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Summary

Summary
This thesis develops and validates a robust visual-inertial odometry (VIO)

system for agile flight, specifically for UAVs in GPS-denied environments.
Traditional GPS navigation fails in urban canyons, indoor spaces, and dense
forests, necessitating alternatives like VIO, which combines camera visuals
and IMU sensor data to improve state estimation accuracy.

The main objectives were to create a visual odometry (VO) algorithm
that handles lighting variations and motion blur, integrate VO with inertial
data using filters, enhance computational efficiency for real-time operation,
and validate performance in challenging environments.

The literature review covered the evolution of visual odometry, sensor
fusion advancements, SLAM integration with VIO, and current research. It
emphasized VIO’s importance in applications like drone racing and search-
and-rescue operations.

Key technologies used include OpenCV for image processing, Eigen for
linear algebra, and ROS for real-time data handling. The system was tested
with UZH FPV drone racing datasets, focusing on monocular VO solutions
for cost-effectiveness and simplicity.

Experimental results showed the ORB detector with Brute Force matcher
performed well under normal conditions, while SIFT and AKAZE were more
resilient to motion blur. Although the system effectively integrated visual
and inertial data, it lacked advanced filtering techniques like EKF or UKF,
affecting robustness and accuracy. However, it maintained real-time capa-
bilities crucial for agile flight, with room for computational efficiency im-
provements.

Challenges included sensor noise, real-time processing demands, and en-
vironmental variability. The simple sensor fusion approach limited perfor-
mance compared to advanced methods.

This research provides implementation insights, establishes baseline per-
formance for monocular VIO systems, and demonstrates the feasibility of
simple sensor fusion techniques for real-time state estimation.

Future work should focus on advanced filtering techniques, integrating
state-of-the-art frameworks like OpenVINS and VINS-Mono, enhancing sen-
sor fusion algorithms to reduce drift and improve accuracy, and conducting
comprehensive testing in diverse environments.

In conclusion, the developed VIO system shows promise, but further
advancements are necessary to optimize its performance in dynamic and
challenging environments.
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1 Introduction

In the rapidly changing world of autonomous flight, it is crucial for un-
manned aerial vehicles (UAVs) to accurately perceive and navigate their
surroundings. One important aspect of this process is determining the
UAV’s position and orientation over time, which is typically achieved us-
ing a global positioning system. However, in environments with weak or
no Global Positioning System (GPS) signals, such as urban canyons, indoor
spaces, and dense forests, relying on GPS for navigation is impractical and
sometimes impossible. Consequently, alternative methods, such as visual
odometry combined with inertial data, have become increasingly promising
approaches for autonomous navigation. In such situations, visual-inertial
odometry (VIO) plays a vital role by leveraging the camera of the device
and an Inertial Measurement Unit (IMU) sensor to compensate for the lack
of GPS to provide positional information[9]. This information is then used
to build an understanding of the 3D space through a process called Simulta-
neous Localization and Mapping (SLAM)[3]. This process allows the content
to be placed directly into the field of view of the UAV, enabling it to navi-
gate autonomously and stick to its environment. This has proven to be very
important in drone racing sports[3][4].

In VIO, the visual component captures the structure of the environment,
whereas the inertial component provides the acceleration and rotation rates,
enabling the UAV to deduce its movement through space. This combination
leverages the complementary strengths of both sensor types: high-rate, but
drift-prone, inertial measurements, and slower but more stable visual cues.
The fusion of these data streams allows for more accurate and robust state
estimation than either modality can be achieved independently[3][13].
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1.1 Background and motivation

1.1.1 Background

The importance of VIO in enabling agile flight for UAVs cannot be over-
stated owing to rapid changes in speed and direction, which poses a signif-
icant challenge to state estimation, primarily because of the high dynamic
range and the potential for rapid environmental changes; however, most VIO
systems are particularly well-suited to these conditions already, but many
systems still require fine tuning and experimental approaches to receive the
best possible rigid and robust solution[9].

The robustness and accuracy of typical VIO systems have been extensively
documented in literature. Studies by[3][4] provide foundational insights into
the theoretical underpinnings and practical implementation of VIO espe-
cially when using various already state of the art frameworks. Their research
highlighted the challenges of visual-inertial fusion, such as dealing with noisy
sensor data and the computational demands of real-time processing, motion
blur, highlighted scenes or bright light sources which are crucial for main-
taining the performance of VIO systems during agile maneuvers[3][4].

1.1.2 Motivation

Since it is already well known that autonomous navigation of for example
quadrotors requires precise and robust state estimation, there is still poten-
tially room for improvement, especially at the visual odometry front end
side.

Having a good algorithm in terms of the front-end side is crucial to allow
for better robustness and stability in estimating the trajectory as closely
as possible to the ground truth, but also in terms of computational power,
particularly during agile robotic flights used in drone racing sports.

Implementing VIO in agile flight scenarios such as those encountered by
racing quadrotors or during emergency response missions introduces signif-
icant challenges. These challenges include handling the rapid dynamics of
flight, managing variations in environmental lighting, and mitigating the
effects of motion blur on the visual sensors.
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1.2 Objectives

This thesis aims to explore and verify one of the most robust visual odometry
algorithms with a combination of inertial data to help improve the state
estimation for quadrotors during agile flight in challenging environments
such as drone racing. Specific objectives have been crafted to address these
challenges and provide potential improvements in VIO systems:

1. Develop a robust visual odometry within the VIO framework aiming
to better handle variations in lighting intensity and reduce the adverse
effects of motion blur. This involves performing image processing of
the incoming relevant dataset images and see how visual odometry will
be affected by different techniques used.

