
Faculty of Engineering Science and Technology
Department of Computer Science and Computational Engineering

Adaptable and interactive 3D modelling using genetic algorithms

Håkon Berg Borhaug
DTE-3900 Master’s thesis in Applied Computer Science May 2024

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2024 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Abstract
This thesis discusses the process of designing, implementing and testing a
creative AI system that generates 3D models for the purpose of video game
development. The system utilizes a combination of an interactive genetic
algorithm and a distance weighted K-nearest neighbour regressor. Regression
is employed as a learning mechanism to enable the system to rate designs
based on the overall user design preferences absorbed through user interaction.
The results from testing the implemented sytem are discussed, and possible
changes and improvements to the system based on the produced results are
also covered.

Acknowledgements
I would like to thank my supervisors, Andreas Dyrøy Jansson and Bernt Arild
Bremdal, for providing the baseline for the project and for their guidance during
the development of the project.

I would also like to thank my family for their support, with a special mention to
my brother Hans Berg Borhaug for helping me getting through a tough period
during my bachelor studies.

Lastly, I would like to thank all my classmates for all of their support and
feedback.

Contents
Abstract i

Acknowledgements iii

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Background . 1
1.2 Objective . 3

1.2.1 Scope . 3
1.3 Theory . 6

1.3.1 Machine learning 6
1.3.2 Genetic algorithm 7
1.3.3 K-Nearest Neighbour 8

1.4 Related work . 9
1.5 Strategy . 10

1.5.1 Model representation and visualization 10
1.5.2 Genetic algorithm 13
1.5.3 Fitness evaluation 14
1.5.4 Testing . 15

2 Tools and Methods 17
2.1 Tools . 17

2.1.1 Tool selection . 17
2.1.2 Blender API . 18
2.1.3 Shape Generator . 18

2.2 Model generation and representation 21
2.3 System UI . 23
2.4 Genetic algorithm . 26

2.4.1 Encoding . 26
2.4.2 Genetic algorithm structure 28
2.4.3 Fitness evaluation 29

v

vi contents

2.5 System structure . 31

3 Results and Discussion 35
3.1 Results . 35

3.1.1 Combining features 35
3.1.2 Specific objects . 41
3.1.3 Using learned preferences 42

3.2 Discussion . 45
3.2.1 Analysis . 45
3.2.2 Objectives . 47

4 Future Work and Conclusion 49
4.1 Future work . 49

4.1.1 Representation alternatives 49
4.1.2 Fitness evaluation adjustment 50
4.1.3 Design space search 50

4.2 Conclusion . 51

Bibliography 53

A Task Description 57

B Source Code 61

List of Figures
1.1 3D model showing a mix of good and bad topology [11] . . 4
1.2 Gradual refinenemt of low complexity models [12] 5
1.3 Genetic algorithm flow chart [16] 7
1.4 Example of classification using K-NN [18] 8
1.5 Blender UI with relevant sections highlighted 12
1.6 Object context menu in 3D viewport in Blender 13

2.1 Example of extrusion from base cube using the Shape Gener-
ator add-on [25] . 19

2.2 Shape examples generated by performing random extrusions 19
2.3 Examples of mirroring shape shown in Figure 2.2a 20
2.4 Shape shown in Figure 2.2b with beveled edges 20
2.5 Shape shown in Figure 2.2b with a subdivsion surface added

to the base mesh . 21
2.6 Blender UI with our add-on system running 24
2.7 Custom Blender tool UI . 25
2.8 Object context menu with custom generator section 26
2.9 Binary crossover leading to unrelated integer values 27
2.10 Example of chromosome with model parameters using real

encoding . 28
2.11 Flow diagram of the system 32
2.12 Object diagram of the system 33

3.1 Initial population of shapes using seed = 6 36
3.2 Generation 2 with Figure 3.1 as the initial population 37
3.3 Generation 102 with Figure 3.1 as the initial population . . . 37
3.4 Generation 103 with Figure 3.1 as the initial population . . . 38
3.5 Generation 104 with Figure 3.1 as the initial population . . . 38
3.6 Generation 2 with Figure 3.1 as the initial population, with-

out any ratings performed 39
3.7 Generation 102 with Figure 3.6 as the initial population . . . 40
3.8 Generation 102 with Figure 3.6 as the starting point, without

distance weighted K-NN . 40
3.9 Base generation for "phone" shape experiment using seed = 1 41

vii

viii l ist of figures

3.10 Generation 61 after performing 960 ratings, with Figure 3.9
as the starting point . 42

3.11 Generation 14 with Figure 3.9 as starting point, and using
ratings data from experiment shown in Figure 3.5 43

3.12 Inital population with random seed = 0 43
3.13 Shapes produced after 19 generations using Figure 3.12 as

starting point and using ratings from experiment shown in
Subsection 3.1.2 . 44

3.14 Shapes produced after 119 generations using Figure 3.12 as
starting point and using ratings from experiment shown in
Subsection 3.1.2 . 44

List of Tables
2.1 Shape Generator properties and their value ranges as used in

our implementation . 22

ix

1
Introduction
This chapter will discuss the background of the thesis, the objectives, and an
overview of the project, as well as some of its underlying theory. Similar work
and technology that try to tackle some of the same challenges encountered in
this project will be presented.

1.1 Background

Video games have become increasingly popular in the modern day. Through
fun and exciting gameplay, engaging and dramatic storytelling, and online
multiplayer letting players connect and interact through collaboration or com-
petition, video games as a whole have been able to reach a huge and diverse
audience across the world. This has resulted in the video game industry be-
coming a huge section of the global entertainment and media sector, with
total revenues projected to rise from $262 billion in 2023 to $312 billion in 2027
[1].

However, video game development is getting increasingly more time consuming
and consequently more expensive for developers. Development budgets for
blockbuster games has reached up in the $100s of millions [2], where a major
part of this development cost is attributed to game asset creation. During
the production stage of development, a significant amount of time is used for
prototyping and iterating over different concepts and builds [3]. Today, the

1

2 chapter 1 introduction

majority of top-selling games are in 3D. Consequently, many major developers
find themselves needing to create new game assets, including 3D models,
during development. Accelerating this process, as well as possibly improving
the quality and variety of the assets created, would lead to a more cost-effective,
superior and faster developed product. Through the use of artifical intelligence
(AI) tools one could contribute in a major way to t ackle this issue by helping
developers iterate and conceptualize ideas quicker and more efficiently.

In the last few years several new AI tools have been released that are able to
generate text [4], pictures [5] and even whole 3Dmodels [6]. These are defined
as generative AI systems due to their ability to generate novel content based
on learned patterns using techniques such as neural networks, autoencoders
and transformers. Without going into detail on how these techniques work, it
is worth noting that the systems that are using them are described as black-
box systems. A black-box system can be viewed in terms of its inputs and
outputs only, with the internal logic and processing being uninterpretable,
with a white-box model being the opposite [7]. Specifically in the context of
AI, the parameters of a black-box model can not help us understand the inner
mechanisms that dictate why specific results are generated. Consequently, the
possible content generated by these generative systems is not easily controlled
or restricted, which could lead to issues such as offensive or dangerous content
being generated [8]. Another issue these types of AI systems encounter is the
fact that most of them are trained on copyrighted material, which has led to
several lawsuits from different rights holders [9].

Creative AI systems that rely on a white-box model could avoid these shortfalls
of generative AI systems. Let us say that you create some multi-dimensional
space where the axes are defined by the content design parameters (such as
color, size, etc.), where a point in this space would correlate with a design
using the axis values as parameters. This design space would end up containing
every possible design iteration possible that can be desribed by the chosen set
of parameters. Thus, by implementing an AI algorithm that can search this
space, one would have made a creative AI system that can find designs that
have possibly never been thought of before. Genetic algorithms (GA) are a good
choice for this task, due to their flexibility in optimzing any problem space
that can be encoded into a sequence of numbers, in contrast to the example
of the generative model technique (gradient descent) where the function that
maps the problem space has to be differentiable [10]. This enables being able
to freely formulate the problem of finding these novel and interesting designs,
and adapt the formulation depending on the context of which the system is
being used. The underlying theory on genetic algorithms are covered in more
detail in Subsection 1.3.2. Conclusively, this project will cover the creation of
such a creative AI system using a genetic algorithm to explore a design space
containing 3D models, with a specific interest in 3D models for the use in video

1.2 objective 3

game development.

1.2 Objective

As mentioned in Section 1.1, the main objective of this project is creating an
AI tool that can help video game developers generate new 3D assets to act
as inspiration during the ideation and prototyping phase in the production
stage of development. In order to achieve this goal, this project will cover the
implementation of a creative AI system that can create novel 3D model designs
for the use in video game development, where the exploration of the design
space will be performed by a genetic algorithm. The objective can be broken
into a three main points, as paraphrased from the task description found in
Appendix A:

1. Study representation issues, which include model features in 3D space as
well as functional constraints, requirements and priorities. In addition,
studying methods for evaluating and ranking tentative design solutions
are also important.

