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Abstract
For peer-to-peer collaborative editing systems utilizing the Conflict-free Repli-
cated Data Type memory consumption can become a significant issue, partic-
ularly when handling large files with extensive editing histories. It can lead
to performance problems and hinder user productivity, especially in environ-
ments with limited resources. This thesis addresses the problem of excessive
memory usage and proposes a novel solution to mitigate this issue by applying
partial persistence to CRDT data structure. Through a series of experiments
and evaluations, the effectiveness of the proposed approach is demonstrated.
This research contributes to the advancement of memory-efficient collaborative
systems, offering potential benefits for users working with large documents in
resource-constrained environments.
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1
Introduction
1.1 Context

Collaborative editing systems have become indispensable tools for facilitat-
ing real-time collaboration among users across diverse domains, including
document editing, software development, project management, and online
collaboration platforms. These systems enable multiple users to work together
on shared documents, projects, or content concurrently, allowing for seamless
communication, coordination, and knowledge sharing.

Traditional approaches to collaborative editing, such as Operational Transfor-
mation (OT), have been widely adopted to ensure consistency and concurrency
control in distributed environments. OT-based systemsmaintain a central server
that coordinates user edits by transforming and applying operations. While
effective in many scenarios, OT-based systems reliance on central server intro-
duces a single point of failure problem, hindering availability and reliability of
collaborative editing environments.

In recent years, Conflict-free Replicated Data Types (CRDTs) have emerged as
a promising alternative to traditional approaches for achieving eventual consis-
tency in collaborative editing systems. CRDTs offer a decentralized approach
to concurrency control, allowing replicas to independently update their local
state without coordination from a central server. By leveraging mathematical
properties and commutative operations, CRDTs ensure that replicas eventually
converge to a consistent state, even if the presence of concurrent updates and
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2 chapter 1 introduction

network partitions.

This thesis focuses on addressing a specific challenge in CRDTs, particularly
concerning the ever-growth of local memory as data within the model continues
to expand. As collaborative editing sessions progress and more updates are
applied to the data model, the size of local memory grows even when edited
text is deleted. This growth can lead to numerous problems, posing significant
challenges for CRDT-based systems in distributed environments.

1.2 Problem Definition

Conflict-free Replicated Data Types offer a decentralized approach to achiev-
ing eventual consistency in distributed systems, making them well-suited for
collaborative editing applications. However, CRDT-based systems face specific
challenges and limitations related to memory management, particularly con-
cerning the continuous growth of data updates and the resulting increase in
memory consumption.

As collaborative editing sessions progress and more updates are applied to
the data model, the size of the local memory in each node of the CRDT-based
system grows continuously. This accumulation of historical data includes the
complete history of updates, operations, and metadata necessary to ensure
eventual consistency across distributed replicas. The continuous growth of
data updates introduces several challenges, such as memory exhaustion, per-
formance degradation and scalability constraints.

To address those challenges, there is a need for effective memory manage-
ment solution that optimizes memory usage, prevents memory exhaustion, and
ensures efficient utilization of resources.

1.3 Goals

This project is centered around the resolution of amemory ever-growth problem
in CRDT-based systems and achieving enhanced efficiency and scalability in
collaborative editing applications.

It involves modifying an already implemented CRDT by applying partial persis-
tence to it. This approach aims to address the challenge of memory ever-growth
by selectively offloading data from local memory to disk storage. By introducing
partial persistence of data updates, this CRDT variant will optimize memory
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usage and mitigate memory exhaustion, thus enhancing the scalability and
practical deployment of CRDT-based solution in collaborative editing applica-
tions.

1.4 Methodology

The methodology employed a combination of research, design, development,
and testing phases to iteratively refine the solution.

The approach is centered around the concept of partial persistence, which
involves offloading less relevant data from local memory to disk storage while
maintaining the integrity and functionality of the collaborative editing sys-
tem.

The design and implementation processes followed an iterative development
approach, consisting of multiple iterations focused on specific aspects of the
solution. Each iteration involved analysis and planning to assess the current
state of the solution, identify areas for improvement, and define objectives and
strategies for implementation.

Throughout the implementation process, collaboration and feedback played
a crucial role in guiding decision-making and driving improvements. Regular
discussions with project supervisor provided valuable insights, suggestions, and
critiques that informed the direction and refinement of the solution.





2
Technical Background
2.1 Collaborative Editing Systems

Collaborative editing systems have progressed the way individuals collaborate
and work together on shared documents, projects, and content. From simple
text editors to complex collaborative platforms, these systems have evolved sig-
nificantly over the years, leveraging innovative technologies and architectures
to facilitate seamless collaboration among users.

2.1.1 Evolution of Collaborative Editing Systems

Collaborative editing systems have undergone a remarkable evolution, driven
by advancements in network technologies, distributed systems, and user in-
terface design. This evolution can be broadly categorized into the following
phases:

• Early Collaborative Text Editors. The early days of collaborative edit-
ing witnessed the emergence of simple text editors that allowed multiple
users to edit a shared document concurrently. The very first computer
system to implement real-time collaborative editing, NLS (oN-Line Sys-
tem), was implemented by a team of researchers at Stanford Research
Institute in 1962, led by Douglas Engelbart. [1] Other examples include
the SubEthaEdit [30], DocSynch [20] and Gobby [24].
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6 chapter 2 technical background

• Web-based Collaboration Platforms. With the advent of the internet
and web technologies, collaborative editing systems transitioned to web-
based platforms, offering users the ability to collaborate on documents
in real time through web browsers. Examples include Google Docs[19],
Microsoft Office Online [27], and Dropbox Paper [28].

• Cloud-based Collaboration Tools. The progress in cloud computing and
storage technologies led to the emergence of cloud-based collaboration
tools, which provided users with seamless access to shared documents
from any device or location. Examples include Microsoft SharePoint [29],
Box [16], and Zoho WorkDrive [31].

2.1.2 Characteristics of Collaborative Editing Systems

Collaborative editing systems are designed to enable multiple users to collabo-
rate on shared documents in real time. To fulfill this purpose effectively, these
systems must possess certain characteristics and meet specific requirements
[2], such as:

• Conflict Resolution. Conflict resolution mechanisms are essential for
handling concurrent edits made by multiple users to the same document.
In collaborative editing systems, conflicts may arise when users edit the
same portion of a document simultaneously or when network issues
result in out-of-order updates. Effective conflict resolution ensures that
conflicting edits are resolved in a consistent manner, preserving the
integrity and coherence of the shared document.

• Support for Concurrent Users. Collaborative editing systems must be
capable of supporting concurrent users collaborating on the same doc-
ument simultaneously. This requires scalable architectures and efficient
data structures to handle the coordination and synchronization of edits
across multiple users. Additionally, collaborative editing systems must
provide robust user management and access control features to regulate
user permissions and ensure that only authorized users can edit or access
sensitive content.

• Versioning and History Tracking. Versioning and history tracking ca-
pabilities are required for documenting and managing changes made
to shared documents over time. Collaborative editing systems typically
maintain a version history of the document, allowing users to review
past revisions, revert to previous versions, and track the evolution of the
content. Versioning and history tracking features provide accountability
and traceability, enabling users to understand the context and chronology
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of edits made by themselves and other collaborators.

2.1.3 Architectures of Collaborative Editing Systems

Collaborative editing systems employ two fundamental architectural paradigms
to support real-time collaboration among users: the client-server architecture
and the peer-to-peer (P2P) architecture:

• Client-Server Architecture. In a client-server architecture, clients inter-
act with a central server to access and edit shared documents. Example
include Google Docs and Microsoft Office Online.

• P2P Architecture. Peer-to-peer architectures distribute documents edit-
ing responsibilities among multiple nodes in a decentralized manner,
allowing users to collaborate directly with each other without relying on
a central server. Examples include Conclave [17] and Hyperpad [25].

