
Faculty of Science and Technology
Department of Computer Science

Configuring edge device provenance through messaging middleware
A CamFlow and MQTT system implementation

Tarald Eide Øines
Master thesis in INF-3990 15th May 2024

Supervisors

Main supervisor: Dagenbord, Håvard
J.

UiT The Arctic University of Norway,
Faculty of Science and Technology,
Department of Computer Science

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2024 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Abstract
Integrity of data is important in today as more of societies structure today
are distributed and becomes vulnerable to dishonest entities on their edge
devices. Using provenance to prove integrity over edge devices and distributed
networks is difficult, as it often produces big amounts of data which fills up
storage without having a need to be used. Comm2Prov seeks to fix this by
combining the selective provenance capture of CamFlow and the distributed
messaging of MQTT. Using a client to send messages between underlying
CamFlow and the MQTT service, Comm2Prov allows commands to be sent to
CamFlow instances running on edge devices. This can be used to issue tracking
control, allowing distant auditors to turn off and on provenance on devices
without having to need direct access to the device itself. Through this thesis, the
challenges and problems which were discovered during Comm2Prov’s creation
will be discussed, including topics as: security, performance, and the issues
with provenance.

Contents
Abstract iii

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Problem Statement . 2

2 Background 5
2.1 W3C-PROV . 5
2.2 CamFlow . 7

2.2.1 Development . 7
2.2.2 Architecture . 8
2.2.3 Design . 9

2.3 MQTT . 11
2.3.1 Architechture . 12
2.3.2 Security measures 12
2.3.3 Topic . 13
2.3.4 Message structure 14

3 Comm2Prov 17
3.1 Design . 17

3.1.1 Architecture . 17
3.1.2 Messaging . 20
3.1.3 Comm2Prov Client 20

3.2 Implementation . 22
3.2.1 Requirements . 22
3.2.2 Provenance . 23
3.2.3 Comm2Prov Client 23
3.2.4 MQTT . 27

4 Experiments 29
4.1 Environment . 29

v

vi contents

4.2 Benchmarking provenance 30
4.2.1 Implementation . 30
4.2.2 Results . 31

4.3 Network transfer tracking 35
4.3.1 Implementation . 35
4.3.2 Result . 37

5 Discussion 45
5.1 Experimentation . 45

5.1.1 Benchmark . 46
5.1.2 Networking . 48

5.2 Implementation . 49
5.2.1 MQTT configured provenance 49
5.2.2 CamFlow . 50
5.2.3 Comm2Prov System architecture and design 51

5.3 CamFlow Provenance Data 51
5.3.1 Future Work . 52

6 Conclusion 55

List of Figures
2.1 Cyclic graph example of W3C-Prov. 6
2.2 Acyclic graph example of W3C-Prov. 6
2.3 Architecture and flows of CamFlow. 8
2.4 Architecture of MQTT . 12
2.5 Example of MQTT topic construction with wildcards. 14

3.1 Architecture of Comm2Prov. 18
3.2 Possible network setup of Comm2Prov. 19
3.3 Topic structure used in Comm2Prov. 19

4.1 Benchmark times comparison figure 32
4.2 Benchmark times individual figure 32
4.3 Benchmark size comparison figure 33
4.4 Benchmark size individual figure 33
4.5 Benchmark drops comparison figure 34
4.6 Benchmark drops individual figure 34
4.7 Transfer send time comparison figure 37
4.8 Transfer send time individual figure 38
4.9 Transfer receive time comparison figure 38
4.10 Transfer receive time individual figure 39
4.11 Transfer send audit size comparison figure 39
4.12 Transfer send audit size individual figure 40
4.13 Transfer receive audit size comparison figure 40
4.14 Transfer receive audit size individual figure 41
4.15 Transfer send CamFlow event drops comparison figure . . . 41
4.16 Transfer send CamFlow event drops individual figure 42
4.17 Transfer receive CamFlow event drops comparison figure . . 42
4.18 Transfer receive CamFlow event drops individual figure . . . 43

vii

List of Tables
4.1 Average result of ML Benchmarking 35
4.2 Tracking File of Messaging experiment 43
4.3 Tracking IP of Messaging experiment 43

ix

1
Introduction
Unprotected digital data is vulnerable to manipulation by non-trusted entities
Integrity of data is an underlying issue which becomes more rampant as more
data is put into the digital world. Data can be generated in tremendous volumes
at tremendous speeds. As such, it can become difficult to decide whether the
data generated is genuine data or non-genuine data generated by a variety of
reasons.

With massive data generation, genuine data normally outnumbers non-genuine
data making the overall average give a realistic representation than individual
data. However, this data assumption does not work when individual data points
are more important than the overall. For an analysis of data, the overall average
is often more importance than individual pieces of data, making occasional
non-genuine data entries of less importance. But for an entity which depends
on individual data pieces, the non-genuine data can be disruptive or harmful
for their purpose.

Several methods have been developed to keep the integrity of data, with their
own advantages and disadvantages to them. Unchangeable distributed ledger
methods such as Blockchain is an example which can keep the integrity of
data put on the chain. But this technology meets issues as the chain grows
longer.

Data provenance is the records of digital data’s ownership and changes over
time and can be used as a method to increase the integrity of data. It is

1

2 chapter 1 introduction

derived from the idea of provenance, where ownership is documented and
authenticated. Provenance defines as the history of an object and it’s change in
ownership, originally used for keeping record of ownership transfer between
valued art or work. Data provenance is considered the history of digital ob-
jects, records of its transformations and derivations over time. Depending on
the provenance standard, data provenance may also record agents entities
associated with activities, linking them to user(s) or group(s) responsible for
transformations or derivations.

Using the records or provenance, post-event inspection can be performed to
see the history of data. Recording these events allows on to later inspect and
validate the origin of some data. This can be used for a variety of goals, such
as identify and detect unwanted behaviour within a system or inspect the
authenticity of data. Provenance itself is not a preventative measure, but a
post-analytic measure to discover possible faults within the system, allowing
countermeasure to be put in place with more detailed hindsight knowledge. In
suchways has provenance has been used in several systems for various purposes.
Rapsheets [1], P-Gaussian [2], and Kairos [3] are examples on systems using
provenance data for intrusion detection and persistent threats. FRAPpuccino
[4] is an example of using provenance for fault detection during runtime.
Provenance has even parts in systems like Cobweb [5] who are used to create
remote attestation.

But data provenance has the issues of having high storage and overhead on a
system to gain complete image over the transformations of data. Depending
on the activity on a audited unit, they can create large volumes of data in short
time. This makes provenance auditing less attractive to use by default, as more
data means that analysis will take longer and longer.

For provenance systems where capturing a full image of the entire system is
desired to produce an effect, such as detection systems where monitoring the
device is the goal, it is difficult to find compromise on provenance data genera-
tion. Rapsheets’ [1] converts traditional provenance graphs into trimmed threat
alert graphs to save up on long-term log retention for this reason. Meanwhile,
systems like Cobweb [5] which does not use provenance for detection can
compromise limiting what it captures in echange for the full picture.

1.1 Problem Statement

Edge devices provide entrance to larger networks or systems which are closed
from outside environments. These entry points are necessary for the system
to interact with the outside world, giving them data which the systems needs

1.1 problem statement 3

to operate. But it is here with these entry points that the integrity of data
become harder to keep intact. As all data created outside of the system is near
impossible to verify. Moreover, if these entry points are infected or compromised
in some manner, the data these entry points may introduce can be falsified or
manipulated. One cannot also rule out the possibility of malicious activity of
independent entity within the system might affect the data provided.

Distributed systems which have edge devices as entry points spread over large
distances can be hard to monitor whether or not the devices act the way that
they should. Malicious actors who have gained access to the network may
impersonate edge devices through methods such as spoofing, making spotting
them hard within the network. Moreover, with several different edge devices
it might be hard to pinpoint which device false data comes from.

Provenance is defined as the history of an object and its change in ownership,
commonly used for keeping record of ownership transfer between valued art
or work. Data provenance is considered the history of digital objects, records
of its transformations and derivations over time. Data provenance can also
include records of the agents associated with activities, linking them to user(s)
or group(s) responsible for transformations or derivations.

Using the records or provenance, post-event inspection can be performed to
see the history of data. This can be used for a variety of goals, such as identify
and detect unwanted behaviour within a system or inspect the authenticity of
data. Provenance is not a preventative measure, but a post-analytic measure
to discover possible faults, allowing countermeasure to be put in place with
more detailed hindsight knowledge.

Provenance auditing can be used to improve the integrity of singular data, as
it can record the transformation of data as it enter the wider network through
edge devices. However, constant auditing of edge devices is less desirable for this
purpose, as the auditing will cause unnecessary overhead on non-compromised
devices. Furthermore, with several edge devices adding their own data to the
system, the audits will unnecessarily create provenance data for auditing. This
increases the storage overhead and time needed for inspecting the audit logs
later. Constantly auditing all edge devices when a only a sub-set of data is
wanted over some period of time is inefficient for the network and post-analysis.
But configuration of provenance capture can be difficult as auditors may not
have direct access to all edge devices.

Our thesis is that you can improve integrity of data through provenance in a
network without having constant overhead on audited devices. Our system,
Comm2Prov, is designed on the principle of configuring edge device provenance
capture through messaging with the assumption that you do not have direct

4 chapter 1 introduction

access to the edge devices. In Comm2Prov, auditing does not need to be activate
by default, reducing overhead which can be noticeable on smaller edge devices.
Provenance Auditing is activated on suspected edge devices by an auditor after
the suspicion has been established, as provenance is tool more favoured for
analysing unwanted behaviour in systems post-happening than to discovers
it.

This thesis will look into the challenges of provenance collection across different
edge devices through testing and analysis of provenance capture in different
configurations. The results and challenges encountered will be discussed, as
will potential further solutions and considerations of them.

2
Background
The previous chapter was a short introductions to the concepts, problems,
and solutions this thesis will provide. This chapter will see more in-depth
background on the concepts this thesis builds itself upon.

2.1 W3C-PROV

The W3C-PROV standard [6] provides a general model for classifying prove-
nance data, alongside optional specifications and further classifications. The
W3C-PROV Standard is centered around three key concepts: entities, activ-
ities, agents: Entities range from conceptual things to physical entities that
are recorded in the provenance records. Activities are defined as actions that
bring entities into existence, modify existing entities, or make use of entities.
An agent is an existence ranging from an organization of people to simple
software or other entities who has a role in an activity, giving them some level
of responsibility for that activity. Agents can be seen as an attribute within
provenance, which can be applied to activities and entities to show "who" bears
responsibility for them. Roles are description of how an "entity" played part in
an activity, specifying the relationship between them.

PROV does not specify roles, as roles are to be specific for their instances
which may vary. When an entity changes partly, they become a derivation of
their previous instance. In PROV, each result of a derivation is considered a

5

6 chapter 2 background

Agent

Entity

Activity

WasDerivedFrom

WasGeneratedByUsed

AttributedTo

AssociatedWith

Figure 2.1: Cyclic graph example of W3C-Prov.

