
Faculty of Science and Technology
Department of Physics and Technology

An Investigation of Turbulence and Intermittency in the High-Latitude
Ionosphere: A Multi Case Study

Sondre Tovås
FYS-3931 Master’s thesis in Space Physics 30sp June 2024

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2024 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Contents
List of Figures iii

List of Tables ix
Abstract . x

1 Introduction 1

2 Theory 5
2.1 High Latitude Ionosphere and Plasma Structuring 5
2.2 Structure Function . 6
2.3 Empirical Flatness . 9
2.4 Probability Density Function 10

3 Data Acquisition 11

4 Methods 19
4.1 Structure Function . 19
4.2 Empirical Flatness . 22
4.3 Probability Density Function 23

5 Results 25
5.1 Structure Function . 26

5.1.1 Structure Function and Slope 26
5.1.2 Slope Distribution 30
5.1.3 Area of Structure Function 33

5.2 Empirical Flatness . 36
5.2.1 Empirical Flatness and Area Distribution 36
5.2.2 Area of Empirical Flatness 39

5.3 Probability Density Function 42
5.3.1 Small Increment . 43
5.3.2 Middle Increment 44
5.3.3 Large Increment . 45

6 Discussion 47

i

ii contents

6.1 Structure Function . 48
6.1.1 Slopes . 48
6.1.2 Area . 49

6.2 Empirical Flatness . 50
6.3 Probability Density Function 54

7 Conclusion 55
7.1 Future Work . 56

8 Appendix 59

Bibliography 61
8.1 Table of Days Used . 64
8.2 Power Spectral Density . 65
8.3 Slopes for Structure Functions at Very Small Scales 66
8.4 AE Index During Storm Event 11th May 2024 66
8.5 Code . 67

8.5.1 Calculating Storing and Displaying Data 67
8.5.2 Calculating Slopes and Area 86
8.5.3 Loading Data From File 100
8.5.4 Detecting Polar (Sub)Region 101
8.5.5 Data Processing . 105
8.5.6 Functions . 118
8.5.7 Plotting Basic Figures 120
8.5.8 Choosing Instance 124

List of Figures
2.1 Structure function of the entire polar region during high geo-

magnetic activity (blue figure) and low geomagnetic activity
(orange figure) 31st and 30th December 2015, respectively.
Power law is fitted to each figure (dashed lines). 8

2.2 Corresponding electron density in the polar region in (a) a
period of high geomagnetic activity and (b) low geomagnetic
activity. 8

2.3 Empirical Flatness of the entire polar region during high geo-
magnetic activity (blue figure) and low geomagnetic activity
(orange figure) 31st and 30th December 2015, respectively.
The dashed line represents 𝐹 (𝜏) = 3. 9

2.4 PDF of the entire polar region during high geomagnetic ac-
tivity for three time lags. 𝜏 = 1.0𝑠 (dotted blue), 𝜏 = 10.0𝑠
(dotted orange) and 𝜏 = 100.0𝑠 (dotted green). A Gaussian
(solid black) is fitted to the figure. 10

3.1 Figure 3.1a) shows high geomagnetic activity measured 4th
November 2014, with the most active period being from ap-
proximately 06:00 to 18:00. Figure 3.1b) shows low geomag-
netic activity measured 3rd November 2014 [WDC, b]. . . . 13

3.2 The purple line represents the trajectory of the satellite dur-
ing the high activity day 4th November 2014 while measuring
the polar region. The grey and black lines are the trajectories
for each pass through the polar region of the satellite dur-
ing the low activity day. The black line is the closest of these
passes to the high activity day. 14

3.3 Measured data from Swarm satellite A during 4th Novem-
ber 2014. Data shown from 06:00 UTC to 16:00 UTC during
the period with the highest geomagnetic activity. At approx-
imately 11:00 UTC we highlight a high field-aligned current
and plasma density, which corresponds to the measurements
seen in Figure 3.1a). The marked data was chosen as instance
1 during this day. 16

iii

iv l ist of figures

3.4 Instance 1 during 4th November 2014. The blue plots are
of the plasma density and field-aligned current in Region A,
while the orange and green are in Region B and C respectively. 17

3.5 Low activity day on 3rd November 2014. The blue plots are
of the plasma density and field-aligned current in Region A,
while the orange and green are in Region B and C respectively. 17

4.1 600 seconds example dataset. The blue line represents method
A, and the orange line represents method B. The y-axis rep-
resents the amount of data points averaged. The x-axis repre-
sents the time lag in seconds. 20

5.1 Plasma Density in the polar region in (a) a period of high ge-
omagnetic activity 4th November 2014 and (b) low geomag-
netic activity 3rd of November 2014. Each figure is divided
into the auroral regions A (blue) and C (green), Region B the
polar cap (orange). Both figures share tha same y-axis. . . . 26

5.2 Structure function of order 𝑚 = 2 in the polar region during
a day of high geomagnetic activity (blue figure) vs a day of
low geomagnetic activity (orange figure). The dashed lines
represent the slopes. 27

5.3 Structure function of order 𝑚 = 2 in the polar cap region
during a day of high geomagnetic activity (blue figure) vs a
day of low geomagnetic activity (orange figure). The dashed
lines represent the slopes. 28

5.4 Structure function of order 𝑚 = 2 in region A during a day of
high geomagnetic activity (blue figure) vs a day of low geo-
magnetic activity (orange figure). The dashed lines represent
the slopes. 29

5.5 Structure function of order 𝑚 = 2 in region C during a day of
high geomagnetic activity (blue figure) vs a day of low geo-
magnetic activity (orange figure). The dashed lines represent
the slopes. 29

5.6 Slopes in polar region. (a) 𝜏 = [1𝑠, 10𝑠] (blue) 𝜏 = [10𝑠, 100𝑠]
(orange) during active periods. (b) Active (blue) and quiet
(orange) periods for 𝜏 = [1𝑠, 10𝑠]. (c) 𝜏 = [1𝑠, 10𝑠] (blue) 𝜏 =

[10𝑠, 100𝑠] (orange) during quiet periods. (d) Active (blue)
and quiet (orange) periods for 𝜏 = [10𝑠, 100𝑠]. 31

5.7 Slopes in polar cap region. (a) 𝜏 = [1𝑠, 10𝑠] (blue) 𝜏 = [10𝑠, 100𝑠]
(orange) during active periods. (b) Active (blue) and quiet
(orange) periods for 𝜏 = [1𝑠, 10𝑠]. (c) 𝜏 = [1𝑠, 10𝑠] (blue)
𝜏 = [10𝑠, 100𝑠] (orange) during quiet periods. (d) Active
(blue) and quiet (orange) periods for 𝜏 = [10𝑠, 100𝑠]. 31

l ist of figures v

5.8 Slopes in Region A. (a) 𝜏 = [1𝑠, 10𝑠] (blue) 𝜏 = [10𝑠, 100𝑠]
(orange) during active periods. (b) Active (blue) and quiet
(orange) periods for 𝜏 = [1𝑠, 10𝑠]. (c) 𝜏 = [1𝑠, 10𝑠] (blue) 𝜏 =

[10𝑠, 100𝑠] (orange) during quiet periods. (d) Active (blue)
and quiet (orange) periods for 𝜏 = [10𝑠, 100𝑠]. 32

5.9 Slopes in Region C. (a) 𝜏 = [1𝑠, 10𝑠] (blue) 𝜏 = [10𝑠, 100𝑠]
(orange) during active periods. (b) Active (blue) and quiet
(orange) periods for 𝜏 = [1𝑠, 10𝑠]. (c) 𝜏 = [1𝑠, 10𝑠] (blue) 𝜏 =

[10𝑠, 100𝑠] (orange) during quiet periods. (d) Active (blue)
and quiet (orange) periods for 𝜏 = [10𝑠, 100𝑠]. 33

5.10 Area of structure function in the entire polar region. (a) Area
for smaller structures 𝜏 = [1𝑠, 10𝑠] calculated for all instances.
(b) Area for larger structures 𝜏 = [10𝑠, 100𝑠] calculated for all
instances. 34

5.11 Area of structure function in the polar cap region. (a) Area for
smaller structures 𝜏 = [1𝑠, 10𝑠] calculated for all instances.
(b) Area for larger structures 𝜏 = [10𝑠, 100𝑠] calculated for
all instances. 34

5.12 Area of structure function in region A. (a) Area for smaller
structures 𝜏 = [1𝑠, 10𝑠] calculated for all instances. (b) Area
for larger structures 𝜏 = [10𝑠, 100𝑠] calculated for all instances. 35

5.13 Area of structure function in region C. (a) Area for smaller
structures 𝜏 = [1𝑠, 10𝑠] calculated for all instances. (b) Area
for larger structures 𝜏 = [10𝑠, 100𝑠] calculated for all instances. 35

5.14 Dashed line represents 𝐹 (𝜏) = 3. (a) active days (blue) and
quiet days (orange) for 𝜏 = [1𝑠, 10𝑠]. (b) active days (blue)
and quiet days (orange) for 𝜏 = [10𝑠, 100𝑠]. (c) Area dis-
tribution of active days (blue) and quiet days (orange) for
𝜏 = [1𝑠, 10𝑠]. (d) Area Distribution for active days (blue) and
quiet days (orange) for 𝜏 = [10𝑠, 100𝑠]. 37

5.15 Dashed line represents 𝐹 (𝜏) = 3. (a) active days (blue) and
quiet days (orange) for 𝜏 = [1𝑠, 10𝑠]. (b) active days (blue)
and quiet days (orange) for 𝜏 = [10𝑠, 100𝑠]. (c) Area dis-
tribution of active days (blue) and quiet days (orange) for
𝜏 = [1𝑠, 10𝑠]. (d) Area distribution of active days (blue) and
quiet days (orange) for 𝜏 = [10𝑠, 100𝑠]. 37

5.16 Dashed line represents 𝐹 (𝜏) = 3. (a) active days (blue) and
quiet days (orange) for 𝜏 = [1𝑠, 10𝑠]. (b) active days (blue)
and quiet days (orange) for 𝜏 = [10𝑠, 100𝑠]. (c) Area dis-
tribution of active days (blue) and quiet days (orange) for
𝜏 = [1𝑠, 10𝑠]. (d) Area distribution of active days (blue) and
quiet days (orange) for 𝜏 = [10𝑠, 100𝑠]. 38

vi l ist of figures

5.17 Dashed line represents 𝐹 (𝜏) = 3. (a) active days (blue) and
quiet days (orange) for 𝜏 = [1𝑠, 10𝑠]. (b) active days (blue)
and quiet days (orange) for 𝜏 = [10𝑠, 100𝑠]. (c) Area dis-
tribution of active days (blue) and quiet days (orange) for
𝜏 = [1𝑠, 10𝑠]. (d) Area distribution of active days (blue) and
quiet days (orange) for 𝜏 = [10𝑠, 100𝑠]. 39

5.18 Area of empirical flatness in the entire polar region. (a) Area
for smaller structures 𝜏 = [1𝑠, 10𝑠] calculated for all instances.
(b) Area for larger structures 𝜏 = [10𝑠, 100𝑠] calculated for all
instances. 40

5.19 Area of empirical flatness in the polar cap region. (a) Area for
smaller structures 𝜏 = [1𝑠, 10𝑠] calculated for all instances.
(b) Area for larger structures 𝜏 = [10𝑠, 100𝑠] calculated for
all instances. 40

5.20 Area of empirical flatness in region A. (a) Area for smaller
structures 𝜏 = [1𝑠, 10𝑠] calculated for all instances. (b) Area
for larger structures 𝜏 = [10𝑠, 100𝑠] calculated for all instances. 41

5.21 Area of empirical flatness in region C. (a) Area for smaller
structures 𝜏 = [1𝑠, 10𝑠] calculated for all instances. (b) Area
for larger structures 𝜏 = [10𝑠, 100𝑠] calculated for all instances. 42

5.22 PDF for five time lags. 𝜏 = 0.0625𝑠 (dotted blue), 𝜏 = 0.125𝑠
(dotted orange), 𝜏 = 0.25𝑠, 𝜏 = 0.50𝑠 (dotted red) and 𝜏 =

1.0𝑠 (dotted purple). A Gaussian (solid black) is superposed.
(a) high activity period on 4th November 2014 (b) low activ-
ity period on 3rd November 2014. 43

5.23 PDF for three time lags. 𝜏 = 1.0𝑠 (dotted blue), 𝜏 = 5.0 (dot-
ted orange) and 𝜏 = 10.0. A Gaussian (solid black) is super-
posed. (a) high activity period on 4th November 2014 (b) low
activity period on 3rd November 2014. 44

5.24 PDF for three time lags. 𝜏 = 1.0𝑠 (dotted blue), 𝜏 = 5.0 (dot-
ted orange) and 𝜏 = 10.0. A Gaussian (solid black) is super-
posed. (a) high activity period on 4th November 2014 (b) low
activity period on 3rd November 2014. 45

6.1 Empirical flatness for day of high geomagnetic activity (blue)
and day of low geomagnetic activity (orange) 51

6.2 Structure function for 𝑚 = 2 and 𝑚 = 4 during active day
5th December 2015, and quiet day 3rd December 2015. (a)
Active 𝑚 = 2 (blue) and quiet 𝑚 = 2 (orange). (b) Active
𝑚 = 4 (green) and quiet 𝑚 = 4 (red). 51

6.3 Average of change in electron density between time t and
𝜏 = 1𝑠 of order 𝑚 = 2 . 52

6.4 Average of change in electron density between time t and
𝜏 = 1𝑠 of order 𝑚 = 4 . 53

l ist of figures vii

8.1 Power spectral density during 31st December 2015 over the
entire polar region. 65

8.2 Slopes for all structure functions calculated over the entire
polar region. (a) Slopes for 𝜏 = [0.0625𝑠, 1𝑠] vs 𝜏 = [1𝑠, 10𝑠]
during days of high geomagnetic activity. (b) Slopes during
high geomagnetic activity vs low geomagnetic activity for 𝜏 =

[0.0625𝑠, 1𝑠]. (c) Slopes for 𝜏 = [0.0625𝑠𝑠, 1𝑠] vs 𝜏 = [1𝑠, 10𝑠]
during days of low geomagnetic activity. (d) Slopes during
high geomagnetic activity vs low geomagnetic activity for 𝜏 =

[1𝑠, 10𝑠]. 66
8.3 AE index 11th May 2024. [WDC, a] 67

List of Tables
8.1 Dates of Active and Quiet periods 65

ix

x l ist of tables

Abstract

High-latitude electron density irregularities can affect technology such
as the Global Navigation Satellite Services (GNSS) by degrading radio
signals. These irregularities are not fully understood. In this work we
investigate turbulence and intermittency in varying regions of the high-
latitude ionosphere using the structure function, empirical flatness and
probability density function. Our aim is to investigate whether these
turbulence data analysis tools can reveal additional information about
the nature of these phenomenons in the selected regions. We apply these
methods on 16 Hz electron density Swarm data across the polar cap and
auroral regions in the northern hemisphere. We observed different slopes
at large and small scales for the structure function in the polar cap and
across the entire polar region. We also noticed a clear difference between
the results during days of high and low geomagnetic activity. However,
we could not observe any significant differences in the auroral region
using this method. Furthermore, the results obtained by measuring the
empirical flatness and probability density function remain inconclusive as
we did not notice any substantial differences in either region or across the
different geomagnetic levels. Our results suggest at least some different
scaling behaviour across the entire polar region and polar cap which is
affected by geomagnetic storms, but further investigation is required to
establish any additional details about turbulence and intermittency.

1
Introduction
The various mechanisms between Earth’s atmosphere, magnetosphere and the
solar wind give rise to a layer of plasma in Earth’s upper atmosphere. The
plasma in this layer, called the ionosphere, exhibits a turbulent nature often
due to to ionospheric convection caused by factors such as coupling between the
solar wind and magnetosphere [Lester, 2003] [De Michelis et al., 2020]. This
turbulent behaviour is characterised by the chaotic fluctuations in the plasma.
Energy in the system cascades down to smaller scales from larger through ed-
dies [Frisch, 1995]. The study of turbulence is important as it can affect radio
signals in multiple frequencies, like those from Global Navigation Satellite Sys-
tems (GNSS) degrading their performance [Moen, Jøran et al., 2013]. Another
space weather phenomenon is intermittency. Intermittency is an occurrence
characterised by an uneven distribution of the plasma in the turbulent flow. As
the energy cascades down to smaller scales, localized structures form, i.e. we
do not have a constant energy transfer rate and local scaling exponents exists at
different scales [Bruno et al., 2001]. The main characteristic of intermittency
is the localized sporadic structures in the plasma turbulence. Cases of large
intermittent structures in the polar cap, where the magnetic field lines are
open, are called polar cap patches. This region is highly affected by the inter-
planetary magnetic field (IMF) conditions which controls the convection pat-
tern [Moen, Jøran et al., 2013][Wernik et al., 2003]. In the polar cap region,
these so-called polar cap patches can be at 100 km scales. In short, the iono-
sphere can have plasma structures from tens to thousands of km and 10 to 1
km [Basu et al., 1990] down to irregularities at the scale of the ion gyroradius
[Tsunoda, 1988]. These structures are of great interest in the context of space

1

2 chapter 1 introduction

weather and its affect on technology.

We use tools such as the structure function which provides information about
the scaling behaviour of the irregularities at different time lags. A property of
this scaling behaviour such as scale-invariance is important in the studies of
turbulence [Spicher et al., 2015]. Other tools used are the Empirical flatness
and the probability density function (PDF), which can detect large fluctua-
tions at smaller timescales. We also mention the use of power spectral den-
sity (PSD) which offers insights into the energy in the system. Due to time
constraints and many studies [Chian et al., 2008][Phelps and Sagalyn, 1976]
[Mandeep et al., 2014] being done using the PSD, we do not use this tool and
will not cover further. We add a figure representing the PSD for one of our
dataset in the appendix, however. Of the aforementioned tools, the structure
function have been the main focus. This is primarily due to the amount of
information we can obtain from this tool. It is also a process required to obtain
the empirical flatness.

We build on the foundation of several works that comprise both case studies and
statistical studies. [Spicher et al., 2015] investigated growth rates associated
with polar cap patches using the ICI-2 sounding rocket in the trailing edge of a
polar cap patch and a region of electron density enhancements associated with
particle precipitation. The ICI-2 sounding rocket provides data at very high
resolutions (5787 Hz) but provides limited geographical coverage. The results
indicated regions associated with particle precipitation being more random in
nature, as opposed to the polar cap where structures are more intermittent.
[Consolini et al., 2020] did an analysis of the intermittency in the high-latitude
ionospheric region using density measurements captured at 2 Hz by one of the
satellites in ESA’s swarm constellation during two periods of increased geo-
magnetic activity. One of the main findings was the signature of intermittency
in electron density fluctuations in the auroral oval. [De Michelis et al., 2020]
analyzed the scaling features of the electron density fluctuations in the high-
latitude ionosphere during the 2015 St. Patrick’s geomagnetic storm using two
of ESA’s swarm satellites obtaining density measurements captured at 1 Hz. The
measurements were made throughout the phases of the storm from 16 March
to 22 March 2015, with varying geomagnetic activity. Furthermore this work
investigated the occurrence of high values of the Rate of change Of the elec-
tron Density Index (RODI). The results suggested that the geomagnetic activity
level, latitude and magnetic local time affected the different scaling features
of the structure function. Furthermore [Tozzi et al., 2023] studied polar cap
patches during days of high and low geomagnetic activity levels using Swarm
data from a 3.5 year period starting on 16th July 2014. Their findings indicated
values of RODI, 1st and 2nd order scaling exponents and intermittency being
reduced outside the polar cap patches. These differences were more prominent
at higher geomagnetic activity levels. Moreover, approximately 57.4% of GNSS

3

loss of lock in the northern hemisphere during periods of elevated geomagnetic
activity coincided with polar cap patches, while the amount was 51.4% during
quiet periods. [Lovati et al., 2023] used 1 Hz Swarm data collected between
15th July 2015 and 31st December 2021 to investigate the dependence on sea-
son, solar activity and geomagnetic activity. They concluded that loss of lock
events and electron density fluctuations increased during heightened solar ac-
tivity and geomagnetic levels. These cases were associated with plasma density
irregularities.

Previous literature suggest a difference between the polar cap and auroral re-
gion e.g. [Spicher et al., 2015]. Thus we decided to investigate both of these
regions, hoping to gain some insights into more of their differences and simi-
larities. Furthermore, we separate the days into two categories: days of high
geomagnetic activity and days of low geomagnetic activity. This is due to
the high latitude ionospheric irregularities being influenced by the geomag-
netic activity [Jin et al., 2019] and often studied in the context of storm events
[De Michelis et al., 2020][[Mitchell et al., 2005] and refs therein].
Consequently we want to investigate whether there are any changes between
these days, as [De Michelis et al., 2020] observed. Since we want to investigate
days of high geomagnetic activity, we chose periods during solar maximum i.e.
the years 2014 and 2015. We chose the winter months during these two years
due polar cap patches being a winter phenomenon [[Noja et al.,] and refs
therein].

We present this thesis in 7 chapters and an appendix. Chapter 2 presents the
essential theory required for the project. Chapter 3 outlines the data collection,
and how we prepare it for further processing. Chapter 4 describes how each
tool presented in Chapter 2 is applied. In Chapter 5 we cover the results of the
work, while Chapter 6 discusses these findings in the context of the existing
literature. Finally, Chapter 7 summarizes the findings, suggesting future work
and mentioning acknowledgments.

2
Theory
We introduce some essential theoretical aspects in this chapter. We begin by
giving an explanation of the high latitude ionosphere and its plasma structuring
followed by a section dedicated to each of the data analysis tools used.

2.1 High Latitude Ionosphere and Plasma
Structuring

The ionosphere is the region in Earth’s atmosphere where ionised particles are
created when high energy radiation from the sun interacts with the atmosphere.
These particles form a layer of plasma at which is divided into the D Region, E
Region and F Region. The E Region is located at altitudes in the range 90 - 150
km while the D - and F Regions are located below 90 km and above 150 km,
respectively [Anderson, 1999].

As the solar wind interacts with the magnetosphere, high energy particles pre-
cipitate down along the magnetic field lines into the atmosphere, producing
ionization. In the high latitude region the magnetic field lines in the polar cap
are open, while they are closed in the auroral regions.

5

6 chapter 2 theory

The plasma density is affected by the recombination rate, which is the rate at
which ions and free electrons combine to form neutral particles. This factor
varies with altitude, due to the distribution of different ions in the individual
regions. The density is highest in the F Region where atomic oxygen 𝑂+ domi-
nates, while molecular oxygen𝑂2 and nitrogen 𝑁2 are more common at lower
altitudes [Kelley, 2009].

The plasma’s position is not static. It moves due to the E × B drift perpendic-
ular to the electric and magnetic fields. This drift, wave wave interaction and
cascading [[Wernik et al., 2003] and refs therein] can cause plasma structures
of varying sizes in the ionosphere. The F-region can have structures from scale
lengths of 100 km to a couple of meters [Kintner and Seyler, 1985].

One of the main aspects of the high-latitude ionospheric region is its perpendic-
ular magnetic field lines. In the polar cap, where the field lines are open, the in-
terplanetary magnetic field have a strong influence [Moen, Jøran et al., 2013]
[Wernik et al., 2003]. If the IMF have a southward component, we get a two-
cell convection pattern which produces an anti-sun ward flow in this region
[Kelley, 2009]. In other words, structures in the polar cap drifts from day to
night [Moen, Jøran et al., 2013]. Large structures in the polar cap are called
polar cap patches and can have densities up to 10 times larger than the back-
ground density[Moen, Jøran et al., 2013]. The electric fields ofmagnetospheric
origin play an important role in the structure of plasma at high latitudes
[Kelley, 2009]. Due to these field being perpendicular in the high-latitude iono-
sphere, plasma is transported to regions such as the polar cap during winter
months. [Kelley, 2009]. In contrast, regions with closed magnetic field lines are
susceptible to an increase in plasma production due to precipitation.

2.2 Structure Function

We introduce the structure function in this section,which is amethod used to de-
tect if the scaling behaviour at particular time scales change [Spicher et al., 2015],
i.e. if the structure function is scale invariant, which may be a sign of inter-
mittency [Bruno et al., 2001]. We begin by explaining the structure function,
before moving on to why it can be used to characterise intermittency. Consid-
ering a set of ionospheric plasma density data 𝑦 (𝑡), we can observe the scaling
behaviour, and in turn intermittency by using an𝑚th order structure function
[Monin and Yaglom, 1975]

2.2 structure function 7

𝑆 (𝑚,𝜏) = ⟨|𝑦 (𝑡 + 𝜏) − 𝑦 (𝑡) |𝑚⟩ (2.1)

as defined in [Spicher et al., 2015]. Here y(t) represents the plasma density at
time t while 𝜏 represents a time delay corresponding to 𝑡 + 𝜏 . The structure
function is calculated for 𝑛 amount of 𝑡 for each 𝜏 where ⟨...⟩ represents the
average of all 𝑡 for one unique 𝜏 . We use the average to make a distinction
from the time average [Frisch, 1995]. Due to the non-negative nature of the
structure function and the assumption that a point have a greater displacement
from its initial position the further in time we go, the values of the structure
function rises as 𝜏 increases.

We can analyse scale invariance either globally, or at different scales. In a case
without any intermittency we expect the structure function be scale invariant,
following a power law

𝑆 (𝑚,𝜏) ∼ 𝜏
𝑚
3 (2.2)

deviation from this can be a sign of intermittency, where we expect stronger
intermittency for larger deviations [Bruno et al., 2001]. Therefore we predict
that measurements taken during conditions where we expect high intermit-
tency to diverge further from this power law than measurements where we
expect lower intermittency.

An example of the structure functions and their corresponding power laws
during two days of high and low geomagnetic activity is presented in Figure
2.1 in a log-log plot. The high activity day is on 31st December 2015 and the
low activity day is on 30th December 2015. The figure illustrates equation 2.1
for 𝑚 = 2 calculated in the entire polar region. The power law in equation
2.2 for m=2 is also fitted to the structure functions as dashed lines. The y-axis
displays order of magnitude. We see both structure functions deviating from
the power law, and a decrease in output values as 𝜏 increases. Larger 𝜏 leads
to a smaller amount of data points used when calculating the average.

We also present the corresponding electron density measurements in Figure
2.2. We observe the electron density in the polar region during a high geomag-
netic activity event in Figure a), while figure b) exhibits the corresponding low
activity event.

8 chapter 2 theory

Figure 2.1: Structure function of the entire polar region during high geomagnetic
activity (blue figure) and low geomagnetic activity (orange figure) 31st
and 30th December 2015, respectively. Power law is fitted to each figure
(dashed lines).

Figure 2.2: Corresponding electron density in the polar region in (a) a period of high
geomagnetic activity and (b) low geomagnetic activity.

2.3 empir ical flatness 9

2.3 Empirical Flatness

We introduce anotherway of detecting intermittency,which is by calculating the
empirical flatness ([Spicher et al., 2015], [Sahraoui, 2008], [Frisch, 1995])

𝐹 (𝜏) = 𝑆 (4, 𝜏)
𝑆2(2, 𝜏) (2.3)

which is the ratio between the structure function for𝑚 = 4 and𝑚 = 2 squared.
The empirical flatness, also called kurtosis, is expected to increase in cases of
intermittency, especially for smaller scales [Chian et al., 2008]. Consequently
we expect 𝐹 (𝜏) to have a smaller value close to 3 when intermittency is low
[Spicher et al., 2015]. We refer to the different 𝜏 intervals as "scales" on account
of their representation of different time resolutions. These resolutions are used
to examine the spatial variability of plasma structures.

Figure 2.3 shows the empirical flatness for the same cases as the structure
function in the previous section. High activity day 31st December 2015 and
low activity day on 30th December 2015. The dashed line represents 𝐹 (𝜏) = 3.
We can see how the flatness increases for smaller 𝜏 , while larger scales have
corresponding values close to 3. The high activity day has larger flatness than
the low activity day, which is not always the case. We will elaborate further in
chapters 5 and 6.

Figure 2.3: Empirical Flatness of the entire polar region during high geomagnetic
activity (blue figure) and low geomagnetic activity (orange figure) 31st and
30th December 2015, respectively. The dashed line represents 𝐹 (𝜏) = 3.

10 chapter 2 theory

2.4 Probability Density Function

Here we present another method of identifying intermittency at smaller scales,
the probability density function (PDF). The method examines the density varia-
tions in time which provides information on the dynamics within the system at
different scales. The variations at these scales are observed by investigating Non-
Gaussianity of the signal’s probability density function [Consolini et al., 2020],
which we define as

𝑃𝐷𝐹 = 𝑦 (𝑡 + 𝜏) − 𝑦 (𝑡) (2.4)

where y(t) represents the plasma density at time 𝑡 and 𝜏 represents Δ𝑡 . A de-
parture from a Gaussian curve could be signs of intermittent structures. Higher
kurtosis or heavy tails and sharper peaks correspond to greater irregularities
[Chian et al., 2008]. We may see larger fluctuations at smaller scales due to
the intermittency similar to the empirical flatness.

We show an example of the probability density functions for a case on 31st De-
cember 2015 in Figure 2.4, where we normalized to the standard deviation as in
[Consolini et al., 2020]. The PDFs displays the functions for 𝜏 = [1𝑠, 10𝑠, 100𝑠]
and a Gaussian fitted to the total PDF. The PDFs are calculated throughout the
entire polar region. The PDF moves closer to the Gaussian as 𝜏 increases, with
smoother peaks and tails not extending as far out to the side. Consequently as
the scale decreases, the peaks become sharper and the tails extend further out,
deviating from the superposed Gaussian. This implicates a dependence of time
scale, that is PDFs are not scale invariant [Consolini et al., 2020].