2. Based on these investigations, develop a genetic algorithm concept that
is able to create novel solutions that demonstrate creative capabilites
through extensive recombination of many features. This includes the
choice of genetic algorithm type, and decisions regarding operators and
their use.

3. Define a set of criteria for evaluation and verification of the quality of
the models generated by the system. These could be general in nature,
specific for a particular user group or circumstantial. Tests should be
designed accordingly and performed on a rich set of cases.

These points cover the specific goals of this masters’s thesis project. Examining
the viability and performance of the resulting creative AI system is the scientific
task that will be covered in this thesis.

1.2.1 Scope

Due to the limited time available to develop the project for this master thesis,
the scope of the objectives mentioned above will be refined into a more specific
set of objectives.

The choice of model representation should result in maximizing the solution

4 chapter 1 introduction

space to keep model variance high, as well as leading to relatively good model
topology. In the context of this project, a model with well-formed topology
correlates with the model avoiding overlapping faces and edges, holes in the
mesh, unevenly placed polygons, and a model that shows sensible volume
and depth. This last point means that the model is not overly flat or thin, but
possesses a well-rounded and coherent structure. Figure 1.1 illustrates this
concept in the context of a 3D model that resembles a human head, where
the face section shows good topology features, while the rest of the model is
completely incoherent and disorganized.

Figure 1.1: 3D model showing a mix of good and bad topology [11]

While aiming for high model variance, the choice was made to restrict the
complexity of the models generated. As the main domain of interest is video
game development, it made sense to restrict the type of models to ones that are
not necessarily release-ready in the sense of intricacy and polish, but complex
enough to be used as insipration or as a starting point for further manipulation
into a finished model in a video game. Although this results in a limited set
of possible designs, it should also limit the problem of model incoherence, as
lower model complexity should avoid some pitfalls caused by the inbalance
of too many model parameters. Figure 1.2 shows an example of the use case

1.2 objective 5

of a model that is less complex as a starting point, where you have a simple
shape that resembles a head at around stage 4 of the shown process, which is
iteratively shaped into a more complex and polished model.

Figure 1.2: Gradual refinenemt of low complexity models [12]

The task of rating and evaluating designs is an inherently subjective problem,
making it challenging to find an "objective" measure for 3D models. Thus,
there will not be an attempt to cover this aspect in this thesis. The percieved
quality of a design can vary based on individual differnces, such as background,
culture, education, age and many other factors. Choosing a solution that can
adapt to the individuals design preferences therefore seems the most sensible
approach to model evaluation. Thus, this thesis will specifically look at the
implementation of an interactive genetic algorithm, where the user of the
system dictates the perceived quality and ranking of models. This approach
aims to yield a system capable of producing model results that align with the
specific design preferences expressed by the user.

Due to the author of this thesis not possessing the appropriate 3D-modelling
expertise, determining the overall quality of the models that are generated

6 chapter 1 introduction

using the system will be entrusted to those with more experience in the field.
However, a series of tests and experiments will be conducted to ensure that the
system is able to follow the design preferences provided through its interactive
component and produce designs that correspond to these preferences. The
tests will examine wether the system can absorb general model features (such
as size, structure, and pattern) that align with the preffered designs during
evaluation. Additionally, there will be tests to assess the system’s ability to
capture a specific type of shape or object (such as a tree, a sword, or a building)
and produce variations of it with small differences to the underlying structure
of the object.

1.3 Theory

This section will cover some of the underlying theory of the methods used in
this project.

1.3.1 Machine learning

AI can be described as any technique that enables a computer to mimic human-
like behaviour. Within the domain of AI machine learning has emerged as one
of the main subfields, where computers acquire the capacity to learn desired
behaviors without explicit programming, a concept originally coined by Arthur
Samuel in 1959 [13]. In his paper he describes a machine learning method
where a computer is programmed to learn to play checkers to a greater level
than a human by being given the rules of the game, practicing against itself
over and over, and learn from the outcomes of the practice games. Modern
machine learning can be divided into four main categories [14]. Supervised
machine learnining is the method of learning wherein the desired outcome
is known and the training data is labeled. Here the machine learning model
learns to map input data to the desired output data so that the model can
learn to map new unlabeled data by using its training. Unsupervised machine
learning is the opposite, where learning has to be achieved without any labels
on both the input data and the expected output. In this case the machine
learning model has to learn structures and patterns in the data on its own. The
middle-ground between these techniques are called semi-supervised learning,
where one combines elements of both supervised and unsupervised learning
to overcome problems like a lack of labeled data. Lastly we have reinforcement
learning, which involves an agent learning to interact with its environment and
maximizing its collected rewards. This is performed through trial and error
by exploring the environment through the different possible state-action pairs,
where over time the agent learns the optimimal decision making strategies

1.3 theory 7

which yield the highest total rewards.

1.3.2 Genetic algorithm

The genetic algorithm (GA) is a type of machine learning algorithm that was
introduced by John Holland in 1975 [15]. In his work he describes a type of
optimization algorithm that is inspired by the natural selection process and its
genetic principles. A population of proposed solutions to the given problem
are encoded into gene sequences (chromosomes), where through a form of
natural selection process one defines a fitness evaluation to determine which
individual solution is fit enough to use its gene encoding to generate future
generations. A selection process is made where the fittest potential solutions
are chosen to create new "children". These children are made by performing
gene crossover between the parents chosen, such that the desirable traits of
the parents’ proposed solution are passed on to the child. It is also common to
perform gene mutations to explore more of the possible solution space of the
problem domain, where singular genes in the gene sequence of the child are
set randomly. Over time the generations of proposed solutions will converge
towards a solution (or several) that maximizes the fitness function defined in
the algorithm. In Figure 1.3 you can see a flow chart showing the basic steps in
a genetic algorithm.

Figure 1.3: Genetic algorithm flow chart [16]

8 chapter 1 introduction

1.3.3 K-Nearest Neighbour

K-nearest neighbour (K-NN) is a supervised machine learning algorithm used
for classification and regression. It was first introduced in a paper by Evelyn Fix
and Joseph Hodges in 1951 [17]. The key idea behind the algorithm is to predict
the label/value of a new entry to a dataset based on the k nearest neighbour
point labels/values. To determine the closest neighbours one must specify the
distance metric used, such as Euclidian distance. In the context of classification
the class that occurs most commonly among the k number of neighbours
with the lowest distance to the new entry is the classification predicted. For
regression purposes we calculate the predicted value by averaging the values
of the k nearest neighbours.

Choosing the value of k is crucial to the algorithms behaviour. A small k value
leads to a more flexible model, where each prediction is heavily influenced
by the closest neighbours. This flexibility however can lead the model to be
overfitted and sensitive to noisy data. In contrast, a model with a high k value
are less prone to noise and outliers, but may miss local patterns due to a overly
smooth decision boundary.

An example of a K-NN algorithm used for classificaiton in practice can be seen
in Figure 1.4. In this example the new data point is classified as red if k = 3,
while if k = 5 the data point would be classified as blue instead, showing the
sensitivity of the choice of the value of k.

Figure 1.4: Example of classification using K-NN [18]

1.4 related work 9

1.4 Related work

Creating an adaptive and interactive system that can generate 3Dmodel designs
using AI is a difficult problem consisting of several challenges that need to be
solved, as described in Section 1.2. This section will cover some related works
that have been produced that have attempted to tackle some (or all) of the
problems that our proposed system need to solve.

In their paper, Ando et al. [19] propose a 3D character creation system using
an interactive genetic algorithm and a kansei (sensibility) rule extraction
method. In their system they represent their 3D character model by a set of
pre-defined model parts that each represent a specific section of the character,
which are encoded as a sequence of categorical attributes. The fitness of each
character is calculated using the kansei rules, which are determined through
interactive learning where the user inputs a kansei word they like, then the
system creates several different characters using different model parts, where
the user consequently evaluates each of these character designs. Using the new
evaluations the system determines new kansei rules from the new data and
generates a new set of characters for the user to evaluate.

Yoon et al. [20] released a paper in 2012 where they have developed an interac-
tive system that uses a genetic algorithm to create 3D models and textures. To
represent the footprint of the models they use an L-system, which generates
a string of characters with Fs, Ls and Rs, which represent different drawing
commands. Fs stand for drawing a single unit line in the current direction, Ls
stand for rotating 90 degrees left and Rs stand for rotating 90 degrees right.
The chromosome in their system includes the seed used for random number
generation, the iteration number in the L-system production, and the height
of the building. To evaluate the fitness of each individual in the population
they have the user give each individual model a score to represent the fitness
value.

A similar system was developed in 2017 by Arifinn et al. [21] where they have
a system using an interactive genetic algorithm and an L-system. The strings
produced in their L-system correspond with a sequence of commands used in
the 3D modelling software Blender [22], such as creating an edge segment,
creating a quad, rotating around a specific axis, and increasing or decrease
the mesh radius of a branch. By letting the user rank the different models
generated each generation in comparison to each other they are able to get an
interactive fitness evalutation of each individual.