Agent

EntityActivity
WasGeneratedByUsed

AttributedTo

AssociatedWith

Entity

WasDerivedFrom

Figure 2.2: Acyclic graph example of W3C-Prov.

2.2 camflow 7

new entity, and some common and specialized derivations can be specifically
described such as revision and quotations. Plans are pre-determined and pre-
defined procedures that an agent can follow in execution of activity. Time is
often a crucial part of provenance and a staple description within W3C-PROV
model, allowing timing of start and finish of events within the provenance
records. W3C-PROV allows for specialization of entities, allowing alternate
versions of an entity to be recorded as a specilization of another entity.

W3C has more specifications and optional additional model specifications to
follow.It displays provenance mostly be treating entities as input to an activity
or another entity, with the output result being a derivation. Agents are assigned
through Linux User and Group delegation system, allowing agents to take up
roles and responsibility for entities and activities.

2.2 CamFlow

CamFlow[7]is a kernel-level provenance capture mechanism using Linux Secu-
rity Module and Netfilter hooks to capture provenance. It was developed for
the purpose to be easily integrated into Platform as a Service cloud module.
CamFlow is entirely open source1 and available for public.

CamFlow has been called state-of-the-art within provenance capture by pre-
vious papers [8][9] citing and using the CamFlow system. It has been used
in several systems detecting Advanced persistent threats using provenance
[10][11] as a component. It has also been used in as a component in other types
of systems [12][13][4].The main benefits of using CamFlow its high configura-
bility and open-source availability, allowing it to be tailored and used just the
way a system would want it.

The decision to use CamFlow also comes from its high configurability, allowing
specific provenance capture in order to reduce the amount of provenance data
collected. This is one of the core concepts this thesis seeks to explore.

2.2.1 Development

CamFlow was originally proposed by Thomas F. J.-M. Pasquier, Jatinder Singh,
David Eyers, Jean Bacon in 2015 as an Information Flow Control system. The
paper being republished in 2017[14] . CamFlow set out to do this using metadata
to control data flow, implemented as a Linux Security Module (LSM) in the OS

1. https://github.com/CamFlow/

8 chapter 2 background

syscall relayfs securityfs

K
ern

el
U

sersp
ace

Application Output

CamFlow Deamon

CamFlow Client

CamFlow Config
Deamon

LSM/Netfilter Hooks

Capture Recording Configuration

Kernel Objects and Resources

Camflow Capture Mechanism

Figure 2.3: Architecture and flows of CamFlow.

with IFC-enabledmiddleware compatibility. Metadatamethods implemented to
constrict data flows in CamFlow are labeling and taint tagging with checkpoints
to avoid data leakage. In the follow up paper for CamFlow [15] released in 2016,
they continued on with the IFC development, but started to discuss Information
Flow Auditing (IFA) as a byproduct of IFC. IFA became relevant for CamFlow
as it was demonstrated in the MrLazy paper[16] that provenance records could
be used to verify IFC constraints in a system.

This prompted the later shift from Information Flow Control to Information
Flow Audit in CamFlow, as published in the latest CamFlow paper [7] which
released in 2017, the diverged from IFC to IFA by converting CamFlow to a
auditing system. Building upon the previous established hooks for the IFC
system, CamFlow converted to log the provenance data instead. The strategy
for CamFlow is that it should be easy to maintain, use existing kernel mech-
anism whenever available without duplication, and manageable integration
into mainline Linux. This strategy came from the developers earlier experience
with trying to maintain PASS[17] and LPM[18].

2.2.2 Architecture

There are four components which make up CamFlow: the CamFlow client,
the CamFlow recording deamon, the CamFlow configuration daemon, and the
CamFlow capture mechanism integrated into the OS kernel.

2.2 camflow 9

The CamFlow capture mechanism in kernel uses the OS reference monitor
which captures kernel calls from applications. CamFlow relies on Linux Security
Model (LSM) hooks and Netfilter hooks to capture kernel calls without the
applications being aware of it. Two types of hooks are used, a hook to catch
when kernel objected is allocated and a hook used to catch when a kernel
object is accessed. CamFlow capture over sockets mostly contain metadata of
the packets caught, but may additionally be configured to capture the packet
payload. These captures are published to the Relayfs [19] pseudo-file system,
which will be retrieved by camflowd.

CamFlow daemon is responsible for converting the capture to provenance log
recording in the specified format to the specified output. Currently, CamFlow
daemon supports two different provenance formats: the W3C-PROV-JSON
format and the SPADE JSON format. The SPADE JSON format is a provenance
data model based on W3C-PROV, but created for the SPADE [20] system. The
5 possible output configurations for the CamFlow daemon are: null, mqtt,
unix_socket, fifo, log. Null discards the log records. Mqtt publishes the records
to a MQTT broker in which CamFlow connects through on startup.Unix_socket
publishes the records to a UNIX socket. Fifo publishes the records to a fifo
pipeline. Log stores the records locally on a log file in text format.

Camflow configuration deamon is responsible for configuring the capture of the
CamFlow system. The daemon loads its configurations from a init configuration
file when the system starts up, putting it into the kernel through securityfs
interface. Camflow configuration deamon can also reconfigure some capture
configurations through the CamFlow client. Camflow client can be interacted
with through the commands entered thorough a command line,with the correct
authority. allowing dynamic capture configuration during runtime.

2.2.3 Design

One of the main features of CamFlow is its high configurability, allowing the
enabling and disabling of provenance capture of nearly all hook events. This
allows for enabling provenance on only sensitive data or data of interest,
avoiding filling the logs with uninteresting provenance data. This makes the
provenance records smaller and easier to digest by human and machine, at the
cost of the overall picture that comes with full provenance. In contrast, one can
also disable provenance on hook events by making them opaque. CamFlow uses
this opaque function on its own components to ensure that it doesn’t recursively
captures a capture. Additionaly, CamFlow can enable security context2 using
the main Linux Security Module format.

2. https://selinuxproject.org/page/NB_SC

10 chapter 2 background

CamFlow can configure whether to capture provenance or not based on hooks
for: Filters set on nodes and edges, specific programs and directories and
files, specific processes, and specific network activity. Provenance can also be
enabled for Linux users and groups within the system, tracking their associated
activities as agents in the system. The hooks trigger upon system calls, where
an application wishes to access a kernel object. This kernel object hook-based
capture makes CamFlow unable to capture in-application events, confining
the capture granularity to be process-level at the finest. In addition to hooks
provided by LSM and Netfilter, CamFlow has implemented some of its own
hooks3 for the purpose of better provenance. Their full details on supported
node/vertices hooks⁴ and relation hooks⁵ can be found on their github.

CamFlow has to major capture settings in which it can monitor a system: whole-
system provenance and partial-system provenance. Whole-system provenance
captures all hooks called to kernel, fully tracking all non-opaque entity kernel
calls on the OS. Partial-system provenance which allows one to configure the
level of provenance by enabling provenance on the hooks. Provenance data
might become to big and clotted if all events are recorded. In contrast, limiting
the recording might miss events of interest, losing the complete image of a
systems data flow.

The provenancce model CamFlow uses is W3C-PROV, and SPADE-PROV [20]
which is based on W3C-PROV. CamFlow extends the W3C-PROV model for
provenance data with it’s own additional attributes, used for a more complete
provenance image in CamFlow system. An example of this is the machine_id
attribute, being an unique identification in provenance logs for the machine
which the events occurred on. This ID is based on the linux hostid⁶ if not
manually configured.

As stated on their website ⁷, CamFlow can enable different levels of capture
once activated. CamFlow can use standard tracking on an entity, capturing
calls done in relation to the entity that is tracked. It can also propagate track an
entity, where it tracks data flows coming out of the entity. Data flows coming
in are limited to their entrance into the tracked entity, as it cannot back-track
the flow from before it was set to be tracked. The propagation tracking can be
halted through the data flow entering a propagation filtered node or relation.
Additionally, IPv4 tracking can be set to record a message’s package content
on specified incoming and outgoing IPs and ports.

3. https://github.com/CamFlow/camflow-dev/blob/master/docs/HOOKS.md
4. https://github.com/CamFlow/camflow-dev/blob/master/docs/VERTICES.md
5. https://github.com/CamFlow/camflow-dev/blob/master/docs/RELATIONS.md
6. https://man.linuxexplore.com/htmlman1/hostid.1.html
7. https://camflow.org/

2.3 mqtt 11

Entities in a system can have labels and taint applied to them. The labelling
systems originates from the earlier days of CamFlow, where they were used to
enforce Information Flow Control. Labels are sets of tags applied to entities,
which propagate to activities and other entities as the labeled entity interacts
with them. The tags are applied to data as additional metadata In previous
versions of CamFlow, the labels were split into integrity and secrecy, restraining
information from flowing between higher security security context and lower
security contexts. Tags and privileges to create them are stored as 64-bit opaque
fields within the kernel object, with only active entities have mutable tags and
privileges.

Taint follows a similar model as labels, where a tag taint is spread and propa-
gated through every entity it passes through, but only checked at certain "sink"
points in order to prevent leakage. The "sanitizing" process of taint data can
be processes like encryption of data or stripping of sensitive information in
the data, depending on what is deemed necessary. The use of CamFlow’s IFC
against CamFlow’s taint system is question of performance or quality.

CamFlow cannot track flows happening within processes, especially processes
which have a shared state with others. Without intra-application tracking of
the memory usage, it is unsure whether data from the shared state is spread or
not. Therefore, incoming and outgoing flows of a process with a shared state
is assumed be incoming and outgoing flow from that shared state.

2.3 MQTT

MQTT is an Pub-Sub Messaging standard protocol created by Oasis [21] for
IoT device messaging over the standard TCP/IP protocol. Pub-Sub messaging
systems uses a subscription model to transfer messages. Subscribers subscribes
to a topic, which a publishermay publish a message too. The subscriber receives
the message published by the publisher on their subscribed topics through an
intermediary. The intermediary might be other entities in the network, but is
commonly an independent broker which handles the topics, subscriptions, and
messages.

MQTT is designed to by lightweight, making it ideal for edge devices which
can have low bandwidth and computing power. There are different version of
the MQTT protocol, the original being introduced in 1999. MQTT v3.1.1 is the
most commonly used version today, with MQTT v5 currently seeing limited use
in applications.

12 chapter 2 background

Broker

Publisher 1

Publisher 2

Subscriber: 2Subscriber: 1, 2 Subscriber: 1

MQTT/Topic/1

Figure 2.4: Architecture of MQTT

2.3.1 Architechture

MQTT uses a messaging broker to handle messages, topics, and subscribers
to those topics. MQTT messaging consists of three different entities in the
network it sends messages over. A broker which works as an intermediary for
publisher and subscribers. The subscriber who subscribes to a topic through
a broker, and receives all published messages on the topic on the broker. The
publisher publishes a message on a topic to a broker, which then gets further
published by the broker to all subscribers. Publisher are not aware of who
subscribes to the topics, and subscribers are not aware of who publishes to
their topics. Broker stores who subscribes to which topics until connection is
broken, unless client session is not set to be cleaned after disconnect.

