
Faculty of Science and Technology
Department of Computer Science and Computational Engineering

Application of LLMs and Embeddings in Music Recommendation Systems

Abu Mohammad Taief
Master thesis in Applied Computer Science . . . May 2024

Abstract
Music recommendation systems are crucial in guiding listeners to the extensive
selection of music accessible today. However, these recommendation algorithms
frequently encounter challenges such as the cold start problem, including less
popular tracks, and comprehending the semantic substance of music. This
thesis investigates the incorporation of Large Language Models (LLMs) and
embeddings to tackle these difficulties in the context of music recommendation
systems. This project utilizes two extensive datasets from Kaggle to create a
hybrid recommendation model that blends content-based and collaborative
filtering approaches with proficient LLMs.

The main goal is to make music suggestions more accurate and customizable.
To do this, two methods are being used, which include adding embeddings
to classic collaborative filtering techniques and using LLMs to add semantic
analysis to content-based recommendations. These methods enable the system
to catch the subtle preferences of users and suggest music that better matches
their unique interests and moods.

The methodology includes preprocessing the datasets to make a single aggre-
grated dataset, using K-means clustering and Principal Component Analysis
(PCA) to improve the representation of features, and using user interaction
matrices to make collaborative filtering work better. The evaluation of the
recommendation system is done by conducting user satisfaction surveys. The
content-collaborative and LLM-based models have shown considerable perfor-
mance, with an average satisfaction rating of around 4.2 out of 5.

This thesis discusses the implications of these findings for key research questions
concerning the effectiveness of integrating LLMs and embeddings in music rec-
ommendation systems. The study provides a theoretical foundation for future
research and prospective enhancements in music recommendation.

Keywords: music recommendation system, embeddings, llm, collaborative
filtering, content-based filtering, contex-based filtering

Acknowledgements
I want to extendmy deepest thanks to all those who enabledme to complete this
thesis. Special thanks are due to my supervisors, Bernt Arild Bremdal, Shayan
Dadman, and Kalyan R Ayyalasomayajula, whose invaluable guidance and
resources were instrumental in my research.

Additionally, I am deeply grateful to my parents and siblings, whose support
and encouragement have enabled me to pursue my academic goals. Their faith
in my capabilities has been a constant strength throughout my educational
journey.

Table of Contents
Abstract i

Acknowledgements iii

List of Figures vii

List of Tables ix

1 Introduction 1

2 Literature Review 5
2.1 Overview of Hybrid Collaborative Filtering Systems 6
2.2 Hybrid Algorithm Utilizing Content and Collaborative Filtering 8
2.3 Overview of Context-Aware Music Recommendation Systems 11
2.4 BERT-Based Sentiment Analysis 13
2.5 Literature Review: Machine Learning-Based Clustering Utiliz-

ing Spotify Audio Features 15
2.6 Recommender Systems in the Era of LLMs 17

3 Methodology 21
3.1 Data Processing Methodology 24

3.1.1 Data Preparation and Management 26
3.1.2 Feature Analysis and Dimensionality Reduction for K-

means clustering . 28
3.1.3 K-Means Clustering 30
3.1.4 Merge Genre Data 33
3.1.5 Data Integration for Collaborative Filtering 34
3.1.6 Final Aggregated Dataset Preparation and Usage . . . 36

3.2 Development of Recommendation Systems 38
3.2.1 Playlist Recommendation System: Collaborative Fil-

tering . 39
3.2.2 Content-Collaborative Song Recommendation System 41
3.2.3 Advanced Query-Based Song Recommendation System 45

v

vi table of contents

4 Results 53
4.1 Data Processing Results . 54

4.1.1 Feature Analysis and Dimensionality Reduction . . . 54
4.1.2 K-Means Clustering 57

4.2 Recommendation Model Results 61
4.2.1 Collaborative Filtering for Playlist Recommendation

System . 61
4.2.2 Content-Collaborative Song Recommendation System 63
4.2.3 Advanced Query-Based Song Recommendation System 64
4.2.4 Assessment of Recommendation Systems 65

5 Discussion and Future Works 69
5.1 Discussion . 70
5.2 Future Perspective . 74

6 Conclusion 75

Appendix 81
.1 Thesis Task Description . 81

List of Figures
3.1 Schematic representation of the proposed music recommen-

dation systems, illustrating how different data sources and
the DistilBERT-based LLM are utilized to tackle challenges
such as the long tail and cold start problems and to under-
stand user semantic needs. 23

3.2 Flowchart illustrating the detailed Data Processing method-
ological framework adopted in this thesis 26

3.3 Collaborative filtering for playlist recommendations 40
3.4 Hybrid filtering for Song recommendations 42
3.5 Hybrid filtering for Song recommendations 47

4.1 Histograms showing the distribution of various musical fea-
tures within the dataset. Each subplot represents the distribu-
tion for a different feature, with ’kde’ overlaid to indicate the
density estimation. 55

4.2 Correlation matrix of musical features, depicting the relation-
ship between different attributes. Higher positive values (red)
indicate a strong positive correlation, while deeper blue tones
suggest negative correlations. 57

4.3 Plot of silhouette scores for different numbers of clusters, in-
dicating the quality of cluster separation. 58

4.4 Visualization of KMeans clusters in PCA-reduced 2D space
with cluster centroids marked, showing the separation and
grouping of data points. 59

4.5 3D visualization of KMeans clusters in PCA-reduced space,
enhancing the perspective on spatial distribution and inter-
cluster distances. 60

4.6 Distribution of Interactions per User for Playlists showing a
high concentration of users with fewer playlist interactions. . 62

4.7 Output of song recommendations with user feedback ratings.
Here, the user rated the suggestions by hearing or upon notic-
ing. 63

vii

viii l ist of figures

4.8 Output of song recommendations with query based feedback
ratings. Here, the user rated the suggestions by hearing or
upon noticing. 65

4.9 The average user ratings for song recommendations demon-
strate the efficacy of the recommendation system in accu-
rately matching varied user inputs. The mean base line in-
dicates almost all the songs are performing near to the base
line . 67

List of Tables
2.1 Performance Comparison of Models[25] 14
2.2 Comparison of Silhouette Scores for Clustering Algorithms[26] 16

3.1 Overview of the dataset used in the music recommendation
system. 27

3.2 Summary of the dataset showing the column names, counts
of non-null entries, and data types. 34

3.3 Key Statistics of the Spotify Playlist Data 35
3.4 Fully Aggregated Dataset Information 37
3.5 A selection of records from the fully aggregated dataset show-

casing diverse music preferences and playback frequencies. . 37

4.1 Top 5 recommendations based on user query for death metal
tracks from the 80s. 64

ix

1
Introduction
Music is one of the most essential elements for a human being as it offers
emotional expression and cultural connection. Open access to music platforms
has led to the rise of music recommendation systems, whose goal is to ensure
that people can listen to music of their preferences. The objective of matching
users with music that genuinely suits their tastes is a dynamic challenge in
the digital age. Collaborative filtering (CF) and content-based models (CBM)
have addressed this challenge of music recommendation systems effectively
[1]. Collaborative filtering suggests music by analyzing users’ listening habits
with similar tastes. Content-based filtering recommends tracks based on the
characteristics of the music itself, like audio features, genres, and popularity. On
a large dataset of songs, the collaborative recommendation system faces data
sparsity from where the cold start problem starts[2]. Collaborative filtering
also has a bias that tends to recommend popular songs, creating long tail
problems[3]. These issues generate a crucial gap in current recommendation
systems: their struggle to recommend new or less noticeable tracks within the
vast landscape of available music. They typically need help interpreting and
understanding the high-level semantic relationships between user behavior and
profile[4]. Recent studies show that context and content information is crucial
for personalized recommendations and addressing data sparsity problems
[5]. By integrating LLMs, recommendation systems can provide personalized
and relevant recommendations by understanding semantics better [6]. Also,
categorizing music is a significant challenge since users have diverse musical
tastes depending on mood and other factors like nationality, ethnicity, etc.
These situations can leave users and artists feeling disconnected, especially

1

2 chapter 1 introduction

new ones. It is crucial to address these limitations to change the musical
dynamics of how listeners listen to music while encouraging new artists.

Hence, this thesis aims to bridge these gaps by developing a hybrid music
recommendation system that leverages collaborative and content-based mod-
els enhanced by the sophisticated capabilities of large language models. This
thesis also aims to refine the accuracy and personalization of music recommen-
dations.

Spotify[7] is one of the leading music streaming platforms, having more than
100 million songs and is available in 184 countries. Spotify also offers extensive
research resources through its API system[8]. The Spotify Web API provides
access to rich audio features, which can help build a recommendation system.
Leveraging these musical features, one can develop hybrid models that use
both content and collaborative filtering. Also, these features can be further
used in query processing for LLM-based filtering,which enhances mood-specific
recommendations. In this thesis, two primary databases[9][10] have been used
to develop two unique hybrid music recommendation systems that understand
the user’s semantic musical essence. One method provides song recommenda-
tions by parsing user queries and leveraging the LLM’s semantic analyzer. While
the other method covers content-based filtering and collaborative filtering for
music recommendation„ incoporating embeddings. These databases contain
musical features that are essential to completing the study. The study also
focuses on:

1. Review existing methodologies and works relevant to musical recommen-
dation systems.

2. Understanding Spotify Musical Features and their underlying meaning.

3. Preparing databases to ensure they contain relevant and comprehensive
musical features necessary for effective implementation of recommenda-
tion algorithms.

4. Building a unique hybrid recommendation method incorporating con-
tent and collaborative filtering for songs and playlist recommendations,
utilizing user interaction matrix and dimensionality reduction techniques
such as Singular Value Decomposition (SVD) and Cluster information.

5. Utilizing LLMs to Construct a user query-based recommendation ap-
proach that captures the musical semantic essence of the users along
with traditional content-based filtering.

6. Evaluate the recommendation system performance based on user satis-

3

faction.

For a detailed description of the tasks used in this study, please follow the
task description provided in Appendix .1, available as a separate PDF file. The
structure of this thesis is designed to address the critical aspects of music rec-
ommendation systems. Chapter 2 Background and Literature Review reviews
existing music recommendation systems, highlighting their advantages and
disadvantages and positioning the research within the music recommendation
field. Chapter 3, Methodology, provides a detailed exposition of the method-
ological approach into two sections. Section 3.1, Data Processing Methodol-
ogy: which begins with data preparation and management, followed by an
in-depth exploration of feature analysis and dimensionality reduction tech-
niques such as PCA. This section also describes the use of clustering methods
like K-means and the strategic merging of genre data and user interaction data
to enhance content-collaborative-based recommendations. Section 3.2, Devel-
opment of Recommendation Systems: describes user interaction analysis and
developing different recommendation algorithms, like content-collaborative
recommendation systems, large language models and using them in query-
based recommendation systems, and collaborative playlist generation methods.
Chapter 4 Results: is split into detailed analyses of the processed data and
the operational recommendation systems. Section 4.1, Data Processing Results:
Presents the results from the initial data processing phase, focusing on the
outcomes of feature analysis and the efficiency of clustering implementations.
Section 4.2, Recommendation Model Results: A survey assessment was conducted
to check the effectiveness of the playlist recommendation system using collab-
orative filtering, the hybrid song recommendation system combining content
and collaborative approaches, and the advanced query-based system utilizing
LLMs. Chapter 5 Discussion and Future Work: discusses the research questions,
objectives, obstacles, and future improvement areas. Chapter 6 Conclusion:
Concludes the thesis by summarizing the research contributions, discussing
the challenges encountered, and suggesting future research avenues that could
further the field of music recommendation.

2
Literature Review
This chapter provides an organized overview of the literature on music recom-
mendation systems, specifically focusing on developing and integrating differ-
ent techniques. This section starts by overviewing various hybrid collaborative
filtering approaches. The following section is the Hybrid Algorithm for Content
and Collaborative Filtering Techniques Utilizing SVD. The next section focuses
on context-aware music recommendation systems, which employ user-specific
situations to enhance and customize music selections. This conversation empha-
sizes the need to use contextual data to enhance the relevancy and customer
happiness of suggestions greatly. The next section examines the function of
sentiment analysis using BERT, highlighting its efficacy in extracting profound
semantic and emotional understanding from user interactions. Furthermore,
the following sections evaluate the use of machine learning in grouping Spo-
tify audio information to improve the accuracy of music classification, hence
supporting the methodological approach employed in our study. Finally, the
last concludes by examining how Large Language Models (LLMs) contribute
to advancing recommendation systems by increasing their complexity and
sophistication. This article examines the potential of better natural language
processing skills to revolutionize recommendation practices. It discusses the
positive outcomes and obstacles of integrating these capabilities.

5

6 chapter 2 literature review

2.1 Overview of Hybrid Collaborative Filtering
Systems

Hybrid collaborative filtering (CF) systems have been created to overcome the
inherent constraints of conventional CF methods, including sparsity, cold start,
gray sheep, and scalability problems. These systems combine collaborative
filtering with other recommendation algorithms to improve their performance.
This literature review analyzes several hybrid collaborative filtering (CF) sys-
tems, including their methodology, findings, and limits.

Data Collection and Selection The research examined 163 articles from
many electronic journal databases, such as ACM Portal, IEEE/IEE Library, Sci-
ence Direct, Springer Link, Emerald Insight, ProQuest, Wiley online Library,
and JSTOR. The publications, ranging from 1994 to 2014, were selected based
on criteria such as the significance of the topic, contributions made, number of
citations, publishing impact factors, and recentness.

Categorization of Hybrid Collaborative Filtering Systems The hy-
brid collaborative filtering (CF) systems were categorized into several groups
according on the recommendation methodologies they included with CF. The
following categories are included:

The hybrid CF systems were classified into different categories based on the
recommendation approaches they integrated with CF. These categories include:
(1) Integration of Collaborative Filtering (CF) with Content-Based (CB) Filtering,
(2) Integration of CF with Demographic (DM) Filtering, (3) Integration of CF
with Knowledge-Based (KB) Systems, (4) Integration of CF with Semantic-Based
(SB) Systems, (5) Integration of CF with Context-Aware (CA) Systems, and (6)
Integration of Different CF Algorithms.

1. Integrating Collaborative Filtering with Content-Based Filtering: Hy-
brid systems that integrate collaborative filtering (CF) with content-based
(CB) methods have the objective of addressing the issues of sparsity, cold
start, and gray sheep concerns in CF. These systems use the advantages
of content-based filtering by using item characteristics and user pref-
erences. Some examples of recommender systems include Claypool et
al.’s weighted hybrid recommender for online newspapers and the PTV
system for TV program suggestions[11, 12] Nevertheless, these systems
have obstacles, such as the issue of new users and the constrained variety
of suggestions.

2. Integration of collaborative filtering (CF) with demographic filtering

2.1 overview of hybrid collaborative f iltering systems 7

(DM): It effectively solves the issue of new user problem by utilizing
demographic data to provide personalized suggestions. The systems sug-
gested by Song et al. utilize a combination of demographic similarity and
user-based collaborative filtering to improve the accuracy of recommen-
dations[13]. However, acquiring demographic data can be challenging,
and these systems continue to face difficulties in dealing with outliers
and new item issues.

3. Integrating Collaborative Filtering with Knowledge Base Systems:
Hybrid systems that combine CF with KB systems can handle sparsity
and cold start problems by leveraging a knowledge base to provide rec-
ommendations. Examples include Towle and Quinn’s weighted hybrid
approach and the EntreeC system, which uses KB techniques to boot-
strap the CF engine [14, 15]. These systems, however, require extensive
knowledge engineering.

4. Integrating Collaborative Filtering with Semantic-Based Systems:
Semantic-based hybrid systems improve the quality of recommendations
by taking into account the semantic connections between products and
users. The systems that Ceylan and Birturk created make suggestions
more accurate in datasets with little information and effectively deal
with the problems of cold start and gray sheep [16]. Nevertheless, they
also necessitate significant knowledge engineering endeavors.

5. Integrating Collaborative Filtering with Context-aware Filtering Sys-
tems: Context-aware hybrid systems utilize contextual information to
enhance the relevancy of recommendations. Systems such as the Smart
Radio music playlist recommender adjust its suggestions according to
user circumstances, such as location and time [17]. Although they per-
form well in dynamic settings, they do not completely address issues
related to sparsity, cold start, and gray sheep concerns.

