
Faculty of Science and Technology
Department of Computer Science

Training and Model Parameters to Defend against
Tabular Leakage Attacks

Pragatheeswaran Balasubramanian
INF-3990 Master’s thesis in Computer Science - May 2024

Supervisor - Elisavet Kozyri,
Associate Professor of Computer Science,
Department of Computer Science,
UiT The Arctic University of Norway.

Co-supervisor - Alexander Skage,
CEO, Finterai AS, Norway.

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2024 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“Simplicity is prerequisite for reliability.”
–Edsger Dijkstra

“Beware of bugs in the above code;
I have only proved it correct, not tried it.”

–Donald Knuth

Abstract
Federated Learning (FL) is a privacy-preserving approach to train machine
learning models on distributed datasets across different organizations. This
is particularly beneficial for domains like healthcare and finance, where user
data is often sensitive and tabular (e.g., hospital records and financial transac-
tions). However, recent research like Tableak highlighted vulnerabilities that
can exploit information leakage in model updates to reconstruct sensitive user
data from tabular FL systems.

This thesis addresses these vulnerabilities by investigating the potential of train-
ing and machine learning parameters as defensive measures against leakage
attacks on tabular data.

We conducted experiments to analyze how modifying these parameters within
the Federated Learning training process impacts the attacker’s ability to recon-
struct data.

Our findings demonstrate that specific parameter configurations, including
data encoding techniques, batch updates, epoch adjustments, and the use
of sequential Peer-to-Peer (P2P) architectures, can significantly hinder recon-
struction attacks on tabular data. These results contribute significantly to the
development of more robust and privacy-preserving FL systems, especially for
applications relying on sensitive tabular data.

Acknowledgements
I want to thank my supervisor, Elisavet Kozyri, and co-supervisor, Alexander
Skage, for their constant guidance and support throughout this process.

Special thanks to Elisavet for her careful follow-up, help in formulating impor-
tant questions, and collaborative brainstorming on interpreting the experiment
results.

I also appreciate Alexander Skage for his invaluable guidance, providing various
perspectives on approaching the problem, and generously sharing his extensive
knowledge of Machine Learning and Leakage attacks with me.

Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

List of Abbreviations xv

1 Introduction 1
1.1 Research questions . 2
1.2 Motivation . 3
1.3 Thesis outline . 3

2 Background 5
2.1 Federated learning . 5

2.1.1 Batches and epochs 6
2.2 Peer-to-peer federated learning 7
2.3 FedSGD and FedAvg . 9

2.3.1 FedSGD (Federated stochastic gradient descent) . . . 9
2.3.2 FedAvg (Federated averaging) 10

2.4 Federated learning and privacy 10
2.5 Different attacks in federated learning 11
2.6 Leakage attack and reconstruction 12

2.6.1 Gradient inversion attack 12
2.6.2 Gradient inversion in federated averaging 13

2.7 Domain specific leakage attack 14
2.8 Defenses for leakage attacks 15

2.8.1 Gradient perturbation 15
2.8.2 Gradient compression 15
2.8.3 Secure Multi-Party Computation 15
2.8.4 Differential privacy 15

vii

viii contents

3 Methodology 17
3.1 Foundation . 17
3.2 Experimental setup . 18
3.3 Validation and evaluation metrics 18

3.3.1 Reconstruction accuracy and 0-1 Loss 18
3.3.2 Model accuracy . 20
3.3.3 Model performance 21

4 Experiments 25
4.1 Encoding of dataset . 25

4.1.1 Background . 25
4.1.2 Implementation . 27
4.1.3 Result . 29

4.2 Model accuracy on binary encoded dataset 30
4.2.1 Background . 30
4.2.2 Implementation . 30
4.2.3 Result . 30
4.2.4 Discussion and future work: 31

4.3 Multiple batches on client-side 31
4.3.1 Background . 32
4.3.2 Implementation . 32
4.3.3 Result . 33
4.3.4 Discussion . 33

4.4 Multiple batches with epoch on client-side 34
4.4.1 Background . 34
4.4.2 Implementation . 35
4.4.3 Result . 35

4.5 Sequentially connected peer-to-peer federated learning . . . 36
4.5.1 Background . 36
4.5.2 Implementation . 37
4.5.3 Result . 39
4.5.4 Discussion and future work 40

4.6 Model reconstruction attack 41
4.6.1 Background . 41
4.6.2 Implementation . 41
4.6.3 Result . 42
4.6.4 Discussion and future work 44

5 Conclusion 47
5.1 Future works . 47
5.2 Concluding remarks . 48

Bibliography 49

contents ix

Appendices 53

A External Resources 55

List of Figures
2.1 Federated Learning overview [9] 7
2.2 Federated learning architecture: Peer-to-Peer Model [10] . . 8

4.1 Reconstruction accuracy of datasets with one-hot and binary
encoding . 29

4.2 Reconstruction accuracy with increasing no. of batches . . . 34
4.3 Reconstruction accuracy with increasing no. of batches and

epochs . 35
4.4 Architecture of peer-to-peer federated learning system . . . 37
4.5 Reconstruction accuracy for sequentially connected nodes . . 39
4.6 Model reconstruction attack overview 42
4.7 Distribution based on age 44
4.8 Distribution based on fnlwgt 44
4.9 Distribution based on education 45
4.10 Distribution based on occupation 45

xi

List of Tables
3.1 0 − 1 Loss . 19
3.2 Confusion Matrix . 21

4.1 One-hot encoding . 26
4.2 Binary encoding . 26
4.3 Color-to-Binary Mapping 28
4.4 Optimization Algorithm Output with Clipping 28
4.5 Model Performance Comparison between Binary and One-hot

Encoding . 31
4.6 Comparison of original and reconstructed models 43

xiii

List of Abbreviations
ai Artificial Intelligence

fedavg Federated Averaging

fedsgd Federated Stochastic Gradient Descent

fl Federated Learning

gdpr General Data Protection Regulation

hipaa Health Insurance Portability and Accountability Act

ml Machine Learning

p2p Peer-to-peer

p2p fl Peer-to-peer Federated Learning

sgd Stochastic Gradient Descent

xv

1
Introduction
Imagine using your smartphone to train a medical diagnosis model using ma-
chine learning, all without ever uploading your personal health data. Federated
Learning (fl) [1] is a way to train Artificial Intelligence (ai) models without
sending all the data to one place. Unlike traditional centralized training, where
data is aggregated into a single location for training, Federated Learning al-
lows model training to occur directly on the devices that generate the data.
Federated Learning keeps everyone’s data private while allowing them to col-
laborate on a powerful AI model. Federated Learning has several applications
in different domains like healthcare, finance, and the Internet of Things (IoT),
where data privacy and security are huge concerns.

In Federated Learning, each device keeps its data private, and only updates
of the model’s weights are shared with a central server for training. Model
weights represent the parameters of the machine learning model, such as the
coefficients in a neural network, that are adjusted during training to improve
the model’s performance. However, this sharing process introduces vulnera-
bility to leakage attacks. These attacks exploit shared updates to reconstruct
user’s private training data, thus compromising privacy. Recent research high-
lights vulnerabilities concerning tabular data formats like spreadsheets, raising
concerns about privacy risks.

Previous research has investigated the privacy risks associated with exchanged
updates in FL, particularly in the context of images [2], [3], [4] and text [5],
[6], [7]. While these studies have offered valuable insights, they often lacked

1

2 chapter 1 introduction

a focus on sensitive data types. Notably, many FL applications involve tabular
datasets containing personal information, such as financial details and health
status. Recognizing this gap in the existing literature, the authors of the present
paper [8] aimed to conduct a leakage attack specifically on tabular data. The
researchers exposed the heightened vulnerability of tabular Federated Learning,
revealing weaknesses in several previously considered secure setups.

Our research is built upon the findings of a foundational paper [8], which
explored numerous parameters affecting leakage attacks in Federated Learning
(FL) models. These parameters include batch size, Gaussian Differential Privacy
(DP), epochs, network size variations, and data type. Leakage attacks exploit
information disclosed during model training to reconstruct a user’s private
data, posing a significant threat to privacy.

This thesis explores into these vulnerabilities, focusing on how various training
factors influence the reconstruction of tabular data on leakage attacks. This
knowledge will be instrumental in developing more robust privacy-preserving
federated learning frameworks, particularly those focused on safeguarding
sensitive tabular data.

1.1 Research questions

Our research is founded on the following research questions:

1. How does the choice of encoding impact the accuracy of the reconstructed
data, and does it also influence the overall performance of the model?

2. When training on clients, the process can occur either in a single batch
or multiple batches. How does the reconstruction accuracy change with
an increasing amount of batch updates during training?

3. An epoch signifies one complete pass of the training data through the
machine learning algorithm. How does varying the number of batches
and epochs during training impact the reconstruction accuracy?

4. In sequential Peer-to-peer (p2p) networks, how is the accuracy of recon-
structed data affected if the model is trained through multiple nodes?

5. Does the model trained on reconstructed data perform as well as the
model trained on original data?

These questions serve as the cornerstone of our study, directing our investigation

1.2 motivation 3

into the factors influencing the susceptibility of tabular data during training
within the context of FL. This research aims to comprehensively understand
the vulnerabilities in federated learning for tabular data by investigating how
different training configurations and assumptions influence leakage attack
reconstruction accuracy. The findings will be crucial in developing more robust
privacy-preserving federated learning frameworks.

1.2 Motivation

Our motivation is driven by the practical need to better understand the trade-
offs between privacy and performance in FL systems. While previous research
has made significant strides in investigating parameters influencing leakage
attacks, there is still a need to expand the vulnerability landscape and refine
defense mechanisms to enhance privacy. Our primary aim is to contribute
to the development of more resilient and privacy-preserving FL frameworks,
thereby addressing a critical need in the field.

To achieve this goal, we aim to broaden the parameter space and evaluate addi-
tional factors, such as data encoding, batches, convergence, etc., that impact the
effectiveness of leakage attacks. By doing so, we intend to equip practitioners
and researchers with a comprehensive toolkit for optimizing FL systems and
enhancing privacy safeguards.

1.3 Thesis outline

The rest of the thesis is organized as follows:

Chapter 1: Introduction Briefly introduce Federated Learning, privacy con-
cerns, and research goals.