Figure 2.4: PDF of the entire polar region during high geomagnetic activity for three
time lags. 𝜏 = 1.0𝑠 (dotted blue), 𝜏 = 10.0𝑠 (dotted orange) and 𝜏 =

100.0𝑠 (dotted green). A Gaussian (solid black) is fitted to the figure.

3
Data Acquisition
In the following section, we introduce the methods used for obtaining and pre
processing the data used. We also elaborate on the sources used for acquiring
our data, and present some background information on the instruments used
for the data collection.

The data used have been obtained from the European Space Agency’s Swarm
Mission [ESA, a]. There are three identical satellites named Alpha, Bravo, and
Charlie, thatmake up the Swarm constellation. The constellation follows a near-
polar orbit with Bravo orbiting at an initial altitude of 511 km while Alpha and
Charlie orbits at a lower initial altitude of 462 km, side by side. The mission’s
primary goal is to study Earth’s magnetic field along with the electric currents
in the magnetosphere and ionosphere [ESA, a] [ESA, b].

Measurements made from each satellite can be acquired through ESA’s Swarm
Data Access website [The European Space Agency,], granting access to both
level 1b and level 2 packages. Level 1b contain calibrated data closely related
to the direct measurements made by the satellites while level 2 contain ad-
ditional derived data. One can obtain specific data such as different plasma
measurements or magnetic measurements through the advanced section in the
database in either in 2 Hz or 16 Hz resolution. The data is provided under
regulation by ESA’s Data Policy and terms and conditions [ESA, c].

11

12 chapter 3 data acquis it ion

The mission was first launched on 22nd November 2013 from Plesetsk Cosmod-
rome in northern Russia and initially established constellation on 17th April
2014. At the writing of this thesis, the Swarm mission is planned to last until
2025 [ESA, a].

The measurements were chosen from Swarm A. The data was downloaded
from the website during spring 2024. Of the accessible data we used the
measurements of the field-aligned currents at 1 Hz and the plasma density
at 16 Hz sampling rate. Previous work such as [De Michelis et al., 2020] and
[Consolini et al., 2020] have used density measurements from the Swarm con-
stellation at 1 Hz and 2 Hz. By using 16 Hz we can investigate the structure
function at smaller scales and compare with the results from previously pub-
lished literature. The field-aligned current data was found under the level2daily
section, and the plasma data was found under the advanced section. While
there is not as much data at 16 Hz as there is at 2 Hz, we went with the higher
sampling frequency to see if there were any important differences. We could
not find any data for the field-aligned current at 16 Hz however. Both files are
acquired as .cdf-files with the field-aligned current and plasma density given in
units of 𝜇𝐴/𝑚2 and 𝑐𝑚−3 respectively in addition to other relevant data data
such as latitude, longitude and timestamp.

We chose days in the winter months during the years 2014 and 2015. This was
due to plasma convection playing an important role during the winter months
[Wernik et al., 2003], and prevalence of polar cap patches
[Dandekar and Bullett, 1999] which relate to high latitude ionospheric polar
cap scintillations [Moen, Jøran et al., 2013]. The years were chosen due to the
solar maximum, resulting in more days of high geomagnetic activity. When
deciding which days to select within the target period, we initially wanted to
investigate whether any papers had done any research on particular days with
high geomagnetic activity which stood out, like St. Patrick’s day on 17th March
2015 [Consolini et al., 2020][De Michelis et al., 2020]. We would be able to
compare our results to what others have already found using the same exam-
ples by deciding on data using this method. However, this proved challenging
as we were unable to find any 16 Hz data for these days. Instead we utilized
data from the World Data Center for Geomagnetism, Kyoto’s provisional AE
index [WDC, b] which follows the International Council for Science - World
Data System (ICSU-WDS) data sharing principles [World Data System,]. We
used the service from the provisional AE index to find days with high geomag-
netic activity based on the provided data from the website. The data used was
accessed spring 2024.

We also obtain days of low geomagnetic activity. The days of low geomagnetic
activity were found using the same method. They were chosen during the same
month as the high activity days, preferably the day before or after. Due to many

13

high activity days in a row, this was not always possible.

Figure 3.1 shows the auroral electrojet (AE) activity during an active day and a
quiet day. The strength of the auroral electrojet is associated with geomagnetic
activity [Davis and Sugiura, 1966] [Akasofu et al., 1965]. By tracking changes
in the AE index, we can detect geomagnetic disturbances, like geomagnetic
storms. Figure 3.1a shows the AE activity on 4th November 2014 and Figure 3.1b
on 3rdNovember 2014 as displayed on theWorldData Center forGeomagnetism
website. In Figure 3.1a the activity is extremely low early in the day up to 07:00,
indicated by the flat activity level. From 07:00 and up to 18:00 the AE activity
rises drastically, with the largest spikes at 11:00 and 14:30 surpassing 1000 nT.
These are the types of activity levels we look for when deciding days of high
geomagnetic activity. In contrast, Figure 3.1b displays no signs of an elevated
AE intensity. When searching for days of high geomagnetic activity, we look
for events surpassing approximately 800 nT. In the end, our high activity data
had events in the range from 800 nT to 2000 nT. All days used are listed in the
Appendix.

(a)

(b)

Figure 3.1: Figure 3.1a) shows high geomagnetic activity measured 4th November
2014, with the most active period being from approximately 06:00 to 18:00.
Figure 3.1b) shows low geomagnetic activity measured 3rd November 2014
[WDC, b].

14 chapter 3 data acquis it ion

We compare data obtained during periods of different geomagnetic activity.
When investigating the high activity and the low activity days we chose the time
during the quiet day based on the satellite’s position rather than its closeness
in time to the active day. This is due to the satellite not passing over the same
region at the same time each day. We want the trajectories where the satellite
is as close as possible to minimize the influence of other factors, and ensure
similar environmental conditions.

The nearest location was found using the latitude and longitude of the Swarm
A satellite when it passed over the high activity region, comparing this to the
closest latitudes and longitudes during the low activity day. This is displayed
in Figure 3.2. where the purple line show the satellites trajectory during the
day of high activity. The grey lines are the satellite’s trajectory for each pass
over the north pole during days of low activity. The black line is the closest of
the trajectories during the this period, calculated by the script. We can see it is
indeed the closest trajectory to the high activity trajectory.

Figure 3.2: The purple line represents the trajectory of the satellite during the high
activity day 4th November 2014 while measuring the polar region. The
grey and black lines are the trajectories for each pass through the polar
region of the satellite during the low activity day. The black line is the
closest of these passes to the high activity day.

15

Swarm Amakesmultiple passes through the polar region each day but each pass
does not contain equally interesting data. Thus we need to choose instances
during each day which we want to investigate further. We started by observing
when the geomagnetic activity was highest during the period in which the
satellite’s 16 Hz faceplate plasma density measuring device was active. Fur-
thermore, we looked at the intensity of the field-aligned current and plasma
density during this period when deciding passes. Ultimately, we decided to
focus on three different times each day, which we have labeled as instances 1,
2, and 3 and each occurring in the northern polar region. In the early stages,
we also analysed the southern pole, but due to time constraints, we left this
out for future work.

We divide the polar region into 3 different sub regions; A, B, and C. As the
satellite passes through the polar region we typically see two consecutive spikes
in the field-aligned current density. The location of these spikes are associated
with the auroral oval [Iijima and Potemra, 1976]. The first spike is classified as
region A and is where the satellite passes through the first part of the auroral
region. Region B is the region between the two spikes where the satellite passes
through the polar cap. The second spike is where the satellite passes through
the opposite site of the auroral region and is classified as region C. We chose
to investigate both the polar cap and auroral region to inspect the differences
and similarities when applying the same tools to the regions.

We developed our own algorithm for classifying the different regions. The
method uses the field-aligned currents to get an estimate of where the auroral
region is in the polar region during the plasma density measurements. We
detect when the the satellite passes through the aurora by looking for these
spikes in the field-aligned currents. During the spikes,we utilize the timestamps
to determine the corresponding plasma density. The spikes are detected by
setting a threshold value for the field-aligned current, classifying each element
higher than the threshold as part of the auroral region. The threshold value
was in most cases set as 0.5𝜇𝐴/𝑚2, but this was either increased or decreased
if our algorithm incorrectly identified the FAC. When two spikes are more than
2 minutes apart, they are separated into different regions. This limit can be
adjusted if necessary. Each spike is numbered from 1 to n. When the user want
to investigate a specific region (Region A or C), the corresponding number in
this range is used. If the user want to investigate the entire polar region, a
tuple can be used as input, where each of its values correspond to either of
two side by side spikes. To specify the polar cap (Region B), an additional
boolean is used along with the tuple to convey that the user wants the region
between the spikes. This way the algorithm created can detect either all polar
regions, one polar region, or a sub region A, B or C. Figure 3.3 presents a polar
region divided into the auroral region and polar cap by the algorithm. Figure a)
presents the plasma density measured in 16 Hz by Swarm A and Figure 3.3 b)

16 chapter 3 data acquis it ion

show Swarm A’s measurement of the field-aligned currents in 1 Hz. The chosen
case is highlighted in orange, red and green for the auroral region (Region
A and C) and the polar cap (Region B), respectively. We can see an increase
in electron density in a) at the same time as the field-aligned current rises in
b).the

Figure 3.3: Measured data from Swarm satellite A during 4th November 2014. Data
shown from 06:00 UTC to 16:00 UTC during the period with the highest
geomagnetic activity. At approximately 11:00 UTC we highlight a high
field-aligned current and plasma density, which corresponds to the mea-
surements seen in Figure 3.1a). The marked data was chosen as instance
1 during this day.

The data we are left with is shown in Figure 3.4. We have focused on the
designated region shown in Figure 3.3. Figure a) and b) show the plasma
density and field-aligned currents, respectively. The plasma density increases
as Swarm A enters the polar cap, while there are no field-aligned currents due
to the open magnetic field lines in this region.

For comparison, we display the plasma density and field-aligned currents for
the corresponding low activity day on 3rd November 2014 in Figure 3.5. Both
Figure a) and b) uses the same limits for the axes as Figure 3.4 a) and b),
respectively.

17

Figure 3.4: Instance 1 during 4th November 2014. The blue plots are of the plasma
density and field-aligned current in Region A, while the orange and green
are in Region B and C respectively.

Figure 3.5: Low activity day on 3rd November 2014. The blue plots are of the plasma
density and field-aligned current in Region A, while the orange and green
are in Region B and C respectively.

18 chapter 3 data acquis it ion

In this work we apply different processing methods to try and detect differences
between the high geomagnetic activity days and low geomagnetic activity days.
We ended up with 13 days of high activity and 8 days of low activity. When
we had to compare various high activity days to the same low activity days,
we attempted to compare them at different times of the day to prevent dupli-
cating data from low activity periods. In total we ended up with 39 distinct
events during high activity periods and 31 distinct events during the low activity
period.

4
Methods
In this chapter, each method is described within its dedicated section. We first
review the implementation of the structure function followed by the procedures
of its further processing in section 4.1. In section 4.2, we explain the methods
behind the empirical flatness. Lastly we explain how we implemented the prob-
ability density function in section 4.3. Each method is implemented using the
programming language Python, or more explicitly Python 3.10. Occurrences
where modules have been used for specific calculations are referenced where
applicable.

4.1 Structure Function

This section presents how we approached implementing the structure function
for our processed data. There are multiple ways of doing this, and we demon-
strate the two methods we tested. We also explain the different procedures
used to further analyse the results.

Initially a completely vectored version of the structure function was imple-
mented, resulting in a very fast runtime. However, this had some limitations.
This implementation of the structure function always averages over the same
amount of data points in an interval. This amount is defined as the signal’s
length subtracted by the maximum time lag 𝜏𝑚𝑎𝑥 . If the largest time lag is
chosen at half the signal’s length, the average is always be computed for half

19

20 chapter 4 methods

the data points. This results in the amount of data point used decided by
𝜏𝑚𝑎𝑥 .

The disadvantages of this solution, hereafter referred to as method A, was
determined to outweigh the advantages. Instead a second method, referred
to as method B, could calculate the structure function for the entire signal’s
length. This method calculated the mean of as many data points possible for
each time delay, resulting in the amount of data points averaged decreasing by
1 for each increase in 𝜏 (see Figure 4.1. The drawback to this solution was that
the code was significantly slower, using approximately 24 hours to calculate
the structure function for the 39 active and 39 quiet cases.

We illustrate the differences in Figure 4.1, which shows how many data points
the average can be calculated over for each of the two methods. The figure
represents the amount of data points (y-axis) used in the structure function
for each time lag 𝜏 (x-axis). The figure presents a dataset consisting of 600
data points. Method A denoted by the blue line, is shown for a time delay
interval 𝜏 = [0𝑠, 300𝑠] while method B denoted by the orange line is shown
for 𝜏 = [0𝑠, 600𝑠]. Method A have a constant number of averaged data points,
regardless of 𝜏 , while method B is more dynamic, calculating the maximum
number of available data points for each 𝜏 . At time lag 600s, i.e. the length of
the signal, no amount of data points are used as we cannot use data at time
601s.

Figure 4.1: 600 seconds example dataset. The blue line represents method A, and
the orange line represents method B. The y-axis represents the amount of
data points averaged. The x-axis represents the time lag in seconds.

4.1 structure function 21

We decided to use method B due to the increased amount of data points for
smaller 𝜏 . Due to the accuracy of the calculations decreasing for larger 𝜏 , we
chose to use a maximum time delay of half the signal’s maximum length.
This made sure we always calculated the average of at least half of the data
points.

We calculated the structure function for each instance each day with a time
delay interval [1 / 16 s, n] where n is half the signal’s length in seconds. We
start at 1/16 seconds due to the sampling rate of the signal being 16 Hz. The
structure functions are stored in multiple .csv-files as data frames for faster
acquisition. The structure function was calculated for both𝑚 = 2 and𝑚 = 4
(see equation 2.1). At higher orders than 4, the structure results become un-
reliable [Horbury and Balogh, 1997]. We chose to only calculate the structure
function for orders𝑚 = 2 and𝑚 = 4 due to our large amount of data and the
computational time required to generate the result. We also need𝑚 = 2 and
𝑚 = 4 when calculating the empirical flatness.

We opted for a maximum tau of 100 seconds when examining the structure
functions despite the signal being longer in many instances. This is due to
a reduced accuracy as 𝜏 increases due to less averaged points, as well as the
limited duration of some structure functions which do not extend much beyond
100 seconds. When we divide the polar region into Region A, B and C we end
up with cases where regions do not last long enough to calculate the structure
function for 𝜏 = 100𝑠. This is most common for Region A and C. We wanted to
avoid restricting the maximum time lag to less than 100𝑠 in sufficiently long
datasets. For shorter datasets, we computed the structure function up to the
maximum attainable time lag. As an example, in a dataset lasting 160𝑠, we
set the maximum time lag 𝜏 to 80𝑠. We justify this due to the final result not
getting significantly affected the shorter signals. In addition, the average length
for the structure function in the two shortest regions are approximately 133s
and 119s for Region A and C, respectively. For completeness we mention that
the average length in region B is 205s and the entire polar region is 455s. Note
that the sum of the lengths of Region A, B and C is 457s, we assume the 2
second difference is due to rounding errors in Python.

Furthermore, we wanted to determine which of the two structure functions
had the highest output values at the intervals [1s, 10s] and [10s, 100s] when
comparing the high activity and low activity days. This was done to check if we
could observe a trend, i.e. higher values for days of high geomagnetic activity.
To do this we used the Simpson integration rule [SciPy, a] to estimate the area
the curves.

Additionally we calculated the slope of the structure function using scipy’s
linear regression [SciPy, b]. This was done for 𝜏 in the ranges [1𝑠, 10𝑠] and

22 chapter 4 methods

[10𝑠, 100𝑠] resulting in 4 different data sets. We investigated the range 𝜏 =

[0.0625𝑠, 1𝑠] to observe if there are any differences at smaller scales by utilizing
our 16 Hz data. However, our primary focus was on 𝜏 = [1𝑠, 10𝑠] and 𝜏 =

[10𝑠, 100𝑠] due to difficulties interpreting the data, as we have very few data
points at such small timescales. A figure covering the slopes at𝜏 = [0.0625𝑠, 1𝑠]
can be found in the appendix. These data sets were categorized into two groups:
one for high activity days and one for low activity days, for each of the 𝜏 intervals.
Initially both the high and low activity data sets had 39 values each, for the 39
different cases. Due to not having as many days of low geomagnetic activity as
of high geomagnetic activity, some duplicate data was present. To avoid using
the same data more than once we removed the duplicates in the data sets for
the low activity days. This resulted in 31 unique slopes.

At first we used a kernel density estimation on the histograms which yields
better results for large data sets, hoping to gain more details about our data.
In the end we decided that due to not having more than at maximum 39 data
points for the high activity day and 31 for the low activity day, we would not
gain any more information than by displaying the results in histograms.

We also plotted the ratio of the structure functions in each region, that is: Region
B/A, Region B/C and Region A/C. We did not have time to analyse these results,
however.

4.2 Empirical Flatness

We describe the method behind the implementation of the empirical flatness,
and how we further used these computations in the following section.

Since both the structure function for𝑚 = 2 and𝑚 = 4 is calculated at this stage,
we applied these calculations when determining empirical flatness to save on
time and computational power. This method results in a time series of equal
length to the aforementioned structure function e.g. an empirical flatness in the
interval [1/16s, n] where n is half the length of the signal. The empirical flatness
was calculated for the entire polar region, both auroral regions (Region A and
C) and the polar cap (Region B) in between these two auroral regions.

Moreover, we divide the empirical flatness into two intervals 𝜏 = [1𝑠, 10𝑠]
and 𝜏 = [10𝑠, 100𝑠] instead of three as we did for the structure function. We
omit the smallest interval as we could not observe any meaningful difference
between those using 𝜏 = [1𝑠, 10𝑠]. Because large values often occur when 𝜏 is
small, we calculate the area of each flatness curve using the same method as
for the structure function possibly observing intermittent characteristics.

4.3 probabil ity density function 23

4.3 Probability Density Function

The implementation of the probability density function is described in this
segment. We also highlight the tools used to get our result.

The probability density function 𝑛𝑒 (𝑡 + Δ𝑡) − 𝑛𝑒 (𝑡) was calculated for multi-
ple increments of 𝜏 . 𝜏 = [.0625𝑠, .125𝑠, .25𝑠, .5𝑠, 1𝑠], at extremely small scales
𝜏 = [1𝑠, 5𝑠, 10𝑠] at small scales and 𝜏 = [10𝑠, 50𝑠, 100𝑠] at larger scales. We
decided to use extremely small scales to make better use of our 16 Hz sam-
pling rate. The results were normalized to the standard deviation following
the same methods as in [Consolini et al., 2020]. We divided the increments
into three intervals. The first from 0.0625s to 1s to see if we can notice any
difference in very small structures due to our high resolution data. The two
latter time intervals following the same reasoning as our structure functions
and empirical flatness. Especially the empirical flatness due to the correlation
to kurtosis.

The probability density functions were calculated in the interval separately for
the high and low activity days. We computed the PDFs in the entire polar region,
and Region A, B and C. We fitted a Gaussian to the probability density functions.
Its mean and standard deviation was calculated from the average of the PDFs
mean and standard deviations for all increments to make the Non-Gaussianity
more discernible.

We used a kernel density estimate (KDE) to produce the figures related to the
PDFs. A KDE is comparable to a histogram, but in our case it produced a clearer
visualisation of the PDFs, similar to results found in [Consolini et al., 2020].
The KDE was performed using the seaborn module’s kdeplot [Seaborn,].

5
Results
We present our observations for each of the methods used. Each section consists
of a specific method used which we presented in chapter 4. We follow the
same structure as in the aforementioned chapter. Each section is divided into
subsections. We first present the results covering the calculation throughout
the entire polar region, before moving on to the polar cap, referred to as Region
B. Region A and C are discussed lastly, due to both regions being located in the
auroral region. Unless otherwise specified, each plot corresponding to different
regions (e.g., structure function for each region) follows the same formatting
and annotations.

Firstly in section 5.1, we introduce our results obtained by use of the structure
function. We display some examples of the structure functions and slopes before
moving on to the corresponding histograms where we display all our data for
the slopes. We then show the histograms for the areas of the structure function
curves and the structure functions’ divergence from the power law.

We then move on to the results obtained from the empirical flatness in sec-
tion 5.2 where we present figures for the empirical flatnesses and histograms
corresponding to the areas under the curves.

Due to the preceding method’s result sharing some similarities with the next
one, section 5.3 display the results gained by calculating the PDFs. Due to the
similarities between all figures, we only display examples of one instance for
one day, which we will further elaborate in chapter 6.

25

26 chapter 5 results

5.1 Structure Function

For all regions we first present the structure functions calculated for𝜏 = [1
16𝑠,

𝐿
2𝑠]

where L is the length of the data set for a high and low geomagnetic activity
day. We also add three dashed lines for each day representing the slopes at
𝜏 = [0.0625𝑠, 1𝑠], 𝜏 = [1𝑠, 10𝑠] and 𝜏 = [10𝑠, 100𝑠]. This is to illustrate a typ-
ical structure function and slope for each of the cases. We then move on to the
distribution of the slopes displayed in histograms. Furthermore we show the ar-
eas of each structure function before displaying the corresponding distributions
in histograms.

5.1.1 Structure Function and Slope

Firstly we present the plasma density during days of high and low geomag-
netic activity in Figure 5.1. Figure a) exhibits the plasma density for a period
on 4th November 2014, the same instance that was used as an example in
chapter 3. Figure b) shows the quiet day 3rd of November 2014 in a period
where the satellite is as close in latitude and longitude as possible to our active
period.

Figure 5.1: Plasma Density in the polar region in (a) a period of high geomagnetic
activity 4thNovember 2014 and (b) low geomagnetic activity 3rd of Novem-
ber 2014. Each figure is divided into the auroral regions A (blue) and C
(green), Region B the polar cap (orange). Both figures share tha same
y-axis.

5.1 structure function 27

Figures 5.2, 5.3, 5.4 and 5.5 show the structure function in a log-log plot calcu-
lated for our active and quiet day. The dashed lines show the regression analysis
for 𝜏 = [0.0625, 1𝑠], 𝜏 = [1𝑠, 10𝑠] and [10𝑠, 100𝑠] for both cases. The Y-axis
displays order of magnitude.

In Figure 5.2 the structure function is calculated for the entire polar region.
The structure function values during the high activity day are quite larger than
during the low activity day. We also see a decrease in slope for this day, while it
is actually slightly increasing for the low activity day as the scale increases. Be-
yond 𝜏 = 100𝑠 the structure functions become more uneven, and we have fewer
data points when calculating the average leading to a less precise result.

Figure 5.2: Structure function of order𝑚 = 2 in the polar region during a day of high
geomagnetic activity (blue figure) vs a day of low geomagnetic activity
(orange figure). The dashed lines represent the slopes.

Figure 5.3 shows the structure function calculated for the polar cap region. The
structure function values during the high activity day are larger than during
the low activity day, similar to the entire polar region. The main difference
is the structure function during the high activity day being slightly higher
in the polar cap. Furthermore, structure function for the low activity day is
approximately an order of magnitude lower. The slopes also share a likeness to
the slopes in the complete polar region. The structure function does not extend
as far past 𝜏 = 100𝑠 due to the polar cap only being a component of the polar
region.

28 chapter 5 results

Figure 5.3: Structure function of order𝑚 = 2 in the polar cap region during a day
of high geomagnetic activity (blue figure) vs a day of low geomagnetic
activity (orange figure). The dashed lines represent the slopes.

Figure 5.4 shows the structure function calculated for region A, as Swarm A
measures the auroral region before the polar cap. The structure function values
during the high activity day are again larger than during the low activity day,
but not quite as large as in the entire polar region nor the polar cap. We can
see that other than the magnitudes, the structure functions seem to exhibit a
behaviour opposite of what we see in the previous two examples. The slope
during the high activity day is steeper than the slope during the quiet day at
larger scales. The steepness’ of the slopes are harder to distinguish, however.
An important remark is that this will not always be the case, which becomes
clearer when observing the histograms for the slopes. It should be noted that
the structure function does not span the entire interval when 𝜏 = [10𝑠, 100𝑠],
as the auroral region regions often are smaller than the polar cap.

We see the structure function calculated for region C in Figure 5.5 as Swarm A
measures the auroral region after the polar cap. The structure function values
during the high activity day are similar to those in region A. The values for
the low activity day are a bit smaller than in region A however. The structure
functions behave similar to the results in Figures 5.2 and 5.3, with a very flat
slope from 10𝑠 to 100𝑠 during the high activity day. We make an important
remark here as well, which is that this will not always be the case. It should
rather be noted that the results can behave similar to what we see in region A.
As in the aforementioned region, we do not always have measurements which
are long enough to span the entire 𝜏 interval.

5.1 structure function 29

Figure 5.4: Structure function of order𝑚 = 2 in region A during a day of high geomag-
netic activity (blue figure) vs a day of low geomagnetic activity (orange
figure). The dashed lines represent the slopes.

Figure 5.5: Structure function of order𝑚 = 2 in region C during a day of high geomag-
netic activity (blue figure) vs a day of low geomagnetic activity (orange
figure). The dashed lines represent the slopes.

30 chapter 5 results

5.1.2 Slope Distribution

Instead of showing 39 figures similar to those in the figures in the previous
subsection, we instead add each result to histograms as shown in Figures 5.6,
5.7, 5.8 and 5.9. Here we can see the slope of all structure functions calculated
in the entire polar region. Note that duplicate slopes produced for the same
instances during days of low geomagnetic activity are removed, resulting in 31
slopes for these days in comparison to 39 slopes for days of high geomagnetic
activity. Due to the similarity of the results for order𝑚 = 2 and 𝑚 = 4 we
decided to only show the figures for𝑚 = 2.

The slopes are displayed for 𝜏 = [1𝑠, 10𝑠] and 𝜏 = [10𝑠, 100𝑠]. Figure a) shows
[1𝑠, 10𝑠] and [10𝑠, 100𝑠] for days of high geomagnetic activity. Figure b) shows
high and low activity days for the interval [1𝑠, 10𝑠]. Figure c) shows [1𝑠, 10𝑠]
and [10𝑠, 100𝑠] for days of low geomagnetic activity. Lastly, Figure d) shows
high and low activity days for the interval [10𝑠, 100𝑠].

We present the slopes in the entire polar region in Figure 5.6. If we first take
a look at Figure a) and c) we notice a clear difference. During days of high
geomagnetic activity there is a trend of slopes decreasing in value at larger
scales. During days of low geomagnetic activity a difference in slopes is much
harder to notice. Moreover, the distinction between active and quiet days be-
come more pronounced when inspecting Figures b) and d). The slopes during
active days are generally steeper than quiet days at smaller scales and shallower
at larger scales.

Figure 5.7 shows the slopes of days during high and low geomagnetic activity
in the polar cap region. Figure a) and c) are quite similar to the results covering
the complete polar region. The values of the slopes are spread over a wider
range in this case, however. Figures b) and d) are alike the previous result,
though the high and low activity days are more distinct, especially for 𝜏 =

[10𝑠, 100𝑠].

5.1 structure function 31

Figure 5.6: Slopes in polar region. (a) 𝜏 = [1𝑠, 10𝑠] (blue) 𝜏 = [10𝑠, 100𝑠] (orange)
during active periods. (b) Active (blue) and quiet (orange) periods for 𝜏 =

[1𝑠, 10𝑠]. (c) 𝜏 = [1𝑠, 10𝑠] (blue) 𝜏 = [10𝑠, 100𝑠] (orange) during quiet
periods. (d) Active (blue) and quiet (orange) periods for 𝜏 = [10𝑠, 100𝑠].

Figure 5.7: Slopes in polar cap region. (a) 𝜏 = [1𝑠, 10𝑠] (blue) 𝜏 = [10𝑠, 100𝑠] (or-
ange) during active periods. (b) Active (blue) and quiet (orange) peri-
ods for 𝜏 = [1𝑠, 10𝑠]. (c) 𝜏 = [1𝑠, 10𝑠] (blue) 𝜏 = [10𝑠, 100𝑠] (orange)
during quiet periods. (d) Active (blue) and quiet (orange) periods for
𝜏 = [10𝑠, 100𝑠].

32 chapter 5 results

Figure 5.8 exhibit the slopes of days during high and low geomagnetic activity
in the first section of the auroral region, region A. Noticing any distinguishing
features is a bit more challenging than in the previous two results. In Figure a)
the slopes are slightly smaller at higher scales. In Figure c), the slopes at large
scales are spread more than the two previous regions, ranging from -0.5 to 1.2.
It is challenging to notice any substantial difference between the days of high
and low activity in Figures b) and d).

Figure 5.8: Slopes in Region A. (a) 𝜏 = [1𝑠, 10𝑠] (blue) 𝜏 = [10𝑠, 100𝑠] (orange)
during active periods. (b) Active (blue) and quiet (orange) periods for 𝜏 =

[1𝑠, 10𝑠]. (c) 𝜏 = [1𝑠, 10𝑠] (blue) 𝜏 = [10𝑠, 100𝑠] (orange) during quiet
periods. (d) Active (blue) and quiet (orange) periods for 𝜏 = [10𝑠, 100𝑠].