2.2 Conflict-free Replicated Data Types

Conflict-free Replicated Data Types represent a fundamental advancement in
distributed systems, providing a solution for achieving eventual consistency in
replicated data across distributed environments. At their core, CRDTs embody
principles and concepts that enable concurrent updates to data without the
need for synchronization or coordination between replicas, thereby resolving
conflicts seamlessly.

In order to understand the workings of CRDTs, it is essential to grasp the
underlying principles that manage their design and operation. These principles
serve as the guiding rules for achieving eventual consistency in distributed
systems [6]:

• Commutativity. When merging the state of two replicas, A and B, it is
essential that merging A into B produces the same result as merging B
into A. This property ensures that the order of merge operations does not
affect the final state of the data, enabling replicas to converge towards a
consistent state regardless of the order in which updates are applied.

• Idempotence. In scenarios where network issues or message duplication
occur, it is crucial that applying a value multiple times has the same effect
as applying it once. This property ensures that replicas can safely apply
updates without fear of introducing inconsistencies or diverging from
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the intended state, even in the presence of network anomalies, message
duplication or in cases when the same update comes from different
replicas.

• Associativity. Regardless of the order in which updates are applied to
replicas, the final state of the data should remain consistent. Whether
merging instances A and B first and then merging the result with in-
stance C, or vice versa, the final state should be identical. This property
guarantees that replicas can collaborate with different replicas.

2.2.1 CRDTs Classification

Initially, CRDTs were categorized in two classes [4]: state-based CRDTs and
operation-based CRDTs. Each approach offers distinct advantages and trade-
offs, applicable to different use cases and scenarios in distributed systems.
Delta-CRDTs were introduced in 2015 with the aim of reducing the footprint
of state-based counter CRDTs while retaining the majority of their benefits
[7].

2.2.1.1 State-based CRDTs

State-based CRDTs represent shared data as a complete state that is replicated
across all replicas in the system. Each replica maintains its local copy of the
shared state and periodically sends its state to other replicas. When receiving
state updates from other replicas, a replica merges these updates with its local
state to achieve convergence.

However, this approach can lead to inflation over time, as metadata accumulates
to ensure convergence during synchronization.

Despite the potential for increased storage overhead, state-based CRDTs offer
robust eventual consistency guarantees. They are tolerant of duplicate mes-
sages, as redundant updates can be detected and discarded during the merge
process.

The visual representation of a state-based Counter CRDT that uses max merge
function can be seen in Figure 2.1. In this figure two peers, a and b, modify and
propagate the state. The state contains a map that stores a counter for each
peer, only the origin peer can modify the corresponding counter in map. It can
be seen that the last state update by the peer b is propagated twice. That is the
example of message duplication, which is being resolved by the merge function
that chooses the counter with the highest value (counter is not intended to be
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Figure 2.1: An example of state-based Counter CRDT.

decreased in this approach).

2.2.1.2 Operation-based CRDTs

Operation-based CRDTs represent updates to shared data as a sequence of
operations. Each replica applies these operations locally and propagates them to
other replicas. By ensuring that operations commute with each other, operation-
based CRDTs guarantee eventual convergence across replicas.

This approach can also suffer from inflation, as well as state-based approach,
due to the accumulation of operation logs, but it provides efficient scalability
by minimizing the amount of metadata stored at each replica.

Message duplication can pose challenges to maintaining consistency and cor-
rectness in operation-based CRDTs. When replicas receive duplicate messages
containing the same operation, they must ensure that applying the operation
multiple times does not lead to unintended changes or inconsistencies in the
shared data.

Figure 2.2 demonstrates an example of operation-based Counter CRDT. In this
figure, two peers perform operations and propagate them instead of sending
the whole state.

2.2.1.3 Delta State CRDT

Delta State CRDTs represent a variation within the state-based CRDT family
that focuses on minimizing communication overhead by transmitting only
the changes (deltas) made to the replicated data structure. This approach is
particularly beneficial in scenarios where the size of the data structure is large
and transmitting the entire state would be inefficient.
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Figure 2.2: An example of operation-based Counter CRDT.

In Delta State CRDTs, each replica maintains its local copy of the data structure
and tracks the changes made to it over time. Instead of propagating entire states
or individual operations, replicas exchange deltas, which represent the specific
modifications made to the data structure since the last synchronization.

2.2.2 Types of CRDTs

In CRDT design, various data types could be implemented using state-based,
operation-based or delta-state approaches. The most common are Counter, Set
and List CRDTs [10].

2.2.2.1 Counter CRDTs

Counter CRDTs represents a counter that can be incremented or decremented
by individual processes without coordination. In a state-based approach. each
replica maintains a local counter value, and changes are propagated bymerging
the values during synchronization. Operation-based implementations track in-
crements and decrements as individual operations, which are then propagated
and applied to replicas.

2.2.2.2 Set CRDTs

Set CRDTs represents a set of unique elements, supporting addition and removal
operations. In a state-based approach, each replica maintains its local copy
of the set, and changes are merged during synchronization to ensure conver-
gence. Operation-based implementations represent additions and removals as
individual operations, allowing replicas to apply these changes independently
and achieve eventual consistency.
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2.2.2.3 List CRDTs

List CRDTs represents an ordered list of elements, supporting insertion, dele-
tion, and reordering operations. State-based implementations maintain a copy
of the list at each replica, and changes are merged to synchronize replicas.
Operation-based approaches track individual insertions, deletions, and moves
as operations, enabling replicas to independently apply changes and converge
over time.

2.2.3 Applications of CRDTs

CRDTs are being used in diverse applications across various domains, offering
robust solutions for achieving eventual consistency and seamless replication of
data in distributed environments. Some of the key applications where CRDTs
are utilized are presented below:

• Distributed Databases. CRDTs play a crucial role in some distributed
database systems, enabling efficient replication and synchronization of
data across multiple nodes. By leveraging CRDTs, distributed databases
can achieve multi-master replication [9] and support offline operation
[12, 13], ensuring data availability and integrity in diverse and dynamic
environments.

• Collaborative Editing. CRDTs are extensively used to support real-time
collaborative editing of documents or shared content in collaborative
software applications [14, 15]. Whether it’s collaborative document edit-
ing, shared whiteboards, or collaborative code editing, CRDTs enable
multiple users to make concurrent updates without conflicts, facilitating
seamless collaboration and content creation [3].

2.3 Memory Size in CRDTs

One significant challenge faced by CRDT-based systems is the continuous
growth of local memory size as updates are performed on the shared data
model [11]. This issue arises due to the nature of CRDTs, which state updates
are inflationary to ensure eventual consistency across distributed replicas.
While this approach guarantees data integrity and convergence, it also results
in the ever-growth of data state within the local memory of each node in the
system.

This kind of problem in CRDT systems often arises due to the accumulation of
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tombstones. Tombstones are metadata markers used to indicate the deletion
of elements in the data structure [5]. When a user deletes a portion of text, a
tombstone is created to record this deletion. Tombstones are typically retained
indefinitely to ensure that all replicas converge to the same state.

As users continue to edit the document, more tombstones accumulate in the
system. They consume memory resources, even though they represent deleted
elements and do not contribute to the visible content of the document. Over
time, especially in scenarios with frequent edits or long-lived documents, the
memory occupied by tombstones can become significant and lead to memory
ever-growth issues.

The accumulation of tombstones within the local memory of each node poses
several challenges, such as:

• Memory Exhaustion. As updates to the data model accumulate over
time, the size of the local memory grows continuously. This growth can
lead to memory exhaustion, especially in systems with limited memory
resources or high update rates.

• Performance Degradation. The increasing size of local memory can
impact system performance, resulting in longer response times for nu-
merous types of operation. Retrieving, processing and navigating through
large volumes of data may introduce latency and overhead, affecting the
overall responsiveness of the system.

• Scalability Constraints. The accumulation of historical data may impose
scalability constraints on the CRDT-based system, limiting its ability to
support large datasets or accommodate a growing number of concur-
rent users. Scaling the system to handle increasing data volumes while
maintaining performance and reliability becomes a significant challenge.