In a paper by researchers at NVIDIA, Unity/Weta Digital and ROBLOX [23]
they created a dataset of 3D models using a technique called signed distance
functions (SDFs). Using a combination of these SDFs to represent basic shapes

10 chapter 1 introduction

and then combine in different ways using cosntructive solid geometry (CSG)
operations (such as union and subtraction), they are able to create complex
shapes with smooth transitions between the different base shapes. This way
of creating 3D models could be used as a base for a model representation, in
which you define some set of SDFs and CSG operations as categorical features,
where the variables of the SDFs are defined as numerical features.

My supervisors for this thesis, Andreas Dyrøy Jansson and Bernt Arild Bremdal,
released a paper in 2018 [24] where they describe a creative web element design
system using an interactive genetic algorithm. The designs were represented
using HTML properties as integer values, where simple properties as color and
size were directy encoded, while more complex properties like font and border
style were represented as indices. Running the system shows the user a set
of designs for each generation, where each design can be rated by the user
as liked or disliked, which in turn increases or decreases their fitness value. A
K-NN classifier is used for evaluating the designs which are not rated by the
user, where each design is assigned a classification match percent to the most
common class among it’s neighbours.

1.5 Strategy

The objective of this project is the examination of the viability of a creative
AI system using a genetic algorithm that can create 3D model designs for the
use in video game development, as described in Section 1.2. To implement
such a system, one must solve the problems of representation of 3D model
features, development of a genetic algorithm that is capable of creativity by
feature combination, model quality evaluation, and finally extensive testing of
the system results. This section will cover the strategies chosen to solve these
issues.

1.5.1 Model representation and visualization

In Section 1.4 different methods for representing a 3D model using a set
of numerical parameters were covered. The categorical representation using
model parts shown by Ando et al. [19] would be a simple solution to this
problem in terms of implementation complexity. However, using this method
would lead to a very limited solution space due to the low amount of possible
model permutations when using a realistic amount of model parts for this
project. Moreover, this method leads to the problem of having to create these
model parts as the base of the model generation system, which somewhat
defeats the purpose of creating a creative AI system to generate 3D models.

1.5 strategy 11

Representing the models using an L-system as shown in the papers by Yoon et
al. [20] and Arifinn et al. [21] avoids the need for a base model or model parts
to generate new models. However, the representation does show its weakness
in the lack of model complexity in the case of the former paper, where the
resulting building models are quite simple and does not show much varitation
of shape structure between individuals. For the latter paper, they are able to
generate models with some complexity and variety, but the model topology and
coherence seems non-satisfactory for the examplemodels produced in the paper.
In contrast, the concept of using SDFs in conjunction with CSG operations, as
shown in [23], looks like a promising method for model representation in terms
of model topology and variaton. Upon further investigation, using a similar
method would be outside the scope of this project as implementing it effectively
would require a significant portion of the allocated project time for research
and development.

During the time used to research possible model representations for this project,
a discovery was made of a representation used by Mark Kingsnorth in his
Blender add-on called "Shape generator" [25]. This approach starts with the
base shape of a cube and iteratively perform extrusions with different length,
tapering and rotation from random faces of the current model. Experimenting
with his tool in Blender demonstrated its ability to generate relatively com-
plex and varied shapes, without encountering models with bad topoloy and
with incoherent appearance due to the guard rails parameters included in
the tool. Additionally, the generator parameters can be manipulated direclty
through the Blender Python API. Thus, the decision was ultimately made to
use his tool inside Blender as the framework for representing the 3D models
as a set of parameters to be encoded into gene sequences for the genetic algo-
rithm. Subsection 2.1.3 will cover details on how the "Shape generator" add-on
works.

Rendering the meshes of the models generated in some manner would be a
sensible way to visualize the generated models to the user of the system. Re-
search was made into implementing a web application using the Javascript [26]
3D graphics library Three.js [27] that would enable interaction and rendering
of the models that were generated in Blender by using some real time interme-
diate software link between the web-application and Blender. However, this
proved to be a big and complicated task [28] and would be outside the scope
of this thesis. The choice of model visualization went to Blender itself instead,
where the user views and interacts with the models inside the Blender user
interface (UI). The Blender UI can be seen in Figure 1.5, where the red section
covers the 3D viewport, the green section covers the list of objects in the scene,
and the yellow arrow shows the toolbar button that needs to be pressed to
bring up the panel toolbar. Each object in the viewport has an "Object Context
Menu" that can be accessed by right-clicking the object of interest, which brings

12 chapter 1 introduction

up the menu as seen in Figure 1.6.

Figure 1.5: Blender UI with relevant sections highlighted

1.5 strategy 13

Figure 1.6: Object context menu in 3D viewport in Blender

1.5.2 Genetic algorithm

In this project emphasis will be put on using a genetic algorithm to implement
a creative AI system that can generate 3D model designs. The algorithm should
be able to generate generations of populations consisting of chromosomes
containining 3D model representations as a sequence of parameters. Over
each generation the algorithm should be able to attribute a fitness score to
each individual design and proiritize the individuals with the highest fitness
to produce the next generation of models through crossover between parent
chromsomes and mutations of child genes. During its runtime the system
should converge towards the model designs which the user of the system find
appealing, but should also keep a relatively high gene diversity to achieve

14 chapter 1 introduction

a high variance of model designs and to not limit the search volume of the
solution space.

1.5.3 Fitness evaluation

Evaluating the fitness of a model design in terms of its appeal for the use in an
interactive genetic algorithm is inherently a subjective task. The one thing the
fitness evaluation does objectively need in an interactive system is the ability to
let the user dictate which model designs are given high and low fitness values.
Giving each model a numerical score as in [19] gives the user a significant
amount of agency in terms of fine tuning the percieved quality of each model
design, but it might be difficult to decide on the exact value to give to each
design. Additionally, it could get even harder over time to keep the scores
accurate in relation to each other as newer models should by design become
more appealing than models that were given a high fitness score earlier in the
system’s runtime. Another way of attributing each model with a fitness value
is by ranking the individuals within a generation in regards to eachother, as
shown in [21]. The problem with this method is that the evaluation of each
individual is anchored to all the other individuals in that generation, which
could be a problem if one ormoremodels are significantly better in terms of user
sentiment than the rest, without the user being able to express the difference
in quality properly. If a generation occurs with only "bad" model designs, the
generation is essentialy wasted if the system has no way of penalizing these
bad desings. The simplest way for the user to influence the design fitness is
to let them directly pick the individuals they like and the ones they dislike,
as shown in [24]. This ensures that both good and bad designs are affected
positively and negatively accordingly, without having to give a specific number
to describe to what degree they like or dislike the design.

To avoid having the user rate every single individual during a generation, Jans-
son and Bremdal [24] introduce a fitness function based on K-NN classification
to evaluate the unrated designs within a generation. The choice of K-NN for
this purpose can be seen as ideal, as the algorithm "should be one of the first
choices for a classification study when there is little or no prior knowledge about
the distribution of the data" according to Peterson [29]. Using a classification
algorithm to perform fitness calcuation will make the system be able to work
independently, which is especially important if the system contains a big pop-
ulation of model designs, as it would lead to the user becoming significantly
fatigued when evaluating every single individual in the population. Addition-
ally, it also makes the system more adaptable over time, as the more ratings
are being made, the narrower and more accurate the classifier becomes over
time. The choice in this project is therefore made to mimic the mixture of a
direct like/dislike voting system and a K-NN based fitness evaluation system

1.5 strategy 15

inspired by Jansson and Bremdal [24] due to its lax user dependency and its
adaptability.

1.5.4 Testing

A number of tests and experiments should be made to confirm if the system
is able to generate 3D model designs with high variability and relatively good
topology. Tests that determine if the system is able to show convergence towards
the sentiments of the user of the system should be ran as well. Focusing on
directing the system towards a specific model feature set that correspond to
some common design easthetic will be performed by liking the designs with a
high amount of feature commonality to the desired easthetic, and conversely
disliking designs with few to none common design features with the chosen
design easthetic. Tests to determine if the system is able to capture specific
object shapes will be performed as well, which will follow the same principle
of liking only the designs that fulfill the criteria of the specific object shape
chosen and disliking all others. Finally, tests will be performed to gauge the
systems ability to perform independently using stored used preference data by
letting the system purely lean on the automatic fitness evaluation without any
user feedback during the testing instance of the program.

2
Tools and Methods
In this chapter the tools and methods that were used in the development of
this project will be covered. The first section will outline the chosen tools, their
purposes, and their relevant functionalities in relation to our implementation.
Subsequent sections will delve into design and implementation details of the
methods that were used, as well as the decision making process that was made
during the span of development.