2.3.2 Security measures

MQTT supports authentication a security measures along with other security
measures, which broker configure and clients comply to.This varies a bit with
broker implementation, but without it the broker has no control over who
subscribes to a topic and who publishes to a topic. The subscriber has no
knowledge or control who publishes to it’s subscribed topics. Likewise, the
publisher has no control or knowledge of who subscribes to the topic they
publish.

Payload can be encrypted at application level, without any connection with

2.3 mqtt 13

the broker. Messages to the brokers can also be TLS or SSL protocol protected
using self-provided certificates, free commercial certificates or apid certifica-
tion.

All clients provide some sort of client ID upon connecting with a broker, allowing
the broker to restrict access based on provided client ID. MQTT brokers may
be configured to require a simple login system upon connection, where a
username and password is required. The handling of this login information
might vary from broker implementations, being from simple plaintext transfer
to encrypted login. It may be possible to deploy certificate authentication by
using x509 client certificates. But it requires handling of several certificates by
the brokers.

Topic subscription and publishing can be restricted. This restriction can be tied
to User or Client ID, but not x509 certificates as of now. User login can be used
for restricting access to topics, allowing only certain topics for certain users.
This access restriction can be applied to three level, with general restriction,
Client ID restrictions and User restrictions.

2.3.3 Topic

Messages sent over the MQTT broker is split into topics in order to divide
messages into groups. Topics can have sub-categories to further divide them
into smaller groups by using "/" as a level divider, similar to url divisions for
sub-domains. There are few restrictions on topics, such as topic must be UTF-8
strings, case sensitive, and contain minimum a single character to be valid.
The only standard topic is the "$SYS" topics, which is used for standardised
commands allowing clients to ask the broker for its state. Topics are created
as subscriber subscribe to them or publisher publish to them. If there are no
active subscribers or publisher on a topic, the topic is discarded.

There are two signs reserved for wildcard use, plus symbol ("+") and hashtag
symbol ("#"), which allows one to subscribe to multiple topics within the
wildcard. Plus symbol is a single level wildcard, only usable for variations of
the level it is employed on. Hashtag is a multi-level wildcard, subscribing to
all variants on the level it is applied and all sub-level variants. Plus sign can
go in between levels in a topic, while hashtag can only be used at the end of
a topic. Wildcards are not allowed to be used for publishing, forcing specific
topic publication.

14 chapter 2 background

camflow /provenance /1234567890

camflow / + /1234567890

camflow / # / #

Level 1 Level 2 Level 3

Figure 2.5: Example of MQTT topic construction with wildcards.

2.3.4 Message structure

Messages published contain at minimum a topic, Quality of service value and
a payload which is the message itself. Quality of service tells which delivery
protocol is to be used for the message. The options for message QoS are
maximum once, minimum once, and exactly once, deciding how certain the
publisher is taht the message has been delivered to the broker. With maximum
once, the message is only sent once to the broker with no follow up. With
minimum once, the message is sent expecting an acknowledgement that it has
been delivered, repeating the message if one isn’t returned. With exactly once,
an acknowledgement that no more duplicate messages are to be sent from the
sender is sent, while the receiver responds acknowledging it.

Clients may also leave a Last Will Message, which is a message that is auto-
matically published once the client disconnects. The message is sent to the
broker and stored upon client connecting, being published by the broker once
the client disconnects for any arbitrary reason.

A message can be flagged to be retained, meaning that it will be kept by the
broker and given to new subscribers of the topic. Only one message can be
retained at a time for a topic, pushing out the old one when a new one is
published. Retained messages remain even as new messages are published
as long as their messages are not flagged to be retained. Messages to have
been retained are automatically sent to new subscribers of the topic upon their
subscriptions.

2.3 mqtt 15

Clients are default set to have clean sessions with the broker, where the broker
does not keep non-retained messages for subscribers who have not received the
published message. But the clients may set their session to be unclean sessions,
where the broker will keep messages until for the clients subscribed topics if
the clients where to be disconnected. The result of delivering the message may
also vary depending on the QoS setting of the message.

3
Comm2Prov
This thesis introduces Comm2Prov, an system which uses messaging middle-
ware to connect provenance from instances separated over varying distances.
Comm2Prov seeks to to challenge a widespread provenance approach, provid-
ing an example off controlling provenance through messaging for potential
edge units. Comm2prov bases itself upon CamFlow provenance capture and
MQTT messaging protocol.

3.1 Design

3.1.1 Architecture

Comm2Prov is designed to be used for devices connecting to a another part
within the network with a Comm2Prov client, providing information towards
a central database of a kind. Combining the usage of MQTT for it’s low-cost
messaging of the selective provenance of CamFlow, the goal is to create low-cost
provenance auditing network. With the focus on low impact on the device,
the system could seeks to be suitable for edge devices with regular to low
computation power.

There are three types of devices within the Comm2Prov architecture: Prove-
nance devices, MQTT broker, and the auditor. An example can be seen in the
Architecture figure 3.1. Devices with provenance are machines which runs Cam-

17

18 chapter 3 comm2prov

MQTT Broker

Edge Device

CamFlow

Data storage

CamFlow

Auditor

App-2-App Message

Audit data 2

Audit data 1

Audit data 1 + 2 Provenance Command

Provenance Command

Comm2
Prov

Comm2
Prov

Figure 3.1: Architecture of Comm2Prov.

Flow and the pub-sub client in provenance mode. Auditors are agents which
runs client in command mode, where they can give out provenance commands
and receive provenance records from provenance devices. The auditor receiv-
ing provenance records and the auditor giving out commands do not need to
be the same device, as any auditor may give out commands and subscriptions
as they are permitted. Comm2Prov uses standard MQTT brokers without any
specific modification to their operating.

CamFlow remains an underlying component of the system Comm2Prov is
implemented, where only the pub-sub client needs to be aware of its existence.
The pub-sub system does not provide the records to the broker as of the
current implementation, as CamFlow is able to provide the data itself. This
allows the pub-sub system to avoid being declared as opaque in the CamFlow
system to avoid reporting loops, allowing the pub-sub clients actions to be
recorded.

The Comm2Prov architecture is not limited to single broker, as is portrayed in
the figure 3.2. Multiple brokers may be used to spread workload and responsi-
bility across several unit. With this spread in responsibility and workload, some
brokers may be designated with higher security constraints than others.

3.1 design 19

MQTT Broker

Edge Device

CamFlow

Data storage

CamFlow

Auditor

App-2-App Message

Audit data 2

Audit data 1

Audit data 1 + 2 Provenance Command

Provenance
Command

Comm2
Prov

Comm2
Prov

MQTT Broker

Figure 3.2: Possible network setup of Comm2Prov.

camflow /provenance /{machine_id}

camflow /status /{machine_id}

camflow /order /{machine_id}

Level 1 Level 2 Level 3

Figure 3.3: Topic structure used in Comm2Prov.

20 chapter 3 comm2prov

3.1.2 Messaging

MQTT uses topics forwhich devices subscribe and publish to. This topic creation
is dynamic, appearing as they are used by subscribers and publishers, and
discarded as they become unused.

Comm2Prov expands upon the topic used for CamFlow provenance, "cam-
flow/provenance/{machine_id}", with two new categories on the second topic
level. As demonstrated in the figure above3.3, these two new categories be-
side "provenance" are "status" and "order". The topics structure used inside a
Comm2Prov system network are static and identical, except for the machine-id
used to identify provenance delivering clients. The topic structures may be dif-
ferent than what is used here, as the CamFlow MQTT topic can be configured.
But the machine-id is put on the last level in the provenance reporting topic,
as it is implemented as such in CamFlow and cannot be configured.

Category "provenance" is used by surveyed devices to deliver their provenance
records to subscribed auditors or storage. It is the standard topic used by
CamFlow to directly send their provenance data over MQTT.

The "status" category is used to maintain a retained message with the current
status of the device. Currently, there are only two relevant statuses used:
Running and Stopped. Theses statuses provide knowledge whether the device
is online or not. The message is retained so new connecting auditors receive
the status upon subscription. The status list can be expanded to include more
information about the device, but those can depend on what is needed from
the system. Comm2Prov keeps it simple for demonstration principles.

The final category, the "order" category, is used for the edge device client to
listen for orders to activate or deactivate provenance. Through this, provenance
can be activated without direct connection to devices. If the edge device where
to be configured to subscribe to their order topic with unclean sessions, they
will receive commands sent while they were offline upon re-connection.

3.1.3 Comm2Prov Client

The pub-sub client is two distinct components of the systems. Provenance
publisher client (pub) which work as a daemon application waiting for orders
to activate or deactivate order from the MQTT broker it is connected to. Prove-
nance subscriber client (sub) is the auditor client which initiates provenance
on pub clients by sending specific order across the MQTT service. Both clients
are essentially independent of one another, only sharing the same MQTT mes-
saging syntax for topics and commands on the MQTT device. This means that

3.1 design 21

different versions of each client can interact and be used on the same network
without issues while they use the same messaging syntax.

The pub client acts similarly to a daemon, initiated and connected to a pre-
defined MQTT broker at the start of the system it is installed on. With the
connection, the pub client sets up it’s own topics using it’s own CamFlow
generated machine-id. Using the topic structure mentioned in Comm2Prov
Topic figure3.3, the pub client subscribes to its own order topic and publishes
their current status to their status topic. The provenance topic is reserved for
provenance deliver by CamFlow. CamFlow should automatically connect to the
MQTT broker on their provenance topic upon started.

Pub client uses its own CamFlow order topic and posting to it’s status topic.
When it receives an order, it will execute the appropriate command through
a command line call. The CamFlow client needs to be called in this way, as
CamFlow API does not provide more CamFlow interaction than application
level provenance supplications to CamFlow.

In order for the provenance client to be receive orders, it needs to subscribe to
a topic using it’s own CamFlow generatedmachine-id. However, CamFlow does
not provide any means in which to extract a dynamically generated CamFlow
machine-id. Machine ID’ may be preset per machine, allowing static imple-
mentation of Machine IDs into the device, which require specific tailoring per
device. Comm2Prov’s extracts a machine’s local CamFlow generated machine
ID through extracting it from a CamFlow provenance generated log. CamFlow
generates an initial provenance log entry upon device startup, being the boot of
the machine. However, this requires CamFlow to generate a local provenance
log in addition to directly publishing to MQTT server.

For auditing devices, an intractable command line interface is provided in the
as the client. The auditing client can perform actions such as subscribing to
device provenance, requesting available devices, and sending orders to activate
provenance on devices.

In order for client to subscribe to a topic, it needs to know available provenance
devices. MQTT has no option to know which topics are live on the broker,
unless you modify the broker. In order to for a client to know all available
topics on the broker, it needs to subscribe to all available topics. Since our
system designates a topic to device status, camflow/status/+ is used to extract
all available systems with their information. Active provenance clients have
their status message declared as active with a topic containing their CamFlow
Machine ID. In cases a provenance client goes offline, their last will message
to their status topic will relay their inactivity.