2.4 Overview of the Wyde Collaborative Editing
System

Wyde is a collaborative editing subsystem integrated into Emacs, designed to
facilitate real-time collaborative editing with the usage of delta-based CRDT.
The key feature of Wyde is a support of selective undo/redo operations with
dynamic and appropriate granularity. This feature faces the previously stated
problem of memory ever-growth, as it requires permanent remain of tomb-
stones, the data that was marked as deleted, and prevents applying of the
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solution that involves tombstone garbage collection.

In this section, an overview of the internal organization of the Wyde system
is provided, which is pivotal for understanding the following description of
interactions with Wyde’s data model. A more detailed description of Wyde’s
architecture and functionalities can be found in the original paper [8].

In Wyde, documents undergo concurrent updates from multiple peers across
different sites. Each peer comprises essential components including a view of
the document, a model representing the document’s structure, a log maintain-
ing the operation history, and several queues for managing incoming opera-
tions.

The view represents the document as a string of characters. Users can insert
or delete substrings at specific positions within the view and undo earlier
operations selected from the log.

Peers concurrently receive two types of operations: local operations generated
by the user and remote operations sent from other peers. Local operations
immediately affect the peer’s view of the document. Local operations and
received remote operations, are stored in queues for later processing. During
synchronization cycles, queued operations are integrated into the model, with
the resulting changes reflected in the view. Integrated operations are being
logged. Throughout the editing session, the operations log is continuously
saved and updated in a JSON file for the purpose of model restoration upon
opening the file.

Unique identifiers play a crucial role in Wyde’s operation tracking. Each peer
is assigned a unique identifier known as the peer identifier pid. Operations
originating from a peer are tagged with an update counter known as the
log counter lc, which is incremented with each integrated local operation.
Additionally, each editing session is assigned a unique session identifier sid,
enabling the unique identification of operations using a tuple, combined of
those properties (sid, pid, lc).

The model in Wyde serves as a representation of editing operations and their
relationships. It is structured as layers of interconnected nodes, each node
encapsulating a set of characters. Conceptually, characters within the model
possess unique identifiers that are fully ordered.

Nodes within the model are organized into layers, with nodes at the lowest
layer representing insertions and containing the inserted characters. Conversely,
nodes at higher layers signify deletions, with each higher-layer node (outer
node) effectively removing characters contained within lower-layer nodes (in-
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ner nodes).

Every node in the model contains two essential identifiers: cid-l denotes the
identifier of the leftmost character within the node, while cid-r represents
the identifier of the rightmost character. Identifiers for characters situated
between the edges of the node are not stored in the model. These identifiers
play an important role, since they determine the place of the node within the
model. The presence of two nodes with the same cid-l or cid-r will provoke a
conflict, so all of the nodes that were added in the model, must remain, which
makes it necessary to keep deleted nodes in the local memory as tombstones.
Additionally, insertion nodes include a string, denoted as str, which contains
the characters inserted by the corresponding operation.

Subsequent operations within the Wyde model may result in the splitting of
existing nodes. Nodes that originate from the same operation share a common
op element, which serves as the descriptor for the operation. This descriptor en-
compasses essential information such as the identifier and type of the operation,
along with sets denoted as P (for parents) and C (for children).

The P set contains references to the descriptors of the operation’s ground
operations, while the C set consists of operations that are built upon the
current operation. A ground operation op-g of a given operation op is one
whose existence relies on the existence of op. This parent-child relationship
between operations establishes dependencies among them.

Additionally, the descriptor includes an undo element that contains a set U of
identifiers for its undo operations. This set may contain multiple identifiers,
reflecting scenarios where multiple peers concurrently undo the same opera-
tion. Furthermore, an undo element may itself possess its own undo element,
especially when the original operation is redone. Consequently, the undo ele-
ments of an operation form a chain, and the operation is effectively undone if
the length of the chain is an odd number.

In the Wyde model, an insertion operation is considered self-visible if it has not
been effectively undone, whereas a deletion operation is self-visible if it has
been effectively undone. An operation is deemed visible if it is self-visible, and
all its ground operations are visible. Similarly, a character within the model is
considered visible if all operations affecting it are visible.

The Wyde model incorporates three types of links among nodes:

• l-r links maintain the left-right character order,

• opl-opr links connect nodes belonging to the same operation,
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Figure 2.3: An example of model updates in Wyde.

• i-o links maintain inner-outer relations among nodes.

The outermost nodes and nodes within the same outer node are interconnected
via l-r links. During synchronization between the view and the model, the view
mirrors the concatenation of all visible characters from the outermost nodes
through the l-r links.

The model utilizes two hashtables, designed to efficiently store information
about nodes and operations within the system, called nodes and ops. These
hashtables are used for fast access to specific entities based on their unique
identifiers. The node’s identifier is composed of a concatenated tuple, combining
node’s cid-l with node’s operation identifier. Upon passing an entity’s unique
identifier, the data structure is returned from the corresponding hashtable. This
architectural design enables Wyde to rapidly access nodes and operations on
demand.

Figure 2.3 shows an example of performing updates to the Wyde model. Rect-
angles with solid border and black text represent visible insertion nodes. A
rectangle with dotted border is a deletion node. It contains an invisible under-
lying insertion node with a light gray text.





3
Partial Persistence
Approach

3.1 Hypothesis and Expectations

The hypothesis for addressing the identified problem resolves around the
offloading of certain portions of the local memory to disk storage. Specifically,
the focus is on relocating nodes linked to deletion operations, as these nodes
often contain significant amounts of data that may no longer be relevant
or actively used. By transferring these less relevant nodes to disk storage,
it is anticipated that the memory consumption of the local system can be
efficiently reduced, thereby mitigating memory exhaustion and enhancing
system performance. This would make the CRDT partially persistent, as nodes
on the disk are planned to stay immutable.

The primary expectation is to achieve a significant reduction in memory storage
utilization, proportional to the amount of memory consumed by the nodes
relocated to disk storage, It is anticipated that the memory savings will be
nearly equivalent to the memory footprint of the nodes removed from the local
memory.

However, in order to be able to access the nodes offloaded to the database, the
creation of special structures for referencing the nodes stored on disk is required.
Although those structures may consume some amount of local memory, it is
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expected to be substantially smaller compared to the removed nodes, with each
pointer potentially replacing dozens or even hundreds of nodes. As a result,
the overall impact on memory consumption is expected to be minimal, with
the benefits of memory optimization outweighing any potential increase in
memory overhead due to pointers creation.

Additionally, expectations include the potential optimization of performance in
terms of navigation across the model. If a chain of multiple nodes is replaced
by a pointer referencing a region of nodes on disk, it is expected to take less
time to navigate from the first node to the last node of the model.

3.2 Architecture of the Partially Persistent CRDT

The architecture of the solution revolves around the concept of offloading mem-
ory to the disk storage for nodes in the upper layers of the model, specifically
targeting nodes that are less likely to be frequently accessed in the future.
Nodes that are linked with deletion operations match this criterion. To main-
tain the integrity of the model, a pointer replaces the deleted node or the
region of deleted nodes, occupying their place in the model. These pointers
are referred to as proxy nodes.

A visual representation of the proposed solution is depicted in Figure 3.1. This
illustration showcases the model’s state both before and after the conversion
of a deletion node and its associated inner nodes into a proxy node. Essential
information for the converted nodes, necessary for their restoration in local
memory, is stored in the database. The proxy node, denoted as P and depicted
as a circle, contains a unique identifier of the offloaded node d, enabling it’s
retrieval from the database on demand.

Proxy nodes serve as placeholders for the deleted nodes, facilitating efficient
retrieval when needed. They also offer a navigation performance enhancement
by allowing the referencing of a sequence of linked nodes through a single
proxy node. Each proxy node maintains information about the leftmost and
rightmost nodes of the deleted region. In cases where the proxy node refers to a
single node, these values are identical. Figure 3.2 demonstrates the conversion
of a region of proxy nodes.