6. Integration of Different CF Algorithms: The combination of memory-
based and model-based collaborative filtering (CF) approaches exploits
the scalability of model-based methods while maintaining the accuracy
of memory-based methods. Xue et al. have suggested systems that utilize
clustering of user data to improve the quality and scalability of recom-
mendations [18]. Nevertheless, the implementation of these systems is
intricate and costly.

Limitations and discussion Hybrid CF systems, despite their progress,
encounter certain constraints:

8 chapter 2 literature review

1. Requirements for Knowledge Engineering: Systems that combine
knowledge-based (KB) and semantic-based (SB) techniques require a
substantial amount of knowledge engineering, which can be demanding
in terms of resources.

2. Data Privacy Concerns: The process of gathering demographic and
contextual data can give rise to concerns over the protection of personal
information and can be difficult to accomplish.

3. Scalability Issues: Althoughmodel-based techniques enhance scalability,
they frequently do so at the cost of accuracy.

4. Complexity and Implementation Costs: Hybrid systems possess intrin-
sic complexity and can incur significant expenses during development
and maintenance.

Alignment with Current Research The study by Gohari et al. goes into
great detail about collaborative hybrid systems. It classifies these systems,
talks about their pros and cons, and compares how well they deal with the
main problems of CF[19]. Gohari et al. talk about the benefits of combining
semantic-based methods with collaborative filtering to get better and more
varied suggestions in changing settings. Our research extends to selecting
the hybrid models appropriate for building our music recommendation sys-
tem.

2.2 Hybrid Algorithm Utilizing Content and
Collaborative Filtering

The study "Hybrid Algorithm Based on Content and Collaborative Filtering
in Recommendation System Optimization and Simulation" [20] explores the
integration of content-based filtering and collaborative filtering techniques to
enhance recommendation systems. The purpose of this hybrid strategy is to
tackle prevalent challenges such as the scarcity of data, difficulties in starting
from scratch, and the requirement for suggestions in real time.The purpose
of this hybrid strategy is to tackle prevalent challenges such as the scarcity of
data, difficulties in starting from scratch, and the requirement for suggestions
in real time.

Methods The hybrid recommendation algorithm suggested in this study
incorporates the advantageous aspects of content-based and collaborative

2.2 hybrid algorithm util iz ing content and collaborative f iltering9

filtering techniques.

1. Content-Based Filtering:

• This approach to filtering involves analyzing the content of items
to provide recommendations based on their similarity to items that
the user has already shown interest in. object User interests are
derived from their surfing history and shopping data. The analysis
of the relationship between user preferences and item characteris-
tics using algorithms like TF-IDF and cosine similarity determines
characteristics.

• A content-based recommendation module processes the data to
create a profile of user interests.

2. Collaborative Filtering:

• Collaborative Filtering is a method used to make predictions or
recommendations by collecting and analyzing data from several
users or sources. The user rating data, in conjunction with the
current access sequences, is utilized to ascertain users and objects
that exhibit comparable characteristics. The collaborative filtering
module utilizes the commonalities between users to forecast ratings
and produce suggestions.

• The Singular Value Decomposition (SVD) is used in the collabora-
tive filtering module to decrease the dimensionality of the user-item
interaction matrix, hence improving computing efficiency and accu-
racy.

3. Synthesis of Both Approaches: The final recommendation list is pro-
duced by aggregating the results from bothmodules using aweighted sum
computation. This comprehensive approach alleviates the constraints of
each separate method and enhances the overall quality of recommenda-
tions.

Results The testing resuls demonstrated several significant advantages of
the hybrid approach:

1. Enhanced Precision: The hybrid approach demonstrated a substantial
decrease in Mean Absolute Error (MAE) in comparison to solo collabora-
tive filtering techniques. As the quantity of training data rose, the MAE
values declined, suggesting improved prediction accuracy.

10 chapter 2 literature review

2. Addressing Data Sparsity and Cold Start: The technique efficiently
resolves the problem of data sparsity by integrating content-based filter-
ing with collaborative filtering. Unrated goods can still be recommended
based on their content features, which helps address the cold start prob-
lem.

3. Performance using Singular Value Decomposition (SVD) and Cluster-
ing: Using Singular Value Decomposition (SVD) to reduce the number of
dimensions in the collaborative filtering module speeds up computations
and improves the accuracy of recommendations. In addition, K-means
clustering is utilized to categorize users according to their attributes,
resulting in improved computational efficiency and increased precision
in suggestions.

4. Improved Recommendation Quality: The hybrid technique exhibited
superior recommendation quality across many datasets, including the
MovieLens dataset. It achieved a compromise between the requirement
for processing in real-time and the goal of maintaining a high level of
suggestion accuracy.

Limitations Although the research has notable merits, it also admits some
limitations:

1. Computational Complexity: The incorporation of two filtering method-
ologies and the use of clustering contribute to the computational intricacy.
Although the approach is efficient, it may nevertheless necessitate sub-
stantial resources for really big datasets.

2. Parameter Sensitivity: The sensitivity of the parameters is being as-
sessed. The efficacy of the hybrid algorithm is contingent upon the
meticulous calibration of diverse parameters, including the weights as-
signed to amalgamate recommendations and the quantity of clusters in
K-means.

3. Offline Evaluation: The study predominantly depends on offline datasets
for assessment. Conducting real-world trials and validating the suggested
strategy through online experiments are essential to completely proving
the practical usefulness of the method.

Alignment with Current Research The hybrid recommendation algo-
rithm, which combines content-based and collaborative filtering techniques,
offers a strong solution to overcome the constraints of conventional recommen-
dation systems. The algorithm enhances accuracy, addresses data sparsity, and

2.3 overview of context-aware music recommendation systems 11

offers high-quality suggestions by efficiently merging the advantages of both
techniques. This method is especially advantageous for real-time applications
where both performance and accuracy are crucial. Singular Value Decompo-
sition (SVD) to lower dimensionality in collaborative filtering can be looked
forward to when creating a hybrid recommendation system.

2.3 Overview of Context-Aware Music
Recommendation Systems

Context-aware recommendation systems have become increasingly important
in personalized music recommendation, aiming to provide users with music
that matches their contextual preferences. This literature review focuses on
a study by Wang et al. that proposes a novel approach for context-aware
music recommendation, explaining its methodology, findings, and limitations
[21].

Method The study utilizes a dataset obtained from Xiami Music, which con-
sists of 4,284,000 recordings of music playback. These records contain 361,861
unique musical compositions that 4,284 different users created. The suggested
method acquires reduced-dimensional representations of music compositions
based on users’ past playing sequences and information. This embedding ap-
proach, which draws inspiration from neural language models, considers the
listening history of each user as a "sentence" and regards each music piece as
a "word" inside that sentence.

The historical playing sequence of each user is analyzed using a sliding window
approach to provide training data. This analysis takes into account both the
local context (music pieces in close proximity) and the global context (total
listening history). The embeddings undergo refinement using a regularization
procedure that takes into account metadata such as album and artist informa-
tion. This ensures that musical pieces with similarities have embeddings that
are near each other.

ContextualPreference InferenceandRecommendation The approach
encompasses both overarching and situational user preferences. The global pref-
erence is determined by analyzing the user’s whole listening history, whereas
the contextual preference is influenced by the user’s most recent music choices.
The likelihood of a user having a preference for a certain music piece is calcu-
lated by measuring the cosine similarity between the music’s embedding and
the user’s overall and situational preferences. Subsequently,music compositions

12 chapter 2 literature review

are assessed based on this likelihood and suggested to the user.

Experimental Design and Evaluation The effectiveness of the suggested
method was assessed using an actual dataset and four metrics: accuracy, recall,
F1 score, and hitrate. The dataset was partitioned into training and test sets
using 5-fold cross-validation. The method’s efficacy was evaluated by compar-
ing it to three baseline approaches: Injected Preference Fusion (IPF) based
on Temporal Recommendation, Bayesian Personalized Ranking (BPR), and
FISMauc (FISM). [22, 23, 24]

Results and Discussion The experimental results demonstrated that the
proposed approach outperformed the baseline methods significantly. For in-
stance, the proposed method showed a relative improvement in F1 score of
around 96.4%,69.7%,and 42.6% overBPR,FISM,and IPF, respectively. These im-
provements highlight the effectiveness of incorporating contextual preferences
into music recommendations. Additionally, the study found that embeddings
learned by the proposed model effectively captured the similarities between
music pieces, ensuring relevant recommendations.

Despite its promising results, the study has several limitations:

1. Complexity and Training Time: The sliding window technique and
embedding learning process are computationally intensive, requiring
significant training time, especially with larger window sizes.

2. Parameter Tuning: The performance of the model heavily depends on
the appropriate setting of parameters, such as the combination weight
(𝛽) and the embedding dimension. Inadequate calibration might result
in less than ideal outcomes.

3. Offline Evaluation: The study predominantly relied on metrics for as-
sessment conducted without direct user involvement, which may not com-
prehensively measure user satisfaction. Potential future research might
entail conducting online experiments to gain a deeper understanding of
the immediate influence of recommendations on the user experience.

The study byWang et al. presents an effective approach for context-aware music
recommendation by leveraging embeddings learned from historical playing
sequences and metadata. The method successfully integrates users’ general
and contextual preferences, resulting in superior recommendation performance
compared to traditional methods. Future research could focus on enhancing the
computational efficiency of the model and validating its effectiveness through
online user studies.

2.4 bert-based sentiment analysis 13

Alignment with Current Research Wang et al.’s system employs low-
dimensional embeddings for music pieces, similar to word embeddings in
natural language processing, derived from users’ historical interactions and
metadata. These embeddings are utilized to model both broad and specific
contextual preferences of users, which is particularly relevant to our research
focus. Our work extends this approach by incorporating advanced clustering
techniques with these embeddings to refine the recommendation accuracy
based on user-specific contexts, enhancing the system’s adaptability to real-
time user preferences and activities.

2.4 BERT-Based Sentiment Analysis

An essential aspect of software engineering is sentiment analysis, which plays a
critical role in comprehending the feelings and views of developers. This anal-
ysis is vital in enhancing tools and project management. The research article
titled "BERT-Based Sentiment Analysis: A Software Engineering Perspective,"
authored by Batra et al. investigates the application of transformer models in
analyzing sentiment in software engineering texts[25].

Data Collection The study employed datasets from GitHub, Jira, and Stack
Overflow, comprising comments and postings pertaining to software engi-
neering. The datasets underwent augmentation through the use of lexical
substitution and back translation techniques in order to enhance variety and
optimize model training.

DistilBERT Model DistilBERT is a condensed iteration of BERT that main-
tains 97% of BERT’s language comprehension capabilities, while being 40%
smaller and 60% quicker. The model is trained to emulate BERT by acquiring
knowledge from the probability generated by BERT before to the final activation
function. This technique guarantees that DistilBERT maintains the fundamen-
tal characteristics of BERT while minimizing computing burden.

• Fine-Tuning: The DistilBERTmodel underwent fine-tuning using datasets
related to software engineering. The process of fine-tuning entails the
addition of an untrained layer to the pre-trained DistilBERT model, fol-
lowed by training it for sentiment classification across a limited number
of epochs.

• Training and Testing: The datasets were divided into separate sets for
training, validation, and testing purposes. During the training phase,
early pausing was implemented to minimize overfitting. The models

14 chapter 2 literature review

were then assessed using precision, recall, and F1-score measures.

Additional BERT-Based Models

In addition, the study optimized several BERT variants (BERT, RoBERTa, and
ALBERT) using the same datasets. In addition, a collective technique was used
to integrate the predictions of various models to improve performance. The
ensemble employed a weighted voting mechanism that relied on the confidence
ratings derived from the final softmax layer of each model.

Results The experimental results demonstrated that DistilBERT performs
exceptionally well for sentiment analysis in software engineering:

Table 2.1: Performance Comparison of Models[25]

Model GitHub Stack Overflow Jira
(F1-score) (F1-score) (F1-score)

DistilBERT 0.92 0.86 0.91
RoBERTa (Fine-Tuning) 0.91 0.85 0.83
Ensemble Model 0.92 0.92 0.90

DistilBERT Performance

• Effectiveness: DistilBERT achieved high F1-scores across all datasets,
indicating its effectiveness. For instance, it recorded F1-scores of 0.92 on
GitHub, 0.86 on Stack Overflow, and 0.91 on Jira. These results represent
a significant improvement over existing tools.

• Efficiency: The reduced size and faster inference time of DistilBERTmake
it a practical choice for deployment in resource-constrained environments.
It strikes a balance between performance and computational efficiency,
making it suitable for real-time applications.

• Improvement Over Baselines: DistilBERT outperformed traditional sen-
timent analysis tools like SentiStrength, SentiCR, and Senti4SD, showing
improvements of 6–12% in F1-scores. This highlights the advantage of
using transformer-based models in this domain.

Performance of Other Models

• Fine-Tuning Results: Fine-tuning BERT variants yielded substantial
improvements in F1-scores across all datasets. For instance, the RoBERTa
model achieved F1-scores of 0.91 on GitHub, 0.85 on Stack Overflow, and
0.83 on Jira.

2.5 literature review: machine learning-based clustering util iz ing
spotify audio features 15

• Ensemble Model Performance: The ensemble approach further en-
hanced performance, achieving an F1-score of 0.92 on GitHub, 0.92 on
Stack Overflow, and 0.90 on Jira. The weighted voting scheme effectively
combined the strengths of individual models, resulting in more accurate
predictions.

AlignmentwithCurrentResearch The study by Batra et al. demonstrates
the effectiveness of DistilBERT as a potent tool for sentiment analysis in the
field of software engineering. It effectively combines superior performance with
computational economy. Through the process of fine-tuning this compressed
model using datasets relevant to a particular area, the authors were able to
make noteworthy enhancements compared to previous techniques. The results
indicate that DistilBERT is a feasible choice for sentiment analysis applications
that require real-time processing, especially in situations with limited resources.
Leveraging this portability and computationally friendly pattern of DistilBERT,
we can look forward to utilize it to analyse sentiment of user for our query-based
song recommendation system.

2.5 Literature Review: Machine Learning-Based
Clustering Utilizing Spotify Audio Features

The research paper titled "Machine Learning Based Clustering Using Spotify
Audio Features"[26] explores the utilization of several clustering algorithms to
categorize music effectively based on Spotify audio attributes. The main goal
is to examine and categorize songs into distinct clusters according to their
auditory characteristics, including danceability, energy, loudness, valence, and
pace. This study employs the K-means, Fuzzy C-means (FCM), and Possibilistic
C-means (PCM) algorithms and assesses their performance by utilizing the
silhouette score as the assessment metric.

Methods The study utilizes three clustering techniques to classify the Spo-
tify audio characteristics dataset:

1. K-means Clustering: K-means clustering is a method used to partition
a dataset into K distinct clusters, where each data point belongs to the
cluster with the nearest mean. The K-means algorithm is a commonly
employed clustering method that divides data into K separate groupings.
The objective is to reduce the variation inside each cluster and increase
the variation across clusters. The technique progressively modifies cluster
centroids to get optimum differentiation.

16 chapter 2 literature review

2. Fuzzy C-means (FCM): object FCM, or Fuzzy C-means, is a modified
version of the K-means algorithm that permits data points to be assigned
to several clusters with different membership levels. This technique
employs fuzzy logic principles to allocate membership values, making it
well-suited for datasets characterized by overlapping clusters. The list
ends.

3. Possibilistic C-means (PCM): PCM overcomes the constraints of FCM
by loosening the need for the total of row values, which enables greater
freedom in assigning cluster memberships. This approach is very advan-
tageous for managing noise and outliers in the dataset.

Results The study’s results are shown in Table 1, which displays the silhou-
ette scores for each clustering procedure for various values of 𝑛 (number of
clusters).

Table 2.2: Comparison of Silhouette Scores for Clustering Algorithms[26]

Clustering Algorithm Silhouette Score
K-means (n=6) 0.465
K-means (n=5) 0.426
K-means (n=4) 0.425
FCM (n=6) 0.137
FCM (n=5) 0.20752
FCM (n=4) 0.235
PCM (n=6) 0.35177
PCM (n=5) 0.35177
PCM (n=4) 0.35177

1. The K-means algorithm obtained a silhouette score of 0.465 with 𝑛 = 6,
suggesting distinct clusters with low overlap.

2. The FCM algorithm exhibited a decrease in performance as the value of
𝑛 grew, reaching its greatest silhouette score of 0.235 when 𝑛 was equal
to 4.