22 chapter 3 comm2prov

3.2 Implementation

3.2.1 Requirements

There are three components needed to for the system: the Comm2Prov client,
CamFlow, and a MQTT broker.

CamFlowwas built to be run on fedora 1 operating system,with the possibilities
of running on other linux based systems without any guarantees. Thus the min-
imun requirement is for Comm2Prov to be deployed on Linux based operating
systems, with Fedora operating system being the optimal deployment.

Dependencies

The Comm2Prov client was implemented in Rust 2 and Paho-MQTT ?? 3to run.
The implementation uses the additional Rust crates of Regex ⁴and lazy_static ⁵.
Although Rust lazy_static and Regex are technically optional, they simplify
some parts of the Comm2Prov client.

The provenance and auditor client was tested on the virtual machine fedora OS,
and was not tested on other opterating systems. It is expects some compatibility
with linux-based OS systems, but there is no guarantee for other OS. The
provenance client requires to be on a linux based OS, as its basis is CamFlow.
The auditor client does not require a specific OS to run, only the needed
dependencies. in actuality, the auditor does not need to be our implemented
client, as long as it follows the rules in which Comm2Prov operates

Assumptions

TheComm2Prov client is assumed to not unexpectedly during the operating
system is active. If it were to crash, then it will be restarted when this is
discovered. If the entity were to restart, the pub-sub client will automatically
restart along with it. The Comm2Prov client is also assumed to be started as a
starting process during or shortly after startup.

Camflow assumes that it is installed on trustworthy devices. For simplicity, this
assumption will carry on in the Comm2Prov system, as Comm2Prov does not

1. https://fedoraproject.org/
2. https://www.rust-lang.org/
3. https://docs.rs/paho-mqtt/latest/paho_mqtt/
4. https://docs.rs/regex/latest/regex/
5. https://docs.rs/lazy_static/latest/lazy_static/

3.2 implementation 23

provide any addition environmental security.

3.2.2 Provenance

CamFlow is used as the provenance capturing system, as it allows for run-
time configuration of provenance capture. The reasoning for using CamFlow is
because it has high configurability and support some, something the proposed
system Comm2Prov build upon. A bonus is that CamFlow provides direct MQTT
publishing of its provenance data, avoiding storage of provenance data locally
on installed devices. The version of CamFlow used is the CamFlow version 0.9.0
and libprovenance v0.5.5, as these are the most recent version during the work
of this thesis. Comm2Prov start out with the initial provenance configuration of
CamFlow, letting any further configuration be set as a case requires it.

3.2.3 Comm2Prov Client

Client to use and send commands through MQTT (v3.1.1) was implemented
in rust using the Paho-MQTT library implemented for rust. Considering how
Comm2Prov would be considerable to use on more constrained edge hardware,
C and Rust were the contending implementation languages. Rust came on
top due to it’s memory management being more user-friendly and thus more
secure to work with.

Compiling the pub-sub client provide two different executable files, "sub" and
"pub". Pub executable is the Comm2Prov provenance client which waits in the
background for orders published to the MQTT broker it is connected to. Sub
executable is the auditor client, representing a client which sends commands
and receive provenance to the MQTT broker which a Comm2Prov provenance
client has attached to.

Pub Client

The Pub executable is the provenance client which listens for orders and acti-
vates provenance. When the Pub client is initiated, it gathers its own CamFlow
machine_id to subscribe and publish to the correct topics. The machine_id is
either statically saved as a pre-defined setting for the Pub client, needing syn-
chronous tailoring between the specific CamFlow settings and Pub client.

Otherwise, it can be extracted from the a command line call or a log entry.
This requires CamFlow to activated to store logs in a readable text format in
addition to sending the audit data over MQTT. A log entry is reads an entry

24 chapter 3 comm2prov

the audit log created by CamFlow, always containing at minimum a entry upon
startup. The log reading do require an assumption or knowledge of how the
logs are stored within the system.

Using the command line extract takes advantage of CamFlow command options
-s to extract the CamFlow provenance settings, including the machine_id. It
does this by running camflow -s a command line using std::process:Command
library at necessary privilege level, saving the output in a string.

In either options, Regex is used twice to find and extract the specificmachine_id
number in the string containing the entry or command output. First Regex
extracts the machine_id entry with the ID, while the second Regex extracts
the machine_id ID only. The machine_id does not change unless the system
is restarted with new CamFlow settings, the CamFlow machine_id is stored
as a non-volatile variable to be used throughout the run-time of the Pub
client.

Afterwards, it configures a MQTT client using MQTT-Paho CreateOptionsBuilder
to create and optimize the client as wanted. The server url and MQTT client-id
the is pre-defined in the client configuration settings, set up before compilation.
It connects using a synchronous client, assuring it finishes setup in specified
order. After the client is optimized, it is finalized and created to serve as the
Pub client.

With a client created, the Pub Client attempts to connect to a broker by building
a connection using MQTT-Paho in a independently running thread. Most
options, such as the address of broker to connect to, is pre-defined by the
client configurations and set up before compilation. The broker the Pub client
can be the same as the broker that CamFlow provides direct provenance to,
but does not need to be. Sessions are set to unclean so that the Pub Client
can reconnect to the same broker, resuming the session. This can be used to
receive orders which were sent while disconnected once the Pub client has
reconnected. A last will message is set to be sent to the broker upon sudden
disconnection, used for signaling to any new connectors that the Pub Client is
offline. The last will message is a retained message to the Pub Client’s own
"camflow/status/{machine_id}" topic with the payload for signaling that the
Client is offline.

When the connection options are finalized, the Client connects to the broker
using the options described options. Firstly it publishes the status that it is
running to its "camflow/status/{machine_id}", signaling that the Pub Client is
up. Secondly, it subscribes to order topic "camflow/order/{machine_id}" using
the machine_id extracted from CamFlow. After subscribing, it immediately
starts waiting for messages sent over the order topic until the Pub client is shut

3.2 implementation 25

down. At this point the Pub Client will act like a daemon until it receives a
message across the topics.

When it receives a message over "camflow/order/{machine_id}" topic, the mes-
sage payload is extracted and run through a dictionary to match command
with orders. This is to avoid direct connection with The dictionary is a static
hash with a mutex lock on it, used to convert orders received into provenance
altering actions. A specific command in string format is used to hash out a
string containing the command for changing capture policy. So far, only the
capture policy of fully enabling or disabling CamFlow whole tracking is im-
plemented. More commands can be implemented, but such commands would
require tailoring or a more complex message delivery and reception with a
structure to separate command hash and arguments. Once it has successfully
passed through the dictionary and gotten the command, it is executed by calling
a Command Line in-process and executing the extracted dictionary specified
command through it. After execution, Pub client goes back to waiting for next
message sent over the command topic.

Sub client

The sub executable is the auditor client used for sending orders to Pub clients.
Client is intractable through the command line which started the auditor client,
using prompts for sending commands.

When initiated, the Auditor client attempts to sets up a MQTT-Paho client
which to interact with the MQTT broker through. The MQTT client takes a
pre-defined broker address and client id from the settings. After setting up
the client, the client tries to open a connection to the specified broker. The
connection opens with no last will message and a clean session, as the auditor
does not need to be remembered by the broker.

Upon successful connection, the Auditor client waits for input through the
command line. There are seven options implemented currently for the Auditor
client, which are: "stop", "order", "refresh", "receive", "norecieve", "subscribe",
"unsubscribe". The "stop" option shuts down Auditor client, cutting connection
with broker and the exiting the process.

"refresh" gets a list of running provenance clients connected to the server.
However,MQTT does not have any implemented feature to list who is connected
to the broker or which topic is active on the broker. In order to get them, the
Sub Client subscribes using to the camflow/status/# topic, receiving statuses
of all provenance brokers connected. As the statuses are retained messages,
they are immediately received upon connecting. Then it goes through every

26 chapter 3 comm2prov

message, looking for a message matching the status to the one signifying the
broker is running. On a match, the machine_id is extracted from the topic
using Regex and stored in a vector for later. After going through every retained
message, the client unsubscribes to the camflow/status/# topic. The new vector
of living provenance clients replaces any previous vectors of living provenance
clients that might be outdated.

"subscribe" is used to subscribe to the provenance of a provenance machine.
Upon selecting subscribe option, themachine_id of all living provenance clients
stored from "refresh" option vector is listed. Inputs are taken through a loop,
repeating to store several machine_id’s until the input to continue breaks it.
One can choose to subscribe to all topics, subscribing to all listed provenance
clients. From the list, the machine_id of the provenance client to subscribe too
can be input one after another and is stored in a list of subscribing topics. If the
machine_id to subscribe to is already in the list or not listed amongst the living
machines, it is discarded. Alternatively, the subscribing process can be halted
and will return to the other options. Once the machine_id’s to be subscribed
to is finished, the QoS of the subscriptions are to be selected. All provenance
client subscriptions use the same selected QoS . Once the provenance clients
and QoS have been selected, they are subscribed too. The subscribed topics
are stored in a vector.

"unsubscribe" option works similar to "subscribe". Instead of selecting subscrip-
tion topics from living machines, the stored subscribed topics are used to select
them. Any topic chosen to unsubscribe from is removed from the subscribed
topics vector. One can choose to unsubscribe to all topics, removing all sub-
scribed topics from the vector and unsubscribing to them. Once selected, the
topics are unsubscribed.

"receive" starts the reading of messages subscribed to by the client. The reading
of messages is put into a thread, allowing further options to be selected. There
is only one thread, as all messages published by all topics are read at the
same time. Currently, there are no definite resolution to what happens to
the messages. The thread will continue running and receiving messages until
stopped. "norecieve" option ends the thread by signaling the running thread
to stop.

"order" is used to send orders to available provenance machines. First, the
machines to send order to are selected. Using the vector of running provenance
clients as a list, one can select a client or all clients to send order to. Afterwards,
the full command to send to the provenance client(s) is taken as an input in.
For each machine selected, a message is created and sent on the topic with the
order in it. Checking for correct syntax on the order is done on the provenance
clients side, as they decide which orders are available.

3.2 implementation 27

3.2.4 MQTT

Comm2Prov has a basic messaging implementation, which does not require
any specific MQTT broker to service it. As long as the chosen MQTT broker
satisfies the MQTT protocol, it should be viable. However, in the search of
potential MQTT broker, Mosquitto ⁶ was noticed as a potential MQTT broker
implementation. This is mostly due to mosquitto being open-source⁷, the
same as CamFlow, providing potential for further development of Comm2Prov.
Mosquitto is also compatible with the Paho-MQTT library for Rust.