The solution includes the capability to convert any node in the model to a proxy
node. This conversion process involves saving all relevant information about
the node, including its inner nodes and linked operations, to the database.
Subsequently, the node is removed from the local memory.
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Figure 3.1: A visual representation of the node-to-proxy conversion.
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Figure 3.2: A visual representation of the region-to-proxy conversion.

In case of a need for accessing nodes that have been converted to proxy nodes
(for example in case of undo operation or the remote operation that involves
the converted node), the proxy node can be converted back, leading to the
restoration of all previously deleted nodes to the model. This process ensures
that the model remains intact and accessible, even after nodes have been
offloaded to the database.

3.3 Early Development and Exploration

Before beginning the development of the solution, extensive preliminary prepa-
rations were performed. This section provides an overview of the early de-
velopment stages and exploration activities conducted in preparation for the
project.

3.3.1 Learning Emacs Lisp

As a prerequisite for working on the project, a comprehensive understanding
of Emacs Lisp was essential. Emacs Lisp serves as the primary programming
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language for implementing functionalities within the Wyde editor, the target
platform for integrating the Partial Persistence Approach. To acquire profi-
ciency in Emacs Lisp, dedicated efforts were made to study the language’s
syntax, semantics, and best practices. During learning process various knowl-
ege resources, tutorials, and official documentation were utilized to grasp the
fundamentals of Emacs Lisp programming [18, 21].

3.3.2 Studying the Wyde Editor Codebase

Following the acquisition of foundational knowledge in Emacs Lisp, the next
phase involved a thorough examination of the Wyde editor’s codebase. The
Wyde editor serves as the host environment for implementing the solution,
making it necessary to gain a comprehensive understanding of its architecture,
design principles, and implementation details. The study of the Wyde editor
encompassed various aspects, including:

• Analysis of existing data structures and algorithms used for the interac-
tions inside the data model;

• Understanding the mechanisms for managing memory, handling data
synchronization, and ensuring consistency in distributed environments.

During the exploration phase time was allocated to thoroughly understand
the codebase, identifying relevant components, and getting familiar with the
complexities of the existing implementation.

3.4 Development Iterations

The development iterations represent a series of steps taken to address chal-
lenges, refine strategies, and achieve the goals outlined in the project.

These iterations reflect an iterative and incremental approach to software
development, where each phase builds upon the insights gained from the
previous one. Throughout this process, various ideas were explored, tested,
and polished to enhance the functionality and efficiency of the solution.

The following subsections outline each iteration’s objectives, the development
process employed, key findings, and plans for subsequent iterations. Together,
they form a comprehensive narrative of the development process, revealing the
challenges faced, solutions devised, and lessons learned along the way.



22 chapter 3 partial persistence approach

3.4.1 Initial Design Exploration

The initial iteration of development involved exploring a design concept aimed
at significantly reducing local memory consumption by migrating the entire
data model to the database. The objective was to implement a solution where
all nodes in the model would be stored in the database, thus offloading them
from local memory. During this iteration, the focus was on implementing
functionality for saving the entire data model to the database and modifying
nodes in response to changes in the model.

During this iteration, the following steps were taken:

• A set of tools for interaction with database was developed;

• Implemented functionality for saving all nodes in the model to the
database;

• Developed mechanisms for modifying nodes in the database to reflect
changes in the model.

After analysing the results of this iteration, the approach of migrating the entire
data model to the database was considered highly risky due to the extensive
codebase modifications required. Adapting all interactions within the model to
work with the database instead of local memory posed significant challenges
and potential problems. However, the development process resulted in the
creation of a robust set of tools for database interaction, laying the foundation
for future iterations.

Based on the analysis of the results from the initial iteration, a safer approach
was designed to address the encountered challenges. This approach, as de-
scribed in the Section 3.1, focuses on selectively offloading nodes to disk
storage while leveraging proxy nodes for memory optimization.

3.4.2 Proxy Nodes Development

The second iteration focused on the development of proxy nodes functionality.
The primary objectives were to implement the conversion of regular nodes to
proxy nodes and vice versa.

During the development process, the following results were obtained:

• Implemented functionality for converting regular nodes to proxy nodes
by saving regular nodes to the database and creating corresponding
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proxy nodes;

• Developed mechanism for converting proxy nodes back to regular nodes
by loading nodes from the database and inserting them in place of proxy
nodes;

• Integrated proxy nodes into the Wyde model to ensure seamless interac-
tion and compatibility;

• Developed a set of tools for making memory measurements to assess the
impact of proxy nodes on memory usage.

Memory measurements conducted after the development revealed that the
conversion of regular nodes to proxy nodes resulted in a reduction in mem-
ory usage. However, the observed reduction was not as extensive as initially
expected. Further investigation suggested that information about operations
related to nodes could still remain in the local memory, contributing to memory
overhead. As a result, the need to address the storage of operations in local
memory was identified as a priority for the next iteration.

3.4.3 Removal of Operations from Local Memory

The third iteration focused on addressing the issue of memory overhead caused
by operations linked to deleted nodes remaining in local memory. The primary
objective was to attempt to locate and remove all references to these operations,
enabling them to be garbage-collected and freeing up memory.

However, these attempts proved unsuccessful, as the operations continued to
be stored in memory due to the complexity and extensive nature of their
references throughout the codebase.

As a result of this iteration, a further investigation was carried out, involving the
closure and reopening of the file to avoid loading operations linked to nodes
contained in the database. This approach is aimed to prevent unnecessary
loading of operations into local memory, thus reducing memory usage.

3.4.4 Model Restoration Process Modification

The focus of the fourth iteration was on enhancing the model restoration
process to reduce memory consumption of the restored file. The goal was to
avoid loading irrelevant data about nodes and operations linked to proxy nodes
into local memory.
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In the original restoration process, the log file, associated with the file that
is being restored, is read line by line, with each line containing information
about a specific operation. Each read operation is then added to an operations
queue. Once the entire file is read, the operations in the queue are applied
to the model, reconstructing the state of the model at the end of the previous
editing session.

The modified restoration process introduces a check for each operation read
from the log file. If an operation is found to be contained in the database and
has a relation in the table of proxy-node relations, it is skipped from being
added to the operations queue. Instead, the proxy node associated with this
operation is loaded from the database and directly added to the model.

This modification effectively reduced memory consumption during the restora-
tion process by avoiding the loading of unnecessary data into local memory.
That, to some degree, confirmed the suspicion that some offloaded data was
not completely garbage-collected. Additionally, it leads to an increase in the
speed of file restoration, as only relevant data is processed and added to the
model.

The results of this iteration have shown the reduce of memory consumption
of the opened file and demonstrated the increased speed of model restoration.
A more detailed description of the results, including the measurements, is
presented in Chapter 5.
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Implementation
4.1 Database Interaction

4.1.1 Database Schema

The database schema for the solution is structured to manage various aspects
of the data model, including nodes, operations, and proxy nodes. Each table
captures specific information essential for the functionality and integrity of the
system. The database schema can be seen in the Figure 4.1.

Further details regarding the utilization of the database will be presented in
the following sections. It is important to notice that the work on offloading
operations to the database was also performed, although its implementation
details are not included in this thesis as it was not utilized in the present study.
Any operations-related manipulations relevant to this research are considered
as an area for future work.

4.1.2 Database Connectivity and Operations

Emacs Lisp provides support for interaction with SQLite databases through
built-in sqlite.el library. This section describes how it was utilized, covering basic
operations such as connecting to a database and executing SQL queries.

25
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Figure 4.1: Database schema.

4.1.2.1 Establishing Database Connection

To begin working with an SQLite database, the first step is to establish a
connection to it. The wyde-db-connect function serves for this purpose. It
accepts a single argument db-path, denoting the path to the SQLite database
file. The connection establishment process is described below:

1. Upon function invocation, the existence of the specified database file is
being verified.

2. If the file exists, it proceeds to establish a connection to the existing
database using sqlite-open.

3. In the event of a missing database file, the creation of a new database at
the specified path is initiated.

4. Additionally, it applies the schema to the newly created database to
ensure compliance with the data model.

Upon successful execution, wyde-db-connect, demonstrated in Listing 4.1 (code
listings for other implemented functions will not be included in the thesis due
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to their extensive length, which would occupy excessive space on a single page),
yields a database connection object, enabling interaction with the database
withing Emacs Lisp. In order to close the established connection, sqlite-close
function can be called.

