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Railway Cold Chain Freight Demand Forecasting with Graph Neural 

Networks: A Novel GraphARMA-GRU Model 

 

ABSTRACT 

Accurate demand forecasting is imperative for efficient railway cold chain freight 

operation planning, resource optimization, and market responsiveness. Given the unique 

spatiotemporal characteristics and diversity of cold chain demands, the mismatch between 

capacity and demand has become a bottleneck, constraining the development of railway cold 

chain freight transportation. To tackle this challenge, we propose a graph neural network model 

with ARMA graph convolutional layer (ARMA Filter) and gated recurrent units (GRU), 

namely the GraphARMA-GRU Model, for adaptive and efficient short-term forecasting of 

railway cold chain freight demand. Our model can effectively capture temporal features, 

external factors, and the intricate spatiotemporal relationships influencing railway cold chain 

demands. The ARMA Filter is employed to grasp the spatial connectivity within the railway 

network, and GRU layers are utilized for refining temporal features. Furthermore, it also 

integrates external factors and refined temporal features in two graph convolutional layers to 

better capture multimodal characteristics. The proposed model is validated with real data of 

railway cold chain freight in China, whose results show an 18% improvement in prediction 

accuracy compared to the average performance of baseline models. In addition, interpretability 

methods are introduced to enhance the model’s transparency and promote future development 

for railway cold chain freight transportation, which may offer deep insights and support critical 

decisions for a smooth transition from road-based to railway-based cold chain freight 

transportation. 

Keywords: Cold Chain Logistics; Graph Neural Networks; Freight Demand Forecasting 
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1. Introduction 

Railway cold chain, characterized by its eco-friendliness and large capacity to transport 

fresh and temperature-sensitive goods, is gaining increasing prominence in China's evolving 

transportation sector and logistics industry. However, integrating cold chain freight 

transportation with passenger and general cargo flows on the same railway network may 

encounter intricate operational challenges. Thus, the optimal balance between efficient railway 

network utilization and the satisfaction of diverse demands for cold chain freight transportation 

is of crucial importance. In this regard, accurate forecasting of cold chain freight demands 

becomes imperative for planning efficient railway freight operations, optimizing resource 

allocation, and responsively adapting to market fluctuations (Jiang et al., 2014; Li et al., 2022; 

Marchetti and Wanke, 2020). In contrast to passenger transportation, freight transportation 

lacks autonomy. It heavily relies on preplanning and arrangements (Boysen et al., 2011), 

including the organization of car flow, freight train formation plan, and the utilization of empty 

cars (Barbour et al., 2018). This organizational dependence also applies to the operation of 

railway cold chain. The absence of accurate short-term freight demand predictions may lead to 

imbalances in railway freight supply, resulting in excessive resource wastage and increased 

costs or insufficient supply, causing cargo congestion and inadequate service (Milenkovic et 

al., 2023). Ultimately, this impacts freight transportation efficiency and customer satisfaction. 

Moreover, considerable variations exist in the transport characteristics, transport needs, 

and required infrastructure across different types of cargo, i.e., facilities, equipment, and 

personnel. This is particularly evident in railway cold chain freight transportation, where the 

stringent requirements to maintain a low and constant temperature for cold chain cargo 

dramatically complicate and increase variability in the deployment of facilities, equipment, and 

personnel. The pronounced volatility in cold chain freight demands further amplifies the 

negative effects of inaccurate demand forecasting. Additionally, in comparison to road-based 

cold chain transportation, railway cold chain freight transportation not only offers higher 

efficiency and economic benefits but also helps significantly improve environmental 
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performance (Li and Zhang, 2020), which positions it for broader prospects for development 

(Li et al., 2022). Due to these reasons, the accurate forecasting of cold chain freight demands 

has become an urgent need for railway transportation companies, decision-makers, and relevant 

stakeholders, which can help significantly enhance operational efficiency and railway network 

utilization, elevate the level of customer service, and further promote green and sustainable 

development. 

Currently, the research on railway freight demand forecasting is relatively limited (Tang 

et al., 2022). Moreover, the existing models predominantly focus on the forecasting of railway 

freight demands at the macro level (Li et al., 2020), where the spatiotemporal characteristics of 

different cargo types cannot be adequately represented. In addition, the graph structural features 

of railway networks are not incorporated in these models. Influenced by various factors, e.g., 

macroeconomic conditions, supply capacity, geographical location, and network characteristics 

(Feng et al., 2018), the demand for railway cold chain cargo exhibits complex nonlinear 

characteristics and a certain degree of randomness. Furthermore, traditional time series models 

used in railway freight demand forecasting exhibit significant shortcomings when predicting 

frequently fluctuating demand, and handling high-dimensional predictive variables remains 

challenging (C. Liu et al., 2023). This complexity necessitates a more robust and sophisticated 

approach to accurately forecast demand. 

Thus, to fill the literature gap, we propose a graph neural network model with ARMA 

graph convolutional layer (ARMA Filter) and gated recurrent units (GRU), namely the 

GraphARMA-GRU model, for short-term cold chain freight demand forecasting. The 

motivation for adopting the GraphARMA-GRU model stems from its ability to effectively 

capture the intricate structural information of the railway network, which is a significant 

limitation in existing models. By combining ARMA filters and GRU, the model can handle 

both spatial and temporal dependencies in the data, addressing the complex, nonlinear, and 

random characteristics of cold chain freight demands. Additionally, this model overcomes the 

challenges of traditional time series models, which struggle with frequently fluctuating demand 

and high-dimensional variables.To our knowledge, this paper is the first research that employs 
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a graph neural network model in the field of freight demand forecasting. The effectiveness and 

applicability of the proposed model are validated with empirical railway freight data in China, 

and the analysis results indicate that this model exhibits significant advantages in railway 

freight demand forecasting. In addition, an interpretable method based on graph neural 

networks is introduced to explain the working principles of our original model. Through this 

interpretability analysis, a better understanding of the model's forecasting results can be 

obtained, based on which the recommendations for railway cold chain logistics operations and 

deep insights for freight organizations are provided. 

The organization of the paper is as follows. Section 2 reviews the relevant literature and 

identifies the literature gaps. Section 3 introduces the model development and its interpretive 

methods. Section 4 presents the empirical data used, validates the model, and analyzes and 

discusses the results. Section 5 concludes the study. 