6. https://mosquitto.org/
7. https://github.com/eclipse/mosquitto

4
Experiments
4.1 Environment

The virtual machines were run on a Windows 11 Pro OS version 22H2, and a
13th Gen Intel(R) Core(TM) i7-13700 2.10 GHz processor with 128 GB available
ram. Simulators used were using virtualbox (V0.7) 1 and vagrant (V2.3.7) 2.
Experiments were run using the vagrant environments set up by CamFlow
developers (https://github.com/CamFlow/vagrant). More specifically on the
Spade vagrant environment, setup for CamFlow with SPADE V3.0 [20] on a
fedora 33 cloud-edition OS. The virtual machine was upgraded from CamFlow
from version 0.7 to CamFlow version 0.9, while the latest libprovenance version
0.5.5 installed alongside it.

Each virtual machine has designated 24576 bytes of memory, 4 CPU’s with
execution cap set to 70 in the vagrantfile settings. Additionally, 80 GB of disk
space was configured for each device, although they do not necessarily need
that much. 40 GB of disk space should be sufficient, where the 80 GB were
initially set due to potential growth of provenance logs.

A vagrant private network was configured between the virtual machines, giving
eachmachine its own IP address on the network. The different virtual machines
used this network to communicate which each other, simulating a private

1. https://www.virtualbox.org/
2. https://www.vagrantup.com/

29

30 chapter 4 experiments

network Comm2Prov could potentially be deployed on. Although for our case
the virtual machines were run on a singular physical machine.

4.2 Benchmarking provenance

The purpose of running a benchmark experience was to evaluate CamFlow’s
system impact and its ability to capture provenance during high computation
loads. It also evaluated and compared different provenance capture states Cam-
Flow can enable. Additionally, the accuracy and provenance data generation
was recorded to further illustrate how large volumes of provenance data can
be generated.

4.2.1 Implementation

CamFlow was tested with Machine Learning Benchmark, specifically using the
Penn Machine Learning Benchmark (PMLB)[22] as it was most ease of use
on the virtual machines. This test was run to see how CamFlow would be
able to record data flow and it’s impact on performance during high intensity
computing. Another aspect was to evaluate if provenance tracking is viable
to use in Machine Learning settings. PMBL is a collection of several datasets,
collected as a benchamrk suite pre-proccessed to be more easier to use, as the
data itself is less important than the machine learning benchmarking.

The pre-processsing of the dataset and functions leave some of abstractions
for the benchmark process, with their impact on possible overhead being less
clear. The specific of what PMLB contains can be found on the epistasislab git
hosted website 3. However, with the singular purpose of benchmarking through
Machine Learning algorithms, the content of used datasets are less relevant
with the benchmark results being the final matter. As for the purpose of our
experiment is to put laod on the machine and system, the abstractions are
non-consequential for our purpose. Although, these abstractions do make it
harder to get a clear image of overhead causes on the finer granularity.

The test uses the example in the PMBL github repository ⁴ with some minor
modifications to it. The machine learning itself was done using the python
scikit-learning module, as done in the example. The machine learning methods
used from the scikit-learning module were logistic regression and guassian
blur. The PMLB datasets were run using the scikit-learning modules, using

3. https://epistasislab.github.io/pmlb/
4. https://github.com/EpistasisLab/pmlb

4.2 benchmarking provenance 31

logistic regression and gaussian blur training models. The number of iterations
in which the models were trained varied depending on the experiment. As
some datasets in PMLB are significantly large, the machine learning models
fails completing some larger of them. But as it continues the process of training
on different datasets, this does not impact the experiment, as the training is
more important than the results of the training.

Time was measured by noting current time before machine learning initiated
and after both training models had completed. The amount of iterations and
subsequently the amount of datasets visited are noted as well, to have clearer
image of the amount training which was done.

A bash script was used to repeatedly run the experiment, allowing for additional
information gathering from the system. From this bash script, the size of
provenance data was captured from a log file generated by CamFlow by using
the Linux command to read themetadata of the file. The results of the command
where stored in a text file for later use. Additionally, the amount of dropped
events from CamFlow where extracted similarly be storing the result of the
"camflow –drop" command.

As the log file or the dropped events recorded could not be reset during testing,
they accumulate as the testing proceeded. The final numbers where calculated
by using the difference between the previous extracted record with the current
extracted record.

4.2.2 Results

The average results of the experiment is described in benchmark table4.1. There
were some instances of unusual results, such as the drops occurring only on one
round across each propagate and whole tracking test. This inflates the average
of drops from what usually was 0 drops to 1/10 of the singular incident as
seen in graph 4.6. Additionally, the propagation seems to have a larger log
during the first round than it should, which could be correlated to the drops
detected.

Some of the graphs starting values and ending values were adjusted to better
display the individual differences.

32 chapter 4 experiments

0 2 4 6 8 10
Tests (No tracking, Tracking, Propogation, Whole)

500

510

520

530

540

550

560
Ti

m
e

in
 se

cs

Times

Figure 4.1: Benchmark times comparison figure

2 4 6 8 10
500

520

540

560
No Tracking

2 4 6 8 10
500

520

540

560
Tracking

2 4 6 8 10
500

520

540

560
Propagation Tracking

2 4 6 8 10
500

520

540

560
Whole Tracking

Figure 4.2: Benchmark times individual figure

4.2 benchmarking provenance 33

0 2 4 6 8 10
Tests (No tracking, Tracking, Propogation, Whole)

0

100000

200000

300000

400000

500000

600000

700000

800000

Si
ze

 in
 K

B

Audit log Size KB

Figure 4.3: Benchmark size comparison figure

2.5 5.0 7.5 10.0

0.04

0.02

0.00

0.02

0.04

No Tracking

2.5 5.0 7.5 10.0
0

20

40

60

80

Tracking

2.5 5.0 7.5 10.0
0

200000

400000

600000

800000
Propagation Tracking

2.5 5.0 7.5 10.0
0

100000

200000

300000

400000

Whole Tracking

Figure 4.4: Benchmark size individual figure

34 chapter 4 experiments

0 2 4 6 8 10
Tests (No tracking, Tracking, Propogation, Whole)

0

20000

40000

60000

80000

Ca
m

flo
w

Ev
en

t D
ro

ps
Event Drops

Figure 4.5: Benchmark drops comparison figure

2.5 5.0 7.5 10.0

0.04

0.02

0.00

0.02

0.04

No Tracking

2.5 5.0 7.5 10.0

0.04

0.02

0.00

0.02

0.04

Tracking

2.5 5.0 7.5 10.0
0

20000

40000

60000

80000

Propagation Tracking

2.5 5.0 7.5 10.0
0

2000

4000

6000

8000

Whole Tracking

Figure 4.6: Benchmark drops individual figure

4.3 network transfer tracking 35

Tracking level AVG. Time AVG. Size KB Drops
No tracking 531.5678623 0 0
File 529.0043206 89.5 0
Propagation 536.6962618 265093.4 9319.8
Whole system 531.9642351 427109.9 906

Table 4.1: Average result of ML Benchmarking

4.3 Network transfer tracking

The purpose of this experiment was to test the impact of capturing messages
sent over a network. While the previous experiment tested the impact of
capture during heavy computation, this experiment tests the capture of network
messages.

This experiment was conducted to find the overhead caused by CamFlow
provenance capture of message system with a test to send multiple messages
over a socket. Similarly to the benchmark experiment, different settings of
provenance capture were tested. More notably, CamFlow’s ability to capture
network packages were tested to see it’s impact and accuracy with a constant
message flow.

The experiments were done using two vagrant virtualmachines, one for sending
data and one for receiving data. The machines were setup individually in order
for CamFlow to generate different identifications for each machine. Although
setup individually, they are setup using identical procedures to keep their
likeness. Communication was done over a private network setup by vagrant,
each machine specifying their network address.

4.3.1 Implementation

The test was implemented in Python v3.9.9.0 using python sockets to send
messages over a private created vagrant network. A sender and a recipient
are connected through unix sockets using Python sockets. Connection happens
through a static IP configured beforehand put in as values. Time was measured
by the experiment implementation by noting down the difference in time
before and after the test started. The test was run separately on both machines,
one configured to send data to the one configured to receive it.

To server as fodder for the messages, the content of a file was read and sent over
the network in which the recipient recorded the contents down in a file. The
file sent was a text document containing "Lorem Ipsum" paragraphs repeated

36 chapter 4 experiments

has a file size of 1.0662956238 GB.

Upon starting up, each side attempts to establish connection to each other.
Receiving end waits for the sender to connect to them, while the sender
immediately tries to connect to the receiver. This interactions warrants the
receiving end to initiate before the sender, possible creating overhead as it
waits.

Upon gaining connection with the receiver, the sender opens the lorem text
file, sending lorem paragraphs from the file line by line. It does this until it
reaches a limit set upon starting the test or the end of the of the lorem data
file. Messages are sent as plain text over the socket. The receiver reads these
files and writes them into a local file. As the messages received are stacked
in queue, and the write operation takes longer than the read operations, the
receiver occasionally writes multiple lines at ones into the file. The receiver
keeps writing messages into the file, stopping once it receives a message with
nothing in it. Once sender and receiver are done sending and receiving, they
write the time and amount of sent or received messages before disconnecting
and exiting.

Scripts were used to successfully run the experiments multiple times in a row.
In order for the sender to not attempt to connect earlier than the receiver
can wait for them on repeats, an two second wait was added between on
the sender side. This created some artificial overhead on the receiver side
which has to wait two seconds or less for the sender. Additionally, the script
measures the provenance audit logs size and CamFlow dropped provenance
packages between each test. The size of the audit log was captured in KB while
the amount of dropped packages were extracted using the CamFlow drops
command.

Six different CamFlow settings were tested in this experiment. First four were
the same as the ones used in the benchmark: not tracking, tracking messaging
process, propagate tracking the messaging, and whole system tracking. All of
these were tested one after another on with the same script, without resetting
the CamFlow capture mechanism and log. As the provenance logs size and
amount of CamFlow dropped events are cumulative across the tests, the final
result of these is calculated using the difference between previous instance
and current instances.

The last two types of test were networkmessage capture tests, with andwithout
package capture. Tracking IP address through CamFlow requires an IP address,
mask for the IP address, and a a port number in which to track. CamFlow
can distinguish between packages received or sent over the IP connection, as
ingress or egress. Both machines were configured to track receiving and sent

4.3 network transfer tracking 37

0 2 4 6 8 10
Tests (No tracking, Tracking, Propogation, Whole, IP Propagation, IP Capture)

0

5

10

15

20

25

30
Ti

m
e

sp
en

t
Time spent

Figure 4.7: Transfer send time comparison figure

messages over the same IP and PORT. Tests were run the same as the previous
tests, time captured during the test and the cumulative audit size and drop
amount taken through calculation.

As the receiver takes multiple messages at once, final message can be lost in
the stack as the receiver reads mulktiple messages at once. To ensure that
the ending message is received alone, the ending message is sent after a
second delay, creating additionaly overhead. This generates enough time for
the receiver side to write the final message. Without this stop, the receiving end
might miss the concluding message, looping indefinitely waiting for message
the message that was missed.

4.3.2 Result

The average results of experiments are listed in table 4.2. During these experi-
ments too, there were some differing edge case results, which were calculated
into the average. The tables are split into the receiver and sender side, showing
both sides of the experiments.