3. The silhouette score of 0.35177 for PCM remained constant for all values
of 𝑛, demonstrating consistent performance.

Limitations

1. Computational Complexity: The utilization of various clustering tech-
niques and the handling of extensive datasets necessitate substantial
computer resources.

2.6 recommender systems in the era of llms 17

2. Parameter Sensitivity: The effectiveness of clustering algorithms is
contingent upon the selection of parameters, such as the quantity of
clusters (𝑛),whichmight impact the caliber of the outcomes. The itemized
list ends.

3. Evaluation Metrics: The silhouette score in isolation does not offer a
comprehensive assessment of clustering performance. Additional mea-
sures and specialized knowledge in certain domains are required to
understand the results accurately. The list is complete.

Alignment with Current Research The study shows that K-means works
better than FCM andPCM in grouping Spotify audio characteristics, as indicated
by higher silhouette scores. The results indicate that K-means is a reliable and
effective technique for classifying music, especially when the appropriate num-
ber of clusters is used. Nevertheless, selecting a clustering technique should
consider the particular objectives and attributes of the dataset. Clustering
patterns can improve music recommendation systems by offering more indi-
vidualized and pertinent choices. K-means can play vital role while clustering
musical from spotify and can be further used on content based recsys.

2.6 Recommender Systems in the Era of LLMs

The research paper titled "Recommender Systems in the Era of Large Lan-
guage Models (LLMs)" [27] investigates the profound influence of LLMs on
recommender systems (RecSys). Traditional deep neural network-based rec-
ommendation methods have limitations in understanding user interests and
capturing textual information. However, LLMs like GPT-4 and ChatGPT offer
new opportunities to enhance RecSys by leveraging their advanced language
understanding and generation capabilities. This research examines the utiliza-
tion of Language Models (LLMs) to enhance the effectiveness and adaptability
of recommender systems.

Methods The research classifies the incorporation of LLMs into RecSys into
three main parts:

1. Pre-training: Prior training: object LLMs undergo pre-training using
extensive and varied textual datasets to acquire knowledge of broad
language patterns and semantics. This phase include activities such as
Masked Language Modeling (MLM) and Next Token Prediction (NTP),
which aid in the comprehension of context by the models and the pro-
duction of coherent text. The item list ends.

18 chapter 2 literature review

2. Fine-tuning: Adjusting or optimizing a system or process to get optimal
performance or results. Following pre-training, Language Models (LLMs)
undergo fine-tuning using task-specific datasets that consist of user-item
interaction data and textual side information. Fine-tuning can be catego-
rized as either full-model or parameter-efficient (PEFT), depending on
whether all model parameters or simply a selection of parameters (such
as adapters) are changed. The itemized list ends.

3. Prompting: Item prompting utilizes task-specific templates to customize
LLMs for downstream recommendation tasks without modifying the
model parameters. In-context learning (ICL) and chain-of-thought (CoT)
prompting are ways to teach language models (LLMs) how to do tasks
by using the context and logical steps given in the prompts.

Results The paper emphasizes several improvements in the utilization of
LLMs for recommender systems.

1. Improved Text Comprehension: LLMs greatly enhance the capacity to
comprehend and produce text, rendering them very efficient for jobs that
include extensive textual data such as reviews, item descriptions, and
user profiles. This improves the quality of recommendations by offering
choices that are more appropriate in the given environment. The item
list ends.

2. Generalization and Flexibility: LLMs exhibit remarkable generalization
skills, enabling them to adjust to different recommendation tasks with
minimum fine-tuning. Their aptitude to excel in zero-shot or few-shot
scenarios diminishes the necessity for extensive, task-specific datasets.
The itemized list ends.

3. Methods of Integration: The study explores novelmethodologies such as
mutual regularization and soft+hard prompting, which integrate collab-
orative filtering with content-based approaches to improve the precision
and resilience of suggestions. The list ends.

4. Enhancements in Performance: There is evidence that RecSys mod-
els with LLM do better than standard models at a number of tasks,
such as making top-K suggestions, rating predictions, and conversational
suggestions. Models such as P5 and TALLRec have shown substantial
enhancements in recommendation precision and user contentment.

Limitations and Discussion Although there have been significant gains,
the report notes the presence of several difficulties.

2.6 recommender systems in the era of llms 19

1. Computational Resources: Training and optimizing Language Models
(LLMs) need significant computing resources, which might restrict their
availability and scalability in practical scenarios.

2. Data Privacy and Ethics: The utilization of extensive user data for the
purpose of training Language Models (LLMs) gives rise to apprehensions
over data privacy and ethical ramifications. It is essential to guarantee
the responsible and safe use of data.

3. Hallucination and Reliability: LLMs have the ability to occasionally
provide information that seems believable but is really erroneous, which
is referred to as hallucination. This problem presents potential dangers in
situations where important recommendations are made, requiring strong
procedures to confirm and authenticate the results of the model.

The incorporation of extensive language models into recommender systems
signifies a notable progression in the domain, providing superior text com-
prehension, greater ability to apply knowledge to different situations, and
increased adaptability to diverse jobs. Despite persistent obstacles such as lim-
ited computational resources, data privacy concerns, and model dependability
issues, continuous research and inventive methods are consistently expanding
the capabilities of LLMs in improving recommendation systems.

3
Methodology
Music recommendation systems play a vital role in helping users navigate the
extensive collection of accessible music. However, these systems frequently
encounter major challenges that can impact the user’s enjoyment and overall
performance. The "long tail" problem and the "cold start" problem are two sig-
nificant challenges frequently faced. The long tail problem is when many niche
songs receive minimal or no attention, resulting in many potentially good mu-
sic remaining unknown by listeners. Conversely, the cold start problem occurs
when the algorithm has insufficient data on newly introduced music or users,
resulting in inaccurate suggestions. In addition, the system must do intricate
semantic evaluations to provide individualized music recommendations that
relate to each listener’s distinct musical preferences and emotions.

To tackle these challenges, we propose the development of two separate rec-
ommendation systems:

1. Hybrid Song Recommendation System: This system combines Content-
Based and Collaborative Filtering techniques to solve the Cold Start and
Long tail problems.

(a) Content-Based Filtering: Aligns user input with genres and artists.

(b) Collaborative Filtering: Evaluate the similarities of songs and user
participation patterns and then customize suggestions.

21

22 chapter 3 methodology

(c) Input: Song name chosen by the user.

2. Query-Based Song Recommendation System: This method combines
Content-Based and Context-Based Filtering, enhanced by the LLM base
model DistilBERT for more profound semantic analysis. This method
addresses the cold start and thoroughly analyzes a user’s semantic nature.

(a) Content-Based Filtering: Emphasizes the matching of genre and
mood based on the user’s query.

(b) Context-Based Filtering: Adjusts suggestions by considering the
user’s historical preference, like decades, and the emotional tone of
their input, which is assessed using LLM.

(c) Input: User prompt indicating distinct musical tastes or moods.

Both recommendation systems utilize specific databases and advanced model-
ing approaches to improve their functionality:

1. Primary Database: The Spotify Musical (Data.csv)[10] open source
database includes extensive musical feature values, such as acoustics,
valence, and other relevant metadata, along with its song name and
artist name. These values are the cornerstone of enabling content-based
filtering procedures in both systems.

2. Secondary Database: Spotify Playlist Dataset (Spotify_UI_DB)[9] is
another open source database derived from users sharing their "now
playing" tracks on social media; this dataset provides real-time interac-
tion data, including information on users, their playlists, and the tracks
within. It is crucial for the collaborative filtering aspect of the Hybrid
Recommendation System.

3. LLM Model: The DistilBERT-based LLM is a model from Hugging Face’s
transformers library. It is a more compact version of the BERT model
and has been specially optimized for sentiment analysis. It greatly im-
proves the Query-Based Recommendation System by studying and un-
derstanding user inquiries’ emotional and contextual subtleties. This
feature enables the system to customize recommendations that align
more profoundly with the user’s mood and preferences.

These components jointly improve the recommendation systems by ensur-
ing that recommendations are relevant and emotionally suited to the user’s
condition. The figure below illustrates the integration of content-based and
collaborative filtering techniques in our Hybrid Song Recommendation System

23

and semantic analysis using the DistilBERT-based LLM in our Query-Based
Song Recommendation System.

Figure 3.1: Schematic representation of the proposed music recommendation systems,
illustrating how different data sources and the DistilBERT-based LLM are
utilized to tackle challenges such as the long tail and cold start problems
and to understand user semantic needs.

The subsequent sections will delve deeper into the data processing techniques
utilized (Section 3.1) and elaborate on the specific methodologies employed in
the recommendation systems (Section 3.2), followed by a detailed evaluation
of the systems’ performances (Section 4). All the source code for this thesis is
provided here: [28]

24 chapter 3 methodology

3.1 Data Processing Methodology

This section describes the development and integration of specialized datasets
named data.csv[10] and Spotify_UI.csv[9].

Aggregrated.csv was designed by incorporating these two databases to im-
prove the performance of our hybrid recommendation systems. We carefully
preprocess and arrange these datasets to meet the operational requirements of
our recommendation methodology: content-based and collaborative filtering
techniques and Query-Based LLM filtering. These databases are critical in de-
ploying our advanced, hybrid recommendation algorithms by offering a solid
data basis. The preprocessing method is designed to optimize the databases
to efficiently support the system in giving personalized music recommenda-
tions.

1. Data Preparation and Management

(a) Data Preparation: The primary dataset, named data.csv[10], was
collected from Kaggle, an open-source platform for data science
projects and competitions. The dataset was created and made pub-
licly available by user Vatsal Mavani. This database includes com-
prehensive data on Spotify tracks, featuring a variety of musical
attributes such as genre, popularity, year, acousticsness, energy, and
other relevant metrics essential to us for content-based and Context-
based filtering processes. The datasets were accessed by visiting to
the kaggle. All the terms and conditions were read before down-
loading the dataset.

(b) Data Preprocessing: Theis Database has undergone thorough pre-
processing, which involves normalization, handling missing values,
and feature selection. This phase is responsible for preprocessing
the data for precise and efficient analysis.

2. Feature Analysis and Dimensionality Reduction

(a) Feature Analysis and Dimensionality Reduction: After prepro-
cessing the data, further analysis was done using exploratory data
analysis.

(b) Correlation Analysis of Musical Features: To determine the con-
nections between different musical features.

(c) Principal Component Analysis: PCA was introduced to reduce the
dimensionality of the features, ensuring maximum variance.

3.1 data processing methodology 25

3. K - Means Clustering

(a) Optimal Cluster Determination: Silhouette score was calculated to
determine the optimal cluster number for the PCA-reducedDatabase.
Furthermore, the Calinski-Harabasz Index (CHI) andDavies-Bouldin
Index(DBI) are calculated to validate the well-separated clusters.

(b) Cluster Labels:We use Z-score normalization on the cluster feature
to enhance the understanding of everymusic cluster. By determining
the relative relevance of each attribute inside the clusters, this anal-
ysis method makes it easier to provide more detailed and insightful
descriptions for each cluster.

4. Merge Genre Data

(a) Additional Data Merge: The descriptive labeled data is saved and
merged with an additional genre dataset (data_w_genre)[10], con-
sists of genres which are crucial to content-based filtering. This
database has also been preprocessed for missing values and normal-
ization.

(b) Storing Cluster Described Dataset: The Dataset has been saved
for further operations.

5. Aggregated Data with User Interaction Data

(a) This merged dataset is further combined with the Spotify user
interaction database (spotify_playlist.csv)[9] collected from
Kaggle. This dataset captures real-time user interactions with mu-
sic tracks, including data on users, their playlists, and the tracks
within these playlists, which includes preprocessing steps similar
to the initial datasets. These entries are essential to building a user
interaction matrix and creating collaborative Filtering.

(b) This Database was then aggregated with the merged dataset consist-
ing of genre clusters and other important metrics for content-based
filtering to create an advanced dataset named Aggregrated.csv.

Each component of this Aggregrated.csv plays a pivotal role in ensuring the
music recommendation system’s effectiveness and personalization, addressing
the industry’s core challenges.

These steps collectively form a robust approach to developing an advanced
music recommendation system, as detailed in the flowchart provided in Figure

26 chapter 3 methodology

3.2.

Figure 3.2: Flowchart illustrating the detailed Data Processing methodological frame-
work adopted in this thesis

3.1.1 Data Preparation and Management

We utilized the data.csv[10] dataset, which includes a comprehensive array of
musical features and metadata. This dataset is processed using the pandas[29]
library in Python.

3.1 data processing methodology 27

Database Overview The dataset comprises a total of 170,653 rows and
19 columns, containing a comprehensive range of data points vital for the
music recommendation system. The columns relevant to our analyses are
listed below:

Total Rows 170,653
Total Columns 19

Key Features Valence, Year, Acousticness, Danceability, Energy,
Instrumentalness, Liveness, Loudness, Popularity,
Speechiness, Tempo

Table 3.1: Overview of the dataset used in the music recommendation system.

The dataset reveals the following structure, showcasing a subset of the features
available for each track:

• Valence: A measure of musical positiveness.

• Danceability: How suitable a track is for dancing.

• Energy: A perceptual measure of intensity and activity.

• Instrumentalness: The likelihood of the track being instrumental.

• Liveness: The presence of an audience in the recording.

• Loudness: The overall loudness of a track in decibels.

• Mode: The modality (major or minor) of a track.

• Popularity: The popularity of the track.

• Speechiness: The presence of spoken words in a track.

• Acousticness: A measure of the track’s acoustic properties.

• Tempo: The overall estimated tempo of a track.

This initial examination of the dataset is vital for interpreting its structure and
directing the next development phase across our methodology. These features
will help match tracks with user preferences based on musical properties,
helping us build a content-based filtering model.

28 chapter 3 methodology

Data Management and Cleaning The dataset was loaded to evaluate its
structure and to identify essential features from the feature list. Maintaining
the integrity and quality of our dataset is crucial before using any machine
learning techniques. This section discusses the procedures used to detect and
resolve any instances of missing values, duplication, and inconsistencies in our
dataset. This technique improves the precision of our music recommendation
engine and guarantees our analysis’s dependability.

• Missing Data: We identified and removed rows with missing values to
maintain the integrity of our dataset.

• Duplicate Records: We checked for and eliminated duplicate entries to
ensure the uniqueness of the data.

• Validation: A verification step was conducted after cleaning to ensure the
consistency and accuracy of the dataset.

The clean Dataset contained a total of 170,653 records across 19 features, with
no missing values or duplicates detected post-cleaning.

3.1.2 Feature Analysis and Dimensionality Reduction for
K-means clustering

From the Database, these features were selected: acousticness, danceability,
energy, instrumentalness, liveness, loudness, speechiness, tempo, valence, and
popularity. These features help us understand the depth of the database and,
in the long run, will guide us to develop a content-based filtering model. Again,
reducing these features into PCA-reduced space will enhance the method’s
efficiency, and the data will be ready for k-means clustering.

Exploratory data analysis (EDA) As part of the exploratory data analysis
(EDA), we visualized the distribution of important musical features to acquire
insights into their characteristics and determine the preprocessing procedures
needed for the K-means clustering technique. Turning these musical features
into clusters will help us build an accurate and efficient recommendation
system. It will save computing power along with its scalability and adaptability.
Histograms were created for the following attributes: acousticness, danceability,
energy, instrumentalness, liveness, loudness, speechiness, tempo, valence, and
popularity. Descriptive statistics were computed to provide a foundational
understanding of the dataset’s characteristics. Detailed in the supplementary
material, these statistics encapsulate key musical attributes’ central tendencies
and dispersions.

3.1 data processing methodology 29

Correlation Analysis of Musical Features We conducted a correlation
study to determine the connections between these selected musical features.
This correlation analysis determined the degree and direction of the linear
correlations between a subset of musical features. This study helps to identify
any potential overlap between characteristics that impact the efficacy of the
clustering method. A coefficient close to 1.0 indicates a strong positive cor-
relation. A coefficient close to -1.0 indicates a strong negative correlation. A
coefficient around 0 indicates no linear relationship.