Listing 4.1: Function for establishing database connection

(defun wyde−db−connect ( dbpath )
( i f ( f i l e−ex i s t s−p dbpath )

( sql i te−open dbpath )
; ; ELSE
( l e t (( schemapath ( concat wyde−dir " db/

wyde−db−schema . s q l " ) ) )
(when ( f i l e−ex i s t s−p schemapath )

( l e t (( db ( sql i te−open dbpath ) ) )
(with−temp−buffer

( in se r t− f i l e− con ten t s schemapath )
( s q l i t e− t r an s a c t i on db)
( do l i s t ( element ( s p l i t− s t r i n g (

bu f f e r− s t r ing ) " ; " ) )
( setq query ( s t r ing− rep lace " \n " " "

element ) )
(when (not ( equal " " query ) )

( sq l i t e−execute db query ) ) )
( sqlite−commit db) )

db) ) ) ) )

4.1.2.2 Database Interaction Functions

The Emacs Lisp does not provide any built-in ORM tools and is limited to
basic querying of the database, so three database interaction functions have
been developed to facilitate communication between Emacs Lisp and SQLite
database. They encapsulate such common database operations as insertion,
updating and selection.

• wyde-db-insert-row. This function is designed to insert a new row into
a specified table within the database. It constructs and executes an SQL
insert query based on the provided arguments and returns the response,
indicating the success or failure of the insertion operation.

• wyde-db-update-row. This function manages the update of an existing
row within a specified table in the database. It generates and executes
an SQL update query and returns the response, indicating the success or
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failure of the update operation

• wyde-db-select-row. This function enables the retrieval of specific rows
from a designated table within the database. It constructs and executes
an SQL select query and returns the response, consisting of the selected
rows matching the specified criteria.

4.1.3 Saving and Loading Nodes

4.1.3.1 Saving Nodes

The wyde-db-save-node function serves as the primary tool for transferring
nodes from local memory into a database. It operates with two parameters: the
database connection object and the node to be stored. Upon invocation, this
function initiates the saving process by first employing the wyde-db-save-single-
node function to save the contents of node in the database. Subsequently, it
checks if the node contains inner nodes. If such inner nodes exist, the function
recursively applies itself to each inner node, ensuring comprehensive storage
of the node structure regardless of its depth within the tree.

The wyde-db-save-single-node function specializes in the individual saving of
nodes to the database, A detailed description of how the function works is
presented below:

1. Upon invocation, the function initiates the insertion of a row into the
Node table, capturing essential attributes of the node as per the database
schema.

2. It examines the node’s relationships, such as left and right neighbours,
and records these associations in the relevant tables NodeLR and OpLR.

3. Node possesses a reference to an outer node, this relationship is docu-
mented in the NodeOuter table.

4. Inner nodes relationships are being saved to NodeInnerLR table.

Importantly, all database interactions occurwithin an SQL transaction, ensuring
data integrity and providing the capability to abort transactions in case of
failure.
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4.1.3.2 Loading Nodes

The wyde-db-load-node function ensures loading nodes from the database into
local memory, providing the retrieval and reconstruction of nodes along with
their associated relationships.

At first, fundamental information about the node is retrieved from the database
based on the provided node key. If successful, a new node is instantiated in local
memory with the received parameters. Information about node relationships
is fetched from the relevant tables in the database, including NodeLR, OpLR,
NodeOuter, and NodeInnerLR. Subsequently, the appropriate operation from
the model is linked to the node.

Then, the function proceeds to establish relationships with the left and right
neighbours of the node. If optional arguments l or r are provided, their val-
ues are set as neighbours. Alternatively, if database information is available,
neighbouring nodes are loaded from the database using the wyde-db-load-
neighbour-node function and set as neighbours. Neighbour nodes are also
being updated. Similar procedures are followed for establishing relationships
with nodes’ neighbours in terms of operation (opl and opr).

If the outer argument is passed, information about the outer relationship is
fetched from the database. The passed argument is then set as a pointer to
the node’s outer node, along with additional attributes retrieved from the
database.

If information about inner relationships is retrieved from the database, the
function recursively loads inner nodes. Pointers to the leftmost and rightmost
inner nodes are then set accordingly.

If the node does not have pointers to it’s operation-left and operation-right
nodes, it is considered to be an edge node. In that case, it is being set as the
leftmost or rightmost node for the node’s operation.

Finally, the loaded node is added to the model’s hashmap, ensuring its integra-
tion into the local memory structure. The function returns the loaded node as
the result.

4.2 Proxy Nodes

Proxy nodes are structures existing within the model to gain access to nodes
that have been saved to the database. They act as placeholders, maintaining
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the integrity of the model’s node chain. Each proxy node contains multiple
elements:

• Node Key. A unique identifier used for accessing the corresponding node
in the database.

• Neighbour References. Pointers to the right and left neighbour nodes
in the model’s node chain.

• Keys of Leftmost and Rightmost Converted Nodes. Needed for under-
standing where is the beginning and end of the converted region.

4.2.1 Node-To-Proxy Conversion

The conversion of a regular node to a proxy node begins with the saving of the
node to the database.

Once the node is successfully saved, its neighbouring nodes are updated to
reflect the changes. Pointers to the old node are adjusted to point to the newly-
created proxy node, maintaining the integrity of the node chain within the
model.

A new recording is added to the Proxy table in the database, which contains
node keys for the leftmost and rightmost nodes related to the proxy node.
Also, for the node that is being converted, and all of it’s underlying nodes, a
recording in the NodeProxy table in the database is created, where the value
of nid column is a node’s key and the value of proxy_id column is the key of
the leftmost node that is related to the proxy node.

In case when the saved node was the model’s current node, the model’s current
pointer is updated to point to the proxy node.

Finally, the process of cleaning references to the saved node is performed.
This step ensures that any residual references to the old node are removed,
preventing inconsistencies within the model structure.

4.2.2 Proxy-To-Node Conversion

The conversion of proxy nodes to regular nodes involves several steps and
performed with wyde-db-proxy-to-node function.

The conversion process initiates by retrieving the node from the database using
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the identifier specified in the proxy node.

After that, references to the proxy node within the model structure are adjusted
to reference the newly-loaded node or edge nodes in the case of loading a
chain of multiple nodes. This includes updating neighbouring nodes of regular
nodes and nodes in terms of operation, as well as the model’s current reference
if applicable.

By performing these steps during the conversion process, the integrity of the
model structure is preserved, ensuring synchronization between local memory
and the database.

4.2.3 Handling Deletions

4.2.3.1 Understanding the Emacs Lisp Garbage Collector

Emacs Lisp employs a garbage collectormechanism tomanage indirectmemory
allocation and deallocation [23]. It periodically deallocates unreferenced objects
to free up memory space. Objects that are no longer reachable from the root
of the execution environment are considered garbage and are suitable for
collection. Therefore, in order to delete a piece of data from memory in Emacs
Lisp, all references leading to it must be terminated to allow the garbage
collector to reclaim the memory occupied by the object.

4.2.3.2 Identifying and Managing References to Deleted Nodes

Upon code analysis, multiple places were identified that can potentially contain
references to the deleted node within the model structure:

• Model’s Nodes Hashtable. Contains references to all existing nodes in
the model.

• Node Neighbour References. Pointers from the neighbouring nodes to
the deleted node.

• Operation’s Leftmost and Rightmost Node. References to the deleted
node as the leftmost or rightmost node of an operation.

• Node Neighbour References in Terms of Operation. Operation-left
and operation-right pointers from nodes linked to the same operation as
deleted node.
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Figure 4.2: Demonstration of possible references to a node within the model.