Lastly in Figure 5.9 we present the slopes of days during high and low geo-
magnetic activity in Region C, the second part of the auroral region as the
satellite leaves the polar region. Noticing any differences in each histogram is
even more challenging for these cases. In Figure a) and c) the slopes at large
scales have wider distribution than at small scales. Otherwise, it is quite hard
to distinguish the high and low activity days.

5.1 structure function 33

Figure 5.9: Slopes in Region C. (a) 𝜏 = [1𝑠, 10𝑠] (blue) 𝜏 = [10𝑠, 100𝑠] (orange)
during active periods. (b) Active (blue) and quiet (orange) periods for 𝜏 =

[1𝑠, 10𝑠]. (c) 𝜏 = [1𝑠, 10𝑠] (blue) 𝜏 = [10𝑠, 100𝑠] (orange) during quiet
periods. (d) Active (blue) and quiet (orange) periods for 𝜏 = [10𝑠, 100𝑠].

5.1.3 Area of Structure Function

Figures 5.10, 5.11, 5.12 and 5.13 display the area covered by the structure func-
tions of order𝑚 = 2 for each instance, totaling 39. We do not remove the dupli-
cates in these figures as we want to compare the results on a case-by-case basis.
Figure a) and b) show 𝜏 = [1𝑠, 10𝑠] and 𝜏 = [10𝑠, 100𝑠] respectively when cal-
culating the structure function. The blue plots are areas calculated during days
of high geomagnetic activity while the orange plots are calculated ruing days
of low activity. We do not present similar plots for 𝜏 = [0.0625𝑠, 1𝑠].

In the entire polar region exhibited in Figure 5.10, we can see that for most
cases the high activity days have larger output values. While the area increases
for all cases at larger scales, the relative difference between active and quiet
cases do not have any noticeable change.

34 chapter 5 results

Figure 5.10: Area of structure function in the entire polar region. (a) Area for smaller
structures 𝜏 = [1𝑠, 10𝑠] calculated for all instances. (b) Area for larger
structures 𝜏 = [10𝑠, 100𝑠] calculated for all instances.

Figure 5.11 shows the area covered by the structure functions in the polar
cap region. There are larger variations for some instances during days of low
geomagnetic activity, especially instance 28. Otherwise the results are fairly
similar to those presented in Figure 5.10

Figure 5.11: Area of structure function in the polar cap region. (a) Area for smaller
structures 𝜏 = [1𝑠, 10𝑠] calculated for all instances. (b) Area for larger
structures 𝜏 = [10𝑠, 100𝑠] calculated for all instances.

5.1 structure function 35

Furthermore we move on to the auroral regions. Figure 5.12 displays the area
covered by the structure functions in region A. There is a similar trend to that
for the polar cap. If we inspect the y-axis, the differences between structure
functions that cover large areas and those that cover small areas are much
larger at 𝜏 = [10𝑠, 100𝑠] than those in the entire polar region and polar cap at
this scale.

Figure 5.13 show the area covered by the structure functions in region C. We
see a smaller difference between active and quiet day areas at large scales than
in the other regions.

Figure 5.12: Area of structure function in region A. (a) Area for smaller structures
𝜏 = [1𝑠, 10𝑠] calculated for all instances. (b) Area for larger structures
𝜏 = [10𝑠, 100𝑠] calculated for all instances.

Figure 5.13: Area of structure function in region C. (a) Area for smaller structures
𝜏 = [1𝑠, 10𝑠] calculated for all instances. (b) Area for larger structures
𝜏 = [10𝑠, 100𝑠] calculated for all instances.

36 chapter 5 results

5.2 Empirical Flatness

All regions are presented in the samemanner as in section 5.1. We first start with
displaying the empirical flatness for all instances along with the corresponding
area distribution. Additionally we show figures of the areas of each instance,
similar to in subsection 5.1.3.

5.2.1 Empirical Flatness and Area Distribution

Figures 5.14, 5.15, 5.16 and 5.17 show the empirical flatness for all instances
in a plot each for 𝜏 = [1𝑠, 10𝑠] (a) and 𝜏 = [10𝑠, 100𝑠] (b). The dashed
line represents a flatness value 𝐹 (𝜏) = 3. Additionally, we provide two plots
containing the distribution of the area covered by each empirical flatness for
𝜏 = [1𝑠, 10𝑠] (c) and 𝜏 = [10𝑠, 100𝑠] (d).

Figure 5.14 presents the empirical flatness calculated in the entire polar region
for 𝜏 = [1𝑠, 10𝑠] and 𝜏 = [10𝑠, 100𝑠] in Figure a) and b), respectively. Figures
c) and d) show the corresponding distribution of areas in histograms. We can
see larger values for the output during low activity days. We will discuss this
further in chapter 6. We can also see how the values decrease for all instances
of empirical flatness as the scale increases, which is in agreement with the
expected result.

Figure 5.15 exhibits the empirical flatness calculated in the polar cap region.
We can see a similar result as in Figure 5.14 with some slight change. We
have a smaller quantity of larger values for the output during low activity
days. Consequently we see a larger amount of high activity days with larger
output values than the low activity days. The values decrease for all instances
of empirical flatness as the scale increases in this case as well.

5.2 empir ical flatness 37

Figure 5.14: Dashed line represents 𝐹 (𝜏) = 3. (a) active days (blue) and quiet days
(orange) for 𝜏 = [1𝑠, 10𝑠]. (b) active days (blue) and quiet days (orange)
for 𝜏 = [10𝑠, 100𝑠]. (c) Area distribution of active days (blue) and quiet
days (orange) for 𝜏 = [1𝑠, 10𝑠]. (d) Area Distribution for active days
(blue) and quiet days (orange) for 𝜏 = [10𝑠, 100𝑠].

Figure 5.15: Dashed line represents 𝐹 (𝜏) = 3. (a) active days (blue) and quiet days
(orange) for 𝜏 = [1𝑠, 10𝑠]. (b) active days (blue) and quiet days (orange)
for 𝜏 = [10𝑠, 100𝑠]. (c) Area distribution of active days (blue) and quiet
days (orange) for 𝜏 = [1𝑠, 10𝑠]. (d) Area distribution of active days (blue)
and quiet days (orange) for 𝜏 = [10𝑠, 100𝑠].

38 chapter 5 results

Figure 5.16 shows the empirical flatness calculated in region A. The results are
fairly similar to the results for the polar cap region. Aside from some outliers,
𝐹 (𝜏) is generally higher during days of high geomagnetic activity. As the scale
increases and the flatness approaches 𝐹 (𝜏) = 3 the flatness during quiet days
become more spread out.

Figure 5.16: Dashed line represents 𝐹 (𝜏) = 3. (a) active days (blue) and quiet days
(orange) for 𝜏 = [1𝑠, 10𝑠]. (b) active days (blue) and quiet days (orange)
for 𝜏 = [10𝑠, 100𝑠]. (c) Area distribution of active days (blue) and quiet
days (orange) for 𝜏 = [1𝑠, 10𝑠]. (d) Area distribution of active days (blue)
and quiet days (orange) for 𝜏 = [10𝑠, 100𝑠].

Figure 5.17 shows the empirical flatness calculated in region C. The result in
Figure a) and c) share a likeness to what we saw in the entire polar region.
At larger scales as shown in Figures b) and d) we see more similarities to the
polar cap and region A, however.

5.2 empir ical flatness 39

Figure 5.17: Dashed line represents 𝐹 (𝜏) = 3. (a) active days (blue) and quiet days
(orange) for 𝜏 = [1𝑠, 10𝑠]. (b) active days (blue) and quiet days (orange)
for 𝜏 = [10𝑠, 100𝑠]. (c) Area distribution of active days (blue) and quiet
days (orange) for 𝜏 = [1𝑠, 10𝑠]. (d) Area distribution of active days (blue)
and quiet days (orange) for 𝜏 = [10𝑠, 100𝑠].

5.2.2 Area of Empirical Flatness

Figures 5.18, 5.19, 5.20 and 5.21 display the area covered by the empirical
flatness for each instance, totaling 39. We do not remove the duplicates in
these figures like in subsection 5.1.3. Figure a) and b) show 𝜏 = [1𝑠, 10𝑠] and
𝜏 = [10𝑠, 100𝑠] respectively when calculating the empirical flatness. The blue
plots depict areas calculated during days of high geomagnetic activity while
the orange plots represent areas calculated during days of low activity. We have
also added the average area of all instances for high and low activity periods,
displayed as dotted lines in the corresponding colors.

Figure 5.18 displays the area covered by the empirical flatness in the entire
polar region. We see a spike during the low activity day for instance 14. This
will be discussed in chapter 6. We cannot observe any noticeable difference
outside this spike. The average is slightly higher during the low activity days,
although not by a significant amount.

Figure 5.19 shows the area covered by the empirical flatness in the polar cap
region. We can see two spikes at instance 5 and 14 during the low activity days.

40 chapter 5 results

Otherwise, the results are similar to what we saw in Figure 5.18, with a slightly
smaller difference between the means.

Figure 5.18: Area of empirical flatness in the entire polar region. (a) Area for smaller
structures 𝜏 = [1𝑠, 10𝑠] calculated for all instances. (b) Area for larger
structures 𝜏 = [10𝑠, 100𝑠] calculated for all instances.

Figure 5.19: Area of empirical flatness in the polar cap region. (a) Area for smaller
structures 𝜏 = [1𝑠, 10𝑠] calculated for all instances. (b) Area for larger
structures 𝜏 = [10𝑠, 100𝑠] calculated for all instances.

In Figure 5.20 we can see the area covered by the empirical flatness in region
A. We can see a spike at instance 18 during the low activity days. This is the

5.2 empir ical flatness 41

only case where the average is larger for days of high geomagnetic activity than
during quiet days.

Figure 5.20: Area of empirical flatness in region A. (a) Area for smaller structures
𝜏 = [1𝑠, 10𝑠] calculated for all instances. (b) Area for larger structures
𝜏 = [10𝑠, 100𝑠] calculated for all instances.

Figure 5.21 presents the area covered by the empirical flatness in region C.
We observe a large amount of high values during low activity days for smaller
scales in Figure a). In Figure b) we see more evenly distributed values, like
those in Figures 5.19 and 5.20.

42 chapter 5 results

Figure 5.21: Area of empirical flatness in region C. (a) Area for smaller structures
𝜏 = [1𝑠, 10𝑠] calculated for all instances. (b) Area for larger structures
𝜏 = [10𝑠, 100𝑠] calculated for all instances.

5.3 Probability Density Function

We present the probability density functions for three different increments pre-
sented as the small increment,middle increment and large increment. The incre-
ments are as follows: 𝜏 = [0.0625𝑠, 0.125𝑠, 0.25𝑠, 0.5𝑠, 1.0𝑠],𝜏 = [1.0𝑠, 5.0𝑠, 10.0𝑠]
and 𝜏 = [10.0𝑠, 50.0𝑠, 100.0𝑠]. Each increment is calculated over the entire
polar region. The results for the polar cap and auroral regions are hard to distin-
guish from the entire polar region and are not included. We only show the PDF
for one instance, on 4th November 2014 during the day of high geomagnetic
activity and 3rd November 2014 during the day of low geomagnetic activity.
This is due to not observing any noticeable difference when investigating the
results of different days. All probability density function for the high activity
days are presented in Figure a) and low activity days are presented in Figure b).
We have superposed a Gaussian to all of the figures to more clearly determine
Gaussianity.

5.3 probabil ity density function 43

5.3.1 Small Increment

Figure 5.22 presents the probability density function at small increments 𝜏 =

[0.0625𝑠, 0.125𝑠, 0.25𝑠, 0.5𝑠, 1.0𝑠] in the entire polar region. Other than a
sharper peak in Figure b), it is difficult to make out any differences. Both cases
have sharp peaks and heavy tails, however.

(a) High Activity Day in Entire Polar Region

(b) Low Activity in Entire Polar Region

Figure 5.22: PDF for five time lags. 𝜏 = 0.0625𝑠 (dotted blue), 𝜏 = 0.125𝑠 (dotted
orange), 𝜏 = 0.25𝑠, 𝜏 = 0.50𝑠 (dotted red) and 𝜏 = 1.0𝑠 (dotted purple).
A Gaussian (solid black) is superposed. (a) high activity period on 4th
November 2014 (b) low activity period on 3rd November 2014.

44 chapter 5 results

5.3.2 Middle Increment

Figure 5.23 presents the probability density function at medium increments
𝜏 = [1.0𝑠, 5.0𝑠, 10.0𝑠] in the entire polar region. The Figures exhibit similar
results to for the small increments.

(a) High Activity in Entire Polar Region

(b) Low Activity in Entire Polar Region

Figure 5.23: PDF for three time lags. 𝜏 = 1.0𝑠 (dotted blue), 𝜏 = 5.0 (dotted orange)
and 𝜏 = 10.0. A Gaussian (solid black) is superposed. (a) high activity
period on 4th November 2014 (b) low activity period on 3rd November
2014.

5.3 probabil ity density function 45

5.3.3 Large Increment

Figure 5.24 presents the probability density function at large increments 𝜏 =

[10.0𝑠, 50.0𝑠, 100.0𝑠] in the entire polar region. Both Figure a) and b) is closer
to the superposed Gaussian compared to at the two smaller increments.

(a) High Activity in Entire Polar Region

(b) Low Activity in Entire Polar Region

Figure 5.24: PDF for three time lags. 𝜏 = 1.0𝑠 (dotted blue), 𝜏 = 5.0 (dotted orange)
and 𝜏 = 10.0. A Gaussian (solid black) is superposed. (a) high activity
period on 4th November 2014 (b) low activity period on 3rd November
2014.

6
Discussion
In this chapter we discuss the results presented in the previous chapter. Our
aim was to investigate the polar region for any differences and similarities in
intermittent behaviour during days of high and low geomagnetic activity using
different tools at 16 Hz resolution. We noticed the largest difference when in-
vestigating the structure functions, which may provide more insight into how
structures behave at different scales. The slopes for structure functions in the
polar cap was significantly different at large and small scales, and during differ-
ent levels of geomagnetic activity. The auroral regions were not distinguishable
between different levels of geomagnetic activity. We also note that region A
and C does not relate to the dayside and nightside auroral regions and these re-
sults should be discussed in conjunction with each other. Our findings support
those of previous work [Spicher et al., 2015] [De Michelis et al., 2020], which
discussed the differences in polar regions and geomagnetic activity level respec-
tively. The results may help understand how energy dissipation varies in the
different high-latitude regions and how geomagnetic activity affects convection
in these regions.

We structure this chapter in the same way as our results in chapter 5. We
begin discussing the results we obtained by analysing the structure function.
Moreover, we discuss the results of the empirical flatness. Lastly we discuss the
probability density fluctuations.

47

48 chapter 6 discussion

6.1 Structure Function

We discuss the results presented in subsections 5.1.1 and 5.1.2 simultaneously
as the figures in the first subsection can help explain some of what we see in
the latter. We use the same order as before, starting with the entire polar region
before moving on to the polar cap and finishing with the auroral region. The
structure function was our main focus due to observing most differences using
this tool.

6.1.1 Slopes

Calculations in the entire polar region exhibit similar behaviour to those made
in the polar cap (Region B). At smaller scales, the slopes were generally steeper,
and there was a clear difference between days of high and low geomagnetic
activity. At first glance, one may conclude that since the polar cap is usually
the largest of regions A, B and C, it has the most significant contribution the
entire polar region. One must not forget that region A and C combined can be
as large as the polar cap, however. The similarities between the polar cap and
the entire polar region could still be due to the contributions of the polar cap
though. Observing the histogram of slopes for regions A and C in Figures 5.8
and 5.9 we can hardly distinguish the high and low activity days. When we
combine this data with the observations of slopes for the polar cap in Figure 5.7
where we have a clear distinction, we expect the results to be an intermediate
between all regions. Indeed, we noted how the differences between high and
low activity days are more pronounced in the polar cap than the entire polar
region, which supports this explanation.

Let us further discuss the results for the polar cap. It is a common trend
for slopes to become shallower as scale increase from tens of kilometres at
𝜏 = [1𝑠, 10𝑠] to hundreds of kilometres at 𝜏 = [10𝑠, 100𝑠] during days of high
geomagnetic activity. This is related to a difference in energy transfer rate as
plasma cascades down to smaller scales. We can expect most structure func-
tions under these conditions to have a "knee" as the scale increases, as seen in
Figure 5.2 and Figure 5.3. This tendency is not repeated in days of low geo-
magnetic activity. This result indicates how scale invariance in the polar cap is
connected to the level of geomagnetic activity, which agrees with the findings
of [De Michelis et al., 2020] who observed a notable increase in intermittency
in the polar cap during a geomagnetic storm event. Similar findings are pre-
sented in [Tozzi et al., 2023], who observed higher scaling exponents for polar
cap patches during periods of increased geomagnetic activity. The physical
mechanisms behind a decrease in slope at larger scales can be connected to a
change in energy transfer rate in turbulence as the energy cascades down into
smaller scales. This leads to sporadic localised structures, i.e. intermittency. At

6.1 structure function 49

even smaller scales the results are fairly difficult to analyse. A reason could
be that the regression is calculated for 16 data points for 𝜏 = [0.0625𝑠, 1𝑠] in
contrast with 160 for 𝜏 = [1𝑠, 10𝑠] and 1600 for 𝜏 = [10𝑠, 100𝑠]. The result indi-
cates structures in the polar cap being affected by the geomagnetic level. Both
[Consolini et al., 2020] and [Spicher et al., 2015] suggested that the strong
gradient drift is one of the primary mechanisms behind plasma irregularities
in the polar cap. This mechanism is also mentioned by [Tozzi et al., 2023]
who also linked these events and velocity-shear to a heightened geomagnetic
activity.

In region A the difference in steepness between large and small scales are not
as pronounced as in the polar cap, while Region C does not exhibit any sig-
nificant difference. We can not observe any clear difference when inspecting
days of high and low geomagnetic activity in either regions which suggest that
the the creation of intermittent structures in the auroral region is not affected
by geomagnetic activity. [Consolini et al., 2020] found signatures of intermit-
tency in the auroral oval, which we could not observe by analysing the structure
function. A possible explanation is not separating Region A and C into dayside
and nightside regions. We see a slight difference in the distribution of slopes
at small scales when comparing Region A and C, which may be due to an un-
even distribution of dayside and nightside regions. [De Michelis et al., 2020]
discussed how the geomagnetic activity caused more pronounced results dur-
ing the geomagnetic storm which is not obvious in our results concerning the
auroral region.However, we can only observe the scaling behaviour of the en-
tire system, which may vary more locally dependent on geomagnetic activity.
We suggest that other methods should be used to try and distinguish days of
varying geomagnetic activity from each other, such as investigating the scaling
exponents from𝑚 = 1 to𝑚 = 4 as in [Spicher et al., 2015].

The length of our data is also longer in the polar cap, as mentioned in chapter
4.1, which leads to more precise calculations in this region. Region A and C are
significantly shorter, which especially affects our data at larger scales.

6.1.2 Area

The area calculated by integrating the structure functions are mainly to give
us an estimate of which structure function produces higher output values. The
high activity periods are in almost all cases larger than the low activity periods.
When we consider an increase in particle precipitation during the active periods
this makes sense for the auroral region where particle precipitation occur. We
mentioned in section 2.1 how plasma can be transported across the polar cap
from other regions such as the auroral oval through convection, which explains
the heightened density.

50 chapter 6 discussion

which was primarily associated with geomagnetic storms. Larger values are
not necessarily a product of intermittency, instead they reveal more about how
high the background electron density is. The results are best interpreted in
hand with the results discussing the slopes of the structure functions.

6.2 Empirical Flatness

We anticipate larger flatness values at smaller scales based on previous work
by [Spicher et al., 2015], [Chian et al., 2008], [Sahraoui, 2008] and
[Wernik et al., 2003]. We do not however see the largest values during days of
high geomagnetic activity.

In Panels a) and b) in Figures 5.14, 5.16, 5.15 and 5.17 some instances during
low activity days have much higher flatness at small scales,which suggests more
intermittency [Sahraoui, 2008]. The highest flatness during a quiet day is on
3rd December 2015, with corresponding high activity period on 5th December
2015 represented by instance 14 in Figure 5.18 covering the entire polar region.
High intermittency is characterised by a large flatness for small structures which
we discuss further.

Figure 6.1 exhibit the empirical flatness during instance 14 on 5th and 3rd
December 2015 for the high and low activity day, respectively. The calculations
are made over the entire polar region. We see an extremely large flatness for
the inactive day, which without further investigating would look like signs of
intermittency.

Figure 6.2 shows the structure functions for instance 3 on 5th and 3rd December
2015. Figure a) display the structure function of order 𝑚 = 2 for both days
while Figure b) display the structure function of order𝑚 = 4 for both days.
Notice how the structure function is higher during the active day for𝑚 = 2,
but the low activity day is higher for𝑚 = 4. The m-th order of the structure
function enhances outliers when calculating the average [Dyrud et al., 2008],
and a higher order leads to these outliers contributing more to the final output
of the structure function.

6.2 empir ical flatness 51

Figure 6.1: Empirical flatness for day of high geomagnetic activity (blue) and day of
low geomagnetic activity (orange)

(a) Structure Function for M=2

(b) Structure Function for M=4

Figure 6.2: Structure function for𝑚 = 2 and𝑚 = 4 during active day 5th December
2015, and quiet day 3rd December 2015. (a) Active𝑚 = 2 (blue) and quiet
𝑚 = 2 (orange). (b) Active𝑚 = 4 (green) and quiet𝑚 = 4 (red).

52 chapter 6 discussion

To explain this further, Figures 6.3 and 6.4 present the plasma density used in
the structure function before calculating the average. The average is calculated
for 𝜏 = 1𝑠, which is at the very beginning of the structure function where the
differences between the m-th orders are highest. The x-axis in each of these
figures display the length of the signal. Since 𝜏 = 1 we calculate |𝑁𝑒 (𝑡 + 𝜏) −
𝑁𝑒 (𝑡) | for the entire length of the signal minus one second. Figures a) exhibits
the calculations for the high activity day and Figure b exhibits the calculations
during the low activity day. The dashed line represents the average of all data
points.

For 𝑚 = 2 we can in Figure 6.3 b) see a spike around 400 seconds while
otherwise the values are much lower than in figure a). The average in Figure
a) is still higher, however. In Figure 6.4 b) the value of the spike is amplified
and the average have surpassed that of Figure 6.4 a).

(a) Subfigure A

(b) Subfigure B

Figure 6.3: Average of change in electron density between time t and 𝜏 = 1𝑠 of order
𝑚 = 2

6.2 empir ical flatness 53

(a) Subfigure A

(b) Subfigure B

Figure 6.4: Average of change in electron density between time t and 𝜏 = 1𝑠 of order
𝑚 = 4

This increase in flatness for the low activity day seems to come from a single
event, reinforced by higher orders. These types of cases for the magnetic field
is discussed in [Horbury and Balogh, 1997]. Their solution was to separate
the data into multiple bins, and calculate the contribution of each bin to the

54 chapter 6 discussion

total sum. Bins which contribution more than 2% but consisted of less than 10
points were rejected. A similar solution can be implemented in our algorithm,
although for this to be viable the code requires further optimization due to
memory consumption. This method could possibly remove outliers from our
data.

When investigating other instances corresponding to very high values of em-
pirical flatness similar observations were made, although not as extreme as in
Figure 6.4. Indeed, singular events can have an effect on some of our data and
measures should be taken to avoid these anomalies in the future.

We remark that our result is inconclusive. To be certain of our result, we would
require implementing a method similar to [Horbury and Balogh, 1997] or ex-
amine each instance for singular events. We cannot with certainty say that the
empirical flatness is higher during our days of high geomagnetic activity with-
out further investigation. We introduce some more suggestions in 7.1.

6.3 Probability Density Function

In previous work by [Consolini et al., 2020], they showed that during periods of
high geomagnetic activity the electron density fluctuations are non-Gaussian
at short timescales 𝜏 < 50𝑠. Our results are very much alike, with shorter
timescales having stronger departures from Gaussianity. Indeed, we see other
work also achieving this result. A case covering atmospheric turbulence by
[Chian et al., 2008] exhibited the same result. As 𝜏 increased, so did the Gaus-
sianity of the data.

However, we see the same result during periods of low geomagnetic activity.
Due to more intermittent behaviour having been observed when the geomag-
netic activity was higher [Lovati et al., 2023][Tozzi et al., 2023] we expect the
PDF to deviate from the Gaussian more during the active days. Other works
have confirmed the results of the PDFs by measuring the empirical flatness
[Sahraoui, 2008]. The single events may affect our probability density func-
tions similar to the empirical flatness.

Overall, the results were fairly similar across the different instances and we
could not see much difference between days of high and low geomagnetic
activity. Further analysis on this subject is needed to investigate whether there
are any differences.

7
Conclusion
In this work we investigated whether different data analysis tools can reveal
any additional information about the nature of ionospheric turbulence and
intermittency at various polar regions. This task involved using these tools
to investigate any differences and similarities in the polar cap and auroral
region during days of high and low geomagnetic activity. For this we used 16
Hz plasma density measurements from Swarm A in the winter months of 2014
and 2015.

We calculated the structure function for 39 different periods during high ge-
omagnetic activity and 31 different periods during low geomagnetic activity.
Additionally, we measured the slopes of the structure functions at scales of tens
of kilometres 𝜏 = [1𝑠, 10𝑠] and hundreds of kilometres 𝜏 = [10𝑠, 100𝑠]. We did
this for the entire polar region, the auroral regions A and C on opposite sides of
the polar cap, and within the polar cap (Region B). Our results indicated a dif-
ference in the scaling behaviour in the polar cap at both varying geomagnetic
levels and scale sizes. [Consolini et al., 2020] and [Spicher et al., 2015] sug-
gested the irregularities being driven by gradient drift instabilities, which have
been linked to geomagnetic activity [Tozzi et al., 2023]. We could not observe
any notable differences for the auroral regions, however. This may suggest a
similar global scaling behaviour during various geomagnetic activity levels in
the auroral regions. We did not separate the auroral regions into dayside and
nightside, which may have affected the results. The reduced data length in the
auroral region compared to the polar cap could have also have had an effect
on the precision of the calculations. Future work should consist of separating

55

56 chapter 7 conclusion

Region A and C into dayside and nightside regions using the magnetic local
time, and investigating the scaling exponents of the structure function from
𝑚 = 1 up to𝑚 = 4.

Furthermore we investigated the empirical flatness and probability density
function in these regions. Both methods exhibited intermittent behaviour such
as large flatness and non-Gaussian distributions at at small scales. However,
we could not observe any notable differences in the different regions, nor the
different geomagnetic activity levels. The only exceptions were some periods
with singular large peaks in electron density fluctuations during quiet days
where the flatness 𝐹 (𝜏) was much higher than days which showed more irregu-
larities when inspecting the density fluctuations. We therefore suggest filtering
out outliers in future work concerning the empirical flatness and probability
density function.

We observed differences when investigating the structure function in the polar
cap and in the entire polar region, when comparing active and quiet days,
by differentiating dayside and nightside auroral regions we may be able to
obtain more information by investigating the slopes at various scales. Further
investigation is needed before we can ascertain any differences when using
tools such as the empirical flatness and probability density function.

7.1 Future Work

In this section we present some suggestions for future work.

We could make some improvements to the code, especially making it more
memory efficient, so use of vectorization can speed up our calculations. This
can be challenging in Python due to the way it handles memory management,
however. We can also obtain more data to improve the statistical findings. By
carrying out these two things we can process more data faster.

A particularly fascinating option is separating the auroral region into magnetic
local time (dayside/nightside). This method is already partially implemented in
our code, as we have converted latitude and longitude to magnetic coordinates,
though it somewhat unoptimized. Another partial implementation is applying
the tools within the south pole region. Everything needed to investigate the
south pole is already implemented, but it was not investigated further in this
work due to time constraints. We could also calculate the slopes for the 1st and
3rd order structure function such that we can check for scaling behaviour at
various scales.

7.1 future work 57

Furthermore we want to implement a method for removing the single events, as-
sessing whether the empirical flatness yields different results. This may be done
by using a smoothingwindow,or something similar to what [Horbury and Balogh, 1997]
presented. We also want to investigate the probability density fluctuations in
greater detail.

Implementing some, if not all of these methods may provide answers to some of
our findings where we could not observe the same result as previous literature.
We especially want to investigate further if we can detect changes in turbulence
and intermittency during different geomagnetic activity levels in the auroral
regions.

8
Appendix
Acknowledgements

Electron density measurements obtained by Swarm can be accessed at the
European Space Agency’s Swarm data access website:
(https://swarm-diss.eo.esa.in)
Further information can be found in the Swarm handbook:
(https://swarmhandbook.earth.esa.int/)

I want to thank my supervisor, Andres for invaluable help with the project. I
also want to thank my fellow students for helpful discussions, especially Kian
who also brought a fan to the office during hot summer days, and I want to
thank family and friends for support.

59

Bibliography
[Akasofu et al., 1965] Akasofu, S.-I., Chapman, S., and Meng, C.-I. (1965). The

polar electrojet. Journal of Atmospheric and Terrestrial Physics, 27(11):1275–
1305.

[Anderson, 1999] Anderson, D. (1999). The ionosphere. Space Environment
Center.

[Basu et al., 1990] Basu, S., Basu, S., MacKenzie, E., Coley, W. R., Sharber, J. R.,
and Hoegy, W. R. (1990). Plasma structuring by the gradient drift instabil-
ity at high latitudes and comparison with velocity shear driven processes.
Journal of Geophysical Research: Space Physics, 95(A6):7799–7818.