2. Literature review 

Based on the topic of our research, the relevant studies are reviewed in two domains. The 

first domain pertains to the development of forecasting models for railway freight demand, 

while the other one focuses on the application of graph neural network methods in 

transportation. Finally, the literature gaps are explicitly identified. 

2.1 Railway Freight Demand Forecasting Methods 

Railway freight has consistently been a focal point in transportation research. Existing 

studies have delved deeply into railway freight operations, typically employing operations 

research methods to optimize railway freight systems (Zhen et al., 2023). In this trend, Zhen et 

al. (2024) modeled and optimized railway transport volume and capacity allocation under 

uncertainty, while Li et al. (2024) optimized the railway cold chain freight service network. 

Some research indicates that accurate railway freight demand forecasting is the data foundation 

for establishing optimization models (Feng et al., 2018; Li et al., 2024). Railway freight demand 

forecasting has increasingly become a vital domain in the study of complex transportation 
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systems (Yang and Yu, 2015). In recent years, numerous studies have been done to explore 

various methodologies for railway freight demand forecasting (Ghofrani et al., 2018).  

These approaches can be primarily categorized into two classes, namely, traditional time-

series analysis methods (Babcock et al., 1999) and regression analysis techniques (Tang et al., 

2022). Within the realm of traditional methodologies, Babcock et al. (1999) employed an 

ARIMA model to capture the time-dependent nature of freight demand, enabling the prediction 

of quarterly loading and unloading quantities in U.S. railway grain transportation. He and 

Huang (2018) improved the grey Verhulst model through Fourier series correction and the 

particle swarm optimization algorithm for the annual forecasting of China's rail freight demand. 

 The second class is characterized as Artificial Intelligence (AI) based forecasting models, 

with a primary focus on using and developing neural network models, i.e., GRU (Tan and 

Zhang, 2020), LSTM (Cheng et al., 2020), and GRNN(Guo et al., 2019; Zhao et al., 2023). 

These studies employ either qualitative or quantitative analyses to identify the influencing 

factors of freight demand and then incorporate them into neural network models to achieve 

short-term or medium-term railway freight demand forecasting. For instance, Tan et al. (2020) 

applied the GRU model in conjunction with date, weather, and the daily average freight rate to 

predict short-term freight demands for railway cargo tickets. Cheng et al.(2020) utilized LSTM 

to forecast railway freight volume by taking into account several factors, including secondary 

industry value added, Gross Domestic Product (GDP), railway operation mileage, and highway 

freight volume. The distinctive gating mechanisms of GRU and LSTM models have been 

proven to be effective in capturing time-dependent patterns in the data and enhancing the 

accuracy of railway freight demand forecasting. Furthermore, the impact of hyperparameters 

on model performance and the improved accuracy through parameter adjustments have been 

investigated in several studies. For example, Wang et al. (2019) employed genetic algorithms 

to enhance the model parameters of the generalized neural network, which yielded improved 

prediction accuracy and accelerated convergence speed. 
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2.2 Graph Neural Network Research in Transportation 

Over the years, an increasing trend has been witnessed for algorithm development, 

evolving from statistical methods to deep learning approaches and, recently to graph neural 

networks (GNNs) in the field of transportation (Jiang and Luo, 2022). The GNN is a deep 

learning model for graph-structured data that can effectively capture the complex relationships 

and local structures among nodes and adapt to the complex and variable data features and the 

rules of spatio-temporal changes. Due to the innate graph structure of transportation networks, 

GNNs have established a substantial research foundation that can be extensively used in 

different fields of transportation research, e.g., traffic flow (Guo et al., 2022), speed (Qiu et al., 

2023), travel time prediction (Shen et al., 2022), as well as travel demand forecasting (Lin et 

al., 2018), and traffic signal control (Yang et al., 2021). Notably, traffic volume prediction is 

becoming a prominent subfield within the domain of traffic state prediction. Due to the fact that 

our research shares inherent similarities with traffic volume prediction, a comprehensive review 

of model development in this domain is provided.  

Brimos et al. (2023) comparatively verified the effectiveness of using GNNs and Open 

Government Data (OGD) for real-time traffic flow prediction. Several studies investigate the 

use of feature engineering to enhance the predictive performance of GNNs. Sun et al. (2022). 

designed a three-dimensional mesh spatial structure based on GNN to characterize the dynamic 

graph and achieve effective prediction of dynamic traffic flow, which could help support 

emergency transportation planning. Lee and Rhee (2022) introduced the DDP-GCN, which 

took into account distance, direction, and positional relationship to predict urban traffic speeds. 

Li et al. (2021) constructed a graph convolutional network (GCN) by integrating data from 

multiple sensors with different time series. Li and Zhu (2021) proposed a spatio-temporal fusion 

graph neural network (STFGNN) that combines graph modules and gated convolution modules 

to learn hidden spatio-temporal dependencies and to process long sequences. 

 Furthermore, Guo et al. (2022) introduced a novel self-attention mechanism and proposed 

an Attention-based Spatial-Temporal Graph Neural Network (ASTGNN) for long-term traffic 
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flow prediction. Liu et al. (2023) employed a structure similar to the attention mechanism and 

proposed a novel Spatial-Temporal Gated Hybrid Transformer Network (STGHTN). This 

method incorporates the gating mechanism and the global features of the Transformer to further 

enhance the effectiveness of traffic flow prediction. Besides, research focuses have also been 

given to combining other algorithms in the performance improvement of GNNs in traffic flow 

prediction. Jiang et al. (2022) proposed Bi-GRCN by combining GCN with Bi-GRU and 

modeled the spatial and temporal dependence of traffic flow to achieve accurate prediction of 

traffic flow. Xiong et al. (2020) designed Fusion Line Graph Convolutional Networks (FL-

GCNs) by combining GNNs and Kalman filtering to predict dynamic origin-destination (OD) 

demand matrices of traffic flows considering spatial correlation, congestion, and time 

dependence. Zhang et al. (2020) investigated an RGC-LSTM model by combining the graph 

convolution operator with the residual LSTM structure to predict the traffic speed and the traffic 

flow of highways. 