Dimensionality ReductionwithPCA To enhance the efficiency of ourmu-
sic recommendation system, we utilized Principal Component Analysis (PCA)
on a specific set of musical attributes: [’acousticness,’ ’danceability,’ ’energy,’
’instrumentalness,’ ’liveness,’ ’loudness,’ ’speechiness,’ ’tempo,’ ’valence’]. To
reduce complexity while maintaining key data features by condensing the
information in the dataset into fewer dimensions.

The PCA successfully decreased the number of dimensions by choosing eight
principle components that account for 95% of the dataset’s variability. The
variation accounted for by these components is as follows:

The percentages of variance explained by each PCA component are as fol-
lows:

• PCA Component 1 explains 34.25%,

• PCA Component 2 explains 15.33%,

• PCA Component 3 explains 12.60%,

•

These values indicate that the first few components capture the most significant
portions of variance within the dataset, with the first three alone accounting
for over 60%

These components significantly reduce the dataset’s complexity, as the primary
variations in musical characteristics are efficiently condensed into fewer dimen-
sions. This decrease is especially beneficial for K-means clustering due to many
reasons. Reducing the number of dimensions results in more significant and
computationally efficient distance computations. Each principal component
analysis (PCA) component reflects a set of attributes that together account for
a particular element of the variability in the data. Utilizing principle compo-
nents instead of a broader number of independent attributes allows for a more

30 chapter 3 methodology

focused analysis of the clusters created by K-means.

The principal component analysis (PCA) plays a crucial role in streamlining
the dataset while maintaining its essential information, hence guaranteeing
the effectiveness and efficiency of the K-means clustering algorithm.

A detailed study of PCA loadings, which provides insights into the contribution of
each original feature to the principal components, is included in the appendix. This
additional analysis helps further interpret the dimensions retained for clustering
and their implications for the recommendation system.

3.1.3 K-Means Clustering
Optimal Cluster Count Determination The optimal number of clusters
was guided by evaluating silhouette scores across a range of 2-11, complemented
by the Calinski-Harabasz Index and Davies-Bouldin Index for cluster validation.
This technique will ensure meaningful groupings in the songs for the user.

Silhouette Score Analysis: The Silhouette Coefficient[30] measures the
clustering quality when ground truth labels are unknown. It combines two
scores:

• 𝑎(𝑖): Mean distance between a sample 𝑖 and all other points in the same
cluster.

• 𝑏 (𝑖): Mean distance between a sample 𝑖 and all other points in the
nearest cluster.

The coefficient for a single sample is calculated as:

𝑠 (𝑖) = 𝑏 (𝑖) − 𝑎(𝑖)
max{𝑎(𝑖), 𝑏 (𝑖)} (3.1)

where 𝑠 (𝑖) indicates well-defined clusters with higher scores.

The silhouette score measures how similar an object is to its own cluster
compared to other clusters. A higher silhouette score indicates that objects
are well-matched to their own cluster and poorly matched to neighboring
clusters.

Cluster Validation Indices: To further validate the clustering configurations,
the Calinski-Harabasz Index and Davies-Bouldin Index were employed:

Calinski-Harabasz Index[31]: Also known as the Variance Ratio Criterion, it

3.1 data processing methodology 31

is defined as:
𝑠 =

tr(𝐵𝑘)
tr(𝑊𝑘)

× 𝑛𝐸 − 𝑘

𝑘 − 1

where Tr(𝐵𝑘) and Tr(𝑊𝑘) represent the trace of the between-cluster andwithin-
cluster dispersion matrices, respectively. A higher value generally indicates that
the clusters are dense and well-separated, which is desirable.

Davies-Bouldin Index[32]: This index evaluates cluster separation by the
average similarity between each cluster:

𝐷𝐵 =
1
𝑘

𝑘∑︁
𝑖=1

max
𝑖≠𝑗

𝑅𝑖 𝑗

The Davies-Bouldin Index is an internal evaluation scheme where lower values
indicate better clustering.

Cluster Count for K-means five clusters were chosen as the optimal num-
ber to operate the k-means for several reasons:

• Complexity and Variety: The dataset contains complex and multidi-
mensional data better represented through a more granular clustering
approach, as evidenced by the significant secondary peak in the silhouette
scores.

• Cluster Validation: Both the Calinski-Harabasz and Davies-Bouldin in-
dices for five clusters suggest that this configuration offers a balanced
approach, providing a clear separation and density of clusters, which is
suitable for capturing the nuanced differences in musical features.

• Practical Applicability: In the context of a music recommendation sys-
tem, having more clusters allows for a more nuanced categorization of
music tracks, enhancing the personalization potential of the recommen-
dations.

Therefore, based on a comprehensive assessment using multiple indices and
considering the need for a detailed representation of the data’s inherent diver-
sity, five clusters were selected as the most appropriate configuration for our
clustering model.

Enhancing Cluster Descriptions Enhancing the interpretability of clus-
ters generated from KMeans clustering involved a detailed analytical process
to assign descriptive labels that reflect the predominant characteristics of each

32 chapter 3 methodology

cluster. This was achieved by examining and understanding each cluster’s mean
values of selected musical features.

Normalization and Cluster Description Generation: Initially, we calculated
the mean values for key features such as acousticness, danceability, and energy
for each cluster. We applied Z-score normalization to these means to determine
which features significantly characterize each cluster. This normalization pro-
cess calculates how many standard deviations a feature’s mean value is from
the overall mean across all clusters, thereby highlighting the most distinctive
features for each cluster.

Generating Descriptive Labels Using Z-Scores Using the normalized data,
we determined each cluster’s three most important features by considering
their absolute Z-scores. By choosing the top three features, we can guarantee
that the labels accurately represent the most distinctive characteristics of the
music songs in each cluster. This will result in clear and practical insights.
Subsequently, these characteristics were transformed into simpler and user-
centric descriptive terms to enhance comprehension and implementation. The
listing shows the intuitive descriptive terms used for each feature in the cluster
description:

1 # Define intuitive descriptions for features
2 feature_names_map = {
3 ’tempo ’: ’Varied Tempo ’, ’energy ’: ’Vibrant ’, ’valence ’: ’

Joyful ’,
4 ’danceability ’: ’Danceable ’, ’speechiness ’: ’Lyrical ’, ’

acousticness ’: ’Mellow ’,
5 ’instrumentalness ’: ’Instrument -rich ’, ’liveness ’: ’Live ’,

’loudness ’: ’Loud ’
6 }

Listing 3.1: Intuitive Descriptions for Features

Utilization of Cluster Descriptions The dataset was updated by adding a
column called ‘Cluster Description,‘ which included the labels based on the
highest Z-scores. This column successfully conveys the core characteristics
of each cluster using descriptive terms such as ’Vibrant / Danceable / Joy-
ful’, providing a clear and instant comprehension of the unique qualities that
differentiate each cluster.

• Cluster 0 is described as Varied Tempo / Vibrant / Mellow, indicating a
diverse range of tempos, vibrant energy levels, and a mellow tone.

• Cluster 1 is described as Joyful / Danceable / Live, highlighting its lively,
upbeat, and dance-friendly characteristics.

3.1 data processing methodology 33

• Cluster 2 features labels such as Lyrical / Live / Danceable, pointing to its
strong vocal content, live performance feel, and suitability for dancing.

• Cluster 3 is captured with Mellow / Vibrant / Joyful, suggesting a blend
of calm and energetic joyful music.

• Cluster 4 is marked by Instrument-rich / Mellow / Danceable, reflecting
its instrumental richness and smooth and rhythmic dance quality.

These enhanced explanations help visualize and comprehend the data and
play a crucial part in the recommendation system. These genre descriptions
are now much simpler than the initial DB’s features. Each song entitled with
cluster and cluster description will ensure that the recommendation system
can utilize content-based filtering for our recommendation system.

The dataset, now augmented with ‘Cluster Description‘, has been saved as
data_final_with_descriptive_labels.csv and is ready for subsequent
use in developing the Large Language Model (LLM) and Hybrid recommenda-
tion models. This enhancement ensures that the recommendation systems can
leverage these descriptive labels to offer highly personalized music recommen-
dations, thus improving the overall user experience.

3.1.4 Merge Genre Data

We integrated and improved our dataset by combining comprehensive track
metadata with genre information obtained from a secondary dataset[10]. En-
riching the music files with genre data is a vital step that greatly enhances the
performance of content-based filtering in our recommendation systems.

DataMerging Ourprimary datasetdata_final_with_descriptive_labels.csv
consists of a collection of 170,653 songs, including artist names and other
musical attributes, whereas our secondary dataset [10] offers genre classifica-
tion for 28,680 artists. Left join was performed to keep all the rows from our
clustered described database (data_final_with_descriptive_labels.csv)
and matches rows from the right genre dataset on the ’artists’ column. Thor-
ough preprocessing was necessary to guarantee that all artist names were
consistent and correct. This entailed eliminating redundant whitespace and
transforming lists of artist names into strings separated by commas.

Following the merging process, we included genre information from the second
dataset in the merged data. Only about 1 in 5 of the songs (48,481 Tracks)
did not have clear genre correlations and were categorized as ’Unknown’ to

34 chapter 3 methodology

maintain consistency in the data. In addition, we organized and eliminated
duplicate genre entries for every artist, resulting in a concise and cohesive list
of genres for each song. This phase is crucial for streamlining data handling
and optimizing its usefulness in our recommendation system.

After merging, we retained only the necessary columns to ensure the dataset
remained efficient and concentrated on important characteristics. The overview
of the 3.2 is as following

Column Non-Null Count Dtype
0 artists 170653 non-null object
1 name 170653 non-null object
2 popularity 170653 non-null int64
3 year 170653 non-null int64
4 cluster 170653 non-null int64
5 Cluster_Description 170653 non-null object
6 genres 170653 non-null object

Table 3.2: Summary of the dataset showing the column names, counts of non-null
entries, and data types.

Storing the Improved Dataset The enhanced dataset, which includes
genre and cluster descriptions, was saved as ‘data_final_cleaned1.csv‘. The
dataset provides a solid basis for developing advanced hybrid recommendation
systems. Utilizing the detailed musical characteristics and the recently included
genre information, these systems may provide personalized and contextually
appropriate music suggestions. Besides recommendation systems, the dataset
may be utilized for other purposes, including market segmentation, target
audience analysis, algorithmic music production, and academic music science
studies.

3.1.5 Data Integration for Collaborative Filtering

Music streaming platforms have exponentially increased the volume of accessi-
ble music, creating challenges for users trying to discover new and appealing
music and creating issues like long tails and cold starts. To tackle these issues,
personalized music recommendation systems play a vital role. They assist con-
sumers in navigating extensive music collections by recommending tracks that
match their interests and preferences. Our research improves current systems by
combining comprehensive track metadata with user interaction data from the
Spotify Playlist Data [10], which includes important information such as user
IDs, artist names, track titles, and playlist names. (spotify_playlist.csv)
collected from Kaggle. The dataset can be accessed by visiting the follow-

3.1 data processing methodology 35

ing URL: https://www.kaggle.com/datasets/andrewmvd/spotify-playlists.
This dataset captures real-time user interactions with music tracks, including
data on users, their playlists, and the tracks within these playlists, which in-
cludes preprocessing steps similar to the initial datasets. These entries are
essential to building a user interaction matrix and creating collaborative Filter-
ing.

Significance of Spotify Playlist Data The Spotify Playlist Data is derived
from users who share their nowplaying tracks through Spotify on social me-
dia platforms. This dataset captures real-time user interactions with music
tracks, including data on users, their playlists, and the tracks within these
playlists.

The Spotify Playlist Data [10] has a large collection of user interactions,
totaling 12,891,680 items. The dataset is organized based on four primary
columns.

• user_id: A unique identification assigned to each individual Spotify user.

• "artistname": the artist’s name linked to a song.

• "trackname": The name given to the song.

• "playlistname": The designated title of the playlist in which the track is
located.

Upon conducting a more in-depth examination of this dataset, the subsequent
essential statistical information has been uncovered and summarized in Table
3.3

Statistic Value
Total rows (interactions) 12,891,680
Total columns (features) 4
Non-null values:

user_id 12,891,680
"artistname" 12,858,108
"trackname" 12,891,592
"playlistname" 12,890,434

Table 3.3: Key Statistics of the Spotify Playlist Data

Data Merging and Processing We merged this real-time user interaction
data with our enriched trackmetadata from ‘data_descriptive_labels.csv‘.
This integration was meticulously executed to ensure precision in matching

https://www.kaggle.com/datasets/andrewmvd/spotify-playlists

36 chapter 3 methodology

track and artist names, thus reflecting exact user interactions with music tracks.
Both datasets were normalized for accurate integration:

• Artist and track names were converted to lowercase and stripped of extra
spaces to ensure uniformity.

• Artist names were split into lists to address multiple artist collaborations
accurately.

• We employed the ’exploding’ method to separate these lists into distinct
rows, enhancing the granularity of our matching process.

The datasets were merged using an inner join based on artist and track names,
ensuring only entries with exact matches were combined. This selective merg-
ing process ensures our dataset accurately represents genuine user interactions
with the music.

3.1.6 Final Aggregated Dataset Preparation and Usage

Following the merge, we refined the dataset to focus on essential attributes,
including user IDs, track names, artist names, playlist names, and other critical
metadata. This streamlined dataset is crucial for constructing an accurate and
efficient user interaction matrix. Then, following data integration, the dataset
undergoes aggregation to analyze user interaction with tracks across various
features such as playlists, clusters, and popularity. Key steps in the analysis
include:

1. Grouping Data: Data is grouped by user, track, artist, and other relevant
attributes. Each group’s size, indicating the play count, is calculated to
understand listening frequency.

2. Validation: The aggregated dataset is checked for missing values, partic-
ularly in key columns, to ensure the integrity of the analysis.

3. Data Saving: The cleaned and aggregateddata is saved as ‘aggregrated_data_full.csv‘
for easy access and further analysis.

The fully integrated and refined saved dataset now contains 4,419,267 entries,
each enriched with comprehensive metadata and user interaction details. This
dataset forms the backbone of our user interaction matrix, crucial for analyzing
user behavior and enhancing the recommendation algorithms. The structure
3.4 and sample table 3.5 is as follows:

3.1 data processing methodology 37

Column Data Type Description
user_id object Unique identifier for each user
trackname object Name of the track
artistname object Name of the artist of the track
playlistname object Name of the playlist the track belongs to
cluster int64 Cluster no based on track attributes
Cluster_Description object Description of the cluster the track belongs to
year int64 Year the track was released
popularity int64 Popularity score of the track
genres object List of genres associated with the track
play_count int64 Number of times a track has been played by a user

Table 3.4: Fully Aggregated Dataset Information

UID Track Name Artist Name Playlist
Name

Cluster Year Popularity

064e Love The Way You Lie Eminem Starred 1 2010 82
ee0 Team Lorde 2014 1 2013 72
e80 No Sleep Wiz Khalifa 30m

car-
dio

0 2011 66

0e2 God’s Gonna Cut You Down Johnny Cash Old
clas-
sics

1 2006 64

3f4 Resolution Matt Corby Triple
j’s
Hottest
100
2013

0 2013 48

Table 3.5: A selection of records from the fully aggregated dataset showcasing diverse
music preferences and playback frequencies.

Now this ‘aggregrated_data_full.csv‘ is ready for deployment within our
recommendation system. It contains features necessary to handle the traditional
recommendation system issues like long tail and cold start. Effectively utilizing
these features we aim to build our recommendation system for a better musical
experience

38 chapter 3 methodology

3.2 Development of Recommendation Systems

This section outlines the development of advanced music recommendation
systems that leverage the Aggregated_DB and its detailed user interaction
data. These systems are developed to address specific challenges like cold start
and long tail problems, along with capturing the semantic mood of the user.
Three recommendation systems were built using a sophisticated integration of
collaborative, content-based, and context-aware filtering techniques.

1. Playlist Recommendation System: Collaborative Filtering

(a) Constructing User InteractionMatrix:Utilizing the Aggregated.csv,
we construct a user interaction matrix based on play count per
playlist, ensuring a robust foundation for collaborative filtering.

(b) Calculating Similarity Scores: User validation and similarity rat-
ings are computed to determine the closeness of user preferences,
enhancing the relevance of recommendations.

(c) Scoring and Recommendations: Each playlist is scored by calculat-
ing relevance based on the interactions of similar users. The system
then recommends playlists excluding those the user has previously
interacted with, thus providing fresh and relevant content.