Figure 4.2 demonstrates all potential references for the node 𝑎3. The orange-
colored arrows denote references to the node from other components within
the model.

During the process of converting a node to a proxy node, these references are
properly handled to ensure that the deletion process will free the local memory:
references are removed from the model’s hashmap, while references in other
places are being adjusted to point at the proxy node.

4.3 Integration to Wyde

The integration of proxy nodes into the Wyde model posed several challenges,
primarily related to accessing proxy nodes with functions designed for regular
nodes. One notable complication was noticed during the process of traversing
the model, where attempts to access the right neighbour of a node resulted in
errors if the neighbour was a proxy node.

4.3.0.1 Implementing Advising Functions

To resolve these complications, it was initially considered to write custom func-
tions for accessing parameters depending on the object type. However, this
approach was deemed too risky due to potential inconsistencies and complex-
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ities in integrating custom functions with existing codebase. Instead, Emacs
Lisp’s advice mechanism, was leveraged to address this issue.

Emacs Lisp provides a powerful feature called advice, which allows functions
to be advised or modified dynamically at runtime. Advising functions involve
adding another behaviour before, after, or around the execution of the original
function, without modifying its source code[22].

4.3.0.2 Overcoming Limitations of Advising Mechanism

The implemented advising functions were relatively straightforward: they
checked the type of the structure being accessed, and if it was a proxy node,
the appropriate attribute of the proxy node was returned without invoking the
original function, this mechanism is depicted in Figure 4.3. However, it was
later discovered that the advising mechanism did not work as expected for
structure slot accessing functions.

Upon further investigation, it was found that these functions were inlined by
default. Inlining involves replacing a function call with the actual precompiled
code of the function, which improves performance but prevents the function
from being advised. As a result, the advisingmechanismwas unable to intercept
calls to these functions and modify their behaviour.

To overcome this limitation, a :noinline option was added in the structure
declaration. This option prevented the compiler from inlining the structure slot
accessing functions, allowing them to be advised successfully. With this modi-
fication, the advising mechanism could intercept calls to these functions and
apply the necessary modifications, ensuring the integration of proxy nodes into
the Wyde model. It should be mentioned that the purpose of functions inlining
is the execution speed increase and removing it could cause the performance
degradation. However, the observations on the slot accessing functions speed
after adding the :noinline option to the structure declaration did not show any
notable speed decrease.

4.4 Model Restoration Modification

The modified model restoration process represents a reduce of memory con-
sumption over the original process by avoiding the loading of irrelevant data
related to proxy nodes into local memory. The model restoration is the process
of restoring the model to the state that it had by the end of the previous editing
session. It involves reading a log file containing the history of operations applied
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Figure 4.3: A diagram depicting the mechanism of implemented advising functions.
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to the model and applying those operation to a newly-created model.

To implement the modified restoration process, several key changes were made.
First, a new hashtable called proxies is created. This table stores all node-proxy
relations from the database. It contains key-value pairs where the key is a
node key and the value is a proxy node key. This hashtable is populated using
a function called wyde-db-load-proxy-table, which retrieves entries from the
NodeProxy table in the database.

Next, the log file, in JSON format, is read line-by-line, with each line represent-
ing a single operation. These lines are decoded from JSON format to operation
structures. The decoding function wyde-mdl-decode-json was modified to check
if the operation’s node key, constructed with the data from JSON: operation
id and the position of leftmost character affected by operation, is contained in
the proxies hashtable. If so, an empty entry is added to the operations queue
to prevent loading irrelevant operations during queue processing.

Once the log file is read and the queue is filled with operations, the process of
applying these operations to the empty model begins. The original integration
process was modified to handle situations when the operation that is being
applied refers to the neighbour node that was not loaded due to its relation with
a proxy node. In that case, this node is being searched in the proxies table and
then, in case if proxy node is already present in the model, it is being searched
in nodes hashtable. If the proxy node was not found among the model’s nodes,
it is loaded and inserted into the model according to the leftmost character
place of it’s leftmost related node and then set as the neighbour for the node
of operation that is being currently applied to the model.

The result is a restored model with proxy nodes and the absence of irrelevant
information about nodes and operations related to proxy nodes. A schematic
visual representation of the process is depicted in Figure 4.4.

However, it is important to note that the current implementation only supports
restoration of models consisting of insertion, deletion, and proxy nodes. Fur-
ther improvements, especially regarding processing of undo, redo, or grouped
operations in the history log, are areas for future work and enhancement of
the modified file restoration process.
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Figure 4.4: A visual representation of the modified model restoration process.
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Evaluation
5.1 Tests Design

5.1.1 Unit Tests

Unit tests play a crucial role in ensuring a certain degree of correctness of the
implemented functionality throughout the development process. These tests
are written using Emacs Lisp’s built-in testing framework, ERT (Emacs Lisp
Regression Testing), which provides a convenient way to define and execute
test cases within the Emacs environment.

Each unit test case focuses on a specific aspect of the system’s functionality,
covering essential operations such as operations related to saving and loading
nodes from the database, operations for communication to the database and
operations for conversion of regular nodes to proxy nodes and vice versa.
To isolate the tests from external dependencies and ensure reproducibility, a
temporal database is utilized for each test case. This database is created and
initialized before the execution of each test and is deleted upon completion,
ensuring a clean testing environment for each run.

For the implementation of unit tests, the wyde-with-db-test macro is utilized,
demonstrated in Listing 5.1. This macro encapsulates the setup and teardown
procedures for each test, including database initialization and cleanup.
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Listing 5.1: Supplementary macro for setting up test environment

(defmacro wyde−with−db−test ( test−name &res t body )
( dec la re ( indent 1 ) (debug t ) )
‘ ( wyde−with−debug−log test−name n i l

(wyde−with−temp−dir
( l e t ∗ ((name " t e s tdb " )

( d b f i l e ( concat de fau l t−d i rec to ry name " .
s q l i t e " ) )

(db (wyde−db−connect d b f i l e ) ) )
( unwind−protect

(progn ,@body)
( s q l i t e− c l o s e db)
( de l e t e− f i l e d b f i l e ) ) ) ) ) )

Listing 5.2 provides an example of unit test that checks the correctness of the
wyde-db-update-row function by verifying that a row in the Node database table
is successfully updated with the provided data.

Listing 5.2: Unit test example

( e r t−de f t e s t wyde−db−test−update−row ()
(wyde−with−db−test "wyde−db−test−update−row "

( sq l i t e−execute db " INSERT␣INTO␣Node␣ ( nid , ␣ s t r , ␣ len
, ␣ v i s i b l e ) ␣VALUES␣ ( ’(8888 ␣ 1 ␣ 1 ) ’ , ␣ ’ t e s t ’ , ␣NULL , ␣
1 ) " )

(wyde−db−update−row db "Node " ’ ( " nid " " s t r " " len " "
v i s i b l e " ) ’ ( ( 1 1 1 1 8 8) " new_str " 1 n i l ) " nid " "
(8888␣ 1 ␣ 1 ) " )

( l e t (( answer ( car ( s q l i t e− s e l e c t db " SELECT␣nid , ␣
s t r , ␣ len , ␣ v i s i b l e ␣FROM␣Node␣WHERE␣ nid ␣=␣ ’ ( 1 1 1 1 ␣8
␣8) ’ " ) ) ) )

( should ( equal " ( 1 1 1 1 ␣8␣8) " (pop answer ) ) )
( should ( equal " new_str " (pop answer ) ) )
( should ( equal 1 (pop answer ) ) )
( should ( equal n i l (pop answer ) ) ) ) ) )

5.1.2 Performance Tests

Performance tests serve the purpose of evaluating the efficiency and scalability
of the implemented solution.

For assessing memory consumption metrics, the garbage-collect function is
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employed. This built-in Emacs Lisp function initiates the garbage collection
process, reclaiming memory occupied by objects that are no longer in use. This
function returns data regarding memory usage. During the process of analysis,
the primary focus is on the number of used vector slots, as in the context of the
implemented solution, both nodes and operations in the model are represented
as structures, utilizing vector slots for storing their fields.