2.3 Literature summary 

Based on the comprehensive review of the relevant literature, three gaps are identified as 

follows: 

1. In the context of forecasting models, the majority of research has predominantly focused 

on passenger transport, with relatively less attention given to freight transportation. One reason 

for this lies in the inherent challenges and difficulties related to the acquisition of short-term 

railway freight data (Ghofrani et al., 2018). Furthermore, long-term freight volume data often 

suffers from insufficient sample sizes, which results in premature convergence of AI models 

and becomes practically infeasible. 

2. Different types of commodities may exhibit significant spatiotemporal variations, say, 

distinct distribution and transportation patterns in time and space. However, the existing freight 

demand forecasting models are relatively generalized and are thus incapable of accounting for 

the characteristics and requirements of various cargo types. Such approaches cannot offer 

adequate information support for real-world logistics management. Thus, there is a pressing 
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need for the development of new freight demand forecasting models to better meet the unique 

requirements of different types of commodities. 

3. There is no denying the fact that AI has the potential to fundamentally change every 

aspect of railway operations, e.g., capacity management, lifecycle costs, maintenance, and 

passenger flow forecasting, which may ultimately help to reduce errors and improve efficiency 

in the railway sector (Tang et al., 2022). Railways have distinct network characteristics. 

However, these graph-based structural features have not been considered by existing railway 

freight demand forecasting models. Furthermore, to our knowledge, there is also a lack of 

research that applies GNNs in railway freight demand forecasting. 

Thus, this paper aims to fill these gaps and contribute to the literature by developing a 

novel GraphARMA-GRU Model that can better integrate the characteristics of railway cold 

chain freight transportation into demand forecasting. 

3. METHODS 

3.1 Introduction of the GraphARMA-GRU Model 

3.1.1 Background 

For the classic GNN models, there are typically several key definitions: 
N NA   

represents the adjacency matrix of a graph with N nodes, and 
N FX   represents the features 

of the nodes on the graph. Let 
N ND   be the diagonal matrix, the symmetric normalized 

Laplacian of the graph can be represented as 

1 1

2 2
NL I D AD

− −

= − . The spectral decomposition 

of L  is shown in Eq. (1), and the graph neural network modifies the expression of features X  

through the graph filters, the operation corresponding to the spectral domain can be expressed 

as applying the frequency response function ( )g  to the eigenvalues, as shown in Eq. (2). 

 1

N
T

n n n

n

L   
=

=
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 1

( )
N

T

m n n

n

X g X  
=

=
   

Where n  and n  are the eigenvalues and eigenvectors of the Laplacian matrix, is the 

features transformed by the graph filter, and the desired frequency response function ( )g  can be 

approximated by a polynomial of order K , see Eq. (3). 

 0

( )
K

k

POLY k

k

g w 
=

=
   

To express that polynomial filters are localized in the spatial domain, we first recall that 

the k-th power of any diagonalizable matrix, such as the Laplacian, can be computed by taking 

the power of its eigenvalues, i.e., 1[ , ]k k k T

ML diag   = . It follows the filtering operation in 

Eq. (4). 

 

2

0 1 2

0

( )
K

K k

k k

k

X w I w L w L w L X w L X
=

= + + + + =
   

A particular first-order polynomial filter has been proposed by Kipf and Welling (2017) 

for semi-supervised node classification. The model is called the Graph Convolutional Network 

(GCN), and the filtering operation is given in Eq. (5). 

 
ˆ( )X AXW=    

Where Â  is the modified adjacency, specifically the calculation is 

1 1

2 2Â D AD
− −

= , with 

NA A I= + . By this approach, the features of the node itself can be preserved during the filtering 

process, and ( )   is a non-linear activation function (e.g. a tanh of sigmoid function). GCN is 

the most popular graph neural network and has been widely used in many fields.  

A critical limitation of a single-layer GCN is that it only aggregates first-order 

neighborhood information, which restricts its ability to effectively capture larger graph 

structures. Even though stacking multiple GCN layers may help tackle this limitation, it may 

lead to excessive smoothing of node features when dealing with sparse data in predictions. This 

characteristic can significantly impact the quality of railway cold chain freight demand 
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forecasting, as it inherently exhibits sparsity. To achieve effective adaptation, node features 

with significant differences are necessary, as excessive smoothing may result in decreased 

predictive performance or uniformly consistent output predictions. 

3.1.2 Model components 

In the previous Section, we presented the foundation of GNNs and pointed out the 

inadequacy of the GCN models for addressing the problem in this paper. To tackle the issue of 

sparse target set prediction, we introduce a novel graph neural network model called 

GraphARMA-GRU. 

A. ARMA graph neural network layer 
The ARMA graph neural network layer is inspired by the ARMA model's principles that 

enable the graph neural network layer to consider time series information between features and 

targets during computation. It can capture more comprehensive global structures and longer-

term temporal dependencies (Bianchi et al., 2021). The spatial representation of the ARMA 

graph neural network layer is depicted in Eq. (6). 

 

1
1

1 0

( ) ( )
K K

k k

k k

k k

X I q L p L X
−

−

= =

= + 
   

Where K  represents the maximum neighborhood order aggregated by this layer. 

Rearranging Eq. (6) yields 

1

1 0

( ) ( )
K K

k k

k k

k k

I q L X p L X
−

= =

+ = 
, The left-hand of the equation 

corresponds to the MA term, while the right-hand corresponds to the AR term, kq and kp  are 

coefficients. The introduction of the AR term enhances the model's robustness against noise 

since it relies on the multi-step propagation of node features. This is crucial for effectively 

capturing long-term dependencies and global structures. 

This approach increases computational complexity as evident in Eq. (6), which requires 

matrix inversion. In this study, we use an alternative method to approximate the ARMA filter 

using recursion. 

Eq. (6) can be rewritten as a recursive fitting function 
1t tX MX X + = + ,where 
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( 1)    and  are fitting coefficients, and 
max min

1
( )

2
M I L = − −

, the convergence 

properties of this recursive approximation can be analyzed and expressed as shown in Eq. (7). 