2. Hybrid Song Recommendation System: Content-Collaborative Filter-
ing

(a) Interaction Matrix Construction: For songs, an interaction ma-
trix is built based on play counts per song from Aggregated.csv,
formatted into a dense matrix for efficient processing.

(b) Applying Dimensionality Reduction: Truncated SVD is applied
to reduce the dimensionality of the interaction matrix, facilitating
more efficient and precise collaborative filtering.

(c) Hybrid Filtering Application: The system integrates content-based
filtering (genre and artist matching) and collaborative filtering (sim-
ilarity between songs and interaction weight) to generate personal-
ized song recommendations based on user input.

3. Context-Aware Query-Based LLM Filtering System:

(a) Query Processing and Mapping: Processes user prompts (e.g.,
"Rock Mix 20") to map out relevant genres, moods, and decades.

3.2 development of recommendation systems 39

(b) Multi-dimensional Filtering: Applies content-based filtering to
match genres and moods and context-based filtering for decade
relevance.

(c) Sentiment Analysis Integration: Incorporates a DistilBERT-based
LLM to analyze and adjust recommendations according to the emo-
tional tone or sentiment of the user’s input.

(d) Final Recommendations: Delivers highly personalized music sug-
gestions based on an amalgamation of content, context, and emo-
tional analysis.

This comprehensive approach not only overcomes semantic barriers and en-
hances user engagement but also effectively addresses challenges related to
new user integration and the discovery of less popular, niche content, ensuring
a robust and inclusive music recommendation experience for all kinds of music
lovers.

3.2.1 Playlist Recommendation System: Collaborative
Filtering

The playlist recommendation system we use utilizes advanced collaborative
filtering processes to offer tailored choices for playlists. This method employs
playlist user interaction data to recommend new material that aligns with user
preferences.

As Figure 3.3 demonstrates, flow to build the collaborative playlist recommen-
dation system.

40 chapter 3 methodology

Figure 3.3: Collaborative filtering for playlist recommendations

Playlist Interaction Matrix : We have created a matrix for playlist inter-
action to improve our comprehension and utilization of the combined data. In
this matrix, each row corresponds to a user, and each column corresponds to
a playlist. This matrix is crucial for showing the wide variety of user interac-
tions, even if sparse, because of user engagement’s many playlists and selective
nature.

Data and Preprocessing The cornerstone of our recommendation system
is the interaction matrix, in which the rows represent users, and the columns
represent playlists. The matrix is effectively saved sparsely using the NPZ file
format, reducing storage space and improving load times. Users and playlists
are efficiently mapped during the recommendation process using dictionaries
for indexing.

1 # Load user and playlist mapping dictionaries
2 with open(f’{ dataset_path }/ user_id_to_index .pkl ’, ’rb’) as f:

3.2 development of recommendation systems 41

3 user_id_to_index = pickle .load(f)
4 with open(f’{ dataset_path }/ index_to_playlist_name .pkl ’, ’rb’)

as f:
5 playlist_index_to_name = pickle .load(f)

Listing 3.2: Python script to load user and playlist mapping dictionaries.

Methodology The recommend_playlists function is designed to operate
efficiently, even when dealing with extensive data sets. Below is a detailed
analysis of the process of the function:

1. User Validation: Verifies the presence of the user ID in our collection,
addressing scenarios where the user may be new or missing.

2. Calculation of Similarity: Utilizes user similarity ratings to locate indi-
viduals with comparable musical preferences.

3. Scoring of Playlists: Calculates a relevance score for each playlist by
considering the interactions of related users and their similarity weights.

4. Compilation of Recommendations: Excludes playlists the user has
previously engaged with and chooses the most highly recommended
options.

1 def recommend_playlists (user_id , user_similarity_matrix ,
interaction_matrix ,

2 user_id_to_index ,
playlist_index_to_name , top_n =10):

3 user_index = user_id_to_index .get(user_id)
4 if user_index is None:
5 return "User ID not found."
6 similarity_scores = user_similarity_matrix [user_index]
7 similar_indices = np. argsort (- similarity_scores)[: top_n +1]
8 playlist_scores = np.dot(similarity_scores [similar_indices

],
9 interaction_matrix [similar_indices

]. toarray ())
10 recommended_playlists = [playlist_index_to_name [idx]
11 for idx in np. argsort (-

playlist_scores)[: top_n]]
12 return recommended_playlists

Listing 3.3: Function to recommend playlists based on user similarity.

3.2.2 Content-Collaborative Song Recommendation System

Our hybrid music recommendation system utilizes advanced collaborative and
content-based filtering approaches to deliver tailored song recommendations.

42 chapter 3 methodology

This strategy combines the advantages of both strategies by utilizing user
interaction data and integrating music metadata to enhance the accuracy and
relevance of recommendations.

As Figure 3.4 illustrates, flow to build the hybrid collaborative and content-
based song recommendation system.

Figure 3.4: Hybrid filtering for Song recommendations

User Interaction Matrix: To improve our comprehension and use of the
combined data, we have created an interaction matrix in which rows and
tracks represent individuals represented by columns. This matrix is crucial
for illustrating the wide range of user involvement, even if sparse, due to the
diverse selection of tracks and the selective nature of user interactions.

Data Preprocessing and Reducing Dimensionality Our recommen-
dation method is based on a strong interaction matrix and extensive music
metadata. This structure is crucial for carefully evaluating user preferences
and song features. The sparse style of the interaction matrix efficiently stores

3.2 development of recommendation systems 43

and optimizes both storage space and computing performance, effectively
expressing user interactions with music.

1 # Load the aggregated song data
2 song_data = pd. read_csv (f’{ dataset_path }/ aggregated_data_full .

csv ’)
3 song_data [’trackname ’] = song_data [’trackname ’]. str.lower ().str

.strip ()
4 song_data . drop_duplicates (subset =[’trackname ’], inplace =True)
5 song_data . reset_index (drop=True , inplace =True)
6 song_data [’trackname ’] = pd. Categorical (song_data [’trackname ’])
7 song_name_to_index = {name: index for index , name in enumerate (

song_data [’trackname ’]. cat. categories)}
8 song_interaction_matrix = load_npz (f’{ dataset_path }/

sparse_song_matrix .npz ’)

Listing 3.4: Python script to preprocess and load song data and the interaction
matrix.

To address the problems caused by having many dimensions and improve the
speed of similarity calculations, we utilize Truncated Singular Value Decompo-
sition (SVD) on the transposed version of the interaction matrix. This process
aids in diminishing noise and computational intricacy while maintaining the
fundamental attributes of the data.

1 svd = TruncatedSVD (n_components =100)
2 reduced_matrix = svd. fit_transform (song_interaction_matrix .

transpose ())

Listing 3.5: Applying Truncated SVD to reduce the dimensionality of the interaction
matrix.

Methodology The hybrid recommendation function is an advanced com-
bination of collaborative and content-based filtering components, specifically
developed to enhance the song suggestion process by leveraging user interac-
tion data and song information.

Content-Based Filtering: This aspect of the algorithm improves the quality
of recommendations by utilizing comprehensive metadata about music. These
criteria affect the calculation of similarity scores, ensuring that songs with
common content features are given higher priority:

• Matching genres: If the genres of a candidate song align with the genres
of the target song, the score is substantially augmented. This illustrates
the fundamental assumption that consumers prefer songs that belong to
the same or related genres.

• Consideration ofmetadata: The program also considers othermetadata,
such as the artist’s resemblance and the release year of the recordings.

44 chapter 3 methodology

This process enhances the suggestions by adjusting them to match user
preferences and current popular preferences better.

Collaborative Filtering: This section employs patterns from user interactions
to discern preferences among users with similar listening habits.

• Scores indicating the similarity between users: A precomputed sim-
ilarity matrix reveals users whose preferences closely match the target
user. These scores are utilized to modify the impact of music these
individuals favor.

• Weights for Interaction: Tracks with greater relevance ratings are those
that are preferred by users with similar musical preferences, indicating
that these songs are likely to be appealing to the target user as well.

Improving Scores and Combining Them The recommendation scores
are calculated by using insights from both content-based and collaborative
filtering methods. These scores are then dynamically adjusted using direct
content matches and inferred user preferences.

• Calculation of Initial Score: The scores are calculated based on the
cosine similarity between the feature vectors of the songs, obtained
from a matrix with decreased dimensionality. This measure quantifies
the degree of similarity between each song and the target song in the
reduced feature space.

• Improvements based on content: Subsequently, the scores are modified
to represent the material’s similarity accurately. The following is a list
item: Songs that belong to the same genres as the target song will have
their score doubled, indicating a strong similarity in terms of substance.
If songs belong to the same cluster, their score is augmented by 50%,
highlighting the structural similarity within the data.

• Collective modifications: The initial scores are enhanced by considering
collaborative signals. If songs have the same popularity level, a little
rise of 10% is applied, showing that users generally agree on their at-
tractiveness. Scoring is reduced proportionately to the gap in release
years, considering its decreasing relevance over time. Less importance is
assigned to songs much older or fresher than the target song.

1 def hybrid_recommend_songs (song_name , song_name_to_index ,
reduced_matrix , song_data , top_n =5):

2 # Extract song index from the name to index map
3 song_index = song_name_to_index .get(song_name .lower ().strip

())

3.2 development of recommendation systems 45

4 if song_index is None:
5 return [("Song not found.", "", "", 0)]
6

7 # Compute cosine similarity scores from the reduced SVD
matrix

8 similarity_scores = cosine_similarity ([reduced_matrix [
song_index]], reduced_matrix)[0]

9

10 # Enhance scores based on genre and other metadata
similarities

11 enhanced_scores = []
12 target_genres = set(song_data .at[song_index , ’genres ’].

split(’,’))
13 for idx , score in enumerate (similarity_scores):
14 if idx != song_index and idx < len(song_data):
15 song_meta = song_data .iloc[idx]
16 score_adjustment = score * 1.5 if song_meta [’

cluster ’] == song_data .at[song_index , ’cluster ’] else score
17 if set(song_meta [’genres ’]. split(’,’)) &

target_genres :
18 score_adjustment *= 2 # Boost score for genre

matches
19 enhanced_scores . append ((score_adjustment , idx))
20

21 # Select top N recommendations after sorting by adjusted
scores

22 recommended_indices = sorted (enhanced_scores , reverse =True ,
key= lambda x: x[0]) [: top_n]

23 recommended_songs = [(song_data .iloc[idx][’trackname ’],
song_data .iloc[idx][’artistname ’], song_data .iloc[idx][’
genres ’], score) for score , idx in recommended_indices]

24 return recommended_songs

Listing 3.6: Function to compute hybrid recommendations combining collaborative
and content-based signals, reflecting both user behavior and song
characteristics.

The extensive scoring procedure guarantees that users favor each suggested
song with similar tastes and closely match the target user’s exact content
preferences. This enhances the customized experience and pleasure with the
recommended music.

3.2.3 Advanced Query-Based Song Recommendation
System

Our LLM-based hybrid music recommendation system combines the powerful
features of collaborative and content-based filtering with the deep compre-
hension of natural language context offered by the transformers library. Our
solution surpasses conventional models by integrating sentiment analysis and

46 chapter 3 methodology

contextual data interpretation, enabling context-based suggestions. Leveraging
LLM model named the distilbert-base-uncased-finetuned-sst-2-english[33], our
method employs user interaction data, comprehensive song metadata, and the
attitude expressed in user inquiries to offer highly individualized and relevant
music recommendations.

As Figure 3.5 demonstrates, flow to build the advanced LLM-based hybrid
System.

3.2 development of recommendation systems 47

Figure 3.5: Hybrid filtering for Song recommendations

Mapping of Genre, Mood, and Decade Using a combination of content-
based, context-based, and collaborative filtering approaches, our music recom-
mendation engine carefully analyzes user queries to extract important music
features. With the help of this diverse approach, the system can offer highly
customized music recommendations that are emotionally and contextually in
line with the user’s interests.

48 chapter 3 methodology

Implementing Query Mapping: In order to interpret user input and discover
relevant musical properties, such genres, moods, and favored decades, the ex-
traction process requires many important operations. Below is a comprehensive
examination of the code implementation:

1 import re
2

3 # Generates keywords associated with each decade , useful for
filtering songs by year

4 def generate_decade_keywords ():
5 temporal_keywords = {}
6 for year in range (1920 , 2030 , 10):
7 decade_key = f"{year // 10 * 10}s"
8 temporal_keywords [decade_key] = [str(year // 10 * 10) ,

f"{str(year // 10 * 10) [2:]}s", decade_key]
9 return temporal_keywords
10

11 # Maps user queries to genres , moods , and decades based on
predefined keyword lists

12 def map_query_to_genres_moods_and_decades (query):
13 query = query.lower ()
14 found_genres , found_moods , found_years = set (), set (), set

()
15

16 # Genre keywords are mapped to various music styles
17 genre_keywords = {
18 ’rock ’: [’rock ’, ’punk ’, ’grunge ’, ’alternative ’],
19 ’pop ’: [’pop ’, ’synthpop ’, ’electropop ’],
20 # More genres ...
21 }
22 # Mood keywords capture the emotional content of music
23 mood_keywords = {
24 ’happy ’: [’joyful ’, ’cheerful ’, ’uplifting ’],
25 ’sad ’: [’melancholic ’, ’sombre ’, ’downtempo ’],
26 # More moods ...
27 }
28 temporal_keywords = generate_decade_keywords ()
29

30 # Identifying genres in the query
31 for genre , keywords in genre_keywords .items ():
32 if any(keyword in query for keyword in keywords):
33 found_genres .add(genre)
34 # Identifying moods in the query
35 for mood , keywords in mood_keywords .items ():
36 if any(keyword in query for keyword in keywords):
37 found_moods .add(mood)
38 # Matching decades based on keywords
39 for decade , keywords in temporal_keywords .items ():
40 if any(keyword in query for keyword in keywords):
41 start_year = int(decade [: -1])
42 found_years . update (range(start_year , start_year +

10))

3.2 development of recommendation systems 49

43 return found_genres , found_moods , found_years

Listing 3.7: Mapping user queries to music characteristics

Function in the Recommendation System: The mapping process is crucial
for several reasons:

• Content-based filtering: The algorithm can search the music library for
songs that fit the indicated qualities by extracting genres andmoods from
user queries. This allows the system to identify songs that are specifically
tailored to the user’s likes.

• Contextual Filtering: The algorithmmay recommendmusic thatmatches
current trends and connects with the user’s desired historical background
by recognizing phrases connected to the decade.

By combining these techniques, recommendations are made that are signifi-
cantly customized and relevant, responding to the user’s implicit emotional
cues and explicit demands. This advanced methodology promotes a more
engaging and satisfying user experience by offering music suggestions that
connect with personal tastes.

LLMModel Integration Using language models to improve sentiment anal-
ysis, our music recommendation system includes the distilbert-base-uncased-
finetuned-sst-2-english model from Hugging Face’s transformers library[33].
This model is a reduced variant of the broader BERT model, designed exclu-
sively for sentiment analysis. It offers a lightweight yet very effective tool for
reading user emotions from text.

• Execution of Sentiment Analysis: The sentiment analysis model is
integral to parsing the emotional content of user queries. It allows our
system to comprehend not only the explicit preferences users express
but also the implicit emotional undertones that are crucial for tailoring
music suggestions. Here is how we use this model to adjust the dynamics
of our recommendations:

1 from transformers import pipeline
2

3 # Load the sentiment analysis model
4 sentiment_analyzer = pipeline ("sentiment - analysis ", model=

"distilbert -base -uncased -finetuned -sst -2- english ")
5

6 def analyze_sentiment (query):
7 # Obtain sentiment prediction
8 result = sentiment_analyzer (query)
9 score = result [0][’score ’]

50 chapter 3 methodology

10 return score if result [0][’label ’] == ’POSITIVE ’ else
-score

11

12 # Example usage within the recommendation system
13 query = "I need uplifting music to boost my mood."
14 sentiment_score = analyze_sentiment (query)
15

Listing 3.8: Sentiment analysis in recommendation system

• Contextual Response: The system not only considers the genres or musi-
cians mentioned but also adapts its recommendations to match the mood
suggested by the user’s language, guaranteeing that the recommended
music connects with the user on an emotional level. Examining the Con-
straints and Possibilities of the Addressing System Although DistilBERT
successfully captures a wide range of moods, it has inherent limitations
because it is trained on generic datasets instead of music-specific text.
Although it functions well given the computing limitations of our current
configuration, there is potential for enhancement.