2. Integrate visual odometry with inertial data by well suited filters or
other techniques for more effective fusion between inertial and visual
data, focusing on optimizing the integration process to enhance the
accuracy and reliability of the state estimation.

3. Improving processing capabilities which aim to increase the computa-
tional efficiency of a VIO system to ensure it can operate in real-time
when needed, a critical requirement for agile quadrotors.

4. Conduct a series of experiments to evaluate the enhancements made
to the VO/VIO system.
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1.3 Literature review

Recent advancements and ongoing challenges within the field of Visual-
Inertial Odometry (VIO) have highlighted its significance, particularly in
the context of agile flight in drones and autonomous vehicles[5]. We will
explore some it’s developments, history and challenges throughout the sub-
chapters.

1.3.1 Historical development of VO

Visual Odometry (VO) particularly, was first developed in the early 1980s
with the aim of navigating space rovers on extraterrestrial surfaces. Since
then, it has evolved significantly and has been adapted for a wide range of
applications on Earth. The technology has become a cornerstone for au-
tonomous navigation systems used in drones, self-driving cars, and other
robotic systems. In fact visual odometry today use cameras ranging from
monocular to multi-stereo which helps to significantly remove the need of
other sensors as shown in Figure 1 [6].

Figure 1: Multiple Cameras for VO
[6]

Applications of VO are particularly prominent in areas where dynamic
conditions prevail, such as in drone racing, where rapid maneuvers are com-
mon. These applications underscore the necessity for robust VIO systems
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that can operate effectively under highly dynamic conditions and manage
rapid changes in the environment[5].

During the development of Mars Exploration Rovers, VO and VIO was
used for precise navigation across the Martian terrain. This early appli-
cation underscored VO’s potential in environments where GPS and other
typical navigation systems fail[8].

The application of VO extends to critical missions such as search-and-rescue
operations where reliability and precision can significantly impact outcomes.
For instance, in environments complicated by natural disasters, VO enables
drones to navigate debris and obstructions with high accuracy, proving
essential for locating survivors in challenging terrains[6].The technology’s
adaptability to different lighting conditions and its capacity to handle high-
speed movements make it invaluable across various sectors. Innovations
like the Direct Sparse Odometry (DSO) and Semidirect Visual Odometry
(SVO) have further refined VO’s capabilities, enhancing its performance in
real-time applications by reducing computational demands and improving
accuracy[8].

Moreover, the integration of VO with other technologies like SLAM has
expanded its applications to more complex environments. This integration
allows for the creation of a detailed environmental map while simultaneously
tracking the vehicle’s location, further enhancing the navigation capabilities
of autonomous systems[6]. As VO continues to evolve, its applications are
expected to expand further, encompassing more sectors, not just in drone
racing and offering more robust solutions for autonomous navigation chal-
lenges in complex and dynamic environments[6].

1.3.2 Advancements and challenges in sensor fusion

The integration of advanced sensor fusion techniques has been a focal point
of recent research, aiming to enhance the reliability and accuracy of VIO
systems. These techniques help to mitigate the detrimental effects of sensor
noise and environmental factors, which could otherwise degrade the perfor-
mance of navigation systems. In drone racing, for example, the agility re-
quired necessitates VIO systems that can quickly adapt to new environments
and maintain robustness under rapid changes and conditions[3]. Significant
research has also been directed toward addressing the challenges posed by
VIO systems, such as handling high-speed movements under variable light-
ing conditions. Innovations in this area include the development of adaptive
algorithms that adjust to changing environmental conditions and machine-
learning models designed to predict and navigate potential obstacles. These
advancements are critical in ensuring that VIO systems can perform reli-
ably in diverse and challenging scenarios[3]. The decision to use monocular
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or stereo VIO solutions is completely dependent on the robotic system it’s
going to be used upon. We can differ between low cost monocular or higher
cost stereo, each of these has its pros and cons. To get an overview over
the most typical differences between these types, it can be illustrated as in
Figure 2.

Figure 2: Mono vs Stereo types of VO
[8]

To assure a proper VIO system, one has to typically integrate with an
IMU unless one have multiple cameras to disregard the inertial sensor com-
pletely.

1.3.3 Integration of SLAM and V-SLAM with VIO

SLAM and its visual counterpart, Visual SLAM (V-SLAM), significantly
enhance the capabilities of VIO by not only tracking but also mapping the
environment. This integration is beneficial in scenarios where maintaining a
consistent and accurate trajectory over time is crucial. V-SLAM, in partic-
ular, provides a powerful tool for VIO systems by creating a detailed map
of the environment while simultaneously tracking the location of the vehi-
cle within it. This dual capability is essential for applications that require
high levels of navigation precision and operational reliability.[3][4]. Figure 3
illustrates the core components of a typical V-SLAM system, including real-
time mapping, localization, key-frame selection, feature extraction, and loop
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closure. Camera images is the input which gets processed in the front-end,
then fed to the back-end where optimizations happen, this is continuously
in a loop closure, creating a map of the environment as the robot or robot
vehicle maneuvers[32].

Figure 3: V-SLAM Framework
[32]

1.3.4 Future Directions and Ongoing Research

The field of VIO continues to evolve rapidly, with substantial progress being
made in enhancing system robustness and efficiency. Ongoing research is
crucial in addressing existing limitations and pushing the boundaries of what
these systems can achieve. Future directions may include the refinement
of sensor fusion techniques, the development of more advanced machine-
learning algorithms for obstacle navigation, and the integration of more
comprehensive environmental data into VIO systems[6].