2.1 Tools

This project was developed using Python [30] version 3.9.1 as the programming
language. The system is implemented as an add-on for the 3D modelling soft-
ware Blender [22] version LTS 2.93. The Blender add-on "Shape Generator" from
Mark Kingsnorth [25] was used as a framework for the model representation
and to generate the model meshes in the Blender scene.

2.1.1 Tool selection

The choice of programming language was fully dictated by the available script-
ing API within Blender, which only offers the use of Python as programming
language. Blender was chosen as the 3D modelling software due to its compati-
bility with the "Shape generator" add-on. Houdini [31] is another 3D modelling

17

18 chapter 2 tools and methods

program that supports the add-on, but due to the lack of experience using it
the decision was made to choose Blender. One could theoretically use a newer
version of Blender for the purpose of using the "Shape generator" add-on, as
the developer lists compatibility with Blender versions as new as 4.1, but there
were compatibility issues when using the add-on in conjuction with versions
newer than LTS 2.93 during the development of this project. If newer versions
of Blender are required for additional functionalities, one could attempt in-
stalling the add-on with newer versions. Alternatively, the version chosen for
this project can be used and models can be exported from this version of
Blender into a newer one when done using the system.

2.1.2 Blender API

To run custom scripts within Blender the system uses the Python API within
Blender. This allows it to manipulate scenes, meshes and UI in the program.
One of the API features offered is the ability to create your own tools using
custom panels and operators. The tool (add-on) creation functionality is used
to create a custom script that runs the interactive system in parallell with all the
included Blender functionality. This allows the user to take one of the model
designs generated and manipulate it further within Blender to make their
desired adjustments, before either exporting the model file to some external
software or integrating it into their own Blender project.

2.1.3 Shape Generator

Mark Kingsnorth’s Blender add-on "Shape generator" [25] is a custom tool for
Blender that generates random shapes given some generator parameters. It
works by using a box as the base shape before extruding a random length from
a random model face, tapering the extrusions a random amount and rotating
the extrusion a random amount. Figure 2.1 provides an example of how this
operation works. These extrusions are iteratively performed on the resulting
mesh from the previous extrusion until the specified amount of extrusions are
done. Example models generated using this method can be seen in Figure 2.2a
with 11 extrusions performed, and in Figure 2.2b one can see an example model
consisting of 31 extrusions. After the extrusions are performed the mesh can
be mirrored along an axis to achieve model symmetry. The shape in Figure
2.2a, mirrored along the X-axis, can be seen in Figure 2.3b, and the same shape
mirrored along all axes can be seen in Figure 2.3c.

Additionally this add-on offers the features of applying beveling to the model
edges, and applying a subdivision surface to the base mesh. Examples of this
can be seen in Figure 2.4 and in 2.5. Section 2.2 covers the specific shape

2.1 tools 19

generator features used in the system implemented in this project.

Figure 2.1: Example of extrusion from base cube using the Shape Generator add-on
[25]

(a) Using 11 extrusions (b) Using 31 extrusions

Figure 2.2: Shape examples generated by performing random extrusions

20 chapter 2 tools and methods

(a) No mirroring (b) Mirror along X-axis (c) Mirror along all axes

Figure 2.3: Examples of mirroring shape shown in Figure 2.2a

Figure 2.4: Shape shown in Figure 2.2b with beveled edges

2.2 model generation and representation 21

Figure 2.5: Shape shown in Figure 2.2b with a subdivsion surface added to the base
mesh

2.2 Model generation and representation

For this project a set of parameters from the Shape Generator add-on was
selected to be used as features in the system’s model representation. The
specific extrusions that are performed on the base cube model are determined
by generating random values for the face index, the extrusion length, the
taper size and the extrusion rotation. Each of these values are restricted by
a defined range of minimum and maximum values. Once all extrusions are
completed, the resulting base mesh can be further manipulated by scaling
and/or mirroring along the X, Y and/or Z axis. Finally the mesh can have its
edges beveled and/or have a subdivision surface added on top of it. A full list
of the different parameters for the shape generation that are used in the system
implementation can be seen in Table 2.1.

To generate each shape mesh, the implemented system uses the Shape Gen-
erator API to insert the resulting mesh into the Blender scene from the shape
feature data. Generating each shape mesh is performed by creating a Shape
Generator collection for each shape in the scene, and setting the collection
properties according to the values in the shape object feature list. Finally, the
shape mesh is given a default material with a random color.

22 chapter 2 tools and methods

Shape Generator properties
Name Range Descritpion
Random Seed [0, 2000] Seed for random number generation
Amount [5, 35] Amount of extrusions made
Length Min [0.3, 1.0] Extrusion length range minimum
Length Max [min, 1.0] Extrusion length range maximum
Taper Min [0.5, 1.0] Taper size range minimum
Taper Max [min, 1.0] Taper size range maximum
Rotation Min [−45.0, 45.0] Extrusion rotation range minimum
Rotation Max [min, 45.0] Extrusion rotation range maximum
Favour X [0.0, 1.0] Favouring of X as extrusion direction
Favour Y [0.0, 1.0] Favouring of Y as extrusion direction
Favour Z [0.0, 1.0] Favouring of Z as extrusion direction
Scale X [0.5, 1.0] Scale mesh along X-axis
Scale Y [0.5, 1.0] Scale mesh along Y-axis
Scale Z [0.5, 1.0] Scale mesh along Z-axis
Mirror X True/False Mirror mesh along X-axis
Mirror Y True/False Mirror mesh along Y-axis
Mirror Z True/False Mirror mesh along Z-axis
Bevel True/False Bevel edges
Subdivision True/False Add subdivision surface on top of mesh

Table 2.1: Shape Generator properties and their value ranges as used in our implemen-
tation

2.3 system ui 23

2.3 System UI

For the user to interact with the system it need some sort of UI. The models
generated are displayed as a set of 16 shapes in a 4 by 4 grid in the scene with
corresponding labels underneath each shape. The shapes selected out of the
population are the 16 shapes with the highest fitness evaluation. If there is
no basis to judge the fitness of these initial shapes, the system just picks the
shapes randomly. Details on how thew system evaluates the fitness of shapes
will be discussed in Subsection 2.4.3.

Interacting with the system is done by bringing up the custom toolbar on the
right side of the Blender viewport, as seen in Figure 1.5, and choosing the
"Tools" section. This toolbar displays a list of the shapes shown in the scene
as rows, where each shape has a "like" and a "dislike" button. Underneath this
list of shape names and rating buttons, there are helper buttons designed to
simplify interaction with the list of shapes. One button likes all the shapes that
are not rated yet, another button dislikes all the unrated shapes, while the last
helper button clears all existing ratings.

To view the fitness of each individual shape, the user can select the shape they
are interested in and right click to bring up the object context menu. In this
dropdown menu there is a section dedicated to the custom system where the
user can see the predicted fitness made by the system, as well as like and dislike
buttons. The total average fitness of the 16 shapes shown in the scene can be
seen in the toolbar just below the list of like and dislike buttons.

Once the user has finished viewing shapes and have rated them according to
their design appeal, they can press the "Generate New Set" button that when
pressed creates a new shape population generation. Alternatively, they can
press the "Run Until Convergence" button, which causes the genetic algorithm
to run until the average fitness of the top 16 model designs reach a user
defined threshold. When the "Run Until Convergence" button is pressed, the
system prompts the user to input for the convergence threshold for the average
fitness, and the maximum number of generations that are ran. The convergence
depends on the fitness of the top 16 shapes and not the average fitness of the
whole generation, as the user will only ever see the top 16 shapes in the Blender
viewport.

In the case that user wants to save their preferences for future use, they can
store the shape rating information they have provided to the system by using
the "Save Ratings" button. Pressing this button prompts the user to specify a
file name for the file containing the rating data. To load a saved rating data
file, the user can press the "Load Ratings" button, which opens the Blender file
view window. In this window the user can pick the desired ratings file they

24 chapter 2 tools and methods

want to dictate the fitness evaluation for this instance of the system.

Figure 2.6 shows an example of the system running within Blender, where the
custom toolbar is visible on the right of the viewport. The custom toolbar can
be seen more closely in Figure 2.7, and an example of the object context menu
can be seen in Figure 2.8.

Figure 2.6: Blender UI with our add-on system running

2.3 system ui 25

Figure 2.7: Custom Blender tool UI

26 chapter 2 tools and methods

Figure 2.8: Object context menu with custom generator section

2.4 Genetic algorithm

Now that system has the ability to display the generated models to the user,
and they are able to vote on which models they like and dislike, the system
can introduce a genetic algorithm to generate new sets of models based on
the feedback from the user. To achieve this, three main steps have to be imple-
mented: the encoding of model parameters, the genetic algorithm structure,
and an automatic fitness evaluation that is based on user preferences.