Chapter 2: Background Explain key concepts: Federated Learning, Privacy
threats, Leakage attacks, and existing defenses.

Chapter 3: Methodology Describe the research design, experimental setup
(datasets, hardware, FL architecture), and evaluation methods for effec-
tiveness.

Chapter 4: Experiments Dedicate individual sections to each use case, focus-
ing on:

4 chapter 1 introduction

1. A concise introduction and background to the specific use case.

2. Implementation details outlining any extension made to the Tableak
framework to accommodate this use case.

3. Clear presentation of the experimental results using figures, tables,
visualizations, and discussions.

4. Each experiment has a footnote section with GitHub commit links
for the implementation code.

Chapter 5: Conclusion Summarize the research problem, methodology, key
findings, and the overall impact of the work, along with some future
works.

2
Background
This chapter provides essential background concepts necessary for understand-
ing Federated Learning. We briefly overview Federated Learning, different
types of algorithms, various attacks, and commonly employed defense mecha-
nisms.

2.1 Federated learning

The need for Federated Learning (FL) arises from a fundamental tension
between data utility and privacy. In critical domains like healthcare, finance,
and legal proceedings, organizations possess vast amounts of valuable data that
could be used to train robust machine learning models. However, sharing this
data to a central server can compromise individual privacy, potentially leading
to data breaches and unauthorized access. FL provides an elegant solution by
enabling the collaborative training of a global model while keeping raw data
localized on the clients’ devices, be it mobile devices, edge servers, or other
endpoints.

First introduced by Google in 2016, Federated Learning (FL) [1] is a decen-
tralized machine learning paradigm that operates through a series of steps to
achieve training a global model. Figure 2.1 shows the overview of Federated
learning. It goes as follows:

5

6 chapter 2 background

1. The central server selects a subset of clients to participate in each round,
considering efficiency. These clients can vary from individual mobile
devices to organizational data centers.

2. A central server distributes a global model (initial weights) to participat-
ing devices. This model serves as a starting point for local training on
each device.

3. Each device trains the global model replica on its local data. This training
happens directly on the device without sending the rawdata to the central
server.

4. After local training, participating devices update the model weights based
on their local training process.

5. The central server collects the local model updates from all participating
devices in the round. Clients send model updates, typically in the form
of gradients or model weights

6. The central server aggregates the received updates and applies them to
the model, all without access to individual client data.

This iterative process continues, gradually refining the global model. Once
training is complete, the global model can be deployed for various applications,
all while preserving data privacy by ensuring that raw data remains securely
localized on client devices.

2.1.1 Batches and epochs

In Machine Learning (ml), when dealing with large datasets, we may process
the dataset by batches and epochs. These parameters could also be applied
during the Federated Learning training phase. Each client can choose how to
process the data and send the weights to the central server.

A batch is a small chunk of data selected from the entire dataset. During
training, the model is presented with one batch at a time, processes it, and
updates its internal parameters based on the information learned from that
specific batch. This process is repeated iteratively, going through all the batches
in the dataset until the entire dataset has been processed.

An epoch refers to a single pass or iteration through the entire dataset during
the training phase. The process is repeated for a predefined number of epochs
until the model converges or until a specific stopping criterion is met. With one

2.2 peer-to-peer federated learning 7

Figure 2.1: Federated Learning overview [9]

pass of the dataset, the model might not have enough time to learn the patterns
in the data, leading to underfitting. To address this, we train the model for
multiple epochs (passes).

2.2 Peer-to-peer federated learning

One of the recognized limitations of Federated Learning is its reliance on a
central server, necessitating all participating clients to trust and communicate
with a central authority. Any failure or compromise of this central server could
disrupt the training process for all clients and make them vulnerable to attacks.
To address this limitation and enhance privacy, a new architecture called
Peer-to-peer Federated Learning was introduced.

Peer-to-peer Federated Learning (p2p fl) is a variant of traditional Federated
Learning that eliminates the need for a central server. In P2P FL shown in
2.2, participating clients (peers), which can be various devices or entities,
collaborate directly with one another, eliminating the need for a central server
or aggregator to train a global model. Each peer in the network not only
updates its local model but also shares model updates or information with
other peers. While P2P FL offers more robust privacy and decentralization, it
introduces challenges in coordinating communication between devices.

8 chapter 2 background

Figure 2.2: Federated learning architecture: Peer-to-Peer Model [10]

Literature

Wink et al. [11] introduces an innovative approach to collaborative neural net-
work model training in decentralized, federated environments. In this iterative
process, a collective of autonomous peers conducts multiple training rounds to
build a shared model jointly. Participants engage in all model training steps lo-
cally, including tasks such as stochastic gradient descent optimization, utilizing
their individual private datasets. What distinguishes this approach apart is its
ability to collaboratively determine a shared model without explicitly sharing
the precise model weights. This is achieved through the introduction of an
n-out-of-n secret sharing scheme and a specialized algorithm for calculating
average values in a peer-to-peer manner. A critical facet of this approach is that
it increases the communication load when the nodes try to communicate the
weights.

Karras et al. [12] introduce a technique that places much importance on pre-
serving user privacy and maintaining data integrity within distributed machine
learning ecosystems. The study involves the participation of 5, 10, and 20 Rasp-
berry Pi devices, each acting as an independent client. This approach trains
each client for multiple local epochs, with subsequent aggregation of model
weights. The research explores scenarios involving imbalanced and noisy data.
The aim is to assess the scalability and robustness of FL in the presence of

2.3 fedsgd and fedavg 9

real-world data anomalies. The study goes a step further by proposing two
innovative algorithms that frame the FL scenario within a peer-to-peer context.
The work introduces a client-balancing Dirichlet sampling algorithm to prevent
oversampling on any individual device.

BrainTorrent [13] is a system to train a global model in a peer-to-peer manner.
To start a training round, participant P first asks all other peers whether they
had recently updated their local models. Peers with newer model versions send
their weights to P with the respective training sample size. P then updates its
local model weights by computing a weighted average of its own (old) model
weights and the received (newer) model weights. The system does not rely
on a central service or data pool. However, a semi-honest participant might
successfully obtain training data of (all) other peers by reverse engineering the
received weights. A participant could also act maliciously in many ways without
being detected. For example, she or he might refuse to give honest answers
regarding its current model version number and thus disproportionately profit
from other peers’ training efforts.

2.3 FedSGD and FedAvg

FedSGD and FedAvg are both training algorithms used in Federated Learning
(FL). Here is a quick breakdown of each:

2.3.1 FedSGD (Federated stochastic gradient descent)

Federated Stochastic Gradient Descent (fedsgd) [1] is a core optimization
algorithm in Federated Learning (FL). It is a decentralized variation of the
well-known Stochastic Gradient Descent (sgd) algorithm, which is widely
used in centralized machine learning. The key distinction in FedSGD is that
model updates, rather than raw data, are shared between the clients and the
central server. The FedSGD process works in the following way: Each client
conducts local model training on its own dataset, computing gradients of the
loss function to the model’s parameters. These gradients are then aggregated
on the central server, where a global model update is computed. However, the
server remains unaware of the client’s data, as only the gradients are shared.
This global model update is then sent back to the clients, who apply it to their
local models. This cycle repeats iteratively, gradually improving the global
model.

10 chapter 2 background

2.3.2 FedAvg (Federated averaging)

Federated Averaging (fedavg) [1] is a specific algorithm for aggregating model
updates in Federated Learning. In the FedAvg process, clients perform local
model training and send their model weight updates instead of gradient up-
dates to the central server. However, instead of directly averaging these updates,
FedAvg employs a weighted averaging scheme, thus reducing communication
and increasing convergence speed. Clients with more data or better compu-
tation capabilities are given more significant influence in shaping the global
model, ensuring that less capable clients do not overshadow their insights. Fe-
dAvg has proven to be a robust and scalable aggregation algorithm, making it a
vital component in the success of Federated Learning in real-world applications
across a wide range of domains.

The key difference between FedSGD and FedAvg lies in their optimization
approaches. FedSGD is a variant of stochastic gradient descent tailored for
federated learning, where each client updates the global model using local gra-
dients. At the same time, FedAvg aggregates model updates from decentralized
clients by transmitting model weights instead of gradients.

Real-world applications typically use FedSGD when communication costs are
a concern, as it involves transmitting smaller gradient updates. On the other
hand, FedAvg is favored when model accuracy is a priority and communication
overhead is manageable, as it can offer better performance by averaging model
weights across clients.

2.4 Federated learning and privacy

In today’s data-driven world, where machine learning advancements are trans-
forming industries, safeguarding user privacy and data security is top priority.
Privacy regulations like the General Data Protection Regulation (gdpr) in
Europe and the Health Health Insurance Portability and Accountability Act
(hipaa) in the United States set strict standards for protecting sensitive per-
sonal information. Traditional machine-learning approaches often necessitate
centralizing vast amounts of user data on a single server, raising concerns about
data breaches and potential misuse.

Federated Learning (FL) offers a solution that enables machine learning ad-
vancements while upholding strict privacy standards. By design, FL keeps
data decentralized on individual devices, be it smartphones, laptops, or other
connected devices. This eliminates the need for a central data repository, sig-
nificantly reducing the risk of data breaches and unauthorized access. Instead

2.5 different attacks in federated learning 11

of raw data, only model updates, essentially summaries of the local training
process, are shared with a central server for aggregation. This approach ensures
that sensitive information remains localized on user devices and is not trans-
mitted over networks, minimizing exposure to potential privacy threats.

From a regulatory perspective, Federated Learning (FL) aligns seamlessly with
privacy regulations like gdpr and hipaa, which prioritize user control over
personal data. By keeping data on devices, FL reduces the risk of data breaches
for organizations, making it a practical and effective solution.

2.5 Different attacks in federated learning

Federated Learning (FL), while offering benefits in data privacy, is susceptible
to various attacks that can compromise the integrity and confidentiality of the
training process. Here is an overview of some common FL attacks:

1. Data Poisoning Attacks: These attacks involve injecting false or mis-
leading information into the training data to distort the model’s learning.
Attackers often achieve this by strategically introducing biased or mali-
cious samples, aiming to influence the model updates in their favor and
ultimately degrade the model’s performance [14].