The continuous improvement of VIO systems is expected to significantly
enhance autonomous navigation capabilities, especially in applications that
demand high precision and agility. As this technology advances, it promises
to open up new possibilities for autonomous systems in various sectors, in-
cluding transportation, military, and emergency services[6].

1.4 Delimitation and scope of thesis

As discussed in the objectives, this thesis aims to propose a specific and
more robust solution to the visual front end with a combination of inertial
data. These advancements can benefit applications such as drone racing,
aerial surveillance, and search-and-rescue operations.

This thesis has mainly focused on these specific areas:
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Monocular based solution

Monocular or (one camera) data as input have been used to test algorithms
that work well for monocular VIO systems, even though such solutions can
suffer from scale ambiguity and are highly dependent on good feature track-
ing and matching algorithms.

Libraries and frameworks

The proposed system uses the Robot Operating System (ROS), OpenCV
for image processing, Eigen for linear algebra, and TF2 for transformations,
which are all robust choices for VIO systems. In addition, the programming
language C++ was used because it is widely supported in many applications
and frameworks.

Image processing and IMU data integration

Image processing and IMU data integration play an important role in achiev-
ing robustness and performance, and are used in this thesis in order to in-
crease accuracy and robustness.

8



1.5 Report Outline

This thesis report is organized into several chapters that detail the devel-
opment, implementation, and evaluation of robust visual-inertial odometry
systems for UAVs. Below is a concise outline of the contents of each chapter:

1. Introduction: This opening chapter introduces the motivation and
objectives behind developing robust visual-inertial odometry systems
for UAVs, especially focusing on environments where GPS is unreli-
able.

2. Theoretical and Technological Preliminaries: An exploration
of the fundamental theories and technologies that form the basis of
the research, including detailed discussions on visual odometry, sensor
fusion, and the tools and technologies employed.

3. Implementation: Detailed description of the implementation of the
theories discussed, including the setup of ROS nodes, image processing
techniques, and the integration of IMU data.

4. Main Results: Presentation of the experimental findings, discussing
the performance of the visual odometry system under various test
conditions.

5. Simulation/Experimental Results: This chapter details the sim-
ulation setups and experimental protocols used, along with the results
obtained, validating the theoretical and practical implementations.

6. Discussion: A discussion on the implications of the findings, limita-
tions of the current system, comparison with existing systems, and the
contributions of this research to the field of monocular VIO.

7. Conclusion and Future Work: Summarization of the research with
discussions on potential future work and directions that could enhance
the visual-inertial odometry systems further.

Appendices

Additional supporting materials and documentation relevant to the thesis.

References

A list of all academic and technical sources referenced throughout the thesis.
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2 Theoretical and technological preliminaries

This section provides an overview of the theoretical foundations and tech-
nologies that are essential for understanding the operation and development
of the system used in the thesis.

2.1 Notation

Symbol Description

x, y, z Coordinates in 3D space

u, v Coordinates in the 2D image plane

K Camera intrinsic matrix

R Rotation matrix

t Translation vector

q Quaternion representing orientation

θ Angle of rotation

ω Angular velocity

a Acceleration

∆t Time interval between frames

π Projection function

f Focal length of the camera

d Distortion coefficients

λ Eigenvalue

v Eigenvector

A Matrix

I Identity matrix

P Orthogonal matrix

Q Orthogonal matrix

T Tridiagonal matrix

H Measurement matrix

F State transition matrix

B Control input matrix

w Process noise

v Measurement noise

Table 1: List of Symbols and Notations

10



The following equations are frequently used in this thesis:

xk+1 = Fxk +Buk +wk (2.1)

zk = Hxk + vk (2.2)

θ = arctan

(
ay
az

)
(2.3)

R =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (2.4)

K =

fx 0 cx
0 fy cy
0 0 1

 (2.5)

Av = λv (2.6)

A = QΛQT (2.7)

T = PTAP (2.8)

s

uv
1

 = K(RX+ t) (2.9)

xt+1 = f(xt,at, ωt) +wt (2.10)

et,i = pt,i − π(Pt,i,K,xt) (2.11)

11



2.2 OpenCV for image processing

OpenCV (Open Source Computer Vision Library) is an open-source com-
puter vision and machine learning software library that is crucial for image-
processing tasks in VIO systems. It offers over 2500 algorithms and functions
for a broad range of vision tasks. Designed for computational efficiency,
OpenCV is suitable for real-time applications and, hence, well suited for
VIO systems.[27]. OpenCV supports a vast array of operations that are
critical to image processing, including

• Image and Video Capturing: Fundamental for acquiring visual data.

• Image Processing Operations: Includes filtering, transformations, and
morphological operations.

• Feature Detection and Matching: Essential for tracking visual features
crucial in VIO for establishing motion correspondences[27].

2.2.1 Feature Detector

One of the promising algorithms in OpenCV is called Oriented FAST and
Rotated BRIEF (ORB), which is an robust algorithm used for feature detec-
tion. This method detects corners or distinct features that can be tracked
reliably across successive images. ORB is is mathematically defined as
follows[28]:

ORB uses FAST keypoint detector. The candidate pixel is declared a
feature if there are n contiguous pixels in the circle which are all either
brighter than the candidate pixel plus a threshold t, or all darker than
the candidate pixel minus tṪhe orientation of each keypoint is computed to
achieve rotation invariance. It is based on the intensity centroid of the patch
around the keypoint[28]. The moments of a patch are given by:

mpq =
∑
x,y

xpyqI(x, y) (2.12)

where I(x, y) is the intensity at coordinates (x, y), and p and q are the
orders of the moments along x and y axes, respectively. The centroid C is
calculated as:

Cx =
m10

m00
, Cy =

m01

m00
(2.13)

The orientation θ is then computed by:

θ = atan2(m01,m10) (2.14)
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ORB ensures scale invariance by building an image pyramid, creating
layers of the image at different scales and detecting keypoints at each level.