 

0

0

lim[( ) ( ) ]
t

t t

t
i

X M X M X  
→

=

= + 
   

Clearly, the eigenvectors of M  and L  are the same, but the eigenvalues of M become 

max min( ) / 2m m   = − −  The first term in Eq. (7) goes to zero when t → , and the second 

term is a series that converges to / (1 )m − . We can write the approximated form of the 

ARMA filter as ( ) / (1 )m mg   = − . By performing the Laplacian decomposition on the 

matrix L , we can obtain the spectral analytical form of the ARMA filter, as shown in Eq. (8). 

 1 11

K M
Tk

n n

k m k m

X X


 
 = =

=
−


   

Where n  represents the eigenvectors of the Laplacian matrix, It can be observed that the 

approximated form and Eq. (6) are mathematically equivalent. We can express one layer of the 

ARMA graph neural network in the form of Eq. (9). 

 
1 ( )t tX LX W XV+ = +    

Where W  and V  are trainable parameters, X is the feature of nodes, and L  is the modified 

Laplacian matrix. We denote the ARMA graph neural network layer of the K-th layer as 

ARMAK, and its output can be represented by Eq. (10), where 
TX denotes the output of the last 

layer in Eq. (9). 

 1

1 K
T

k

k

X X
K =

= 
   

B. Gated Recurrent Unit (GRU) 

Similar to data in other transportation fields, railway cold chain freight demand data 

exhibits temporal dependencies. Although the ARMA graph neural network layer shares some 

similarities with recurrent neural networks, when dealing with time series data, the absence of 

gating mechanisms may lead to the model learning excessively irrelevant temporal features, 
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thus compromising its performance. To address this, we introduce the Gated Recurrent Unit 

(GRU) to further process the temporal data within the features. 

 1( [ , ])t z t tz W h x −=     

 1( [ , ])t r t tr W h x −=     

 1tanh( [ , ])t t t th W r h x−=      

 1(1 )t t t t th z h z h−= −  +     

Eq. (11-14) describe the process of the GRU model, where tz  represents the update gate, 

and tr  represents the reset gate. The activation function ( )   of both gate units is the sigmoid 

function, which allows the model to control information forgetting and updating through the 

gate mechanisms. 1th − represents the hidden state passed from the previous time step, tx  

represents the node input passed from the current time step. The reset gate controls how much 

information from the previous hidden state can be input into the candidate hidden state th . The 

update gate, on the other hand, controls the proportion of th  and 1th −  in the final output th . 

Through this approach, GRU can retain useful temporal information as input for the ARMA 

graph neural network layer. 

3.2 Overall Architecture of the GraphARMA-GRU Model 

The overall architecture of our proposed model is depicted in Figure 1. Firstly, the 

temporal features undergo multiple GRU units to output the final hidden layer. Secondly, we 

incorporate the external features of nodes and the temporal feature learned by GRU using two 

ARMA graph neural network (ARMAGNN) layers. As mentioned earlier, these ARMAGNN 

layers leverage adjacency information between nodes to enhance the capturing of relationships 

and patterns in graph data. Lastly, we concatenate the outputs of the two ARMAGNN layers 

and input them into the fully connected layer, reshaping the output to match the railway cold 

chain freight demand of nodes at time 1t + . During training, the model's output is compared 
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with the actual data using a loss function to calculate the error. The model can then update its 

parameters through the error propagation mechanism. 

 

Figure 1. Overview of GraphARMA-GRU Model 

The model's input consists of the time series data of cold chain freight demand for all 

nodes over the past   time steps: 
1 2, , nx x x   , where 

1x  represents
1 1, ,t tx x− , and this pattern 

continues for the remaining nodes. Additionally, the input includes the external features for all 

nodes, denoted as and the adjacency matrix A  which represents the relationships 

between nodes. The model's output is the forecasted cold chain freight demand for all nodes in 

the next time step: 
1 2

1 1 1, , n

t t tx x x+ + + . 

3.3 Model Interpretability 

Emphasizing interpretability in deep learning applications cannot be overstated. It 

contributes to improving the transparency of models. To provide explanations for our model, 

we introduce the GNNExplainer method (Ying et al., 2019); and this method can address the 

following issues:  

1) For a specific node, what are the important factors affecting its  railway cold chain 

freight demand? 2) For a specific node, which nodes' features have a significant impact on it? 

3) For a specific node, which edges play an important role in influencing that node? 
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When provided with a trained GNN model and a prediction, GNNExplainer generates an 

explanation by identifying a subgraph i cG G  of the computation graph and a subset of node 

features
    { | }i j j iX x v G= 

 that significantly influence the model's prediction. The 

explanation highlights the key factors contributing to the GNN's decision-making process. 

Which utilizes mutual information to quantify this importance and can be expressed using the 

following optimization framework: 

 
max ( ,( , )) ( ) ( , )

i

i i i i
G

MI O G X H O H O G G X X= − = =
   

By applying the method proposed by Ying et al. (2019) to solve Eq. (15), we can obtain 

the explanation subgraph iG  and explanatory feature subset iX , which will be used to interpret 

our GraphARMA-GRU Model. Figure 2. illustrates a simple example. The green nodes and 

edges represent elements that have a significant influence on the output, while the features 

marked with a cross on the right-hand indicate irrelevant features that have little impact on the 

output. 

 

Figure 2. Example of an interpretable subgraph 

4. Experiments 

4.1 Data description 

In this study, we utilized a real dataset from China Railway Special Cargo Logistics Co., 

Ltd., covering 43,497 records of railway cold chain freight volume from September 1, 2018, to 

September 30, 2019. The dataset includes 14 categories of goods, such as frozen meat, fruits, 
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vegetables, and pharmaceuticals, with comprehensive coverage. To handle the data in a 

reasonable way, considering the periodic patterns in railway cold chain freight volume, we 

adopted cities as spatial objects (a total of 173 cities). We aggregated the data on a weekly 

basis. By this approach, we could reduce the noise and dimensionality of the time series data, 

which enhances the model’s practicality. 

Additionally, we obtained the railway adjacency relationships among the mentioned 173 

cities (as shown in Figure 3), as required input for the model, by processing the topological 

relationships using the actual railway network map from OpenStreetMap 

(https://www.openstreetmap.org) in ArcGIS. 