• Sensitivity of the model: Future improvements might involve retraining
or fine-tuning the model using music-specific datasets, strengthening its
ability to comprehend the subtleties unique to musical mood and context.

• computing Efficiency: Although DistilBERT is a less resource-intensive
model, it still demands substantial computing resources, particularly
when expanding to accommodate a high volume of users in real time. Im-
plementing optimizations or adopting even more efficient models might
help mitigate these issues. Potential Avenues for Future Development to
enhance our sentiment analysis skills, we may investigate the following:

– Advanced Models: Employing more recent or highly specialized
models might improve the precision and comprehensiveness of
sentiment analysis.

– User Feedback Loop: Incorporating user feedback into the training
process enables the model to adapt its comprehension in response
to real-world user interactions and preferences.

Integrating DistilBERT into our music recommendation algorithm greatly im-
proves our capacity to provide tailored suggestions. Our technology offers
personalized music recommendations that are specifically matched to users’
stylistic tastes and emotional states. These suggestions are carefully connected
with the user’s context and emotional demands. As we consider the future, our
goal is to fully use advancements in language processing to enhance the user

3.2 development of recommendation systems 51

experience consistently.

Recommendation System Logic Our algorithm, which combines sen-
timent analysis and processed data from user queries to produce precisely
matched music recommendations, is the brains behind our music recommenda-
tion system. This algorithm utilizes collaborative, content-based, and context-
based filtering techniques to offer recommendations that are not just pertinent
but highly customized.

Combining Sentiment Analysis and Data Processing: The recommendation
engine improves its options by using sentiment ratings and categorizing genres,
moods, and decades obtained from user inquiries. Each component plays a role
in the recommendation process:

1 def recommend_songs (song_data , genres , moods , decades ,
sentiment_score):

2 # Filter songs by genres , moods , and decades extracted from
the user ’s query

3 filtered_songs = song_data [
4 song_data [’genres ’]. apply(lambda g: any(gen in g for

gen in genres)) &
5 song_data [’moods ’]. apply(lambda m: any(mood in m for

mood in moods)) &
6 song_data [’decades ’]. apply(lambda d: d in decades)
7]
8

9 # Adjust the popularity score based on the sentiment score
to reflect the emotional context

10 filtered_songs [’adjusted_score ’] = filtered_songs [’
popularity ’] * (1 + sentiment_score)

11 # Sort songs by the new adjusted score to get the top
recommendations

12 recommended_songs = filtered_songs . sort_values (by=’
adjusted_score ’, ascending =False).head (10)

13 return recommended_songs

Listing 3.9: Combining sentiment analysis with genre, mood, and decade mappings
to generate recommendations

Functionality and Impact:

1. Content-based Filtering: The engine guarantees that the recommen-
dations closely fit the user’s current tastes by matching music to the
provided genres and moods in the query.

2. Contextual Filtering: Decade mapping enables the system to suggest
songs from particular time periods, accommodating the user’s nostalgic
inclinations or facilitating the exploration of new musical eras.

52 chapter 3 methodology

3. Sentiment Analysis: The recommendation intensity is modified by inte-
grating sentiment scores. Positive emotions might enhance the inclina-
tion towards vibrant and energetic tunes, while negative thoughts may
suggest more calming or sad tracks.

Recommendation selection using ranking:At first, songs are sorted according
to the genres, moods, and decades derived from the user’s query to guarantee
theymatch the user’s stated tastes. Afterward, the popularity score of each song
is adjusted dynamically to include the sentiment score, which is a numerical
representation of the emotional content of the user’s input.

1. Adjustment of the base popularity: Every song’s baseline popularity
reveals its overall level of appeal. The score is adjusted based on the
sentiment score derived from the sentiment analysis of the query.

2. Formula for Adjustment: The formula employed in our system is as
follows:

𝑎𝑑 𝑗𝑢𝑠𝑡𝑒𝑑_𝑠𝑐𝑜𝑟𝑒 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦 × (1 + 𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡_𝑠𝑐𝑜𝑟𝑒) (3.2)

3. user’s present emotional condition: Happy sentiment directly corre-
lates with an increase in the popularity score, prioritizing songs that
amplify happy sentiment and decreasing negative attitude impacts the
score, indicating music that may provide relief or inspire thought.

4. Ranking and Selection Results: These modified scores are used to rank
the songs, and the top-ranked songs are chosen as suggestions. This
technique guarantees that recommendations are customized based on
musical tastes and emotional situations.

Our recommendation engine creates a personalized listening experience by con-
stantly modifying suggestions depending on these complex inputs, providing
more than music recommendations. It considers the user’s mood, preferences,
and past interests. This guarantees that every suggestion list is precise in terms
of musical content and emotionally impactful, offering customers a profoundly
gratifying listening experience that feels individually tailored.

This methodical and comprehensive approach fulfills the user’s particular
requirements and improves the listening experience by harmonizing it with
their emotional state and cultural background, demonstrating the effectiveness
of a really adaptable music recommendation system.

4
Results
This section presents a detailed overview of the results derived from themethod-
ologies implemented in this thesis, as shown in the flowchart in Figure ??. The
results are divided into two main subsections: one focusing on the outcomes
of the data processing techniques and another detailing the performance of
the recommendation systems. Each subsection critically evaluates the respec-
tive approaches, demonstrating their impact on enhancing the effectiveness of
building a good recommendation system for music listeners.

1. Data Processing Results: This section will examine the initial data han-
dling and feature extraction stages, assessing how well the preprocessing
steps prepared the datasets for effective clustering and subsequent rec-
ommendation tasks.

2. Recommendation SystemResults: Following the data processing review,
this subsection will focus on the operational performance of the Hybrid
and Query-Based Recommendation Systems. It will explore the systems’
accuracy, user engagement, and satisfaction rates, emphasizing how they
address the challenges of cold start and long tail scenarios in music
recommendation.

53

54 chapter 4 results

4.1 Data Processing Results

4.1.1 Feature Analysis and Dimensionality Reduction
ExploratoryData Analysis EDA showcased the distribution characteristics
of various musical features, as illustrated in Figure 4.1. Each subplot represents
the distribution of a different musical feature within the dataset. A Kernel Den-
sity Estimate (KDE) overlaid on each histogram provides a smooth estimate of
the underlying probability density function. The KDE helps visualize the shape
of the distribution more clearly, allowing for easier identification of patterns
such as skewness, modality, and the central tendency of the data. This enhance-
ment is crucial for understanding musical features’ density and distribution
characteristics, facilitating deeper insights that inform the development of the
content-based recommendation system.

4.1 data processing results 55

Figure 4.1: Histograms showing the distribution of various musical features within the
dataset. Each subplot represents the distribution for a different feature,
with ’kde’ overlaid to indicate the density estimation.

Features such as ’danceability’ and ’energy’ exhibit approximately normal distri-
butions, indicating a balanced representation across tracks. Conversely, ’acous-
ticness’, ’instrumentalness’, ’liveness’, and ’speechiness’ show right-skewed dis-
tributions, suggesting a concentration of tracks with lower values in these
attributes. ’Loudness’ is left-skewed, reflecting a propensity for tracks to have

56 chapter 4 results

higher volume levels. The ’valence’ feature presents a more uniform distribu-
tion, indicating a wide range of emotional expressions in the music. ’Tempo’
follows a pseudo-normal distribution with a slight right skew, and ’popularity’
displays a bimodal distribution, highlighting varying levels of listener engage-
ment across tracks. These distributions provide invaluable insights into the
dataset’s composition, which is crucial for developing an effective recommen-
dation system.

Correlation Matrix Insights from the Correlation Matrix The heatmap
can reveal several noteworthy correlations among our features. A detailed
correlation analysis among musical features was conducted to uncover the
relationships between different attributes. The correlation matrix, illustrated
in Figure 4.2, highlights several noteworthy relationships:

• A strong positive correlation between ’energy’ and ’loudness’, suggesting
that tracks with higher energy levels typically exhibit higher loudness.

• A significant negative correlation between ’acousticness’ and ’energy’,
indicating that more acoustic tracks tend to have lower energy levels.

• ’Danceability’ shows a moderate positive correlation with ’valence,’ sup-
porting that more danceable tracks often carry a happier or more positive
mood.

These correlations provide insights into how various musical elements interact
and can be clustered to provide more personalized songs to the user. These
insights are crucial for the sophisticated algorithms used in the recommendation
system.

4.1 data processing results 57

Figure 4.2: Correlation matrix of musical features, depicting the relationship between
different attributes. Higher positive values (red) indicate a strong positive
correlation, while deeper blue tones suggest negative correlations.

4.1.2 K-Means Clustering
Optimal Cluster Count Determination The silhouette scores for differ-
ent numbers of clusters from 2 to 10 were calculated and are illustrated in
Figure 4.3.

58 chapter 4 results

Figure 4.3: Plot of silhouette scores for different numbers of clusters, indicating the
quality of cluster separation.

The silhouette analysis revealed two noteworthy peaks: the highest at two
clusters with a silhouette score of 0.244 and another significant peak at five
clusters with a score of 0.193.

For the final configuration of 5 clusters, the CHI index was calculated to be
31732.59, which is reasonably high.

The DBI index for 5 clusters was 1.427, suggesting a reasonable configuration
where clusters are neither too dispersed nor overlapping.

Clustering We performed KMeans clustering to organize the dataset into
five groups, chosen based on the silhouette analysis that suggested this number
strikes the best balance for our data. The clustering process was consistent,
utilizing a fixed random state to ensure our results were reproducible. we
analyzed each cluster by computing the mean of the original features for each
group. Each piece of music in our dataset was assigned a cluster label, grouping
it with similar tracks. The cluster labels now consist of count as follows:

• Cluster 0: 38,491

• Cluster 1: 54,748

4.1 data processing results 59

• Cluster 2: 5,687

• Cluster 3: 47,488

• Cluster 4: 24,239

Visualizing Clusters:

Fig 4.4 illustrates the arrangement of the data points across the first two
principal components and the position of each cluster’s centroid. Different
colors and red ’x represent different clusters’ marks indicate the centroid of
each cluster.

Figure 4.4: Visualization of KMeans clusters in PCA-reduced 2D space with cluster
centroids marked, showing the separation and grouping of data points.

The diagram illustrates the distribution and intersection of the clusters in the
reduced feature space. The visualization utilizes Principal Component 1 as the
horizontal axis and Principal Component 2 as the vertical axis. These axes offer
a clear understanding of the grouping of data points and their relationship to

60 chapter 4 results

the cluster centroids.

Analysis The scatter plot demonstrates a degree of overlap between clusters,
suggesting regions where the distinction between different music groups is
not as well-defined. The close closeness of centroids indicates the presence of
commonalities among certain clusters. Nevertheless, the clear patterns in the
plot validate our decision to use six clusters, enabling a refined categorization
that enhances the ability to provide a wide range of music suggestions.

The representation of clusters in the feature space reduced using PCA confirms
the consistency of the produced clusters and highlights the complex nature
of categorizing music data. The graphical representation of our music data’s
underlying structure is intriguing and supports our clustering strategy for a
recommendation system that desires to represent a wide musical variety.

Also, a three-dimensional scatter plot was generated to explore the cluster
distribution across the first three principal components, offering a deeper view
of the data’s underlying structure.

Figure 4.5: 3D visualization of KMeans clusters in PCA-reduced space, enhancing the
perspective on spatial distribution and inter-cluster distances.

4.2 recommendation model results 61

These visualizations corroborate our numerical analysis and provide intuitive
graphical representations that aid in understanding the complex multidimen-
sional nature of data clustering.

4.2 Recommendation Model Results

4.2.1 Collaborative Filtering for Playlist Recommendation
System

When the recommendation function is executed with a certain user ID, the
system generates a list of the ten most highly suggested playlists. These sugges-
tions are generated by evaluating trends in user activity and matching them
with similar profiles.

1 # Example of generating recommendations
2 recommended_playlists = recommend_playlists (example_user_id ,
3

user_similarity_matrix ,
4

playlist_interaction_matrix ,
5 user_id_to_index ,
6

playlist_index_to_name)
7 print(" Recommended Playlists :", recommended_playlists)

Listing 4.1: Example of generating playlist recommendations.

Upon execution of our playlist recommendation function with the specified
user ID, the following playlists were recommended as most aligned with the
user’s historical preferences and behaviors:

• J. Period & Black Thought - The Best of The Roots

• 00-nek-en_el_cuarto_26-sp-2007

• ONLY DURAN DURAN

• Elvis 75 - Good Rockin’ Tonight

• Great Dane – Alpha Dog

• 60´s 4 eva

• #facebookdown

62 chapter 4 results

• Led Zeppelin – How The West Was Won

• Easy Listening Blues

• Kensington – Vultures - Festival Edition

These recommendations demonstrate the effectiveness of the collaborative
filtering techniques employed by our recommendation system, showcasing a
diverse range of genres and artists that reflect the unique tastes and preferences
of the user.

Interaction Distribution per User for Playlists Analyzing interactions per
user for playlists, the distribution is highly skewed towards lower numbers,
indicating that most users interact with only a handful of playlists regularly
(Figure 4.6).

Figure 4.6: Distribution of Interactions per User for Playlists showing a high concen-
tration of users with fewer playlist interactions.

Due to the high sparsity of data and the challenge in collecting Spotify IDs, only
3 out of 63 respondents from our A/B testing questionnaire provided their IDs.
Hence, we could not perform extensive testing of the playlist recommendation
systems; however, the models remain robust, suggesting promising results for
playlist recommendations despite these limitations.

4.2 recommendation model results 63

4.2.2 Content-Collaborative Song Recommendation System

Executing the recommendation function for a specific song demonstrates the
system’s efficacy in creating customized song lists that accurately represent the
user’s individual tastes and highlight the accuracy of the hybrid model.

1 # Example usage and output
2 input_song_name = ’21 Guns ’
3 recommended_songs = hybrid_recommend_songs (input_song_name ,

song_name_to_index , reduced_matrix , song_data , top_n =5)
4 print(f" Recommended Songs for ’{ input_song_name }’:")
5 for song , artist , genres , score in recommended_songs :
6 print(f"Song: {song}, Artist : { artist }, Genres : { genres },

Score: {score :.2f}")

Listing 4.2: Example usage of the recommendation function and output.

Figure 4.7: Output of song recommendations with user feedback ratings. Here, the
user rated the suggestions by hearing or upon noticing.

The results emphasize the benefits of combining collaborative and content-
based strategies, providing a more sophisticated method for customizing music

64 chapter 4 results

suggestions. And the user feedback replicates it.

4.2.3 Advanced Query-Based Song Recommendation
System

Upon receiving a user query, our recommendation system employs the inte-
grated recommendation logic to produce a list of song suggestions that align
closely with the user’s preferences and emotional state. Below, we demonstrate
the system’s output for a user query requesting "death metal tracks from the
80s" with a sentiment analysis indicating a preference for intense and powerful
music.

User Query:

"I’m looking for death metal tracks from the 80s."

Processed Query Output:

• Genres Identified: Death Metal

• Moods Identified: Intense, Powerful

• Decades Identified: 1980s

• Sentiment Score: Positive (influences the preference for high-energy
songs)

Recommendations Generated: The system adjusts the scores based on the
sentiment analysis and filters the songs through the identified genres, moods,
and decade preferences. The top 5 recommendations, sorted by their adjusted
scores, are as follows:

Track Name Artist Genres Year Adjusted Score
Raining Blood Slayer Alternative Metal, Death Metal 1986 1.23
The Toxic Waltz Exodus Death Metal, Groove Metal 1989 1.15
Black Metal Venom Black Metal, Black Thrash 1982 1.11
Angel Of Death Slayer Alternative Metal, Death Metal 1986 1.07
Elimination Overkill Death Metal, Groove Metal 1989 1.07

Table 4.1: Top 5 recommendations based on user query for death metal tracks from
the 80s.

4.2 recommendation model results 65

These results illustrate the effectiveness of our recommendation system in
tailoring music suggestions that match the specified musical preferences (death
metal from the 80s) and enhance the user’s emotional engagement, thanks to
the sentiment-driven adjustments to song popularity scores. By dynamically
integrating user input, contextual data, and sentiment analysis, the system
ensures that each recommendation is relevant and satisfying, enhancing the
overall user experience.