2. Model Poisoning Attacks: These attacks target the central model itself,
aiming to disrupt the entire FL process by manipulating the aggregated
updates. Attackers typically select poisoned updates that, when com-
bined, degrade the global model’s performance for all participants [15].

3. Inference Attacks: These attacks exploit information leaks within model
updates to deduce sensitive details about individual users, such as their
location or health conditions [16]. By analyzing the updates, attackers
can infer information about specific users or their data, compromising
privacy.

4. Backdoor Attacks: These attacks embed hidden functionality within the
trained model, allowing attackers to manipulate its output for specific
inputs while maintaining normal functionality for most tasks [17]. At-
tackers often insert backdoors during training, enabling them to trigger
specific behaviors in the model with carefully crafted inputs.

5. Evasion Attacks: These attacks manipulate data sent to the model to
avoid detection, allowing attackers to benefit from the model without
being noticed. This can involve crafting adversarial examples that exploit

12 chapter 2 background

vulnerabilities in the model’s decision-making process, enabling attack-
ers to, for example, obtain loan approvals without meeting the valid
requirements [18].

6. Model Inversion Attacks: These attacks attempt to reconstruct the
original user data from the trained model, posing a significant privacy
breach [19]. Attackers leverage model inversion by querying the model
with inputs designed to reveal sensitive information, thereby potentially
reconstructing aspects of the original training data.

We will focus on leakage attacks, which are part of model inversion attacks.
Leakage attacks focus on extracting information from the exchanged updates
in FL training. While the specific methods might differ, the ultimate goal aligns
with model inversion attacks: to gain access to sensitive information that was
originally used to train the model.

2.6 Leakage attack and reconstruction

2.6.1 Gradient inversion attack

Most data-recovery attacks, called gradient inversion attacks, targets fedsgd
where devices only send a single update (gradient) to a central server. For a
long time, many researchers believed sharing gradients was safe because they
did not reveal the original training data. However, the research "Deep Leakage
from Gradients (DLG)" [2] showed that attackers could potentially steal private
training data just from these gradients. Here is how attackers can potentially
steal private training data by analyzing the shared gradients.

1. We start by creating fake data (called "dummy inputs and labels"). Then,
we perform the training steps a model normally does on this fake data,
generating "dummy gradients."

2. Instead of using these dummy gradients to train the model as usual, we
do the opposite. We adjust the fake data to make its gradients match the
real gradients from the actual training data.

3. By repeatedly refining the fake data to match the real gradients better,
we can eventually uncover the original training data used to create those
gradients. This includes both the original inputs (data points) and the
labels (categories) associated with them.

Note that this fake dataset is like a puzzle being solved. The objective is to

2.6 leakage attack and reconstruction 13

adjust this fake data until it produces updates that closely resemble the real
updates sent by the user’s device.

2.6.2 Gradient inversion in federated averaging

While gradient leakage attacks can successfully retrieve data even in scenarios
involving complex datasets, their practical utility is constrained. In real-world
applications, the model is often trained using fedavg [1] algorithm. This study
[20] represents one of the initial research dedicated to leakage attack systems
that use the FedAvg Algorithm. Please note this attack also falls under Gradient
Inversion category but use weights instead of gradients. Here is how the attack
works:

1. Estimating label counts: The attacker first determines how many times
each category (label) appears in a user’s data by analyzing the updates.
This is done by looking for patterns in the updates and making guesses
(interpolating).

2. Reconstructing individual data points: Once a rough idea of the label
count is obtained, the attacker uses a special "automatic differentiation"
technique to simulate the training process on a fake dataset. This fake
dataset is adjusted until it produces updates that closely resemble the
real updates. To achieve this, consideration is given to two things:

(a) Changing model parameters: Accounting for the fact that the
model being trained keeps getting updated during training, adjust-
ments need to be made to the fake data accordingly.

(b) Large numberof batches: Since training occurs in "batches" (smaller
chunks of data), a special method (epoch order-invariant prior) is
used to account for the fact that there might be many batches of
data used for training.

3. Recovering labels: In some cases, the attacker might also attempt to
recover the exact labels associated with each data point. This is done
using techniques similar to those used in other attacks on the fedsgd
algorithm.

Gradient leakage and Federated averaging attacks are operated under Honest-
But-Curious server model. The server (attacker) faithfully follows the estab-
lished communication protocol for FL, meaning it does not change the data or
deviate from the agreed-upon training process. However, the server attempts
to extract as much information as possible from the received updates.

14 chapter 2 background

2.7 Domain specific leakage attack

The existing literature highlights that, in image and text domains, specific
characteristics of the data can be exploited to achieve high-accuracy recon-
struction.

In image processing and computer vision, an image prior represents assump-
tions or knowledge we have about what a typical image should look like. In
the context of FL attacks on images, attackers can leverage image priors to
improve the accuracy of reconstructing user data from model updates [3, 4].
These priors can be:

1. Statistical: Based on statistical properties of natural images, such as
smoothness, local coherence (neighboring pixels having similar values),
and color distributions.

2. Structural: Knowledge about common image structures, like edges, tex-
tures, and objects.

Pre-trained language models (PLMs) are powerful neural network models
trained on massive amounts of text data. They learn complex relationships
between words and can perform various tasks like machine translation, text
summarization, and question answering. In FL attacks on text data, attack-
ers can exploit PLMs to reconstruct user-generated text from model updates
[6, 7].

1. Semantic Understanding: PLMs can analyze the relationships between
words and concepts within the updates, helping the attacker reconstruct
a text that is grammatically and semantically correct.

Existing image and text solutions would not translate well to tabular data.
Tabular data typically has a mix of discrete (categorical) and continuous (nu-
merical) features, unlike images (continuous) and text (discrete). This mixed
nature makes it difficult to judge the validity of a reconstructed data point.
Vero et al. [8] solve this problem by running separate optimization processes
with different initializations and then combining their results through feature-
wise pooling [8]. This way, we use the structure of tabular data to combine
independent reconstructions for a better and more reliable final estimate of
the true data.

2.8 defenses for leakage attacks 15

2.8 Defenses for leakage attacks

2.8.1 Gradient perturbation

Gradient perturbation [21] involves adding controlled noise to the gradients
during the training process. This noise helps prevent adversaries from accu-
rately discerning the contribution of individual clients to the global model
updates. By introducing perturbations to the gradients, this mechanism aims
to obscure specific details of individual client contributions, making it more
challenging for adversaries to perform precise inversion attacks.

2.8.2 Gradient compression

Gradient compression [21] involves reducing the size of the gradients before
transmission from clients to the central server. This compression is typically
performed to preserve the general information while minimizing the risk of
privacy leakage. Compressing the gradients addresses potential privacy risks
associated with transmitting detailed gradient information, making it more
difficult for adversaries to extract sensitive information. Limits the magnitude
of gradients during training to improve privacy. However, it can also uninten-
tionally introduce noise.

2.8.3 Secure Multi-Party Computation

Secure Multi-Party Computation (SMPC) [22] is a cryptographic technique
that enables multiple parties to collectively compute a function over their
inputs while keeping the privacy of those inputs. In the context of FL, it
enables the aggregation of model updates without revealing the individual
updates. SMPC ensures that the aggregation process is performed securely,
preventing adversaries from gaining insights into the specific contributions
of individual clients to the global model. However, it has some significant
drawbacks, particularly regarding computational efficiency and latency.

2.8.4 Differential privacy

Differential privacy [23] involves injecting random noise into the computations
to provide a mathematically rigorous guarantee of privacy. It aims to ensure
that the inclusion or exclusion of any single client’s data does not significantly
impact the overall output. By applying differential privacy, FL systems can
offer a strong privacy guarantee, making it challenging for adversaries to infer
specific details about individual clients’ contributions or data. Adding noise or

16 chapter 2 background

clipping gradients can obscure the underlying patterns in the data, making it
harder for the model to learn effectively. This can lead to an overall reduced
model accuracy.

3
Methodology
This chapter outlines the methodology employed in our research for defense
against leakage attacks targeting tabular data in FL. We will discuss the exper-
imental setup and evaluation of the results.

3.1 Foundation

Our work expands upon the existing research conducted by [8] with the open-
source TabLeak code. Using it as a foundational framework, we significantly en-
hance its capabilities to accommodate our expanded set of experiments.

The research adopts an experimental approach. We will conduct a series of
experiments to systematically evaluate the impact of new factors related to
deep learning on reconstruction accuracy. Our primary objective is to address
the research questions that significantly influence the ability to reconstruct
private user data from shared model updates. This comprehensive exploration
aims to identify critical factors affecting the reconstruction process’s accuracy
in the Federated Learning setup.

17

18 chapter 3 methodology

3.2 Experimental setup

The following conditions apply to all experiments unless explicitly stated
otherwise:

Number of nodes: Two nodes are used in the experiments:

• Victim: This node trains a machine-learning model for federated learning
and unknowingly leaks information through gradient updates.

• Attacker: This node aims to gain information about the victim’s private
dataset.

Attack method: The attacker leverages the gradients sent by the victim during
the training process. Gradients provide information about how the victim’s
model is changing in response to the training data.

Attacker model: The attacker operates under the "honest-but-curious" assump-
tion. This means the attacker faithfully follows the communication protocol but
tries to learn as much as possible about the victim’s model using the available
information (gradients).

Neural network training: The entire dataset is not trained in federated learn-
ing. Instead, the victim trains on one batch of data. After each training step,
the victim sends the gradients associated with that batch to the attacker.

In the attacker node, we use the Adam optimizer with a learning rate of 0.06
for 1500 attack iterations and without a learning rate schedule to perform
the optimization. We attack a fully connected non-linear neural network with
ReLU activation with two hidden layers of 100 neurons each.

Datasets: All experiments were carried out on two popular mixed-type tabular
binary classification datasets, the Adult census dataset [24] and the Law school
Admission dataset [25].

3.3 Validation and evaluation metrics

3.3.1 Reconstruction accuracy and 0-1 Loss

In the context of Federated Learning (FL) leakage attacks targeting tabular data,
reconstruction accuracy refers to the success rate of an attacker in retrieving or
inferring the original training data points from the model updates exchanged

3.3 validation and evaluation metrics 19

during the FL process. Reconstruction accuracy is typically measured using a
metric like 0-1 loss [8]. This metric compares the reconstructed data points
with the original data points and assigns a score based on how many features
(attributes) match perfectly. A higher reconstruction accuracy indicates that
the attacker was more successful in retrieving the original data points from
the model updates.