 

Figure 3. Railway adjacency topology graph 

We visualized the weekly freight volumes of all 173 cities in a three-dimensional bar chart, 

as shown in Figure 4. It is evident that railway cold chain freight volume exhibits higher sparsity 

and volatility. To address this challenge, our model incorporates time series features and selects 

relevant external features tailored to the cold chain context. We collected indicators from 

national and city statistical yearbooks that have an impact on railway cold chain freight volume 

for these 173 cities, which is a common practice in existing studies(Barbour et al., 2018; He 

and Huang, 2018; Wang et al., 2019; Yang and Yu, 2015; Zhao et al., 2023). Furthermore, we 

https://www.openstreetmap.org/


15 
 

gathered Point of Interest (POI) indicators related to cold chain freight transportation from the 

perspective of supply and demand, including Fresh Food Market POI, Food & Beverage POI, 

Shopping POI, and Fruit Market POI. Data for all 173 cities was collected using the Amap API 

(https://lbs.amap.com). The time series features encompass the freight volumes of railway cold 

chain cargo for the initial time steps in these 173 cities. In our experiments, multiple time steps 

were considered to determine the most appropriate model configuration. 

 

Figure 4. Overview of Railway Cold Chain Freight Volume 

4.2 Model hyperparameter configuration 

Optimizing model hyperparameters is crucial in building and training machine learning 

models (Peng et al., 2023). Hyperparameters are configurations set before the training process 

begins, directly influencing the model's learning capacity and generalization performance. 

These parameters cannot be learned from the data and must be carefully chosen based on 

domain knowledge, experimentation requirements, and data characteristics. 

The hyperparameters of GNN models mainly include learning rate, weight decay, hidden 

size, dropout rate, and batch size. We adopted a method similar to Gridsearch to optimize the 

model's hyperparameters, evaluating the predictive performance of model variants using the R2 

https://lbs.amap.com/
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score on the test set. This metric is widely used for assessing regression models, especially 

when comparing different model variants. It should be noted that exhaustively exploring all 

possible combinations of hyperparameters is impractical and unnecessary. Instead, we 

narrowed down the hyperparameter search to the most promising combinations. We trained 

over 300 model variants and visualized this process in Figure 5. The hidden size parameter has 

values of [16, 32, 64, 128, 256], but we selected the top three groups with higher R2 values for 

simplification in the plot. The highest point (red dot) in Figure 5 represents the optimal 

hyperparameter values for our model. Therefore, the hyperparameters of our model are: 

learning rate of 0.005, weight decay of 0.008, and Hidden size of 128. The training set was 80% 

of the data, and the testing set was 20%. The model optimizer selected was Adam, which is a 

commonly used optimization algorithm. 

 

Figure 5. Hyperparameters adjustment process 

Once the hyperparameters are determined, the model can be trained, and the various 

metrics during the training process are shown in Figure 6. It can be observed that as the number 

of epochs increases, both the RMSE (Root Mean Squared Error) of the training and testing sets 

gradually decrease. From the R2 scores, show that both the training and testing sets exhibit the 

same upward trend, which indicates that the model's parameters are appropriately set, and the 

model successfully converges without overfitting. 
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Figure 6. R2 and RMSE variation curve 

4.3 Performance of the Model 

We compare the performance of our proposed GraphARMA-GRU model with the 

following baseline models: 

(1) Graph Convolutional Network (GCN): GCN is one of graph neural networks' most 

widely used models. We use all features, including both temporal and external features, as input 

for the GCN model. The adjacency matrix input is consistent with the GraphARMA-GRU 

model. For more detailed information about the GCN model, please refer to Section 3.1.1. 

(2) Gated Recurrent Unit (GRU): GRU is a constituent of the GraphARMA-GRU model. 

We use only the temporal features as input for the GRU model. For more detailed information 

about the GRU model, please refer to Section 3.1.2 B. 

(3) Multilayer Perceptron (MLP): MLP is a standard baseline model in neural networks. 

We use temporal and external features as input for the MLP model. 

(4) Random Forest (RF): RF is a classic machine learning model widely used in 

transportation. The input features for the RF model are consistent with the MLP model. 

(5) Gradient Boosting Regression Tree (GBRT): GBRT is an ensemble learning model 

used for regression tasks. The input features for the GBRT model are consistent with the MLP 

model. 

(6) ARIMA is a traditional time series model. We model each city individually, using the 

complete time series data for each city as input, and split the data into training and testing sets 
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in a 8:2 ratio. 

We conduct comprehensive experiments to evaluate the performance of these baseline 

models and our proposed GraphARMA-GRU model. The comparison results are shown in 

Table 1. 

Table 1. The prediction results of the GraphARMA-GRU model and other baseline models 

Model 
GraphARMA-

GRU 
GCN GRU MLP RF GBRT 

Time step = 9 

RMS

E 
0.0536 0.1437 0.0639 0.0821 0.0705 0.0682 

MAE 0.0213 0.0781 0.0334 0.0453 0.0411 0.0365 

R2 0.8670 0.6521 0.7993 0.7143 0.7203 0.7417 

Time step = 6 

RMS

E 
0.0552 0.1483 0.0658 0.0844 0.0726 0.0702 

MAE 0.025 0.0804 0.0344 0.0466 0.0423 0.0376 

R2 0.8286 0.6003 0.7725 0.7013 0.7072 0.7169 

Time step = 3 

RMS

E 
0.0649 0.1616 0.0663 0.0923 0.0793 0.0767 

MAE 0.0312 0.0878 0.0327 0.0509 0.0462 0.041 

R2 0.7786 0.6336 0.7825 0.694 0.6998 0.7206 

We evaluated the models' forecasting performance for the future one-time step's cold chain 

freight demand at different time steps. It can be observed that our proposed model outperformed 

other models across several time steps, confirming the effectiveness of our proposed railway 

cold chain freight demand forecasting model. The following is an analysis of Table 1 from 

different perspectives: 

From the perspective of time steps, as the input time step increases, it implies that the 

overall feature quantity for each model also increases, leading to improved forecasting 

performance for all models. This indicates a strong temporal pattern in railway cold chain 

freight demand. Additionally, at each time step, the two best-performing models are 

GraphARMA-GRU and GRU. This is because these two models handle time series data 

differently from the other models. The mutual relationships between time sequence features are 

considered in these models, while the other models treat time series features and external 

features as independent and equivalent features, which limits their ability to capture temporal 

relationships effectively.  