2.4.1 Encoding

During development, a binary encoding of the model parameters was exper-
imented with, but using a binary encoding lead to a few drawbacks. Imple-
mentation complexity increased with every feature added due to the need
of calculating the bit offset of each new feature that was integrated, as well
as the possibility of value range constraints being broken depending on the

2.4 genetic algorithm 27

bits allocated to each feature. However, the main problem with using a binary
encoding was the lack of correlation between the degree of change in the geno-
type and the degree of change in the phenotype. By this we mean the lack of
correlation between changes in the genetic coding and changes in observable
traits. This issue can be seen in action in the example of a binary crossover as
shown in Figure 2.9, where the resulting decoded integer values of the child
chromosomes are completely unrelated to the parents’ integer values.

Figure 2.9: Binary crossover leading to unrelated integer values

This contradicts the creativity goal of the system as stated in Section 1.2, in the
sense that a combination of two different designs who share some features,
while other features are different, are combined into a new design that finds a
middle ground between these two imperfect models in terms of user preference.
Another problem with a binary encoding is the uneven probability of gene
mutation between the different features, as the length of each feature bit
sequence dictates the probability of a bit in that specific feature being flipped.
Due to these issues, the decision was made to adopt a real encoding of the
model parameters into chromosomes. An example of a chromosome with the
model parameters encoded into real values can be seen in Figure 2.10.

28 chapter 2 tools and methods

Figure 2.10: Example of chromosome with model parameters using real encoding

2.4.2 Genetic algorithm structure

Using the encoded model parameters, the system runs a genetic algorithm that
can search the solution space defined by the model parameters as dimensions,
and find the users preferred design features. To begin with, it generates an
initial population of 200 shapes with random parameters, and displays 16
random samples to the user, as described in Section 2.3. After the user is done
with a generation, the system replaces it with a completely new population of
200 new shapes. To select the parents who will produce the new generation
of model designs the algorithm performs a roulette wheel selection scheme,
as seen in Algorithm 1. For each couple of parents selected, the algorithm
generates two offspring models by performing a 2-point crossover of the two
parents’ chromosomes, as shown in Algorithm 2. This crossover operation is
performed at a rate of 0.9. After the crossover operation is done and the system
has two resulting offspring models, it performs gene mutation at a rate of

1
of parameters , which ends up being 1

19 for our set of parameters. Mutation is
performed by sampling a new random value for the given gene that is within
the pre-determined value-range. This will result in each new offspring having
one gene mutated on average.

Algorithm 1 Roulette Wheel Selection
1: function RouletteSelect(shapes)
2: List 𝐹
3: 𝑠 ← ∑

𝑖 shapes[𝑖].fitness
4: for each shape in shapes do
5: 𝐹 [shape] ← shape.fitness / 𝑠
6: end for
7: 𝑟 ← random index ∈ [0, |shapes|) with probabilities 𝐹
8: return shapes[𝑟]
9: end function

2.4 genetic algorithm 29

Algorithm 2 Two-Point Crossover
1: function MultiCrossover(parent1, parent2)
2: point1← random number ∈ [1, |parent1| − 2)
3: point2← random number ∈ [point1, |parent1|−1)
4: child1← parent1[:point1] + parent2[point1:point2] + parent1[point2:]
5: child2← parent2[:point1] + parent1[point1:point2] + parent2[point2:]
6: return child1, child2
7: end function

2.4.3 Fitness evaluation

The fitness of each individual model design is determined by the user either
through the direct interaction of liking or disliking it, or by using the learning
of the previous preferences made by the user. A liked individual is given the
maximum fitness value of 100, while a disliked individual is given the minimum
fitness value of 1.

Every liked model design has its model parameters, as well as the rating given,
added to a list of rated designs. Inspired by the method used by Bremdal and
Jansson [24] the system uses this list of rated shapes and performs K-nearest
neighbour regression to calculate the estimated fitness on the given unrated
shape. To do this it calculates the sum of normalized parameter distances for
the given shape to each shape in the rated shapes list:

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑎, 𝑏) =

√√√∑︁
𝑝∈𝑃

(
𝑎𝑝 − 𝑏𝑝

𝑀𝐴𝑋𝑝 −𝑀𝐼𝑁𝑝

)2
, (2.1)

where 𝑃 are the model parameters. This distance is normalized so that the
system avoids parameters with bigger value ranges having a greater influence
than parameters with smaller value ranges when calculating sum of the pa-
rameter differences. The list is then sorted in terms of shortest distance to the
given shape such that the system finds the k nearest neighbours as the k first
entries in this list. Now the system calculates the estimated fitness of the given
shape as:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑠) =
100 ∗∑𝑛

𝑙∈𝐿𝑠 1 + 1 ∗
∑𝑚

𝑑∈𝐷𝑠
1

𝑛 +𝑚 , (2.2)

where 𝐿𝑠 and 𝐷𝑠 are the sets of liked and disliked shapes of the k nearest

30 chapter 2 tools and methods

neighbours for the given shape 𝑠.

One weakness this fitness estimation has is that it does not take into account
which of the neighbours are actually close to the given shape and which are
far away. Weighted K-NN, as described by Gou et al. in [32], is a varation of
K-NN where one weighs the neighbours based on their relative distance to
classify a given individual. In their paper they show that this weighted K-NN
classification performs better for higher values of k compared to the standard
K-NN algorithm. Thus, as an alternative the system has a fitness evaluation
method that weighs each neighbour in terms of their distance to the given
shape relative to the other neighbour distances:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑊 (𝑠) =
100 ∗ 𝐿𝑊 + 1 ∗ 𝐷𝑊

𝐿𝑊 + 𝐷𝑊

, (2.3)

𝐿𝑊 =

𝑛∑︁
𝑙∈𝐿𝑠

1
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑠, 𝑙) + 𝜖 , 𝐷𝑊 =

𝑚∑︁
𝑑∈𝐷𝑠

1
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑠, 𝑑) + 𝜖 ,

𝜖 = 1𝑒−6

where 𝐿𝑊 and 𝐷𝑊 are the weighted sums of liked and disliked shapes among
the neighbour shapes, and 𝜖 is a small constant to avoid division by zero errors
when comparing distances between identical shapes. Using this method the
system should be able to use more granular information regarding how close
each neighbour is to the given shape, such that neighbours with more similarity
(less distance) with the given shape is weighted higher than less similar ones
when calculating the estimated fitness.

To save the user’s preferences for future use the system allows the user to store
the rated shapes list into a user-defined JSON file. The user can then load one
of the saved files into the rated shapes list for this new instance of the genetic
algorithm. This way the user can continue using the previous ratings made
to evaluate the fitness of the new designs in the populations generated this
instance of the system. Switching out the stored file with a different one with
other preference data will enable the user to have a modular approach to what
type of shapes they want to generate for each time they use the system, as the
system will adapt its fitness evaluation according to what data is used during
the K-NN regression.

2.5 system structure 31

2.5 System structure

A flow diagram of the system can be seen in Figure 2.11, which illustrates
the sequence of actions performed by our implementation. The system object
diagram is shown in Figure 2.12, which outlines the different methods and
classes used in our implementation and their relationships.

32 chapter 2 tools and methods

Figure 2.11: Flow diagram of the system

2.5 system structure 33

Figure 2.12: Object diagram of the system

3
Results and Discussion
3.1 Results

This section will go over the tests and experiments performed using the im-
plemented system. Firstly, some examples of how the system works without
loading any previous user preference data will be covered. Then some exam-
ples of how loading different user preference datasets can impact the system
will be explored. All tests were performed using the following system parame-
ters:

• population size: 200

• crossover rate: 0.9

• mutation rate: 1
19

• 𝑘 = 10

3.1.1 Combining features

As stated in Section 1.2, one of the goals of the system is to be able to show
creativity through a combination of design features. In the first experiment the
seed for random number generation is set to 6. This seed produces the starting
population shown in Figure 3.1.

35

36 chapter 3 results and discussion

Figure 3.1: Initial population of shapes using seed = 6

From this population, the goal is to examine if the system can generate "boxy"
shapes that are mirrored along the Y-axis. Due to these design criteria, the
shapes 4 and 10 are liked, while all the other shapes are disliked. With 16 ratings
now available to the system (16 > 𝑘), it can proceed to perform estimated
fitness evaluations on the rest of the population. The generation that follows
can be seen in Figure 3.2. As seen in the next generation, the system has
successfully generated new shapes that follow the design eastethic of the two
shapes that was initally liked and has recognized that shapes with different
design parameters were disliked.

3.1 results 37

Figure 3.2: Generation 2 with Figure 3.1 as the initial population

The system is then ran until it converges, with the parameters of 95 as the
fitness threshold and 100 generations as the stopping point. It stops after 100
generations and the resulting shapes can be seen in Figure 3.3.

Figure 3.3: Generation 102 with Figure 3.1 as the initial population

At this stage another criteria is added in the form of not overly tall/long shapes.
Consequently, all the shapes shown are disliked. The system generates a new
generation, and the result can be seen in Figure 3.4.