The so-called Harris corner measure is used to score keypoints:

Score = λ1λ2 − k(λ1 + λ2)
2 (2.15)

where λ1 and λ2 are the eigenvalues of the second moment matrix of the
image gradient at the keypoint, and k is typically around 0.04.

The BRIEF descriptor is modified for rotation invariance by using the com-
puted orientation θ of the keypoints. The descriptor compares the inten-
sity differences between pairs of points in the neighborhood around each
keypoint[28].

2.3 Camera Pose Estimation

Since OpenCV provides robust tools for pose estimation, one of which is
the perspective-n-point ‘solvePnP‘ function algorithm. The ‘solvePnP‘ al-
gorithm as one of many, in OpenCV is used to estimate the pose of a camera
by finding the best fit between 3D points and their corresponding 2D pro-
jections in the image. This is achieved through a perspective transformation
that relates the point correspondences[29]. The objective of pose estimation
is to minimize the reprojection error, which is the distance between the ob-
served projections of the points in the image and their predicted positions
using the estimated pose parameters. Mathematically, this is formulated as
an optimization problem[29]:

• A set of n 3D points in the world coordinates: Xi where i = 1, . . . , n.

• The corresponding 2D image points: xi.

The camera’s intrinsic parameters matrix, K, includes the focal lengths
and the optical center which kan be computes as:

K =

fx 0 cx
0 fy cy
0 0 1

 (2.16)

The goal is to find the rotation matrix R and the translation vector t
such that:

xi ≈ K[R|t]Xi (2.17)
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The projection from 3D world coordinates to 2D image coordinates can
be expressed as: u

v
1

 = K (RXi + t) (2.18)

Where (u, v) are the coordinates in the image plane. To normalize, we
can divide by the third row:

s

u
v
1

 = K (RXi + t) (2.19)

where s is a scaling factor.

2.4 Eigen for linear algebra

Eigen is a high-level C++ library for linear algebra, and is optimized for
both dense and sparse matrices[27]. It is extensively used in fields that
require efficient matrix and vector computations, such as robotics, physics
simulations, and image processing. Eigen is integral for transforming feature
data into coordinate systems used in VIO, and for performing necessary cal-
culations for the fusion of visual and inertial data. The basic mathematics
used in report is explained as follows:

For a given symmetric matrix A ∈ Rn×n, the goal is to find its eigenval-
ues λ and corresponding eigenvectors v such that:

Av = λv (2.20)

Where:

• λ are the eigenvalues of A,

• v are the corresponding eigenvectors of A,

• v ̸= 0.

The eigen decomposition involves decomposing A into a product of three
matrices:

A = QΛQT (2.21)

Where:

• Q is an orthogonal matrix whose columns are the eigenvectors of A,

• Λ is a diagonal matrix whose diagonal elements are the eigenvalues of
A,
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• QT is the transpose of Q.

The first step in many algorithms for eigenvalue computation involves
reducing the matrix to a simpler form, such as a tridiagonal matrix, using
orthogonal transformations:

T = P TAP (2.22)

Where T is a tridiagonal matrix and P is an orthogonal matrix.

After the matrix A (or its tridiagonal form T ) is obtained, the QR algo-
rithm is typically applied. The QR algorithm involves decomposing the
matrix into a product of an orthogonal matrix Q and an upper triangular
matrix R (QR decomposition), then forming a new matrix by multiplying
R and Q in the reverse order:

Ak = QkRk (2.23)

Ak+1 = RkQk (2.24)

As k increases, Ak converges to a diagonal form, where the diagonal el-
ements are the eigenvalues of A.

This iterative process continues until the off-diagonal elements of Ak are
sufficiently small, indicating that the matrix has nearly converged to a diag-
onal matrix. The eigenvalues can be directly read from the diagonal, and the
product of all the Qk matrices used in each iteration gives the eigenvectors.

2.5 ROS for Real-Time Data Handling

The Robot Operating System (ROS) provides a framework and set of tools
for building complex robot behavior. Ros facilitates real-time data handling
from multiple sensors and offers tools for visualization, simulation, and de-
bugging essential for VIO development[30].

ROS excels in managing real-time data streams from multiple sensors or
datasets, which is crucial for systems such as VIO that rely heavily on
timely and accurate data for navigation and mapping. It handles these
tasks through a publisher-subscriber model, in which data from sensors are
published as messages on topics that can be subscribed to by different nodes
in the system. ROS is employed to orchestrate the flow of data and synchro-
nization of tasks between OpenCV image-processing operations and Eigen’s
matrix calculations. This integration is crucial for maintaining the real-
time performance required for efficient VIO. ROS1 and the newest version
ROS2[30] is compatible with a wide range of robots and components as
shown in Figure 4.
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Figure 4: ROS Compatibility
[31]

3 Implementation

This chapter guides throw how the visual odometry part was implemented
and what it means to feature tracking and matching.