[Bruno et al., 2001] Bruno,R., Carbone,V., Veltri, P., Pietropaolo, E., and Bavas-
sano, B. (2001). Identifying intermittency events in the solar wind. Plane-
tary and Space Science, 49(12):1201–1210. Nonlinear Dynamics and Fraactals
in Space.

[Chian et al., 2008] Chian, A. C.-L., Miranda, R. A., Koga, D., Bolzan, M. J. A.,
Ramos, F. M., and Rempel, E. L. (2008). Analysis of phase coherence in
fully developed atmospheric turbulence: Amazon forest canopy. Nonlinear
Processes in Geophysics, 15(4):567–573.

[Consolini et al., 2020] Consolini, G., De Michelis, P., Alberti, T., Coco, I., Gi-
annattasio, F., Tozzi, R., and Carbone, V. (2020). Intermittency and passive
scalar nature of electron density fluctuations in the high-latitude ionosphere
at swarm altitude. Geophysical Research Letters, 47(18):e2020GL089628.
e2020GL089628 10.1029/2020GL089628.

[Dandekar and Bullett, 1999] Dandekar, B. S. and Bullett, T. W. (1999). Mor-
phology of polar cap patch activity. Radio Science, 34(5):1187–1205.

[Davis and Sugiura, 1966] Davis, T. N. and Sugiura,M. (1966). Auroral electro-
jet activity index ae and its universal time variations. Journal of Geophysical
Research (1896-1977), 71(3):785–801.

61

62 bibl iography

[De Michelis et al., 2020] De Michelis, P., Pignalberi, A., Consolini, G., Coco,
I., Tozzi, R., Pezzopane, M., Giannattasio, F., and Balasis, G. (2020). On
the 2015 st. patrick’s storm turbulent state of the ionosphere: Hints
from the swarm mission. Journal of Geophysical Research: Space Physics,
125(8):e2020JA027934. e2020JA027934 10.1029/2020JA027934.

[Dyrud et al., 2008] Dyrud, L., Krane, B., Oppenheim, M., Pécseli, H. L.,
Trulsen, J., and Wernik, A. W. (2008). Structure functions and intermit-
tency in ionospheric plasma turbulence. Nonlinear Processes in Geophysics,
15(6):847–862.

[ESA, a] ESA. Swarm Mission. https://earth.esa.int/eogateway/missions/
swarm. Spring 2024.

[ESA, b] ESA. Swarm Overview. https://earth.esa.int/eogateway/
missions/swarm/description. Spring 2024.

[ESA, c] ESA. Swarm Terms and Conditions. https://earth.esa.int/
eogateway/documents/d/earth-online/esa-eo-data-policy. Spring 2024.

[Frisch, 1995] Frisch, U. (1995). Turbulence: The Legacy of A.N. Kolmogorov.

[Horbury and Balogh, 1997] Horbury, T. S. and Balogh, A. (1997). Structure
function measurements of the intermittent mhd turbulent cascade. Nonlin-
ear Processes in Geophysics, 4(3):185–199.

[Iijima and Potemra, 1976] Iijima, T. and Potemra, T. A. (1976). Field-aligned
currents in the dayside cusp observed by triad. Journal of Geophysical Re-
search (1896-1977), 81(34):5971–5979.

[Jin et al., 2019] Jin, Y., Spicher, A., Xiong, C., Clausen, L. B. N., Kervalishvili,
G., Stolle, C., and Miloch, W. J. (2019). Ionospheric plasma irregularities
characterized by the swarm satellites: Statistics at high latitudes. Journal
of Geophysical Research: Space Physics, 124(2):1262–1282.

[Kelley, 2009] Kelley, M. C. (2009). The Earth’s Ionosphere: Plasma Physics and
Electrodynamics. Elsevier, Amsterdam, 2nd edition.

[Kintner and Seyler, 1985] Kintner, P. M. and Seyler, C. E. (1985). The status
of observations and theory of high latitude ionospheric and magnetospheric
plasma turbulence. Space Science Reviews, 41(1):91–129.

[Lester, 2003] Lester, M. (2003). Ionospheric convection and its relevance for
space weather. Advances in Space Research, 31(4):941–950.

https://earth.esa.int/eogateway/missions/swarm
https://earth.esa.int/eogateway/missions/swarm
https://earth.esa.int/eogateway/missions/swarm/description
https://earth.esa.int/eogateway/missions/swarm/description
https://earth.esa.int/eogateway/documents/d/earth-online/esa-eo-data-policy
https://earth.esa.int/eogateway/documents/d/earth-online/esa-eo-data-policy

bibl iography 63

[Lovati et al., 2023] Lovati, G., Michelis, P. D., Consolini, G., Pezzopane, M.,
Pignalberi, A., and Berrilli, F. (2023). Decomposing solar and geomagnetic
activity and seasonal dependencies to examine the relationship between
gps loss of lock and ionospheric turbulence. Scientific Reports, 13(1):9287.

[Mandeep et al., 2014] Mandeep, J. S., Oliveira, K., Moraes, A. d. O., Costa, E.,
Honorato Muella, M. T. d. A., de Paula, E. R., and Perrella,W. (2014). Valida-
tion of the gps ionospheric amplitude scintillation model of the power spec-
tral density. International Journal of Antennas and Propagation, 2014:573615.

[Mitchell et al., 2005] Mitchell, C. N., Alfonsi, L., De Franceschi, G., Lester, M.,
Romano, V., and Wernik, A. W. (2005). Gps tec and scintillation measure-
ments from the polar ionosphere during the october 2003 storm. Geophysical
Research Letters, 32(12).

[Moen, Jøran et al., 2013] Moen, Jøran, Oksavik, Kjellmar, Alfonsi, Lucilla,
Daabakk, Yvonne, Romano, Vineenzo, and Spogli, Luca (2013). Space
weather challenges of the polar cap ionosphere. J. Space Weather Space
Clim., 3:A02.

[Monin and Yaglom, 1975] Monin, A. S. and Yaglom, A. M. (1975). Statisti-
cal Fluid Mechanics: Mechanics of Turbulence, volume 1 and 2. MIT Press,
Cambridge, MA.

[Noja et al.,] Noja, M., Stolle, C., Park, J., and Lühr, H. Long-term analy-
sis of ionospheric polar patches based on champ tec data. Radio Science,
48(3):289–301.

[Phelps and Sagalyn, 1976] Phelps, A. D. R. and Sagalyn, R. C. (1976). Plasma
density irregularities in the high-latitude top side ionosphere. Journal of
Geophysical Research (1896-1977), 81(4):515–523.

[Sahraoui, 2008] Sahraoui, F. (2008). Diagnosis of magnetic structures and
intermittency in space-plasma turbulence using the technique of surrogate
data. Phys. Rev. E, 78:026402.

[SciPy, a] SciPy. scipy.integrate.simpson. https://docs.scipy.org/doc/
scipy/reference/generated/scipy.integrate.simpson.html#scipy.
integrate.simpson. Spring 2024.

[SciPy, b] SciPy. scipy.stats.linregress. https://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.linregress.html. Spring 2024.

[Seaborn,] Seaborn. seaborn.kdeplot. https://seaborn.pydata.org/

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simpson.html#scipy.integrate.simpson
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simpson.html#scipy.integrate.simpson
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simpson.html#scipy.integrate.simpson
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html
https://seaborn.pydata.org/generated/seaborn.kdeplot.html
https://seaborn.pydata.org/generated/seaborn.kdeplot.html
https://seaborn.pydata.org/generated/seaborn.kdeplot.html

64 bibl iography

generated/seaborn.kdeplot.html. Spring 2024.

[Spicher et al., 2015] Spicher, A., Miloch,W. J., Clausen, L. B. N., andMoen, J. I.
(2015). Plasma turbulence and coherent structures in the polar cap observed
by the ici-2 sounding rocket. Journal of Geophysical Research: Space Physics,
120(12):10,959–10,978.

[The European Space Agency,] The European Space Agency. Swarm Data
Access. https://earth.esa.int/eogateway/missions/swarm/data. Spring
2024.

[Tozzi et al., 2023] Tozzi, R., De Michelis, P., Lovati, G., Consolini, G., Pignal-
beri, A., Pezzopane,M., Coco, I., Giannattasio, F., andMarcucci,M. F. (2023).
Polar cap patches scaling properties: Insights from swarm data. Remote
Sensing, 15(17).

[Tsunoda, 1988] Tsunoda, R. T. (1988). High-latitude f region irregularities:
A review and synthesis. Reviews of Geophysics, 26(4):719–760.

[WDC, a] WDC. World Data Center for Geomagnetism, Kyoto. Provisional AE
index Realtime. https://wdc.kugi.kyoto-u.ac.jp/ae_realtime/202405/
index_20240511.html. Accessed:Spring 2024.

[WDC, b] WDC. World Data Center for Geomagnetism, Provisional AE in-
dex. https://wdc.kugi.kyoto-u.ac.jp/ae_provisional/index.html. Ac-
cessed:Spring 2024.

[Wernik et al., 2003] Wernik, A., Secan, J., and Fremouw, E. (2003). Iono-
spheric irregularities and scintillation. Advances in Space Research,
31(4):971–981.

[World Data System,] World Data System. Data Sharing Principles. https:
//worlddatasystem.org/about/data-sharing-principles/. Spring 2024.

8.1 Table of Days Used

We present a table with each day of high and corresponding low geomagnetic
activity used in this work. It should be noted that even though many active
days share the same quiet days, most events are not compared to the same
period during the quiet days. In Table ??, the days of high geomagnetic activity
are displayed at the left hand side, while the days of low geomagnetic activity
are shown on the right hand side.

https://seaborn.pydata.org/generated/seaborn.kdeplot.html
https://seaborn.pydata.org/generated/seaborn.kdeplot.html
https://seaborn.pydata.org/generated/seaborn.kdeplot.html
https://seaborn.pydata.org/generated/seaborn.kdeplot.html
https://earth.esa.int/eogateway/missions/swarm/data
https://wdc.kugi.kyoto-u.ac.jp/ae_realtime/202405/index_20240511.html
https://wdc.kugi.kyoto-u.ac.jp/ae_realtime/202405/index_20240511.html
https://wdc.kugi.kyoto-u.ac.jp/ae_provisional/index.html
https://worlddatasystem.org/about/data-sharing-principles/
https://worlddatasystem.org/about/data-sharing-principles/

8.2 power spectral density 65

Active Quiet
2014, 11, 4 2014, 11, 3
2014, 12, 7 2014, 12, 6
2015, 11, 7 2015, 11, 2
2015, 11, 8 2015, 11, 12
2015, 11, 9 2015, 11, 12
2015, 11, 10 2015, 11, 12
2015, 11, 11 2015, 11, 12
2015, 12, 5 2015, 12, 3
2015, 12, 6 2015, 12, 4
2015, 12, 11 2015, 12, 4
2015, 12, 14 2015, 12, 3
2015, 12, 20 2015, 12, 19
2015, 12, 31 2015, 12, 30

Table 8.1: Dates of Active and Quiet periods

8.2 Power Spectral Density

Figure 8.1: Power spectral density during 31st December 2015 over the entire polar
region.

66 bibl iography

8.3 Slopes for Structure Functions at Very Small
Scales

Figure 8.2: Slopes for all structure functions calculated over the entire polar region.
(a) Slopes for 𝜏 = [0.0625𝑠, 1𝑠] vs 𝜏 = [1𝑠, 10𝑠] during days of high geo-
magnetic activity. (b) Slopes during high geomagnetic activity vs low geo-
magnetic activity for 𝜏 = [0.0625𝑠, 1𝑠]. (c) Slopes for 𝜏 = [0.0625𝑠𝑠, 1𝑠]
vs 𝜏 = [1𝑠, 10𝑠] during days of low geomagnetic activity. (d) Slopes during
high geomagnetic activity vs low geomagnetic activity for 𝜏 = [1𝑠, 10𝑠].

8.4 AE Index During Storm Event 11th May 2024

We have included the AE index of the storm event on 11th May 2024, as it is
a quite interesting case. Similar to the other figures displaying the AE index,
this was obtained from World Data Center for Geomagnetism [WDC, a], in the
realtime section.

8.5 code 67

Figure 8.3: AE index 11th May 2024. [WDC, a]

8.5 Code

We present the code used to implement the turbulence data analysis tools in
the following subsections. All files in the following subsections are needed for
the code to work properly.

8.5.1 Calculating Storing and Displaying Data

1 import getData as gd
2 import dataProcessing as dp
3 import plotting as pt
4 import matplotlib.pyplot as plt
5 from day_parameters import load_day
6 import pandas as pd
7 import numpy as np
8

9

10 def run(date, instance, processing_parameters=None,
plotting_trajectory=False,↩→

11 plotting_region=False, plotting_structure_function=False,

68 bibl iography

12 plotting_ratios=False, plotting_psd=False,
plotting_pdf=False,↩→

13 write_to_csv=False):
14 """
15

16 Applies all other classes to display and calculate using
various tools↩→

17 write_to_csv stores as datafram in .csv files.
18 """
19

20 if processing_parameters is None:
21 processing_parameters = {'merged_region': True,
22 'region_name': 'B',
23 'tau_interval': 'auto',
24 'm': 2,
25 'comparison': 'all',
26 'divide_structure_function': False,
27 'print_time_interval': False,
28 'target': False,
29 'polar_region': 'all',
30 'normalize': False,
31 'write_to_pole': 'North'}
32

33 year, month, day = date
34 merged_region = processing_parameters['merged_region']
35 region_name = processing_parameters['region_name']
36 t = processing_parameters['tau_interval']
37 m = processing_parameters['m']
38 comparison = processing_parameters['comparison']
39 divide_structure_function =

processing_parameters['divide_structure_function']↩→
40 target = processing_parameters['target']
41 polar_region = processing_parameters['polar_region']
42 normalize_data = processing_parameters['normalize']
43 write_to_pole = processing_parameters['write_to_pole']
44

45 region = 'all' if merged_region else region_name
46

47 dataset = load_day(year, month, day, instance, merged_region)
48

49 fac_parameters_north = dataset['FAC_parameters_north']
50 fac_parameters_north_inactive =

dataset['FAC_parameters_north_inactive']↩→
51 fac_parameters_south = dataset['FAC_parameters_south']
52 fac_parameters_south_inactive =

dataset['FAC_parameters_south_inactive']↩→
53

54

55

8.5 code 69

56 date = dataset['date']
57 date_inactive = dataset['date_inactive']
58

59 day_start = dataset['day_start']
60 day_stop = dataset['day_stop']
61 day_start_inactive = dataset['day_start_inactive']
62 day_stop_inactive = dataset['day_stop_inactive']
63

64

65 active_day_16Hz = gd.GetData(day_start, day_stop, 'Ne').time()
66 active_day_FAC = gd.GetData(day_start, day_stop, 'FAC').time()
67

68 gd.GetData(day_start, day_stop, 'FAC').get_info()
69 gd.GetData(day_start, day_stop, 'Ne').get_info()
70

71 inactive_day_16Hz = gd.GetData(day_start_inactive,
day_stop_inactive, 'Ne').time()↩→

72 inactive_day_FAC = gd.GetData(day_start_inactive,
day_stop_inactive, 'FAC').time()↩→

73

74 active_day_north = dp.DataProcessing(active_day_16Hz,
active_day_FAC, fac_parameters_north)↩→

75 inactive_day_north = dp.DataProcessing(inactive_day_16Hz,
inactive_day_FAC, fac_parameters_north_inactive)↩→

76 active_day_south = dp.DataProcessing(active_day_16Hz,
active_day_FAC, fac_parameters_south)↩→

77 inactive_day_south = dp.DataProcessing(inactive_day_16Hz,
inactive_day_FAC, fac_parameters_south_inactive)↩→

78

79 if processing_parameters['print_time_interval']:
80 if comparison != 'South' or comparison !=

'ActiveInactiveSouth':↩→
81 print('North Active')
82 print(active_day_north.return_data()['time_interval'])
83 if comparison == 'all' or comparison ==

'ActiveInactiveNorth':↩→
84 print('North Inactive')
85 print(inactive_day_north.return_data()['time_interval'])
86 if comparison == 'all' or comparison == 'South' or

comparison == 'ActiveInactiveSouth':↩→
87 print('South Active')
88 print(active_day_south.return_data()['time_interval'])
89 if comparison == 'all' or comparison ==

'ActiveInactiveSouth':↩→
90 print('South Inactive')
91 print(inactive_day_south.return_data()['time_interval'])
92

93

94 if plotting_trajectory:

70 bibl iography

95 active_day_north.plot_trajectory(f'plots/_{date}_{instance} ⌋
', other_day=inactive_day_north.return_data(),
all_orbits=True)

↩→
↩→

96 active_day_north.find_closest_region(inactive_day_north.ret ⌋
urn_data())↩→

97

98

99 if plotting_region:
100 target_name = 'Target_'
101 if not target:
102 target_name = ''
103 polar_region = 'all'
104

105 match comparison:
106 case 'NorthSouth':
107 pt.plot_ne_and_fac(active_day_north.return_data(),

name=f'plots/{target_name}Ne_and_FAC_{date} ⌋
_{instance}_north', target=target,
polar_region=polar_region)

↩→
↩→
↩→

108 pt.plot_ne_and_fac(active_day_south.return_data(),
name=f'plots/{target_name}Ne_and_FAC_{date} ⌋
_{instance}_south', target=target,
polar_region=polar_region)

↩→
↩→
↩→

109 case 'ActiveInactiveNorth':
110 pt.plot_ne_and_fac(inactive_day_north.return_data() ⌋

,
name=f'plots/{target_name}Ne_and_FAC_inacti ⌋
ve_{date}_{instance}_north', target=target,
polar_region=polar_region)

↩→
↩→
↩→
↩→

111 pt.plot_ne_and_fac(active_day_north.return_data(),
name=f'plots/{target_name}Ne_and_FAC_{date} ⌋
_{instance}_north', target=target,
polar_region=polar_region)

↩→
↩→
↩→

112 case 'ActiveInactiveSouth':
113 pt.plot_ne_and_fac(active_day_south.return_data(),

name=f'plots/{target_name}Ne_and_FAC_{date} ⌋
_{instance}_south', target=target,
polar_region=polar_region)

↩→
↩→
↩→

114 pt.plot_ne_and_fac(inactive_day_south.return_data() ⌋
,
name=f'plots/{target_name}Ne_and_FAC_inacti ⌋
ve_{date}_{instance}_south', target=target,
polar_region=polar_region)

↩→
↩→
↩→
↩→

115 case 'all':
116 pt.plot_ne_and_fac(inactive_day_north.return_data() ⌋

,
name=f'plots/{target_name}Ne_and_FAC_inacti ⌋
ve_{date}_{instance}_north', target=target,
polar_region=polar_region)

↩→
↩→
↩→
↩→

8.5 code 71

117 pt.plot_ne_and_fac(active_day_north.return_data(),
name=f'plots/{target_name}Ne_and_FAC_{date} ⌋
_{instance}_north', target=target,
polar_region=polar_region)

↩→
↩→
↩→

118 pt.plot_ne_and_fac(active_day_south.return_data(),
name=f'plots/{target_name}Ne_and_FAC_{date} ⌋
_{instance}_south', target=target,
polar_region=polar_region)

↩→
↩→
↩→

119 pt.plot_ne_and_fac(inactive_day_south.return_data() ⌋
,
name=f'plots/{target_name}Ne_and_FAC_inacti ⌋
ve_{date}_{instance}_south', target=target,
polar_region=polar_region)

↩→
↩→
↩→
↩→

120 case 'North':
121 pt.plot_ne_and_fac(active_day_north.return_data(),

name=f'plots/{target_name}Ne_and_FAC_{date} ⌋
_{instance}_north', target=target,
polar_region=polar_region)

↩→
↩→
↩→

122 case 'South':
123 pt.plot_ne_and_fac(active_day_south.return_data(),

name=f'plots/{target_name}Ne_and_FAC_{date} ⌋
_{instance}_south', target=target,
polar_region=polar_region)

↩→
↩→
↩→

124

125 if plotting_structure_function:
126 norm_name = 'Normalized_' if normalize_data else ''
127 name = f'{norm_name}Structure_Function_{region}_m={m}_{date ⌋

}_{instance}'↩→
128 fig, axes = plt.subplots(2, figsize=(12, 8),

tight_layout=True)↩→
129

130 match comparison:
131 case 'NorthSouth':
132 north = active_day_north.calculate_structure_functi ⌋

on(region=region, seconds=t, m=m,
normalize_data=normalize_data)

↩→
↩→

133 south = active_day_south.calculate_structure_functi ⌋
on(region=region, seconds=t, m=m,
normalize_data=normalize_data)

↩→
↩→

134 case 'ActiveInactiveNorth':
135 north = active_day_north.calculate_structure_functi ⌋

on(region=region, seconds=t, m=m,
normalize_data=normalize_data, name='A')

↩→
↩→

136 #breakpoint()
137 north_inactive = inactive_day_north.calculate_struc ⌋

ture_function(region=region, seconds=t,
m=m, normalize_data=normalize_data)

↩→
↩→

138 case 'ActiveInactiveSouth':

72 bibl iography

139 south = active_day_south.calculate_structure_functi ⌋
on(region=region, seconds=t, m=m,
normalize_data=normalize_data)

↩→
↩→

140 south_inactive = inactive_day_south.calculate_struc ⌋
ture_function(region=region, seconds=t,
m=m, normalize_data=normalize_data)

↩→
↩→

141 case 'all':
142 north = active_day_north.calculate_structure_functi ⌋

on(region=region, seconds=t, m=m,
normalize_data=normalize_data)

↩→
↩→

143 north_inactive = inactive_day_north.calculate_struc ⌋
ture_function(region=region, seconds=t,
m=m, normalize_data=normalize_data)

↩→
↩→

144 south = active_day_south.calculate_structure_functi ⌋
on(region=region, seconds=t, m=m,
normalize_data=normalize_data)

↩→
↩→

145 south_inactive = inactive_day_south.calculate_struc ⌋
ture_function(region=region, seconds=t,
m=m, normalize_data=normalize_data)

↩→
↩→

146 case 'North':
147 north = active_day_north.calculate_structure_functi ⌋

on(region=region, seconds=t, m=m,
normalize_data=normalize_data)

↩→
↩→

148 case 'South':
149 south = active_day_south.calculate_structure_functi ⌋

on(region=region, seconds=t, m=m,
normalize_data=normalize_data)

↩→
↩→

150

151 if divide_structure_function:
152 match comparison:
153 case 'NorthSouth':
154 north_0 = active_day_north.calculate_structure_ ⌋

function_at_specific_time(start_time=0,
stop_time=10)

↩→
↩→

155 south_0 = active_day_south.calculate_structure_ ⌋
function_at_specific_time(start_time=0,
stop_time=10)

↩→
↩→

156 north_10 =
active_day_north.calculate_structure_fu ⌋
nction_at_specific_time(start_time=10,
stop_time=north['seconds'])

↩→
↩→
↩→

157 south_10 =
active_day_south.calculate_structure_fu ⌋
nction_at_specific_time(start_time=10,
stop_time=south['seconds'])

↩→
↩→
↩→

158

159 case 'ActiveInactiveNorth':

8.5 code 73

160 north_0 = active_day_north.calculate_structure_ ⌋
function_at_specific_time(start_time=0,
stop_time=10)

↩→
↩→

161 north_10 =
active_day_north.calculate_structure_fu ⌋
nction_at_specific_time(start_time=10,
stop_time=north['seconds'])

↩→
↩→
↩→

162 north_inactive_0 =
inactive_day_north.calculate_structure_ ⌋
function_at_specific_time(start_time=0,
stop_time=10)

↩→
↩→
↩→

163 north_inactive_10 = inactive_day_north.calculat ⌋
e_structure_function_at_specific_time(s ⌋
tart_time=10,
stop_time=north_inactive['seconds'])

↩→
↩→
↩→

164

165 case 'ActiveInactiveSouth':
166 south_0 = active_day_south.calculate_structure_ ⌋

function_at_specific_time(start_time=0,
stop_time=10)

↩→
↩→

167 south_10 =
active_day_north.calculate_structure_fu ⌋
nction_at_specific_time(start_time=10,
stop_time=south['seconds'])

↩→
↩→
↩→

168 south_inactive_0 =
inactive_day_south.calculate_structure_ ⌋
function_at_specific_time(start_time=0,
stop_time=10)

↩→
↩→
↩→

169 south_inactive_10 = inactive_day_south.calculat ⌋
e_structure_function_at_specific_time(s ⌋
tart_time=10,
stop_time=south_inactive['seconds'])

↩→
↩→
↩→

170

171 case 'all':
172 north_0 = active_day_north.calculate_structure_ ⌋

function_at_specific_time(start_time=0,
stop_time=10)

↩→
↩→

173 south_0 = active_day_south.calculate_structure_ ⌋
function_at_specific_time(start_time=0,
stop_time=10)

↩→
↩→

174 north_inactive_0 =
inactive_day_north.calculate_structure_ ⌋
function_at_specific_time(start_time=0,
stop_time=10)

↩→
↩→
↩→

175 south_inactive_0 =
inactive_day_south.calculate_structure_ ⌋
function_at_specific_time(start_time=0,
stop_time=10)

↩→
↩→
↩→

74 bibl iography

176 north_10 =
active_day_north.calculate_structure_fu ⌋
nction_at_specific_time(start_time=10,
stop_time=north['seconds'])

↩→
↩→
↩→

177 south_10 =
active_day_south.calculate_structure_fu ⌋
nction_at_specific_time(start_time=10,
stop_time=south['seconds'])

↩→
↩→
↩→

178 north_inactive_10 = inactive_day_north.calculat ⌋
e_structure_function_at_specific_time(s ⌋
tart_time=10,
stop_time=north_inactive['seconds'])

↩→
↩→
↩→

179 south_inactive_10 = inactive_day_south.calculat ⌋
e_structure_function_at_specific_time(s ⌋
tart_time=10,
stop_time=south_inactive['seconds'])

↩→
↩→
↩→

180

181 case 'North':
182 north_0 = active_day_north.calculate_structure_ ⌋

function_at_specific_time(start_time=0,
stop_time=10)

↩→
↩→

183 north_10 =
active_day_north.calculate_structure_fu ⌋
nction_at_specific_time(start_time=10,
stop_time=north['seconds'])

↩→
↩→
↩→

184 case 'South':
185 south_0 = active_day_south.calculate_structure_ ⌋

function_at_specific_time(start_time=0,
stop_time=10)

↩→
↩→

186 south_10 =
active_day_south.calculate_structure_fu ⌋
nction_at_specific_time(start_time=10,
stop_time=south['seconds'])

↩→
↩→
↩→

187

188 try:
189 pt.plot_structure_function(north_0, m, axes,

tau_interval=[0, 10], keyword='North')↩→
190 pt.plot_structure_function(north_10, m, axes,

tau_interval=[10, north['seconds']],
keyword='North')

↩→
↩→

191 except UnboundLocalError:
192 pass
193 try:
194 pt.plot_structure_function(south_0, m, axes,

tau_interval=[0, 10], keyword='South')↩→
195 pt.plot_structure_function(south_10, m, axes,

tau_interval=[10, south['seconds']],
keyword='South')

↩→
↩→

196 except UnboundLocalError:

8.5 code 75

197 pass
198 try:
199 pt.plot_structure_function(north_inactive_0, m,

axes, tau_interval=[0, 10], keyword='North
Inactive')

↩→
↩→

200 pt.plot_structure_function(north_inactive_10, m,
axes, tau_interval=[10,
north_inactive['seconds']], keyword='North
Inactive')

↩→
↩→
↩→

201 except UnboundLocalError:
202 pass
203 try:
204 pt.plot_structure_function(south_inactive_0, m,

axes, tau_interval=[0, 10], keyword='South
Inactive')

↩→
↩→

205 pt.plot_structure_function(south_inactive_10, m,
axes, tau_interval=[10,
south_inactive['seconds']], keyword='South
Inactive')

↩→
↩→
↩→

206 except UnboundLocalError:
207 pass
208

209 elif not divide_structure_function:
210 try:
211 pt.plot_structure_function(north, m, axes,

keyword='North')↩→
212 except UnboundLocalError:
213 pass
214 try:
215 pt.plot_structure_function(north_inactive, m, axes,

keyword='North Inactive')↩→
216 except UnboundLocalError:
217 pass
218 try:
219 pt.plot_structure_function(south, m, axes,

keyword='South')↩→
220 except UnboundLocalError:
221 pass
222 try:
223 pt.plot_structure_function(south_inactive, m, axes,

keyword='South Inactive')↩→
224 except UnboundLocalError:
225 pass
226

227 for ax in axes:
228 ax.grid()
229 fig.savefig(f'plots/{name}')
230 plt.close(fig)
231

76 bibl iography

232 if plotting_ratios and not merged_region:
233 name = f'Ratio_m={m}_{date}_{instance}'
234 fig_ratio, axes_ratio = plt.subplots(3, figsize=(12, 8),

tight_layout=True)↩→
235

236 match comparison:
237 case 'NorthSouth':
238 active_ratio_north = active_day_north.calculate_str ⌋

ucture_function_ratios(m=m)↩→
239 active_ratio_south = active_day_south.calculate_str ⌋

ucture_function_ratios(m=m)↩→
240 case 'ActiveInactiveNorth':
241 active_ratio_north = active_day_north.calculate_str ⌋

ucture_function_ratios(m=m)↩→
242 inactive_ratio_north = inactive_day_north.calculate ⌋