Figure 4.8: Output of song recommendations with query based feedback ratings. Here,
the user rated the suggestions by hearing or upon noticing.

The results emphasize the benefits of combining LLM sentiment analysis with
collaborative and context-based strategies, providing a more sophisticated
method for customizing music suggestions. And the user 4.8 replicates it.

4.2.4 Assessment of Recommendation Systems
Methodology for User Study The participants in our user research were
asked to explore music suggestions using a specially created Google form that
can handle various musical tastes and input styles [feedback_form_2024].
This form enabled users to articulate their musical preferences using various
methods:

66 chapter 4 results

• General Query: Users can provide a concise summary of their musical
tastes, such as "I desire lively 80s rock music that generates a sense of
joy" or "I am seeking uplifting melodic music for yoga."

• Name of the song: Participants can choose a specific song they like, such
as "Bohemian Rhapsody by Queen," which will encourage the algorithm
to search for and recommend related songs.

• Spotify identification (Optional): By supplying a Spotify User ID, individu-
als with Spotify accounts allow the system to customize recommendations
according to their listening history, hence improving the customization
of the suggestions.

The form used for this section of the investigation is detailed in the supple-
mentary material, accessible through the survey link provided in the reference
[34].

Feedback and System Performance The system’s capacity to compre-
hend these diverse inputs and offer a methodical feedback procedure. Partic-
ipants assessed the relevance of each music suggestion using a rating scale
ranging from 1 (indicating poor relevance) to 5 (indicating great relevance)
based on how well the recommendations matched their input.

The feedback from participants revealed that our recommendation system
successfully provided song suggestions that closely aligned with their musical
preferences. We studied the feedback for 7 particular songs for our hybrid song
recsys and 8 prompts for our query-based song recsys among the 63 replies
that we previously got, which were gathered using another customized form.
The form may be found at this reference: [35]. The average evaluations were
predominantly favorable, demonstrating the system’s accuracy and the users’
contentment with the recommended tunes.

The bar graph below 4.9 displays the average user ratings for each song, along
with the mean, across a concise and visually informative depiction of the
system’s performance.

4.2 recommendation model results 67

Figure 4.9: The average user ratings for song recommendations demonstrate the
efficacy of the recommendation system in accurately matching varied user
inputs. The mean base line indicates almost all the songs are performing
near to the base line

This graph demonstrates the system’s capacity to generate recommendations
using diverse user inputs. It also measures the satisfaction levels for different
requests, ranging from general inquiries to specific songs. These results are ob-
tained through the structured input formmentioned as [feedback_form_2024].

5
Discussion and Future
Works

This section presents an overview of the results obtained by combining Large
Language Models (LLMs) with our query-based recommendation system and a
conventionalmusic recommendation system that uses content and collaborative
filtering approaches. The main goals were to apply LLMs to improve semantic
comprehension, use embeddings to concisely express musical qualities, and
assess these in a hybrid recommendation system. Both the LLM-based and
conventional systems obtained an average user satisfaction rating of 4.2 out of
5, demonstrating a high level of success in matching user preferences.

Although there have been positive results, there are still obstacles that prevent
the system from reaching its full potential. These hurdles include a small
dataset size and limitations in computational resources. The results, which
are explained in detail in section 5.1, are related to specific research questions
about how well LLMs and embeddings work and how they can be used in
music recommendation systems. Section 5.2 outlines future work, which will
focus on expanding the dataset size, enhancing computational resources, and
improving system transparency and ethical standards. Such advancements are
essential for refining the accuracy of the recommendations and bolstering user
trust in the system.

69

70 chapter 5 discussion and future works

5.1 Discussion

We have effectively implemented two advanced music recommendation algo-
rithms for our listeners’ varied musical interests. The first method employs a
query-based recommendation model that leverages Large Language Models
(LLMs) to perform content and semantic analysis. This technique effectively
addresses the ’cold start’ issue by employing sentiment analysis to customize
suggestions for new users with limited initial data. The second technique
utilizes content-collaborative filtering and applies embeddings to assess user
interaction data. This approach effectively tackles the ’long tail’ problem by
proposing less popular songs that closely match user tastes.

Combined, these methods improve the user experience by guaranteeing that
suggestions are thorough and tailored, including a wide range of user interests
and fresh information. By integrating these models, not only are typical prob-
lems such as the long tail and cold start reduced, but the system’s capacity to
understand and answer complicated user inquiries with great accuracy is also
enhanced.

The following segments provide a thorough discussion of the research question
these systems addressed while examining their effectiveness in real-world
situations.

Effectiveness of LLMs in Capturing the Semantic Meaning of Music
In response to the RQ1 question, we successfully demonstrated that our query-
based LLM model can capture the semantic meaning of user queries using
sentiment analysis. The model’s performance looks promising, as it received
an average rating of 4.2 out of 5 from 51 users. Sentiment analysis examines
the emotional aspect of user queries, enabling the system to offer pertinent
recommendations with less user participation and aiding in mitigating the cold
start problem.

Although the query-based framework is effective, it may not fully capture the
many features of musical tastes. Our data suggest that the content-collaborative
filtering strategy exhibited similar performance. Integrating LLMs with content-
based and collaborative filtering can potentially improve recommendation
accuracy and customization. Further studies could emphasize these approaches
to develop a more advanced recommendation system.

We employed the DistilBERT model from Hugging Face, a popular open-source
tool, because of its optimal performance and computational economy combina-
tion. DistilBERT, a compact and highly efficient variant of BERT, is especially
well-suited for applications with limited resources. Nevertheless, bigger models

5.1 discussion 71

have the potential to provide enhanced semantic comprehension and improved
accuracy in capturing a broader spectrum of musical preferences. Although
these bigger models need more resources, they have the potential to offer more
detailed insights into user inquiries and enhance the overall effectiveness of
the recommendation system.

Our system can successfully capture the semantic meaning of user queries
by overcoming these problems and utilizing diverse analytical methodologies.
This connection results in more accurate and gratifying music suggestions,
improving the listening experience.

The Efficacy of Embeddings in Music Recommendation Systems To
address RQ2, our findings confirm that embeddings are useful for capturing la-
tent links between songs and describing musical qualities. Embeddings greatly
enhance the customization and precision of music suggestions by converting
complex audio attributes and user interaction data from high-dimensional
spaces into simpler low-dimensional vectors. Embeddings in the content-
collaborative filtering model enable dimensionality reduction using Truncated
Singular Value Decomposition (SVD), essential for effective similarity compu-
tations between songs. In addition, main Component Analysis (PCA) was used
to streamline audio elements into main components, improving the system’s
capacity to identify and represent intricate connections within the music data.
The LLM-based query model utilized embeddings to map mood and contex-
tual information from user inquiries effectively. This enabled the system to
offer tailored suggestions aligned with the user’s emotional state. The use of
context-aware methods in music recommendation systems has been shown
to improve accuracy by Wang et al. [5], who showed that combining user
interaction data and contextual metadata can make recommendations much
more accurate.

Conducted on a MacBook Air M1, this study successfully handled the intricate
and substantial dataset, Data_agg and embedding proficiently, showcasing the
feasibility of running sophisticated recommendation algorithms on devices with
limited resources. Despite the constraints of low computational capacity, our
technique attained an average user rating of around 4.2 out of 5 for both models,
as per our user surveys. This result underscores the present effectiveness of our
methods but also indicates that significant enhancements might be achieved
with more processing resources. Improvements in computer power would
enable more advanced data processing and model training, perhaps enhancing
the accuracy and customization ofmusic suggestions even further. This scenario
highlights the ability of our recommendation architecture to grow in size,
and its potential to provide increasingly more accurate music selections as
computational resources increase.

72 chapter 5 discussion and future works

Hybrid System Integration of LLMs and Embeddings To address RQ3,
Our study’s LLM-based Query method dynamically integrates large language
models (LLMs) and embeddings to optimize their respective capabilities: col-
lecting semantic meanings and simplifying intricate data. The system employs
the DistilBERT model from Hugging Face[huggingface_distilbert] to analyze
sentiment, accurately interpreting user queries’ emotional meaning. This fea-
ture allows the system to customize recommendations based on the user’s
mood and contextual preferences, improving the music selections’ relevancy
and customization.

Also,our other content-collaborativemodel handles andprocesses the Data_agg
dataset’s high-dimensional audio properties and user interactions well by em-
bedding them. This methodology streamlines data management and enhances
conventional content-based and collaborative filtering methods. These im-
provements enable more complex similarity calculations and provide more
individualized experiences, therefore utilizing explicit and implicit preferences
communicated through user interactions.

This implementation has shown that the system can provide highly tailored
music suggestions even on devices with limited resources, such as the Mac-
Book Air M1. Positive feedback for both models 4.2/5 indicates that the system
generates great user satisfaction despite little computing capability. This is due
to the high quality of recommendations. There is significant potential to im-
prove system performance by increasing processing resources in the future. By
adopting bigger and more advanced models in the future, the system’s capacity
to catch subtle variations in user preferences might be improved, resulting in
even more precise and satisfying user experiences. The present utilization of
this hybrid recommendation framework demonstrates a potential trajectory
toward more adaptable and responsive music recommendation systems. With
the increasing power of computers, we aim to incorporate both models.

Comparison of LLM-Based Query Model and Content-Collaborative
Recommendation Systems ForRQ4,we compared our traditional content-
collaborative methodwith the LLM-based query method,which shows a promis-
ing improvement in user satisfaction. Based on our findings, the system’s
LLM-based model, incorporating the DistilBERT model for sentiment analysis,
obtained an average user satisfaction rating of 4.22 out of 5 from 51 replies. This
strategy marginally surpasses our other content-collaborative filtering method,
which achieved a grade of 4.21 out of 5. While both algorithms performed well,
the slight discrepancy emphasizes the potential benefit of integrating LLMs
into the recommendation process.

Even with these positive outcomes, it’s crucial to remember that the assess-

5.1 discussion 73

ments were carried out on a somewhat small dataset. Although the DistilBERT
model is computationally efficient, it may not comprehensively reflect the
considerable complexity of user preferences on a broader scale. The current
implementation requires more optimization and testing on a wider range of
diverse and extensive datasets to really evaluate and improve the system’s
capabilities.

Ethical and Social Implications of LLMs and Embeddings in Music
Recommendation Systems While addressing RQ5, we created our music
recommendation algorithm, and several important ethical and societal issues
were considered. Data protection was prioritized when gathering user query
forms and distributing user feedback forms. We ensured that user data privacy
was always protected and that consent was gained transparently by following
strict data protection measures.

Transparency and Explainability: Nevertheless, the task is to improve the sys-
tem’s transparency further, as users sometimes enter queries that might be read
in various manners or contain unclear or inappropriate material. Future system
improvements will prioritize improving the processing of these inquiries to
guarantee that suggestions are correct and enjoyable song recommendations
for users.

Cultural Diversity: Despite the fact that our database contains a variety of music
languages, computational limitations have prevented us from fully utilizing
this diversity. Nevertheless, we’re dedicated to enhancing the user experience,
fostering cultural inclusivity, and better representing the diversity of music
worldwide through expanding our system’s capabilities.

Data sparsity and bias: The scarcity of user interaction data initially presented
difficulties in attaining optimal suggestion accuracy. In our future upgrades,
we will prioritize the integration of more comprehensive datasets to enhance
the accuracy and reliability of our models. This will help minimize biases and
increase the fairness of our suggestions.

74 chapter 5 discussion and future works

5.2 Future Perspective

Currently, our methods use a query-based LLM system with semantic analysis
and content-based filtering and a different system with content and collabo-
rative filtering. Despite the promising results achieved, with the LLM-based
model and content-collaborative approaches each garnering an average satis-
faction rating of approximately 4.2 out of 5 in a small user survey, there remains
scope for substantial improvements to refine these systems. We aim to explore
the complementary advantages of combining these approaches, upon which
the foundation of our current work is built.

The current LLM system,which utilizes the DistilBERTmodel, has demonstrated
a promising capability in effectively handling semantic subtleties and emotional
signals. To improve quality and individualization, future work will focus on
implementing advanced linguistic models like BERT, RoBERTa, or GPT-3,widely
recognized for their exceptional verbal comprehension and contextual analysis
skills.

We also aim to investigate additional user features, like demographics and
knowledge-based inputs, to enhance the contextual understanding of our rec-
ommendation engine. These will be integrated using richer datasets obtained
via Spotify’s API. This strategy will improve the significance and clarity of our
recommendations and offer more recent and varied song recommendations.
We aim to create a more cooperative system that utilizes improved LLMs to
reveal deeper underlying meanings in user behaviors and preferences, thereby
promoting more natural linkages between users and music.

Another important focus of development will be improving the efficiency of our
multilingual database capabilities. We hope to ensure more cultural diversity in
our suggestions by overcoming existing computational constraints and making
our platform more accessible and appealing to a worldwide audience. This
growth is essential for adjusting to the changing environment of global music
consumption and the diverse range of users.

The anticipated improvements aim to address the constraints identified in our
existing systems, including the ability to manage intricate user inputs and
efficiently integrate a wide range of musical tastes. We aim to keep our system
at the forefront of the music recommendation area by constantly improving our
technological capabilities and features. Future recommendation systems will
be able to provide even more accurate and fulfilling user experiences thanks
to the combination of cutting-edge algorithms and a larger, more dynamic
dataset.

6
Conclusion
This work employed a novel approach by integrating Large Language Models
(LLMs) and embeddings to improve music recommendation systems. This
approach effectively tackles challenges such as the cold start and long tail
concerns. We used LLMs to explore the semantic nuances of user queries and
embeddings to simplify intricate musical characteristics and interactions into
easily understood patterns.

We introduced two hybrid models. One utilized the semantic analysis capabil-
ities of LLMs to provide individualized content suggestions, while the other
utilized content-collaborative filtering by analyzing user interactions in depth.
In addition to addressing standard recommender system issues, this strate-
gic integration greatly improved the quality and personalization of the music
recommendations.

The LLM-based query model achieved a user satisfaction score of 4.22 out of
5, while the content-collaborative model scored slightly lower at 4.21, based
on feedback from 51 participants. These results suggest that the LLM-based
approach shows a marginal improvement over traditional methods, indicating
it has the potential to enhance recommendation accuracy and personalization.
The close scores also indicate the possibility that integrating LLM capabilities
with traditional collaborative methods could lead to further improvements, of-
fering a more personalized and effective way to address common issues such as
the long tail and cold start problems in music recommendation systems.

75

76 chapter 6 conclusion

The thesis identified two primary challenges that limited the maximum effec-
tiveness of the recommendation systems: the sparsity of the datasets and the
limitations of computing resources.

The incorporation of more advanced Language Learning Models (LLMs) and
a more extensive investigation of embeddings of these methods will have the
potential to provide a good and personalized music experience for the users.
Therefore, this work establishes a basis, to motivate and encourage future
advancements that will further improve the way we explore and engage with
music.

Bibliography
[1] Yading Song, Simon Dixon, and Marcus Pearce. “A survey of music recommen-

dation systems and future perspectives.” In: 9th International Symposium on
Computer Music Modeling and Retrieval. Vol. 4. Citeseer. 2012, pp. 395–410.

[2] Poonam B Thorat, Rajeshwari M Goudar, and Sunita Barve. “Survey on collab-
orative filtering, content-based filtering and hybrid recommendation system.”
In: International Journal of Computer Applications 110.4 (2015), pp. 31–36.

[3] Laurina Zhang. “Intellectual property strategy and the long tail: Evidence from
the recorded music industry.” In: Management Science 64.1 (2018), pp. 24–42.

[4] Yan Wang et al. Enhancing Recommender Systems with Large Language Model
Reasoning Graphs. 2024. arXiv: 2308.10835 [cs.IR].

[5] Dongjing Wang et al. “Came: Content-and context-aware music embedding
for recommendation.” In: IEEE Transactions on Neural Networks and Learning
Systems 32.3 (2020), pp. 1375–1388.

[6] arXiv. “ControlRec: Bridging the Semantic Gap between Language Understand-
ing and User Preferences in Recommendation Systems.” In: arXiv (2023). url:
https://arxiv.org/abs/2311.16441.

