlighting it’s breadth, depth, and interconnected nature.

Theory is the first paradigm. It is rooted in mathematics, and involves a four-
step process critical for the development of coherent and valid theories
within computer science. These steps are as follows:

• Definition: The initial step involves defining of the object of study,
ensuring that there is no ambiguity about what is being analyzed.

• Theorem: After defining the objects, the next step involves hy-
pothesizing potential relationships among them. These theorems
propose how these objects might interact or relate to each other
under certain conditions.

• Proof: The theorems are then subjected to rigorous proof to verify
their validity. This involves logical reasoning andmathematical rigor
to establish that the proposed relationships hold under the specified

4 chapter 1 introduction

conditions.

• Results: The final step involves analyzing the implications of the
proofs and theorems. This often leads to further questions and the
refinement of original definitions or theorems, thus iterating over
the cycle to deepen and refine understanding.

Abstraction is the second paradigm. It is rooted in the experimental scientific
method, and is essential for investigating phenomena within computer
science. This paradigm also involves a four-step process, which is:

• Hypothesis: This stage involves formulating assumptions based on
initial observations or existing theories. The hypothesis acts as a
foundation for developing a predictive model.

• Model: Using the hypotheses, a model is constructed that simpli-
fies the phenomena into a manageable framework, allowing for
predictions and simulations.

• Experiment: : Experiments are then designed to test the predictions
made by the model. This involves collecting data through various
means, including simulations or real-world implementations, to ob-
serve how well the model’s predictions align with actual outcomes.

• Analyze: The collected data is analyzed to evaluate the accuracy
of the model. Based on this analysis, the model may be validated,
refined, or even rejected, leading to new hypotheses and further
cycles of abstraction.

Design is the third and last paradigm. This paradigm is rooted in engineering,
and focuses on creating systems to solve specific problems. This is also a
four-step process, which is as follows:

• Requirements: This initial phase involves defining the precise needs
and constraints of the system to be developed. It sets out what the
system is supposed to achieve and under what conditions it must
operate.

• Specification: Based on the requirements, a detailed specification of
the system is developed. This includes the architecture, components,
interfaces, and data flows of the system, providing a blueprint for
implementation.

• Design and Implementation:With specifications in place, the ac-

1.3 scope and limitations 5

tual system design and implementation occur. This phase involves
both high-level architectural design and detailed programming, en-
suring that every aspect of the specification is translated into a
functional system.

• Testing: Once implemented, the system is rigorously tested against
the requirements.

This thesis research is rooted in the last paradigm,Design. First, the benefits and
downsides with the existing real-time ball detection methods will be explored.
Based on this, a requirement specification for Guorrat will be devised, and a
system will be designed and implemented bases on the specified requirements.
Next, the poc will be evaluated experimentally, with primary focus on the
non-functional properties of real-time and precision.

1.3 Scope and Limitations

The operation of the system relies on the premise that the metadata used is
produced by an external source. The system that generates this metadata is
Sadji[51], which has been developed in parallel with Guorrat. For Guorrat to
function correctly, it necessitates a mutual agreement on the metadata format
between both parties.

Since this is a poc system, and the development focus has been on the unique
functionalities of my Guorrat, some common non-functional requirements
typically associated with computer systems, such as security, have not received
as much attention.

Guorrat is currently designed and implemented specifically for football. How-
ever, with some adjustments, it could be adapted for use in other similar team
sports like basketball or hockey.

1.4 Research Context

This thesis has been produced under the guidance of the Cyber Security Group
(csg) at the The Arctic University of Norway (uit). csg is a research group
focused on advancing knowledge and developing innovative technologies re-
garding distributed systems within the field of computer science. csg is ded-
icated to conducting impactful research and innovation that spans multiple
disciplines and faculties, residing at the crossroads of computer science and

6 chapter 1 introduction

various other scientific domains.

Its overarching aim is to forge new insights, research methodologies, and
groundbreaking technologies in the evolving domain where computer science
is central. By tackling complex, real-world problems, csg combines academic
principles with practical innovations and applications. csg conducts research
in experimental computer science with a focus on the design, architecture, and
implementation of distributed systems that are scalable, efficient, fault-tolerant,
privacy-preserving, compliant, and secure.

A key collaborator of the Cyber Security Group is the Corpore Sano Centre.
This center is dedicated to pioneering research and innovation within the
life sciences, bridging the disciplines of computer science, sports science, and
medicine. Its interdisciplinary efforts focus on enhancing elite sports perfor-
mance and injury prevention, advancing preventive healthcare, conducting
large-scale population screenings, and undertaking epidemiological health
studies.

csg has been in the Artificial Intelligence domain for a while,with systems such
as StormCast[17]. StormCast is a distributed artificial intelligence application
designed for severe storm forecasting, employing a hierarchical architecture
that enhances cooperation among distributed modules to collect, process, and
synthesize weather data efficiently across different geographical areas. This
system enables scalable, fault-tolerant operations by utilizing a combination of
expert and transmission modules to predict and communicate severe weather
conditions effectively.

In the sports science domain, csg is known for research and development
of several systems around soccer, e.g. Bagadus and Muithu. Bagadus[16] is
an integrated sports analysis system combining camera arrays, the ZXY Sport
Tracking system[53], and human annotations to enhance game performance
analytics. Bagadus uniquely integrates real-time player tracking with ZXY
sensors, providing precise player positions, orientations, and biometric data at
high frequencies. This data facilitates the automatic extraction and playback
of specific game events, such as sprints, directly from statistical data.

Muithu[22] is a sports notational analysis designed to integrate real-time coach
notations with video sequences during sports practices and games, using eco-
nomical, off-the-shelf components that require minimal human post-processing.
This system allows coaches to annotate metadata to an event on their smart-
phone during match or practice, and Muithu automatically finds the associated
video sequence and makes it available to watch at half-time or after the match
or practice session.

1.5 outline 7

csg does also have have experience in the physical performance part of
professional football, with several studies on the aspect of physical performance
in professional women’s football[3][38][58]. These studies, along with Muithu
and Bagadus, are some examples that demonstrates csg’s experience in the
domain of professional football, and how it can be integrated with state-of-the-
art technology.

1.5 Outline

The content and structure of this thesis is as follows:

Chapter 2 explores relevant background information regarding both football
analysis and automatic ball tracking, some existing analysis systems used by
clubs today, and explains technologies used in the implementation of Guor-
rat.

Chapter 3 describes the functional and non-functional requirements of Guor-
rat.

Chapter 4 covers the design and implementation of Guorrat, and discusses the
decisions made in regard to its design and implementation.

Chapter 5 details how Guorrat has been evaluated, exploring both the various
experiments and their results.

Chapter 6 is used to discuss different aspects of Guorrat, and how it fulfills its
functional and non-functional requirements.

Chapter 7 concludes and summarizes this thesis, in addition to discussing
some possible future work.

2
Background
This chapter will explore relevant background information regarding football
analysis, and dive deeper into real-time automatic ball tracking andwhy it is not
suitable for widespread use. Additionally, it will evaluate some existing analysis
systems, with primary focus on their real-time ball tracking and event-tagging
properties.

2.1 Football Analysis

Detailed football analysis has become increasingly common in the modern
game for several compelling reasons. Primarily, the potential for competitive
advantage is perhaps the most compelling reason for most teams. In football,
where games are frequently decided by one or two goals, even minor edges can
be the difference between winning, drawing, or losing. With real-time advanced
analysis, teams gain the critical opportunity to make strategic adjustments on
the fly, potentially transforming a likely defeat into victory.

It is not difficult to see how every small advantage gained through detailed
analysis can provide the critical boost needed to tip the scales in favor of a
team.

Another important factor for the rise of football analysis, comes from the large
amount of money present in football today. Elite football clubs in today’s world

9

10 chapter 2 background

are regularly spending tens to hundred ofmillion euros on newplayers, themost
extreme being Paris Saint German’s acquisition of Neymar from Barcelona, for
the amount of 222 million euros[54]. An incentive for teams to invest and focus
on analysis, is to get a more solid foothold when evaluating possible prospects.
For instance, while the majority of people might evaluate a striker primarily
based on goals and assists, a team’s analytics staff will likely delve into more
nuanced statistics, such as shot conversion rate or off-ball positioning. These
deeper metrics might help determine whether a player’s value justifies their
potential transfer fee, or if their performance is largely a result of the team’s
overall dynamics, and could allow a team to find potential cheaper players that
they believe is an equal or better fit to the team’s style of play.

One notable instance of analytics influencing player transfers occurred in 2017
when Liverpool FC acquired Mohamed Salah from AS Roma[12]. A key factor
in their interest was the detailed analysis by Liverpool’s head of analytics,
Ian Graham, whose models highlighted Salah’s exceptional off-ball movement
and superior Expected Goals (xg) metrics. This analytical insight was pivotal,
as Salah’s subsequent performances at Liverpool FC significantly exceeded
expectations, becoming the Premier league’s top scorer 3 times[39].

Broadly, football analysis can be divided into two main parts: tagging and anal-
ysis. The tagging part involves annotating metadata to specific football video
sequences and events, while the analysis part uses this annotated metadata
to create analytical metrics and tools. The focus of this thesis is primarily on
the real-time tagging aspect of football analysis, and we will explore the most
common methods of tagging in the following sections.

2.1.1 Event Tagging

A way of generating analysis data is by event tagging, or annotating of different
events during a match or practice. This can be done in a wide range of
complexity, from a coach on the sideline writing physical notes, to analysts
using a fully-fledged tagging software program, to outsourcing the analysis
to external companies. There are numerous companies around the world that
specializes in the tagging of footballmatches[45, p. 7]. Many of these companies
employ hundreds or even thousands of workers, each responsible for recording
and annotating a wide range of events during the games. These events include
standard actions like passes, shots, and tackles, as well as more detailed and
specialized ones, such as noting the height of the ball when a player receives a
pass. Once a match concludes, the footage is sent to one of these companies,
and within 12-24 hours, a comprehensive set of analysis data is returned.

2.2 automatic ball detection 11

2.1.2 Tracking Data

Another method of generating metadata for analyzing, is by positional tracking.
Both Global Positioning System (gps) and Local Positioning System (lps)
can be used to measure data about players and ball. Measurements such as a
player’s position, total distance covered, and high-intensity runs, can be used
to perform both strategic and performance analysis. STATSports’ GPS tracking
vests[50] are used by many of the highest ranking clubs in the world, including
the local team Tromsø IL (TIL). Bagadus, mentioned in section 1.4, uses a LPS,
the ZXY tracking technology[53], to track the position, movement and certain
biometrics of the players on the field.

2.1.3 Video Analysis

One method of analysis involves reviewing recorded video footage of matches
or practice sessions. By studying this footage, coaches, players, or analysts
can identify strengths and weaknesses in various scenarios. The video can
reveal useful patterns applicable to the team as a whole, specific groups of
players, or individual players. Players will often find it hard to assess their own
performance and decision-making due to their position on the field and the
fast pace of the game. Video analysis provides a comprehensive view of each
situation, enabling players to critically evaluate their actions and, if necessary,
make improvements.

The various analytical methods are frequently integrated and considered collec-
tively to achieve a comprehensive and detailed analytics overview of a match
or practice session. For example, when analysts tag events during a match or
practice, they use timestamps for each event to swiftly access the corresponding
video footage. This footage can then be examined in greater detail, providing
a complete picture of the events.

2.2 Automatic Ball Detection

To enable automatic real-time advanced football analytics, the ability to accu-
rately locate and track the ball is crucial. When both player and ball positional
data are available, the depth of the analysis is increased and a variety of
football-specific analysis can be conducted. The effectiveness of these analyses
largely depends on the quality and precision of the tracking of both the players
and the ball. If only player positions are tracked, and not the ball position, the
number of possible metrics and statistics diminishes significantly, resulting in
a lower overall value of the analysis.

12 chapter 2 background

Today, many elite football clubs utilize GPS tracking to monitor player move-
ments, often usinggps vests worn under their jerseys. This technology provides
teams with precise positional data for each player. For instance ,til, playing
in Norway’s top division, Eliteserien, employs this method. However, although
Eliteserien uses a standardized ball for all matches, this ball lacks any inte-
grated tracking technology, making it impossible to gather real-time positional
data for the ball for analysis purposes.

Following, in section 2.2.1 and 2.2.2, the two main methods of automatic real-
time ball detection will be explored and investigated.

2.2.1 Sensor Based-Ball Tracking

Sensor-based ball tracking in soccer utilizes sensors within the ball to capture
real-time data on its movement and location during play. These systems typi-
cally use external tracking systems to determine the position of the ball, mainly
by utilizing a lps[15][25].

One example of such a technology being used is during the FIFA 2022 World
Cup in Qatar, when advanced ball tracking technology was introduced into the
tournament. Adidas developed the official ball, which included a lightweight
motion sensor by KINEXON[25] inside. This sensor provided real-time data
on spatial positioning and movement through an Inertial Measurement Unit
(imu) that utilizes ultra-wide band (UWB)[24] radio frequency to broadcast
the information to KINEXON’s lps, which is installed around the pitch. The
gathered data was used for analysis, assisting in the new semi automatic offside
detection system used in the World Cup, and for real-time match statistics for
a better viewing experience for the audience.

This technology allows teams to use the provided ball data, in combination
with their own sensor- and/or optical based player tracking data, to perform
performance analysis and make strategic decisions in real-time. In 2022, this
kind of system was tested during a relegation match in Liga Portugal[26]. Here,
more than 300 different analysis metrics were tracked by using KINEXON’s ball
sensor in combination with tracking vests on the player.

Although this technology is accessible to the world’s most elite clubs and
national teams, it is unlikely to be available to most of the world’s clubs anytime
soon. Several factors contribute to this limitation, including the budget and
infrastructure required to support such a system. Another constraint is the use
of standardized balls in certain leagues, where this technology has not been
implemented. For instance, as discussed in section 2.1.2, til employs gps vests
for player tracking. However, since the Norwegian top division, Eliteserien, uses

2.2 automatic ball detection 13

a standardized ball, it is not feasible to integrate player positional data with
ball sensor data for advanced real-time analysis. Given that Guorrat aims to
be accessible to a broad range of football clubs, including those with limited
budgets, an alternative to this technology was necessary.

2.2.2 Object Detection-Based Ball Tracking

Object Detection-based ball tracking in football leverages advanced Object
detection algorithms to accurately locate and track the ball during game-
play[11][27][28][36]. Object detection is a crucial technique within the realms
of computer vision and image processing, which typically utilizes Machine
Learning (ML) and Deep Learning (DL) models to identify and classify objects
within images or video frames.

Modern object detection algorithms, such as YOLO[56] (You Only Look Once),
Faster R-CNN[41] (Region Convolutional Neural Networks), and SSD[29] (Sin-
gle Shot MultiBox Detector), have significantly improved the precision and
speed of detecting and tracking objects, including footballs, in real-time appli-
cations. These algorithms work by generating bounding boxes around detected
objects and classifying them with a certain confidence level.