Here is how0−1 loss works. We compare each value between the corresponding
positions in the ground truth and reconstructed data. If the element in the
original data perfectly matches the element in the reconstructed data, the loss
for that element is 0. If the element in the original data does not match the
element in the reconstructed data, the loss for that element is 1. Here is the
formula:

0 − 1loss =
Number of matching elements
Total number of elements

Here is how to interpret it:

1. A higher 0−1 loss value (closer to 1) indicates a lower reconstruction accu-
racy. This means the attacker’s reconstructed data has many mismatches
compared to the original data.

2. Conversely, a lower 0− 1 loss value (closer to 0) indicates a higher recon-
struction accuracy. This suggests that the attacker was more successful
in retrieving the original data with more matching elements.

A quick example: Imagine the table 3.1 where "GroundTruth" is the original data
the global model is trained with, and "Reconstructed Data" is data constructed
by the leakage attack. Comparing them, we can see 0 − 1 loss,

Ground Truth Reconstructed Data 0-1 Loss
Product Product 0
Shirt Shirt 0
Book Hat 1
Headphones Headphones 0
Movie Book 1

Table 3.1: 0 − 1 Loss

Hence, the overall 0-1 Loss for this example is:

Number of matching elements
Total number of elements

=
2
5
= 0.4

20 chapter 3 methodology

A 0 − 1 loss of 0.4 implies that the attacker’s reconstruction achieves a 60%
reconstruction accuracy based on perfectly matching elements.

3.3.2 Model accuracy

In machine learning models, Model accuracy is used as a performance metric
representing the proportion of correctly classified instances in a dataset. It is
calculated using the formula:

Accuracy =
Number of Correct Predictions
Total Number of Predictions

It is a crucial metric to evaluate how well a trained neural network performs
on unseen data. A higher model accuracy indicates that the neural network
is making a higher proportion of correct predictions on the unseen data. This
suggests the model has learned the training data patterns and can generalize
well to new examples. While a high model accuracy is desirable, it is not the
only factor to consider. Other metrics like precision, recall or F1-score might be
more relevant depending on the application. Model accuracy can be misleading
if the dataset is imbalanced (unequal distribution of classes)—more on this in
upcoming sections.

In the ideal Federated Learning (FL) scenario, we want two things:

1. Higher Model Accuracy: A model that learns well from all the data
without seeing it directly.

2. Lower Reconstruction Accuracy: To keep user data private from poten-
tial attacks.

Unfortunately, these objectives can sometimes conflict. Approaches that en-
hance the model’s accuracy by sharing more information through updates can
also make it simpler for attackers to decipher users’ data, resulting in higher
reconstruction accuracy. Striking a balance between Reconstruction accuracy
and Model accuracy is a pivotal objective of our research. We aim to pinpoint
the optimal trade-off point between these two metrics. This equilibrium is
crucial, as it empowers us to make informed decisions about parameter choices,
model training strategies, and the overall design of FL systems.

While accuracy is a straightforward and easy-to-understand metric, it can be
misleading. It provides a clear indication of howwell the model performs on the
specific dataset, but it’s not foolproof. If the dataset is unbalanced (i.e.) heavily
skewed towards a particular class, the model might achieve high accuracy by

3.3 validation and evaluation metrics 21

simply predicting that class for everything. This doesn’t necessarily imply that
the model generalizes well to unseen data. Depending on the application, other
factors, like the cost of mistakes, might be crucial. In medical diagnosis, false
negatives (missed diseases) are often graver than false positives (incorrect
diagnoses of illness). It’s important to consider these nuances when evaluating
model performance.

3.3.3 Model performance

Model performance is a concept that encompasses various metrics to evaluate
a model’s effectiveness. To calculate model performance, we need to under-
stand confusion matrix. Table 3.2 creates a 2x2 grid that visually represents
the performance of a classification model on a test dataset. It has two rows
(representing actual classes) and two columns (representing predicted classes).
The confusion matrix helps identify which classes the model is most likely to
misclassify for one another. Here is a breakdown of the terms used in the
formulas and the confusion matrix:

Actual Predicted
Positive Negative

Positive TP FN
Negative FP TN

Table 3.2: Confusion Matrix

1. TP (True Positive): This value indicates the number of instances where
the model correctly identified the positive class.

2. FP (False Positive): This value indicates the number of instances where
the model incorrectly identified the positive class (e.g., identifying a
negative instance as positive).

3. TN (True Negative): This value indicates the number of instances where
the model correctly identified the negative class.

4. FN (False Negative): This value indicates the number of instances where
the model incorrectly identified the negative class (e.g., missing a positive
instance).

For example, it would look something like this,[
100 10
5 85

]

22 chapter 3 methodology

1. TP (100): The model correctly classified 100 instances that belong to the
positive class.

2. FP (10): The model incorrectly classified 10 instances as positive that
belong to the negative class.

3. FN (5): The model incorrectly classified 5 instances as negative that
belong to the positive class (missed positives).

4. TN (85): The model correctly classified 85 instances that belong to the
negative class.

Using the values from the confusion matrix, you can calculate various perfor-
mance metrics:

1. Accuracy: This represents the overall proportion of correct predictions.

𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

2. Precision: This measures the proportion of correct positive predictions.

𝑇𝑃
𝑇𝑃+𝐹𝑃

3. Recall: This measures the proportion of actual positive cases that were
identified correctly by the model.

𝑇𝑃
𝑇𝑃+𝐹𝑁

4. Specificity (TNR): This measures the proportion of actual negative cases
the model correctly identified.

𝑇𝑁
𝑇𝑁+𝐹𝑃

5. F1-Score: F1 score combines precision and recall into a single metric,
providing a balanced view of model performance.

2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

Following our confusion matrix example, we can analyze our model perfor-
mance:

1. High Accuracy: The model seems to perform well regarding overall ac-
curacy based on confusion matrix. With 185 correctly classified instances
(100 TP + 85 TN) out of a potential 200, the model achieves an accuracy

3.3 validation and evaluation metrics 23

of 92.5%.

2. Good at Identifying Positives: The high number of True Positives (100)
indicates that the model correctly identifies instances that belong to the
positive class.

3. Low False Negatives: The relatively low number of False Negatives (5)
suggests the model does not miss many positive cases.

4. Some Confusion with Negatives:While the accuracy is high, the 10 False
Positives indicate the model is occasionally mistaking negative instances
for positive ones.

We will primarily use model accuracy as our evaluation metric to prioritize
efficiency. However, a select few experiments will involve a more comprehensive
performance analysis.

4
Experiments
This chapter will address the problem statement by conducting experiments
on each research question and discussing the results.

4.1 Encoding of dataset

Question:How does the choice of encoding impact the reconstruction accuracy
of the attack?

4.1.1 Background

Encoding is a crucial preprocessing step in machine learning datasets, mainly
when dealing with categorical variables. A categorical variable is a variable that
has a finite number of distinct values. Examples of such variables are sex, race,
or education level. Most machine learning algorithms, including deep learning
neural networks, require input and output variables to be numeric. Categorical
variables cannot be used directly in machine learning algorithms and need to
be converted into a numerical format for machine learning algorithms to learn
from the data effectively. Several encoding techniques can be used to convert
categorical variables into numerical variables.

Themost commonly used encoding type inmachine learning is one-hot encoding.

25

26 chapter 4 experiments

In one-hot encoding, each categorical value is represented by a vector with a
single "hot" (1) position, resulting in a binary vector where only one element
is active at a time. For example, in the "Color" variable (Table 4.1), there are
3 categorical values, and therefore, we have 3 possible binary values. This
encoding assigns a "1" value to the bit corresponding to the color, while "0"
values are assigned to the remaining bits. For instance, Red would have a "1"
in the first position, Green would have a "1" in the second position, and so
forth.

Color b1 b2 b3
Red 1 0 0
Green 0 1 0
Blue 0 0 1

Table 4.1: One-hot encoding

Binary encoding is also used for encoding categorical variables in machine
learning. In this encoding, categorical values are converted as integers and
then converted into equivalent binary code. Then, the digits from the binary
code are used as input for the neural network. For example, in the "Color"
variable (Table 4.2), there are 3 categorical values, and therefore, we have 3
possible binary values. First, we convert each value to an integer like 0, 1, and
2 for the respective colors. Then, we replace these integers with equivalent
binary code. For example, for the value "Color"=Red, we can assign an integer
of 0, which can then be converted to a binary code of 00.

Color Value b1 b2
Red 0 0 0
Green 1 0 1
Blue 2 1 0

Table 4.2: Binary encoding

One significant advantage of employing one-hot encoding instead of binary
encoding is its ability to prevent ambiguity in machine learning algorithms. By
converting categorical values into numerical representations, such as red=0,
green=1, and blue=2,we risk introducing potential confusion, as the algorithm
may interpret numerical values as ordinal. Ordinal data have a natural order or
rank based on some hierarchical scale, like high to low. However, with one-hot
encoding, each category is represented by a binary vector, ensuring no ordinal
relationship is assumed and avoiding this confusion.

The key difference between one-hot encoding and binary encoding in machine
learning is their representation of categorical variables. One-hot encoding
represents each category using a binary vector, with only one element being

4.1 encoding of dataset 27

"hot" (1), while the others are "cold" (0). Binary encoding uses binary digits
to represent each category, potentially resulting in fewer dimensions. In the
above example, one-hot encoding needed 3 bits, while binary encoding needed
only 2 bits.

When dealing with categorical variables, which are binary encoded, not all
possible binary values may be utilized, leading to potential inefficiencies. For
instance, in the above example (Table 4.2), if there are only three categories
(00=Red, 01=Green, 10=Blue) and binary encoding is used with two bits, the
binary representation "11" is not utilized. With a binary encoded dataset, if an
attack optimization algorithm generates a binary string out of the valid range,
we must handle it by implementing a clipping mechanism.