3.1 ROS Node

We begun by initializing a ROS node and setting up logging, which is crucial
for debugging and tracking the VO process. It also initializes the camera
matrix and distortion coefficients, which are essential for accurate image
undistortion and camera calibration. The logger setup logs essential actions
and events to a file, aiding in troubleshooting and performance assessment.

The VO system subscribes to multiple ROS topics, and this can this can
be real time camera and IMU data or a rosbag container files which is ei-
ther pre-recorded or published from another node. We used a rosbag to
subscribe important data as shown in Figure 5. There are many official and
public datasets which can be used to compare performance and robustness
in VO and VIO algorithm. We chose one of the famous drone racing dataset
from UZH FPV[33] community due to their aggressive approach in typically
drone racing scenarios or agile drone performances.

3.2 Image Processing

The Gaussian blur filter is implemented using a convolution operation, where
a small kernel (typically 3x3 or 5x5) is slid over the entire image, computing
the weighted average of neighboring pixels at each position. The weights
are derived from a Gaussian distribution, which gives more importance to
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Figure 5: ROS Subscribers

central pixels and less to peripheral pixels. This process is repeated for each
pixel in the image, resulting in a blurred image.The Laplacian filter is imple-
mented using a discrete approximation of the Laplace operator, which com-
putes the second derivative of an image intensity function. This is achieved
by convolving the image with a small kernel (typically 3x3) that emphasizes
the difference between neighboring pixels.Gaussian blur and Laplacian fil-
ter will help improve the accuracy and robustness of the VO by reducing
noise, enhancing feature detection, and improving the estimation of camera
motion in our case.

3.2.1 Undistortion

The image points were corrected for lens distortion using the following equa-
tion:

xundistorted = K−1 (xdistorted − d) (3.1)

This equation describes how distorted image points xdistorted are trans-
formed into undistorted points xundistorted by first subtracting the distortion
vector d and then applying the inverse of the intrinsic matrix K.

3.2.2 Feature Detection and Tracking

Features were detected using the ORB detector and tracked between frames
using the Lucas-Kanade method.

v =
(
ATA

)−1
AT (xcurrent − xprevious) (3.2)

Lucas-Kanade Optical Flow: This method estimates motion vectors
v by minimizing the error between the current and previous image points,
facilitated by the matrix A which is constructed based on image gradients.
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3.2.3 Quaternion Initialization

The initial orientation from the accelerometer data is computed as follows:

θ = arctan

(
ay
az

)
, R =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (3.3)

The orientation matrix R is then converted to a quaternion for more
efficient computation and integration.

The camera pose was estimated by combining feature tracking with IMU
data.

The quaternion is converted back into a rotation matrix for integration
with the visual data:

R =

q2w + q2x − q2y − q2z 2(qxqy − qzqw) 2(qxqz + qyqw)

2(qxqy + qzqw) q2w − q2x + q2y − q2z 2(qyqz − qxqw)

2(qxqz − qyqw) 2(qyqz + qxqw) q2w − q2x − q2y + q2z

 (3.4)

The translation of the camera was estimated using the calculated rotation
matrix and the tracked features the translation of the camera is estimated.
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Below is a table of parameters that were used for feature tracking for
ORB and image processing.

Parameter Value Description

MAX PATH SIZE 100 Maximum size of the path.

WTA K 2 Winning threshold.

edgeThreshold 31 Edge threshold for image processing.

fastThreshold 20 FAST algorithm threshold.

firstLevel 0 First level of pyramid.

i 0 General index variable.

kernelSize 3 Size of the kernel for image filtering.

nfeatures 1500 Number of features to detect.

nlevels 8 Number of levels in the pyramid.

patchSize 31 Size of the patch for feature detection.

ratioThreshold 0.7 Ratio threshold for matching.

scaleFactor 1.2 Scale factor for the pyramid.

Table 2: List of Parameters with Assigned Values in Monocular VO Code
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4 Main Result

The proposed solution consists of several main components: image process-
ing for feature detection and tracking, motion estimation using visual data,
inertial integration for improved pose estimation, and pose optimization.The
data flow begins with image capture, followed by feature detection and track-
ing, motion estimation, IMU data integration, and finally pose optimization
to produce the current pose. It is fed with data from a rosbag supported by
the ROS, which is essentially a container of information data needed by the
system. This rosbag contains typical timestamped images, IMU data, and
potentially ground-truth data, which can be used for comparison between
different VIO algorithms.

4.1 Visual Odometry (VO)

The VO component in this solution is responsible for estimating the motion
of the camera using visual information from the camera. It consists of the
following steps:

1. Feature detection and tracking

2. Motion estimation

3. Bundle adjustment

4.1.1 Feature Detection and Tracking

The first step in the VO component is to detect and track features in the
camera images. We use the Shi-Tomasi corner detector to detect features
and the Kanade-Lucas-Tomasi (KLT) tracker to track them across multiple
frames. For this to work we needed to understand the basic process:

We let the It be the camera image at time t and It+1 be the camera image at
time t+ 1. We detect nt features in It and nt+1 features in It+1. We repre-
sent the features as 2D points in the image coordinates. Let pt,i = (ut,i, vt,i)
be the i-th feature in It and pt+1,j = (ut+1,j , vt+1,j) be the j-th feature in
It+1.

Finally we use the KLT tracker to find the correspondence between the
features in It and It+1. Let pt,i be the i-th feature in It and pt+1,j be the
corresponding feature in It+1. We represent the correspondence as (i, j).