The various object detection algorithms differ in their speed and accuracy. YOLO
is faster than Faster R-CNN but generally provides lower accuracy in detections,
particularly for small objects, a ball for instance. Faster R-CNN employs a more
complex two-step process, the first of which involves identifying regions of
interest across the image. These regions are then classified by a Fast R-CNN
detector. In contrast, YOLO and SSD utilize a faster one-step process. These
trade-offs illustrate why accurately and reliably detecting and tracking the ball
in real-time with object detection can be challenging.

From the outset of developing the player detection and tracking system utilizing
the YOLO object detection algorithm, used by the external source, Sadji[51], to
generate the metadata Guorrat utilizes, it became apparent that ball detection
and tracking with object detection would pose a significant challenge. Other
systems that uses YOLO to detect the ball with more success typically uses
better video sources, such as TV-images[11] or multiple cameras[36]. Since this
system should only rely on a single camera, effectively detecting and tracking
the ball proved unfeasible.

Factors such as the ball’s small size, rapid change of directions, and fast move-
ment makes the process of detecting and tracking the ball via object detection
challenging. With the importance of controlling the ball in football, the ball will
regularly find itself close to and in between players. This leads to cases where

14 chapter 2 background

either the ball is occluded by a player, or the detection algorithm struggles
to separate the ball from a player. In addition, there are several factors not
related to the game itself that make this process even more challenging, like
the video quality, camera placement, lightning conditions, etc.

For instance, the camera used on til’s home field, Rommsa Arena, is placed
quite low relative to the field, making object detection of players more chal-
lenging, and especially ball detection. In contrast, other systems that more
successfully track the ball using object detection typically depend on addi-
tional video inputs, such as TV broadcasts or specialized cameras. However,
since the aim of this system is to be accessible to football clubs of all levels, it
cannot depend on TV footage, highly-optimized infrastructure, or specialized
cameras for its functionality.

2.3 Existing Systems

In this section, we will explore some of the existing systems that are used
by teams today, and evaluate if and how these system can enhance real-time
analysis, with a focus on ball-related events. The reason these existing systems
have been selected, is that they are either used by two of the top teams in
Tromsø, that both have relations with uit and csg, or by one of the top teams
in Premier League in England.

2.3.1 Hudl

Hudl[18] is a sports performance analysis tool that has become widely used
by teams and coaches across various sports disciplines, including football,
basketball, American football, and many others. Founded in 2006, Hudl has
grown to become a leading platform in the sports technology industry, offering
a range of services aimed at improving team performance and individual player
development through detailed analysis and insights. Hudl is currently in use
by (til), as well as the entire Eliteserien.

Hudl software can be integrated with Hudl’s own cameras, Hudl Focus[20].
These cameras are installed to cover the field and is fully automatic, removing
the need for any person manually filming.

2.3 exist ing systems 15

Hudl Assist

Hudl Assist[19] is a feature offered by Hudl that significantly enhances the
video analysis process for teams and coaches, by leveraging Hudl’s team of
professional analysts and sophisticated software to tag and break down game
footage. It provides teams with a more efficient and less labor-intensive method
for analyzing game footage, by outsourcing the analysis.

While Hudl Assist delivers advanced analysis with the position of each ball-
related event, a notable limitation is the absence of real-time analysis capabili-
ties, as Hudl Assist necessitates the uploading of a complete match, followed
by a waiting period of 12-24 hours before the analysis is complete. Additionally,
by outsourcing the tagging with such a system, it makes it harder to verify the
precision and quality of the analysis data.

Hudl Manual Tagging

Hudl offers a manual event tagging system[21] that allows users to annotate
match footage themselves. This feature enables users to upload videos to Hudl’s
platform and manually label various match events, such as passes, shots, and
crosses, including the outcomes of these actions. The interface for this manual
tagging is shown in Figure 2.1.

Hudl’s manual tagging system does not provide the user with the ability to
register precise positional data regarding events. As the user can only select in
which third of the field the event occurred, the positional context for an event
is not precise enough to perform any meaningful advanced analysis.

16 chapter 2 background

Figure 2.1: Screenshot of Hudl’s manual tagging interface [21].

2.3.2 Spiideo

Spiideo[47] is a Swedish technology company that specializes in providing
sports video analysis and performance evaluation tools. Spiideo is currently
used by the local team Tromsdalen Ungdom- og Idrettslag (tuil). tuil is
currently playing in the third highest professional division in Norway.

Spiideo Perform

Spiideo Perform[48] is a cloud-based sports video analysis tool that provides
users with game and player analysis. For a team to use the Spiideo Perform
software, a Spiideo sports camera must be installed.

Spiideo Perform provides users the ability to manually tag a wide range of
events, both live and after a match is finished, with the use of their customizable
tag panels, as seen in Figure 2.2. However, while Spiideo Perform allows for real-
time event tagging, it does not provide the user any way of adding positional
context or ball position to the tagged events.

2.3 exist ing systems 17

Figure 2.2: Screenshot of Spiideo Perform’s tagging interface [49].

AutoData Soccer LIVE

Spiideo Autodata Soccer LIVE[46] uses player tracking technology to auto-
matically detect and capture game event data. This data includes events such
as goals, shots and corners, in addition to individual player statistics, such
as high-intensity runs, distance covered, and running speed. AutoData soccer
LIVE can be paired with Spiideo Perform to create a more detailed analysis,
where AutoData Soccer LIVE can provide positional context to manually tagged
ball-related events in Spiideo Perform.

As experienced on this project, reliably detecting the ball’s position with a
single camera in a real-time fashion is quite the challenging task. Spiideo
claims on their website that AutoData Soccer LIVE is a fully automatic system,
requiring no human intervention. However, from the information presented on
Spiideo’s website, it is not possible to validate the correctness of their generated
data. While such a system might work well for higher-budget clubs with good
facilities for automatic ball detection, it is hard to imagine it working well for
most clubs. Anecdotal experience has shown that AutoData Soccer LIVE fails
to detect most ball related events.

2.3.3 Nacsport

Nacsport[32] is an analysis platform,used by for instance Liverpool FC. Nacsport
provides users with a tagging interface to tag a large variety of events. These
tagging interfaces can be customized however a user wants, allowing users to

18 chapter 2 background

choose which events they want to register. Nacsport allows for tagging of both
live streams and uploaded recordings of football matches.

Nacsport Enhanced Graphic Descriptors[33] is a tool provided by Nacsport that
can be utilized in tandem with the tagging interface. This tool allows users to
add precise positional data to ball-related events, by having a clickable 2-d field
in the tagging interface. An example of a Nacsport tagging interface is visual-
ized in figure 2.3. This results in having a registered ball position at the time of
start and end of each event, but does not result in a continuous ball position
throughout the match, which can enhance the analysis significantly.

Figure 2.3: Screenshot of a Nacsport tagging interface from their official YouTube
channel[34]

However, as the Enhanced Graphic Descriptor tool is only available for some of
the higher tier Nacsport packages, costing a yearly minimum of 595 euros[35]
as of the time of writing this thesis.This tiered access to features creates a
significant barrier for users with limited financial resources, such as smaller
clubs or independent analysts, who might not afford the higher-tier packages
required for more detailed analysis.

2.3.4 Summary of Existing Systems

In the previous section we have explored and evaluated some existing analysis
systems that provide manual or automatic event tagging in football, with a
focus on their real-time capabilities and the precision of ball-related generated
analysis data. Both the manual tagging systems of Hudl and Spiideo lacks

2.4 technical background 19

precise positional data associated with the tagged events. For Nacsport, it
does enable real-time tagging with positional context, but it does not provide
continuous ball positions throughout the match.

While Hudl Assist provides detailed analytics with precise positional data, it
lacks in real-time performance, as the returned analysis is available 12-24 hours
after the match has ended. In addition, the precision of the generated analysis
data can be hard to verify. Spiideo AutoData Soccer LIVE is the opposite of
Hudl Assist on the real-time performance and precision scale. While AutoData
Soccer Live generates analysis data in real-time, the precision of the generated
ball-related data is questionable, especially for resource-limited clubs with
subpar infrastructure.

This demonstrates that there are no existing systems that can automatically pro-
vide real-time and precise ball positions and ball-related events for football clubs
at all levels, especially those with limited budgets and infrastructure.

2.4 Technical Background

In this section, some of the technologies and concepts used in Guorrat is
explained.

2.4.1 HTTP Live Streaming

HTTP Live Streaming (hls) is the protocol used to live stream football matches
in Guorrat, with that decision being discussed later in Section 6.2. hls is an
adaptive bitrate streaming protocol developed by Apple[2]. It is widely used
for streaming of live and on-demand video content over the internet. hls
works by breaking down a video stream into a sequence of shorterhttp-based
file downloads, each containing one short chunk of the overall stream. This
method allows the video player to download each segment and play it almost
immediately, which facilitates streaming of content without the need for a
specialized streaming server. The central parts of hls is:

Segmentation: The original video content is divided into a series of short
segments, usually with a duration of 2 to 10 seconds each. These segments
can be encoded at various quality levels to support different bandwidth
conditions.

Index File: An index file, or playlist, is created in the form of an M3U8 file.
This file contains metadata about each segment, including uris pointing

20 chapter 2 background

to each segment file and information about the sequence and duration of
each segment. For adaptive streaming, multiple index files for different
quality streams are created.

Delivery: Both the segments and the index file are served over standard
http web servers. The client player reads the index file to understand
the sequence of video segments to play. As the video plays, the client
may switch between different quality streams by choosing a different
index file, adapting to changing network conditions to maintain smooth
playback.

Adaptive Bitrate Streaming (abr): HLS supports adaptive bitrate stream-
ing, allowing clients to automatically select the most appropriate bitrate
based on current network conditions. This ensures an optimal balance
between video quality and buffering.

hls has support for a wide range of devices and platforms, including iOS
devices, Android devices and most web browsers. hls is also relatively easy
to deploy and scale without requiring specialized infrastructure, since it uses
standard http servers for delivery.

2.4.2 Homography Transformation

A homography transformation is a computer vision transformation tool that
defines the relationship between two images of the same planar surface viewed
from different perspectives. It is used in Guorrat to translate a coordinate from
the video screen of a football match to the corresponding coordinate on the
physical football field. It facilitates the translation of coordinates from one
image plane to another while keeping the straight-line structures in the scene
despite perspective distortions.

Homography transformations use a 3x3 matrix to represent the transformation
between two images with different perspectives in a homogeneous coordi-
nate space. The homography matrices used by Guorrat is calculated by the
external source, Sadji[51], and is retrieved along with the player positional
metadata. How the mapping of a coordinate is transformed using homography
is visualized in Figure 2.4.

2.5 summary 21

Figure 2.4: Visualization of a homography transformation between two different per-
spectives. Source: [30]

2.5 Summary

In this chapter, we have explored football analysis and how automatic real-time
ball detection is usually performed, and explained the reasons why these meth-
ods is not available for most football clubs. Additionally, we have investigated
and evaluated some of the similar existing system, where it is clear that these
systems is not capable of tracking the ball reliably in a precise and real-time
manner.

3
Requirement Specification
Guorrat is intended to generate real-time and precise ball positions during a
football match by utilizing manual tagging in combination with player posi-
tional data generated by another system, Sadji[51]. For Guorrat to accomplish
this, a live streaming server and manual tagging system must be in place. In
this chapter, the functional and non-functional requirements, in the context of
fulfilling this goal, is specified.

3.1 Functional Requirements

In this section we will look at the functional requirements of Guorrat, which is
the specific features and capabilities that Guorrat should provide to fulfill its
intended purpose.

3.1.1 Generate Real-Time Ball Positions

The pivotal function of Guorrat is to generate real-time precise ball positions
during a live football match, with the use of generated player positional data
from the external source, Sadji[51]. Guorrat should utilize manual tagged ball-
related events, such as passes and tackles, to derive the position of the ball
during these events with the highest possible precision.

23

24 chapter 3 requirement specif ication

When a ball-related event is manually tagged by the user, the system should
record the involved players position on the field to derive the ball position
during that event. Guorrat should be able to derive if the same player has
possessed the ball between two events, by evaluating if the same player is
involved in two consecutive event. If Guorrat detects a possession, it should be
able to generate ball positions during the possession by recording the positions
of the involved player during the possession. In Figure 3.1, Player 2 receives the
ball in Event 1 and passes it on during Event 2, and the system should therefore
derive that Player 2 has possessed the ball between events 1 and 2, and thereby
generate the ball positions during that phase of play.

Figure 3.1: Demonstration of how Guorrat should use tagged events to determine the
position of the ball during these events.

3.1.2 Retrieve Video Stream and Metadata from External
Source

If Guorrat is to be able to provide a live stream of a football match along with
an interface to tag events in the context of player positional data, the system
should be able to connect to the external source, Sadji[51], to retrieve the HLS
video stream segments along with each associated metadata segment.

3.1.3 Provide Live Stream of Match with Synchronized
Player Rectangles

Guorrat should be able to provide a video live stream of a football match. The
video stream should also display a rectangle outline of each player, based on
the received metadata from the external source, Sadji[51]. The video stream
should provide the user with a simple and responsive user interface for video

3.2 non-functional requirements 25

controls, including play/pause, rewind, and skip, to accommodate a good-
flowing manual event tagging system.

3.1.4 Handle Event Tagging

While viewing the live match stream, a user should have the ability to click on
the rectangles representing two different players to record a ball-related event
as it occurs. Following this, the user can select from various event types, such
as a pass or a tackle. The specific events available for selection should vary
depending on whether the two selected players are teammates or opponents.
The system should keep track of all registered events, capturing details such
as the sender and receiver, the timing of the event, its success or failure, and
other relevant information needed to generate ball positions.

3.1.5 Track Names of Players

In addition to allowing generation of ball positional data, the tagging function-
ality of Guorrat also registers the ball related events themselves, to complement
the generated ball position data for more advanced analysis. To obtain more
detailed event data, the user has the option to select the name of the players
associated with each player rectangle involved in an event. Guorrat should
attempt to track the selected player name for each player rectangle, to make
the event tagging process more efficient.

3.1.6 Display Generated Ball and Event Tagging Data

A user should be provided an interface with the display of all generated ball
positions and registered ball-related events, to immediately evaluate and val-
idate the quality of the ball positions and event data. Regarding the tagged
event data, it should be possible for the user to filter these events based on
team, players, success and time of event.

3.2 Non-Functional Requirements

The section on non-functional requirements is critical for outlining the crite-
ria that define the operational characteristics of Guorrat. This requirements
regard properties such as real-time performance, the precision of the system’s
generated output, its availability, and other properties not directly connected
to the unique features of Guorrat.