38 chapter 3 results and discussion

Figure 3.4: Generation 103 with Figure 3.1 as the initial population

As seen from the resulting generation of shapes, the system has overcorrected
after the previous generation ratings in the sense of producing shapes without
the "boxy" apperance. Therefore, all the "boxy" shapes are liked while all the
other shapes are disliked, then a new set of shapes is generated. The shapes
that was generated following these ratings are shown in Figure 3.5

Figure 3.5: Generation 104 with Figure 3.1 as the initial population

In the next experiment, the design criteria is set to prefer asymmetrical and

3.1 results 39

organic looking shapes. Starting with the same base population as seen in
Figure 3.1, the system generates one more generation without rating any
shapes. This produces the following shapes as seen in Figure 3.6.

Figure 3.6: Generation 2 with Figure 3.1 as the initial population, without any ratings
performed

From this set of shapes, only shape 3 fulfills the set design criteria. Thus, shape
3 is liked and all other shapes are disliked. Then the system tries to reach
convergence using 95 as the fitness threshold and 100 generations as the end
point. The shapes shown in Figure 3.7 are the top shapes from the resulting
generation after 100 generations are ran.

40 chapter 3 results and discussion

Figure 3.7: Generation 102 with Figure 3.6 as the initial population

All of the results shown so far has been using the distance weighted K-NN
fitness evalutaion, as described in Subsection 2.4.3. An attempt at replicating
the experiment as shown in Figure 3.7 with the regular K-NN fitness evaluation
produces the generation shown in Figure 3.8 after 100 generations.

Figure 3.8: Generation 102 with Figure 3.6 as the starting point, without distance
weighted K-NN

3.1 results 41

3.1.2 Specific objects

In the final experiment without using a file with previous ratings, an attempt
was made to try to get a set of shapes that all look like the same general object,
but with small visual differences between them. The generation that can be
seen in Figure 3.9 was used as the base, where then shape 1 is liked since
shapes that resembles old-school phones are the ones that are desirable for this
experiment.

Figure 3.9: Base generation for "phone" shape experiment using seed = 1

After performing manual like and dislike ratings for 60 generations (960 rat-
ings), the system generates the shapes seen in 3.10.

42 chapter 3 results and discussion

Figure 3.10: Generation 61 after performing 960 ratings, with Figure 3.9 as the starting
point

3.1.3 Using learned preferences

Testing the systems ability to learn was performed by storing the 48 ratings
made during the experiment shown in Figure 3.5 in a JSON file, and loading
that file in a new instance of the system using a different random seed = 1.
After loading the ratings file and being prompted to converge (fitness threshold
= 90), the system converges after 14 generations, where the final generation’s
top shapes are seen in Figure 3.11.

3.1 results 43

Figure 3.11: Generation 14 with Figure 3.9 as starting point, and using ratings data
from experiment shown in Figure 3.5

Another experiment was performed with seed = 0, convergence threshold =
80, and using the ratings described in Subsection 3.1.2 as the rated shapes file.
This resulted in the inital shapes as shown in Figure 3.12, where the system
converges after 19 generations and producing the shapes as shown in Figure
3.13.

Figure 3.12: Inital population with random seed = 0

44 chapter 3 results and discussion

Figure 3.13: Shapes produced after 19 generations using Figure 3.12 as starting point
and using ratings from experiment shown in Subsection 3.1.2

Continuing from that generation and adjusting the fitness threshold to 85, the
system is not able to converge within 100 generations. The shapes produced
100 generations later are seen in Figure 3.14.

Figure 3.14: Shapes produced after 119 generations using Figure 3.12 as starting point
and using ratings from experiment shown in Subsection 3.1.2

3.2 discussion 45

3.2 Discussion

This section will cover the analysis of the results shown in Section 3.1, and
examine to what degree of which the objectives set out in Section 1.2 were
accomplished.

3.2.1 Analysis

The results of the first experiment in Subsection 3.1.1, as seen in Figures
3.1, 3.2, 3.3, 3.4, and 3.5, demonstrate that the system is capable of capturing
common model paramateres and produce new designs accordingly. Over time,
it converges towards the "optimal" design by maximizing the similarity with
liked designs and minimizing similarity with disliked designs. This is evident
in Figure 3.3, which illustrates that the system has figured out that the liked
designs are tall as well as matching the other stated design characteristics.
The system shows that it is adaptable as well in this example, as it pivots
away from tall designs as soon as it recieves the information from the user
that this characteristic is not appealing. However, the system shows signs of
over-correcting, as seen in the following generation shown in Figure 3.4. This
is likely due to the fact that the ratings that have been made are unbalanced
in the sense that most of them have been dislikes, which doesn’t give the
system enough information to guide it in the specific direction the user wants.
Nonetheless, one more generation of both liking and disliking designs is enough
to get the system back on track and create the type of shapes that correspond
with the given characteristics, as illustrated in 3.5.

From the second experiment in Subsection 3.1.1 one can see that the system
is capable of functioning to a relatively good degree with minimal input from
the user. As demonstrated in Figure 3.7, the system is able to generate shapes
that correspond well with the parameters of shape 3 in Figure 3.6, despite the
fact that it only has the ratings from that inital population to go off of. This
good performance is largely based on the decision to use the distance weighted
K-NN algorithm during fitness calculation, as mentioned in Subsection 2.4.3.
This is evident from the results shown in 3.8, which are produced by running
the same experiment using a standard K-NN algorithm. Here one can see that
the essence of the liked shape is mostly lost among the resulting shapes, as
only a few of them share the same characteristics of having the orgranic and
assymetric appearance.

During the test aimed at capturing the basic shape of an object, as shown in
Subsection 3.1.2, the system shows some struggles. While it generates a few
shapes that does not look like a phone at all, it does generate several shapes that
do. However, these don’t differ much from each other in the excemption of the

46 chapter 3 results and discussion

parameters of beveling and subdivision, as the base of the shapes themselves
appear identical. This is even after manually rating almost 1000 shapes, so
the system shouldn’t lack the information of which shapes have the desired
parameters and which do not. The reason for this underwhelming performance
is likely due to the choice of representation not encouraging shapes to follow
the same sequence of extrusions, as it only restricts the range of randomization
which the set of extrusions are generated from. Modelling a phone-like shape
as seen in the examples isn’t really possible to do consistently by performing
random extrusions within some range of values, since one small deviation the
sequence of extrusions can lead to a result that is very different in terms of
what type of object the shape resembles. How one could try to fix this weakness
of the system will be discussed in Subsection 4.1.1.

The first experiment demonstrated in Subsection 3.1.3 shows that the system
is able to learn previous user preferences and use it in new instances of
the system without user interaction. The shapes seen in Figure 3.11 shows
that the shape characteristics are consistent with the rating data provided
from the first experiment in Subsection 3.1.1. From the results of the second
experiment, it is evident that the system shows even worse performance in
terms of capturing the essence of how an object looks compared to the initial
experiment shown in Subsection 3.1.2. As the system likely never manages
to encounter any of the phone specific shapes during its new instance with
a different inital seed, it struggles to converge sufficiently towards the same
results as the inital experiment. This result further highlights that the system
is not conditioned to be able to discern specific object structures in the current
model representation.

From all the experiments conducted, it is clear that the model topology of the
generated shapes is relatively good. None of the shapes shown have overlapping
edges, and they all appear to have even vertex distributions. The majority of
the shapes show a coherent structure and volume, but some have parts of
the mesh being overly thin and long compared to the rest of the mesh. As
well as this issue, some shapes display gaps in the model continuity in the
sense of discountinous "islands" in the mesh. Both of these weaknesses are
probably caused by the mirroring of the base shapes. When a section of a
mesh is mirrored along its base, it could be "cut" along the mirroring axis in an
uneven fashion, leading to the resulting section of the shape having a thinner
(and concievely longer) look despite the base mesh not having this issue. We
can rule out the base shape as the root of this issue, as it is always continuous
due to the basic construction principle of only performing extrusions on the
base mesh. The section of the mesh where the connection from one "island" to
another could end up not being visible when it is placed on the other side of
the mirror along an axis.

3.2 discussion 47

3.2.2 Objectives

From the analysis that is covered in Subsection 3.2.1 one can conclude that the
implemented system was able to achieve the objectives described in Section 1.2
to some degree.

The choice of 3Dmodel representation that was made in this project enabled the
system to generate varied and relatively complex shapes, without encountering
considerable topology issues, in contrast to some of the model representations
covered in Section 1.4. At the same time, the representation acts as an hin-
derance in terms of capturing the specific shape of an object and finding a
consistent way of generating small variations of that same object shape.

The interactive genetic algorithm in the heart of the system worked as expected
in both the aspect of being able to show creative capabilites through combining
features into new designs, and the aspect of allowing the user to dictate the
heuristic used for searching the design space in the direction that correlates
with the users preferences in an effective manner. Introducing a distance
weighted element into the K-NN fitness evaluation from [24] helped the system
considerably in guiding the search effectively.