To measure the execution time of functions, the built-in benchmark tool is
utilized. It facilitates the precise measurement of the execution time of spec-
ified functions. Specifically, the benchmark-run-compiled function is used to
accurately measure the execution time of functions under test conditions.

Currently, two types of performance tests are employed to gather essential
metrics related to the system’s performance under varying conditions.

The first performance test, wyde-db-prf-test-plain-chain, operates by receiving
two parameters: the total number of nodes in the model and the number of
nodes slated for deletion. This test involves creating a newmodel and executing
a sequence of operations equivalent to the total number of nodes specified.
Subsequently, a specified number of nodes are deleted from the model and
the resulting deletion node is converted into the proxy node. Throughout this
process, memory consumption metrics are measured before and after the proxy
conversion, alongside the duration of the conversion process. The code for this
test is demonstrated in Listing 5.3.

Listing 5.3: Conversion to proxy performance test

(defun wyde−db−prf−test−plain−chain (db nodes−number
del−nodes−number)

( l e t ((mdl (wyde−generate−prf−test−mdl nodes−number) )
( chars−to−del (∗ del−nodes−number 10) ) )

(wyde−mdl−do−local−op mdl ‘ ( : de l 1 , chars−to−del ) )
(wyde−peer−save (wyde−mdl−peer mdl) )
(with−wyde−profile−trace

( print "BENCHMARK␣RESULTS : " )
( print (benchmark−run−compiled (

wyde−db−node−to−proxy db mdl (wyde−node−r (
wyde−mdl−bom mdl) ) )

( garbage−co l lec t ) ) ) ) )
t )

The second performance test, wyde-db-prf-test-walk-through-mdl, similarly con-
structs a model and populates it with nodes (see Listing 5.4). Multiple deletion
operations are then executed, resulting in the creation of several deletion nodes.
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Following this, the time required to navigate from the first node to the last in
the model is measured. Subsequently, all deletion nodes are converted into a
single proxy node, and the same time measurement is taken, This test provides
insights into the efficiency of navigation through the model before and after
the proxy conversion process.

Listing 5.4: Model navigation performance test

(defun wyde−db−prf−test−walk−through−mdl (db
nodes−number del−nodes−number)

( l e t ((mdl (wyde−generate−prf−test−mdl nodes−number) )
( chars−to−del 10) )

(wyde−add−advices )
(dotimes ( _ del−nodes−number)

(wyde−mdl−do−local−op mdl ‘ ( : de l 1 , chars−to−del )
) )

( print "BENCHMARK␣RESULT␣OF␣ INITIAL ␣MODEL: " )
( print (benchmark−run−compiled (

wyde−walk−through−mdl mdl) ) )

(wyde−db−region−to−proxy db mdl (wyde−node−r (
wyde−mdl−bom mdl) )

( print "BENCHMARK␣RESULT␣AFTER␣REGION␣CONVERSION: " )
( print (benchmark−run−compiled (

wyde−walk−through−mdl mdl) ) )
(wyde−remove−advices )
t ) )

5.2 Experiments and Results

In this section, the description and outcomes of the experiments are presented,
providing insights into the performance and effectiveness of the proposed
solution. The specification of the machine used for conducting all tests is as
follows:

• Processor: AMD Ryzen 7 5800H, 3.20 GHz, 8 CPU cores

• RAM: 8 GB

• Disk: BC711 NVMe SK hynix 512GB
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• OS: EndeavourOS

5.2.1 Memory Consumption after Conversion to Proxy
Nodes

The first experiment aimed to assess the memory consumption before and after
converting regular nodes. The experiment followed a structured process, firstly,
an initial memory measurement of an empty model without any additional
nodes was performed. Then, the memory consumption of the same model
filled with multiple nodes was measured. The next step involved a conversion
of a portion of the nodes in the model to a single proxy node. The memory
consumption was measured again for the modified model.

The percentage of freed memory was calculated using the formula:

𝑀𝑓 =
𝑀𝑎 −𝑀𝑝

𝑀𝑎 −𝑀𝑏

where:

• 𝑀𝑓 represents the percentage of freed memory,

• 𝑀𝑎 is the memory consumption after adding nodes to the model,

• 𝑀𝑝 is the memory consumption after conversion of regular nodes to
proxy nodes,

• 𝑀𝑏 is the memory consumption before adding nodes to the model.

Multiple measurements were conducted, varying the percentage of nodes in
the model converted to proxy nodes, ranging from 25% to 100%, and the size
of the models, ranging from 12 nodes to 1000 nodes. The resulting chart can
be found in the Figure 5.1.

The results of the experiment revealed that the percentage of freed memory
was approximately half of the percentage of converted nodes. This proportion
was observed across different sizes of models. The percentage of freed memory
was lower for smaller models and increased as the number of nodes in the
model increased.
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Figure 5.1: Percentage of freed memory according to the fraction of deleted nodes.

5.2.2 Memory Consumption Of Restored Model

The second experiment focused on comparing the memory consumption of a
restored file using two different restoration processes: the original restoration
process and the modified restoration process.

The memory consumption of an opened file was measured after applying the
original restoration process without any modifications. This process typically
loads all operations related to the file into local memory. After that, the same file
was opened using a modified restoration process, which excludes operations
stored in the database and referred to by proxy nodes from being loaded into
local memory.

For this experiment, models were created consisting of a single deletion node,
each with a varying number of underlying insertion nodes, ranging from 500 to
1500 nodes. After model creation, the deletion node was converted to a proxy
node, ensuring that all necessary information for the modified restoration
process was stored in the database.

The memory consumption was measured using the htop utility [26], which
provides real-time monitoring of system resources, including memory usage
by individual processes.

The results, depicted in Figure 5.2, indicated that the memory consumption of
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Figure 5.2: Memory consumption of restored model.

the file restored by the regular restoration process increased with the number
of nodes in the model. In contrast, the file restored by the modified restoration
process maintained a fixed size, indicating that unnecessary operations and
nodes referred to by the proxy node were not loaded into local memory.

This experiment demonstrated the advantage of the modified restoration pro-
cess in reducing memory consumption by avoiding the loading of irrelevant
data into local memory.

5.2.3 Nodes Conversion Speed

The third experiment aimed to assess the speed of converting regular nodes to
proxy nodes. For this experiment, a deletion node containing a varying number
of underlying insertion nodes, ranging from 50 to 1000 nodes, was selected,
and the time taken to convert it to a proxy node was measured. The time taken
for the conversion operation was measured using the tools described in section
5.1.2.

The results are visualized in Figure 5.3. They revealed a non-linear relationship
between the number of nodes converted during the conversion operation and
the total elapsed time of the conversion process.

Furthermore, the experiment demonstrated that the conversion time varied
based on the amount of text being deleted. Conversion of a small number



44 chapter 5 evaluation

0

2

4

6

8

10

12

14

16

50 100 200 250 375 500 750 1000

Ti
m

e 
(s

)

Number of converted nodes

Nodes Conversion Speed

Figure 5.3: Nodes conversion speed.

of nodes, representing a small amount of text, such as a couple of sentences,
took a relatively short amount of time, approximately 189 ms for 50 nodes. In
contrast, conversion of a large number of nodes, representing pages of plain
text, required a significantly longer time, approximately 13.7 seconds for 1000
nodes.

5.2.4 Model Restoration Speed

The fourth experiment aimed to compare the speed of model restoration be-
tween the original restoration process and the modified restoration process.
Multiple measurements were conducted using different files, with file variety
and structure consistent with those used in the second experiment, which
measured the memory consumption of restored models.

The results, depicted in Figure 5.4, indicated that the modified restoration
process showed faster restoration speed compared to the original restoration
process.