26 chapter 3 requirement specif ication

3.2.1 Real-time Performance

A key requirement for Guorrat is its capability to function in real-time. This
means it should be able to retrieve and stream a live football match as it unfolds,
while also enabling users to tag events as they occur to generate ball positions.
As Guorrat requires manual input from a user to tag events, the speed at which
a match is fully tagged ultimately depends on the user’s efficiency. However,
the ball positions and event data generated from these tags should be available
immediately once the events are registered.

3.2.2 Precision

A crucial aspect of Guorrat is the precision of the output data it generates. For
users to rely on this system, it is essential that they can trust the accuracy
and quality of the data produced. If the ball positional data generated by this
system is intended for use in conjunction with other analysis platforms, the
correctness of this data must be maintained at the highest possible level.

3.2.3 Usability

A non-functional requirement for Guorrat is Usability. It is critical that the
system is designed and implemented to be simple and accessible for all intended
users. The system should enable users such as analysts and coaches, irrespective
of their technical expertise, to efficiently navigate and utilize the system’s
features. During the development process, Guorrat will be exposed to coaches
with experience in the domain, to receive feedback.

3.2.4 Availability

Given the critical need for continuous user access during a match, the design
and implementation of Guorrat should be developed with a focus on the non-
functional requirement of availability. Guorrat must be available for users at
the time of the live match. Additionally, as Guorrat’s function depends on the
generated metadata from the external source, Sadji[51], Guorrat’s availability
will ultimately depend on the availability of this external source.

3.2.5 Reliability

Guorrat should be reliable, and should operate consistently over time. It is
important that the system performs its intended functions without failure,

3.3 summary 27

maintaining a high level of service and reliability even under heavy use.

3.2.6 Maintainability

Guorrat should be designedwith a strong emphasis onmaintainability, ensuring
that both ongoing maintenance and future development are straight-forward
for new developers. It should feature a logical and well-structured architectural
design, complemented by clearly organized and comprehensible source code,
to make it easier for potential new developers to work on the system.

3.3 Summary

In this section, we have explored the functional and non-functional require-
ments needed to ensure that Guorrat works as intended. Guorrat should be
able to generate real-time and precise ball positions, by providing users with
an event tagging system for a live football match. It is crucial that Guorrat
performs in a real-time fashion, and with the highest possible precision regard-
ing the generated ball positions. In the next chapter, it will be explained how
Guorrat is designed and implemented to fulfill these requirements.

4
Design & Implementation
In this chapter the system architecture of Guorrat will be presented. Addi-
tionally, it will explore the design and implementation of Guorrat, in the
context of the functional and non-functional requirements specified in the
previous chapter. The chapter will explain how Guorrat’s event tagging func-
tionality is designed, and how it is used to generate precise ball positions in
real-time.

4.1 System Architecture

The overarching architect of Guorrat consist of a frontend (1), backend (2)
and a data storage (3). Additionally, it connects to an external source (4) to
fetch the live video stream of a match along with the generated metadata.
This external source, Sadji[51] is developed in parallel with Guorrat, and is
responsible for generating the metadata, which contains data regarding each
player, used by Guorrat. A visualization of the system architecture is displayed
in Figure 4.1.

The role of the frontend (1) is to retrieve video stream and metadata and
synchronize it (1.1), and provide users with a real-time event tagging system
(1.2), as well as providing an interface for displaying the generated ball and
event data (1.3). The backend server is responsible for retrieving, processing
and storing the video stream (2.1) and metadata files (2.2) from the external

29

30 chapter 4 design & implementation

source[51], in addition to handling tagged events (2.3) to generate ball positions.
The data storage (3) stores the metadata files (3.1) and the video stream files
(3.2).

In the following sections, these different parts of Guorrat will be explained in
further detail.

Figure 4.1: Overview of the system architecture for Guorrat.

4.2 Frontend

The frontend’s main responsibility is to synchronize the received video stream
and metadata, and provide the user interface of the event tagging function-
ality needed to generate ball positions. In addition, the frontend provides a

4.3 backend 31

visualization of the generated ball-positions and event data.

For the implementation of the frontend server, React[40] was selected as the
framework. The decision was influenced by my familiarly with React and the
high level of support because of its large community, which ensures a smoother
and more efficient development process. React comes with a wide range of
available external libraries, to speed up and simplify the development process.
On important React library for this system is the ’HLS.js’[57] library, facilitating
the streaming of hls video formats directly in the web browser.

TypeScript[55], a programming language built on JavaScript, is chosen as
the programming language for the frontend server. The main reason for this
is its strict type safety, which increases the maintainability and reliability of
Guorrat.

4.3 Backend

The backend server has two main responsibilities. The first is to fetch the
HLS video stream files and metadata files from the external source, Sadji[51],
process it, and serve it to the frontend when requested. For each video stream
segment, the external source provides a corresponding metadata file. Each
video segment has an associated metadata segment which contains the detec-
tions for each frame for that video segment. All video stream and metadata
file pairs are associated by a segment number present in their filenames. When
the frontend server requests a specific video segment, it will send a request
for the corresponding metadata file as well, and the backend server will then
respond with the requested metadata.

The second responsibility of the backend server is to process and store the
tagged event data received from the client. This includes handling tagged
events, determining and processing possession, and use this data to generate
ball positions throughout the match.

The backend server for this system is developed using the Rust programming
language. The selection of Rust was made after evaluating several potential
programming languages, each with its own set of strengths and suitability for
the project’s requirements.

Rust was chosen for its outstanding performance capabilities [42], which are
essential for meeting the real-time non-functional requirement of the system.
The performance capabilities of Rust also makes it possible to support a larger
number of concurrent users effectively, which directly contributes to enhancing

32 chapter 4 design & implementation

the system’s ability to scale well. Additionally, Rust’s strict type[43] and mem-
ory[44] safety play a crucial role in boosting the reliability and availability
of the system. The Rust ecosystem also provides a wide range of different li-
braries, so-called crates, that provides reusable code for different functionalities,
to increase the efficiency of the development process.

Other languages considered included Python, Go and C. Python is well-known
for its rapid development capabilities and extensive support libraries, along-
side strong community backing. However, its performance and memory safety
metrics were not deemed sufficient for the demands of this system. Go, on
the other hand, offers a closer comparison to Rust in terms of performance
and safety[5]. Both Go and Rust would be suitable choices based on these
attributes, but Rust was ultimately preferred due to its slight edge in perfor-
mance and my prior experience with the language. While C has a small edge in
performance over Rust, Rust contains more high-level language features, which
makes fast development and maintainability easier[7], which was important
for this system.

This careful consideration of language features and system requirements led to
the selection of Rust, ensuring that the backend is robust, efficient, and capable
of supporting the system’s intended functionalities.

As the backend server is implemented in Rust, Actix Web[1] was chosen as the
preferred backend web framework. It was preferred to use a web framework
to implement the http server, as a web framework handles most of the http
server setup, to easier focus on the implementation of this system’s unique
features and requirements. Actix Web was chosen because of familiarity, its
ease-to-use, wide support, and good documentation.

4.4 Data Storage

For this system, it was decided to store data on the backend server’s file system.
Using the file system for data storage offers simplicity, speed in development,
and flexibility, making it ideal for quickly testing functionality with minimal
setup. This approach was preferable for a poc like Guorrat due to the lim-
ited development time available and the primary focus being on evaluating
its unique functionalities, rather than on how data is stored. However, should
Guorrat transition to commercial use, moving to a database would likely be nec-
essary to accommodate increased data volumes, enhance security, and improve
data management capabilities, such as handling user and event data.

The metadata received from the external source, Sadji[51], is formatted as

4.5 retrieving video stream and metadata from external source 33

JavaScript Object Notation (json) structures, on an agreed-upon format. The
formats of this metadata can be seen in Figures 4.2 and 4.3. json[23] is a pop-
ular language-independent data-interchange format, known for its simplicity
and ease of use, as it is both straightforward for humans to read and write and
for computers to parse and generate. The metadata is stored directly at the
backend’s file system as json files.

4.5 Retrieving Video Stream and Metadata from
External Source

During a live football match, Guorrat will continuously connect to the external
source, Sadji[51], to retrieve the video stream and metadata. Periodically,
matching the specified length of the hls segment files, the backend server will
connect to the external source to fetch the hls segment file and its associated
metadata file, assuming it is ready. Upon a successful retrieval, the video stream
data and metadata are processed and stored on the backend server, and the
hls manifest file is promptly updated to reflect the availability and location
of the newly acquired hls segment. A part of the metadata processing is to
run it through an algorithm that attempts to improve the continuity of the
IDs associated with each detection in the received metadata. This algorithm
is covered in more detail in Section 4.10. Once the video stream data and
metadata is processed and stored in the file system, the associated segment
number is added to a list of distribution-ready segment numbers, and the HLS
manifest file is updated to reflect the presence of the newly addedhls segment
file and the corresponding metadata file.

4.6 Backend Streaming Server

As one functional requirement of the system is to provide the frontend with a
live video stream of a football match, along with the corresponding metadata,
the backend server is designed to provide that service. The backend serves a
http server, providing the frontend server with endpoints to request the hls
manifest and segment files, as well as the associated metadata files. The http
server is also responsible for handling event tagging related requests from the
frontend.

While hls provides Adaptive Bitrate Streaming (abr) to accommodate for
different levels of network quality, this system only offers one stream. This
was chosen since Guorrat is supposed to be a poc, and the focus has therefore

34 chapter 4 design & implementation

been at implementing the functional requirements that are unique for this
system.

4.7 Synchronizing Video and Metadata

An essential part of the system is ensuring the video stream and metadata gen-
erated by the external source, Sadji[51], are synchronized, for the interactive
player rectangles to correctly line up with the players when drawn onto the
video. Due to the utilization of the hls protocol, which relies on the segmen-
tation of the video stream, the metadata is also divided to match these hls
segments. With an hls segment duration of 2 seconds and a video frame rate
of 30 Frames per Second (fps), each segment contains a total of 60 frames.
However, with some configuration changes, the system should be capable of
handling different frame rate and segment length setups. The segmentation of
the metadata files are performed by the external source.

How the metadata received from the external source, Sadji[51], is structured
can be seen in Figures 4.2 and 4.3. Each frame in the metadata contains up to
22 detections, decided by how many of the players the external source is able
to detect.

4.7 synchronizing video and metadata 35

1 {
2 "frame": "1",
3 " detections ": [...],
4 " homography ": [
5 [
6 0.6376710495779074,
7 -0.00015582586796899614,
8 1011.8963446285936
9],
10 [
11 0.0006676863375638175,
12 0.6379639539749161,
13 104.04555853337479
14],
15 [
16 7.498534648589027e-07,
17 4.0181671317781595e-07,
18 1.0
19]
20]
21 }

Figure 4.2: Example of how a frame is represented in the JSON metadata.

1 {
2 "id": "1000006",
3 "team": 1,
4 " pixel_pos ": {
5 "x1": 1475,
6 "y1": 332,
7 "x2": 1494,
8 "y2": 383,
9 },
10 " field_pos ": {
11 "x": 558,
12 "y": 258,
13 }
14 }

Figure 4.3: Example of how a detection is represented in the JSON metadata.

36 chapter 4 design & implementation

A crucial choice during the development of Guorrat was where to synchronize
the video stream and metadata segments and draw the interactive player
rectangles onto the video. Ultimately, the frontend was chosen, and in the
following section the benefits and downsides of each solution is explored, in
the context of the requirements of Guorrat.

4.7.1 Frontend vs Backend

By handling the synchronization and video processing at the backend, the
frontend server is relieved from having to recalculate and draw rectangles at
a rate of 30 times per second, assuming a frame rate of 30 fps. The initial
concern was that if these tasks were managed by the frontend server, which
is also tasked with streaming the video, facilitating tagging interactions, and
displaying data—the workload could overwhelm the frontend, reducing the
usability of the system. In addition, by doing the metadata synchronization and
video processing at the backend server, the process would only have to be done
once for eachmatch, instead of having each client doing it separately. Therefore,
by doing it that way, it could increase the scalability of the system.

As Rust was chosen as the programming language for the backend server,
it became clear that there were clear obstacles regarding video and image
processing in Rust. The processing process consists of three stages: decoding the
received video segment into separate frames, synchronizing and drawing the
associated player rectangles on each frame, and to re-encode the video segment.
The two options to use for the video processing task was either FFMPEG or
OpenCV. FFmpeg[13] is an open-source multimedia framework designed to
process multimedia files, including decoding, encoding and transcoding video
files. OpenCV[37] is an open-source library for computer vision, and widely
used for its advanced video processing capabilities. OpenCV can leverage
FFmpeg for much of its under-the-hood video I/O operations, as FFmpeg
operates at a lower level and provides developers with direct access to control
encoders, decoders, and transcoders.

Rust offers a crate with Rust bindings for OpenCV; however, after encountering
initial difficulties in getting it operational and considering the warning in
the crate’s official README—"The api is usable, but unstable and not very
battle-tested; use at your own risk"[8]—it was decided against using it. It was
decided to use ’video-rs’[9], a high-level video toolkit Rust crate, to implement
the video processing at the backend server. An experiment was performed to
evaluate this implementation, and the results from this experiment showed
that while the implementation could support real-time processing, it did not
perform especially well. In Section 5.8, this experiment will be explored in
detail.

4.7 synchronizing video and metadata 37

A crucial distinction between handling metadata synchronization and video
processing on the backend versus the frontend lies in the scale and nature
of the processes involved. When performed on the backend, this task neces-
sitates decoding the video into individual frames, synchronizing metadata,
drawing rectangles on each frame, and then re-encoding these frames back
into a video segment. In contrast, conducting this process on the frontend sim-
ply involves synchronizing the metadata and drawing the rectangles directly
over the video during playback, without altering the underlying video frames
themselves.

In addition, by drawing the rectangles over the video when the video stream is
played at the frontend, with React, click event registration can be used. As each
rectangle is its own React component, it is quite straight-forward to register
when a rectangle has been clicked by the user. As a rectangle is clicked, its
associated information, such as its position, connected ID/player, can easily be
retrieved and sent to the backend server to register a new event. Also, as a user
holds the mouse pointer over a rectangle component, this can be detected by
React, and makes it possible to highlight the given rectangle, making it easier
to ensure for an operator that the correct rectangle is clicked. That effect can
easily result in a better and easier user experience, and increases the usability
of the system. If the rectangles were drawn on the video at the backend, the
identification of the clicked rectangle would have to be done by calculating
the position of the click, making it a more complex and error-prone process,
making the system harder to maintain.

After evaluating the aforementioned factors in the context of the functional
and non-functional requirements of Guorrat, the frontend was chosen to do
the metadata synchronization and drawing. The non-functional requirements
of usability and real-time performance were especially important for this
choice.

4.7.2 Frontend Handling

As the frontend server only stores a limited metadata segments at a time,
to limit client memory usage, it uses a sliding window approach to handle
metadata segments. As the video player processes the video stream and parses
the provided hls manifest file, it preemptively loads available video segments,
a technique commonly known as buffering. This buffering helps provide a
smooth and uninterrupted video viewing experience. As video segments are
fetched in advance, the frontend also requests its associatedmetadata segments.
However, as the video playback must allow frequent pausing and skipping by
the user to properly record all events, it is important that the frontend does
not load in too many metadata segments in advance, as there is only a limited

38 chapter 4 design & implementation

number of metadata segments loaded concurrently.