38 chapter 4 experiments

2 4 6 8 10
0

10

20

30
No Tracking

2 4 6 8 10
0

10

20

30
Tracking

2 4 6 8 10
0

10

20

30
Propagation Tracking

2 4 6 8 10
0

10

20

30
Whole Tracking

2 4 6 8 10
0

10

20

30
IP Propagation

2 4 6 8 10
0

20

40

IP Capture

Figure 4.8: Transfer send time individual figure

0 2 4 6 8 10
Tests (No tracking, Tracking, Propogation, Whole, IP Propagation, IP Capture)

0

5

10

15

20

25

30

Ti
m

e
sp

en
t

Time spent

Figure 4.9: Transfer receive time comparison figure

4.3 network transfer tracking 39

2 4 6 8 10
0

10

20

30
No Tracking

2 4 6 8 10
0

10

20

30
Tracking

2 4 6 8 10
0

10

20

30
Propagation Tracking

2 4 6 8 10
0

10

20

30
Whole Tracking

2 4 6 8 10
0

10

20

30
IP Propagation

2 4 6 8 10
0

20

40

IP Capture

Figure 4.10: Transfer receive time individual figure

0 2 4 6 8 10
Tests (No tracking, Tracking, Propogation, Whole, IP Propagation, IP Capture)

0.0

0.2

0.4

0.6

0.8

1.0

Au
di

t S
ize

 K
B

1e6 Audit Size KB

Figure 4.11: Transfer send audit size comparison figure

40 chapter 4 experiments

2.5 5.0 7.5 10.0
0.05

0.00

0.05
No Tracking

2.5 5.0 7.5 10.0
0

50

Tracking

2.5 5.0 7.5 10.0
0

200000

400000

Propagation Tracking

2.5 5.0 7.5 10.0
0

50000

Whole Tracking

2.5 5.0 7.5 10.0
0

250000

500000

IP Propagation

2.5 5.0 7.5 10.0
0.0

0.5

1.0
1e6 IP Capture

Figure 4.12: Transfer send audit size individual figure

0 2 4 6 8 10
Tests (No tracking, Tracking, Propogation, Whole, IP Propagation, IP Capture)

0.0

0.2

0.4

0.6

0.8

1.0

Au
di

t S
ize

 K
B

1e6 Audit Size KB

Figure 4.13: Transfer receive audit size comparison figure

4.3 network transfer tracking 41

2.5 5.0 7.5 10.0
0.05

0.00

0.05
No Tracking

2.5 5.0 7.5 10.0
0

50

Tracking

2.5 5.0 7.5 10.0
0

200000

400000

Propagation Tracking

2.5 5.0 7.5 10.0
0

5000

10000

Whole Tracking

2.5 5.0 7.5 10.0
0

250000

500000

IP Propagation

2.5 5.0 7.5 10.0
0.0

0.5

1.0
1e6 IP Capture

Figure 4.14: Transfer receive audit size individual figure

0 2 4 6 8 10
Tests (No tracking, Tracking, Propogation, Whole, IP Propagation, IP Capture)

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Ca
m

flo
w

Dr
op

s

1e6 Camflow Dropped Events

Figure 4.15: Transfer send CamFlow event drops comparison figure

42 chapter 4 experiments

2.5 5.0 7.5 10.0
0.05

0.00

0.05
No Tracking

2.5 5.0 7.5 10.0
0.05

0.00

0.05
Tracking

2.5 5.0 7.5 10.0
2.0

2.5

3.0
1e6 Propagation Tracking

2.5 5.0 7.5 10.0
0.05

0.00

0.05
Whole Tracking

2.5 5.0 7.5 10.0
2.0

2.5

3.0
1e6 IP Propagation

2.5 5.0 7.5 10.0
2.0

2.5

3.0
1e6 IP Capture

Figure 4.16: Transfer send CamFlow event drops individual figure

0 2 4 6 8 10
Tests (No tracking, Tracking, Propogation, Whole, IP Propagation, IP Capture)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Ca
m

flo
w

Dr
op

s

1e6 Camflow Dropped Events

Figure 4.17: Transfer receive CamFlow event drops comparison figure

4.3 network transfer tracking 43

2.5 5.0 7.5 10.0
0.05

0.00

0.05
No Tracking

2.5 5.0 7.5 10.0
0.05

0.00

0.05
Tracking

2.5 5.0 7.5 10.0
1

2

3 1e6 Propagation Tracking

2.5 5.0 7.5 10.0
500

525

550

Whole Tracking

2.5 5.0 7.5 10.0
0

1

2

1e6 IP Propagation

2.5 5.0 7.5 10.0
1

2

3 1e6 IP Capture

Figure 4.18: Transfer receive CamFlow event drops individual figure

Type AVG. Messages AVG. Time Sec AVG. Size KB AVG. CF-Drops

No Tracking Send 2999700 11.623142 0 0
No Tracking Recv 1119543.4 13.03359015 0 0
Track file Send 2999700 11.2652102 86.9 0
Track file Recv 1118935.9 12.70578647 89.7 0
Propagate file Send 2999700 13.75352838 402441.6 2900949.7
Propagate file Recv 1118529.4 14.96945362 426489.4 3027752.8
Whole system Send 2999700 11.60448034 16047.6 0
Whole system Recv 1119235.5 13.05461664 10084.7 0

Table 4.2: Tracking File of Messaging experiment

Type AVG. Messages AVG. Time sec AVG. Size KB AVG. CF-Drops

IP Propagate Send 2999700 22.77826242 586573.6 2461665
IP Propagate Recv 1117702.8 23.79365387 595493.3 2616868
IP Capture Send 2999700 24.12856894 569797.3 3003448.5
IP Capture Recv 1119713.6 25.16513004 688769.6 1978784.1

Table 4.3: Tracking IP of Messaging experiment

5
Discussion
5.1 Experimentation

As the system uses different underlying systems, most of the experiments were
to test the components of Comm2Prov. Testing the components of the system
individually gives a better overview of how they affect the system.

Due to the more widespread interest in MQTT, there are already several per-
formance analysis done on MQTT protocol [23] [24] [25] out there. Hence,
our experiments focused more on the performance of less evaluated compo-
nents.

Due to the high configurability of Comm2Prov components, additional experi-
ments could have been done testing different settings. Most of the experiments
were to test the different provenance capture settings due to Comm2Prov’s
goal of configurable provenance. Even with several evaluation already being
established on MQTT system, some experiments could have been conducted
testing the different settings. Some of these settings are the different security
options deploy-able on MQTT connections and brokers.

Something which could additionally be tested is MQTT provenance publishing
of CamFlow. Here it would be interesting to see how much provenance data is
published and it’s speed of publishing to a MQTT broker. The different Qualities
of Service that a message can be published on can also be compare to each
other, testing the accuracy against performance issue. As a lot provenance data

45

46 chapter 5 discussion

is generated in short times, there is the worry if a MQTT broker is capable of
keeping up with the rapid publishing. It is possible that published provenance
messages are dropped by the MQTT broker because of the provenance genera-
tion. This aspect is something that would be interesting to evaluate further in
order to see the applicability transferring provenance data over MQTT.

However, the capabilities of a MQTT broker is determined by its allocated
processing power and network speed. Meaning that if the broker does not end
up managing transferring provenance due to its rapid generation, the issue
can be solved by allocating more processing, memory, and network capabilities
to the broker. Testing the accuracy of insufficient computation power does
not sound like an informative experiment, as the solution could easily be to
add more computation. But there is a valid point of discovering how much
computation power is needed to give a MQTT broker in order for it to keep up
with the provenance generation. But this does require the elimination of other
variables in order to get a clear image.

Virtualbox has some additional tools which could have been used to further
enhance the experiments. Using the virtualbox interface, it is possible to mon-
itor the network, CPU, and memory usage of the virtual machines running.
Through the monitoring, the computation overhead caused by the capture
mechanisms and the Comm2Prov provenance client could have been inferred
from the data collected from monitoring. However, as it was in the case of
the benchmark test, the monitor showed full CPU utilization while it was not
tracked. This is to be expected, as the purpose of that experiment was to test
capture mechanism on a stressed application. But it also sets the precedence
that the monitor might not provide any particularly useful information.

5.1.1 Benchmark

As the benchmarking experiment were to test the provenance capture during
high test computation, the test were done by saving the provenance to a local
file. As the main part of Comm2Prov is for the provenance to be transmitted
over MQTT network, the experiment can arguably be seen as less relevant to
this thesis. However, with the uncertainty of the accuracy of provenance sent
over MQTT as discussed earlier, evaluating the size of the provenance data
generated could be less accurate.

Results

Figures 4.1-4.2 show the individual time results done by the experiment in
graphs, while figures 4.3 - 4.4 show the auditing size, and figures 4.5 - 4.6 show

5.1 experimentation 47

the drop rate of events. The area of what is displayed on these graphs have
been configured to show the difference between each individual test. This is
why some of the graphs with high difference in full comparison graph is less
visible in individual comparison graph.

There were some outlier results coming out of the test, such as the propagation
tracking test having two tests with significantly higher times than the others,
being the first and ninth test. Other outliers can be that only the first test with
propagation tracking and the seventh test of the whole system tracking had
any sort of dropped events during the benchmark experiments. This is reflected
in the audit log size captured during for the first propagation test, but not for
the seventh whole system test. The cause behind these outlier results are yet
to be determined.

These outliers where not excluded from the average result calculation, shown
in 4.1, as all test iterations were used to run the test. This does affect the
average result, leaving the table to display a slightly inaccurate end result due
to possible irregular variables during testing. These irregular results could have
been excluded from the average due to their unexplained appearance, but was
refrained doing to better correspond to the graphs.

As seen in 4.1, there was no significantly noticeable difference between the
different provenance capture settings. Most of the differences in time measured
areminimal,with atmost aminute of variation between the longest and shortest
measured time. These variations can be due to small random differences
occurring across the multiple machine learning calculations, stacking up to
make the difference. The time variation could also be due unknown variables
affecting the test, which can be related to the outlier results.

Seen in correlation with the amount of auditing data collected 4.3 - 4.4being
consistent across the tests, the time was mostly unaffected by the provenance
gathering mechanism. Despite tracking gathering 89.5 KB with provenance
data, propagation gathering 265093.4 KB provenance data, and whole system
tracking gathering 427109.9 KB, there were no significant variation caused by
these times. It can be argued that there are some smaller increases in time
consistent across tests 4.2, if you overlook some of the high spikes and drops.
But these differences some seconds at most, a small increase in contrast to the
difference of provenance data collected during the tests.

The average time calculated in the table 4.1 indicates that CamFlow provenance
collection has small impact on systems already under high stress. Due to the
the average time of the no tracking experiment is calculated to be higher than
the regular tracking experiment, and the variations between each test vary
within each test, making the overhead caused by CamFlow hard to induce by

48 chapter 5 discussion

these result. According to the performance tests done in the CamFlow paper[7],
CamFlow has a 1%-11% overhead.

The experiment does show how much more provenance data is collected by
the different capture settings4.3 4.4.