From the perspective of spatial relationships, only GraphARMA-GRU and GCN models 
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consider the railway adjacency relationships between different cities. The performance of the 

GraphARMA-GRU model is better than the GRU model, which only considers time features. 

For the input with a time step of 9, the R2 of GraphARMA-GRU is 4.67% higher than that of 

GRU. This is not surprising, as the railway adjacency relationships are indeed important factors 

influencing railway cold chain freight demand. However, it is noteworthy that the performance 

of the GCN model, which also considers spatial relationships, is surprisingly poor. This could 

be due to two reasons. First, as mentioned in Section 4.1.1, the GCN model faces the issue of 

excessive smoothing. Second, although GCN also takes time series feature data as input, it 

treats data from different time steps as independent features, making it challenging to capture 

time series patterns and thus reducing its predictive capability. Additionally, the ARIMA model 

results were excluded from Table 1 because each ARIMA model was tailored to individual 

cities with distinct parameters, rendering it impractical to standardize the time steps with the 

aforementioned baseline models. Despite our efforts to configure appropriate (p, d, q) 

parameters for each ARIMA model based on our Augmented Dickey–Fuller (ADF) tests, the 

model's performance was substantially poor, with R² values almost universally negative. This 

indicates that the ARIMA model's explanatory power for the data is exceedingly low, even 

inferior to simple mean predictions. The mean RMSE and MAE were 0.3421 and 0.2472, 

respectively, which are several times higher than those of the worst-performing model in Table 

1. This outcome is not unexpected, as the railway cold chain freight volume data demonstrate 

significant temporal non-stationarity. 

Examining the robustness of a model is equally crucial, especially in predictive modeling. 

Robustness refers to the stability and resilience of the model to noise, perturbations, or 

variations in the input data. In real-world applications, uncertainties and noise are inevitable, 

leading to changes and disturbances in the input data, affecting the model's predictive outcomes. 

To assess the model's robustness, we introduced Gaussian perturbations with a mean of 0 and 

standard deviations of 0.05, 0.1, and 0.15 to the normalized model inputs (standard 

deviations=0.17). Table 2 presents the observed model's predictive performance variations 

under these perturbations. 
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Table 2. Robustness analysis of GraphARMA-GRU 

Gaussian Perturbation 
GraphARMA-GRU 

RMSE MAE R2 

Std=0.05 0.054 0.0264 0.8531 

Std=0.1 0.06 0.0321 0.8263 

Std=0.15 0.0614 0.0347 0.8164 

As observed, with Gaussian noise(std=0.05), the predictive performance remains stable 

with minimal degradation. This implies that the model has good robustness to minor noise 

variations, which is highly beneficial for real-world datasets that often contain minor noise. For 

higher noise levels (std=0.1 and 0.15), there is a slight increase in RMSE and MAE and a 

decrease is observed in R2 by 4.93% and 6.19%, respectively. This might imply that even with 

some degree of noise, the GraphARMA-GRU model can still explain the variability in the data 

effectively. This observation indicates that our model demonstrates a certain level of 

robustness.  

We selected and presented the prediction results of cold chain freight demand for 173 

cities in a specific time frame(week=14) from the test set. Additionally, we included the 

prediction results with added noise in the graph, as shown in Figure 7. Due to the data's sparsity 

and volatility, plotting too many time frames on a single graph may lead to visual clutter, 

affecting practical interpretation. Therefore, to ensure a high level of clarity and coherence in 

the results, the data from all time frames in the test set were not included in this particular graph. 

From Figure 7, it can be observed that the predictive curves of GraphARMA-GRU generally 

align well with the actual values. However, the predictive performance at a few extreme values 

is not as good as expected. This behavior might be attributed to the sparsity and complexity of 

the data. Dealing with extreme values can challenge for the model, mainly when the data 

exhibits substantial variations or non-linear relationships. Despite the slight limitations in 

predicting extreme values, the GraphARMA-GRU model can still accurately captures the 

overall trends in freight demand for most cases. Furthermore, the model exhibits robustness 

when confronted with noise, indicating its resilience in handling typical prediction tasks. 
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Figrue 7. The visualization results for prediction and robustness analysis 

We also conducted a comparative analysis of the model's performance across different 

forecasting terms, as illustrated in Table 3. Overall, the differences between the two are not 

substantial. The results indicate an enhancement in the model's predictive capability for mid-

term forecasts, as evidenced by higher R² values compared to short-term forecasts. However, 

the RMSE and MAE are slightly higher, suggesting a diminished capacity of the model to 

capture subtle changes. Furthermore, mid-term forecasts exhibit less sensitivity to variations in 

the time step relative to short-term forecasts. In summary, the GraphARMA-GRU model 

demonstrates considerable robustness in handling predictions across different granularities. 

Table 3. Performance of GraphARMA-GRU on different forecast terms 

Model 
GraphARMA-GRU 

(weekly) 
GraphARMA-GRU (monthly) 

Time step = 9 

RMSE 0.0536 0.0548 

MAE 0.0213 0.0332 

R2 0.8670 0.8647 

Time step = 6 

RMSE 0.0552 0.0573 

MAE 0.025 0.0347 

R2 0.8286 0.8589 

Time step = 3 

RMSE 0.0649 0.0601 

MAE 0.0312 0.0351 

R2 0.7786 0.8375 

4.4 Interpretability of the Model 

In Section 2.4, we discussed that GNNExplainer could provides explanations for GNNs 

on a per-node basis. In contrast to traditional machine learning models, where samples are 

assumed to be independently and identically distributed, and predictions are made for the entire 
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dataset, GNNs consider the interconnectedness between nodes, where node features can 

mutually influence each other.  