Currently, the frontend will not prefetch metadata segment more than 3 seg-
ments ahead of the currently playing segment. As the video player starts playing
a new segment, it will, if not yet fetched, try to fetch the 3 next metadata seg-
ments from the backend server. The system is designed like this to ensure that
there are always loaded metadata segments that follows the currently playing
segment, to ensure smooth synchronization between video and metadata. As
Guorrat should allow frequent skips forwards and backwards in the video to
make it easier for a user to tag event correctly, it is important that there are
loaded metadata segments both following and preceding the currently playing
segment.

On the frontend server, the html video player object monitors its current
position within the video, which is measured in milliseconds. The value starts
at 0 milliseconds, representing the beginning of the stream, and increments
as the video plays. This timestamp is crucial for synchronizing each video
stream frame with the associated positions of the player outline rectangles.
The frontend manages this by storing the loaded metadata in a hash-map
structure, with the JavaScript data structure Map[31]. In this Map, each entry
consists of a key and an associated value: the key represents a frame number of
the metadata, and the value holds all detection data for that specific metadata
frame. Given that accessing elements in a hash-map has an average time
complexity of O(1), it serves effectively as a storage mechanism for metadata,
particularly since this metadata needs to be retrieved at a rate of 30 fps to
update the positions of rectangles on the screen accurately.

Each interactive player rectangle is its own React component, and is rendered
on top of the playing video stream for each frame, as seen in Figure 4.6. The
metadata received from the external source, Sadji[51], contains the position
of each detection on the screen, in addition to the height and width of the
detection rectangle. These values are utilized by Guorrat to determine where
to draw the interactive player rectangles. Each detection in the metadata does
also contain which team the detected player plays for, which this system uses
to decide which color the interactive player rectangle should be.

As the video stream is playing, the program will continuously check which
frame number it is currently on. As the video player only knows its current
time in milliseconds, the current frame has to be calculated using the given
frame rate of the video, currently 30 fps. If the measured current time shows
that the video player has reached a new frame, it uses the new frame number
to retrieve the associated detection for that frame from the Map of loaded
metadata. These detections are then added to another dictionary, where each
key is a player ID, and the value matches the associated detection data. So as

4.8 event tagging 39

the frame changes, the program loops over that dictionary and rerenders each
player rectangle on top of the video player.

4.7.3 Backend Handling

When the frontend loads a newhls segment from the backend server, it parses
the filename of thehls segment file it retrieved,and sends an additional request
to the backend server asking for the associated metadata file. Upon success, the
metadata is read and added to the previously loaded metadata. As the loaded
metadata segments can be quite large, around 100-150 kb, the frontend only
stores a limited number of metadata segments, to reduce unnecessary memory
use at the frontend.

An in-memory cache is implemented at the backend server. This cache tem-
porarily stores metadata segments in memory, in an attempt to reduce the
overhead when the client requests a metadata segment. New metadata files
received from the external source are added to this cache, as well as metadata
files requested by the client that is not present in the cache. In addition, when
a requested metadata file is read and added to the cache, the backend also
reads and tries to add the 3 succeeding metadata segments to the cache. When
a client request metadata segment N, it is likely that the next requested will
be N + 1, and that is why the backend tries to preemptively cache metadata
segment.

4.8 Event Tagging

For Guorrat to be able to generate real-time ball positions during a football
match, it required a system where user can manually tag ball-related events,
mainly passes and tackles. In the following sections, the design and implemen-
tation decisions regarding the event tagging functionality of Guorrat will be
explained.

4.8.1 Configure Teams

When using Guorrat’s event tagging functionality, users have the ability to
configure the starting lineup for each team. To ensure that player names are
available for event tagging, they must first be entered on this configuration
page, seen in Figure 4.4. Whenever a teammakes a substitution during a match,
users can return to this page to update the lineup, replacing the name of the
player who has been substituted with the incoming player’s name.

40 chapter 4 design & implementation

Figure 4.4: The layout of the configure teams page.

4.8.2 Event Registration

How the frontend and backend manages the registration of ball-related events
will be explained in the following two subsections.

4.8 event tagging 41

1 {
2 " end_frame ": 33,
3 " event_id ": 0,
4 " event_type ": 0,
5 " field_coordinate_receiver ":
6 {
7 x: 295,
8 y: 541
9 },
10 " field_coordinate_sender ":
11 {
12 "x": 274,
13 "y": 299
14 },
15 " id_receiver " 2000008,
16 " id_sender ": 2000009,
17 " name_receiver ": " Player 1",
18 " name_sender ": " Player 2",
19 " pixel_coordinate_receiver ":
20 {
21 x: 301,
22 y: 174
23 },
24 " pixel_coordinate_sender ":
25 {
26 "x": 479,
27 "y": 188
28 },
29 " start_frame ": 7,
30 " success ": true,
31 "team": 0
32 }

Figure 4.5: Example of an Event object.

Frontend Handling

Guorrat’s event tagging system is based on a two-click principle. Each event
contains a sender and a receiver. If the event is a pass, the sender is the player
passing the ball, and the receiver is the player receiving the ball. In the event of
a tackle, the sender is the player being tackled, while the receiver is the player
that takes the ball.

42 chapter 4 design & implementation

Figure 4.6: Layout of stream video window with player rectangles present.

As a user accesses the video stream page in Guorrat, a "start tag" button can
be clicked. When this button is clicked, the program starts drawing the player
rectangles onto the video stream, as can be seen in Figure 4.6.

To register an event, the user must first select a sender. To do this, the operator
must click on a player with the left mouse button at the time the sender passes
or loses possession of the ball. Then, at the time the ball reaches the receiving
player, the operator must click on the receiving player’s rectangle with the
right mouse button. The frontend temporarily stores info about the last left
and right clicked rectangles, such as the connected id, field position, team and
the frame number when it was clicked.

When both a sender and a receiver has been selected, an event popup will
show on screen, as seen in Figure 4.7 and Figure 4.8. The event popup consists
of name fields for both the sender and receiver, as well as a button to change
either one. In addition, the popup will contain buttons for different event types,
determined by the context regarding the event. If the two involved players in
an event is on the same team, a ’pass’ is the only available event type, as can
be seen in Figure 4.7. If the two involved players are on different teams, the
event can be classified as either a ’pass’ or a ’tackle’, as is displayed in Figure
4.8.

As an event type is selected, an event object is created to register the event. The
event object consists of metadata regarding the event, including data regarding
the sender and receiver, and the event itself. The content of the event object
can be seen in Figure 4.5. This event object is then added to a list containing

4.8 event tagging 43

all registered events. In addition, the newly created event object is sent to
the backend server to process a possible possession and to generate the ball
positions.

Up until now, only clicks on player rectangles have been discussed. However,
the metadata received from the external source, Sadji[51], occasionally fails
to detect all players. To compensate for this, Guorrat allows a user to click
anywhere on the video to select either sender or receiver of an event, or in the
case the ball goes out of play. This feature will be explained in more detail in
Section 4.11.

Figure 4.7: Event popup when registering an event between two players of the same
team.

44 chapter 4 design & implementation

Figure 4.8: Event popup when registering an event between players on different
teams.

Backend Handling

As an event is tagged and registered on the frontend, it sends a POST request to
the backend containing the newly created event object. As the backend server
receives this request, it reads the content and adds the event object to a list of
events. The backend uses the received event object and the previous received
event objects to determine if a player possession has occurred.

Then, the server uses the received event object to determine if a new player
possession has happened and to generate the ball positions during these events.
This process to determine possession and generate ball positions is explained
in more detail in Sections 4.8.3 and 4.9.

4.8.3 Possession Registration

As mentioned in Section 4.8.2, when an event is tagged, the system initiates
a process to determine if a player possession has occurred. This operation is
executed by the backend after it receives the tagged event object from the
client. The process involves two steps: firstly, assessing whether a possession
has indeed taken place, and secondly, if necessary, retrieving the positions of
the involved player throughout the duration of the possession.

In the first step, the system checks two conditions to determine if a possession

4.8 event tagging 45

has occurred. First, the system verifies if the received event is the first tagged
event; if so, it concludes that no possession could have occurred previously. The
second condition checked is whether the sender of the most recently registered
event is the same as the receiver of the preceding event, and that the IDs match.
The definition of sender and receiver is defined in Section 4.8.2. This continuity
is essential for determining a possession sequence. The logic for determining
if a possession has occurred is visualized as a flowchart in Figure 4.9.

New event

Yes

YesIs it the first
event? No possession

NoIs the sender on most
recent event same as receiver on

preceding event?

Possession

No possession

Yes

Figure 4.9: A flowchart representing the logic to determine a possession.

The second step, if needed, reads the needed metadata to retrieve the given
player’s position on the field during the possession. The possession’s time frame
starts at the end of the preceding event, and ends at the start of the most recent
event. The system uses these frame numbers to determine which metadata seg-
ment files it must read to cover the entire possession. Each metadata segment
is then read and loaded into memory. For each frame within the possession
period, the system extracts and records the field position of the detection that
matches the possessing player’s ID into a list of coordinates.

46 chapter 4 design & implementation

If the ID of a player possessing the ball switches during the possession, this
system is not able to generate the ball positions during the duration of the
possession. This is because the ID is used to decide which detection’s field
position in the metadata that are to be recorded. This is the main reason the
algorithm for improved ID tracking has been developed, which is detailed in
Section 4.10.

Once all relevant frames have been processed, this list will contain the com-
plete positional data of the player during the possession. The structure of the
possession object can be seen in Figure 4.10.

1 {
2 " player_id ": 17,
3 " player_name ": " Player 1",
4 "team": 0,
5 " start_frame ": 164,
6 " end_frame ": 228,
7 " coordinates ": [
8 {
9 "x": 825,
10 "y": 295
11 },
12 {
13 "x": 829,
14 "y": 389
15 },
16 ...,
17]
18 }

Figure 4.10: Example of a possession object.

4.8.4 Connect Player Names to Events

As mentioned earlier, the user is provided the possibility to select the name of
the players that are involved in each tagged event, to improve the quality of
the event data. As mentioned in Section 4.8.1, this requires that the user has
added the players manually before tagging.

When the register event popup is displayed on screen during the tagging of
an event, the popup will contain a field for the name of both the sender and
receiver. The first time a rectangle associated with a given player ID is involved

4.8 event tagging 47

in an event, that player’s name field will not contain any names. To make it
easier to spot for the user, the name fields is color coded. If a player name
has been connected to that rectangle, the background of the player name field
will be green, as seen in Figures 4.7 and 4.8. In the case no player has been
selected, the field will be colored red, as seen in Figure 4.11.

Figure 4.11: Event popup where no player names have been associated with the
receiving player.

After a player name has been connected to a player rectangle, the system will
attempt to keep track of the selected player name. The frontend uses each
players unique player ID to keep track of each rectangle’s associated player.
Section 4.10 will explain further how Guorrat’s player ID algorithm works. As
each rectangle contains a unique ID, a dictionary is used to store the mapping
between ID and player names. Each key in the dictionary is associated with
a player name. When registering an event, the system will use the IDs of
the clicked player rectangles to search the dictionary for a connected player
name.

When an ID switch occurs between two players, p1 and p2, their corresponding
rectangles often switch places directly. This means that if rectangle r1 associated
with p1 exchanges with rectangle r2 associated with p2, r1 will likely end up
associated with p2, and r2 with p1. As a result, if a user records a subsequent
event involving either p1 or p2, the incorrect player name may appear in the
event popup. Since the system anticipates a direct swap, when the user corrects
r1’s associated player name back to p1, the system will automatically update
r2’s associated player name to p2. This is done in an attempt to minimize the
required number of user inputs needed.

48 chapter 4 design & implementation

Figure 4.12: Menu for selecting player.

4.8.5 Display Data

A functional requirement for Guorrat is to present the user with a display of
tagged event and ball data, as detailed in Section 3.1.6. This is achieved via
three additional frontend pages. The first page showcases the tagged passes
and tackles, the second page presents the derived possession data, and the
third page displays the generated ball positions.

For both pages,users have the ability to filter the events based on various criteria,
including team, player, success of the event, and the time of occurrence. The
interface for displaying passes can be seen in Figure 4.14.

4.9 generate ball posit ions 49

Figure 4.13: How the generated ball data is displayed.

Figure 4.14: How tagged passes are displayed.

4.9 Generate Ball Positions

As the primary contribution of Guorrat is to generate real-time ball positions
for a football match, this section will explain how it is done. Guorrat is able to
register ball positions in two ways. The first is through tagged events. For any
tagged event, Guorrat uses the recorded start and end field position and frame
number to interpolate the ball position for the duration of an event. These are
the field positions generated for each player by the external source, Sadji[51],

50 chapter 4 design & implementation

and is present in the received metadata.

The other way, is the method explained in Section 4.8.3, where the ball position
is generated by utilizing the field position of the involved player during a
possession. By combining these two methods, Guorrat attempts to generate a
ball position in as many frames as possible, with the highest possible accuracy.
How well Guorrat succeeds with its ball generation is evaluated in Section
5.2.

4.10 ID Tracking Algorithm

Each detection in the metadata is tagged with an ID for identification, assigned
when it is generated at the external source, Sadji[51]. The external source sys-
tem employs a multi-object tracking algorithm, ByteTrack[59], in conjunction
with the object detection algorithm to track detections across consecutive video
frames. As a result, each detection in the received metadata includes an ID
field that assigns a unique value to each new detection. However, as players
intersect or move in and out of the video frame, the multi-object tracking algo-
rithm faces challenges in consistently tracking all players, leading to instances
where IDs may switch between two players or a player may be assigned a new
ID.

Guorrat relies on these received IDs to correctly track possessions to generate
ball positions, and to track which player name is selected for each player
rectangle. However, when these IDs switch between players or when a player
receives a new ID, it becomesmore difficult to accurately track ball positions and
player names. To address this, Guorrat works on enhancing the consistency of
ID tracking across continuous frames. When the backend server receives a new
metadata segment from the external source, an algorithm is executed to refine
the IDs of each detection before the metadata is sent to the frontend server.
This improvement helps maintain accurate ball tracking and player selection
throughout the video analysis process. The implemented ID algorithm works
as follows:

The backend has a dictionary that keeps track of each teams outfield players
and keeper. For each entry in the player dictionary, it is given an new unique
ID that should stay consistent throughout the game, hereby referred to as P-ID.
Each detection’s ID as it arrives from the external source, Sadji[51], is hereby
referred to as D-ID. Each entry in this dictionary contains three elements. The
first is the P-ID value to identify each entry. The second element is the last
recorded field position associated with that P-ID, as in the field position of the
last detection that were mapped to that entry. The third element is the D-ID of

4.11 non-rectangle click registration 51

the last detection that were mapped to that entry.