5.1.2 Networking

Due to an interaction between vagrant private network and CamFlow, IP-based
tracking was configured in the CamFlow configuration file initiated through
startup. This was caused by CamFlow requiring the IP they are to monitor
to be either newly created or not yet established. Since vagrant sets up the
private network during virtual machine start, the network connection is already
established by the time experiments run. This does not affect the final result of
the experimentation, as it could be carried out by resetting the virtual machine.
But it reveals an inflexibility in the dynamic provenance configuration which
Comm2Prov builds upon.

Both IP tests were done while tracking all incoming and outgoing packets for
both sender and receiver. But capturing incoming packets on an address you
know they are mostly sending messages to can end up recording unnecessary
provenance data. Testing the difference between only capturing received mes-
sages on the receiver side and only capturing sent messages on the sender side
can prune out potentially unnecessary logs.

Results

The graphs having with results are separated into the sender and receiver sides
to see the difference in sending data and receiving data. As such, graph 4.9-4.10
- 4.7 - 4.8 represent the time measured in seconds, graphs 4.13-4.14 - 4.11 - 4.12
represent the audit log size collected in KB, and 4.17-4.18 - 4.15 - 4.16 represent
the amount of dropped events.

Similarly to the benchmark experiment, there are some outlier results that
seem irregular. These irregularities are still calculated in the average time, for
the same rteasons as earlier. This spike in time occurs also on the first test of
some of types of test in this experiment, being no tracking, regular tracking
and IP tracking. This pattern of irregular time and occurrence can also be
seen in the benchmark experiment to some extent. But the exact cause is still
uncertain.

As seen in the comparing of time 4.7 4.9, provenance capture has a bigger

5.2 implementation 49

impact on the system as it tracks network packets. Tracking messages sent
over network has a much bigger overhead than tracking configuration which
primarily focus on the inner operating system. This is seen in the tables with
average network transfer results 4.2 , with the average time and audit size
being significantly bigger in propagation tracking, IP propagation tracking,
and IP capture. This can be due to the network capabilities of the virtual
machine outperforming the computation power of the system. This is further
discussed in a later section 5.3, but the capture of packets seem to be causing
noticeable overhead, which occur in propagation tracking, IP tracking, and IP
Capture.

Graphs of the network transfer time 4.7 4.9 show that propagation tracking,
IP tracking, and IP Capture usually use more time than the other configura-
tions.

Occasionally, whole system provenance tracking uses more time than propa-
gation tracking. The tracking configurations that track packets are the only
configurations which has any CamFlow events drops, as seen in the graphs on
dropped events 4.17 4.15 4.18 4.16.

IP packet capture test 1 goes beyond the upper limit set on the on the graph
in the time comparison graphs 4.9 4.7, because would dwarf the other com-
parison if left to be in full view. The full view of them can be seen in the
individual graph4.10 4.8, showing how much more time this singular test took
in comparison to the other. Although seeming like an irregularity, it might not
be. Comparing the time 4.10 4.8, audit log size 4.14 4.12, and dropped events
4.18 ?? of the first IP capture test, we can see that the IP capture test captured
more events during this test than any others. From this, we can reason that the
first IP capture test is closer to the true overhead caused by capturing packets,
due to it recording almost every event captured. From another perspective,
the irregularity might have slowed down the test and given more time for
provenance data to be recorded. But even in this

5.2 Implementation

5.2.1 MQTT configured provenance

One of the big security factors is also the core concept of Comm2Prov, using
MQTT to deliver provenance configuring commands. A part of MQTT is that
the subscribers and publisher are essentially independent of one another. This
causes publisher to be unaware to who gets their published messages, and
subscribers to be unaware who publishes to the topics they subscribe too. This

50 chapter 5 discussion

puts MQTT perilous situation by nature of its protocol, as unprotected brokers
and topics are prime target for Man-in-the-Middle or spoofing. Malicious actors
with knowledge of how the system works can issue commands to turn on or
off provenance if they get access.

Comm2Prov is not designed to be a open environment accessed by unknown
actors, giving precedence for using the MQTT login approach to restrict actions
and authorities. One common security measure implemented in MQTT brokers
is the username and password security, creating a form of login upon connecting
to a broker. Through this login, it could be possible to assign restrictions and
permissions on users. CamFlow supports login structure, allowing it to used
for simple authentication om the brokers side.

Applying stricter restriction onwho can publish towhich topics allows Comm2Prov
instances to be further configured to only post on their own broker. Additionally,
multiple brokers can be used with different security configurations to them.
One broker may be used for issuing status of a provenance client, while another
is used for issuing commands.

As stated in the survey done on MQTT by Biswajeeban Mishra and Attila
Kertesz [26] , MQTT sacrificed encryption for the sake of being lightweight. It
is due to this lightweight capability that MQTT was chosen as a component of
our system, but in return ends giving it a security weakness.

The status list can be expanded to include more information, such as camflow
capture state hash and remote attestation hash. Current status list of running
or disconnected does not tell if provenance is active on system, only if it is
connected.

5.2.2 CamFlow

CamFlow assumes that it is deployed in a trustworthy environment. Might not
always be the case for different scenarios. CamFlow also does not encrypt the
provenance data they publish over the MQTT. This issue remains in all forms
that CamFlow can publish their provenance logs, not only over MQTT.

As stated in the paper by Dan Dinculeană and Xiaochun Cheng on Authorization
on MQTT IoT devices[27], MQTT offers some security and authentication
measures which may vary from MQTT systems. However, Camflow does not
provide much for optional configuration to its MQTT provenance publishing.
CamFlow provides the simple login option, with username and password, as
the optional security measure. Adding more options requires a modification
of CamFlow to fit the needs implemented on the MQTT broker. Moreover, this

5.3 camflow provenance data 51

username and password stored in the configuration file. This configuration file
does require low-level privilege to access, and an assailant with access to this
file can obscure their activities from provenance either way.

5.2.3 Comm2Prov System architecture and design

Comm2Prov is a system for enabling provenance and disabling provenance.
This consequentially makes any provenance capturing system utilizing it only
as secure as Comm2Prov. As Comm2Prov is based on CamFlow and MQTT, their
security mechanisms decides some of the security Comm2Prov can enforce. But
as CamFlow is open source and MQTT has open source implementations such
as mosquitto1 broker, security means can be further developed. This means
that Comm2Prov can developed along with Camflow and a MQTT to fit the
deployment’s needs.

One of the strengths of using CamFlow is its ability to directly publish MQTT
messages. A potential problem with developing a client to publish provenance
that the published provenance data is caught by the capture and recorded
again, causing an infinite loop of provenance generation. CamFlow fixed this
by marking itself as an opaque entity which to not capture. A provenance
publishing client could avoid the loop by using this same method. However,
by not being forced to make the client an exception for capture, the client can
potentially be captured. This could be useful in cases where one would want to
capture how many orders the client receives and from which connections. But
as expressed earlier, there are limitation to the security which can be applied
to MQTT messaging provided by CamFlow.

5.3 CamFlow Provenance Data

As Comm2Prov can be deployed over multiple machines simultaneously, multi-
ple machines can end up providing provenance in order to capture the flow of
data. However, as the instance of CamFlow only knows about their ownmachine
without any knowledge about a bigger network. Therefore, logs created by the
transfer data experiment were inspected to learn what was captured in the
different provenance levels and if they could be united to capture flow across
networks. The provenance levels inspected were: regular process tracking,
propagate tracking, and whole-system tracking. Some interesting discoveries
were made from inspecting these graphs.

1. https://github.com/eclipse/mosquitto

52 chapter 5 discussion

Firstly, the captured provenance was parsed through SPADE [20] as input,where
SPADE providing dot output to be used for graphs. Graphviz [28] was utilized
to generate graphs of the provenance data. The provenance was recorded in
the SPADE-JSON format to be processed by SPADE.

The graphs were made from the simple tracking, propagation tracking, and
whole tracking provenance capture settings. Entities were set to be non-
duplicate, making every transformation of the data its own entity within the
graph. The network data experiment also reduced the amount of Lorem Ipsum
paragraphs to a singular paragraph, in order to reduce the provenance logs
size. Depending on the size of the logs, converting it to a graph can take from
seconds to hours.

One discovery is that regular tracking and whole system tracking does not
capture the packets sent over the network. Regular tracking does not expand
outside of the process running, thus does not capture beyond what the process
does. Whole-system tracking tracks all system calls to the kernel, registering
that the process takes use of a socket, but does not register the packet which
was transmitted. Propagate tracking managed to capture the packet sent from
the sender, registering the length, recipient and sender of the packet. This
makes regular tracking and whole system tracking less useful for the purpose
of tracking data across networks. A possible reasoning for why whole-system
tracking does not capture messages, is that it captures the socket’s creation, but
not what is transferred by using it the socket. Propagation tracking however
tracks the data flow of data throughout a system, until it leaves the system,
meaning it captures the messages sent over the socket. Reduced accuracy in
this exact area is not a good sign for Comm2Prov, as the aspect of network
transfer is a core point of Comm2Prov’s concept.

Another discovery was made when the logs of both the receiver and sender of
data were combined. The purpose of this was to see how close the provenance
data of two independent instances of CamFlow provenance capture would get
to each other. The raw data of these logs were combined before they were
processed into graphs. This resulted in packets sent between the sender and
recipient being referred to by both sides, meaning logs of independent instance
can provide a connected logs over the network. Naturally, this only worked
on provenance capture that registered packets, as they were the connecting
point.

5.3.1 Future Work

There is much more work that can be done on Comm2Prov. One is that the
Comm2Prov client could potentially be integrated into CamFlow as an ex-

5.3 camflow provenance data 53

tension to its existing functions. Additionally, using an open source MQTT
broker as abase, a more complex and secure communication between Cam-
Flow, Comm2Prov client, and the broekr can be further developed. There is
also more optimization possibly in the source code, as well as implementing
more optional commands and features, such as having the CamFlow policy has
published on its status as it changes..

More and better experiments can also be done on the Comm2Prov system. A
complete overhead measurement of Comm2Prov, testing of the accuracy and
overhead caused by provenance being published to aMQTT broker. Additionally
improvements can be done to try find the reasoning for the irregular results
and assuring that they do not occur in future tests. The environment can also
be further changed, testing on newer OS instances, as well as testing on virtual
machines with access to less computing power.

6
Conclusion
Comm2Prov is a system showing the possibilities of distant auditing to IoT
devices, allowing provenance to be configured as needed on IoT devices without
direct access to them. With the distant selective auditing, an auditor can enable
provenance on suspected IoT devices without their explicit awareness to gather
data with only necessary amounts of auditing.

Experiments were conducted to test the viability of different capture configu-
rations, to show and discuss the possible different usages of provenance dis-
tributed network system. First experiment tested the impact on provenance on
local systems during high intensity computation, resulting in showing no signif-
icant impact by the capture. Another experiment was to test the capabilities of
network capture, sending many messages in rapid succession over the network,
resulting a small noticeable overhead in capturing network messages.