_structure_function_ratios(m=m)↩→
243 case 'ActiveInactiveSouth':
244 active_ratio_south = active_day_south.calculate_str ⌋

ucture_function_ratios(m=m)↩→
245 inactive_ratio_south = inactive_day_south.calculate ⌋

_structure_function_ratios(m=m)↩→
246 case 'all':
247 active_ratio_north = active_day_north.calculate_str ⌋

ucture_function_ratios(m=m)↩→
248 inactive_ratio_north = inactive_day_north.calculate ⌋

_structure_function_ratios(m=m)↩→
249 active_ratio_south = active_day_south.calculate_str ⌋

ucture_function_ratios(m=m)↩→
250 inactive_ratio_south = inactive_day_south.calculate ⌋

_structure_function_ratios(m=m)↩→
251 case 'North':
252 active_ratio_north = active_day_north.calculate_str ⌋

ucture_function_ratios(m=m)↩→
253 case 'South':
254 active_ratio_south = active_day_south.calculate_str ⌋

ucture_function_ratios(m=m)↩→
255

256 if divide_structure_function:
257 match comparison:
258 case 'NorthSouth':
259 active_ratio_north_0 =

active_day_north.calculate_structure_fu ⌋
nction_ratios_at_specific_time(0,
10)

↩→
↩→
↩→

260 active_ratio_north_10 =
active_day_north.calculate_structure_fu ⌋
nction_ratios_at_specific_time(10,
active_ratio_north['seconds'])

↩→
↩→
↩→

8.5 code 77

261 active_ratio_south_0 =
active_day_south.calculate_structure_fu ⌋
nction_ratios_at_specific_time(0,
10)

↩→
↩→
↩→

262 active_ratio_south_10 =
active_day_south.calculate_structure_fu ⌋
nction_ratios_at_specific_time(10,
active_ratio_south['seconds'])

↩→
↩→
↩→

263 case 'ActiveInactiveNorth':
264 active_ratio_north_0 =

active_day_north.calculate_structure_fu ⌋
nction_ratios_at_specific_time(0,
10)

↩→
↩→
↩→

265 active_ratio_north_10 =
active_day_north.calculate_structure_fu ⌋
nction_ratios_at_specific_time(10,
active_ratio_north['seconds'])

↩→
↩→
↩→

266 inactive_ratio_north_0 =
inactive_day_north.calculate_structure_ ⌋
function_ratios_at_specific_time(0,
10)

↩→
↩→
↩→

267 inactive_ratio_north_10 =
inactive_day_north.calculate_structure_ ⌋
function_ratios_at_specific_time(10,
inactive_ratio_north['seconds'])

↩→
↩→
↩→

268 case 'ActiveInactiveSouth':
269 active_ratio_south_0 =

active_day_south.calculate_structure_fu ⌋
nction_ratios_at_specific_time(0,
10)

↩→
↩→
↩→

270 active_ratio_south_10 =
active_day_south.calculate_structure_fu ⌋
nction_ratios_at_specific_time(10,
active_ratio_south['seconds'])

↩→
↩→
↩→

271 inactive_ratio_south_0 =
inactive_day_south.calculate_structure_ ⌋
function_ratios_at_specific_time(0,
10)

↩→
↩→
↩→

272 inactive_ratio_south_10 =
inactive_day_south.calculate_structure_ ⌋
function_ratios_at_specific_time(10,
inactive_ratio_south['seconds'])

↩→
↩→
↩→

273 case 'all':
274 active_ratio_north_0 =

active_day_north.calculate_structure_fu ⌋
nction_ratios_at_specific_time(0,
10)

↩→
↩→
↩→

78 bibl iography

275 active_ratio_north_10 =
active_day_north.calculate_structure_fu ⌋
nction_ratios_at_specific_time(10,
active_ratio_north['seconds'])

↩→
↩→
↩→

276 inactive_ratio_north_0 =
inactive_day_north.calculate_structure_ ⌋
function_ratios_at_specific_time(0,
10)

↩→
↩→
↩→

277 inactive_ratio_north_10 =
inactive_day_north.calculate_structure_ ⌋
function_ratios_at_specific_time(10,
inactive_ratio_north['seconds'])

↩→
↩→
↩→

278 active_ratio_south_0 =
active_day_south.calculate_structure_fu ⌋
nction_ratios_at_specific_time(0,
10)

↩→
↩→
↩→

279 active_ratio_south_10 =
active_day_south.calculate_structure_fu ⌋
nction_ratios_at_specific_time(10,
active_ratio_south['seconds'])

↩→
↩→
↩→

280 inactive_ratio_south_0 =
inactive_day_south.calculate_structure_ ⌋
function_ratios_at_specific_time(0,
10)

↩→
↩→
↩→

281 inactive_ratio_south_10 =
inactive_day_south.calculate_structure_ ⌋
function_ratios_at_specific_time(10,
inactive_ratio_south['seconds'])

↩→
↩→
↩→

282 case 'North':
283 active_ratio_north_0 =

active_day_north.calculate_structure_fu ⌋
nction_ratios_at_specific_time(0,
10)

↩→
↩→
↩→

284 active_ratio_north_10 =
active_day_north.calculate_structure_fu ⌋
nction_ratios_at_specific_time(10,
active_ratio_north['seconds'])

↩→
↩→
↩→

285 case 'South':
286 active_ratio_south_0 =

active_day_south.calculate_structure_fu ⌋
nction_ratios_at_specific_time(0,
10)

↩→
↩→
↩→

287 active_ratio_south_10 =
active_day_south.calculate_structure_fu ⌋
nction_ratios_at_specific_time(10,
active_ratio_south['seconds'])

↩→
↩→
↩→

288

289

290 try:

8.5 code 79

291 pt.plot_structure_function_ratios(active_ratio_nort ⌋
h_0, m, axes_ratio, tau_interval=[0, 10],
keyword='North')

↩→
↩→

292 pt.plot_structure_function_ratios(active_ratio_nort ⌋
h_10, m, axes_ratio, tau_interval=[10,
active_ratio_north['seconds']],
keyword='North')

↩→
↩→
↩→

293 except UnboundLocalError:
294 pass
295 try:
296 pt.plot_structure_function_ratios(inactive_ratio_no ⌋

rth_0, m, axes_ratio, tau_interval=[0, 10],
keyword='North Inactive')

↩→
↩→

297 pt.plot_structure_function_ratios(inactive_ratio_no ⌋
rth_10, m, axes_ratio, tau_interval=[10,
inactive_ratio_north['seconds']],
keyword='North Inactive')

↩→
↩→
↩→

298 except UnboundLocalError:
299 pass
300 try:
301 pt.plot_structure_function_ratios(active_ratio_sout ⌋

h_0, m, axes_ratio, tau_interval=[0, 10],
keyword='South')

↩→
↩→

302 pt.plot_structure_function_ratios(active_ratio_sout ⌋
h_10, m, axes_ratio, tau_interval=[10,
active_ratio_south['seconds']],
keyword='South')

↩→
↩→
↩→

303 except UnboundLocalError:
304 pass
305 try:
306 pt.plot_structure_function_ratios(inactive_ratio_so ⌋

uth_0, m, axes_ratio, tau_interval=[0, 10],
keyword='South Inactive')

↩→
↩→

307 pt.plot_structure_function_ratios(inactive_ratio_so ⌋
uth_10, m, axes_ratio, tau_interval=[10,
inactive_ratio_south['seconds']],
keyword='South Inactive')

↩→
↩→
↩→

308 except UnboundLocalError:
309 pass
310

311 elif not divide_structure_function:
312 try:
313 pt.plot_structure_function_ratios(active_ratio_nort ⌋

h, fig_ratio, axes_ratio,
keyword='North')

↩→
↩→

314 except UnboundLocalError:
315 pass
316 try:

80 bibl iography

317 pt.plot_structure_function_ratios(inactive_ratio_no ⌋
rth, fig_ratio, axes_ratio, keyword='North
Inactive')

↩→
↩→

318 except UnboundLocalError:
319 pass
320 try:
321 pt.plot_structure_function_ratios(active_ratio_sout ⌋

h, fig_ratio, axes_ratio,
keyword='South')

↩→
↩→

322 except UnboundLocalError:
323 pass
324 try:
325 pt.plot_structure_function_ratios(inactive_ratio_so ⌋

uth, fig_ratio, axes_ratio, keyword='South
Inactive')

↩→
↩→

326 except UnboundLocalError:
327 pass
328

329 for ax in axes_ratio:
330 ax.grid()
331 fig_ratio.savefig(f'plots/{name}')
332 plt.close(fig_ratio)
333

334 if plotting_psd:
335 dt = 0
336 time_interval = None
337 p_value = False
338 inertial_sub_range = False
339 name = f'Power_Spectral_Density_Active_{region}_{date}_{ins ⌋

tance}'↩→
340 fig_psd, axes_psd = plt.subplots(figsize=(9, 6),

tight_layout=True)↩→
341 active_psd_north = active_day_north.calculate_power_spectra ⌋

l_density(region, dt=dt,
time_interval=time_interval)

↩→
↩→

342 pt.plot_power_spectral_density(active_psd_north, fig_psd,
axes_psd, 'High Activity Day', p_value=p_value,
region=region, dt=dt,
inertial_sub_range=inertial_sub_range)

↩→
↩→
↩→

343 axes_psd.grid()
344 fig_psd.savefig(f'plots/{name}')
345 plt.close(fig_psd)
346

347

348 name = f'Power_Spectral_Density_Inactive_{region}_{date}_{i ⌋
nstance}'↩→

349 fig_psd, axes_psd = plt.subplots(figsize=(9, 6),
tight_layout=True)↩→

8.5 code 81

350 inactive_psd_north = inactive_day_north.calculate_power_spe ⌋
ctral_density(region, dt=dt,
time_interval=time_interval)

↩→
↩→

351 pt.plot_power_spectral_density(inactive_psd_north, fig_psd,
axes_psd, 'Low Activity Day', p_value=p_value,
color='C1', region=region, dt=dt,
inertial_sub_range=inertial_sub_range)

↩→
↩→
↩→

352 axes_psd.grid()
353 fig_psd.savefig(f'plots/{name}')
354 plt.close(fig_psd)
355

356 from scipy.integrate import simpson
357 print(simpson(active_psd_north['power_spectral_density'],

active_psd_north['frequency']))↩→
358 print(simpson(inactive_psd_north['power_spectral_density'],

inactive_psd_north['frequency']))↩→
359

360 #active_psd_south = active_day_south.calculate_power_spectr ⌋
al_density(region)↩→

361 #inactive_psd_south = inactive_day_south.calculate_power_sp ⌋
ectral_density(region)↩→

362

363 #pt.plot_power_spectral_density(active_psd_south, fig_psd,
axes_psd, 'South', p_value=True)↩→

364 #pt.plot_power_spectral_density(inactive_psd_south,
fig_psd, axes_psd, 'South Inactive', p_value=True)↩→

365

366 #active_psd_interval = active_day_north.calculate_power_spe ⌋
ctral_density(region, start_time=348,
stop_time=355)

↩→
↩→

367 #pt.plot_power_spectral_density(active_psd_interval,
fig_psd, axes_psd, 'Active 348-355', p_value=True)↩→

368

369 if plotting_pdf:
370 match comparison:
371 case 'NorthSouth':
372 fig_north_active_pdf, axes_north_active_pdf =

plt.subplots(figsize=(9, 6))↩→
373 fig_south_active_pdf, axes_south_active_pdf =

plt.subplots(figsize=(9, 6))↩→
374 case 'ActiveInactiveNorth':
375 fig_north_active_pdf, axes_north_active_pdf =

plt.subplots(figsize=(9, 6))↩→
376 fig_north_inactive_pdf, axes_north_inactive_pdf =

plt.subplots(figsize=(9, 6))↩→
377 case 'ActiveInactiveSouth':
378 fig_south_active_pdf, axes_south_active_pdf =

plt.subplots(figsize=(9, 6))↩→

82 bibl iography

379 fig_south_inactive_pdf, axes_south_inactive_pdf =
plt.subplots(figsize=(9, 6))↩→

380 case 'all':
381 fig_north_active_pdf, axes_north_active_pdf =

plt.subplots(figsize=(9, 6))↩→
382 fig_north_inactive_pdf, axes_north_inactive_pdf =

plt.subplots(figsize=(9, 6))↩→
383 fig_south_active_pdf, axes_south_active_pdf =

plt.subplots(figsize=(9, 6))↩→
384 fig_south_inactive_pdf, axes_south_inactive_pdf =

plt.subplots(figsize=(9, 6))↩→
385 case 'North':
386 fig_north_active_pdf, axes_north_active_pdf =

plt.subplots(figsize=(9, 6))↩→
387 case 'South':
388 fig_south_active_pdf, axes_south_active_pdf =

plt.subplots(figsize=(9, 6))↩→
389

390

391 name_active_north = f'Probability_Density_Fluctuations_Nort ⌋
h_{region}_{date}_{instance}'↩→

392 name_inactive_north = f'Probability_Density_Fluctuations_No ⌋
rth_Inactive_{region}_{date}_{instance}'↩→

393 name_active_south = f'Probability_Density_Fluctuations_Sout ⌋
h_{region}_{date}_{instance}'↩→

394 name_inactive_south = f'Probability_Density_Fluctuations_So ⌋
uth_Inactive_{region}_{date}_{instance}'↩→

395

396 try:
397 active_day_north.plot_probability_density_fluctuations(⌋

fig_north_active_pdf, axes_north_active_pdf,
region, limit=(1E-3, 5), name='High Activity
Day')

↩→
↩→
↩→

398 axes_north_active_pdf.grid()
399 fig_north_active_pdf.savefig(f'plots/{name_active_north ⌋

}')↩→
400 plt.close(fig_north_active_pdf)
401 except UnboundLocalError:
402 pass
403 try:
404 inactive_day_north.plot_probability_density_fluctuation ⌋

s(fig_north_inactive_pdf,
axes_north_inactive_pdf, region, limit=(1E-3,
5), name='Low Activity Day')

↩→
↩→
↩→

405 axes_north_inactive_pdf.grid()
406 fig_north_inactive_pdf.savefig(f'plots/{name_inactive_n ⌋

orth}')↩→
407 plt.close(fig_north_inactive_pdf)
408 except UnboundLocalError:

8.5 code 83

409 pass
410 try:
411 active_day_south.plot_probability_density_fluctuations(⌋

fig_south_active_pdf, axes_south_active_pdf,
region, limit=(1E-3, 5), name='High Activity
Day')

↩→
↩→
↩→

412 axes_south_active_pdf.grid()
413 fig_south_active_pdf.savefig(f'plots/{name_active_south ⌋

}')↩→
414 plt.close(fig_south_active_pdf)
415 except UnboundLocalError:
416 pass
417 try:
418 inactive_day_south.plot_probability_density_fluctuation ⌋

s(fig_south_inactive_pdf,
axes_south_inactive_pdf, region, limit=(1E-3,
5), name='Low Activity Day')

↩→
↩→
↩→

419 axes_south_inactive_pdf.grid()
420 fig_south_inactive_pdf.savefig(f'plots/{name_inactive_s ⌋

outh}')↩→
421 plt.close(fig_south_inactive_pdf)
422 except UnboundLocalError:
423 pass
424

425 if write_to_csv:
426

427 if write_to_pole == 'North':
428 active_north = active_day_north.calculate_structure_fun ⌋

ction(region=region, seconds=t, m=(2, 4),
normalize_data=False,
calculate_empirical_flatness=False)

↩→
↩→
↩→

429 inactive_north = inactive_day_north.calculate_structure ⌋
_function(region=region, seconds=t, m=(2, 4),
normalize_data=False,
calculate_empirical_flatness=False)

↩→
↩→
↩→

430 elif write_to_pole == 'South':
431 active_north = active_day_south.calculate_structure_fun ⌋

ction(region=region, seconds=t, m=(2, 4),
normalize_data=False,
calculate_empirical_flatness=False)

↩→
↩→
↩→

432 inactive_north = inactive_day_south.calculate_structure ⌋
_function(region=region, seconds=t, m=(2, 4),
normalize_data=False,
calculate_empirical_flatness=False)

↩→
↩→
↩→

433

434 try:
435 active = {'structure_function_M2':

active_north['structure_function'][2],↩→

84 bibl iography

436 'structure_function_M4':
active_north['structure_function'][4],↩→

437 'empirical_flatness':
active_north['empirical_flatness']}↩→

438 active_tau = np.asarray(active_north['tau'])
439 df_active = pd.DataFrame(active, index=active_tau)
440 df_active.to_csv(f'Active_{region_name}_files_{write_to ⌋

pole}/{date}{instance}')↩→
441 except TypeError: # Dummy data frame so both corresponding

active and inactive csv files can be loaded
simultaneously

↩→
↩→

442 active_dummy = {'structure_function_M2': np.zeros(10),
443 'structure_function_M4': np.zeros(10),
444 'empirical_flatness': np.zeros(10)}
445 df_active_dummy = pd.DataFrame(active_dummy,

index=np.arange(0, 10))↩→
446 df_active_dummy.to_csv(f'Active_{region_name}_files_{wr ⌋

ite_to_pole}/{date}_{instance}_dummy')↩→
447

448 try:
449 inactive = {'structure_function_M2':

inactive_north['structure_function'][2],↩→
450 'structure_function_M4': inactive_north['st ⌋

ructure_function'][4],↩→
451 'empirical_flatness': inactive_north['empir ⌋

ical_flatness']}↩→
452

453 inactive_tau = np.asarray(inactive_north['tau'])
454 df_inactive = pd.DataFrame(inactive, index=inactive_tau)
455 df_inactive.to_csv(f'Inactive_{region_name}_files_{writ ⌋

e_to_pole}/{date}_{instance}')↩→
456 except TypeError:
457 inactive_dummy = {'structure_function_M2': np.zeros(10),
458 'structure_function_M4': np.zeros(10),
459 'empirical_flatness': np.zeros(10)}
460 df_inactive_dummy = pd.DataFrame(inactive_dummy,

index=np.arange(0, 10))↩→
461 df_inactive_dummy.to_csv(f'Inactive_{region_name}_files ⌋

_{write_to_pole}/{date}_{instance}_dummy')↩→
462

463 print(F'DONE {date} {instance} of 3')
464

465

466 if __name__ == '__main__':
467

468

469 #date = [year, month, day]
470

471

8.5 code 85

472 # All available dates during high activity days
473 # Corresponding low activity day is automatically detected
474 dates = [[2014, 11, 4],
475 [2014, 12, 7],
476 [2015, 11, 7],
477 [2015, 11, 8],
478 [2015, 11, 9],
479 [2015, 11, 10],
480 [2015, 11, 11],
481 [2015, 12, 5],
482 [2015, 12, 6],
483 [2015, 12, 11],
484 [2015, 12, 14],
485 [2015, 12, 20],
486 [2015, 12, 31]]
487

488 instances = [1, 2, 3]
489 region_name = 'B'
490 m = (2, 4)
491 pole = 'North'
492 # comparison = 'all', 'North' 'South' 'NorthSouth'(only active)

'ActiveInactiveNorth' 'ActiveInactiveSouth'↩→
493 # polar_region = 'all', 'A', 'B', 'C', 'AB', 'AC', 'BC'
494 # polar_region overwritten if target=False
495 # polar_region should be 'all' if merged_region = True
496 # target = only if plotting_region
497

498 processing_parameters = {'merged_region': True,
499 'region_name': region_name,
500 'tau_interval': 1,
501 'm': 2,
502 'comparison': 'ActiveInactiveNorth',
503 'divide_structure_function': False,
504 'print_time_interval': True,
505 'target': True,
506 'polar_region': 'all',
507 'normalize': False,
508 'write_to_pole': pole}
509

510 #Uncomment and indent to iterate through all dates
511 #for date in dates:
512 # for instance in instances:
513 run([2015, 12, 31], 1, processing_parameters,

plotting_trajectory=False, plotting_region=True,
plotting_structure_function=False,

↩→
↩→

514 plotting_ratios=False, plotting_psd=False,
plotting_pdf=False, write_to_csv=False)↩→

86 bibl iography

8.5.2 Calculating Slopes and Area

1 import os
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import numpy as np
5 from scipy.stats import linregress
6 from scipy.integrate import simpson
7

8

9 #Loads calculated data from.csv - files
10 #Faster to analyse data
11

12 region = 'C'
13

14 #Instance
15 i = 4
16

17 #Scales (found out too late that m comes before n in the alphabet)
18 n = 10
19 m = 10 * 16
20 j = 100 * 16
21 k = -1
22

23 active_directory = f'Active_{region}_files_North'
24 inactive_directory = f'Inactive_{region}_files_North'
25

26 dates = []
27

28 active_slopes_m2_1_10 = []
29 inactive_slopes_m2_1_10 = []
30 active_slopes_m2_10_100 = []
31 inactive_slopes_m2_10_100 = []
32

33 active_slopes_m4_1_10 = []
34 inactive_slopes_m4_1_10 = []
35 active_slopes_m4_10_100 = []
36 inactive_slopes_m4_10_100 = []
37

38 active_sf_m2 = []
39 active_sf_m4 = []
40

41 inactive_sf_m2 = []
42 inactive_sf_m4 = []
43

44 active_ef = []
45 inactive_ef = []
46

8.5 code 87

47 active_tau = []
48 inactive_tau = []
49

50 for f, g in zip(os.listdir(active_directory),
os.listdir(inactive_directory)):↩→

51 with open(f'{active_directory}/{f}', 'r') as active_data,
open(f'{inactive_directory}/{g}', 'r') as inactive_data:↩→

52 active_dataset = pd.read_csv(active_data)
53 inactive_dataset = pd.read_csv(inactive_data)
54

55 if not np.all(active_dataset['structure_function_M2']) == 0:
56

57 active_tau.append(active_dataset.index)
58 inactive_tau.append(inactive_dataset.index)
59

60 active_sf_m2.append(np.array(active_dataset['structure_ ⌋
function_M2']))↩→

61 active_sf_m4.append(active_dataset['structure_function_ ⌋
M4'])↩→

62

63 inactive_sf_m2.append(np.array(inactive_dataset['struct ⌋
ure_function_M2']))↩→

64 inactive_sf_m4.append(inactive_dataset['structure_funct ⌋
ion_M4'])↩→

65

66 active_ef.append(active_dataset['empirical_flatness'])
67 inactive_ef.append(inactive_dataset['empirical_flatness ⌋

'])↩→
68

69 dates.append(str(f))
70

71 try:
72 active_g_m2_1_10 = linregress(np.log10(active_datas ⌋

et.index[n:m].astype(float)),↩→
73 active_dataset['struc ⌋

ture_function ⌋
_M2'][n:m].as ⌋
type('float'))

↩→
↩→
↩→

74 active_slopes_m2_1_10.append(active_g_m2_1_10.slope)
75 active_g_m4_1_10 = linregress(np.log10(active_datas ⌋

et.index[n:m].astype(float)),↩→
76 active_dataset['struc ⌋

ture_function ⌋
_M4'][n:m].as ⌋
type('float'))

↩→
↩→
↩→

77 active_slopes_m4_1_10.append(active_g_m4_1_10.slope)
78

88 bibl iography

79 active_g_m2_10_100 = linregress(np.log10(active_dat ⌋
aset.index[m:j].astype(float)),↩→

80 active_dataset['str ⌋
ucture_func ⌋
tion_M2'][m ⌋
:j].astype(⌋
'float'))

↩→
↩→
↩→
↩→

81 active_slopes_m2_10_100.append(active_g_m2_10_100.s ⌋
lope)↩→

82 active_g_m4_10_100 = linregress(np.log10(active_dat ⌋
aset.index[m:j].astype(float)),↩→

83 active_dataset['str ⌋
ucture_func ⌋
tion_M4'][m ⌋
:j].astype(⌋
'float'))

↩→
↩→
↩→
↩→

84 active_slopes_m4_10_100.append(active_g_m4_10_100.s ⌋
lope)↩→

85

86

87 except ValueError:
88 pass
89 try:
90 inactive_g_m2_1_10 = linregress(np.log10(inactive_d ⌋

ataset.index[n:m].astype(float)),↩→
91 inactive_dataset['s ⌋

tructure_fu ⌋
nction_M2'] ⌋
[n:m].astyp ⌋
e('float'))

↩→
↩→
↩→
↩→

92 inactive_slopes_m2_1_10.append(inactive_g_m2_1_10.s ⌋
lope)↩→

93 inactive_g_m4_1_10 = linregress(np.log10(inactive_d ⌋
ataset.index[n:m].astype(float)),↩→

94 inactive_dataset['s ⌋
tructure_fu ⌋
nction_M4'] ⌋
[n:m].astyp ⌋
e('float'))

↩→
↩→
↩→
↩→

95 inactive_slopes_m4_1_10.append(inactive_g_m4_1_10.s ⌋
lope)↩→

96 inactive_g_m2_10_100 = linregress(np.log10(inactive ⌋
_dataset.index[m:j].astype(float)),↩→

8.5 code 89

97 inactive_dataset[⌋
'structur ⌋
e_functio ⌋
n_M2'][m: ⌋
j].astype ⌋
('float'))

↩→
↩→
↩→
↩→
↩→

98 inactive_slopes_m2_10_100.append(inactive_g_m2_10_1 ⌋
00.slope)↩→

99 inactive_g_m4_10_100 = linregress(np.log10(inactive ⌋
_dataset.index[m:j].astype(float)),↩→

100 inactive_dataset[⌋
'structur ⌋
e_functio ⌋
n_M4'][m: ⌋
j].astype ⌋
('float'))

↩→
↩→
↩→
↩→
↩→

101 inactive_slopes_m4_10_100.append(inactive_g_m4_10_1 ⌋
00.slope)↩→

102 except ValueError:
103 pass
104

105 # Uncomment to specify exact instance
106 # also used to find index for data
107 # as it is loaded in random order
108

109 """i = 0
110 for elem in dates:
111 if elem == '20151231_1':
112 break
113 else:
114 i+=1
115 """
116 #i=14
117 print(i)
118 #Redundant
119 d = i
120

121

122

123 def plotting():
124 """
125 Plots area of structure function by integration
126 Both as normal plot high vs low activity and histogram.
127 """
128 area_active = []
129 area_inactive = []
130

131 area_active_100 = []
132 area_inactive_100 = []

90 bibl iography

133

134 maximas_active = []
135 maximas_inactive = []
136

137 maximas_active_100 = []
138 maximas_inactive_100 = []
139

140 fig, axes = plt.subplots(figsize=(9, 6), tight_layout=True)
141

142 for x in range(len(active_sf_m2)):
143

144 active_tau_ = active_tau[x][n:m]
145 inactive_tau_ = inactive_tau[x][n:m]
146

147 active_tau_100 = active_tau[x][m:j]
148 inactive_tau_100 = inactive_tau[x][m:j]
149

150 if x == len(active_sf_m2) - 1:
151 axes.plot(active_tau[x][n:m] / 16,

active_sf_m2[x][n:m], label='structure function
active', color='C0')

↩→
↩→

152 axes.plot(inactive_tau[x][n:m] / 16,
inactive_sf_m2[x][n:m], label='structure
function inactive',

↩→
↩→

153 color='C1')
154 axes.legend()
155 else:
156 axes.plot(active_tau[x][n:m] / 16,

active_sf_m2[x][n:m], color='C0')↩→
157 axes.plot(inactive_tau[x][n:m] / 16,

inactive_sf_m2[x][n:m], color='C1')↩→
158

159 area_active.append(simpson(active_sf_m2[x][n:m],
active_tau[x][n:m] / 16))↩→

160 area_inactive.append(simpson(inactive_sf_m2[x][n:m],
inactive_tau[x][n:m] / 16))↩→

161

162 area_active_100.append(simpson(active_sf_m2[x][m:j],
active_tau[x][m:j] / 16))↩→

163 area_inactive_100.append(simpson(inactive_sf_m2[x][m:j],
inactive_tau[x][m:j] / 16))↩→

164

165 axes.set_xscale('log')
166 axes.grid()
167 axes.set_title(f'Structure Function and Maxima {region}

[{int(n / 16)}, {int(m / 16)}]')↩→
168 a = active_sf_m2[x][n:m]
169 b = inactive_sf_m2[x][n:m]
170

8.5 code 91

171 a_100 = active_sf_m2[x][m:j]
172 b_100 = inactive_sf_m2[x][m:j]
173

174 maxima_active = np.argmax(a)
175 maxima_inactive = np.argmax(b)
176

177 maxima_active_100 = np.argmax(a_100)
178 maxima_inactive_100 = np.argmax(b_100)
179

180 maximas_active.append(active_tau_[maxima_active] / 16)
181 maximas_inactive.append(inactive_tau_[maxima_inactive] / 16)
182

183 maximas_active_100.append(active_tau_100[maxima_active_100]
/ 16)↩→

184 maximas_inactive_100.append(inactive_tau_100[maxima_inactiv ⌋
e_100] /
16)

↩→
↩→

185

186 axes.scatter(active_tau_[maxima_active] / 16,
a[maxima_active], color='C0')↩→

187 axes.scatter(inactive_tau_[maxima_inactive] / 16,
b[maxima_inactive], color='C1')↩→

188 fig.savefig(f'Structure_Function_{region}_{int(n / 16)}_{int(m
/ 16)}')↩→

189

190 bins = 20
191

192 fig, axes = plt.subplots(2, figsize=(9, 6), tight_layout=True,
sharex=False, sharey=True)↩→