When a new metadata segment has arrived from the external source[51], the
backend reads the segment metadata file and loads it into memory. For each
frame in the segment, all detections are looped over. If the D-ID of a detection
in the new frame matches an entry with the same D-ID in the dictionary, that
entry is updated with the field position of the new detection. If a detection in
the new frame does not match any of the entries in the dictionary, it is noted
that there is a new/unknown D-ID. As the system tracks every new/unknown
D-ID, it also tracks which, if any, entries in the dictionary that has not been
matched with any new detections. The first step of the algorithm is to map
all detections from the new frame to their corresponding entry and update
that entry. The reason all detections in the frame are looped through before
any potential new detections are mapped to a dictionary entry, is to prevent a
new detection being mapped and overwriting an entry connected to another
detection that is still present.

After that is done, the algorithm goes through all new detections that does
not match any of the previous entries, and finds the available entry that has
the closest field position to the new detection. When the closest entry has
been found, any other new/unknown detections on the same frame can not be
mapped to that entry. After all new detection has been mapped to a entry in
the dictionary, the new detection’s ID is changed from the D-ID to the entry’s
P-ID.

The impact of this ID-tracking algorithm and how it improves the system is
tested and evaluated in sections 5.3 and 5.5.

4.11 Non-Rectangle Click Registration

At times, the external source, Sadji[51], producing the metadata will fail to
detect all players in a frame. If it happens that the metadata is missing the
detection of a player during an event the given player is involved with, and
thereby missing the given player’s position on screen and on the field, there will
be no rectangle on screen representing the given player, and an event can not
be registered by clicking on the rectangle. For easier referencing, this feature
is hereby referred to as Non-Rectangle Click Registration (nrcr).

The nrcr feature allows a user, when registering an event where an involved
player is not detected, to click anywhere on the video to manually select either
a player, or register that the ball has gone out of play. When the user then clicks
on the given player’s position on the screen, that pixel coordinate is registered

52 chapter 4 design & implementation

and sent to the backend, and the associated field position is calculated and
returned. By adding this feature, the precision of the generated event data is
increased. This improvement is investigated and evaluated in section 5.4.

For the external source, Sadji[51], to be able to translate a player’s position
on the video screen to their position on the field, a panorama image has to
be created for that match. This consists of stitching together frames from
different angles to create a panorama image that contains the whole field.
For each match, a homography matrix used to calculate the relation between
the panorama image and the field is calculated by the external source. An
assumption made for this system, is that for each match, this homography
matrix is received from the external source.

At the backend server, when the received pixel coordinate is received, it is first
scaled to the original dimensions of the video stream. As visualized in Figure 4.2,
frames in the metadata can contain the homography matrix used to translate
the position between a point on the given frame to the corresponding point on
the panorama image. The backend multiplies this frame-specific homography
matrix with the given pixel coordinate vector, which returns the associated
coordinate on the panorama image. Then the same operation is performed
again, but with the panorama image coordinate and the panorama-to-field
homography matrix, which then returns the associated coordinate on the field.
The calculated field coordinate is then returned to the client, where a new
event object is created and registered.

Due to the computationally intensive nature of calculating the transforma-
tion matrix between a frame and the panoramic image, the external source,
Sadji[51], can not provide this matrix for every frame without compromis-
ing real-time performance, as detailed in the thesis regarding the external
source[51]. To meet real-time requirements, the external source is able to sup-
ply the transformation matrix only every 30th, 25th, or 20th frame, depending
on the resolution of the video stream.

To address this issue, when the backend needs to translate a user’s click on a
specific frame into its corresponding field position, it employs interpolation. The
process begins by parsing the metadata to identify the closest frames—both
preceding and succeeding—that contain a transformation matrix. It then calcu-
lates the field positions for these two frames. By interpolating between these
positions, the backend estimates the field position of the clicked frame. This
approach represents a strategic compromise aimed at balancing two critical
non-functional requirements: real-time performance and precision. How this
added feature influences the system is evaluated in section 5.4.

4.12 summary 53

4.12 Summary

As real-time ball tracking comes with several challenges, especially for football
clubs with limited budgets and infrastructure, as detailed in Sections 2.2.1 and
2.2.2, Guorrat is designed and implemented to be an effective solution for real-
time ball detection. This chapter has explained how the architecture of Guorrat
is laid out, and how the system uses manual event tagging in combination
with the received player positional data to generate real-time and precise ball
positions. The chapter has also covered some of the features added to the
system, the improved ID-algorithm and the NRCR feature, in an attempt to
improve the precision of the generated ball data.

5
Evaluation
In this chapter, Guorrat will be evaluated. The precision and quality of the
generated ball positions byGuorratwill be evaluated, in addition to experiments
focused the real-time performance requirement of Guorrat.

5.1 Experiment Setup

All video segments used for evaluating of Guorrat is taken from the match
between Viking Fotballklubb (vik) and Tromsø Idrettslag (til) at SR Bank
Arena at 22.10.20231. This is because early in the development process of this
project, ball and player positional ground truth were manually created for
several segments from this match to test and evaluate the correctness of the
system during development.

5.1.1 Hardware Specifications

As Guorrat should be accessible for football clubs with limited budget, it is
important that the system has been tested on relatively cheap hardware that
should be obtainable for even resource-restricted football clubs.

1. https://highlights.eliteserien.no/game/3857

55

56 chapter 5 evaluation

Lab Desktop

The lab desktop computer used during the development and experimentation
process of Guorrat has the following hardware specification.

• OS: Windows 11

• CPU: 13th Gen Intel Core i7-3700

• GPU: NVIDIA GeForce RTX 3070

• Memory: 128GB DDR4 RAM

Laptop

As coaches/analysts might require more mobile computers, such as laptops, to
use Guorrat at the stadium, a laptop with the following hardware specification
has been used on some of the experiments.

• OS: Ubuntu 20.04

• CPU: Intel Core i7-5500 @2.40GHz

• GPU: Intel HD Graphics 5500

• Memory: 8GB DDR3 RAM

5.2 Measure Frequency and Precision in
Generated Ball Positions

Guorrat offers an alternative method for tracking the ball in football matches,
differing from the sensor-based and object detection-based methods detailed
in sections 2.2.1 and 2.2.2. This experiment aims to evaluate and compare the
ball positions generated by two different iterations of Guorrat (Iteration 1 and
Iteration 2) with those provided by the external source, Sadji[51], that generates
the metadata. This experiment is intended to evaluate both the frequency of the
generated ball positions and the accuracy of these generated positions.

The key difference between the two iterations of Guorrat is the additional
feature in Iteration 2, nrcr , which allows users to click anywhere on the

5.2 measure frequency and precis ion in generated ball posit ions 57

frame when registering an event, with the system’s ability to translate any
point on the frame to the associated position on the field. This is particularly
useful when a player is not detected or the ball goes out of play. Iteration 1
lacks this functionality. The details of this feature are thoroughly explained in
Section 4.11.

5.2.1 Experiment Setup

For this experiment, a 2 minute and 15 seconds long segment from the second
half of VIK-TIL is used to evaluate the generated ball positions. This segment
was chosen as its a relatively long segment of open play, with action occurring
on most of the field. The ball position result from the external source is received
directly from Sadji[51] for this experiment. For the two iterations of Guorrat,
the ball position results is generated by executing the event tagging during the
segment, with the system processing the events and returning the derived ball
positions.

The ball position ground truth that has been generated by manually marking
the position of the ball for each frame on the video, and then using homogra-
phy transformation to translate to the associated field position. All generated
ball positions in this experiment is compared to these ground truth ball posi-
tions.

While the segment consists of 4,034 frames from start to finish, 118 of these
frames were excluded from the evaluation, since the ball is outside of the field
during these frames. Therefore, only 3,916 frames are used to calculate the
resulting percentage of frames with a generated ball position.

For assessing the accuracy of each solution, Root Mean Squared Error (rmse)
is employed. rmse quantifies the average error, called Residual, between the
actual data points and the generated data points, expressed in the original
units of measurement. In this context, the rmse value represents the average
distance, in meters, between the actual ball positions and the predicted ball
positions generated by the various solutions.

To ensure the accuracy of the rmse calculations, it is essential to consider
the impact of outliers, which can disproportionately skew the rmse values.
Therefore, rmse is computed both with and without these outliers. Outliers
are identified using the Interquartile Range (iqr) method. The iqr, which
represents the range between the first quartile (Q1) and the third quartile
(Q3), measures the statistical spread of the middle 50% of the data, indicating
where the bulk of the values lie. In this context, the dataset consists of the
residuals between the actual and generated ball positions for each frame. Any

58 chapter 5 evaluation

Dataset Total ball detections % of total frames (3,916)
Ball positions from metadata 151 3.9
Guorrat iteration 1 2,837 72.5
Guorrat iteration 2 3,856 98.5

Table 5.1: Number of generated ball positions by each solution.

residual that is less than 2 times the iqr below Q1 or more than 2 times the
iqr above Q3 will be classified as an outlier. This method helps in maintaining
the integrity of the rmse calculations by mitigating the effect of extreme
values.

5.2.2 Results

Position Frequency

We will first explore the results regarding the ball position frequency of each
solution. With the ball positions generated by the external source, the ball
position is registered on 151 (3.9%) frames. The result from Iteration 1 of
Guorrat generates a ball position on 2,837 (72.5%) frames, while Iteration 2 of
Guorrat generates a ball position on 3,856 (98.5%) frames.

Position Accuracy

The results for the ball positions generated by the external source can be seen
in Figure 5.1A. The distribution of the Residuals Magnitudes can be seen in
Figure 5.1B. Figure 5.4 displays the calculated rmse values for the external
source generated ball positions equals 8.04 with outliers, meaning that, on
average, each ball position generated by the external source is located 8.04
meters from the ground truth ball positions. With outliers removed, the average
distance shrinks to 0.62 meters.

For Iteration 1 of Guorrat, the resulting ball positions can be seen in Figure 5.2A,
compared with the actual ball positions. The residual distribution can be seen
in Figure 5.2B. As we can see in Figure 5.4, this solutions results in an average
distance between the generated and ground truth ball position of 8.03 meters
including outliers, and 0.86 meters when the outliers are excluded.

Regarding Iteration 2 of Guorrat, we can see the results of the generated ball
positions in figure 5.3A, and the distribution of residuals in Figure 5.3B. For
this iteration, the average distance between generated and actual ball position

5.2 measure frequency and precis ion in generated ball posit ions 59

is only 3.85 meters, and 0.86 meters when outliers are removed, as displayed
in Figure 5.4.

Figure 5.1: A: This figure shows the ball positions generated by the external source on
top of the actual ball positions. B: A histogram showing the distribution of
the residuals.

Figure 5.2: A: This figure shows the ball positions generated by Iteration 1 of Guorrat
on top of the actual ball positions. B: A histogram showing the distribution
of the residuals.

60 chapter 5 evaluation

Figure 5.3: A: This figure shows the ball positions generated by Iteration 2 of Guorrat
on top of the actual ball positions. B: A histogram showing the distribution
of the residuals.

Figure 5.4: A bar chart showing the calculated RMSE values for each solution, both
with and without outliers.

5.2 measure frequency and precis ion in generated ball posit ions 61

5.2.3 Discussion

Regarding the frequency of the different solutions, the results demonstrate a
substantial improvement of ball position data compared to the data provided
by the external source, Sadji[51].

The reason Iteration 2 does not achieve 100% accuracy primarily relates to how
ball positions are derived from possessions, as outlined in Section 4.8.3. For
the system to recognize that a possession has occurred and to subsequently
calculate the ball’s position, it requires the ID of a detection. This ID allows
the system to track the detected player’s position throughout the possession.
However, if an event is registered and the involved player is not detected by
the external source, the system fails to recognize the possession. Consequently,
it cannot calculate the ball’s position during that time frame, regardless of
whether the possession actually occurred.

As for the accuracy of the different solutions, we see that, when removing
outliers, all solutions performs quite equal. For the ball positions generated by
the external source[51], it makes sense that it comes very close to the actual
ball positions when removing outliers. When the object detection algorithm
used by the external source[51] manages to detect the ball, it should be able
to place the position of the ball more accurately than the two other solutions.
This higher accuracy is attributable to the algorithm’s capability to directly
calculate the ball’s actual location, as opposed to Guorrat’s iterations 1 and 2,
which derive ball positions indirectly through the position of the possessing
player or via interpolation between two events. When players possess the ball,
it is rarely located directly between their feet. This means that even if the
player detections were perfect, the actual and generated ball positions will be
different by generating ball positions with this method.

Given that the ball positions provided by the external source[51] are relatively
sparse, it is reasonable that a few substantial outliers can significantly skew the
rmse result. These outliers are likely instances where the Object Detection
algorithm used by the external source[51] fails to detect the ball correctly,
resulting in large deviations from the true positions. By removing these outliers,
we mitigate their disproportionate impact on the rmse, leading to a more
representative evaluation of the system’s performance.

As illustrated in Figure 5.2B, there is a noticeable prevalence of positions with
high residuals. This likely explains why Iteration 1 exhibits comparable scores
to the other solutions once outliers are removed. A significant proportion
of generated positions with high error margins are disregarded in the outlier-
removed analysis, skewing the performance assessment towards more favorable
outcomes.

62 chapter 5 evaluation

When considering the comprehensive evaluation of ball position frequency,
accuracy, and the distribution of residuals, it becomes evident that Iteration
2 of Guorrat significantly outperforms the other two solutions. It is crucial
to acknowledge, however, that the ground truth data for ball positions was
generated manually, rather than through automated sensory methods. This
manual process could introduce potential inaccuracies, particularly in frames
where precise ball positioning is challenging to determine visually.

5.3 Generated Ball Position Improvement with
Improved ID Tracking

The process of tracking a possession requires a consistent ID for the involved
player throughout its duration, as detailed in Section 4.8.3. The ID tracking
algorithm employed by Guorrat, detailed in Section 4.10, aims to enhance
these IDs, which should in turn improve the precision of ball positions during
specific possessions. However, this improvement is expected to affect only a
subset of total possessions during a match, specifically those where the raw
metadata from the external source, Sadji[51], contains an ID switch between
the possessing player and another. Such ID switches can result in erroneous
ball positions, recording the wrong player’s field positions up until the switch
occurs. This experiment focuses on comparing derived field positions of the
ball by examining a scenario where this ID switch takes place.

5.3.1 Experiment Setup

In this test, a possession by a til player is used to visualize the derived ball
positions, and compare between the results when using the original IDs from
the raw metadata from the external source[51] and the generated IDs from
Guorrat. In the metadata received from the external source, Sadji[51], an ID
switch occurs as the player, possessing the ball, runs past a Viking defender
about halfway into the possession.

5.3.2 Results

Figure 5.5 shows the generated ball position from this possession when the raw
metadata IDs are used. In figure 5.6 we see the resulting derived ball positions
during the possession when the improved IDs are used.