The overall quality of the models generated is hard to determine. As shown in
the example of Figure 1.2, there are modelling techniques that effectively refine
simpler models into something more refined and complex in design. If some
of the shapes generated by this system are of the quality to be used for such a
purpose is left up to 3D modelling artists to decide. However, the difficulties
shown by the system to capture specific object shapes would probably prove
a hinderance to artists with a specific object model in mind. Thus, the system
should be used primarly for the inspiration of models that share a set of model
characteristics that are not overly specific in terms of shape structure.

4
Future Work and
Conclusion

4.1 Future work

4.1.1 Representation alternatives

As described in Subsection 3.2.1, the 3D model representation chosen has a
few weak areas that could be improved. A possible approach to improve the
systems capability to capture specific object shapes, in the sense of capturing
more specific shape structures, is to change the representation from a set
of general extrusion parameter values and value ranges which are sampled
randomly to a sequence of specific extrusion parameterers that specify each
extrusion individually. This should lead to sequences with small changes from
each other having an overall more similar final shape structure, as performing
a similar sequence of specific extrusions should result in a similar overall shape.
Removing the random element entirely, or defining ranges for each extrusion
individually, are both possible avenues that could be explored to improve the
model representation while keeping the core representation idea of performing
extrusions from a base mesh.

49

50 chapter 4 future work and conclusion

4.1.2 Fitness evaluation adjustment

The fitness evaluation performed using the system implemented in this project
works relatively well, but there are a few tweaks that could be made to improve
it further. Firstly, the time to compute the fitness of each individual could be
increased considerably by usingmulti-threading during the distance calculation.
This should not be a problem as this is a task that could be parallelized without
any race conditions or deadlocks, as long as the set of shapes to calculate
the distance to is divided into seperate buckets for each thread. Additionally,
sorting the whole list of distances is not really necessary, as the system is only
reliant on the closest 𝑘 shapes when performing the K-NN regression of fitness
values. Thus, choosing a sorting algorithm that can perform early stopping as
soon as the first 𝑘 shapes are sorted in ascending order would theoretically
increase the speed of compuation of the system considerably.

The fitness values themselves could be aligned better with user sentiments,
and consequently lead to a better overall system. One method of achieving this
could be through using parameter (gene) weights, where each parameter is
given a number that determines its importance in terms of its impact on designs
as experienced by the user. This could be defined by the system in a general
matter, or it could be user adjustable where they dictate which parameters
they think are most impactful to determine which designs are desirable to
them.

4.1.3 Design space search

Any way of helping the system to narrow down the search through the design
space could help the system converge quicker towards the desired model
designs. The idea of allowing the user to lock parameter values when they feel
they have reached the desired values among the current generation could help
the system avoid drifting away or overcorrecting from a desired set of feature
values. This would allow the system to avoid searching sections of the design
space that the user has determined that they are not interested in, which should
lead to more of the space that is still uncertain to be explored instead.

Figuring out a way to calculate the general trend of where the system is heading
in the desing space is an idea that was brought up by my supervisor, Bernt
Arild Bremdal, during the development of the project. If the system had a
general trendline that represented the direction of travel through the solution
space it could help to describe exploration effectiveness through the percieved
convergence rate, and could help detection and mitigation of plateauing and
stagnation through dynamic adjustmens to system parameters, such as the
mutation rate. A specific method to calculate this trendline was not discovered

4.2 conclusion 51

during this project, but could be a possible avenue for future research work for
the development of similar systems.

4.2 Conclusion

This thesis has examined a possible design and implementation of a creative AI
system using a genetic algorithm that is capable of generating 3Dmodels for the
use in video game development. A system was developed that could generate
3D models in the modelling software Blender [22], using the add-on "Shape
Generator" from Mark Kingsnorth [25] as the base for the model representation.
The system is guided through the design space using an interactive genetic
algorithm, which allows the user directly determine the fitness of each design
through rating each model in a custom UI panel within Blender. Additionally, a
K-NN regression method was implemented to calculate estimated fitness values
for designs that are not rated by the user, which allowed the system to function
without user feedback for every generated model design.

The tests and experiments conducted on the system demonstrated its capa-
bility to generate novel and creative design solutions by combining various
model features. Additionally, the system exhibited adaptability by dynamically
adjusting to new user feedback during its runtime. Furthermore, tests revealed
that the system can operate independently when provided with previous user
preference data, generating designs that align with the preferred design criteria
gathered during a previous instance of the system.

However, the system exhibits some weaknesses and areas for improvement. It
struggles to capture specific shape structures of objects and presents topology
issues such as disconnected and overly thin mesh segments. Additionally, the
fitness estimation of each design could be refined to better align with user
sentiment and be optimized for quicker distance calculations between designs
for automatic fitness evaluation. Suggestions to address these issues include
adjusting the model representation, introducing weights and multi-threading
to the fitness calculation process, as well as implementing feature locking and
analyzing the general trendline of traversal through the solution space.

Bibliography
[1] pwc, “Top 5 developments driving growth for video games.”

https://www.pwc.com/us/en/tech-effect/emerging-tech/emerging-
technology-trends-in-the-gaming-industry.html„ 2024. Accessed:
2024-05-02.

[2] E. Gach, “Blockbuster game development costs are out of con-
trol.” https://kotaku.com/microsoft-activision-blizzard-call-duty-
gta-vi-halo-1850391113, 2023. Accesed: 2024-04-08.

[3] J. Schell, “The art of game design : a book of lenses,” 2015.

[4] OpenAI, “ChatGPT.” https://openai.com/chatgpt, 2022. Accessed: 2024-
05-02.

[5] A. Ramesh, S. Goyal, X. Guo, A. Krishnan, M. Schuster, Y. Wu, L. Gao,
J. He, and P. Li, “DALL-E: Creating Images from Text,” arXiv preprint
arXiv:2102.12092, 2021.

[6] NVIDIA, “Rapidly Generate 3D Assets for Virtual Worlds with Gen-
erative AI.” https://developer.nvidia.com/blog/rapidly-generate-3d-
assets-for-virtual-worlds-with-generative-ai/„ 2023. Accessed:
2024-05-02.

[7] C. Molnar, Interpretable Machine Learning: A Guide for Making Black Box
Models Explainable. Lulu.com, 2019.

[8] M. Vartak, “Six Risks Of Generative AI.” https://www.forbes.com/sites/
forbestechcouncil/2023/06/29/six-risks-of-generative-ai/, 2023.
Accessed: 2024-05-02.

[9] J. Panettieri, “Generative AI Lawsuits Timeline: Legal Cases vs. OpenAI,Mi-
crosoft, Anthropic, Nvidia and More.” https://sustainabletechpartner.
com/topics/ai/generative-ai-lawsuit-timeline/, 2024. Accessed: 2024-
05-02.

53

https://www.pwc.com/us/en/tech-effect/emerging-tech/emerging-technology-trends-in-the-gaming-industry.html
https://www.pwc.com/us/en/tech-effect/emerging-tech/emerging-technology-trends-in-the-gaming-industry.html
https://kotaku.com/microsoft-activision-blizzard-call-duty-gta-vi-halo-1850391113
https://kotaku.com/microsoft-activision-blizzard-call-duty-gta-vi-halo-1850391113
https://openai.com/chatgpt
https://developer.nvidia.com/blog/rapidly-generate-3d-assets-for-virtual-worlds-with-generative-ai/
https://developer.nvidia.com/blog/rapidly-generate-3d-assets-for-virtual-worlds-with-generative-ai/
https://www.forbes.com/sites/forbestechcouncil/2023/06/29/six-risks-of-generative-ai/
https://www.forbes.com/sites/forbestechcouncil/2023/06/29/six-risks-of-generative-ai/
https://sustainabletechpartner.com/topics/ai/generative-ai-lawsuit-timeline/
https://sustainabletechpartner.com/topics/ai/generative-ai-lawsuit-timeline/

54 bibl iography

[10] A. Starks, “Last Month, I Declared Reinforcement Learning
as Dead. Are Genetic Algorithms Next on My Hit List?.”
https://ai.plainenglish.io/last-month-i-declared-reinforcement-
learning-as-dead-are-genetic-algorithms-next-on-my-hit-list-
5231c8a940d8, 2024. Accessed: 2024-05-02.

[11] M. Klink, “3d glitching...” https://www.srcxor.org/blog/3d-glitching/
#bwg2/24, 2014. Accessed: 2024-05-03.

[12] osmanassem, “3D Modeling: An Overview on Various Techniques.” https:
//osmanassem.com/wp-content/uploads/2020/02/unnamed.jpg, 2020. Ac-
cessed: 2024-05-04.

[13] A. L. Samuel, “Some studies in machine learning using the game of
checkers,” IBM Journal of research and development, vol. 3, no. 3, pp. 210–
229, 1959.

[14] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[15] H. John, “Adaptation in natural and artificial systems,” 1975.