The clipping mechanism aims to bring any out-of-range binary string back into
the valid set of binary strings within range, which can then be mapped to a
categorical value. This clipping process involves converting the binary string
to an integer and then scaling the number to fit within the acceptable range.
The scaling is performed based on the count of possible values, deviating from
the conventional 2𝑛 representation, ensuring the integrity and consistency of
the data. In general, to scale the variable 𝑥 into a range [𝑎, 𝑏], you can use
min-max normalization [26]:

𝑥scaled = 𝑎 + (𝑥 − old_min) · (𝑏 − 𝑎)
old_max − old_min

This formula is used to map the original variable 𝑥 from the old range
[old_min, old_max] to the new range [𝑎, 𝑏].

Suppose the attack optimization algorithm generates 11 as a binary code that
falls out of the desired range. In that case, the clipping mechanism adjusts
this number to an integer value within the acceptable range. When converting
the binary representation 11 to the integer 4, representing 𝑥 in the old range
[0, 4] to the new range [0, 3], the scaling formula is applied as follows:

𝑥scaled = 0 + (4 − 0) · (3 − 0)
4 − 0

=
4 · 3
4

= 3

So, the scaled value of 𝑥 is 3, which is then converted to 10 binary code, which
can be mapped to a valid categorical value.

4.1.2 Implementation

Within the current codebase,𝐵𝑎𝑠𝑒𝐷𝑎𝑡𝑎𝑠𝑒𝑡 is a class used to parse rawdata (CSV,
data file, etc.) into input dataset objects for the machine learning algorithm.
The type of encoding of categorical values is implemented here. A new base

28 chapter 4 experiments

dataset tailored for binary encoding is introduced, leveraging the functions
𝑡𝑜_𝑛𝑢𝑚𝑒𝑟𝑖𝑐_𝑏𝑖𝑛𝑎𝑟𝑦 and 𝑡𝑜_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙_𝑏𝑖𝑛𝑎𝑟𝑦 to encode and decode data
into binary format. Datasets can inherit the 𝐵𝑖𝑛𝑎𝑟𝑦𝐵𝑎𝑠𝑒𝐷𝑎𝑡𝑎𝑠𝑒𝑡 to make the
encoding scheme of categorical values as binary strings instead of a one-hot
string.

During binary encoding, all possible categorical variables are mapped to binary
strings based on their order (For example, table 4.3). Then, on the dataset,
each categorical value is substituted with its corresponding binary string from
the map during encoding to be used for neural network input. Upon decoding,
typically, to compare the attack result with ground truth, a value that falls
outside the expected range is adjusted using the formula mentioned earlier
(For example, table 4.4). Finally, the establishedmap converts the binary strings
into actual categories.

Color Binary Representation
Red 00
Green 01
Blue 10

Table 4.3: Color-to-Binary Mapping

Binary Code Decoded Color
00 Red
10 Blue
01 Green
11 (Invalid) Blue (After Clipping - 10)
00 Red

Table 4.4: Optimization Algorithm Output with Clipping

Now that the implementation is done, we employed four distinct datasets for
the experiment: ADULT (One-hot), ADULT (Binary), LawSchool (One-hot), and
LawSchool (Binary). The binary-encoded variants of the ADULT (One-hot) and
LawSchool (One-hot) datasets are denoted as ADULT (Binary) and LawSchool
(Binary), respectively. During the experiments, we systematically varied the
batch size, ranging from 4 to 128, while conducting the training. This stan-
dardized methodology was employed to comprehensively assess the impact
of binary encoding on reconstruction accuracy, mainly how it changes with
increasing batch sizes. We are particularly interested in measuring reconstruc-
tion accuracy to understand how binary encoding affects the attacker’s ability
to retrieve private user data from the model updates.

* https://github.com/leopragi/tableak_fl/commit/encoding

https://github.com/leopragi/tableak_fl/commit/d51188bc9b694dcd422c8a48dfc31f8841c8a0f0

4.1 encoding of dataset 29

4.1.3 Result

Figure 4.1 illustrates the reconstruction accuracy for different datasets (ADULT
and Lawschool) and encoding types (One-hot and Binary) across various batch
sizes. For bothADULT and LawSchool datasets, the binary encoding consistently
shows lower reconstruction accuracy across all batch sizes compared to the
one-hot encoded dataset.

Binary encoding reduces reconstruction accuracy because it represents cate-
gorical variables as binary vectors, where each category is encoded as a unique
combination of binary digits. In contrast to one-hot encoding, where each cate-
gory has its dimension, binary encoding compresses the information into fewer
dimensions, potentially leading to loss of information. This compression can
result in ambiguity during the reconstruction process, making it challenging
to decode accurately.

Our results suggest that binary encoding might favor privacy-preserving feder-
ated learning. Lower reconstruction accuracy compared to One-hot encoding
in leakage attacks indicates attackers have difficulty reconstructing user data.
One-hot encoding, while convenient for training, might leak more information.
However, further analysis of other factors, such as model accuracy, needs to be
considered to quantify the benefits of binary encoding.

Figure 4.1: Reconstruction accuracy of datasets with one-hot and binary encoding

30 chapter 4 experiments

4.2 Model accuracy on binary encoded dataset

Question: How does binary encoding affect the model accuracy?

4.2.1 Background

In an encoded dataset, dimensionality refers to the number of features or
dimensions after applying an encoding technique. In our previous experiments,
we used binary encoding to reduce the reconstruction accuracy of leakage
attacks in federated learning systems. By converting categorical variables into
binary format, we reduced the vector space in data representation, potentially
making it harder for attackers to reconstruct user data. However, there is a
crucial trade-off to consider.

While binary encoding offers potential privacy benefits, it also impacts the
model’s learning process due to the reduced dimensionality because of reduced
expressive power. So, it becomes crucial to evaluate the model’s accuracy and
dimensionality, considering this binary-encoded data representation.

4.2.2 Implementation

In our experiment, we employed four of the same datasets we used in the
encoding experiment: ADULT (One-hot), ADULT (Binary), LawSchool (One-
hot), and LawSchool (Binary). This approach involves training a neural network
model and assessing its accuracy for both types of encoding of the datasets.
Throughout the experiments, we maintained a fixed batch size of 500 and
conducted training for a single epoch for the entire dataset. This standardized
approach allowed us to systematically evaluate the performance of our model
across different datasets and experimental conditions.

4.2.3 Result

Table 4.5 shows model accuracy and dimensions of the two datasets in different
encoding and dimensions. Generally, themodel accuracy remained stable across
different dataset types, highlighting the robustness of the model across varied
data domains. Despite the dimensionality reduction achieved through binary
encoding compared to one-hot encoding, the differences in model accuracies
are not substantial.

* https://github.com/leopragi/tableak_fl/commit/encoding_accuracy

https://github.com/leopragi/tableak_fl/commit/d51188bc9b694dcd422c8a48dfc31f8841c8a0f0

4.3 multiple batches on client-s ide 31

This observation underscores the effectiveness of the non-linear ReLU neural
network architecture in handling the reduced feature space without significant
compromise in predictive performance [27]. Notably, while the reconstruction
accuracy may decrease with dimensionality reduction through binary encoding,
the model’s overall performance remains well maintained.

Dataset Encoding Dimensions Model Accuracy
ADULT Binary 36 86.35%

One-hot 108 85.92%
LawSchool Binary 17 87.96%

One-hot 39 88.09%

Table 4.5: Model Performance Comparison between Binary and One-hot Encoding

Our experiments suggest that binary encoding might be a promising approach
for privacy-preserving federated learning. Compared to one-hot encoding
schemes, binary encoding appears to achieve lower reconstruction accuracy
in leakage attacks and does not affect the model accuracy. This indicates that
attackers have more incredible difficulty retrieving private user data when
models are trained on binary-encoded data.

4.2.4 Discussion and future work:

Binary encoding reduces the data dimensionality, which might affect the
model’s ability to learn intricate patterns in specific datasets. Further anal-
ysis of the model, Precision, Recall, and Specificity is needed. Also, exploring
various encoding schemes like Label Encoding, Ordinal Encoding, Target En-
coding, etc., can be beneficial, as somemight offer superior privacy preservation
without significant sacrifices in model performance.

4.3 Multiple batches on client-side

Question: When training with multiple clients, on each client, the process
can occur either in a single batch or multiple batches. How does the recon-
struction accuracy change with increasing amount of batch updates during
training?

32 chapter 4 experiments

4.3.1 Background

The original paper focused on reconstructing the dataset using the fedavg
attack algorithm when training with multiple batches on a single node. Experi-
ments varied in the number of local batches and epochs for a client dataset size
of 32. These experiments demonstrated a significant decrease in reconstruction
accuracy when using multiple batches.

However, these experiments did not consider gradient inversion (for fedsgd)
attacks on batches. We aim to investigate how the number of local batches
used during training affects the success rate of Gradient Inversion attacks in
federated learning.

4.3.2 Implementation

In a centralized federated learning setup,we can follow the following process to
process multiple batches on the client side. During a training round, each client
iterates through its local dataset one batch at a time. For each batch:

1. The device feeds the current batch through a copy of the global model
(received from the central server in the previous round).

2. It performs a forward pass, calculating the model’s predictions on the
batch data.

3. It then performs a backward pass, analyzing the difference between
predictions and actual labels to compute gradients. These gradients are
applied to the model and also stored in a list.

This process repeats until all batches are trained. Once the client finishes
processing all its batches, it calculates an average of the gradients accumulated
across all its local batches. Then, the client transmits the averaged gradients to
the central server. The central server collects gradients from all participating
clients in the round, and then it can perform an inversion attack on received
gradients. Since the client shares gradients instead of weights, the attacker
node can use a gradient inversion attack.

The client stores the gradient updates in our code on a list after each local
batch training. Ultimately, it calculates the average of all the gradients accumu-
lated across all its local batches. We name this function as 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠,
implemented in the 𝐹𝑢𝑙𝑙𝑦𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑇𝑟𝑎𝑖𝑛𝑒𝑟 module.

For example, let us say the client has 1000 total records for training. Let us

4.3 multiple batches on client-s ide 33

set the local batch size (𝑙_𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒) to 8. The client will process the data
in 125 batches (1000 records / 8 batches/record = 125 batches). Gradients
are calculated and accumulated in a list during training on each batch. Once
all batches are processed, the 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 function is used to compute
the average of all the accumulated gradients from the 125 batches. This single
averaged gradient is then sent to the central server to contribute to the global
model update. While doing the attack, the attacker node will try to reconstruct
a total number of records, which is 1000 instead of batch size 8.