Both processes showed an increase in restoration time as the model size
increased. However, the elapsed time of the modified restoration process in-
creased at a slower rate compared to the original restoration process. This
behavior can be attributed to the difference in how each restoration process
operates: during the original restoration process, each operation is processed,
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Figure 5.4: Restoration time comparison.

leading to longer restoration times, while the modified restoration only pro-
cesses operations that are not associated with any proxy node.

Additionally, the time consumed by the garbage collector during the restoration
processes was measured. The visual representation of the results can be seen
in Figure 5.5. It revealed that a smaller proportion of total elapsed time was
consumed by the garbage collector during the modified restoration process
compared to the original one. This observation is depicted in a chart represent-
ing the percentage of garbage collection time from the total elapsed time of
the process.

5.2.5 Model Navigation Speed

The final experiment aimed to measure the increase in the model’s navigation
speed after converting a fraction of nodes into a single proxy node. Navigation
through the model involves traversing from the beginning node to the ending
node by applying the wyde-node-r function to access neighbouring nodes until
reaching the ending node.

The experimental procedure involved several steps. Initially, a model was
configured, consisting of multiple deletion nodes ranging from 12 to 1000
nodes, with each deletion node containing a single underlying insertion node.
Subsequently, the navigation speed of the model was measured before any
modifications were made. Following this, a fraction of nodes forming a linked
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Figure 5.5: Comparison of garbage collection part of total restoration time.

list, ranging from 25% to 100% of nodes in the model, was converted into a
single proxy node. Finally, the navigation speed of the modified model was
measured.

The percentage increase in navigation speed was calculated using the for-
mula:

𝐼 =
𝑆𝑏 − 𝑆𝑎

𝑆𝑏

where:

• 𝐼 represents the percentage increase in speed,

• 𝑆𝑏 is the navigation speed of the model before modifications,

• 𝑆𝑎 is the navigation speed of the model after conversion operation.

The findings illustrated in Figure 5.6 revealed that replacing multiple nodes
with a single proxy node led to an increase in navigation speed, consistent with
expectations.

The degree of improvement increased with a higher fraction of deletion nodes
converted to a proxy node, it shows that in scenarios where multiple deletion
operations are performed in the same text region, the conversion operation
would enhance program performance for operations involving model naviga-
tion.
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5.3 Analysis

The experimental results provide valuable insights into the performance and
effectiveness of the implemented solution.

The experiments demonstrate a notable reduction in memory consumption
achieved by converting regular nodes to proxy nodes. This optimization allows
for more efficient utilization of system resources, particularly when dealing
with large-scale collaborative editing scenarios. However, there is potential for
further improvements of the conversion process, in terms of current implemen-
tation, to achieve even higher memory reduction by removing operations data
from the local memory along with the related nodes.

The modified file restoration process exhibits superior performance compared
to the original restoration process. By avoiding the loading of irrelevant opera-
tions associated with proxy nodes, the modified process enhances the speed of
file restoration operation and reduces the memory consumption of the restored
file.

Converting multiple nodes into a single proxy node leads to a significant in-
crease in navigation speed through the model. This improvement is particularly
beneficial for operations involving model traversal.

The one notable concern is the performance degradation for the conversion of a
large number of nodes. The time required for this operation grows exponentially,
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so addressing these performance limitations through optimization techniques
is crucial for enhancing the effectiveness of the proposed solution.



6
Discussion
6.1 Practical Scenarios

The proposed solution has potential applications in various real-world scenarios,
particularly those involving resource-constrained environments.

In situations where users need to open large files on devices with limited
memory capacity, traditional editors may struggle to handle the entire file
in memory, leading to sluggish performance or even crashes. By offloading
less relevant data from local memory to disk storage, the proposed solution
can enable efficient editing of large files without overwhelming the system’s
memory resources.

Another potential application is the ability to open multiple files in parallel
on machines with small memory size. Reducing the local memory footprint
for each document would expand the capacity for working with multiple files
concurrently.

The solution holds potential for broader application beyond collaborative edit-
ing systems, extending to any data structure stored in local memory that
encounters scenarios of soft deletion. Soft deletion typically involves mark-
ing data as deleted without physically removing it, keeping it accessible for
potential retrieval or historic reference.

49
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6.2 Potential Benefits and Limitations

The solution offers several potential benefits. Firstly, it effectively reduces mem-
ory usage, enabling more efficient utilization of system resources, especially
on machines with limited memory capacity.

Additionally, the introduction of proxy nodes in themodel architecture enhances
performance in terms of navigation through the model due to the replacement
of multiple nodes with a single element.

However, the proposed approach may present a potential limitation when
applied to opening files with a small portion of proxy nodes. In scenarios where
the file contains only a small number of proxy nodes, the time required for
establishing a database connection and executing queries to retrieve data from
the database could outweigh the time saved by the optimization algorithm. As
a result, the overall performance for opening small-sized files may be negatively
affected, highlighting a trade-off betweenmemory usage reduce and processing
efficiency.

Another potential limitation of the approach relates to the performance degra-
dation observed during the conversion of a large number of regular nodes to a
single proxy node. The experiments results demonstrated high time consump-
tion for the conversion of a big amount of nodes. Future research efforts should
focus on optimizing the conversion process to mitigate the performance impact
associated with processing a significant volume of nodes.

The drawback of the implemented solution relates to the suboptimal optimiza-
tion of memory consumption. Despite offloading node data to disk storage,
operations linked to deleted nodes remain in local memory. This inefficiency
reduces the rate of memory savings achieved by the solution and requires
further refinement to address memory management challenges.

6.3 Acquired Knowledge

Throughout the working on this master project, significant knowledge and
expertise were acquired across various domains, enriching both technical skills
and research methodologies. This journey has been marked by valuable lessons
learned, challenges encountered, and strategies developed for effective problem-
solving and decision-making.

The project provided a deep dive into collaborative editing systems, particu-
larly focusing on the implementation and optimization of CRDT-based solu-
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tions.

Engaging in the iterative development process underscored the importance of
software engineering practices such as code refactoring, version control, and
testing methodologies. Applying these practices ensured the robustness and
maintainability of the developed solution.

Various challenges were presented during development process, including
addressing memory overhead issues and balancing trade-offs between different
design choices. Leveraging critical thinking, collaboration with my supervisor
and a willingness to experiment with new approaches were essential strategies
for overcoming these challenges.

6.4 Future Work

While the current solution represents a step forward in addressing memory
management challenges in CRDT-based collaborative editing systems, there
exist several promising directions for further research, development and im-
provement.

One potential area for improvement is to extend support for undo and redo
operations for the operations that result in the creation of proxy nodes. This
enhancement would provide users with greater flexibility and control over their
editing history, enabling seamless navigation and manipulation of document
revisions.

Another potential improvement involves enhancing the processing of remote
operations received from other peers. Specifically, instead of directly applying
deletion operations to the local model, a more optimized approach could
involve inserting proxy nodes in place of these deletions. This strategy would
be particularly beneficial when handling deletion operations that target nodes
not previously present in the local model. By inserting proxy nodes directly,
the system could avoid unnecessary loading of less relevant information into
local memory, effectively offloading it to the database.

Additionally, future work could focus on the deletion of operations that refer to
deleted nodes from the local memory. This optimization would further decrease
memory consumption, enhancing the overall efficiency of the solution.





7
Conclusion
The development and implementation of the Partial Persistence approach for
CRDT data model have yielded considerable reduction in memory consumption.
Through a series of iterative development cycles, key features such as the proxy
conversion and the modification of the file restoration process have been
successfully integrated into the system. This approach offers notable benefits,
including reduced memory consumption, improved performance for model
navigation, and faster model restoration.

The proposed solution represents a step forward in P2P collaborative editing
systems, offering a new approach for managing large-scale documents with
efficiency and effectiveness. With continued development and refinement, it
has the potential to become a valuable approach for integration into other
collaborative text editors that do not rely on a single server, thereby enhancing
productivity and usability for users.

While the proposed solution offers memory optimization benefits, further
optimization efforts are needed to refine memory management and address
the challenges of potential performance degradation described in Section
6.2.
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