[16] AlmaBetterBytes, “Genetic Algorithm in AI (Artificial Intelli-
gence).” https://www.almabetter.com/bytes/tutorials/artificial-
intelligence/genetic-algorithm-in-ai, 2024. Accessed: 2024-04-18.

[17] E. Fix, Discriminatory analysis: nonparametric discrimination, consistency
properties, vol. 1. USAF school of Aviation Medicine, 1985.

[18] W. contributors, “K-nearest neighbors algorithm — Wikipedia, The
Free Encyclopedia.” https://en.wikipedia.org/w/index.php?title=K-
nearest_neighbors_algorithm&oldid=1212348037, 2024. Accessed: 2024-
04-19.

[19] M. Ando and M. Hagiwara, “3D Character Creation System Using Kansei
Rule with the Fitness Extraction Method,” tech. rep., Faculty of Science
and Technology, Keio University, 2009.

[20] D. Yoon and K.-J. Kim, “3D Game Model and Texture Generation using
Interactive Genetic Algorithm,” tech. rep., Dept. of Computer Engineering,
Sejong University, 2012.

[21] M. Ariffin, S. Hadi, and S. Phon-Amnuaisuk, “Evolving 3D Models Using
Interactive Genetic Algorithms and L-Systems,” in International Workshop
on Multi-disciplinary Trends in Artificial Intelligence, pp. 485–493, 10 2017.

https://ai.plainenglish.io/last-month-i-declared-reinforcement-learning-as-dead-are-genetic-algorithms-next-on-my-hit-list-5231c8a940d8
https://ai.plainenglish.io/last-month-i-declared-reinforcement-learning-as-dead-are-genetic-algorithms-next-on-my-hit-list-5231c8a940d8
https://ai.plainenglish.io/last-month-i-declared-reinforcement-learning-as-dead-are-genetic-algorithms-next-on-my-hit-list-5231c8a940d8
https://www.srcxor.org/blog/3d-glitching/#bwg2/24
https://www.srcxor.org/blog/3d-glitching/#bwg2/24
https://osmanassem.com/wp-content/uploads/2020/02/unnamed.jpg
https://osmanassem.com/wp-content/uploads/2020/02/unnamed.jpg
https://www.almabetter.com/bytes/tutorials/artificial-intelligence/genetic-algorithm-in-ai
https://www.almabetter.com/bytes/tutorials/artificial-intelligence/genetic-algorithm-in-ai
https://en.wikipedia.org/w/index.php?title=K-nearest_neighbors_algorithm&oldid=1212348037
https://en.wikipedia.org/w/index.php?title=K-nearest_neighbors_algorithm&oldid=1212348037

bibl iography 55

[22] B. O. Community, Blender - a 3D modelling and rendering package. Blender
Foundation, Stichting Blender Foundation, Amsterdam, 2018.

[23] T. Takikawa, A. Glassner, and M. McGuire, “A Dataset and Explorer for
3D Signed Distance Functions,” Journal of Computer Graphics Techniques
(JCGT), vol. 11, pp. 1–29, April 2022.

[24] A. D. Jansson and B. A. Bremdal, “Genetic Algorithm for Adaptable Design
using Crowdsourced Learning as Fitness Measure,” in 2018 International
Conference on Smart Systems and Technologies (SST), pp. 1–6, 2018.

[25] M. Kingsnorth, “Shape generator.” https://blendermarket.com/
products/shape-generator, 2024. Accessed: 2024-04-08.

[26] “JavaScript.” https://developer.mozilla.org/en-US/docs/Web/
JavaScript, 1995–.

[27] e. a. Mr.doob, AlteredQualia, “THREE.js.” https://threejs.org/, 2009–.

[28] Vacuity, “Creating a tool to get Blender procedural geometry to ThreeJS
without exporting.” https://discourse.threejs.org/t/creating-a-
tool-to-get-blender-procedural-geometry-to-threejs-without-
exporting/52964, 2023. Accessed: 2024-05-08.

[29] L. Peterson, “K-nearest neighbor,” Scholarpedia journal, vol. 4, no. 2, p. 1883,
2009.

[30] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley,
CA: CreateSpace, 2009.

[31] SideFX, “Houdini.” https://www.sidefx.com/products/houdini/, 1996–.

[32] J. Gou, L. Du, Y. Zhang, and T. Xiong, “A NewDistance-weighted k -nearest
Neighbor Classifier,” J. Inf. Comput. Sci., vol. 9, 11 2011.

https://blendermarket.com/products/shape-generator
https://blendermarket.com/products/shape-generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://threejs.org/
https://discourse.threejs.org/t/creating-a-tool-to-get-blender-procedural-geometry-to-threejs-without-exporting/52964
https://discourse.threejs.org/t/creating-a-tool-to-get-blender-procedural-geometry-to-threejs-without-exporting/52964
https://discourse.threejs.org/t/creating-a-tool-to-get-blender-procedural-geometry-to-threejs-without-exporting/52964
https://www.sidefx.com/products/houdini/

A
Task Description
Included in this appendix is the task description given by my supervisors for
this thesis, where the document is shown in its entirety as it was recieved at
the start of this project.

57

Adaptable and interactive 3D modelling using genetic
algorithms

Problem description

This project proposal seeks to explore creative AI systems. This implies systems that
can create new design and develop unprecedented solutions to problems posed to
them. Emphasis will be placed on Genetic Algorithms. The application of AI methods
in game/VR/AR asset design is of special interest.

The project work encompasses three main parts:

1. Literature study
2. Conceptualization and implementation
3. Test and verification

The proposal will explore state-of-the-art for AI based design systems. Emphasis
should be placed on literature that applies genetic algorithms (GA) alone or as part of
a suite of methods. The principles for using GAs to produce formative, adaptable and
creative solutions should be stressed. The first idea is to study representation issues.
This should include model features in 3D space, as well as functional constraints,
requirements and priorities. Studying methods for evaluating and ranking tentative
design solutions are also important.

Based on these investigations the student will develop a GA concept that will be able
to create novel solutions that demonstrate creative capabilities through extensive
recombination of many features. The student should conceptualize their own method
for producing an adaptable and artistic design of 3D models by means of a GA with or
without other type of AI support. The choice of GA type will be essential. Finally,
decisions regarding operators and their use must be settled.

The student must define a set of criteria for evaluation and verification of the quality of
the models generated by the system. These could be general in nature, specific for a
particular user group or circumstantial. Tests should be designed accordingly and
performed on a rich set of cases.

The work should be documented, and the software should be delivered in the form of
source code and executables tested beyond the development environment. It should
also be accompanied by a video showing different demonstrations of the system as
well as tests performed.

A starting point for the literature study could be papers like:

1. A guided search genetic algorithm using mined rules for optimal affective
product design

2. Fashion and Textiles December 2016, 3:8 Fashion set design with an emphasis

on fabric composition using the interactive genetic algorithm

3. Quantifying Aesthetics of Visual Design Applied to Automatic Design
4. Pervasive Computing in the Supermarket: Designing a Context-Aware

Shopping Trolley

5. Future prospects of computer-aided design (CAD) – A review from the
perspective of artificial intelligence (AI), extended reality, and 3D printing

6. 3DALL-E: Integrating Text-to-Image AI in 3D Design Workflows

7. An artificial intelligence based data-driven approach for design ideation

8. AI-based Computer Aided Engineering for automated product design - A first
approach with a Multi-View based classification

9. A review on patient-specific facial and cranial implant design using Artificial
Intelligence (AI) techniques

B
Source Code
The source code for this project can be found at:

https://github.com/haakonbor/Master-Thesis-project.

To run the system inside Blender, install the ShapeGenerator byMarkKingsnorth
[25] in a supported Blender version, and run:

blender −−python shapegen . py

in a command line interface.

61

https://github.com/haakonbor/Master-Thesis-project

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Objective
	1.2.1 Scope

	1.3 Theory
	1.3.1 Machine learning
	1.3.2 Genetic algorithm
	1.3.3 K-Nearest Neighbour

	1.4 Related work
	1.5 Strategy
	1.5.1 Model representation and visualization
	1.5.2 Genetic algorithm
	1.5.3 Fitness evaluation
	1.5.4 Testing

	2 Tools and Methods
	2.1 Tools
	2.1.1 Tool selection
	2.1.2 Blender API
	2.1.3 Shape Generator

	2.2 Model generation and representation
	2.3 System UI
	2.4 Genetic algorithm
	2.4.1 Encoding
	2.4.2 Genetic algorithm structure
	2.4.3 Fitness evaluation

	2.5 System structure

	3 Results and Discussion
	3.1 Results
	3.1.1 Combining features
	3.1.2 Specific objects
	3.1.3 Using learned preferences

	3.2 Discussion
	3.2.1 Analysis
	3.2.2 Objectives

	4 Future Work and Conclusion
	4.1 Future work
	4.1.1 Representation alternatives
	4.1.2 Fitness evaluation adjustment
	4.1.3 Design space search

	4.2 Conclusion

	Bibliography
	A Task Description
	B Source Code