To facilitate the comparison of relative performance on increasing batches, we
have designed the experiment to process 1024 records, dividing them into four
different batch splits: 1 batch, 8 batches, 16 batches, and 64 batches. This will
allow us to see how the reconstruction rate is affected relatively by the increas-
ing number of batches with the same number of records. This approach allows
us to systematically investigate how varying numbers of batches influence the
reconstruction accuracy of leakage attacks.

4.3.3 Result

Figure 4.2 reveals a critical finding: as the number of batches used for training
increases, the accuracy of gradient inversion attacks significantly declines.
Our experiment began with a baseline scenario where all 1024 records were
processed as a single batch. In this case, the attacker achieved a certain level of
reconstruction accuracy. However, when we divided the same data into smaller
batches (8 batches of 128 records each), the reconstruction accuracy dropped
by approximately 10%. This trend continued as the number of batches further
increased. This highlights a crucial observation: using multiple batches during
training makes it significantly harder for attackers to reconstruct private user
data from the exchanged updates than a single batch with the same number
of records.

The original paper presented its findings on reconstruction accuracy based on
the number of updates combined with variations in batches and epochs. For
example, 4 batches with 10 epochs is 40 updates. We must factor in epochs
alongside the number of batches to ensure a fair comparison.

4.3.4 Discussion

Experiments using multiple batches during training revealed that increasing
the number of batches significantly reduces reconstruction accuracy. While

* https://github.com/leopragi/tableak_fl/commit/multi_batches

https://github.com/leopragi/tableak_fl/commit/c0766419fab4934de1671a97ce27e8b2906a62c8

34 chapter 4 experiments

Figure 4.2: Reconstruction accuracy with increasing no. of batches

increasing the number of batches enhances privacy, it can also lead to increased
training time and communication overhead between participating devices.
There is a crucial trade-off between achieving a desired level of privacy and
maintaining efficiency in the training process.

4.4 Multiple batches with epoch on client-side

Question:How does varying the number of batches and epochs during training
impact the reconstruction accuracy?

4.4.1 Background

In Federated Learning (FL), the concept of epochs remains similar but with
some distinctions due to the distributed nature of the training data. In FL, each
participating device or client trains its local model on its dataset for a specified
number of local epochs. After the local training, the updated model parameters
are aggregated across all clients to create a global model.

In our previous experiments, we observed a decrease in reconstruction accuracy
as the number of batches increased. We aim to extend our investigation by
introducing the epochs and examining their impact on reconstruction accuracy
in addition to the number of batches.

4.4 multiple batches with epoch on client-s ide 35

4.4.2 Implementation

We are using the 𝐹𝑢𝑙𝑙𝑦𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑇𝑟𝑎𝑖𝑛𝑒𝑟 module from the existing code base
to conduct the experiment. 𝐹𝑢𝑙𝑙𝑦𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑇𝑟𝑎𝑖𝑛𝑒𝑟 takes a neural network
and data as input and trains the network iteratively. Specifically, we are inter-
ested in local batch size (𝑙_𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒) and 𝑒𝑝𝑜𝑐ℎ𝑠 on the training process,
which helps us to control the number of records that need to be trained in a
whole batch and epochs for the number of passes for the dataset. Specifically,
we will explore the impact of 1, 5, and 10 epochs with increased batches. Set-
ting the 1 epoch as the baseline will allow us to observe the effects of the other
two configurations.

4.4.3 Result

Figure 4.3 shows that higher epoch configurations generally lead to lower re-
construction accuracy across all batch sizes. Additionally, larger batch sizes
tend to result in lower reconstruction accuracy regardless of the epoch con-
figuration. Larger batch sizes with higher epochs do not achieve much lower
reconstruction accuracy. This trend suggests that combining larger epochs and
larger batch sizes yields lower reconstruction accuracy in leakage attacks of
federated learning when used moderately.

Figure 4.3: Reconstruction accuracy with increasing no. of batches and epochs

* https://github.com/leopragi/tableak_fl/commit/multi_batches_epochs

https://github.com/leopragi/tableak_fl/commit/c0766419fab4934de1671a97ce27e8b2906a62c8

36 chapter 4 experiments

4.5 Sequentially connected peer-to-peer
federated learning

Question: In sequential peer-to-peer (p2p) networks, how is reconstruction
accuracy affected if the model is trained through multiple nodes?

4.5.1 Background

Our previous experiments focused on a centralized federated learning setup.
To investigate the effectiveness of inversion attacks in a more decentralized
setting, we implemented a p2p fl system. This system operates by sequentially
sharing model weights between nodes in the network, allowing us to analyze
how such attacks exploit such P2P FL systems.

Participating nodes

Our experiments adopt a distinctive approach by focusing on closely related
nodes, aligning with real-world use cases such as healthcare, finance, or in-
surance fraud detection. Unlike traditional Federated Learning (FL) scenarios
characterized by an extensive network of millions of nodes, our setup involves
only a few closely related nodes, typically interconnected within the same busi-
ness domain. This arrangement is designed to mirror practical considerations,
where entities within a specific business domain contribute collaboratively to
model training.

Optimization algorithm

As discussed in the background section (2.3), the FedAvg algorithm takes
center stage in our research because it aligns with the specific characteristics
of our sequentially arranged nodes in the P2P FL system. In a sequential
federated learning setup, we share weights to update the global model, as our
target algorithm is FedAvg. Also, weight sharing has some advantages to our
sequential peer-to-peer system, as follows:

1. Smoother Transfer: Sharing weights allows each node to directly inherit
the knowledge accumulated by the previous node(s) in the sequence. This
eliminates the need for multiple rounds of gradient exchange, leading to
smoother model updates for subsequent nodes.

2. Continuity in Learning: As weights are shared, each node in the se-

4.5 sequentially connected peer-to-peer federated learning 37

quence builds upon the model’s knowledge acquired by its predecessors.
This continuity in learning is essential for themodel to capture underlying
patterns and relationships within the data.

3. Consistency in Model Representation: Sharing weights ensures that all
nodes in the sequence work with a consistent model representation. This
consistency is important for maintaining a unified global model, even as
the training progresses through different devices.

4.5.2 Implementation

Nodes setup:

Figure 4.4: Architecture of peer-to-peer federated learning system

In our design of a sequential P2P FL system with 4 nodes (Figure 4.4), each
participating node begins with identical initial copies of the model. The pro-
gression of updates within this system follows a notable pattern. Beginning
with node n, it receives model updates from node n - 1. However, node n
adopts a different approach rather than merely averaging these updates. It
replaces its current model weights with the received updates and then trains
on its respective dataset using this updated model locally. Following this local
training, node n transmits the newly updated weights to node n + 1, thereby
perpetuating the sequential chain of updates within the FL system. This itera-
tive process ensures that each node in the system continuously incorporates the
latest model updates from its predecessor while contributing its own refined
model parameters to the subsequent nodes in the chain.

38 chapter 4 experiments

Leakage attack

This implementation simulates a federated learning scenario with multiple
nodes, each with its own dataset. In each round of training, one node is
selected to be attacked. During the attack, the selected node uses an adversarial
technique called federated averaging attack 𝑓 𝑒𝑑_𝑎𝑣𝑔_𝑎𝑡𝑡𝑎𝑐𝑘 to manipulate
its model parameters. This attack aims to reconstruct the private training
data of the previous nodes in the training chain. The reconstruction accuracy
and the accuracy of the model are evaluated after each round of training to
assess the impact of the attack on the overall performance. This process is
repeated for a predefined number of rounds, with the results recorded for
further analysis.

We encounter a unique challenge when working with a sequential P2P FL.
Traditional FedAvg uses a central server to gather and combine model updates
from all participating devices. Each device will give one update (weights), and
the attacker node can do the inversion attack and should be able to recover the
dataset used on that device for training. However, in a sequential P2P network
with n nodes where updates flow sequentially, the attacker node (one of the n
nodes) receives aggregated weights of all nodes since the last round as a single
accumulated update, which is (n - 1) updates in total.

For example, let us say we have four nodes, and each node trains with 8 records.
If Node 2 is the attacker node, it will receive updates from Node 3, Node 4,
and Node 1. This means that the weights shared by the previous node (Node
1) have updates of 24 records in total.

To address this distinction and adapt the attack methodology for our sce-
nario, we need to modify the module in standard TabLeak’s 𝑓 𝑒𝑑_𝑎𝑣𝑔_𝑎𝑡𝑡𝑎𝑐𝑘
attack.

TabLeak’s 𝑓 𝑒𝑑_𝑎𝑣𝑔_𝑎𝑡𝑡𝑎𝑐𝑘 attack employs a well-established framework from
[20] to conduct attacks on the peer-to-peer system where weights are ex-
changed,unlike traditional federated learning setups that often rely on fedsgd,
where gradients are exchanged.

In this implementation, several technical aspects contribute to the effectiveness
of the federated averaging attack:

1. Reconstruction shape: The number of records we are trying to reconstruct
is (𝑛𝑜𝑑𝑒𝑠 − 1) × batch_size. The shape of the ground truth tensor, which is
passed to 𝑓 𝑒𝑑_𝑎𝑣𝑔_𝑎𝑡𝑡𝑎𝑐𝑘, must be changed according to this. The algorithm
will use this tensor shape to reconstruct the projected batch.

4.5 sequentially connected peer-to-peer federated learning 39

2. Post-selection: After each attack iteration, a post-selection process is em-
ployed to ensure the stability of the attack. This involves selecting the best
reconstruction results from multiple candidate reconstructions, enhancing the
reliability of the attack.

3. Batch size: A uniform batch size 16 is maintained across all nodes during
training. This consistency ensures standardized processing and communication
between nodes, facilitating the smooth execution of the federated learning
algorithm.

4. Best loss selection: The attack iteratively refines its parameters to minimize
the loss function associated with the reconstruction task. The best-performing
reconstruction results, determined by the lowest loss values, are selected for
further analysis and evaluation.