4.1.2 Motion Estimation

Once we have tracked the features, we estimate the motion of the camera
using the motion model and the feature tracks. We can use the Extended
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Kalman Filter (EKF) to estimate the motion of the camera. However this
was not implemented due to complexity of such estimator or framework
based estimator like VINS-Mono[34] which already had a good estimator
but difficult to integrate with this project.

However, if we were to use a EKF, it can further be performed by letting
xt = (pt, vt, qt) be the state of the camera at time t, where pt = (xt, yt, zt) is
the position, vt = (vxt, vyt, vzt) is the velocity, and qt = (qxt, qyt, qzt, qwt)
is the orientation represented as a quaternion. The motion model is given
by:

pt+1 = pt + vt∆t+
1

2
at∆t2vt+1 = vt + at∆tqt+1 = qt ⊗ exp(

1

2
ωt∆t) (4.1)

where at = (axt, ayt, azt) is the acceleration, ωt = (ωxt, ωyt, ωzt) is the
angular velocity, and ∆t is the time interval between It and It+1.

We use the feature tracks to estimate the acceleration and the angular
velocity this by letting pt,i be the i-th feature in It and pt+1,j be the corre-
sponding feature in It+1.

We estimate the depth of the feature as:

dt,i =
ft
pzt,i

(4.2)

where ft is the focal length of the camera.

We can estimate the velocity of the camera as:

vt =
pt+1,j − pt,i

dt,i
(4.3)
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We can estimate the acceleration of the camera as:

at =
vt+1 − vt

∆t
(4.4)

We can estimate the angular velocity of the camera as:

ωt =
1

2
logm(qt+1 ⊗ q−1

t ) (4.5)

where logm is the logarithm map of the quaternion.
Finally we use the estimation equation to estimate the state of the cam-

era at time t+ 1 as:

xt+1 = f(xt, at, ωt) + wt (4.6)

where f is the motion model and wt is the process noise.

4.1.3 Bundle Adjustment

To refine the motion estimates and the 3D positions of the features, we use
bundle adjustment, that minimizes the reprojection error between the ob-
served image points and the points projected from the estimated 3D points
using the estimated camera pose.

Typically, we can perform this by letting Pt,i = (Xt,i, Yt,i, Zt,i) be the 3D
position of the i-th feature in It and pt,i = (ut,i, vt,i) be the corresponding
image point.

By this we calculate the reprojection error is now given by:

et,i = pt,i − π(Pt,i,K, xt) (4.7)

where π is the projection function and K is the camera intrinsic matrix.
Finally we use the Levenberg-Marquardt algorithm to minimize the re-

projection error and estimate the 3D positions of the features and the motion
of the camera.

4.1.4 Sensor Fusion

To fuse the motion estimates from the VO and IMU data components, we did
not use a special sensor fusion estimator filter like EKF or UKF. Due to com-
plexity of the task after various attempts integrating with OpenVINS[33],
VINS-Mono[34] we were settled to use normal IMU data integration.

We use the EKF to fuse the motion estimates as:

xt+1 = x̂t+1 +Kt(xt+1,V − x̂t+1,V ) +Kt(xt+1,I − x̂t+1,I) (4.8)

where x̂t+1 is the predicted state of the object at time t + 1, Kt is the
Kalman gain, xt+1,V is the state of the camera at time t+1 estimated by the
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VO component, and xt+1,I is the state of the object at time t+1 estimated
by the IMU component.

4.2 State Estimation

State estimation was performed using the Kalman filter approach as follows:

xk+1 = Fkxk +Bkuk +wk, (4.9)

zk = Hkxk + vk (4.10)

where Fk is the state transition matrix, Hk is the measurement matrix, and
wk,vk are the process and measurement noise, respectively.

4.3 Camera Calibration Parameters

The intrinsic parameters of the camera and the distortion coefficients were
set as follows:

K =

fx 0 cx
0 fy cy
0 0 1

 , d =
[
k1 k2 p1 p2

]

The parameter descriptions are explained in the table below.

Parameter Description

fx, fy Focal lengths of camera in x and y dimensions, respectively.

cx, cy
coordinates of the principal point, which is usually at the
image center.

k1, k2 Radial distortion coefficients of the camera lens.

p1, p2
Tangential distortion coefficients that account for lens dis-
tortion not aligned with the image plane.

Table 3: Camera Parameters

5 Simulation/Experimental results

5.1 Visual Odometry Results

In this section we list all the experimental visual odemtry results based
on different feature detectors and matchers used on the same UZHFPV
INDOOR #6 MEDIUM dataset[33]
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5.2 Description

Figure 6: ORB on Monocular VO with BF
Description: This figure shows the results of using the ORB (Oriented

FAST and Rotated BRIEF) feature detector combined with the Brute Force
(BF) matcher for monocular visual odometry. Interpretation: The ORB-
BF combination is known for its efficiency and robustness in detecting and
matching features. The results demonstrate good feature tracking perfor-
mance, which is essential for accurate motion estimation in VIO systems.

Figure 7: SIFT on Monocular VO with BF
Description: This figure illustrates the performance of the SIFT (Scale-

Invariant Feature Transform) feature detector paired with the Brute Force
matcher in a monocular visual odometry setup. Interpretation: SIFT is a
highly accurate feature detector, especially in scenarios with varying scales
and rotations. The results indicate that SIFT provides reliable feature
matching, albeit at a higher computational cost compared to ORB.

Figure 8: AKAZE on Monocular VO with HAMM
Description: The figure shows the results of using the AKAZE (Accelerated-

KAZE) feature detector with the Hamming distance matcher for monocular
visual odometry. Interpretation: AKAZE is designed to be computation-
ally efficient while maintaining robustness in feature detection. The results
show effective feature matching, suitable for real-time applications where
computational resources are limited.