There were some unknown irregularities in the testing, causing some irregular
result compared to the others. These irregularities seems to be mostly affected
in their time measurement, giving some higher times than they should The
result of these experiments showed that provenance capture can create large
amounts of data in short time, potentially reaching gigabytes in a single minute
or half an hour depending on settings.

There is potential for further development and experimentation on Comm2Prov,
with a potential integration into CamFlow security model and testing of more
configuration settings.

55

Citations
[1] Wajih Ul Hassan, Adam Bates, and Daniel Marino. “Tactical Provenance

Analysis for Endpoint Detection and Response Systems.” In: 2020 IEEE
Symposium on Security and Privacy (SP). 2020, pp. 1172–1189. doi: 10.
1109/SP40000.2020.00096.

[2] Yulai Xie et al. “P-Gaussian: Provenance-Based Gaussian Distribution
for Detecting Intrusion Behavior Variants Using High Efficient and Real
Time Memory Databases.” In: IEEE Transactions on Dependable and
Secure Computing 18.6 (2021), pp. 2658–2674. doi: 10.1109/TDSC.2019.
2960353.

[3] Zijun Cheng et al. Kairos: Practical Intrusion Detection and Investigation
using Whole-system Provenance. 2023. arXiv: 2308.05034 [cs.CR].

[4] Xueyuan Han et al. “FRAPpuccino: Fault-detection through Runtime
Analysis of Provenance.” In: 9th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 17). Santa Clara, CA: USENIX Association,
July 2017.

[5] Frank Wang, Yuna Joung, and James Mickens. “Cobweb: Practical
Remote Attestation Using Contextual Graphs.” In: Proceedings of the
2nd Workshop on System Software for Trusted Execution. SysTEX’17.
Shanghai, China: Association for Computing Machinery, 2017. isbn:
9781450350976. doi: 10.1145/3152701.3152705.

[6] Luc Moreau; Paolo Missier; Khalid Belhajjame; Reza B’Far; James Ch-
eney; Sam Coppens; Stephen Cresswell; Yolanda Gil; Paul Groth; Gra-
ham Klyne; Timothy Lebo; Jim McCusker; Simon Miles; James Myers;
Satya Sahoo; Curt Tilmes. The PROV Data Model. https://www.w3.org/
TR/2013/REC-prov-dm-20130430/ [Accessed: 15.04.2024]. 30 April 2013.

[7] Thomas Pasquier et al. “Practical Whole-System Provenance Capture.”
In: Proceedings of the 2017 Symposium on Cloud Computing. SoCC ’17.
Association for Computing Machinery. Santa Clara, California: Associa-
tion for Computing Machinery, 2017, pp. 405–418. isbn: 9781450350280.
doi: 10.1145/3127479.3129249.

[8] Md Morshed Alam and Weichao Wang. “A comprehensive survey on
data provenance: State-of-the-art approaches and their deployments
for IoT security enforcement.” In: Journal of Computer Security 29.4
(June 2021), pp. 423–446. issn: 0926-227X. doi: 10.3233/jcs-200108.

57

https://doi.org/10.1109/SP40000.2020.00096
https://doi.org/10.1109/SP40000.2020.00096
https://doi.org/10.1109/TDSC.2019.2960353
https://doi.org/10.1109/TDSC.2019.2960353
https://arxiv.org/abs/2308.05034
https://doi.org/10.1145/3152701.3152705
https://www.w3.org/TR/2013/REC-prov-dm-20130430/
https://www.w3.org/TR/2013/REC-prov-dm-20130430/
https://doi.org/10.1145/3127479.3129249
https://doi.org/10.3233/jcs-200108

58 CITATIONS

[9] Thomas Pasquier, David Eyers, and Margo Seltzer. “From Here to Prov-
topia.” In: Heterogeneous Data Management, Polystores, and Analytics for
Healthcare. Ed. by Vijay Gadepally et al. Cham: Springer International
Publishing, 2019, pp. 54–67. isbn: 978-3-030-33752-0.

[10] Gbadebo Ayoade et al. “Evolving Advanced Persistent Threat Detection
using Provenance Graph andMetric Learning.” In: 2020 IEEE Conference
on Communications and Network Security (CNS). 2020, pp. 1–9. doi:
10.1109/CNS48642.2020.9162264.

[11] Maya Kapoor et al. “PROV-GEM: AutomatedProvenance Analysis Frame-
work using Graph Embeddings.” In: 2021 20th IEEE International Confer-
ence on Machine Learning and Applications (ICMLA). 2021, pp. 1720–1727.
doi: 10.1109/ICMLA52953.2021.00273.

[12] Weina Niu et al. “LogTracer: Efficient Anomaly Tracing Combining
System Log Detection and Provenance Graph.” In: GLOBECOM 2022 -
2022 IEEE Global Communications Conference. 2022, pp. 3356–3361. doi:
10.1109/GLOBECOM48099.2022.10000804.

[13] Mashal Abbas et al. “PACED: Provenance-based Automated Container
Escape Detection.” In: 2022 IEEE International Conference on Cloud
Engineering (IC2E). 2022, pp. 261–272. doi: 10.1109/IC2E55432.2022.
00035.

[14] Thomas F. J.-M. Pasquier et al. “Camflow: Managed Data-Sharing for
Cloud Services.” In: IEEE Transactions on Cloud Computing 5.3 (2017),
pp. 472–484. doi: 10.1109/TCC.2015.2489211.

[15] Thomas F. J.-M. Pasquier et al. “Information Flow Audit for PaaS
Clouds.” In: 2016 IEEE International Conference on Cloud Engineering
(IC2E). 2016, pp. 42–51. doi: 10.1109/IC2E.2016.19.

[16] Sherif Akoush et al. “MrLazy: Lazy Runtime Label Propagation for
MapReduce.” In: 6th USENIX Workshop on Hot Topics in Cloud Comput-
ing (HotCloud 14). Philadelphia, PA: USENIX Association, June 2014.

[17] Kiran-Kumar Muniswamy-Reddy et al. “Provenance-aware storage sys-
tems.” In: Proceedings of the Annual Conference on USENIX ’06 Annual
Technical Conference. ATEC ’06. Boston, MA: USENIX Association, 2006,
p. 4.

[18] Adam Bates et al. “Trustworthy whole-system provenance for the Linux
kernel.” In: Proceedings of the 24th USENIX Conference on Security Sym-
posium. SEC’15. Washington, D.C.: USENIX Association, 2015, pp. 319–
334. isbn: 9781931971232.

[19] Robert W. Wisniewski. “relayfs : An Efficient Unified Approach for
Transmitting Data from Kernel to User Space.” In: 2003.

[20] Ashish Gehani and Dawood Tariq. “SPADE: Support for Provenance
Auditing in Distributed Environments.” In: Proceedings of the 13th In-
ternational Middleware Conference. Middleware ’12. ontreal, Quebec,
Canada: Springer-Verlag, 2012, pp. 101–120. isbn: 9783642351693.

https://doi.org/10.1109/CNS48642.2020.9162264
https://doi.org/10.1109/ICMLA52953.2021.00273
https://doi.org/10.1109/GLOBECOM48099.2022.10000804
https://doi.org/10.1109/IC2E55432.2022.00035
https://doi.org/10.1109/IC2E55432.2022.00035
https://doi.org/10.1109/TCC.2015.2489211
https://doi.org/10.1109/IC2E.2016.19

CITATIONS 59

[21] Edited by AndrewBanks andRahul Gupta.MQTTVersion 3.1.1. Latest version: http:
//docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html [Ac-
cessed: 15.04.2024]. 29 October 2014.

[22] Randal S. Olson et al. “PMLB: a large benchmark suite for machine
learning evaluation and comparison.” In: BioData Mining 10.1 (Dec.
2017), p. 36. issn: 1756-0381. doi: 10.1186/s13040-017-0154-4.

[23] BiswajeebanMishra. “Performance Evaluation ofMQTTBroker Servers.”
In: Computational Science and Its Applications – ICCSA 2018. Ed. by Os-
valdo Gervasi et al. Cham: Springer International Publishing, 2018,
pp. 599–609. isbn: 978-3-319-95171-3.

[24] Davi L. de Oliveira et al. “Performance Evaluation of MQTT Brokers
in the Internet of Things for Smart Cities.” In: 2019 4th International
Conference on Smart and Sustainable Technologies (SpliTech). 2019, pp. 1–
6. doi: 10.23919/SpliTech.2019.8783166.

[25] Malti Bansal and Priya. “Performance Comparison of MQTT and CoAP
Protocols in Different Simulation Environments.” In: Inventive Commu-
nication and Computational Technologies. Ed. by G. Ranganathan, Joy
Chen, and Álvaro Rocha. Singapore: Springer Singapore, 2021, pp. 549–
560. isbn: 978-981-15-7345-3.

[26] Biswajeeban Mishra and Attila Kertesz. “The Use of MQTT in M2M and
IoT Systems: A Survey.” In: IEEE Access 8 (2020), pp. 201071–201086.
doi: 10.1109/ACCESS.2020.3035849.

[27] Aimaschana Niruntasukrat et al. “Authorization mechanism for MQTT-
based Internet of Things.” In: 2016 IEEE International Conference on
Communications Workshops (ICC). 2016, pp. 290–295. doi: 10.1109/
ICCW.2016.7503802.

[28] Emden R. Gansner and Stephen C. North. “An open graph visualization
system and its applications to software engineering.” In: Softw. Pract.
Exper. 30.11 (Sept. 2000), pp. 1203–1233. issn: 0038-0644.

Latest version: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
Latest version: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://doi.org/10.1186/s13040-017-0154-4
https://doi.org/10.23919/SpliTech.2019.8783166
https://doi.org/10.1109/ACCESS.2020.3035849
https://doi.org/10.1109/ICCW.2016.7503802
https://doi.org/10.1109/ICCW.2016.7503802

	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement

	2 Background
	2.1 W3C-PROV
	2.2 CamFlow
	2.2.1 Development
	2.2.2 Architecture
	2.2.3 Design

	2.3 MQTT
	2.3.1 Architechture
	2.3.2 Security measures
	2.3.3 Topic
	2.3.4 Message structure

	3 Comm2Prov
	3.1 Design
	3.1.1 Architecture
	3.1.2 Messaging
	3.1.3 Comm2Prov Client

	3.2 Implementation
	3.2.1 Requirements
	3.2.2 Provenance
	3.2.3 Comm2Prov Client
	3.2.4 MQTT

	4 Experiments
	4.1 Environment
	4.2 Benchmarking provenance
	4.2.1 Implementation
	4.2.2 Results

	4.3 Network transfer tracking
	4.3.1 Implementation
	4.3.2 Result

	5 Discussion
	5.1 Experimentation
	5.1.1 Benchmark
	5.1.2 Networking

	5.2 Implementation
	5.2.1 MQTT configured provenance
	5.2.2 CamFlow
	5.2.3 Comm2Prov System architecture and design

	5.3 CamFlow Provenance Data
	5.3.1 Future Work

	6 Conclusion