4.5.3 Result

Figure 4.5: Reconstruction accuracy for sequentially connected nodes

This experiment evaluated the tableak performance of a P2P FL system across
varying numbers of nodes. We observed that as the number of nodes increased,
the reconstruction accuracy exhibited fluctuations, indicating the influence of
the network topology on data reconstruction. Specifically, we achieved high
reconstruction accuracy with two nodes, as it doesn’t have enough updates.
However, as the number of nodes increased to four, eight, and sixteen, the

* https://github.com/leopragi/tableak_fl/commit/sequential_p2p

https://github.com/leopragi/tableak_fl/commit/f6706047e2057788f2a87a7890efb971278431af

40 chapter 4 experiments

reconstruction accuracy decreased, suggesting challenges associated with a
larger set of participants.

Interestingly, while the model accuracy remained relatively stable across dif-
ferent node configurations, indicating robustness in learning performance, the
reconstruction accuracy varied significantly.

4.5.4 Discussion and future work

In a sequentially connected set of nodes, the attacker node can recover certain
training data points. However, the anonymity of the association between nodes
and specific data points remains preserved. The recovery process lacks any
discernible order, preventing the inference of node-to-data point relationships.
However, the scalability of this approach for more extensive networks remains a
concern. The iterative process of waiting for an update from the previous node
is repeated until the model converges, which can be more time-consuming
than centralized FL due to the sequential nature of updates. Although this
setup may exhibit a slower convergence rate, we focus on it as it mirrors the
real-world use case where clients often conduct local training and aggregation
using a process similar to federated averaging. By addressing this scenario, we
aim to provide insights and strategies for optimizing FL in such decentralized
systems, acknowledging the potential trade-offs between convergence speed
and data privacy.

Khac-Hoang et al. [28] examined SecAgg as a method for anonymizing individ-
ual updates and investigated its effectiveness in concealing information as the
number of participants increases. SecAgg achieves anonymity by aggregating
updates from multiple clients like our P2P FL. Their analysis revealed that in
SecAgg, the server might still be able to infer the sources of updates based on
the combined information, especially with a small number of participants [28].
The study’s main finding is that SecAgg fails to adequately protect privacy
when the model size exceeds the number of clients, as there is insufficient
masking in the updates. Understanding how this attack works could help us
identify vulnerabilities in our sequential FL system.

One effective defense strategy for the FGLA attack is to update the model
multiple times locally and aggregate these updated gradients before uploading
them. Yang et al. [29] introduce FGLA, a fast gradient leak attack method that
can reconstruct a batch of user training data from gradients in milliseconds.
Furthermore, we find that defenses such as batch aggregation, gradient com-
pression, and noise addition struggle to protect against FGLA attacks.

4.6 model reconstruction attack 41

4.6 Model reconstruction attack

Question: Does the model trained on reconstructed data perform as well as
the model trained on original data?

4.6.1 Background

While the previous experiment achieved high model accuracy in P2P FL, the
lower reconstruction accuracy raises an important question: Does achieving
a lower reconstruction accuracy mean we are safe? Even though the attacker
might not be able to reconstruct the original training data perfectly, if the
reconstructed data still retains the same patterns and statistical properties as
the true data, it can still be problematic.

Not all information in the data is equally important for the model to function
well. Even if an attacker can only perfectly reconstruct a small portion of the
data, it might be enough risk if that portion contains the fundamental knowl-
edge the model uses to make predictions. Reducing reconstruction accuracy
alone might not be sufficient to guarantee complete privacy protection. It is
essential to ensure that the reconstructed data does not contain enough in-
formation to reveal the underlying patterns and relationships in the original
training data.

4.6.2 Implementation

Figure 4.6 shows overview of the reconstruction model attack. A new model
is trained using the reconstructed data and then tested against a true, unseen
test dataset. This will directly assess how well the attacker’s reconstruction
translates to real-world data on which the actual model is trained. Training
the model on reconstructed data helps us understand how well the model
generalizes the pattern of the original data from the reconstructed data.

This implementation compares the performance of two models. One original
model is trained on the ground truth data,while the other is trained on data that
an attacker has reconstructed. By comparing their performance on the same
test set (ground truth), we can assess how well the attacker’s reconstruction
model performs on the task the original model was designed for.

The code reads two datasets from CSV files. One contains the original data
used to train a model, and the other contains data reconstructed by an attacker.
Both datasets are split into training and testing sets. "Model True" is trained
using the original data. "Model Recreated" is trained using the reconstructed

42 chapter 4 experiments

Figure 4.6: Model reconstruction attack overview

data provided by the attacker. Then, both of these models are tested with a
true test data from the original data. Then, both models’ performance are
calculated based on their confusion matrix.

Along with this, we will see the distribution of the data reconstructed by the
attacker and can compare it against the distribution of the original data. This
can reveal potential biases or distortions introduced during the reconstruction
process.

4.6.3 Result

The table 4.6 presents performance metrics of original and recreated models.
Average reconstruction accuracy of the entire dataset is 58% which means
recreated data is lower quality. The original model achieved an excellent
overall model accuracy of 88.05%, and the recreated model has 75.45% model
accuracy. Even though the recreated model seems to have good model accuracy,
we need to analyze other metrics to get the full picture.

While the high recall on the reconstructed model might appear favorable, it
is misleading due to the very low specificity. This suggests that the attacker’s
reconstructed data makes the model struggle to differentiate between positive

* https://github.com/leopragi/tableak_fl/commit/reconstructed_model

https://github.com/leopragi/tableak_fl/commit/0eda8e1dee287fb9f7fe50112c57b4d12c550518

4.6 model reconstruction attack 43

and negative cases.

Metric Original Model Reconstructed Model

Confusion Matrix
[
885 401
229 3756

] [
1 1285
9 3976

]
Accuracy 88.05% 75.45%
Precision 90.35% 75.57%
Recall (Sensitivity) 94.25% 99.77%
Specificity 68.82% 0.08%
F1 Score 92.26% 86.00%

Table 4.6: Comparison of original and reconstructed models

Our examination of the data distribution across original and reconstructed
data highlights significant discrepancies. This analysis focused on four different
features that are: age (numeric), fnlgwt (numeric), education (categorical) and
occupation (categorical). These results are present in figures 4.7, 4.8, 4.9 and
4.10. These features are affected by the reconstruction process as follows:

1. Age: The ground truth data shows a clear trend,with the positive class de-
clining and the negative class increasing with age. However, both classes
appear flat in the reconstructed data, with values extending beyond the
original data range.

2. fnlwgt: In ground truth, both positive and negative classes follow a
natural distribution of values. While the reconstructed data distribution
becomes flat, the values remain within the expected range.

3. Education: The ground truth data indicates that ’HS-grad’ is the most
frequent category, followed by ’some-college’ and ’bachelor.’ However, in
the reconstructed data, the ’HS-grad’ category is entirely absent, indi-
cating a significant alteration due to the reconstruction process. Despite
this, ’Some-college’ and ’bachelors’ remain the top frequent values.

4. Occupation: In the ground truth, the most frequent categories are ’Adm-
clerical’ and ’Other-service occupation.’ However, in the reconstructed
data, the distribution is significantly altered, with ’Craft-repair,’ ’Prof-
specialty,’ and ’Exec-managerial’ now emerging as the top categories.

These observations suggest that the reconstruction process significantly al-
tered the underlying distribution of the data, potentially introducing biases or
distortions. This misalignment between the original data and reconstructed
data distributions confirms that pattern in original data is not leaked via the
reconstructed data. This result clearly shows that an attack cannot generalize

44 chapter 4 experiments

the pattern from the reconstructed data.

Figure 4.7: Distribution based on age

Figure 4.8: Distribution based on fnlwgt

4.6.4 Discussion and future work

Joshua et al. [30] focus on whether leaked datasets through reconstruction
attacks (like gradient inversion and linear layer leakage) can still be used to
train effective models, even with imperfect reconstructions. Gradient inversion
attacks often suffer from lower-quality reconstructions. Quoting the research,
"we also see a negative relationship between the increasing batch size and the
usefulness of the leaked data in downstream model training" [30] aligns with
our work. While this reduces the usefulness of the leaked data, the research
shows it can still be used for training with some performance loss.

Our experiment revealed significant distribution discrepancies between the
original and reconstructed data. A deeper understanding of how reconstruction
processes introduce these biases and distortions can be valuable for developing
more robust leakage detection methods.

4.6 model reconstruction attack 45

Figure 4.9: Distribution based on education

Figure 4.10: Distribution based on occupation

5
Conclusion
In this section, we will explore how to advance this research further and
conclude this thesis.

5.1 Future works

Our current research focused on binary classification tasks within federated
learning. However, a promising future direction would be to examine the im-
pact of using ordinal output in the neural network (e.g., low, medium, high
risk). Binary output simplifies the problem but might offer leakage attack a
more straightforward target for reconstruction. The ordinal output provides ad-
ditional information that can make it more difficult for attackers to pinpoint the
exact original value. This exploration, particularly for datasets with naturally
ordered output variables (like insurance fraud risk levels), could be a valuable
step toward developing more robust and privacy-preserving FL systems.

Shaltiel et al. [31] suggest that changing the loss function from CrossEntropy to
Mean Squared Error (MSE) might enhance privacy due to the "gradient mixing"
properties of MSE. Problems with ordinal classification tasks can be treated
as regression problems, which use the MSE loss function. Understanding the
relationship between loss function and reconstruction accuracy can be crucial
for developing a more comprehensive approach to privacy in federated learning.
This future step proposes to explore whether this change in loss function also

47

48 chapter 5 conclusion

impacts the reconstruction accuracy of attacks.

We have concluded even if perfect reconstruction isn’t achieved, attackers
might still get valuable information from partially reconstructed data. The
0-1 loss metrics don’t account for the potential harm caused by such partial
reconstructions. We need more robust metrics to assess reconstruction accuracy
beyond just "perfect" reconstructions. This could involve analyzing the distri-
bution of reconstructed data and its similarity to the original data in various
aspects.

Also, developing machine learning methods to identify high-risk gradients
that might leak sensitive information during training could be a powerful
pre-emptive defense strategy.

5.2 Concluding remarks

This thesis explored various defense mechanisms against leakage attacks by
investigating the effectiveness of various machine learning parameters. We
demonstrated how modifying these parameters within the FL training process
impacts the attacker’s ability to reconstruct user data.