5.4 generated ball posit ion improvement with non-rectangle click
registration 63

Figure 5.5: With original ID tracking.
Figure 5.6: With improved ID track-

ing.

5.3.3 Discussion

Although the frequency of such situations might vary, the results from this
example shows that the improvement in ID tracking makes a difference in the
quality and precision of the generated ball position data by Guorrat. Meaning
that the improvement is of importance, as it increases the non-functional
requirement Precision for this system.

5.4 Generated ball position improvement with
Non-Rectangle Click Registration

One issue with the metadata received from the external source, Sadji[51], is
that it occasionally fails to detect all players. Various factors, including the
player’s distance from the camera and the contrast between the player and the
background, can hinder player detection. Previously, Guorrat required that both
the sender and receiver of a pass to be detected for an event to be registered, as
there would be no interactive player rectangle to click on otherwise. However,
the current iteration of the system now enables users to click anywhere on the
video, and it calculates the corresponding field position. This enhancement
enables the registration of events even when one or both of the involved players
are not detected to increase the precision of the generated ball and event data,
and is explained further in Section 4.11.

64 chapter 5 evaluation

5.4.1 Experiment Setup

This test explores an example where such a situation occurs. The example
contains a brief 4-pass sequence during the second half of the vik-til match.
The reason this match is used is explained in Section 5.1. During this sequence,
a Viking player is not detected in the metadata during his possession, between
the time he receives the ball and the time he passes it on. A snapshot during
this possession, with the mentioned vik player circled, can be viewed in Figure
5.7.

Figure 5.7: Screenshot from VIK-TIL showing the situation evaluated in Section 5.4.
The mentioned Viking player is highlighted.

5.4.2 Results

In figure 5.8 and 5.9, the resulting registered passes can be seen. We can see
that with the improved functionality of the current iteration of Guorrat, all four
passes are registered, while with the previous iteration, the passes involving
the undetected vik player is not registered.

5.4.3 Discussion

This example demonstrates that the improved functionality of the current
iteration of Guorrat is more adept at managing situations where the external
source[51] fails to detect all involved players. By providing the user the ability
to register all passes, and calculate the field position of said passes, even in

5.5 measure id improvement with changing player names 65

Figure 5.8: Registered passes without
nrcr solution.

Figure 5.9: Registered passes with
nrcr solution.

the case of lacking metadata, the precision of the generated ball positions and
event data is increased.

5.5 Measure ID Improvement with Changing
Player Names

Guorrat allows users to manually designate which player is on the receiving or
sending end of an event. This capability enhances the tagged event data, which
can be used in addition to the generated ball position data to enhance analysis.
As detailed in Section 4.8.4, this feature leverages the unique ID associated
with each player rectangle to track the selected player linked to that rectangle,
as determined by the user. In an ideal scenario, users would only need to
select an associated player for each player rectangle once, with the system
subsequently maintaining these selections throughout the match. However, as
the received metadata from the external source, Sadji[51], does not provide
reliable continuous player IDs, Guorrat uses an ID-tracking algorithm, detailed
in Section 4.10, to improve the continuity of each player’s unique ID. This
experiment is designed to evaluate the improvement of Guorrat’s ID-tracking
algorithm and if required user input is decreased.

66 chapter 5 evaluation

5.5.1 Experiment Setup

The experiment is performed on several different segments from the vik - til
match, the reason being explained in Section 5.1. For each segment, Guorrat
is ran twice. On the first run, the player IDs generated by the external source,
Sadji[51], is used. In the second run, the IDs generated by Guorrat’s ID-tracking
algorithm is used. For each run, an associated player is preselected for each
rectangle. The reason the preselection is done is to more accuratelymeasure the
frequency that the ID tracking system fails, by isolating the experiment down
to only these happenings. The experiment itself is quite simple, as it works by
counting the number of times the user has to manually change the associated
player for a rectangle. Since associated players for each rectangle is preselected,
manual input will only be needed when a player’s ID switches.

A problem with the metadata received from the external source [51], is that
its object detection algorithm struggles to effectively detect and track players
in tight situations, especially far from the camera. Such situations is hereby re-
ferred to as ID-challenging situations. A prime example of such a ID-challenging
situation is corner kicks, where the majority of players are gathered tightly
in one of the team’s penalty area and the action takes place far away from
the camera. Because of this, the segments used in the experiment are divided
into two different groups. The first group consists of the segments that only
consists of open play, while the second group consists of segments containing
ID-challenging situations. An example of an ID-challenging situation, where
several players in the box is not detected, can be seen in Figure 5.10.

5.5 measure id improvement with changing player names 67

Figure 5.10: Example of an ID-challenging situation.

5.5.2 Results

As we can see in table 5.2 and table 5.3, the improved ID algorithm shows an
improvement in all tested segments. In table 5.2 the number of times manual
input is needed from an user to correct the suggested associated player for a
given rectangle on the first group of segments, the ones without ID-challenging
situations. The results for this group of segments show an average per minute
decrease of 81.4% in required manual input.

In table 5.3 the samemeasurement is done, but on the second group of segments,
the ones containing ID-challenging situations. For this group, the average
decrease in required manual input per minute is 53.9%.

Segment Segment length Improved IDs Original IDs Improvement
Segment 1 2 min 15 sec 4 29 86.2%
Segment 2 49 sec 0 2 100%
Segment 3 1 min 27 sec 4 12 66.6%
Per minute 1 min 1.77 9.51 81.4%

Table 5.2: Table showing number of times a user have to manually change the associ-
ated player for a rectangle. Segments without ID-challenging situations.

68 chapter 5 evaluation

Segment Segment length Improved IDs Original IDs Improvement
Segment 4 10 min 27 65 58.5%
Segment 5 2 min 30 sec 12 26 53.8%
Segment 6 1 min 48 sec 8 11 27.3%
Per minute 1 min 3.29 7.13 53.9%

Table 5.3: Table showing number of times a user have to manually change the associ-
ated player for a rectangle. Segments with ID-challenging situations.

5.5.3 Discussion

The results of this experiment clearly demonstrates that Guorrat’s ID algo-
rithm improves the continuity of the player IDs, and that the number of user
inputs required is reduced. This improvement is attributed to the improved ID
tracking algorithm used by Guorrat, detailed in Section 4.10, which effectively
reduces reliance on the less reliable IDs generated by the external source,
Sadji[51].

It is a substantial contrast between the level of improvement for the two dif-
ferent segment groups. It is not surprising that the improvement for open-play
segments beats the improvement for segments with ID-challenging situations.
It demonstrates some of the limitations with using an object detection ap-
proach to automatically detect and track players, as used by the external
source, Sadji[51], especially in these ID-challenging situations.

5.6 In-Memory Metadata Caching

While metadata segment files are stored on the file system and accessed upon
client requests, the backend server maintains a cache that temporarily stores
metadata segments in memory to ensure quicker response times. Since a
user should be able to frequently jump to different parts of the video stream,
and given that the frontend stores a limited number of metadata segments
in memory, it is crucial for the backend to respond quickly when the client
requests a specific metadata segment, to ensure a as smooth as possible user
experience.

The goal of this experiment is to evaluate the difference in response time when
a client retrieves a metadata segment, depending on whether the requested
segment is cached.

5.6 in-memory metadata caching 69

5.6.1 Experiment Setup

The experiment involved sending 20 requests to the backend and recording
the total time taken for the client to receive the response. The number 20 was
chosen to get a more representative result, and to reduce the effect of outliers.
Since the experiment was conducted over localhost, network latency did not
influence the results.

5.6.2 Results

In Figure 5.11, the experiment’s results are depicted. When there is a cache hit,
the average server response time is 1.87 milliseconds. However, if the requested
metadata segment is not in the cache, the average response time increases to
57.86 milliseconds.

Figure 5.11: Time it takes for the client to receive a metadata segment from the
backend server.

70 chapter 5 evaluation

5.6.3 Discussion

The response time with a cache hit is approximately 3.2% of the response
time compared to a cache miss, indicating that caching metadata segments
significantly speeds up the system’s response to frequent time skips. The larger
the metadata cache size is, the fewer metadata segments have to be kept in a
client’s memory, while still being able to respond quickly to frequent skips and
rewinds by a user.

Under acceptable network conditions, the performance gains from a cache
hit are relatively more significant than under poor network conditions, since
the time required at the backend to read the metadata constitutes a smaller
fraction of the total latency. This implies that in optimal network environments,
the client can maintain minimal metadata segments in memory to reduce
memory usage without sacrificing performance. Conversely, in suboptimal
network conditions, the client may need to store a larger number of metadata
segments to achieve similar levels of user experience. This strategy helps offset
the increased total latency caused by slower network speeds.

5.7 Frontend Video Processing Performance

As Real-time performance is one of the non-functional requirements for this
system, it is vital that the frontend server can execute the metadata synchro-
nization and video processing fast enough. Since coaches and analysts should
have the option to use Guorrat from the sidelines or the arena, the frontend
should perform well on a portable laptop, which typically uses less powerful
hardware than the desktop computer used during the development of this
system. This experiment is performed on both the desktop and a less powerful
laptop.

As the current system operates at a frame rate of 30 FPS, the process of updating
the rectangles for each frame should ideally take no more than 1/30 of a
second, equivalent to 33.3 ms. Results exceeding this 33.3 ms threshold would
indicate that the system fails to meet the real-time performance requirement.
Furthermore, it would be preferable for the processing time to remain well
below this limit to ensure smooth user interactions and maintain overall system
responsiveness.

5.7 frontend video processing performance 71

5.7.1 Experiment Setup

This experiment measures the time it takes at the client to update the position
of all rectangle and for React to re-render each rectangle on the screen. Google
Chrome’s developer tools DevTools[14] was used to measure the frontend
performance. The hardware specification of the desktop computer is detailed
in Section 5.1.1, and the hardware specification for the laptop computer is
detailed in Section 5.1.1. The measurements has been performed 20 times for
both setups, to get a more representative result and to reduce the impact of
outliers.

5.7.2 Results

Figure 5.12 shows the results of this experiment. With the desktop setup,
the average processing time at the frontend per frame is 2.294ms. With the
laptop setup, the average processing time is 7.266ms. As the threshold for
maximum processing time is 33.3 ms, both setups perform well below this limit,
at respectively 6.9% and 21.8% of the upper threshold.

Figure 5.12: Enter Caption

72 chapter 5 evaluation

5.7.3 Discussion

The results indicate that the frontend operates well within the established
performance threshold, even on less powerful devices. Concerning the non-
functional requirement of real-time performance, the frontend’s tasks of meta-
data synchronization and rectangle updating do not compromise the system’s
ability to perform in real-time.

5.8 Backend Video Processing Performance

This experiment was done in the context of the choice between doing the meta-
data synchronization and rectangle drawing on the backend or frontend.

5.8.1 Experiment Setup

The experiment consisted of the following steps:

1. Decode a given ’.ts’ video segment file, and put all frames, as bytes, in a
list.

2. Read the associated metadata file from storage, loop through each frame
and draw each player detection rectangle on the frame.

3. Re-encode the updated list of frames into a ’.ts’ video segment file, and
store it.

The encoder utilized in this experiment was h264 with the YUV420P pixel
format. To assess whether segment length impacts processing time, three
different video segment lengths of 2,4, and 8 seconds were tested in this
experiment. The process is executed 10 times per video segment length, to get
a more representative result and to limit the effect of outliers. The experiment
was performed on the lab computer, with its specifications listed in Section
5.1.1.

5.8.2 Results

In Figure 5.13, the height of each bar represents the average total processing
time for each video segment length. Additionally, each bar is divided into three
sections, with the height of each section indicating the average time spent on
decoding the video, synchronizing anddrawing player rectangles on each frame,

5.8 backend video processing performance 73

Figure 5.13: Total time to process each segment at the backend server.

and re-encoding the video, respectively. Figure 5.14 illustrates the proportion
of video segment processing time relative to the total duration of each segment,
expressed as a percentage. This demonstrates that it takes upwards of 75% of
the total segment time to process each segment. Additionally, the results shows
that, percentage-wise, the video processing is fastest for 2-second segments and
slowest for 8-second segments, with a difference of approximately 5 percentage
points.

5.8.3 Discussion

While the results are not exceptional, they suggest that this implementation
could meet the system’s requirements for real-time service if employed. How-
ever, as detailed in section 4.7.1, this solution was not chosen for the final
implementation, and thus alternative, potentially more effective configurations
were not explored. Since variations in video encoders and pixel formats can
significantly impact encoding speeds and video quality[6], exploring different
configurations might have resulted in improved performance.

74 chapter 5 evaluation

Figure 5.14: Percentage of total segment time to process the video segments at the
backend server.

5.9 Summary

After these experiments and evaluation of Guorrat, it is clear that Guorrat
can act as an alternative to the real-time ball tracking methods explained in
Sections 2.2.1 and 2.2.2. The experiments demonstrates that Guorrat can deliver
real-time, high precision and frequency ball positions throughout a live football
match.

6
Discussion
6.1 Requirements

In Sections 3.1 and 3.2, the functional and non-functional requirements of
Guorrat are detailed. In this section, the design and implementation choices
influenced by these requirements will be explored, and how successful Guorrat
is in fulfilling these requirements will be evaluated.

6.1.1 Functional Requirements

The main purpose of Guorrat is to generate real-time ball positions, with as
high precision as possible. Guorrat leverages the positional player data received
by the external system, Sadji[51], in combination with a manual event tagging
system to generate the ball’s position throughout a live football match. Guorrat
should be able to act as an alternative way to detect the ball in real-time, in
contrast to the automatic methods most commonly used today, as detailed in
Sections 2.2.1 and 2.2.2. In Section 5.2, it was demonstrated that the final iteration
of Guorrat detects the ball position in 98.5% of frames with high precision,
during the segment of play used in the experiment. However, the number of
frames where Guorrat can generate a ball position will vary between different
segments of play. The frequency of ball detections will ultimately depend on
the quality of the received metadata from the external source[51].

The second requirement,Retrieve video stream andmetadata from external

75

76 chapter 6 discussion

source, is essential for the system’s operation. During development and testing,
however, this metadata received from the external source, Sadji[51], has been
simulated by storing and reading it from disk. The design details of this
functionality are further explained in Section 4.3.

The third requirement, Provide live stream of match with synchronized
player rectangles, is addressed in Sections 4.6 and 4.7. This feature is crucial for
the system’s functionality, allowing users to view live matches with interactive,
overlaid rectangles. The synchronization of metadata and rectangle rendering
occurs on the frontend rather than on the backend server, with a detailed
discussion of this design choice presented in Section 4.7.1.

The fourth requirement, Handle Event Tagging, is essential for enabling users
to tag ball-related events like passes or tackles. Initially processed on the
frontend, these events are then transmitted to the backend, where they are
utilized to determine and register possessions and to generate ball positions.
This workflow and the backend processing are elaborated in Section 4.8.2, 4.8.3,
4.9, respectively. The event tagging functionality works, and is evaluated in
context of the ball positions generated, in Sections 5.2, 5.3 and 5.4.