193 if region != 'All':
194 axes[0].set_title(r'a) Area of S(2, τ), τ=[1s,

10s] in' + f' Region {region}', fontsize=24)↩→
195 axes[1].set_title(r'b) Area of S(2, τ), τ=[10s,

100s] in' + f' Region {region}', fontsize=24)↩→
196 else:
197 axes[0].set_title(r'a) Area of S(2, τ), τ=[1s,

10s] in' + ' Polar Region', fontsize=24)↩→
198 axes[1].set_title(r'b) Area of S(2, τ), τ=[10s,

100s] in' + ' Polar Region', fontsize=24)↩→
199 axes[0].hist(area_active, edgecolor='black', linewidth=1,

label=f'High Activity Days', color='C0', bins=bins)↩→
200 axes[0].hist(set(area_inactive), edgecolor='black',

linewidth=1, label=f'Low Activity Days', color='C1',
alpha=0.5, bins=bins)

↩→
↩→

201

202 axes[1].hist(area_active_100, edgecolor='black', linewidth=1,
color='C0', bins=bins)↩→

203 axes[1].hist(set(area_inactive_100), edgecolor='black',
linewidth=1, color='C1', alpha=0.5, bins=bins)↩→

92 bibl iography

204 axes[1].set_xlabel('Area', fontsize=20, labelpad=20)
205 axes[0].legend()
206 for ax in axes:
207 ax.set_ylabel(r'S(2, τ)', fontsize=20, labelpad=20)
208 #ax.grid()
209 ax.tick_params(axis='both', which='major', labelsize=20)
210 ax.legend(fontsize=20)
211 fig.savefig(f'Structure_Function_Area_Histogram_{region}')
212

213

214 fig, axes = plt.subplots(2, figsize=(12, 6), tight_layout=True,
sharex=True)↩→

215 if region != 'All':
216 axes[0].set_title(f'a) Area of Structure Function' +

r'τ=[1s, 10s] in ' + f' Region {region}',
fontsize=20)

↩→
↩→

217 axes[1].set_title(f'b) Area of Structure Function' +
r'τ=[10s, 100s] in ' + f' Region {region}',
fontsize=20)

↩→
↩→

218 else:
219 axes[0].set_title(f'a) Area of Structure Function' +

r'τ=[1s, 10s] in ' + f'Polar Region',
fontsize=20)

↩→
↩→

220 axes[1].set_title(f'b) Area of Structure Function' +
r'τ=[10s, 100s] in ' + f'Polar Region',
fontsize=20)

↩→
↩→

221 axes[0].plot(area_active, label=f'High Activity Days',
linewidth=4)↩→

222 axes[0].plot(area_inactive, label=f'Low Activity Days',
linewidth=4)↩→

223

224 axes[1].plot(area_active_100, linewidth=4)
225 axes[1].plot(area_inactive_100, linewidth=4)
226 axes[0].legend()
227 axes[1].set_xlabel('Instance', fontsize=20, labelpad=20)
228 for ax in axes:
229 ax.set_ylabel(r'S(2, τ)', fontsize=20, labelpad=20)
230 ax.grid()
231 ax.tick_params(axis='both', which='major', labelsize=20)
232 ax.legend(fontsize=14)
233 fig.savefig(f'Structure_Function_Area_Alternate_{region}',

dpi=100)↩→
234

235

236 def get_slopes():
237 """
238 Plot slopes in histogram
239 """
240 bins = 10

8.5 code 93

241 fig, axes = plt.subplots(2, 2, figsize=(9, 6),
tight_layout=True, sharex=True, sharey=True)↩→

242 axes[0][0].set_title(r'a) High Activity Day τ=' +
f'[{n/16}s, {m/16}s] \n' + r'vs τ=' + f'[{m/16}s,
{j/16}s]', fontsize=14)

↩→
↩→

243 axes[0][0].hist(active_slopes_m4_1_10, edgecolor='black',
linewidth=1, label=f'tau=[1s, 10s]', color='C0',
bins=bins)

↩→
↩→

244 axes[1][0].hist(set(inactive_slopes_m4_1_10),
edgecolor='black', linewidth=1, color='C0', bins=bins)
https://docs.python.org/3/library/stdtypes.html#set-t ⌋
ypes-set-frozenset

↩→
↩→
↩→

245 axes[1][0].set_title(r'c) Low Activity Day τ=' +
f'[{n/16}s, {m/16}s]\n' + r'vs τ=' + f'[{m/16}s,
{j/16}s]', fontsize=14)

↩→
↩→

246 axes[0][0].hist(active_slopes_m4_10_100, edgecolor='black',
linewidth=1, label=f'tau=[10s, 100s]', color='C1',
alpha=0.5, bins=bins)

↩→
↩→

247 axes[1][0].hist(set(inactive_slopes_m4_10_100),
edgecolor='black', linewidth=1, color='C1', alpha=0.5,
bins=bins)

↩→
↩→

248 axes[0][0].legend()
249 axes[0][1].set_title(f'b) High Activity Days vs Low Activity

Days \n' + r'τ = ' + f'[{n/16}s, {m/16}s]',
fontsize=14)

↩→
↩→

250 axes[0][1].hist(active_slopes_m4_1_10, edgecolor='black',
linewidth=1, color='C0', bins=bins, label='High
Activity Days')

↩→
↩→

251 axes[0][1].hist(set(inactive_slopes_m4_1_10),
edgecolor='black', linewidth=1, color='C1', bins=bins,
alpha=0.5, label='Low Activity Days')

↩→
↩→

252 axes[1][1].set_title(f'd) High Activity Days vs Low Activity
Days \n' + r'τ = ' + f'[{m/16}s, {j/16}s]',
fontsize=14)

↩→
↩→

253 axes[1][1].hist(active_slopes_m4_10_100, edgecolor='black',
linewidth=1, label=f'tau=[10s, 100s]', color='C0',
bins=bins)

↩→
↩→

254 axes[1][1].hist(set(inactive_slopes_m4_10_100),
edgecolor='black', linewidth=1, color='C1', bins=bins,
alpha=0.5)

↩→
↩→

255 axes[0][1].legend()
256 axes[1][0].set_xlabel(r'Slope', fontsize=14, labelpad=20)
257 axes[1][0].set_ylabel(r'Counts', fontsize=14, labelpad=20)
258 for axy in axes:
259 for ax in axy:
260 ax.tick_params(axis='both', which='major', labelsize=10)
261 fig.savefig(f'Histogram_{region}', dpi=100)
262

94 bibl iography

263 fig, axes = plt.subplots(figsize=(12, 6), tight_layout=True,
sharex=True, sharey=True)↩→

264 axes.plot(active_slopes_m2_1_10, color='C0', linewidth=2)
265 axes.plot(active_slopes_m4_1_10, color='C0', linewidth=2,

ls='dashed')↩→
266 axes.plot(inactive_slopes_m2_1_10, color='C1', linewidth=2)
267 axes.plot(inactive_slopes_m4_1_10, color='C1', linewidth=2,

ls='dashed')↩→
268 axes.plot(np.ones(len(active_slopes_m2_1_10)) *

np.mean(active_slopes_m2_1_10), color='black',
linewidth=2)

↩→
↩→

269 axes.plot(np.ones(len(inactive_slopes_m2_1_10)) *
np.mean(inactive_slopes_m2_1_10), color='black',
linewidth=2, ls='dotted')

↩→
↩→

270 axes.plot(np.ones(len(active_slopes_m4_1_10)) *
np.mean(active_slopes_m4_1_10), color='black',
linewidth=2)

↩→
↩→

271 axes.plot(np.ones(len(inactive_slopes_m4_1_10)) *
np.mean(inactive_slopes_m4_1_10), color='black',
linewidth=2, ls='dotted')

↩→
↩→

272 plt.grid()
273 fig.savefig(f'Histogram_{region}', dpi=100)
274

275 def plotting_ef():
276 """
277 plots empirical flatness and area in histogram and as regular

plot↩→
278 """
279 area_active = []
280 area_inactive = []
281

282 area_active_100 = []
283 area_inactive_100 = []
284

285 bins = 10
286 fig, axes = plt.subplots(2, 2, figsize=(12, 6),

tight_layout=True)↩→
287 for x in range(len(active_ef)):
288 active = active_ef[x][n:m]
289 inactive = inactive_ef[x][n:m]
290 active_100 = active_ef[x][m:j]
291 inactive_100 = inactive_ef[x][m:j]
292 if x == 1:
293 axes[0, 0].plot(active_tau[x][n:m] / 16, active,

color='C0', label=f'High Activity Days')↩→
294 axes[0, 0].plot(inactive_tau[x][n:m] / 16, inactive,

color='C1', label=f'Low Activity Days')↩→
295 area_active.append(simpson(active, active_tau[x][n:m] /

16))↩→

8.5 code 95

296 area_inactive.append(simpson(inactive,
inactive_tau[x][n:m] / 16))↩→

297 axes[0, 1].plot(active_tau[x][m:j] / 16, active_100,
color='C0', label=f'High Activity Days')↩→

298 axes[0, 1].plot(inactive_tau[x][m:j] / 16,
inactive_100, color='C1', label=f'Low Activity
Days')

↩→
↩→

299 area_active_100.append(simpson(active_100,
active_tau[x][m:j] / 16))↩→

300 area_inactive_100.append(simpson(inactive_100,
inactive_tau[x][m:j] / 16))↩→

301 else:
302 axes[0, 0].plot(active_tau[x][n:m] / 16, active,

color='C0')↩→
303 axes[0, 0].plot(inactive_tau[x][n:m] / 16, inactive,

color='C1')↩→
304 area_active.append(simpson(active, active_tau[x][n:m] /

16))↩→
305 area_inactive.append(simpson(inactive,

inactive_tau[x][n:m] / 16))↩→
306 axes[0, 1].plot(active_tau[x][m:j] / 16, active_100,

color='C0')↩→
307 axes[0, 1].plot(inactive_tau[x][m:j] / 16,

inactive_100, color='C1')↩→
308 area_active_100.append(simpson(active_100,

active_tau[x][m:j] / 16))↩→
309 area_inactive_100.append(simpson(inactive_100,

inactive_tau[x][m:j] / 16))↩→
310 axes[0, 0].plot(active_tau[x][n:m] / 16,

np.ones(len(active_tau[x][n:m])) * 3, color='black',
linewidth=2, ls='dashed', label=r'F(τ) = 3')

↩→
↩→

311 axes[0, 1].plot(active_tau[x][m:j] / 16,
np.ones(len(active_tau[x][m:j])) * 3, color='black',
linewidth=2, ls='dashed')

↩→
↩→

312

313

314 axes[1, 0].hist(area_active, edgecolor='black', linewidth=1,
label=f'Active Day {region}', color='C0', bins=bins)↩→

315 axes[1, 0].hist(area_inactive, edgecolor='black', linewidth=1,
label=f'Inactive Day {region}', color='C1', alpha=0.5,
bins=bins)

↩→
↩→

316 axes[1, 1].hist(area_active_100, edgecolor='black',
linewidth=1, label=f'Active Day {region}', color='C0',
bins=bins)

↩→
↩→

317 axes[1, 1].hist(area_inactive_100, edgecolor='black',
linewidth=1, label=f'Inactive Day {region}',
color='C1', alpha=0.5, bins=bins)

↩→
↩→

318 axes[0, 0].set_xscale('log')
319 axes[0, 1].set_xscale('log')

96 bibl iography

320 axes[0, 0].grid()
321 if region != 'All':
322 axes[1, 0].set_title(f'c) Area in Region {region} \n' +

r'for τ=' + f'[{n/16}s, {m/16}s]', fontsize=15)↩→
323 axes[0, 0].set_title(f'a) Empirical Flatness in Region

{region}\n' + r'for τ=' + f'[{n/16}s,
{m/16}s]', fontsize=17)

↩→
↩→

324 axes[1, 1].set_title(f'd) Area in Region {region} \n' +
r'for τ=' + f'[{n/16}s, {m/16}s]', fontsize=15)↩→

325 axes[0, 1].set_title(f'b) Empirical Flatness in Region
{region}\n' + r'for τ=' + f'[{m/16}s,
{j/16}s]', fontsize=17)

↩→
↩→

326 else:
327 axes[1, 0].set_title(f'c) Area in Polar Region \n' + r'for

τ=' + f'[{n/16}s, {m/16}s]', fontsize=15)↩→
328 axes[0, 0].set_title(f'a) Empirical Flatness in Region

{region}\n' + r'for τ=' + f'[{n/16}s,
{m/16}s]', fontsize=17)

↩→
↩→

329 axes[1, 1].set_title(f'd) Area in Polar Region \n' + r'for
τ=' + f'[{n/16}s, {m/16}s]', fontsize=15)↩→

330 axes[0, 1].set_title(f'b) Empirical Flatness in Region
{region}\n' + r'for τ=' + f'[{m/16}s,
{j/16}s]', fontsize=17)

↩→
↩→

331 axes[0, 0].set_ylabel(r'S(4, τ) / S2(2, τ)',
fontsize=14)↩→

332 axes[0, 0].set_xlabel(r'τ (seconds)', fontsize=14)
333 axes[0, 1].set_xlabel(r'τ (seconds)', fontsize=14)
334 axes[1, 0].set_ylabel('Counts', fontsize=14)
335 axes[1, 0].set_xlabel('Area', fontsize=14, labelpad=20)
336 axes[1, 1].set_xlabel('Area', fontsize=14, labelpad=20)
337 for axy in axes:
338 for ax in axy:
339 ax.tick_params(axis='both', which='major', labelsize=14)
340 axes[0, 0].legend(fontsize=11)
341 fig.savefig(f'Empirical_Flatness_and_Histogram_{region}')
342

343 fig, axes = plt.subplots(2, figsize=(9, 6), tight_layout=True,
sharex=True)↩→

344 if region != 'All':
345 axes[0].set_title(r'a) Area of Empirical Flatness, ' +

f'[{n/16}s, {m/16}s] of ' + f'Region {region}',
fontsize=18)

↩→
↩→

346 axes[1].set_title(r'b) Area of Empirical Flatness, ' +
f'[{m/16}s, {j/16}s] of ' + f'Region {region}',
fontsize=18)

↩→
↩→

347 else:
348 axes[0].set_title(f'a) Area of Empirical Flatness,

[{n/16}s, {m/16}s] of Polar Region', fontsize=18)↩→

8.5 code 97

349 axes[1].set_title(f'b) Area of Empirical Flatness, [{m /
16}s, {j / 16}s] of Polar Region', fontsize=18)↩→

350 axes[0].plot(area_active, label=f'High Activity Days',
linewidth=4)↩→

351 axes[0].plot(area_inactive, label=f'Low Activity Days',
linewidth=4)↩→

352 axes[1].plot(area_active_100, linewidth=4)
353 axes[1].plot(area_inactive_100, linewidth=4)
354 axes[0].legend()
355 axes[1].set_xlabel('Instance', fontsize=20, labelpad=20)
356 axes[0].plot(np.ones(len(area_active)) * np.mean(area_active),

color='C0', ls='dotted', linewidth=4, label='High Mean')↩→
357 axes[0].plot(np.ones(len(area_inactive)) *

np.mean(area_inactive), color='C1', ls='dotted',
linewidth=4, label='Low Mean')

↩→
↩→

358 axes[1].plot(np.ones(len(area_active_100)) *
np.mean(area_active_100), color='C0', ls='dotted',
linewidth=4)

↩→
↩→

359 axes[1].plot(np.ones(len(area_inactive_100)) *
np.mean(area_inactive_100), color='C1', ls='dotted',
linewidth=4)

↩→
↩→

360 for ax in axes:
361 ax.set_ylabel(r'S(4, τ) / S2(2, τ)', fontsize=16,

labelpad=20)↩→
362 ax.grid()
363 ax.tick_params(axis='both', which='major', labelsize=20)
364 ax.legend(fontsize=12)
365 fig.savefig(f'Empirical_Fatness_Area_Alternate_{region}',

dpi=100)↩→
366

367

368 # Calculates regression at intervals
369 ga1 = linregress(np.log10(active_tau[i][n:m].astype(float)),

active_sf_m2[i][n:m].astype('float'))↩→
370 ga2 = linregress(np.log10(active_tau[i][m:j].astype(float)),

active_sf_m2[i][m:j].astype('float'))↩→
371 #ga3 = linregress(np.log10(active_tau[i][j:k].astype(float)),

active_sf_m2[i][j:k].astype('float'))↩→
372 gi1 = linregress(np.log10(inactive_tau[i][n:m].astype(float)),

inactive_sf_m2[i][n:m].astype('float'))↩→
373 gi2 = linregress(np.log10(inactive_tau[i][m:j].astype(float)),

inactive_sf_m2[i][m:j].astype('float'))↩→
374 #gi3 = linregress(np.log10(inactive_tau[i][j:k].astype(float)),

inactive_sf_m2[i][j:k].astype('float'))↩→
375

376

377

378 fig, axes = plt.subplots(figsize=(9, 6), tight_layout=True)
379

98 bibl iography

380

381 #Set either of the if blocks to true to plot empirical flatness or
strucutre function for specific case↩→

382 if True:
383 #axes.plot(active_tau[d][1:m] / 16, active_ef[d][1:m],

color='C0', linewidth=4, label=f'High Activity Day')↩→
384 #axes.plot(inactive_tau[d][1:m] / 16, inactive_ef[d][1:m],

color='C1', linewidth=4, label=f'Low Activity Day')↩→
385 axes.plot(active_tau[d][m:j] / 16, active_ef[d][m:j],

color='C0', linewidth=4)↩→
386 axes.plot(inactive_tau[d][m:j] / 16, inactive_ef[d][m:j],

color='C1', linewidth=4)↩→
387 #axes.plot(active_tau[d][j:-1] / 16, active_ef[d][j:-1],

color='C0', linewidth=4)↩→
388 #axes.plot(inactive_tau[d][j:-1] / 16, inactive_ef[d][j:-1],

color='C1', linewidth=4)↩→
389 #axes.plot(active_tau[d] / 16, np.ones(len(active_tau[d])) * 3,

color='black', linewidth=2, ls='dashed', label=r'S(4,
τ) / S2(2, τ) = 3')

↩→
↩→

390 axes.set_ylabel(r'S(4, τ) / S2(2, τ)', fontsize=20,
labelpad=20)↩→

391

392 if False:
393 axes.plot(active_tau[d][n:m] / 16, active_sf_m2[d][n:m],

color='C0', linewidth=4, label=f'High Activity Day M2')↩→
394 axes.plot(inactive_tau[d][n:m] / 16, inactive_sf_m2[d][n:m],

color='C1', linewidth=4, label=f'Low Activity Day M2')↩→
395 axes.plot(active_tau[d][m:j] / 16, active_sf_m2[d][m:j],

color='C0', linewidth=4)↩→
396 axes.plot(inactive_tau[d][m:j] / 16, inactive_sf_m2[d][m:j],

color='C1', linewidth=4)↩→
397 axes.plot(active_tau[d][j:k] / 16, active_sf_m2[d][j:k],

color='C0', linewidth=4)↩→
398 axes.plot(inactive_tau[d][j:k] / 16, inactive_sf_m2[d][j:k],

color='C1', linewidth=4)↩→
399

400 axes.plot(active_tau[d][k:-1] / 16, active_sf_m2[d][k:-1],
color='C0', linewidth=4)↩→

401 axes.plot(inactive_tau[d][k:-1] / 16, inactive_sf_m2[d][k:-1],
color='C1', linewidth=4)↩→

402

403 #axes.plot(active_tau[d][n:m] / 16, ga1.intercept + ga1.slope *
np.log10(active_tau[d][n:m].astype(float)),
color='black', linewidth=4, ls='dashed')

↩→
↩→

404 #axes.plot(inactive_tau[d][n:m] / 16, gi1.intercept + gi1.slope
* np.log10(inactive_tau[d][n:m].astype(float)),
color='black', linewidth=4, ls='dashed')

↩→
↩→

8.5 code 99

405 #axes.plot(active_tau[d][m:j] / 16, ga2.intercept + ga2.slope *
np.log10(active_tau[d][m:j].astype(float)),
color='black', linewidth=4, ls='dashed')

↩→
↩→

406 #axes.plot(inactive_tau[d][m:j] / 16, gi2.intercept + gi2.slope
* np.log10(inactive_tau[d][m:j].astype(float)),
color='black', linewidth=4, ls='dashed')

↩→
↩→

407 #axes.plot(active_tau[d][j:k] / 16, ga3.intercept + ga3.slope *
np.log10(active_tau[d][j:k].astype(float)),
color='black', linewidth=4, ls='dashed')

↩→
↩→

408 #axes.plot(inactive_tau[d][j:k] / 16, gi3.intercept + gi3.slope
* np.log10(inactive_tau[d][j:k].astype(float)),
color='black', linewidth=4, ls='dashed')

↩→
↩→

409

410 axes.plot(active_tau[d][n:m] / 16, active_sf_m4[d][1:m],
color='C2', linewidth=4, label=f'High Activity Day M4')↩→

411 axes.plot(inactive_tau[d][n:m] / 16, inactive_sf_m4[d][1:m],
color='C3', linewidth=4, label=f'Low Activity Day M4')↩→

412 axes.plot(active_tau[d][m:j] / 16, active_sf_m4[d][m:j],
color='C2', linewidth=4)↩→

413 axes.plot(inactive_tau[d][m:j] / 16, inactive_sf_m4[d][m:j],
color='C3', linewidth=4)↩→

414 axes.plot(active_tau[d][j:k] / 16, active_sf_m4[d][j:-1],
color='C2', linewidth=4)↩→

415 axes.plot(inactive_tau[d][j:k] / 16, inactive_sf_m4[d][j:-1],
color='C3', linewidth=4)↩→

416 """correction_active = np.abs(np.log10((active_tau[d][1] / 16)
** (2 / 3)))↩→

417 correction_inactive = np.abs(np.log10((inactive_tau[d][1] / 16)
** (2 / 3)))↩→

418 scaling_active = np.log10((active_tau[d][1:n] / 16) ** (2 / 3))
+ correction_active + active_sf_m2[d][1]↩→

419 scaling_inactive = np.log10((inactive_tau[d][1:n] / 16)**(2 /
3)) + correction_inactive + inactive_sf_m2[d][1]↩→

420 axes.plot(active_tau[d][1:n] / 16, scaling_active,
color='black', ls='dashed', linewidth=2, label=r'Power
Law = $\tau^\frac{2}{3}$')

↩→
↩→

421 axes.plot(inactive_tau[d][1:n] / 16, scaling_inactive,
color='black', ls='dashed', linewidth=2)↩→

422 axes.set_ylabel(r'S(2, τ)', fontsize=20, labelpad=20)"""
423

424 if region != 'All':
425 axes.set_title(f'Empirical Flatness of Region {region}',

fontsize=24)↩→
426 axes.set_title(f'Structure Function of Region {region} for

m=2', fontsize=24)↩→
427 else:
428 axes.set_title(r'Structure Function of Polar Region for m=2',

fontsize=24)↩→

100 bibl iography

429 axes.set_title(r'Empirical Flatness of Polar Region',
fontsize=24)↩→

430

431 axes.set_xscale('log')
432 axes.grid()
433 axes.set_xlabel(r'τ (seconds)', fontsize=20, labelpad=20)
434 axes.tick_params(axis='both', which='major', labelsize=20)
435 axes.legend(fontsize=14)
436 fig.savefig('test')
437

438 get_slopes()

8.5.3 Loading Data From File

1 import os
2

3 os.environ["CDF_LIB"] = '/home/sondre/.local/lib'
4 from spacepy import pycdf
5 import numpy as np
6

7

8 class GetData:
9 """
10 Loads data from .CDF files
11 Returns dictionary between specified start and stop time
12 """
13 def __init__(self, start_time, stop_time, measured_data='FAC'):
14 self.start_time = start_time
15 self.stop_time = stop_time
16 main_directory = 'swarm_data'
17 sub_directory = start_time.strftime('%Y%m%d')
18 file_path = os.path.join(main_directory, sub_directory)
19 for f in os.listdir(file_path):
20 if 'EXTD' in f:
21 plasma_density = f
22 elif 'OPER' in f:
23 fac = f
24 if measured_data == 'Ne':
25 filename = os.path.join(file_path, plasma_density)
26 elif measured_data == 'FAC':
27 filename = os.path.join(file_path, fac)
28 self.cdf = pycdf.CDF(filename)
29 try:
30 self.timestamp = self.cdf['Timestamp'][:]
31 except KeyError:
32 print('Error: No timestamp')

8.5 code 101

33

34 def get_info(self):
35 """
36 Returns available information
37 """
38 print(self.cdf)
39 return
40

41 def time(self, arr=None):
42 """
43 Returns dictionary corresponding to specified timestamps.
44 If no timestamp, return available timestamp instead
45 """
46 if arr is None:
47 arr = self.timestamp
48 idx = np.where((self.start_time <= arr) & (arr <=

self.stop_time))[0]↩→
49 dict_data = {}
50 for key in self.cdf.keys():
51 dict_data[key] = self.cdf[key][:][idx]
52 return dict_data

8.5.4 Detecting Polar (Sub)Region

1 from datetime import timedelta
2 from functions import normalize, geographic_to_magnetic
3 import numpy as np
4

5

6 class DetectRegion:
7 def __init__(self, dataset_ne, dataset_fac,

region_parameters=None, normalize_data=False,
magnetic=False):

↩→
↩→

8 """
9

10 :param dataset_ne: dataset for electron density (dictionary)
11 :param dataset_fac: dataset for field-aligned currents

(dictionary)↩→
12 :param region_parameters: threshold, time between peaks,

etc... (dictionary)↩→
13 :param normalize_data: (Boolean)
14 :param magnetic: magnetic coordinates (Boolean)
15 """
16 if region_parameters is None:
17 region_parameters = {'time_interval': 2, 'threshold':

0.5, 'region_num': False, 'total_region': False}↩→

102 bibl iography

18

19 self.timestamp_16hz = dataset_ne['Timestamp']
20 self.ne = dataset_ne['Density']
21

22 self.timestamp_fac = dataset_fac['Timestamp']
23 self.fac = dataset_fac['FAC']
24

25 self.normalize_data = normalize_data
26

27 self.region_parameters = region_parameters
28

29 self.ne_region = self.detect_region(self.ne,
self.region_parameters['region_num'])↩→

30 self.fac_region = self.detect_region(self.fac,
self.region_parameters['region_num'])↩→

31

32 time_interval = {}
33

34 if isinstance(self.ne_region, dict):
35 for key in self.ne_region.keys():
36 time_interval_region = {}
37 time = self.timestamp_16hz[self.ne_region[key] !=

None]↩→
38 time_interval_region['start'] = "{}h {}m

{}s".format(np.min(time).hour,
np.min(time).minute, np.min(time).second)

↩→
↩→

39 time_interval_region['stop'] = "{}h {}m
{}s".format(np.max(time).hour,
np.max(time).minute, np.max(time).second)

↩→
↩→

40 time_interval[key] = time_interval_region
41

42 else:
43 time = self.timestamp_16hz[self.ne_region != None]
44 time_interval['start'] = "{}h {}m

{}s".format(np.min(time).hour,
np.min(time).minute, np.min(time).second)

↩→
↩→

45 time_interval['stop'] = "{}h {}m
{}s".format(np.max(time).hour,
np.max(time).minute, np.max(time).second)

↩→
↩→

46

47 self.time_interval = time_interval
48

49

50 self.magnetic_coordinates = None
51 if magnetic:
52 altitude = dataset_fac['Radius'][self.fac_region !=

None]↩→
53 latitude = dataset_fac['Latitude'][self.fac_region !=

None]↩→

8.5 code 103

54 longitude = dataset_fac['Longitude'][self.fac_region !=
None]↩→

55 time = dataset_fac['Timestamp'][self.fac_region != None]
56

57 self.magnetic_coordinates =
geographic_to_magnetic(altitude, latitude,
longitude, time)

↩→
↩→

58

59

60 def detect_region(self, arr, region_num):
61 """
62 Uses the FAC to detect auroral regions and potentially

polar cap region.↩→
63 Finds each element above threshold value and calculates

amount of time between each of said elements.↩→
64 Elements below threshold value but inside the time interval

are↩→
65 added to array along with the elements above the threshold

to avoid unnecessary amounts of very small regions.↩→
66

67 :param arr: array of either Ne or FAC.
68 :param region_num: Boolean/integer/tuple - which region

(from 1 to n) to return. False for all regions (in
1 array)

↩→
↩→

69 :return: region_num = False --> one array containing all
regions.↩→

70 region_num = integer --> one array containing one
region.↩→

71 region_num = tuple --> three arrays, one between
regions in tuple (polar cap) and the other
two as these regions

↩→
↩→

72 """
73 if isinstance(region_num, tuple) and self.normalize_data:
74 self.normalize_data = 'regular_for_polar_cap'
75 if arr.shape == self.fac.shape:
76 if (arr == self.fac).all:
77 self.normalize_data = False # Only normalizes Ne
78 time_diff = []
79 datetime_arr = self.timestamp_fac[np.abs(self.fac) >=

self.region_parameters['threshold']]↩→
80 for i in range(1, len(datetime_arr)):
81 diff = datetime_arr[i] - datetime_arr[i - 1]
82 if diff <= timedelta(minutes=self.region_parameters['ti ⌋

me_interval']):↩→
83 time_diff.append(datetime_arr[i])
84 if len(arr) == len(self.timestamp_16hz):
85 timestamp = self.timestamp_16hz
86 elif len(arr) == len(self.timestamp_fac):
87 timestamp = self.timestamp_fac