We have expanded the parameter landscape by exploring beyond traditional
parameters to examine the impact of data encoding (e.g., binary vs. one-hot)
and network architectures (e.g., sequential peer-to-peer vs. centralized). When
modifying these parameters, we addressed the potential trade-offs between
privacy and model performance. For instance, increasing batch size might
improve privacy but could also lead to slower training times or scalability issues
in a peer-to-peer architecture. We also validated the metrics of reconstruction
accuracy by examining the pattern in the data.

This work contributes to developing privacy-preserving FL frameworks by ex-
amining potential mitigation strategies. The insights gained from this research
will empower researchers and developers to create more secure FL systems, fos-
tering wider adoption of this technology and safeguarding user privacy.

Bibliography
[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas,

“Communication-Efficient Learning of Deep Networks from Decentralized
Data,” in Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics (A. Singh and J. Zhu, eds.), vol. 54 of Proceedings
of Machine Learning Research, pp. 1273–1282, PMLR, 20–22 Apr 2017.

[2] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in Advances
in Neural Information Processing Systems (H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), vol. 32, Curran
Associates, Inc., 2019.

[3] Y. Wen, J. Geiping, L. Fowl, M. Goldblum, and T. Goldstein, “Fishing for
user data in large-batch federated learning via gradient magnification,”
2022.

[4] H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz, and P. Molchanov,
“See through gradients: Image batch recovery via gradinversion,” 2021.

[5] J. Deng, Y. Wang, J. Li, C. Wang, C. Shang, H. Liu, S. Rajasekaran, and
C. Ding, “TAG: Gradient attack on transformer-based language models,”
in Findings of the Association for Computational Linguistics: EMNLP 2021
(M.-F. Moens, X. Huang, L. Specia, and S. W.-t. Yih, eds.), (Punta Cana,
Dominican Republic), pp. 3600–3610, Association for Computational Lin-
guistics, Nov. 2021.

[6] M. Balunović, D. I. Dimitrov, N. Jovanović, and M. Vechev, “Lamp: Extract-
ing text from gradients with language model priors,” 2022.

[7] S. Gupta, Y. Huang, Z. Zhong, T. Gao, K. Li, and D. Chen, “Recovering
private text in federated learning of language models,” 2022.

[8] M. Vero, M. Balunović, D. Dimitrov, and M. Vechev, “Data leakage in
tabular federated learning,” 10 2022.

49

50 bibl iography

[9] S. K. Lo, Q. Lu, L. Zhu, H. young Paik, X. Xu, and C. Wang, “Architectural
patterns for the design of federated learning systems,” 2021.

[10] J. Qi, Q. Zhou, L. Lei, and K. Zheng, “Federated reinforcement learning:
techniques, applications, and open challenges,” Intelligence Robotics, vol. 1,
10 2021.

[11] T. Wink and Z. Nochta, “An approach for peer-to-peer federated learning,”
in 2021 51st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W), pp. 150–157, 2021.

[12] A. Karras, C. Karras, K. C. Giotopoulos, D. Tsolis, K. Oikonomou, and
S. Sioutas, “Peer to peer federated learning: Towards decentralized ma-
chine learning on edge devices,” in 2022 7th South-East Europe Design
Automation, Computer Engineering, Computer Networks and Social Media
Conference (SEEDA-CECNSM), pp. 1–9, 2022.

[13] A. G. Roy, S. Siddiqui, S. Pölsterl, N. Navab, and C. Wachinger, “Braintor-
rent: A peer-to-peer environment for decentralized federated learning,”
2019.

[14] J. Steinhardt, P. W. W. Koh, and P. S. Liang, “Certified defenses for data
poisoning attacks,” in Advances in Neural Information Processing Systems
(I. Guyon,U. V. Luxburg, S. Bengio,H.Wallach,R. Fergus, S. Vishwanathan,
and R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.

[15] N. Bouacida and P. Mohapatra, “Vulnerabilities in federated learning,”
IEEE Access, vol. 9, pp. 63229–63249, 2021.

[16] G. S. Dhillon, K. Azizzadenesheli, Z. C. Lipton, J. Bernstein, J. Kossaifi,
A. Khanna, and A. Anandkumar, “Stochastic activation pruning for robust
adversarial defense,” 2018.

[17] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to
backdoor federated learning,” in Proceedings of the Twenty Third Interna-
tional Conference on Artificial Intelligence and Statistics (S. Chiappa and
R. Calandra, eds.), vol. 108 of Proceedings of Machine Learning Research,
pp. 2938–2948, PMLR, 26–28 Aug 2020.

[18] M. Carminati, L. Santini,M. Polino, and S. Zanero, “Evasion attacks against
banking fraud detection systems,” in 23rd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2020), (San Sebastian),
pp. 285–300, USENIX Association, Oct. 2020.

bibl iography 51

[19] K.-C. Wang, Y. FU, K. Li, A. Khisti, R. Zemel, and A. Makhzani, “Variational
model inversion attacks,” in Advances in Neural Information Processing
Systems (M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, eds.), vol. 34, pp. 9706–9719, Curran Associates, Inc., 2021.

[20] D. I. Dimitrov,M. Balunovic,N. Konstantinov, andM. Vechev, “Data leakage
in federated averaging,” Transactions on Machine Learning Research, 2022.

[21] W. Wei, L. Liu, M. Loper, K.-H. Chow, M. E. Gursoy, S. Truex, and Y. Wu, “A
framework for evaluating gradient leakage attacks in federated learning,”
2020.

[22] O. Goldreich, “Secure multi-party computation,” Manuscript. Preliminary
Version, 03 1999.

[23] X. Li, Y. Gu, N. Dvornek, L. H. Staib, P. Ventola, and J. S. Duncan, “Multi-
site fmri analysis using privacy-preserving federated learning and domain
adaptation: Abide results,” Medical Image Analysis, vol. 65, p. 101765, 2020.

[24] B. Becker and R. Kohavi, “Adult.” UCI Machine Learning Repository, 1996.
DOI: https://doi.org/10.24432/C5XW20.

[25] F. L. Wightman, “LawSchool.” LSAC national longitudinal bar passage
study, 2017.

[26] S. G. K. Patro and K. K. Sahu, “Normalization: A preprocessing stage,”
2015.

[27] C. Seger, “An investigation of categorical variable encoding techniques in
machine learning: binary versus one-hot and feature hashing,” 2018.

[28] K.-H. Ngo, J. Östman, G. Durisi, and A. G. i Amat, “Secure aggregation is
not private against membership inference attacks,” 2024.

[29] H. Yang, D. Xue, M. Ge, J. Li, G. Xu, H. Li, and R. Lu, “Fast generation-
based gradient leakage attacks: An approach to generate training data
directly from the gradient,” IEEE Transactions on Dependable and Secure
Computing, pp. 1–13, 2024.

[30] J. C. Zhao, A. Dabholkar, A. Sharma, and S. Bagchi, “Leak and learn: An
attacker’s cookbook to train using leaked data from federated learning,”
2024.

[31] S. Eloul, F. Silavong, S. Kamthe,A. Georgiadis, and S. J. Moran, “Enhancing

52 bibl iography

privacy against inversion attacks in federated learning by using mixing
gradients strategies,” 2022.

Appendices

53

A
External Resources
Declaration of the usage of AI tools

I acknowledge the use of Gemini (https://gemini.google.com/) to refine my
work’s academic language and accuracy. I used a grammar and style checking
tool - Grammarly (https://www.grammarly.com/), to improve my academic
tone and accuracy of language, including grammatical structures, punctuation,
and vocabulary. The output from the tools was then modified further better to
represent my own tone and style of writing.

Declaration of Code Usage

In this thesis, the open-source code from the "tableak" repository on GitHub
(https://github.com/eth-sri/tableak) was utilized to conduct different recon-
struction attacks against federated learning models. This code, developed by
eth-sri, implements techniques for reconstructing tabular data from gradients
as described in the research paper [8]. We are grateful to the authors for
making this valuable code publicly available.

55

https://gemini.google.com/
https://www.grammarly.com/
https://github.com/eth-sri/tableak

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Research questions
	1.2 Motivation
	1.3 Thesis outline

	2 Background
	2.1 Federated learning
	2.1.1 Batches and epochs

	2.2 Peer-to-peer federated learning
	2.3 FedSGD and FedAvg
	2.3.1 FedSGD (Federated stochastic gradient descent)
	2.3.2 FedAvg (Federated averaging)

	2.4 Federated learning and privacy
	2.5 Different attacks in federated learning
	2.6 Leakage attack and reconstruction
	2.6.1 Gradient inversion attack
	2.6.2 Gradient inversion in federated averaging

	2.7 Domain specific leakage attack
	2.8 Defenses for leakage attacks
	2.8.1 Gradient perturbation
	2.8.2 Gradient compression
	2.8.3 Secure Multi-Party Computation
	2.8.4 Differential privacy

	3 Methodology
	3.1 Foundation
	3.2 Experimental setup
	3.3 Validation and evaluation metrics
	3.3.1 Reconstruction accuracy and 0-1 Loss
	3.3.2 Model accuracy
	3.3.3 Model performance

	4 Experiments
	4.1 Encoding of dataset
	4.1.1 Background
	4.1.2 Implementation
	4.1.3 Result

	4.2 Model accuracy on binary encoded dataset
	4.2.1 Background
	4.2.2 Implementation
	4.2.3 Result
	4.2.4 Discussion and future work:

	4.3 Multiple batches on client-side
	4.3.1 Background
	4.3.2 Implementation
	4.3.3 Result
	4.3.4 Discussion

	4.4 Multiple batches with epoch on client-side
	4.4.1 Background
	4.4.2 Implementation
	4.4.3 Result

	4.5 Sequentially connected peer-to-peer federated learning
	4.5.1 Background
	4.5.2 Implementation
	4.5.3 Result
	4.5.4 Discussion and future work

	4.6 Model reconstruction attack
	4.6.1 Background
	4.6.2 Implementation
	4.6.3 Result
	4.6.4 Discussion and future work

	5 Conclusion
	5.1 Future works
	5.2 Concluding remarks

	Bibliography
	Appendices
	A External Resources