Figure 9: ORB on Monocular VO with Motion Blur
Description: This figure depicts the performance of the ORB feature de-

tector in the presence of motion blur, using the Brute Force matcher. Inter-
pretation: Motion blur can significantly degrade the performance of feature
detectors. The results indicate that ORB, while robust, shows reduced ac-
curacy in feature matching under motion blur conditions, highlighting the
need for blur-resistant algorithms.

Figure 10: SIFT on Monocular VO with Motion Blur
Description: The figure presents the results of the SIFT feature detec-

tor handling motion blur in a monocular VO setup, using the Brute Force
matcher. Interpretation: SIFT’s performance under motion blur remains
relatively stable compared to other detectors. The results demonstrate that
SIFT can maintain feature matching accuracy even with motion blur, mak-
ing it suitable for dynamic environments.

Figure 11: AKAZE on Monocular VO with Motion Blur
Description: This figure shows the performance of the AKAZE fea-

ture detector in the presence of motion blur, using the Hamming distance
matcher. Interpretation: The results indicate that AKAZE handles motion
blur reasonably well, although not as effectively as SIFT. AKAZE remains
a viable option for scenarios requiring a balance between computational ef-
ficiency and robustness.
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Figure 12: This is the result of projectVo while running with the Uzhfpv
dataset with ORB detector and BF feature matcher.

Figure 6: ORB on monocular VO with BF

Figure 7: SIFT on monocular VO with BF

25



Figure 8: Akaze on monocular VO with HAMM

Figure 9: ORB on monocular VO with motion blur

Figure 10: SIFT on monocular VO with motion blur
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Figure 11: AKAZE on monocular VO with motion blur

Figure 12: Test results projectVo Node
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6 Discussion

6.1 Challenges and Trade-offs

Developing a robust VIO system involves navigating several challenges, es-
pecially when aiming for high accuracy and real-time performance in agile
flight scenarios. The primary challenges faced in this project include:

Sensor Noise and Data Fusion: Integrating noisy sensor data from cam-
eras and IMUs is complex. Achieving a reliable fusion that minimizes drift
and ensures accurate pose estimation requires sophisticated filtering tech-
niques, which were not fully implemented in this project.

Computational Demands: Real-time processing of visual and inertial
data is computationally intensive. Ensuring that the system can process
data at a high frame rate while maintaining accuracy is a significant chal-
lenge.

Environmental Variability: Changes in lighting, texture, and motion blur
can significantly impact the performance of visual odometry. Robust feature
detection and tracking algorithms are essential to handle these variations.

6.2 Limitations

While the proposed VIO system shows promise, several limitations were
identified during the implementation and testing phases:

Lack of Advanced Filtering: The system did not employ advanced fil-
tering techniques such as the Extended Kalman Filter (EKF) or Unscented
Kalman Filter (UKF) due to their complexity and the time required for im-
plementation. This limitation affected the accuracy and robustness of the
state estimation.

Framework Integration: Efforts to integrate state-of-the-art frameworks
like OpenVINS and VINS-Mono were unsuccessful due to compatibility is-
sues and the complexity of integrating these frameworks with the existing
system.

Simplistic Sensor Fusion: The sensor fusion approach used in this project
was relatively simplistic and did not fully leverage the potential of advanced
sensor fusion algorithms, resulting in suboptimal performance.
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6.3 Comparison with State-of-the-Art

Despite the limitations, the implemented VIO system demonstrated compa-
rable performance to existing state-of-the-art frameworks in certain aspects:

Feature Detection and Tracking: The use of ORB and other feature
detectors showed reliable performance in tracking features across frames,
comparable to methods used in OpenVINS and VINS-Mono.

Pose Estimation: The pose estimation approach, although basic, pro-
vided reasonable accuracy in controlled environments. However, it lagged
behind advanced systems in dynamic and complex scenarios.

Real-Time Performance: The system maintained real-time processing
capabilities, which is crucial for applications in agile flight. This aspect is a
significant achievement, given the computational demands of VIO.

6.4 Contributions and Implications

This research contributes to the field of VO somewhat by exploring the
integration of visual and inertial data using commonly available tools and
libraries. The key contributions include:

Implementation Insights: Providing insights into the implementation
challenges and trade-offs of developing a VIO system from scratch. Baseline
Performance: Establishing a baseline performance for a VIO system that
can be improved upon with more advanced techniques and frameworks. Ex-
perimental Validation: Demonstrating the feasibility of using simple sensor
fusion techniques for real-time state estimation in agile flight scenarios.

Sadly due to complications with experiments and attempts to get Open-
VINS working with ROS and node communication or attempting to modify
its estimator to match the implementation performed in this thesis was a
failure and too much time also therefore spent away in troubleshooting in
the C++ program. The community support lacked response for OpenVINS
so the integration with Multi-State Constraint Kalman Filter was unsuccess-
ful. Too much time went on troubleshooting and less on implementation.
This unfortunate led to little or good enough results to compare robustness
in agile VIO systems.