104 bibl iography

88 new_time_diff = [time_diff[0]]
89 for i in range(0, len(time_diff)):
90 diff = time_diff[i] - time_diff[i - 1]
91 if diff >= timedelta(minutes=2):
92 new_time_diff.append(time_diff[i - 1])
93 new_time_diff.append(time_diff[i])
94 elif i == len(time_diff) - 1:
95 new_time_diff.append(time_diff[i]) # Last FAC

region have no timedelta to compare with,
but knows it's > threshold so is in
time_diff

↩→
↩→
↩→

96 result = np.zeros(len(timestamp))
97 max_range = int(np.ceil(len(new_time_diff) / 2)) # Round up
98 for i in range(max_range):
99 result[np.where((new_time_diff[2 * i] <= timestamp) &

(timestamp <= new_time_diff[2 * i + 1]))] = i +
1

↩→
↩→

100 if not region_num:
101 if self.normalize_data == 'regular':
102 region = np.where(np.isin(result, range(1,

max_range + 1)), arr, None)↩→
103 region[region != None] = normalize(region)
104 return region
105 else:
106 return np.where(np.isin(result, range(1, max_range

+ 1)), arr, None)↩→
107 elif isinstance(region_num, int):
108 if self.normalize_data == 'regular':
109 region = np.where(result == region_num, arr, None)
110 region[region != None] = normalize(region)
111 return region
112 else:
113 return np.where(result == region_num, arr, None)
114 elif isinstance(region_num, tuple):
115 region = np.where(np.isin(result, region_num), arr,

None) # Regions m,n and area between↩→
116 polar_cap = np.where(np.isin(result, region_num), None,

None) # Only region between m and n↩→
117 region_idx = np.where(region != None)
118 for idx in range(np.min(region_idx),

np.max(region_idx)):↩→
119 if region[idx] is None:
120 polar_cap[idx] = arr[idx]
121 pre_polar_cap = self.detect_region(arr,

region_num=region_num[0])↩→
122 post_polar_cap = self.detect_region(arr,

region_num=region_num[1])↩→
123 if self.normalize_data == 'regular_for_polar_cap':

8.5 code 105

124 result_new =
np.concatenate((pre_polar_cap[pre_polar_cap
!= None], polar_cap[polar_cap != None],
post_polar_cap[post_polar_cap != None]))

↩→
↩→
↩→

125 new_normalize = 1 / np.max(result_new)
126 pre_polar_cap[pre_polar_cap != None] *=

new_normalize↩→
127 polar_cap[polar_cap != None] *= new_normalize
128 post_polar_cap[post_polar_cap != None] *=

new_normalize↩→
129 elif self.normalize_data == 'independent':
130 pre_polar_cap[pre_polar_cap != None] =

normalize(pre_polar_cap)↩→
131 polar_cap[polar_cap != None] = normalize(polar_cap)
132 post_polar_cap[post_polar_cap != None] =

normalize(post_polar_cap)↩→
133 if self.region_parameters['total_region']:
134 complete_region = polar_cap
135 complete_region[pre_polar_cap != None] =

pre_polar_cap[pre_polar_cap != None]↩→
136 complete_region[post_polar_cap != None] =

post_polar_cap[post_polar_cap != None]↩→
137 return complete_region
138 elif not self.region_parameters['total_region']:
139 return {'A': pre_polar_cap, 'B': polar_cap, 'C':

post_polar_cap}↩→
140

141 def return_region(self):
142 return {'Ne': self.ne_region, 'FAC': self.fac_region,

'time_interval': self.time_interval,
'magnetic_coordinates': self.magnetic_coordinates}

↩→
↩→

8.5.5 Data Processing

1 import matplotlib.pyplot as plt
2 import detectRegion as dr
3 from functions import *
4 import numpy as np
5 import scipy as sp
6 from scipy.stats import linregress, norm
7 import seaborn as sns
8 from scipy.signal import hann
9 from mpl_toolkits.basemap import Basemap
10 from itertools import chain
11

12

106 bibl iography

13 class DataProcessing:
14 """
15 Class with methods for actually applying our data to our

functions.↩→
16 Also some more encompassing implementations which would not fit

in the functions.py - file↩→
17 """
18 def __init__(self, data_16Hz, data_FAC, region_parameters,

magnetic=False):↩→
19 self.ratio_dataset = None
20 self.dataset = None
21 self.closest_latitudes = None
22 self.timestamp_16Hz = data_16Hz['Timestamp']
23 self.timestamp_FAC = data_FAC['Timestamp']
24 self.latitude_16Hz = data_16Hz['Latitude']
25 self.longitude_16Hz = data_16Hz['Longitude']
26 self.latitude_FAC = data_FAC['Latitude']
27 self.longitude_FAC = data_FAC['Longitude']
28 self.ne = data_16Hz['Density']
29 self.fac = data_FAC['FAC']
30

31 working_data = dr.DetectRegion(data_16Hz, data_FAC,
region_parameters=region_parameters,
magnetic=magnetic).return_region()

↩→
↩→

32

33 ne_region = working_data['Ne']
34 fac_region = working_data['FAC']
35

36 time_interval = working_data['time_interval']
37 magnetic_coordinates = working_data['magnetic_coordinates']
38

39 self.ne_region = ne_region
40 self.fac_region = fac_region
41

42 self.time_interval = time_interval
43 self.magnetic_coordinates = magnetic_coordinates
44

45 def calculate_structure_function(self, region='all',
seconds='auto', m='all', normalize_data=False,
calculate_empirical_flatness=True, name =''):

↩→
↩→

46 """
47

48 :param region: Either All, A, B or C (string)
49 :param seconds: chose max time lag (string or int)
50 :param m: m-th order structure function.
51 Set to 'all' for m=[1, 2, 3, 4] (int, tuple or string)
52 :param normalize_data: Unused
53 :param calculate_empirical_flatness: Set to False to avoid

unecessary computation(Boolean)↩→

8.5 code 107

54 :param name: (string)
55 :return: (dictionary)
56 """
57 try:
58 if region == 'all':
59 region = self.ne_region
60 elif region == 'A':
61 region = self.ne_region['A']
62 elif region == 'B':
63 region = self.ne_region['B']
64 elif region == 'C':
65 region = self.ne_region['C']
66 except IndexError:
67 return self.dataset
68

69 region = region[region != None]
70 #region = np.abs(delta_n(region, 1))
71 dataset = {}
72 slope_dataset = {}
73 structure_function_dataset = {}
74 regression_dataset = {}
75

76 if seconds == 'auto':
77 seconds = len(region)
78 tau = np.arange(1, int(seconds))
79 elif seconds == 'auto_half':
80 seconds = len(region) / 2
81 tau = np.arange(1, int(seconds))
82 elif isinstance(seconds, int) or isinstance(seconds, float):
83 tau = np.arange(1, int(seconds * 16))
84

85 dataset['seconds'] = int(seconds / 16)
86 if m == 'all':
87 for m in range(1, 5):
88 sf = structure_function(region, tau, m)
89

90 sf = np.log10(sf.astype(float))
91

92 #if normalize_data:
93 # sf = normalize(sf)
94

95 g = linregress(np.log10(tau.astype(float)),
sf.astype('float'))↩→

96

97 structure_function_dataset[m] = sf
98 slope_dataset[m] = g.slope
99 regression_dataset[m] = g.intercept + g.slope *

np.log10(tau.astype(float))↩→
100

108 bibl iography

101 print(f'{m} of 4 complete')
102

103 elif isinstance(m, int):
104 sf = structure_function(region, tau, m, name)[0]
105 print()
106

107 sf = np.log10(sf.astype(float))
108

109 #if normalize_data:
110 # sf = normalize(sf)
111

112 #g = linregress(np.log10(tau.astype(float)),
sf.astype('float'))↩→

113

114 structure_function_dataset[m] = sf
115 slope_dataset[m] = 'dummy'#g.slope
116 regression_dataset[m] = 'dummy'#g.intercept + g.slope *

np.log10(tau.astype(float))↩→
117

118 print('Done')
119

120 elif isinstance(m, tuple):
121 for elem in m:
122 sf = structure_function(region, tau, elem)
123

124 sf = np.log10(sf.astype(float))
125

126 g = linregress(np.log10(tau.astype(float)),
sf.astype('float'))↩→

127

128 structure_function_dataset[elem] = sf
129 slope_dataset[elem] = g.slope
130 regression_dataset[elem] = g.intercept + g.slope *

np.log10(tau.astype(float))↩→
131

132 print('Done')
133

134 del sf
135

136 dataset['structure_function'] = structure_function_dataset
137

138 if calculate_empirical_flatness:
139 ef = empirical_flatness(region, tau)
140

141 #if normalize_data:
142 # ef = normalize(ef)
143

144 elif isinstance(m, tuple):
145 try:

8.5 code 109

146 ef = (10 ** dataset['structure_function'][4]) /
((10 ** dataset['structure_function'][2])
** 2)

↩→
↩→

147 except KeyError:
148 ef = None
149

150

151 else:
152 ef = None
153

154 dataset['slope'] = slope_dataset
155 dataset['regression'] = regression_dataset
156 dataset['empirical_flatness'] = ef
157 dataset['tau'] = tau / 16
158 self.dataset = dataset
159 return dataset
160

161 def calculate_structure_function_at_specific_time(self,
start_time, stop_time):↩→

162 """
163 Returns structure function only calculatedat a specific

time scale↩→
164 :param start_time: (int)
165 :param stop_time: (int)
166 :return: (dictionary)
167 """
168 new_dataset = {}
169

170 new_slope_dataset = {}
171 new_structure_function_dataset = {}
172 new_regression_dataset = {}
173

174 start_tau = int(start_time * 16) if start_time != 0 else 1
175 stop_tau = int(stop_time * 16)
176

177 new_dataset['tau'] = self.dataset['tau'][start_tau:stop_tau]
178 if self.dataset['empirical_flatness'] is not None:
179 new_dataset['empirical_flatness'] = self.dataset['empir ⌋

ical_flatness'][start_tau:stop_tau]↩→
180 for key in self.dataset['structure_function'].keys():
181 new_structure_function_dataset[key] = self.dataset['str ⌋

ucture_function'][key][start_tau:stop_tau]↩→
182

183 g = linregress(np.log10(new_dataset['tau']).astype('flo ⌋
at'),
new_structure_function_dataset[key].astype('flo ⌋
at'))

↩→
↩→
↩→

184 new_regression_dataset[key] = g.intercept + g.slope *
np.log10(new_dataset['tau']).astype('float')↩→

110 bibl iography

185 new_slope_dataset[key] = g.slope
186

187 new_dataset['structure_function'] =
new_structure_function_dataset↩→

188 new_dataset['slope'] = new_slope_dataset
189 new_dataset['regression'] = new_regression_dataset
190 new_dataset['seconds'] = stop_time
191 return new_dataset
192

193 def calculate_structure_function_ratios(self,
seconds='auto_half', m=2):↩→

194 """
195 Returns ratios between strucutre function in regions A, B

and C↩→
196

197 :param seconds: maximum time lag (int or string)
198 :param m: m-th order
199 :return: (dictionary)
200 """
201 region = self.ne_region
202 region_A = region['A'][region['A'] != None]
203 region_B = region['B'][region['B'] != None]
204 region_C = region['C'][region['C'] != None]
205

206 if seconds == 'auto':
207 region_lengths = [len(region_A), len(region_B),

len(region_C)]↩→
208 seconds = int(np.min(region_lengths))
209 tau = np.arange(1, int(seconds - 1))
210 if seconds == 'auto_half':
211 region_lengths = [len(region_A), len(region_B),

len(region_C)]↩→
212 seconds = int(np.min(region_lengths) / 2)
213 tau = np.arange(1, int(seconds))
214 elif isinstance(seconds, int) or isinstance(seconds, float):
215 tau = np.arange(1, int(seconds * 16))
216

217 dataset = {'B/A': structure_function(region_B, tau, m) /
structure_function(region_A, tau, m),↩→

218 'B/C': structure_function(region_B, tau, m) /
structure_function(region_C, tau, m),↩→

219 'A/C': structure_function(region_A, tau, m) /
structure_function(region_C, tau, m),↩→

220 'tau': tau,
221 'seconds': int(seconds / 16)}
222

223 self.ratio_dataset = dataset
224 return dataset
225

8.5 code 111

226 def calculate_structure_function_ratios_at_specific_time(self,
start_time, stop_time):↩→

227 """
228 Same as calculate_structure_function_at_specific_time
229 :param start_time: (int)
230 :param stop_time: (int)
231 :return: (dictionary)
232 """
233 new_dataset = {}
234

235 start_tau = int(start_time * 16) if start_time != 0 else 1
236 stop_tau = int(stop_time * 16)
237

238 new_dataset['tau'] =
self.ratio_dataset['tau'][start_tau:stop_tau]↩→

239 new_dataset['B/A'] =
self.ratio_dataset['B/A'][start_tau:stop_tau]↩→

240 new_dataset['B/C'] =
self.ratio_dataset['B/C'][start_tau:stop_tau]↩→

241 new_dataset['A/C'] =
self.ratio_dataset['A/C'][start_tau:stop_tau]↩→

242

243 new_dataset['seconds'] = stop_time
244 return new_dataset
245

246 def calculate_power_spectral_density(self, region='all', dt=0,
time_interval=None):↩→

247 """
248

249 :param region: Either A, B, C or All (string)
250 :param dt: PSD for if dNe/dt (int or float)
251 :param time_interval: If a specific time interval is

desired (tuple)↩→
252 :return: (dictionary)
253 """
254 if region == 'all':
255 region = self.ne_region
256 elif region == 'A':
257 region = self.ne_region['A']
258 elif region == 'B':
259 region = self.ne_region['B']
260 elif region == 'C':
261 region = self.ne_region['C']
262

263 idx = np.where(region != None)
264 new_region = region[idx]
265 if dt != 0:
266 dt *= 16
267 dNe = delta_n(new_region, dt)

112 bibl iography

268 new_region = dNe / new_region[:len(dNe)]
269

270

271 if time_interval:
272 start_time = time_interval[0] * 16
273 stop_time = time_interval[1] * 16
274 new_region = new_region[start_time: stop_time]
275

276 window = hann(len(new_region))
277 new_region = new_region * window
278

279 region_fft = sp.fft.rfft(new_region) #
https://docs.scipy.org/doc/scipy/reference/generate ⌋
d/scipy.fft.rfft.html

↩→
↩→

280 # https://docs.scipy.org/doc/scipy/reference/generated/scip ⌋
y.fft.fft.html#scipy.fft.fft↩→

281 frequency = sp.fft.rfftfreq(len(new_region), d=1/16)
282

283 amplitude = np.log10(np.abs(region_fft) ** 2)
284

285 target = 1E-1
286 differences = np.abs(frequency - target)
287 start = np.argmin(differences)
288 print(start)
289 target = 1
290 differences = np.abs(frequency - target)
291 middle = np.argmin(differences)
292 print(middle)
293 p_1 = linregress(np.log10(frequency[start:middle]).astype(f ⌋

loat),
amplitude[start:middle].astype('float'))

↩→
↩→

294 regression_1 = p_1.intercept + p_1.slope *
np.log10(frequency[start:middle]).astype('float')↩→

295

296 p_2 = linregress(np.log10(frequency[middle:]).astype(float) ⌋
,
amplitude[middle:].astype('float'))

↩→
↩→

297 regression_2 = p_2.intercept + p_2.slope *
np.log10(frequency[middle:]).astype('float')↩→

298

299 return {'power_spectral_density': amplitude[start:],
'frequency': frequency[start:], 'slope':
(p_1.slope, p_2.slope), 'regression':
(regression_1, regression_2)}

↩→
↩→
↩→

300

301 def plot_probability_density_fluctuations(self, fig, axes,
region='all', limit=False, name=''):↩→

302 """
303

8.5 code 113

304 :param fig: as in fig, axes = plt.subplots()
305 :param axes: as in fig, axes = plt.subplots()
306 :param region: Either A, B, C or All (string)
307 :param limit: Limits axes (boolean)
308 :param name: unused (string)
309 :return: figure of PDF
310 """
311 region_name = region
312 if region == 'A':
313 region = self.ne_region['A']
314 elif region == 'B':
315 region = self.ne_region['B']
316 elif region == 'C':
317 region = self.ne_region['C']
318 elif region == 'all':
319 region = self.ne_region
320

321 idx = np.where(region != None)
322

323 #increments = np.array([0.0625, 0.125, 0.25, 0.5, 1]) * 16
324 #increments = np.array([1, 5, 10]) * 16
325 increments = np.array([10, 50, 100]) * 16
326 increments = np.array(increments, dtype=int)
327

328 mean_sets = []
329 std_sets = []
330

331 dataset = {}
332

333 for increment in increments:
334 dne = delta_n(region[idx], increment)
335

336 data = dne / np.std(dne)
337

338 dataset[f'{increment}'] = data
339

340 sns.kdeplot(data, ax=axes, linewidth=4, ls='dotted',
label=r'τ' f'= {increment / 16}s')↩→

341 x = np.linspace(np.min(data), np.max(data), len(data))
342 mean_sets.append(np.mean(data))
343 std_sets.append(np.std(data))
344

345 gaussian = norm.pdf(x, np.mean(mean_sets),
np.mean(std_sets))↩→

346 axes.plot(x, gaussian, color='black') # Normal
distribution https://stackoverflow.com/questions/10 ⌋
138085/how-to-plot-normal-distribution

↩→
↩→

347 axes.legend(fontsize=20)
348 axes.set_yscale('log')

114 bibl iography

349 axes.tick_params(axis='both', which='major', labelsize=20)
350 axes.set_ylabel(f'PDF(x)', fontsize=20, labelpad=20)
351 axes.set_xlabel(f'x = ΔNe/σ(ΔNe)',

fontsize=20, labelpad=20)↩→
352 if limit:
353 axes.set_ylim(limit[0], limit[1])
354 axes.set_xlim(-6, 6)
355 fig.tight_layout()
356

357 def plot_trajectory(self, name, latitude_limit=0,
other_day=False, all_orbits=False):↩→

358 """
359

360 :param name: (string)
361 :param latitude_limit: limits latitude to avoid having to

compute more than necessary (int)↩→
362 :param other_day: only used when calculating the trajectory

of 2nd day (dictionary)↩→
363 :param all_orbits: if all trajectories and not just the

closest one is wanted (boolean)↩→
364 :return:
365 """
366 try:
367 longitude = self.longitude_FAC[self.fac_region['B'] !=

None]↩→
368 latitude = self.latitude_FAC[self.fac_region['B'] !=

None]↩→
369 except IndexError:
370 longitude = self.longitude_FAC[self.fac_region != None]
371 latitude = self.latitude_FAC[self.fac_region != None]
372 latitude_limit = np.abs(latitude_limit)
373 if np.max(latitude) > 0:
374 north = True
375 viewing_latitude = 50
376 else:
377 north = False
378 viewing_latitude = -50
379

380

381 # https://jakevdp.github.io/PythonDataScienceHandbook/04.13 ⌋
-geographic-data-with-basemap.html↩→

382 def draw_map(m, scale=0.2):
383 """
384 Code is used from this website
385 https://jakevdp.github.io/PythonDataScienceHandbook/04. ⌋

13-geographic-data-with-basemap.html↩→
386

387 It displays a projection of earth.
388 """

8.5 code 115

389 # draw a shaded-relief image
390 m.shadedrelief(scale=scale)
391

392 # lats and longs are returned as a dictionary
393 lats = m.drawparallels(np.linspace(-90, 90, 13))
394 lons = m.drawmeridians(np.linspace(-180, 180, 13))
395

396 # keys contain the plt.Line2D instances
397 lat_lines = chain(*(tup[1][0] for tup in lats.items()))
398 lon_lines = chain(*(tup[1][0] for tup in lons.items()))
399 all_lines = chain(lat_lines, lon_lines)
400

401 # cycle through these lines and set the desired style
402 for line in all_lines:
403 line.set(linestyle='-', alpha=0.3, color='w')
404

405

406 fig = plt.figure(figsize=(12, 8))
407 m = Basemap(projection='ortho', resolution=None,
408 lon_0=0, lat_0=viewing_latitude)
409 draw_map(m)
410 longitude = longitude[np.abs(latitude) >= latitude_limit]
411 latitude = latitude[np.abs(latitude) >= latitude_limit]
412 coordinates = np.column_stack((latitude, longitude))
413 x, y = m(longitude, latitude)
414 m.scatter(x, y, marker='D', color='m', s=0.5, label='High

Activity Trajectory')↩→
415 if other_day:
416 latitude_other = other_day['Latitude_FAC']
417 longitude_other = other_day['Longitude_FAC']
418

419 if north:
420 latitude_other_limit = np.where(latitude_other >=

latitude_limit, latitude_other, None)↩→
421 longitude_other_limit = np.where(latitude_other >=

latitude_limit, longitude_other, None)↩→
422 else:
423 latitude_other_limit = np.where(latitude_other <=

latitude_limit, latitude_other, None)↩→
424 longitude_other_limit = np.where(latitude_other <=

latitude_limit, longitude_other, None)↩→
425

426 # Divides array of latitudes into multiple sub-arrays
for each trajectory↩→

427 # Then each trajectory's distance from main trajectory
is calculated↩→

428 # Closest trajectory is registered
429 latitude_other_idx = np.where(latitude_other_limit ==

None)[0]↩→

116 bibl iography

430 latitude_other_subarrays =
np.split(latitude_other_limit,
latitude_other_idx)

↩→
↩→

431 longitude_other_subarrays =
np.split(longitude_other_limit,
latitude_other_idx)

↩→
↩→

432 latitude_other_new = [np.array(subarray[subarray !=
None], dtype=np.float64) for subarray in
latitude_other_subarrays if len(subarray) > 1]

↩→
↩→

433 longitude_other_new = [np.array(subarray[subarray !=
None], dtype=np.float64) for subarray in
longitude_other_subarrays if len(subarray) > 1]

↩→
↩→

434 closest_indices_set = []
435 mean_dist = []
436 for subarray_lat, subarray_lon in

zip(latitude_other_new, longitude_other_new):↩→
437 coordinates_other_new =

np.column_stack((subarray_lat[subarray_lat
!= None], subarray_lon[subarray_lon !=
None]))

↩→
↩→
↩→

438 distances = np.linalg.norm(coordinates[:, None, :]
- coordinates_other_new, axis=2)↩→

439 closest_indices = np.argmin(distances, axis=1)
440 closest_indices_set.append(closest_indices)
441 coordinates_other_new_2 =

coordinates_other_new[closest_indices]↩→
442 distance = np.abs(coordinates -

coordinates_other_new_2).sum()↩→
443 mean_dist.append(distance)
444 for latitude_other_subarray, longitude_other_subarray,

closest_indices, i in zip(latitude_other_new,
longitude_other_new, closest_indices_set,
range(len(mean_dist))):

↩→
↩→
↩→

445 if i == np.argmin(mean_dist):
446 self.closest_latitudes =

latitude_other_subarray[closest_indices]↩→
447 x_other, y_other = m(longitude_other_subarray[c ⌋

losest_indices],
latitude_other_subarray[closest_indices ⌋
])

↩→
↩→
↩→

448 m.scatter(x_other, y_other, marker='D',
color='black', s=0.5, label='Closest
Low Activity Trajectory')

↩→
↩→

449 else:
450 if all_orbits:
451 x_other, y_other = m(longitude_other_subarr ⌋

ay[closest_indices],
latitude_other_subarray[closest_ind ⌋
ices])

↩→
↩→
↩→

8.5 code 117

452 m.scatter(x_other, y_other, marker='D',
color='grey', s=0.5)↩→

453 plt.legend(fontsize=14, markerscale=14, loc='upper right',
bbox_to_anchor=(1.4, 1.1))↩→

454 plt.savefig(f'{name}')
455 plt.close()
456

457 def find_closest_region(self, other_day):
458 """
459

460 :param other_day: you need two days to find closest regions
(dictionary)↩→

461 :return: Timestamps at the start and end of the closest
trajectory(string)↩→

462 """
463 try:
464 idx_start = np.where([other_day['Latitude_FAC'] ==

self.closest_latitudes[0]])[-1][0]↩→
465 idx_stop = np.where([other_day['Latitude_FAC'] ==

self.closest_latitudes[-1]])[-1][0]↩→
466 print(other_day['Timestamp_FAC'][idx_start])
467 print(other_day['Timestamp_FAC'][idx_stop])
468 except TypeError:
469 print('closest trajectory for previous/next day not

calculated, or region_num parameter in
other_day is not set to false')

↩→
↩→

470

471 def return_data(self):
472 """
473 Classes won't return anything on their own
474 :return: (dictionary)
475 """
476 return {'Density_Full': self.ne, 'FAC_Full': self.fac,
477 'Density': self.ne_region, 'FAC': self.fac_region,
478 'Latitude_FAC': self.latitude_FAC, 'Longitude_FAC':

self.longitude_FAC,↩→
479 'Latitude_16Hz': self.latitude_16Hz,

'Longitude_16Hz': self.longitude_16Hz,↩→
480 'Timestamp_FAC': self.timestamp_FAC,

'Timestamp_16Hz': self.timestamp_16Hz,↩→
481 'time_interval': self.time_interval,
482 'magnetic_coordinates': self.magnetic_coordinates}

118 bibl iography

8.5.6 Functions

1 import numpy as np
2 from spacepy.coordinates import Coords
3 from spacepy.time import Ticktock
4

5

6 def mean_square(y, n):
7 """
8 Mean square function
9 :param y: Electron Density (array)
10 :param n: window size (int)
11 :return: MS (array)
12 """
13 y = np.array(y, dtype=np.float64)
14 window = np.ones(n) / n
15 return np.convolve(y ** 2, window)
16

17

18 def root_mean_square(y, n):
19 """
20 Root mean square function
21 :param y: Electron Density (array)
22 :param n: window size (int)
23 :return: RMS (array)
24 """
25 return np.sqrt(mean_square(y, n))
26

27

28 def _structure_function(y, tau, m=2):
29 """
30 Structure Function A
31 Fast but inaccurate
32 Vectorized
33 :param y: Electron Density (array)
34 :param tau: time lag (array)
35 :param m: structure function order (int)
36 :return: structure function (array)
37 """
38 t = np.arange(len(y) - np.max(tau))
39 y_diff = np.abs(y[t + tau[:, None]] - y[t])
40 return np.mean(np.array(y_diff) ** m, axis=1)
41

42

43 def structure_function(y, tau, m=2):
44 """
45 Structure Function A
46 Slow but accurate

8.5 code 119

47 Partially Vectorized
48 :param y: Electron Density (array)
49 :param tau: time lag (array)
50 :param m: structure function order (int)
51 :return: structure function (array)
52 """
53 t = np.arange(0, len(y) - 1)
54 y_difference = []
55 for n in range(0, len(tau)):
56 #Loop necessary to always use maximum available data points
57 y_tau_shifted = y[(t[:(len(t) - n)] + tau[:, None])[n]]
58 y_original_time = y[t[:(len(t) - n)]]
59 y_difference.append(np.mean(np.abs(y_tau_shifted -

y_original_time) ** m))↩→
60 return np.array(y_difference)
61

62

63 def empirical_flatness(y, tau):
64 """
65

66 :param y: Electron Density (array)
67 :param tau: time lag (array)
68 :return: empirical flatness (array)
69 """
70 # tau must not start at zero
71 return structure_function(y, tau, 4) / structure_function(y,

tau, 2) ** 2↩→
72

73

74 def empirical_flatness_alt(m4, m2):
75 """
76 Alternate empirical flatness so structure function calculations
77 doesn't have to be repeated
78 :param m4: strucuture function for m=4 (array)
79 :param m2: strucuture function for m=2 (array)
80 :return: empirical flatness (array)
81 """
82 return m4 / m2 ** 2
83

84

85 def normalize(y):
86 """
87

88 :param y: array
89 :return: normalized by dividing maximum value (array)
90 """
91 y_norm = y[y != None] / np.max(y[y != None])
92 return y_norm
93

120 bibl iography

94

95 def delta_n(n, dt):
96 """
97 dN/dt
98 :param n: electron density (array)
99 :param dt: time shift (int)
100 :return: (array)
101 """
102 if dt == 0:
103 return n
104 dt = int(dt)
105 t = np.arange(len(n) - dt)
106 return n[t + dt] - n[t]
107

108

109 # https://stackoverflow.com/questions/7948450/conversion-from-geogr ⌋
aphic-to-geomagnetic-coordinates↩→

110 def geographic_to_magnetic(altitude, latitude, longitude, time):
111 """
112 Slow
113 :param altitude: int
114 :param latitude: int
115 :param longitude: int
116 :param time: datetime
117 :return: array
118 """
119 data = np.array([altitude, latitude, longitude])
120 data = np.squeeze(data, axis=1)
121

122 cvals = Coords(data.T, 'GEO', 'sph')
123

124 new_time = time.astype(np.datetime64)
125 even_newer_time = np.squeeze(np.datetime_as_string(new_time),

axis=0)↩→
126 cvals.ticks = Ticktock(even_newer_time, 'UTC')
127 print('ok')
128 return cvals.convert('MAG', 'sph')

8.5.7 Plotting Basic Figures

1 import matplotlib.pyplot as plt
2 import numpy as np
3

4

5 def plot_ne_and_fac_(data, name, target=False, polar_region='all'):
6 """

8.5 code 121

7 plots electron density and
8 field-aligned currents
9

10 :param data: (dictionary)
11 :param name: (string)
12 :param target: entire region or just specified polar region