Regarding the fifth functional requirement, to TrackNames of Players,Guorrat
strives to track the selected player name for each player on a best-effort basis.
This functionality relies on player IDs to successfully link to the corresponding
player name. To enhance ID continuity, Guorrat employs an improved ID-
tracking algorithm, detailed in Section 4.10. While this algorithm reduces ID
switches between players and the need for frequent user inputs, as evaluated
in Section 5.5, it is not perfect and still requires occasional user intervention to
correctly associate player names.

For the last functional requirement, Display Registered Ball and Event Tag-
ging Data, Guorrat provides an interface for a user to view the generated ball
positions, along with the tagged passes, tackles, and player possessions. This
interface allows a user to filter events on different criteria, making it easy for
the user to decide which data they want to see. This interface is displayed in
figure 4.14.

6.1.2 Non-Functional Requirements

For Guorrat’s Event Tagging Functionality to work properly, the system must
perform at real-time performance speed. The part of the system where real-
time performance was in question was mainly the process of updating and
drawing the position of each detection rectangle for each frame. Solutions for
this has been implemented at both the frontend and backend of the system,

6.1 requirements 77

and both have been tested and evaluated. The details regarding this design
choice is present in Section 4.7.1. The backend solution required the decoding
and re-encoding of all video segments to draw the detection rectangles on the
video. The results of this solution, detailed in Section 5.8, showed that this
solution could support the real-time performance requirement, but by a quite
small margin. By doing this process at the frontend instead, the video segments
does not have to be decoded and re-encoded. The frontend solution performed
quite well and could support real-time performance, as detailed in Section 5.7,
even on computers with older and less powerful hardware, proving that the
system can support real-time performance. Additionally, Guorrat’s ability to
perform in real-time is dependent on that the external source, Sadji[51], can
generate player positional metadata in real-time.

Concerning the non-functional requirement Precision, several factors influence
the quality and accuracy of the event and ball data generated by Guorrat. A
critical determinant is the precision of the metadata received from the external
source, Sadji[51]. If the positional data linked to player detections in this
metadata is inaccurate, there is limited capacity for Guorrat to enhance the
precision of the generated data. However, should the received metadata lack
player detections, this system incorporates Non-Rectangle Click Registration
(nrcr), which allows users to tag ball related events and select involved
players regardless. This functionality, detailed in Section 4.11 and evaluated in
Section 5.4, enriches the generated ball positions by ensuring that all events are
registered. Nevertheless, it cannot compensate fully for imperfect metadata, as
possessions and thereby the associated bass positions during the possession can
not be accurately determined from such incomplete events. The experiments
performed on the frequency and accuracy of Guorrat’s generated ball data,
detailed in Section 5.2, shows that the current iteration of Guorrat has close to
100% generated ball positions with high precision.

However, the frequency and precision of the generated ball positions by Guorrat
will vary depending on how a match unfolds. For instance, if a match contains a
high number of tight situations, resulting in less complete metadata generated
by the external source, Sadji[51], Guorrat will most likely generate fewer and
less precise ball positions.

Another key factor contributing to the precision of the generated ball data is
the ID-tracking algorithm employed by Guorrat, as outlined in Section 4.10.
This algorithm significantly enhances the continuity of the player IDs, directly
improving the precision of the ball data, which is further evaluated in Section
5.3.

While the generated ball positions might not always be precise enough to be
used directly for advanced analysis, the generated event data can supplement

78 chapter 6 discussion

these analyses. As the registered events contain the players involved and their
positions, and since it might be just as relevant to know which player has
the ball and his position, instead of the actual ball position, several advanced
analysis metrics can still be performed.

While the usability of Guorrat has not been directly exposed to users and
tested, it has been exposed to coaches with experience in the domain during
the development process for feedback, which has influenced the design of the
system. The two-click tagging system, detailed in Section 4.8.2, is designed
in an attempt to make the event tagging functionality. Also, by drawing the
player rectangles on the video with the use of React components, as explained
in Sections 4.7.1 and 4.8.2, the rectangles have direct click registration and can
easily be highlighted when hovered over by the mouse pointer. This is a design
decision that should make Guorrat easier to use.

By implementing the backendofGuorrat in Rust,we enhance the non-functional
requirements of Reliability and Availability. As detailed in Section 4.3, Rust’s
enforcement of strict type and memory safety significantly increases the sys-
tem’s reliability, thereby facilitating higher availability. Similarly, the use of
TypeScript for the frontend promotes these requirements by enforcing strict
type safety, which reduces the likelihood of undefined behaviors in the source
code. Additionally, the adoption of languages with strict type safety means
that potential errors are more likely to be caught during compile time rather
than at runtime. This approach also ensures that the source code is more
self-documenting and easier to understand, further contributing to the overall
maintainability of the system.

6.2 Selection of Streaming Protocol

For the streaming of the live match from the backend server to the frontend
server it was chosen to use hls. Real-Time Messaging Protocol (rtmp) would
also be a natural choice, as it is a popular choice for streaming live content,
because of its lower latency than hls. rtmp uses a persistent connection
where the video stream data is transmitted continuously from the streaming
server to the client, allowing for near real-time delivery. hls, in contrast, must,
in the case of 2-second segments, wait 2 seconds from recording until it can
deliver a segment, incurring a minimum of 2 seconds off real-time.

While the 2-second hls segment length used in Guorrat incurs a minimum
of 2-second delay, the system can still be considered real-time in any practical
sense. This is because it would be practically impossible for a user to properly
tag all ball-related events without pausing the video stream at times, meaning

6.3 summary 79

that the hls delay will most likely not have any practical effect on when the
generated ball positions and event data is ready to be used for analysis.

By using hls, the synchronization between the video stream and the gener-
ated metadata by the external source, Sadji[51], is made easier to perform
as each video segment is associated with a metadata segment with a unique
segment number. In addition, as the backend already employs a http server
to handle the event tagging requests from the client, it only requires two more
server endpoints to deliver the hls stream to the client. With rtmp stream-
ing, a separate connection point must be implemented to deliver the video
stream.

6.3 Summary

In this chapter, it has been explored and discussed how Guorrat fulfills the
functional and non-functional requirements of the system. It is demonstrated
how Guorrat can generate frequent and high precision ball positions with real-
time performance over the course of a live football match. Additionally, the
choice of streaming protocol has been discussed.

7
Conclusion & Future Work
This chapter will summarize the thesis and provide some concluding remarks
regarding the problem statement. Lastly, it will explore some possible future
work.

7.1 Concluding Remarks

This thesis has proposed Guorrat, a real-time system for alternative genera-
tion of precise ball positions during a live football match. Guorrat has been
designed to act as an alternative to current automatic methods for real-time
ball detection, and to provide precise ball data to improve real-time advanced
football analysis.

In Chapter 1, this problem statement was defined:

This thesis will carry out research and development of an alternative to
state-of-the-art real-time ball detection systems. This poc (Proof of
Concept) will utilize player positional data in combination with manual
event tagging to generate ball positions, with focus on real-time and
precision properties.

Following, in Chapter 2, technologies for real-time automatic ball detection was

81

82 chapter 7 conclusion & future work

explored, and how these methods is mostly reserved for larger football clubs
with high budgets and solid infrastructure. Additionally, it was evaluated how
some existing analysis system delivers on real-time ball tracking and tagging
of ball-related events.

In Chapter 3, the functional and non-functional requirements of Guorrat was
specified. A live stream of a football match with a manual event tagging system
to generate ball positions were the essence of the functional requirements, with
real-time performance and precision of the generated ball position data as the
most crucial non-functional requirements.

Chapter 4 detailed how Guorrat has been designed and implemented, and
how the functional and non-functional requirements of Guorrat influenced
the decision-making in the design and implementation phase. How Guorrat
fetches the metadata generated by from the external source, Sadji[51], how
it synchronizes the video and metadata, and how it uses the event tagging
functionality to generate ball positions were explained in this chapter.

Chapter 5 focused on the evaluation of Guorrat. It was demonstrated that
Guorrat generates frequent and precise ball positions, and that the system can
handle the real-time requirement property.

In Chapter 6, discussed and evaluated how Guorrat fulfills the requirements of
the system specified in Chapter 3. It is clear that Guorrat can generate precise
ball positions in a real-time fashion. However, the frequency and precision of
the generated ball and event data will ultimately depend on the quality of the
generated data produced by the external source, Sadji[51].

7.2 Thesis Conclusion

Guorrat, a poc system for generating precise ball positions in real time has
been developed, by utilizing real-time player positional data in combination
with manual event tagging.

To conclude, with the results demonstrated and discussed in Chapters 5 and
6, we can determine that Guorrat has the ability to generate real-time and
precise ball positions during a live football match. It demonstrates that Guorrat
can act as an alternative to state-of-the-art real-time ball tracking systems, to
supplement and enhance real-time advanced analysis in football.

However, the precision and quality of the generated ball data will ultimately
depend on the player positional data received by the external source, Sadji[51],

7.3 future work 83

which has been developed in parallel with Guorrat.

We do not necessarily recommend a complete replacement of state-of-the-art
ball detection systems in these scenarios, but rather combining our approach
with these systems to improve the overall precision.

7.3 Future Work

As of now, Guorrat is only developed as a poc, meaning that there are room for
further development of the system. Following is a few further developments
that could be possible.

7.3.1 Integration with other Analysis Platforms

It could be preferable to integrate Guorrat with other analysis platform, where
it can act as a feature in a bigger system. An integration with Sárgut[4], a
system for high level real-time analysis visualization developed in parallel with
this system, could provide users with a more detailed analysis.

As concluded, it would be interesting to combine state-of-the-art (AI-based)
ball detection algorithms and combine with the Guorrat approach.

There are numerous advanced analytical metrics that can be calculated when
both the player and ball positional data is present, such as Packing[45, p. 4],
Expected Threat[52], and numerous other. Therefore,Guorrat can be integrated
with systems that lacks real-time ball positions to enhance the potential for
analysis.

7.3.2 Deploy Guorrat for Commercial Use

If not integrated into another analysis platform, another future work could
be to continue to develop Guorrat into its own complete analysis system and
deploy it for commercial use. As it receives real-time player positional data from
Sadji[51], and generates real-time ball position, it could be further developed
to generate numerous advanced metrics and display this for users in a real-
time fashion. This would require a larger focus on security and compliance, as
Guorrat would most likely need to store both user and team data. Additionally,
more focus on the scalability of the system would be needed, and how it would
affect the availability and reliability of the system.

References
[1] Actix. Actix Homepage. URL: https://actix.rs/. [Accessed: 2024-04-22].

2024.
[2] Apple Inc. HTTP Live Streaming (HLS). URL: https://developer.apple.

com/documentation/http-live-streaming. Accessed: 2024-05-04. 2024.
[3] Ivan Baptista et al. “The variability of physical match demands in elite

women’s football.” In: Science andMedicine in Football 6.5 (2022), pp. 559–
565.

[4] Børge Bårdsen. “Sárgut.” Submitted for review, May 15, 2024. MA thesis.
UiT The Arctic University of Norway, 2024.

[5] Bitfield Consulting. Rust vs. Go. URL: https://bitfieldconsulting.
com/posts/rust-vs-go. [Accessed: 2024-04-22]. 2024.

[6] Petr Cika, Dominik Kovac, and Jan Bilek. “Objective video quality assess-
ment methods: Video encoders comparison.” In: 2015 7th International
Congress on Ultra Modern Telecommunications and Control Systems and
Workshops (ICUMT). IEEE. 2015, pp. 335–338.

[7] Manuel Costanzo et al. “Performance vs programming effort between
rust and c on multicore architectures: Case study in n-body.” In: 2021
XLVII Latin American Computing Conference (CLEI). IEEE. 2021, pp. 1–10.

[8] crates.io. OpenCV Crate. URL: https : / / crates . io / crates / opencv.
[Accessed: 2024-04-18]. 2024.

[9] crates.io. video-rs Crate. URL: https://crates.io/crates/video-rs.
[Accessed: 2024-04-18]. 2024.

[10] Peter Denning et al. “Computing as a discipline: preliminary report of
the ACM task force on the core of computer science.” In: Proceedings of
the nineteenth SIGCSE technical symposium on Computer science education.
1988, pp. 41–41.

[11] Sayed MohammadMajidi Dorcheh et al. “SmartCrop: AI-based cropping
of soccer videos.” In: 2023 IEEE International Symposium on Multimedia
(ISM). IEEE. 2023, pp. 20–27.

[12] Mohammed Dougramaji. Data Analytics in Football: LFC. URL: https:
//rockborne.com/graduates/blog/data-analytics-in-football-lfc.
[Accessed: 2024-04-29]. 2023.

[13] FFmpeg. About FFmpeg. URL: https://ffmpeg.org/about.html. [Ac-
cessed: 2024-04-18]. 2024.

85

https://actix.rs/
https://developer.apple.com/documentation/http-live-streaming
https://developer.apple.com/documentation/http-live-streaming
https://bitfieldconsulting.com/posts/rust-vs-go
https://bitfieldconsulting.com/posts/rust-vs-go
https://crates.io/crates/opencv
https://crates.io/crates/video-rs
https://rockborne.com/graduates/blog/data-analytics-in-football-lfc
https://rockborne.com/graduates/blog/data-analytics-in-football-lfc
https://ffmpeg.org/about.html

86 REFERENCES

[14] Google Chrome Developer Tools. Chrome Developer Tools Documentation.
URL: https://developer.chrome.com/docs/devtools. [Accessed: 2024-
05-11]. 2024.

[15] Thomas von der Grün et al. “A real-time tracking system for football
match and training analysis.” In: Microelectronic Systems: Circuits, Sys-
tems and Applications (2011), pp. 199–212.

[16] Pål Halvorsen et al. “Bagadus: an integrated system for arena sports
analytics: a soccer case study.” In: Proceedings of the 4th ACMMultimedia
Systems Conference. 2013, pp. 48–59.

[17] Gunnar Hartvigsen and Dag Johansen. “Co-operation in a distributed
artificial intelligence environment—The stormcast application.” In: En-
gineering Applications of Artificial Intelligence 3.3 (1990), pp. 229–237.

[18] Hudl. About Hudl. URL: https://www.hudl.com/en_gb/about. [Accessed:
2024-03-19]. 2024.

[19] Hudl. Hudl Assist for Soccer. URL: https://www.hudl.com/products/
assist/soccer. [Accessed: 2024-03-19]. 2024.

[20] Hudl. Hudl Focus. URL: https://www.hudl.com/en_gb/products/focus.
[Accessed: 2024-05-03]. 2024.

[21] Hudl. Tag Video After the Match - Soccer (Hudl V3). URL: https://
support.hudl.com/s/article/tag-video-after-the-match-soccer-
hudl-v3. [Accessed: 2024-03-19]. 2024.