Consequently, GNNExplainer's explanations are node-centric. By generating explanatory 

subgraphs for each node, GNNExplainer enables a deeper understanding of how the GNNs 

make predictions based on the underlying graph structure and how the features of each node 

and their relationships with neighboring nodes contribute to the prediction outcomes. For the 

specific task in this study, the node-centric explanations offer more granular insights, aligning 

closely with the reality of each city's uniqueness. The explanations consider the individuality 

of each node (city) and utilize the node's features and its neighbors' influence to make 

predictions. This approach allows the model to perform personalized analysis of the influencing 

factors for different cities rather than treating all cities as identical samples. By relying on node-

centric explanations, we gain a better understanding of how the GNNs predict the cold chain 

freight demand for different cities and can further comprehend the significance and contribution 

of each city in the prediction process. 

Given the large size of our dataset with 173 cities, providing individual explanations for 

each city is impractical. Therefore, to enhance the model’s interpretability and facilitate 

meaningful analysis, two important cities from the northern and southern regions of China, 

namely Beijing and Hangzhou, are chosen for further analysis of interpretability. The feature 

importance of these cities can be found in Table 4. 

Table 4. Feature Importance 

Features 
Feature Importance(%) 

Beijing Hangzhou 

Time Series Feature 25.94 24.76 

Population 11.99 11.06 

Land Area 7.78 7.68 

GDP 7.76 6.68 

Fresh Food Market POI 11.14 11.24 

Food & Beverage POI 4.06 4.18 

Shopping POI 5.44 5.17 

Fruit Market POI 7.74 8.63 

Number of Enterprises 3.95 3.6 

Total Retail Sales of Consumer Goods 3.90 3.58 

Road Freight Volume 5.21 6.31 
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Waterway Freight Volume 1.6 5.81 

Civil Aviation Cargo Volume 3.49 1.30 

In the railway cold chain freight demand forecasting for Beijing and Hangzhou, the impact 

of time series features is the most significant, accounting for approximately 25.94% and 

24.76%, respectively. This underscores the crucial role of historical time series data in demand 

forecasting, prompting industry practitioners to refine data collection and analytical 

frameworks, focusing on historical trends to mitigate uncertainties and streamline operational 

planning. As a result, the railway system can achieve higher efficiency through proactive 

resource allocation, minimizing underutilization or overcapacity issues during peak and off-

peak periods. Population, land area, and GDP features are also important factors, accounting 

for around 12% to 7%. Furthermore, fresh food markets, and fruit market distribution levels 

also have considerable importance. These indicators, varying across different levels of the cold 

chain service supply chain, significantly influence railway cold chain freight demand, 

particularly from the perspective of supply and demand relationships. Integrating such 

macroeconomic elements into forecasting models is imperative as it arms policymakers and 

logistics strategists with a comprehensive analytical toolkit. This enriched perspective enables 

them to formulate well-informed decisions on infrastructural enhancements or expansions, 

thereby aligning investments with actual market needs and fostering a more responsive and 

efficient cold chain ecosystem. 

An interesting observation is the significant difference in the importance of waterway 

freight volume between Beijing and Hangzhou, which are 1.6% and 5.81%, respectively. This 

is a realistic situation, and the reasons can be explained by the differences related to 

geographical locations and waterway transportation conditions. Beijing, as an inland city, has 

a much lower amount of waterway freight volume, resulting in the low importance of this 

feature. In contrast, Hangzhou benefits significantly from several waterway transportation 

routes, such as the Qiantang River and the Hangzhou-Ningbo Canal. The competition between 

waterway transportation and railway transportation has an impact on freight demand 

forecasting, and this relationship can be identified and reflected in the model's results. The 
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difference in importance of civil aviation cargo volume is also worth noting; in comparison to 

Huangzhou, this indicator has a 2.68 times greater impact in Beijing. Similarly, this difference 

in importance can also be well explained. Beijing, being the capital of China and with two large 

international airports, has a much higher volume of air cargo transportation compared to 

Hangzhou. As mentioned earlier, this is due to the model being node-based, where the same 

feature's impact on different cities varies. Traditional machine learning models can, however, 

not achieve this, as they overlook the diversity of samples. 

The model's interpretability also includes the weights of edges within the subgraph. The 

interpretable subgraphs for these two cities are visualized. For better understanding and 

visualization, we abstracted the topological structures onto maps, as shown in Figures 8 and 9. 

The interpretable subgraphs depict how the predicted values of the target nodes are generated 

during the model's forecasting process. From another perspective, they describe how the cold 

chain freight demand of the target city is influenced by other cities within the graph structure. 

The color of edges in the interpretable subgraphs represents the strength of their interactions, 

where darker-colored lines indicate stronger connections and lighter-colored lines indicate 

weaker connections. 
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Figure 8. Explanatory Subgraph for Beijing City 

It can be observed that Beijing, Jiexiu, Baoding, and Chifeng exhibit strong attraction for 

cold chain cargo from neighboring cities, and the distribution of freight shows an apparent 

agglomeration effect with these cities as central hubs. This phenomenon reflects the 

aggregation and grouping activities in the long-distance transportation of cold chain cargo, 

showcasing their geographical significance. For instance, Chifeng plays a pivotal role as a hub 

for cold chain freight transportation between the northeastern provinces of China and Beijing. 

Meanwhile, Datong and Jiexiu jointly handle freight flows from the western regions, mainly 

originating from Inner Mongolia, Gansu, and Shaanxi. The impact from the western regions on 

Beijing is more significant than that from the eastern regions, indicating the spatial imbalance 

in the distribution of supply and demand for cold chain cargo. This suggests that corresponding 

transportation organization plans for different types of cargo should be formulated. 

Additionally, the economic activities in the Beijing-Tianjin-Hebei urban cluster are also 

reflected in this network. Baoding and Zhangjiakou, as two important pillars of Hebei's 

economic development, form the backbone of the regional transportation network between 

Beijing and Tianjin. The radiating effect of cold chain transportation services on the 

surrounding areas is built upon this framework. 

Furthermore, it is also noteworthy that physical adjacency on the basic routes does not 

necessarily lead to direct connectivity for transportation services. Goods still need to be 

consolidated in intermediate cities before reaching their destination (or even taking detours), as 

seen in the case of Tianjin and Baoding in the graph. While this may be a result of maximizing 

the utilization of railway network capacity, shippers and transportation authorities should take 

this behavior into account during the shipment pooling process at the origin to achieve 

maximum transportation efficiency. 
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Figure 9. Explanatory Subgraph for Hangzhou City 

Similar to Beijing, the explanatory subgraph of Hangzhou also exhibits a radiating 

network structure, with Hangzhou, Nanjing, and Jinhua aggregating the cold chain freight 

demand from surrounding cities. Nanjing primarily gathers freight flows from Jiangsu and 

Anhui provinces. The remaining cities concentrate on freight flows from various coastal cities 

in the eastern region. 