7 Conclusion

This thesis aimed to develop a robust visual-inertial odometry system for
agile flight applications. The primary objectives were to integrate visual
odometry with inertial data, enhance the system’s computational efficiency,
and validate its performance through experiments. Despite several chal-
lenges and limitations, the project achieved the following:

Feature Detection and Tracking: Successfully implemented robust fea-
ture detection and tracking algorithms using ORB and other methods. De-
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veloped a baseline VIO system that can be used as a foundation for further
improvements and integration with advanced frameworks.
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7.1 Future Work

While this research provides a solid foundation, several areas for future work
have been identified:

Advanced Filtering Techniques: Implementing advanced filtering tech-
niques like EKF or UKF to improve the accuracy and robustness of state
estimation. Framework Integration: Successfully integrating state-of-the-
art frameworks like OpenVINS and VINS-Mono to leverage their advanced
features and improve system performance. Enhanced Sensor Fusion: Devel-
oping more sophisticated sensor fusion algorithms to better integrate visual
and inertial data, reducing drift and improving accuracy. Comprehensive
Testing: Conducting more comprehensive testing in diverse and dynamic
environments to evaluate the system’s performance and robustness.
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[23] Engel, J., Schöps, T., Cremers, D. (2014). LSD-SLAM: Large-Scale
Direct Monocular SLAM. Proceedings of the European Conference on
Computer Vision (ECCV). Online: SpringerLink.

[24] Weiss, S., Achtelik, M.W., Lynen, S., Chli, M., and Siegwart, R.
(2012). Real-time Onboard Visual-Inertial State Estimation and Self-
Calibration of MAVs in Unknown Environments. Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA).
Online: IEEE Xplore.

[25] Nistér, D., Naroditsky, O., and Bergen, J. (2004). Visual Odometry.
Proceedings of IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR). Online: IEEE Xplore.

[26] Strasdat, H., Montiel, J.M.M., Davison, A.J. (2010). Scale Drift-Aware
Large Scale Monocular SLAM. Robotics: Science and Systems. VI. On-
line: Robotics: Science and Systems.

[27] Bradski, G., & Kaehler, A. (2023). OpenCV (Open Source
Computer Vision Library) [Software]. OpenCV.org. Available from
http://opencv.org/

[28] E. Rublee, V. Rabaud, K. Konolige and G. Bradski, ”ORB: An ef-
ficient alternative to SIFT or SURF,” 2011 International Conference
on Computer Vision, Barcelona, Spain, 2011, pp. 2564-2571, doi:
10.1109/ICCV.2011.6126544.

[29] D. H. Lee, S. S. Lee, H. H. Kang and C. K. Ahn, ”Camera Po-
sition Estimation for UAVs Using SolvePnP with Kalman Filter,”
2018 1st IEEE International Conference on Hot Information-Centric
Networking (HotICN), Shenzhen, China, 2018, pp. 250-251, doi:
10.1109/HOTICN.2018.8606037.

[30] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J.,
Wheeler, R., & Ng, A. Y. (2009). ROS: an open-source Robot Operating
System. In ICRA Workshop on Open Source Software (Vol. 3, No. 3.2,
p. 5).

[31] https://www.generationrobots.com/blog/en/ros-robot-operating-
system-2/

34

https://ieeexplore.ieee.org/document/6906584
https://ieeexplore.ieee.org/document/6906584
https://link.springer.com/chapter/10.1007/978-3-319-10605-2_54
https://ieeexplore.ieee.org/document/6224884
https://ieeexplore.ieee.org/document/1315099
https://roboticsproceedings.org/rss06/p10.pdf


[32] Chen W, Shang G, Ji A, Zhou C, Wang X, Xu C, Li Z, Hu K. An
Overview on Visual SLAM: From Tradition to Semantic. Remote Sens-
ing. 2022; 14(13):3010. https://doi.org/10.3390/rs14133010

[33] Delmerico, J., Cieslewski, T., Rebecq, H., Faessler, M., & Scaramuzza,
D. (2019). Are we ready for autonomous drone racing? The UZH-FPV
drone racing dataset. IEEE International Conference on Robotics and
Automation. https://fpv.ifi.uzh.ch/

[34] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang and G. Huang, ”OpenVINS:
A Research Platform for Visual-Inertial Estimation,” 2020 IEEE In-
ternational Conference on Robotics and Automation (ICRA), Paris,
France, 2020, pp. 4666-4672, doi: 10.1109/ICRA40945.2020.9196524.

[35] T. Qin, P. Li and S. Shen, ”VINS-Mono: A Robust and Versa-
tile Monocular Visual-Inertial State Estimator,” in IEEE Transac-
tions on Robotics, vol. 34, no. 4, pp. 1004-1020, Aug. 2018, doi:
10.1109/TRO.2018.2853729.

35



A Digital Attachment

Full package project work

36


	Summary
	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Background and motivation
	Background
	Motivation

	Objectives
	Literature review
	Historical development of VO
	Advancements and challenges in sensor fusion
	Integration of SLAM and V-SLAM with VIO
	Future Directions and Ongoing Research

	Delimitation and scope of thesis
	Report Outline

	Theoretical and technological preliminaries
	Notation
	OpenCV for image processing
	Feature Detector

	Camera Pose Estimation
	Eigen for linear algebra
	ROS for Real-Time Data Handling

	Implementation
	ROS Node
	Image Processing
	Undistortion
	Feature Detection and Tracking
	Quaternion Initialization


	Main Result
	Visual Odometry (VO)
	Feature Detection and Tracking
	Motion Estimation
	Bundle Adjustment
	Sensor Fusion

	State Estimation
	Camera Calibration Parameters

	Simulation/Experimental results
	Visual Odometry Results
	Description

	Discussion
	Challenges and Trade-offs
	Limitations
	Comparison with State-of-the-Art
	Contributions and Implications

	Conclusion
	Future Work

	Digital Attachment