[7] Wikipedia. Spotify – Wikipedia, The Free Encyclopedia. [Online; accessed 9-May-
2024]. 2024. url: https://en.wikipedia.org/wiki/Spotify.

[8] Spotify for Developers. Spotify Web API Documentation. 2024. url: https:
//developer.spotify.com/documentation/web-api/.

[9] A. M. Van Der Walt. Spotify Playlists. Accessed: 20.03.2024. 2020. url: https:
//www.kaggle.com/datasets/andrewmvd/spotify-playlists.

[10] V. Mavani. Spotify Dataset. Accessed: 20.03.2024. 2024. url: https://www.
kaggle.com/datasets/vatsalmavani/spotify-dataset/data.

[11] Mark Claypool et al. “Combining content-based and collaborative filters in
an online newspaper.” In: Proceedings of the SIGIR Workshop on Recommender
Systems. Citeseer. 1999.

[12] Barry Smyth and Paul Cotter. “A personalised TV listings service for the digital
TV age.” In: Knowledge-Based Systems 13.2-3 (2000), pp. 53–59.

[13] Ren-ping Song et al. “A hybrid recommender algorithm based on an improved
similarity method.” In: Applied Mechanics and Materials 475 (2014), pp. 978–982.

[14] Brian Towle and Christopher Quinn. “Knowledge based recommender systems
using explicit user models.” In: AAAI/IAAI. 2000, pp. 74–77.

[15] Robin Burke. “Hybrid recommender systems: Survey and experiments.” In:
User modeling and user-adapted interaction 12.4 (2002), pp. 331–370.

[16] Umut Ceylan and Ali Birturk. “Combining feature weighting and semantic
similarity measure for a hybrid movie recommender system.” In: Proceedings of

77

https://arxiv.org/abs/2308.10835
https://arxiv.org/abs/2311.16441
https://en.wikipedia.org/wiki/Spotify
https://developer.spotify.com/documentation/web-api/
https://developer.spotify.com/documentation/web-api/
https://www.kaggle.com/datasets/andrewmvd/spotify-playlists
https://www.kaggle.com/datasets/andrewmvd/spotify-playlists
https://www.kaggle.com/datasets/vatsalmavani/spotify-dataset/data
https://www.kaggle.com/datasets/vatsalmavani/spotify-dataset/data

78 BIBLIOGRAPHY

the 5th SNA-KDD Workshop on Social Network Mining and Analysis. ACM. 2011,
pp. 1–9.

[17] Conor Hayes and Padraig Cunningham. “Context boosting collaborative rec-
ommendations.” In: Knowledge-Based Systems 17.2-4 (2004), pp. 131–137.

[18] Guirong Xue et al. “Scalable collaborative filtering using cluster-based smooth-
ing.” In: Proceedings of the 28th annual international ACM SIGIR conference on
Research and development in information retrieval. ACM. 2005, pp. 114–121.

[19] FS Gohari and MJ Tarokh. “Classification and comparison of the hybrid col-
laborative filtering systems.” In: International journal of research in industrial
engineering 6.2 (2017), pp. 129–148.

[20] Lianhuan Li, Zheng Zhang, and Shaoda Zhang. “Hybrid Algorithm Based on
Content and Collaborative Filtering in Recommendation System Optimization
and Simulation.” In: Scientific Programming 2021 (2021), pp. 1–11. doi: 10.
1155/2021/7427409.

[21] Dongjing Wang et al. “Learning Music Embedding with Metadata for Context
Aware Recommendation.” In: Proceedings of the 2016 ACM on International
Conference on Multimedia Retrieval. ICMR ’16. New York, New York, USA: Asso-
ciation for Computing Machinery, 2016, pp. 249–253. isbn: 9781450343596. doi:
10.1145/2911996.2912045. url: https://doi.org/10.1145/2911996.
2912045.

[22] Liang Xiang et al. “Temporal recommendation on graphs via long-and short-
term preference fusion.” In: Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 2010, pp. 723–732.

[23] Steffen Rendle et al. “BPR: Bayesian personalized ranking from implicit feed-
back.” In: Proceedings of the 25th Conference on Uncertainty in Artificial Intelli-
gence. 2009, pp. 452–461.

[24] Subhash Kabbur, Xia Ning, and George Karypis. “Fism: factored item similarity
models for top-n recommender systems.” In: Proceedings of the 19th ACM Inter-
national Conference on Knowledge Discovery and Data Mining (2013), pp. 659–
667.

[25] Himanshu Batra et al. “BERT-Based Sentiment Analysis: A Software Engineer-
ing Perspective.” In: DEXA 2021, LNCS 12923. Springer, 2021, pp. 138–148. doi:
10.1007/978-3-030-86472-9_13.

[26] Surabhi Shinde et al. “Machine Learning Based Clustering Using Spotify Audio
Features.” In: 2023 1st DMIHER International Conference on Artificial Intelligence
in Education and Industry 4.0 (IDICAIEI). Vol. 1. 2023, pp. 1–5. doi: 10.1109/
IDICAIEI58380.2023.10406332.

[27] Wenqi Fan et al. “Recommender systems in the era of large language models
(llms).” In: arXiv preprint arXiv:2307.02046 (2023).

[28] Abu Mohammad Taief. Music_Final. https://github.com/MaidenTaief/
Music_Final. Accessed: 2024-05-15. 2024.

[29] The pandas development team. pandas-dev/pandas: Pandas. Version latest. Feb.
2020. doi: 10.5281/zenodo.3509134. url: https://doi.org/10.5281/
zenodo.3509134.

[30] Peter J. Rousseeuw. “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis.” In: Journal of Computational and Applied Mathe-
matics 20 (1987), pp. 53–65.

[31] T. Caliński and J. Harabasz. “A dendrite method for cluster analysis.” In: Com-
munications in Statistics-theory and Methods 3.1 (1974), pp. 1–27.

https://doi.org/10.1155/2021/7427409
https://doi.org/10.1155/2021/7427409
https://doi.org/10.1145/2911996.2912045
https://doi.org/10.1145/2911996.2912045
https://doi.org/10.1145/2911996.2912045
https://doi.org/10.1007/978-3-030-86472-9_13
https://doi.org/10.1109/IDICAIEI58380.2023.10406332
https://doi.org/10.1109/IDICAIEI58380.2023.10406332
https://github.com/MaidenTaief/Music_Final
https://github.com/MaidenTaief/Music_Final
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134

BIBLIOGRAPHY 79

[32] David L. Davies and Donald W. Bouldin. “A cluster separation measure.” In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 2 (1979), pp. 224–
227.

[33] Victor Sanh et al. “DistilBERT, a distilled version of BERT: smaller, faster, cheaper
and lighter.” In: arXiv preprint arXiv:1910.01108 (2019). url: https://arxiv.
org/abs/1910.01108.

[34] Google Forms. User Feedback Survey on Music Recommendation System. https:
//docs.google.com/forms/d/1PWLW23TFRQlUGMZFWJwrwFU9KsVWS066CluyqtfU6k/
viewform. Accessed: 2024-05-13. 2024.

[35] Google Forms. Evaluation Survey for Music Recommendation System. https://
docs.google.com/forms/d/1ZnZcr8E_zwMzv5j1k-31iBm8ok5XnO3WYsWI73HeXyc/
viewform. Accessed: 2024-05-13. 2024.

https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://docs.google.com/forms/d/1PWLW23TFRQlUGMZFWJwrwFU9KsVWS066CluyqtfU6k/viewform
https://docs.google.com/forms/d/1PWLW23TFRQlUGMZFWJwrwFU9KsVWS066CluyqtfU6k/viewform
https://docs.google.com/forms/d/1PWLW23TFRQlUGMZFWJwrwFU9KsVWS066CluyqtfU6k/viewform
https://docs.google.com/forms/d/1ZnZcr8E_zwMzv5j1k-31iBm8ok5XnO3WYsWI73HeXyc/viewform
https://docs.google.com/forms/d/1ZnZcr8E_zwMzv5j1k-31iBm8ok5XnO3WYsWI73HeXyc/viewform
https://docs.google.com/forms/d/1ZnZcr8E_zwMzv5j1k-31iBm8ok5XnO3WYsWI73HeXyc/viewform

Appendix
.1 Thesis Task Description

81

Faculty of Engineering Science and Technology
Department of Computer Science and Computational Engineering
UiT - The Arctic University of Norway

Application of LLMs and Embeddings in Music

Recommendation Systems

Abu Mohammad Taief

Thesis for Master of Science in Technology / Sivilingeniør

Background

Recommender systems play a crucial role in the music industry. They enable users to
discover new music that aligns with their preferences. These systems predict music
preferences using user behavior, musical features, and metadata. Traditional
recommender systems often rely on collaborative filtering or content-based filtering
approaches. Collaborative filtering makes recommendations based on the listening
patterns of similar users, creating a sense of community taste. Conversely, content-based
filtering focuses on the properties of the music itself, such as genre, tempo, and
instrumentation, to make suggestions.

However, these approaches have limitations in capturing the semantic meaning of music
and providing personalized recommendations. Collaborative filtering can suffer from
the cold start problem. This problem arises when new songs or users with unique tastes
cannot match existing data. Additionally, it struggles to recommend less popular tracks,
which fall under the "long-tail distribution" of music. On the other hand, content-based
filtering can be excessively simplistic. It fails to capture the complex and subjective
qualities that give music its semantic meaning and emotional resonance.

Problem description

Traditional recommender systems in the music industry have limitations. These models
should be capable of understanding and predicting user preferences more accurately.
The semantic meaning of music, a combination of lyrics, composition, and the emotions
they evoke, needs to be adequately captured by existing methods. Personalization also
remains a challenge, as users have diverse and evolving musical tastes that are not easily
categorized.

This thesis proposes exploring the use of large language models (LLMs) and embeddings
in the context of music recommendation tasks to address existing issues. LLMs have
proven their capabilities in understanding and generating human-like text, which may
help decipher the semantic content of lyrics and user reviews. Embeddings, which refer
to vector representations of music items in a high-dimensional space, can capture the
subtle relationships between different pieces of music and user preferences.

Scope and limitations

• Focus on the academic part and research problems.
• Implementing a commercial product is out of scope.
• Proof-of-concept implementation of algorithms are expected to emerge.

Research questions

• To what extent can LLMs effectively capture the semantic meaning of music?

• How can embeddings effectively represent musical features and capture latent

relationships between songs?

• How can a hybrid recommendation system that integrates LLMs and embeddings be

effectively designed and developed?

• How does the proposed hybrid recommendation system compare to traditional

approaches regarding accuracy, personalization, and user satisfaction?

• What are the ethical and social implications of integrating LLMs and embeddings in

music recommendation systems?

Objectives

• Review the current state of research on music recommendation systems and the
limitations of traditional approaches.

• Explore the potential of LLMs in understanding the semantic meaning of music and
generating personalized recommendations.

• Investigate using embeddings to represent musical features and capture latent
relationships between songs.

• Develop and evaluate a hybrid recommendation system that integrates LLMs and
embeddings.

• Analyze the proposed system's performance in terms of accuracy, personalization, and
user satisfaction.

Dates

Date of distributing the task: <08.01.2024>

Date for submission (deadline): <21.05.2024>

Contact information

Candidate

Supervisors at UiT-IDBI

Abu Mohammad Taief

ata059@post.uit.no

Bernt Arild Bremdal

bernt.a.bremdal@uit.no

Shayan Dadman

shayan.dadman@uit.no

Kalyan R Ayyalasomayajula

kalyan.r.ayyalasomayajula@uit.no

General information

This master thesis should include:

 Preliminary work/literature study related to actual topic
- A state-of-the-art investigation
- An analysis of requirement specifications, definitions, design requirements, datasets,

given standards or norms, guidelines and practical experience etc.
- Description concerning limitations and size of the task/project
- Estimated time schedule for the project/ thesis

 Selection & investigation of actual materials
 Development (creating a model or model concept)
 Experimental work (planned in the preliminary work/literature study part)
 Suggestion for future work/development

Preliminary work/literature study

After the task description has been distributed to the candidate a preliminary study
should be completed within 3 weeks. It should include bullet points 1 and 2 in “The
work shall include”, and a plan of the progress. The preliminary study may be submitted
as a separate report or “natural” incorporated in the main thesis report. A plan of
progress and a deviation report (gap report) can be added as an appendix to the thesis.

In any case the preliminary study report/part must be accepted by the supervisor
before the student can continue with the rest of the master thesis. In the evaluation
of this thesis, emphasis will be placed on the thorough documentation of the work
performed.

Reporting requirements

The thesis should be submitted as a research report and could include the following
parts; Abstract, Introduction, Material & Methods, Results & Discussion, Conclusions,
Acknowledgments, Bibliography, References and Appendices. Choices should be well
documented with evidence, references, or logical arguments.

The candidate should in this thesis strive to make the report survey-able, testable,
accessible, well written, and documented.

Materials which are developed during the project (thesis) such as software / source
code or physical equipment are considered to be a part of this paper (thesis).
Documentation for correct use of such information should be added, as far as possible,
to this paper (thesis).

The text for this task should be added as an appendix to the report (thesis).

General project requirements

If the tasks or the problems are performed in close cooperation with an external
company, the candidate should follow the guidelines or other directives given by the
management of the company.

The candidate does not have the authority to enter or access external companies’
information system, production equipment or likewise. If such should be necessary for
solving the task in a satisfactory way a detailed permission should be given by the
management in the company before any action are made.

Any travel cost, printing and phone cost must be covered by the candidate themselves, if
and only if, this is not covered by an agreement between the candidate and the
management in the enterprises.

If the candidate enters some unexpected problems or challenges during the work with
the tasks and these will cause changes to the work plan, it should be addressed to the
supervisor at the UiT or the person which is responsible, without any delay in time.

The candidate is required to demonstrate continuous progress in developing and
completing the work. Continuous progress is defined as consistent, substantive
advancement in research, analysis, writing, and other activities directly related to
fulfilling the thesis requirements determined by the supervisory committee.

If the candidate fails to demonstrate continuous progress, as evidenced by regularly
requesting help without showing substantive independent effort or failing to engage
with the supervisors or the thesis work, the supervisors may limit or withdraw support
and assistance.

Submission requirements

This thesis should result in a final report with an electronic copy of the report including
appendices and necessary software, source code, simulations and calculations. The final
report with its appendices will be the basis for the evaluation and grading of the thesis.
The report with all materials should be delivered according to the current faculty
regulation. If there is an external company that needs a copy of the thesis, the candidate
must arrange for it. A standard front page, which can be found on the UiT internet site,
should be used. Otherwise, refer to the “General guidelines for thesis” and the subject
description for master thesis.

The supervisor(s) should receive a copy of the the thesis prior to submission of the final
report. The final report with its appendices should be submitted no later than the
decided final date.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	2 Literature Review
	2.1 Overview of Hybrid Collaborative Filtering Systems
	2.2 Hybrid Algorithm Utilizing Content and Collaborative Filtering
	2.3 Overview of Context-Aware Music Recommendation Systems
	2.4 BERT-Based Sentiment Analysis
	2.5 Literature Review: Machine Learning-Based Clustering Utilizing Spotify Audio Features
	2.6 Recommender Systems in the Era of LLMs

	3 Methodology
	3.1 Data Processing Methodology
	3.1.1 Data Preparation and Management
	3.1.2 Feature Analysis and Dimensionality Reduction for K-means clustering
	3.1.3 K-Means Clustering
	3.1.4 Merge Genre Data
	3.1.5 Data Integration for Collaborative Filtering
	3.1.6 Final Aggregated Dataset Preparation and Usage

	3.2 Development of Recommendation Systems
	3.2.1 Playlist Recommendation System: Collaborative Filtering
	3.2.2 Content-Collaborative Song Recommendation System
	3.2.3 Advanced Query-Based Song Recommendation System

	4 Results
	4.1 Data Processing Results
	4.1.1 Feature Analysis and Dimensionality Reduction
	4.1.2 K-Means Clustering

	4.2 Recommendation Model Results
	4.2.1 Collaborative Filtering for Playlist Recommendation System
	4.2.2 Content-Collaborative Song Recommendation System
	4.2.3 Advanced Query-Based Song Recommendation System
	4.2.4 Assessment of Recommendation Systems

	5 Discussion and Future Works
	5.1 Discussion
	5.2 Future Perspective

	6 Conclusion
	Appendix
	.1 Thesis Task Description