Edges connecting Jinhua, Shaoxing, Nanjing, and Hangzhou have darker colors, with 

these three edges accounting for 45% of the entire explanatory subgraph. Considering the 

geographical proximity, Shaoxing and Jinhua have strong freight transportation connections 

with Hangzhou due to their location. The high-weighted edges between Hangzhou and Nanjing 

reflect the economic ties of the Yangtze River Delta urban cluster, which is one of the most 

economically dynamic and prosperous urban clusters in China. These cities are closely linked 

geographically and economically, forming a highly developed economic region. As two 

important major cities in the Yangtze River Delta urban cluster, their frequent economic 

activities are well-reflected in transportation, showcasing the derivativeness of railway 

transportation. This highlights the impact of the geographical location of specific cities and the 

changes in socio-economic indicators on freight demand, which needs to be focused on in future 
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demand forecasting and freight planning. 

Another observation is that the freight flow in Hangzhou seems to exhibit a longitudinal 

belt-like distribution, which differs from Beijing's horizontal distribution. This reflects that 

Hangzhou has relatively weaker connections with its western provinces in the cold chain-

related industries and underscores the spatial imbalance in supply and demand relationships.  

An important aspect is that our model's input data only includes each city's cold chain 

freight volume rather than intercity OD freight volume. During the training process, our model 

can adaptively adjust the information flow between nodes, allowing for a characterization of 

the impact of other cities on the target city. This is an exciting approach that provides valuable 

insights. 

In the explanatory subgraph, adjacent edges typically have higher weights, indicating the 

importance of considering the transportation demand and supply chain between these cities in 

freight planning. Additionally, the high connectivity and frequent interaction between cities 

enhance the sensitivity of the cold chain market. Therefore, relevant authorities should 

prioritize these routes when organizing transportation activities. 

At the same time, it is equally important to focus on some significant non-adjacent edges, 

as they reveal indirect connections between cities and trends in freight movement. When 

preparing freight plans, it is necessary to consider these different types of transportation routes 

and carefully arrange the transportation paths and transfer points for goods. Furthermore, the 

influence of city clusters must be taken into account. Economically developed regions like the 

Beijing-Tianjin-Hebei and Yangtze River Delta areas have formed close geographical and 

economic ties, which promote logistics development and the flow of goods. In freight planning, 

considering the effects of city clusters is crucial for reallocating regional transportation 

resources and fulfilling the demands of economic and social development. 

In summary, through explanatory analysis, the predictive and influence patterns of railway 

cold chain freight demand can be better understood, which may further help optimize resource 

allocation and transportation efficiency and enhance the operational performance of the freight 

railway network. Our explanatory approach can make the model's forecasting result more 
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interpretable, which helps provide specific recommendations and effective solutions for cold 

chain freight railway transportation organization and logistics order allocation. From a practical 

standpoint, the model's ability to uncover hidden relationships and the influence of non-adjacent 

cities guides policymakers in identifying critical corridors for investment and infrastructure 

development. It facilitates the anticipation of potential bottlenecks, enabling proactive measures 

to avoid disruptions in the cold chain supply. Moreover, the model's insights encourage 

collaboration among cities and regions, fostering a coordinated approach to logistics planning 

that considers the dynamics of city clusters. This cooperation can lead to shared logistics 

facilities, synchronized transportation schedules, and optimized freight flows, collectively 

enhancing the resilience and sustainability of the cold chain network. In essence, the 

interpretability of the model not only enhances our theoretical comprehension of cold chain 

freight dynamics but also translates into practical strategies. These strategies can drive 

operational efficiency, economic growth, and environmental sustainability in the railway cold 

chain sector. By offering actionable intelligence, the model equips stakeholders with the tools 

to make informed decisions that directly impact economic performance and public interest. 

5. Conclusion and discussion 

In this study, we propose a GraphARMA-GRU model for demand forecasting of railway 

cold chain freight transportation, which simultaneously takes into account network structure, 

time features, and external characteristics. Through empirical validation with real data in China, 

the effectiveness and applicability of the model in tackling the predictive challenges posed by 

sparse data are illustrated. In literature, most existing research combines GCN layers with 

established neural network layers to create new models. However, this study, on the other hand, 

integrates ARMA graph neural network layers with GRU layers and demonstrates their 

efficacy. On the application level, most models for freight demand forecasting have been 

developed based on machine learning algorithms, but the use of neural network models has not 

been extensively investigated. In this regard, our paper provides the first research that uses 

GNN models for railway cold chain freight demand forecasting, and our experimental results 
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show the suitability and effectiveness of this method. Furthermore, the incorporation of 

interpretability methods enhances the transparency of the model's forecasting process, which 

may push forward the frontier of using GNNs for transportation research. Through 

interpretability analysis, deep insights, managerial implications, and practical 

recommendations can be obtained for better decision support in the planning of future railway 

cold chain freight transportation. 

We believe the model proposed in this study is not limited to the current scenario. It is 

applies equally to transportation networks with distinct network structures, such as road, water, 

and air transport. Future research endeavors could explore the applicability of the 

GraphARMA-GRU model in multi-modal transportation networks, considering integration 

with road, water, and air transport. Dynamic adaptation methods could be investigated to ensure 

the model remains relevant and accurate amid evolving transportation networks or changing 

characteristics of goods. Additionally, the analysis of interpretable subgraphs contributes to a 

deeper understanding of potential issues in the cold chain freight transportation process, 

including but not limited to problems related to empty containers and cars. By providing 

explanations at the node level, it becomes possible to analyze the direction and intensity of 

freight flow specifically, offering more concrete and substantiated decision support for cold 

chain freight transportation. This detailed analysis aids in formulating effective management 

strategies, improving resource utilization efficiency, reducing waste, and optimizing the overall 

operation of the cold chain freight transportation network.  
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