[22] Dag Johansen et al. “Muithu: Smaller footprint, potentially larger im-
print.” In: Seventh International Conference on Digital Information Man-
agement (ICDIM 2012). IEEE. 2012, pp. 205–214.

[23] JSON.org. JSON. URL: https://www.json.org/json- en.html. [Ac-
cessed: 2024-04-17]. 2024.

[24] Kinexon. UWB Technology. URL: https://kinexon.com/products/uwb-
technology. [Accessed: 2024-04-15]. 2024.

[25] Kinexon Sports. Ball Tracking Technology. URL: https : / / kinexon -
sports.com/technology/ball-tracking. [Accessed: 2024-04-15]. 2024.

[26] Kinexon Sports. Liga Portugal Showcase. URL: https://kinexon-sports.
com/blog/liga-portugal-showcase. [Accessed: 2024-04-16]. 2022.

[27] Jacek Komorowski,Grzegorz Kurzejamski, andGrzegorz Sarwas. “FootAnd-
Ball: Integrated Player and Ball Detector.” In: Proceedings of the 15th
International Joint Conference on Computer Vision, Imaging and Com-
puter Graphics Theory and Applications - Volume 5: VISAPP, INSTICC.
SciTePress, 2020, pp. 47–56. isbn: 978-989-758-402-2. doi: 10.5220/
0008916000470056.

[28] Lei Li et al. Design and Implementation of A Soccer Ball Detection System
with Multiple Cameras. 2023. arXiv: 2302.00123 [cs.CV].

[29] Wei Liu et al. “Ssd: Single shot multibox detector.” In: Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, Oc-
tober 11–14, 2016, Proceedings, Part I 14. Springer. 2016, pp. 21–37.

https://developer.chrome.com/docs/devtools
https://www.hudl.com/en_gb/about
https://www.hudl.com/products/assist/soccer
https://www.hudl.com/products/assist/soccer
https://www.hudl.com/en_gb/products/focus
https://support.hudl.com/s/article/tag-video-after-the-match-soccer-hudl-v3
https://support.hudl.com/s/article/tag-video-after-the-match-soccer-hudl-v3
https://support.hudl.com/s/article/tag-video-after-the-match-soccer-hudl-v3
https://www.json.org/json-en.html
https://kinexon.com/products/uwb-technology
https://kinexon.com/products/uwb-technology
https://kinexon-sports.com/technology/ball-tracking
https://kinexon-sports.com/technology/ball-tracking
https://kinexon-sports.com/blog/liga-portugal-showcase
https://kinexon-sports.com/blog/liga-portugal-showcase
https://doi.org/10.5220/0008916000470056
https://doi.org/10.5220/0008916000470056
https://arxiv.org/abs/2302.00123

REFERENCES 87

[30] Matt Maulion. Homography Transform Image Processing. URL: https://
mattmaulion.medium.com/homography-transform-image-processing-
eddbcb8e4ff7. [Accessed: 2024-05-15]. 2023.

[31] Mozilla Developer Network. Map - JavaScript | MDN. URL: https :
//developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Map. Accessed: 2024-05-15. 2024.

[32] NACSport. URL: https://www.nacsport.com/index.php?lc=en- gb.
[Accessed: 2024-05-02]. 2024.

[33] NACsport. NACsport Enhanced Graphic Descriptors. URL: https : / /
www.nacsport.com/blog/en- gb/Tips/nacsport- enhanced- graphic-
descriptors. [Accessed: 2024-05-02]. 2024.

[34] Nacsport. Graphic Descriptors. URL: https://www.youtube.com/watch?
v=VrF7POt_mRU&list=PLwKcZgIlh_bW5L7nfAvn29n746l5xMRgC&index=9.
Accessed: 2024-05-02. 2022.

[35] NACsport Versions. URL: https : / / www . analysispro . com / nacsport -
versions. [Accessed: 2024-05-02]. 2024.

[36] Takuya Nakabayashi et al. “Event-based High-speed Ball Detection
in Sports Video.” In: Proceedings of the 6th International Workshop
on Multimedia Content Analysis in Sports. MMSports ’23. <conf-loc>,
<city>Ottawa ON</city>, <country>Canada</country>, </conf-
loc>: Association for Computing Machinery, 2023, pp. 55–62. isbn:
9798400702693. doi: 10.1145/3606038.3616164. url: https://doi.
org/10.1145/3606038.3616164.

[37] OpenCV. OpenCV Homepage. URL: https://opencv.org/. [Accessed:
2024-04-18]. 2024.

[38] Sigurd Pedersen et al. “Improved maximal strength is not associated
with improvements in sprint time or jump height in high-level female
football players: A cluster-randomized controlled trial.” In: BMC Sports
Science, Medicine and Rehabilitation 11 (2019), pp. 1–8.

[39] Premier League. Top Players - Goals. URL: https://www.premierleague.
com/stats/top/players/goals. [Accessed: 2024-04-29]. 2024.

[40] React. React Homepage. URL: https://react.dev/. [Accessed: 2024-04-
22]. 2024.

[41] Shaoqing Ren et al. “Faster R-CNN: Towards real-time object detection
with region proposal networks.” In: IEEE transactions on pattern analysis
and machine intelligence 39.6 (2016), pp. 1137–1149.

[42] Rust. Rust Homepage. URL: https://www.rust-lang.org/. [Accessed:
2024-04-22]. 2024.

[43] Rustacean Principles. How Rust Empowers: Reliable Type Safety. URL:
https://rustacean- principles.netlify.app/how_rust_empowers/
reliable/type_safety.html. [Accessed: 2024-04-22]. 2024.

[44] Oey Kevin Andrian Santoso et al. “Rust’s Memory Safety Model: An
Evaluation of Its Effectiveness in Preventing Common Vulnerabilities.”
In: Procedia Computer Science 227 (2023), pp. 119–127.

https://mattmaulion.medium.com/homography-transform-image-processing-eddbcb8e4ff7
https://mattmaulion.medium.com/homography-transform-image-processing-eddbcb8e4ff7
https://mattmaulion.medium.com/homography-transform-image-processing-eddbcb8e4ff7
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://www.nacsport.com/index.php?lc=en-gb
https://www.nacsport.com/blog/en-gb/Tips/nacsport-enhanced-graphic-descriptors
https://www.nacsport.com/blog/en-gb/Tips/nacsport-enhanced-graphic-descriptors
https://www.nacsport.com/blog/en-gb/Tips/nacsport-enhanced-graphic-descriptors
https://www.youtube.com/watch?v=VrF7POt_mRU&list=PLwKcZgIlh_bW5L7nfAvn29n746l5xMRgC&index=9
https://www.youtube.com/watch?v=VrF7POt_mRU&list=PLwKcZgIlh_bW5L7nfAvn29n746l5xMRgC&index=9
https://www.analysispro.com/nacsport-versions
https://www.analysispro.com/nacsport-versions
https://doi.org/10.1145/3606038.3616164
https://doi.org/10.1145/3606038.3616164
https://doi.org/10.1145/3606038.3616164
https://opencv.org/
https://www.premierleague.com/stats/top/players/goals
https://www.premierleague.com/stats/top/players/goals
https://react.dev/
https://www.rust-lang.org/
https://rustacean-principles.netlify.app/how_rust_empowers/reliable/type_safety.html
https://rustacean-principles.netlify.app/how_rust_empowers/reliable/type_safety.html

88 REFERENCES

[45] Rory Smith. Expected Goals: The Story of how Data Conquered Football
and Changed the Game Forever. Mudlark, 2022. isbn: 978-0-00-848403-3.

[46] Spiideo. Introducing AutoData to Spiideo Perform: The World’s Only
Video Analysis Platform with Automated Live Tagging and Player Tracking.
URL: https://www.spiideo.com/news/introducing- autodata- to-
spiideo-perform-the-worlds-only-video-analysis-platform-with-
automated- live- tagging- and- player- tracking. [Accessed: 2024-20-
04]. Nov. 2023.

[47] Spiideo. Spiideo Homepage. URL: https://www.spiideo.com/. [Accessed:
2024-03-10]. 2024.

[48] Spiideo. Spiideo Perform. URL: https://www.spiideo.com/spiideo-
perform/. [Accessed: 2024-04-10]. 2024.

[49] Spiideo. Tagging in Spiideo Perform. URL: https://support.spiideo.
com/en/articles/4708322-tagging-in-spiideo-perform. [Accessed:
2024-04-20]. 2024.

[50] STATSports. STATSports Homepage. URL: https://statsports.com/.
[Accessed: 2024-04-27]. 2024.

[51] William Alexander Stimpson-Karlsson. “Sadji.” Submitted for review,
May 15, 2024. MA thesis. UiT The Arctic University of Norway, 2024.

[52] David Sumpter. Explaining Expected Threat. URL: https://soccermatics.
medium.com/explaining- expected- threat- cbc775d97935. [Accessed:
15.05.2024]. 2021.

[53] Tracab. Tracab Homepage. URL: https://tracab.com/. [Accessed: 2024-
04-13]. 2024.

[54] Transfermarkt. Transfer Records. URL: https://www.transfermarkt.
com/statistik/transferrekorde. [Accessed: 2024-04-29]. 2024.

[55] TypeScript. TypeScript Homepage. URL: https://www.typescriptlang.
org/. [Accessed: 2024-04-22]. 2024.

[56] Ultralytics. Ultralytics GitHub Repository. URL: https://github.com/
ultralytics/ultralytics. [Accessed: 2024-05-15]. 2024.

[57] video-dev. hls.js GitHub Repository. URL: https://github.com/video-
dev/hls.js. [Accessed: 2024-04-22]. 2024.

[58] Andreas Kjæreng Winther et al. “Position specific physical performance
and running intensity fluctuations in elite women’s football.” In: Scan-
dinavian journal of medicine & science in sports 32 (2022), pp. 105–114.

[59] Yifu Zhang. ByteTrack: Multi-Object Tracking by Associating Every De-
tection Box. URL: https://github.com/ifzhang/ByteTrack. Accessed:
2024-05-15. 2021.

https://www.spiideo.com/news/introducing-autodata-to-spiideo-perform-the-worlds-only-video-analysis-platform-with-automated-live-tagging-and-player-tracking
https://www.spiideo.com/news/introducing-autodata-to-spiideo-perform-the-worlds-only-video-analysis-platform-with-automated-live-tagging-and-player-tracking
https://www.spiideo.com/news/introducing-autodata-to-spiideo-perform-the-worlds-only-video-analysis-platform-with-automated-live-tagging-and-player-tracking
https://www.spiideo.com/
https://www.spiideo.com/spiideo-perform/
https://www.spiideo.com/spiideo-perform/
https://support.spiideo.com/en/articles/4708322-tagging-in-spiideo-perform
https://support.spiideo.com/en/articles/4708322-tagging-in-spiideo-perform
https://statsports.com/
https://soccermatics.medium.com/explaining-expected-threat-cbc775d97935
https://soccermatics.medium.com/explaining-expected-threat-cbc775d97935
https://tracab.com/
https://www.transfermarkt.com/statistik/transferrekorde
https://www.transfermarkt.com/statistik/transferrekorde
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://github.com/video-dev/hls.js
https://github.com/video-dev/hls.js
https://github.com/ifzhang/ByteTrack

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Problem Definition
	1.2 Methodology
	1.3 Scope and Limitations
	1.4 Research Context
	1.5 Outline

	2 Background
	2.1 Football Analysis
	2.1.1 Event Tagging
	2.1.2 Tracking Data
	2.1.3 Video Analysis

	2.2 Automatic Ball Detection
	2.2.1 Sensor Based-Ball Tracking
	2.2.2 Object Detection-Based Ball Tracking

	2.3 Existing Systems
	2.3.1 Hudl
	2.3.2 Spiideo
	2.3.3 Nacsport
	2.3.4 Summary of Existing Systems

	2.4 Technical Background
	2.4.1 hls
	2.4.2 Homography Transformation

	2.5 Summary

	3 Requirement Specification
	3.1 Functional Requirements
	3.1.1 Generate Real-Time Ball Positions
	3.1.2 Retrieve Video Stream and Metadata from External Source
	3.1.3 Provide Live Stream of Match with Synchronized Player Rectangles
	3.1.4 Handle Event Tagging
	3.1.5 Track Names of Players
	3.1.6 Display Generated Ball and Event Tagging Data

	3.2 Non-Functional Requirements
	3.2.1 Real-time Performance
	3.2.2 Precision
	3.2.3 Usability
	3.2.4 Availability
	3.2.5 Reliability
	3.2.6 Maintainability

	3.3 Summary

	4 Design & Implementation
	4.1 System Architecture
	4.2 Frontend
	4.3 Backend
	4.4 Data Storage
	4.5 Retrieving Video Stream and Metadata from External Source
	4.6 Backend Streaming Server
	4.7 Synchronizing Video and Metadata
	4.7.1 Frontend vs Backend
	4.7.2 Frontend Handling
	4.7.3 Backend Handling

	4.8 Event Tagging
	4.8.1 Configure Teams
	4.8.2 Event Registration
	4.8.3 Possession Registration
	4.8.4 Connect Player Names to Events
	4.8.5 Display Data

	4.9 Generate Ball Positions
	4.10 ID Tracking Algorithm
	4.11 Non-Rectangle Click Registration
	4.12 Summary

	5 Evaluation
	5.1 Experiment Setup
	5.1.1 Hardware Specifications

	5.2 Measure Frequency and Precision in Generated Ball Positions
	5.2.1 Experiment Setup
	5.2.2 Results
	5.2.3 Discussion

	5.3 Generated Ball Position Improvement with Improved ID Tracking
	5.3.1 Experiment Setup
	5.3.2 Results
	5.3.3 Discussion

	5.4 Generated ball position improvement with Non-Rectangle Click Registration
	5.4.1 Experiment Setup
	5.4.2 Results
	5.4.3 Discussion

	5.5 Measure ID Improvement with Changing Player Names
	5.5.1 Experiment Setup
	5.5.2 Results
	5.5.3 Discussion

	5.6 In-Memory Metadata Caching
	5.6.1 Experiment Setup
	5.6.2 Results
	5.6.3 Discussion

	5.7 Frontend Video Processing Performance
	5.7.1 Experiment Setup
	5.7.2 Results
	5.7.3 Discussion

	5.8 Backend Video Processing Performance
	5.8.1 Experiment Setup
	5.8.2 Results
	5.8.3 Discussion

	5.9 Summary

	6 Discussion
	6.1 Requirements
	6.1.1 Functional Requirements
	6.1.2 Non-Functional Requirements

	6.2 Selection of Streaming Protocol
	6.3 Summary

	7 Conclusion & Future Work
	7.1 Concluding Remarks
	7.2 Thesis Conclusion
	7.3 Future Work
	7.3.1 Integration with other Analysis Platforms
	7.3.2 Deploy Guorrat for Commercial Use