(boolean)↩→
13 :param polar_region: if target is True,
14 can choose one or more subregions
15 (region A, B, C) (string)
16 :return: figure
17 """
18 fig, axes = plt.subplots(2, figsize=(9, 6), tight_layout=True,

sharex=True)↩→
19 if not target:
20 axes[0].plot(data['Timestamp_16Hz'], data['Density_Full'])
21 axes[1].plot(data['Timestamp_FAC'], data['FAC_Full'])
22

23 if isinstance(data['FAC'], dict):
24 if polar_region == 'A' or polar_region == 'AC' or

polar_region == 'AB' or polar_region == 'all':↩→
25 axes[0].plot(data['Timestamp_16Hz'],

data['Density']['A'], label='A')↩→
26 axes[1].plot(data['Timestamp_FAC'], data['FAC']['A'])
27 if polar_region == 'B' or polar_region == 'AB' or

polar_region == 'BC' or polar_region == 'all':↩→
28 axes[0].plot(data['Timestamp_16Hz'],

data['Density']['B'], label='B')↩→
29 axes[1].plot(data['Timestamp_FAC'], data['FAC']['B'])
30 if polar_region == 'C' or polar_region == 'AC' or

polar_region == 'BC' or polar_region == 'all':↩→
31 axes[0].plot(data['Timestamp_16Hz'],

data['Density']['C'], label='C')↩→
32 axes[1].plot(data['Timestamp_FAC'], data['FAC']['C'])
33

34 else:
35 axes[0].plot(data['Timestamp_16Hz'], data['Density'],

label='Polar Region')↩→
36 axes[1].plot(data['Timestamp_FAC'], data['FAC'],

label='Polar Region')↩→
37

38 for ax in axes:
39 ax.grid()
40 ax.legend()
41 axes[0].set_title('a) Plasma Density', fontsize=16)
42 axes[0].set_ylabel('cm^{-3}', fontsize=14)
43 axes[1].set_xlabel('Time', fontsize=14)
44 axes[1].set_ylabel('A/m^2', fontsize=14)
45 axes[1].set_title('b) Field-Aligned Current', fontsize=16)

122 bibl iography

46 fig.savefig(f'{name}')
47 plt.close(fig)
48

49

50 def plot_structure_function(data, m, axes, tau_interval='tau',
keyword=''):↩→

51 """
52 Commented out scaling exponent plot
53

54 :param data: (dictionary)
55 :param m: m-th order (tuple or int)
56 :param axes: as in fig, axes = plt.subplots()
57 :param tau_interval: for labeling (string)
58 :param keyword: for labeling (string)
59 :return: figure
60 """
61 if isinstance(m, tuple):
62 for elem in m:
63 axes[0].plot(data['tau'],

data['structure_function'][elem],
label=f'S({elem}, {tau_interval}) {keyword}')

↩→
↩→

64 axes[0].plot(data['tau'], data['regression'][elem],
ls='dotted', c='black')↩→

65 # axes[2].scatter(m, data['slope'][elem], label=f'm =
{elem}')↩→

66 slope = data['slope'][elem]
67 print(f'Slope = {slope}')
68

69 elif isinstance(m, int):
70 axes[0].plot(data['tau'], data['structure_function'][m],

label=f'{keyword} S({m}, {tau_interval}) {keyword}')↩→
71 axes[0].plot(data['tau'], data['regression'][m],

ls='dotted', c='black')↩→
72 #axes[2].scatter(m, data['slope'][m], label=f'm = {m}')
73 slope = data['slope'][m]
74 print(f'Slope = {slope}')
75

76 axes[0].legend(bbox_to_anchor=(1.0, 1.0), prop={'size': 6})
77 axes[0].legend(prop={'size': 6})
78 axes[0].set_xscale('log')
79

80 axes[1].plot(data['tau'], data['empirical_flatness'])
81 axes[1].set_xscale('log')
82

83

84 def plot_structure_function_ratios(data, m, axes, limit=False,
tau_interval='tau', keyword=''):↩→

85 """
86

8.5 code 123

87 :param data: (dictionary)
88 :param m: m-th order (tuple or int)
89 :param axes: as in fig, axes = plt.subplots()
90 :param limit: optional tuple if axes should be shared (tuple)
91 :param tau_interval: for labeling (string)
92 :param keyword: for labeling (string)
93 :return:
94 """
95 axes[0].plot(data['tau'] / 16, data['B/A'], label=f'{keyword}

S({m}, {tau_interval}) B/A')↩→
96 axes[1].plot(data['tau'] / 16, data['B/C'], label=f'{keyword}

S({m}, {tau_interval}) B/C')↩→
97 axes[2].plot(data['tau'] / 16, data['A/C'], label=f'{keyword}

S({m}, {tau_interval}) A/C')↩→
98 for ax in axes:
99 ax.grid()
100 ax.set_xscale('log')
101 ax.legend()
102 if limit:
103 ax.set_ylim(0, limit)
104

105

106 def plot_power_spectral_density(data, fig, axes, label='',
region='all', p_value=False, color='C0', dt='',
inertial_sub_range=False):

↩→
↩→

107 """
108

109 :param data: (dictionary)
110 :param fig: as in fig, axes = plt.subplots()
111 :param axes: as in fig, axes = plt.subplots()
112 :param label: (string)
113 :param region: Either region A, B, C or All (string)
114 :param p_value: displays p value of regression (boolean)
115 :param color: (string)
116 :param dt: displays dt if used (int)
117 :param inertial_sub_range: fits kolmogorov scaling exponent k/3

(boolean)↩→
118 :return:
119 """
120 psd = data['power_spectral_density']
121 frequency = data['frequency']
122 if region == 'all':
123 axes.set_title(f'Power Spectral Density in Polar Region',

fontsize=24)↩→
124 else:
125 axes.set_title(f'Power Spectral Density in Region {region},

dt={dt}s', fontsize=24)↩→
126 if inertial_sub_range:

124 bibl iography

127 axes.plot(frequency, np.log10(frequency**(5 / 3)) * psd,
label=label, color=color)↩→

128 else:
129 axes.plot(frequency, psd, label=label, color=color)
130 correction = - np.log10(np.abs(frequency**(-5 / 3)))[0]
131 axes.plot(frequency, np.log10(frequency**(-5 / 3)) +

correction + np.abs(psd[0]), label=r'k^{-5/3}',
color='black')

↩→
↩→

132 if p_value:
133 p_1 = data['slope'][0]
134 p_2 = data['slope'][1]
135 print(f'1st p value = {p_1}')
136 print(f'2nd p value = {p_2}')
137 axes.plot(frequency[:len(data['regression'][0])],

data['regression'][0], ls='dotted', c='black')↩→
138 axes.plot(frequency[len(data['regression'][0]):],

data['regression'][1], ls='dotted', c='black')↩→
139 axes.set_xscale('log')
140 axes.set_xlabel('Frequency (Hz)', fontsize=20, labelpad=20)
141 axes.set_ylabel('P(f)/(Hz)', fontsize=20, labelpad=20)
142 axes.set_xlim(1E-1, 1E1)
143 axes.tick_params(axis='both', which='major', labelsize=20)
144 axes.legend(fontsize=20)
145 fig.tight_layout()

8.5.8 Choosing Instance

1 from datetime import datetime
2

3

4 def load_day(year, month, day, instance, merged_region):
5 """
6 Loads one of the days (cases)
7 set merged_region to True to use the entire polar region
8

9 :param year: Int
10 :param month: Int
11 :param day: Int
12 :param instance: Int
13 :param merged_region: Boolean
14 :return:
15 """
16

17 dataset = {}
18

19 if year == 2014 and month == 11 and day == 4:

8.5 code 125

20 time_interval_start = 6
21 time_interval_stop = 18
22 day_inactive = 3
23 match instance:
24 case 1:
25 fac_parameters_north = {"time_interval": 2,

"threshold": 1, "region_num": (10, 11),
'total_region': merged_region}

↩→
↩→

26 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (11,
12), 'total_region': merged_region}

↩→
↩→

27 fac_parameters_south = {"time_interval": 2,
"threshold": 1, "region_num": (8, 9),
'total_region': merged_region}

↩→
↩→

28 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (9, 10),
'total_region': merged_region}

↩→
↩→

29 case 2:
30 fac_parameters_north = {"time_interval": 2,

"threshold": 1, "region_num": (18, 19),
'total_region': merged_region}

↩→
↩→

31 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (19,
20), 'total_region': merged_region}

↩→
↩→

32 fac_parameters_south = {"time_interval": 2,
"threshold": 1.2, "region_num": (16, 17),
'total_region': merged_region}

↩→
↩→

33 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (17,
18), 'total_region': merged_region}

↩→
↩→

34 case 3:
35 fac_parameters_north = {"time_interval": 2,

"threshold": 1, "region_num": (22, 23),
'total_region': merged_region}

↩→
↩→

36 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (23,
24), 'total_region': merged_region}

↩→
↩→

37 fac_parameters_south = {"time_interval": 2,
"threshold": 1, "region_num": (20, 21),
'total_region': merged_region}

↩→
↩→

38 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (21,
22), 'total_region': merged_region}

↩→
↩→

39

40 if year == 2014 and month == 12 and day == 7:
41 time_interval_start = 12
42 time_interval_stop = 18
43 day_inactive = 6
44 match instance:

126 bibl iography

45 case 1:
46 fac_parameters_north = {"time_interval": 2,

"threshold": 1, "region_num": (2, 3),
'total_region': merged_region}

↩→
↩→

47 fac_parameters_north_inactive = {"time_interval":
3, "threshold": 3, "region_num": (5, 6),
'total_region': merged_region}

↩→
↩→

48 fac_parameters_south = {"time_interval": 2,
"threshold": 2, "region_num": (1, 2),
'total_region': merged_region}

↩→
↩→

49 fac_parameters_south_inactive = {"time_interval":
3, "threshold": 0.5, "region_num": 2,
'total_region': merged_region}

↩→
↩→

50 case 2:
51 fac_parameters_north = {"time_interval": 2,

"threshold": 1, "region_num": (5, 6),
'total_region': merged_region}

↩→
↩→

52 fac_parameters_north_inactive = {"time_interval":
3, "threshold": 3, "region_num": (8, 9),
'total_region': merged_region}

↩→
↩→

53 fac_parameters_south = {"time_interval": 2,
"threshold": 6, "region_num": (5, 6),
'total_region': merged_region}

↩→
↩→

54 fac_parameters_south_inactive = {"time_interval":
3, "threshold": 2, "region_num": 5,
'total_region': merged_region}

↩→
↩→

55 case 3:
56 fac_parameters_north = {"time_interval": 2,

"threshold": 1, "region_num": (8, 9),
'total_region': merged_region}

↩→
↩→

57 fac_parameters_north_inactive = {"time_interval":
3, "threshold": 3, "region_num": (12, 13),
'total_region': merged_region}

↩→
↩→

58 fac_parameters_south = {"time_interval": 2,
"threshold": 3, "region_num": (9, 10),
'total_region': merged_region}

↩→
↩→

59 fac_parameters_south_inactive = {"time_interval":
3, "threshold": 2, "region_num": (8, 9),
'total_region': merged_region}

↩→
↩→

60

61 if year == 2015 and month == 11 and day == 7:
62 time_interval_start = 4
63 time_interval_stop = 18
64 day_inactive = 2
65 match instance:
66 case 1:
67 fac_parameters_north = {"time_interval": 2,

"threshold": 1, "region_num": (4, 5),
'total_region': merged_region}

↩→
↩→

8.5 code 127

68 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (4, 5),
'total_region': merged_region}

↩→
↩→

69 fac_parameters_south = {"time_interval": 10,
"threshold": 5, "region_num": (4, 5),
'total_region': merged_region}

↩→
↩→

70 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 2, "region_num": (2, 3),
'total_region': merged_region}

↩→
↩→

71 case 2:
72 fac_parameters_north = {"time_interval": 2,

"threshold": 0.4, "region_num": (8, 9),
'total_region': merged_region}

↩→
↩→

73 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (7, 8),
'total_region': merged_region}

↩→
↩→

74 fac_parameters_south = {"time_interval": 2,
"threshold": 2, "region_num": (6, 7),
'total_region': merged_region}

↩→
↩→

75 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 1, "region_num": (7, 8),
'total_region': merged_region}

↩→
↩→

76 case 3:
77 fac_parameters_north = {"time_interval": 2,

"threshold": 0.4, "region_num": (11, 12),
'total_region': merged_region}

↩→
↩→

78 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (10,
11), 'total_region': merged_region}

↩→
↩→

79 fac_parameters_south = {"time_interval": 2,
"threshold": 2, "region_num": (10, 11),
'total_region': merged_region}

↩→
↩→

80 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": 9,
'total_region': merged_region}

↩→
↩→

81

82 if year == 2015 and month == 11 and day == 8:
83 time_interval_start = 10
84 time_interval_stop = 18
85 day_inactive = 12
86 match instance:
87 case 1:
88 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": (8, 9),
'total_region': merged_region}

↩→
↩→

89 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (5, 6),
'total_region': merged_region}

↩→
↩→

128 bibl iography

90 fac_parameters_south = {"time_interval": 2,
"threshold": 0.5, "region_num": (6, 7),
'total_region': merged_region}

↩→
↩→

91 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (3, 4),
'total_region': merged_region}

↩→
↩→

92 case 2:
93 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": (12, 13),
'total_region': merged_region}

↩→
↩→

94 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (9, 10),
'total_region': merged_region}

↩→
↩→

95 fac_parameters_south = {"time_interval": 2,
"threshold": 0.5, "region_num": (10, 11),
'total_region': merged_region}

↩→
↩→

96 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (7, 8),
'total_region': merged_region}

↩→
↩→

97 case 3:
98 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": (16, 17),
'total_region': merged_region}

↩→
↩→

99 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (13,
14), 'total_region': merged_region}

↩→
↩→

100 fac_parameters_south = {"time_interval": 2,
"threshold": 0.5, "region_num": (14, 15),
'total_region': merged_region}

↩→
↩→

101 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (11,
12), 'total_region': merged_region}

↩→
↩→

102

103 if year == 2015 and month == 11 and day == 9:
104 time_interval_start = 6
105 time_interval_stop = 18
106 day_inactive = 12
107 match instance:
108 case 1:
109 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": (16, 17),
'total_region': merged_region}

↩→
↩→

110 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (13,
14), 'total_region': merged_region}

↩→
↩→

111 fac_parameters_south = {"time_interval": 2,
"threshold": 0.5, "region_num": (14, 15),
'total_region': merged_region}

↩→
↩→

8.5 code 129

112 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (11,
12), 'total_region': merged_region}

↩→
↩→

113 case 2:
114 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": (20, 21),
'total_region': merged_region}

↩→
↩→

115 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (17,
18), 'total_region': merged_region}

↩→
↩→

116 fac_parameters_south = {"time_interval": 2,
"threshold": 0.5, "region_num": (18, 19),
'total_region': merged_region}

↩→
↩→

117 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (15,
16), 'total_region': merged_region}

↩→
↩→

118 case 3:
119 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": (24, 25),
'total_region': merged_region}

↩→
↩→

120 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (21,
22), 'total_region': merged_region}

↩→
↩→

121 fac_parameters_south = {"time_interval": 2,
"threshold": 0.5, "region_num": (22, 23),
'total_region': merged_region}

↩→
↩→

122 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (19,
20), 'total_region': merged_region}

↩→
↩→

123

124 if year == 2015 and month == 11 and day == 10:
125 time_interval_start = 8
126 time_interval_stop = 16
127 day_inactive = 12
128 match instance:
129 case 1:
130 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": (2, 3),
'total_region': merged_region}

↩→
↩→

131 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (2, 3),
'total_region': merged_region}

↩→
↩→

132 fac_parameters_south = {"time_interval": 2,
"threshold": 1, "region_num": (5, 6),
'total_region': merged_region}

↩→
↩→

133 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (4, 5),
'total_region': merged_region}

↩→
↩→

134 case 2:

130 bibl iography

135 fac_parameters_north = {"time_interval": 2,
"threshold": 0.5, "region_num": (10, 11),
'total_region': merged_region}

↩→
↩→

136 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (10,
11), 'total_region': merged_region}

↩→
↩→

137 fac_parameters_south = {"time_interval": 2,
"threshold": 0.5, "region_num": (12, 13),
'total_region': merged_region}

↩→
↩→

138 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (12,
13), 'total_region': merged_region}

↩→
↩→

139 case 3:
140 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": (14, 15),
'total_region': merged_region}

↩→
↩→

141 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (14,
15), 'total_region': merged_region}

↩→
↩→

142 fac_parameters_south = {"time_interval": 2,
"threshold": 0.5, "region_num": (16, 17),
'total_region': merged_region}

↩→
↩→

143 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (16,
17), 'total_region': merged_region}

↩→
↩→

144

145 if year == 2015 and month == 11 and day == 11:
146 time_interval_start = 6
147 time_interval_stop = 18
148 day_inactive = 12
149 match instance:
150 case 1:
151 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": (17, 18),
'total_region': merged_region}

↩→
↩→

152 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (17,
18), 'total_region': merged_region}

↩→
↩→

153 fac_parameters_south = {"time_interval": 2,
"threshold": 0.5, "region_num": (15, 16),
'total_region': merged_region}

↩→
↩→

154 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (15,
16), 'total_region': merged_region}

↩→
↩→

155 case 2:
156 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": (23, 24),
'total_region': merged_region}

↩→
↩→

8.5 code 131

157 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (21,
22), 'total_region': merged_region}

↩→
↩→

158 fac_parameters_south = {"time_interval": 2,
"threshold": 0.5, "region_num": (21, 22),
'total_region': merged_region}

↩→
↩→

159 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (19,
20), 'total_region': merged_region}

↩→
↩→

160 case 3:
161 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": (27, 28),
'total_region': merged_region}

↩→
↩→

162 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (24,
25), 'total_region': merged_region}

↩→
↩→

163 fac_parameters_south = {"time_interval": 2,
"threshold": 0.5, "region_num": (25, 26),
'total_region': merged_region}

↩→
↩→

164 fac_parameters_south_inactive = {"time_interval":
10, "threshold": 0.5, "region_num": 24,
'total_region': merged_region}

↩→
↩→

165

166 if year == 2015 and month == 12 and day == 5:
167 time_interval_start = 8
168 time_interval_stop = 22
169 day_inactive = 3
170 match instance:
171 case 1:
172 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": (7, 8),
'total_region': merged_region}

↩→
↩→

173 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (6, 7),
'total_region': merged_region}

↩→
↩→

174 fac_parameters_south = {"time_interval": 2,
"threshold": 0.5, "region_num": (5, 6),
'total_region': merged_region}

↩→
↩→

175 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (4, 5),
'total_region': merged_region}

↩→
↩→

176 case 2:
177 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": (20, 21),
'total_region': merged_region}

↩→
↩→

178 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.6, "region_num": (20,
21), 'total_region': merged_region}

↩→
↩→

132 bibl iography

179 fac_parameters_south = {"time_interval": 1,
"threshold": 2, "region_num": (20, 21),
'total_region': merged_region}

↩→
↩→

180 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.1, "region_num": 18,
'total_region': merged_region}

↩→
↩→

181 case 3:
182 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": 23,
'total_region': merged_region}

↩→
↩→

183 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (22,
23), 'total_region': merged_region}

↩→
↩→

184 fac_parameters_south = {"time_interval": 2,
"threshold": 0.5, "region_num": 22,
'total_region': merged_region}

↩→
↩→

185 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": 21,
'total_region': merged_region}

↩→
↩→

186

187 if year == 2015 and month == 12 and day == 6:
188 time_interval_start = 8
189 time_interval_stop = 22
190 day_inactive = 4
191 match instance:
192 case 1:
193 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": (9, 10),
'total_region': merged_region}

↩→
↩→

194 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (9, 10),
'total_region': merged_region}

↩→
↩→

195 fac_parameters_south = {"time_interval": 2,
"threshold": 0.5, "region_num": (7, 8),
'total_region': merged_region}

↩→
↩→

196 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 1, "region_num": (7, 8),
'total_region': merged_region}

↩→
↩→

197 case 2:
198 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": (13, 14),
'total_region': merged_region}

↩→
↩→

199 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (13,
14), 'total_region': merged_region}

↩→
↩→

200 fac_parameters_south = {"time_interval": 2,
"threshold": 0.5, "region_num": (11, 12),
'total_region': merged_region}

↩→
↩→

8.5 code 133

201 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (11,
12), 'total_region': merged_region}

↩→
↩→

202 case 3:
203 fac_parameters_north = {"time_interval": 2,

"threshold": 1, "region_num": (21, 22),
'total_region': merged_region}

↩→
↩→

204 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (19,
20), 'total_region': merged_region}

↩→
↩→

205 fac_parameters_south = {"time_interval": 2,
"threshold": 1, "region_num": (19, 20),
'total_region': merged_region}

↩→
↩→

206 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": 18,
'total_region': merged_region}

↩→
↩→

207

208 if year == 2015 and month == 12 and day == 11:
209 time_interval_start = 10
210 time_interval_stop = 22
211 day_inactive = 4
212 match instance:
213 case 1:
214 fac_parameters_north = {"time_interval": 2,

"threshold": 1, "region_num": (15, 16),
'total_region': merged_region}

↩→
↩→

215 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 1.2, "region_num": (17,
18), 'total_region': merged_region}

↩→
↩→

216 fac_parameters_south = {"time_interval": 2,
"threshold": 2, "region_num": (16, 17),
'total_region': merged_region}

↩→
↩→

217 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.2, "region_num": 13,
'total_region': merged_region}

↩→
↩→

218 case 2:
219 fac_parameters_north = {"time_interval": 2,

"threshold": 1, "region_num": (18, 19),
'total_region': merged_region}

↩→
↩→

220 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 1.2, "region_num": (19,
20), 'total_region': merged_region}

↩→
↩→

221 fac_parameters_south = {"time_interval": 2,
"threshold": 1, "region_num": 17,
'total_region': merged_region}

↩→
↩→

222 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.2, "region_num": (15,
16), 'total_region': merged_region}

↩→
↩→

223 case 3:

134 bibl iography

224 fac_parameters_north = {"time_interval": 2,
"threshold": 1, "region_num": (21, 22),
'total_region': merged_region}

↩→
↩→

225 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 1, "region_num": (23, 24),
'total_region': merged_region}

↩→
↩→

226 fac_parameters_south = {"time_interval": 2,
"threshold": 1, "region_num": 20,
'total_region': merged_region}

↩→
↩→

227 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.2, "region_num": 20,
'total_region': merged_region}

↩→
↩→

228

229 if year == 2015 and month == 12 and day == 14:
230 time_interval_start = 8
231 time_interval_stop = 14
232 day_inactive = 3
233 match instance:
234 case 1:
235 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": (5, 6),
'total_region': merged_region}

↩→
↩→

236 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (6, 7),
'total_region': merged_region}

↩→
↩→

237 fac_parameters_south = {"time_interval": 2,
"threshold": 0.5, "region_num": (3, 4),
'total_region': merged_region}

↩→
↩→

238 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (4, 5),
'total_region': merged_region}

↩→
↩→

239 case 2:
240 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": (8, 9),
'total_region': merged_region}

↩→
↩→

241 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (10,
11), 'total_region': merged_region}

↩→
↩→

242 fac_parameters_south = {"time_interval": 2,
"threshold": 1, "region_num": (7, 8),
'total_region': merged_region}

↩→
↩→

243 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (8, 9),
'total_region': merged_region}

↩→
↩→

244 case 3:
245 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": (11, 12),
'total_region': merged_region}

↩→
↩→

8.5 code 135

246 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (13,
14), 'total_region': merged_region}

↩→
↩→

247 fac_parameters_south = {"time_interval": 2,
"threshold": 0.5, "region_num": 10,
'total_region': merged_region}

↩→
↩→

248 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": 12,
'total_region': merged_region}

↩→
↩→

249

250 if year == 2015 and month == 12 and day == 20:
251 time_interval_start = 8
252 time_interval_stop = 14
253 day_inactive = 19
254 match instance:
255 case 1:
256 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": (5, 6),
'total_region': merged_region}

↩→
↩→

257 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (5, 6),
'total_region': merged_region}

↩→
↩→

258 fac_parameters_south = {"time_interval": 2,
"threshold": 1, "region_num": (3, 4),
'total_region': merged_region}

↩→
↩→

259 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": 4,
'total_region': merged_region}

↩→
↩→

260 case 2:
261 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": (8, 9),
'total_region': merged_region}

↩→
↩→

262 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (9, 10),
'total_region': merged_region}

↩→
↩→

263 fac_parameters_south = {"time_interval": 2,
"threshold": 1, "region_num": (7, 8),
'total_region': merged_region}

↩→
↩→

264 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 1, "region_num": (8, 9),
'total_region': merged_region}

↩→
↩→

265 case 3:
266 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": (11, 12),
'total_region': merged_region}

↩→
↩→

267 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.3, "region_num": (13,
14), 'total_region': merged_region}

↩→
↩→

136 bibl iography

268 fac_parameters_south = {"time_interval": 2,
"threshold": 1, "region_num": (11, 12),
'total_region': merged_region}

↩→
↩→

269 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (11,
12), 'total_region': merged_region}

↩→
↩→

270

271 if year == 2015 and month == 12 and day == 31:
272 time_interval_start = 8
273 time_interval_stop = 18
274 day_inactive = 30
275 match instance:
276 case 1:
277 fac_parameters_north = {"time_interval": 2,

"threshold": 1, "region_num": (6, 7),
'total_region': merged_region}

↩→
↩→

278 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (7, 8),
'total_region': merged_region}

↩→
↩→

279 fac_parameters_south = {"time_interval": 2,
"threshold": 5, "region_num": (5, 6),
'total_region': merged_region}

↩→
↩→

280 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": 6,
'total_region': merged_region}

↩→
↩→

281 case 2:
282 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": (9, 10),
'total_region': merged_region}

↩→
↩→

283 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (10,
11), 'total_region': merged_region}

↩→
↩→

284 fac_parameters_south = {"time_interval": 2,
"threshold": 3, "region_num": (8, 9),
'total_region': merged_region}

↩→
↩→

285 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": 9,
'total_region': merged_region}

↩→
↩→

286 case 3:
287 fac_parameters_north = {"time_interval": 2,

"threshold": 0.5, "region_num": (12, 13),
'total_region': merged_region}

↩→
↩→

288 fac_parameters_north_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": (13,
14), 'total_region': merged_region}

↩→
↩→

289 fac_parameters_south = {"time_interval": 2,
"threshold": 1, "region_num": (11, 12),
'total_region': merged_region}

↩→
↩→

8.5 code 137

290 fac_parameters_south_inactive = {"time_interval":
2, "threshold": 0.5, "region_num": 12,
'total_region': merged_region}

↩→
↩→

291

292 dataset['FAC_parameters_north'] = fac_parameters_north
293 dataset['FAC_parameters_north_inactive'] =

fac_parameters_north_inactive↩→
294 dataset['FAC_parameters_south'] = fac_parameters_south
295 dataset['FAC_parameters_south_inactive'] =

fac_parameters_south_inactive↩→
296

297 day_start = datetime(year, month, day, time_interval_start, 00,
00, 00)↩→

298 day_stop = datetime(year, month, day, time_interval_stop, 00,
00, 00)↩→

299

300 day_start_inactive = datetime(year, month, day_inactive,
time_interval_start, 00, 00, 00)↩→

301 day_stop_inactive = datetime(year, month, day_inactive,
time_interval_stop, 00, 00, 00)↩→

302

303 date = day_start.strftime('%Y%m%d')
304 date_inactive = day_start_inactive.strftime('%Y%m%d')
305

306 dataset['day_start'] = day_start
307 dataset['day_stop'] = day_stop
308

309 dataset['day_start_inactive'] = day_start_inactive
310 dataset['day_stop_inactive'] = day_stop_inactive
311

312 dataset['date'] = date
313 dataset['date_inactive'] = date_inactive
314

315 return dataset

	List of Figures
	List of Tables
	Abstract

	1 Introduction
	2 Theory
	2.1 High Latitude Ionosphere and Plasma Structuring
	2.2 Structure Function
	2.3 Empirical Flatness
	2.4 Probability Density Function

	3 Data Acquisition
	4 Methods
	4.1 Structure Function
	4.2 Empirical Flatness
	4.3 Probability Density Function

	5 Results
	5.1 Structure Function
	5.1.1 Structure Function and Slope
	5.1.2 Slope Distribution
	5.1.3 Area of Structure Function

	5.2 Empirical Flatness
	5.2.1 Empirical Flatness and Area Distribution
	5.2.2 Area of Empirical Flatness

	5.3 Probability Density Function
	5.3.1 Small Increment
	5.3.2 Middle Increment
	5.3.3 Large Increment

	6 Discussion
	6.1 Structure Function
	6.1.1 Slopes
	6.1.2 Area

	6.2 Empirical Flatness
	6.3 Probability Density Function

	7 Conclusion
	7.1 Future Work

	8 Appendix
	Bibliography
	8.1 Table of Days Used
	8.2 Power Spectral Density
	8.3 Slopes for Structure Functions at Very Small Scales
	8.4 AE Index During Storm Event 11th May 2024
	8.5 Code
	8.5.1 Calculating Storing and Displaying Data
	8.5.2 Calculating Slopes and Area
	8.5.3 Loading Data From File
	8.5.4 Detecting Polar (Sub)Region
	8.5.5 Data Processing
	8.5.6 Functions
	8.5.7 Plotting Basic Figures
	8.5.8 Choosing Instance

