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Summary

This thesis investigates the evolution and co-evolution of proteins and their implications

in molecular biology through a bioinformatics approach. It develops a framework for

studying these processes that operates across the taxonomic scales and at the molecu-

lar level. This framework generates a large-scale overview of evolutionary patterns and

pinpoints specific interaction sites in proteins, leveraging state-of-the-art sequence co-

evolution and protein structural prediction techniques. More specifically, the framework

constructs two tools: a tool for the phylogenetic mapping of protein presence-absence, and

a pipeline incorporating Direct Coupling Analysis for detecting inter-protein co-evolution,

and develops strategies for use of AlphaFold2 for predicting complex protein interactions.

Utilizing this framework, this research addresses critical questions in molecular biology,

particularly in the context of pathway evolution, organism-specific pathway preferences,

and protein-protein interactions. The studies presented in this thesis demonstrate the

application of these tools in various biological contexts involving enzymes in the NAD

recycling pathway and regulatory proteins in the mTOR signaling network. The devel-

oped framework not only advances our understanding of molecular biology but also opens

up new avenues for experimental validation of predicted interactions and further com-

putational exploration, especially towards integration of various types of results. Future

improvements to this framework will focus on incorporations of sequence-based informa-

tion on paralogues and post-translational modifications, improving the interpretability

of results, and incorporating advanced structural prediction models to better handle the

genomic complexity of eukaryotic systems. This thesis underscores the potential of bioin-

formatics in transforming our approach to studying molecular evolution and sets the

stage for future research that could further refine these methodologies and expand their

applicability.
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Sammendrag

Denne avhandlingen utforsker evolusjonen og samevolusjonen av proteiner og deres imp-

likasjoner i molekylærbiologi gjennom et bioinformatisk perspektiv. Den utvikler et ram-

meverk for å studere disse prosessene som opererer p̊a tvers av taksonomiske skalaer og p̊a

molekylært niv̊a. Dette rammeverket gir en oversikt i stor skala over evolusjonsmønstre og

identifiserer spesifikke interaksjonssteder i proteiner, ved å utnytte toppmoderne teknikker

for sekvens-sameevolusjon og proteinstrukturprediksjon. Mer spesifikt konstruerer ram-

meverket to verktøy: et verktøy for fylogenetisk kartlegging av protein tilstedeværelse-

fravær, og en pipeline som inkorporerer Direct Coupling Analysis for å oppdage inter-

protein koevolusjon, samt utviklede strategier for bruk av AlphaFold2 for å forutsi kom-

plekse proteininteraksjoner. Ved å bruke dette rammeverket adresserer denne forsknin-

gen kritiske spørsmål i molekylærbiologi, spesielt i konteksten av biologisk vei(pathway)-

evolusjon, organisme-spesifikke vei-valg og protein-protein interaksjoner. Studiene pre-

sentert i denne avhandlingen demonstrerer anvendelsen av disse verktøyene i ulike bi-

ologiske sammenhenger som involverer enzymer i NAD-resirkuleringsveien og regula-

toriske proteiner i mTOR-signaleringsnettverket. Det utviklede rammeverket fremmer

ikke bare v̊ar forst̊aelse av molekylærbiologi, men åpner ogs̊a nye veier for eksperimentell

validering av forutsagte interaksjoner og videre datamaskinbasert utforskning, spesielt

mot integrering av ulike typer resultater. Fremtidige forbedringer av dette rammever-

ket vil fokusere p̊a inkorporering av sekvensbasert informasjon om paraloger og post-

translasjonelle modifikasjoner, forbedring av tolkbarheten av resultater, og integrering

av avanserte strukturprediksjonsmodeller for bedre å h̊andtere den genomiske komplek-

siteten til eukaryote systemer. Denne avhandlingen understreker potensialet for bioin-

formatikk til å transformere v̊ar tilnærming til å studere molekylær evolusjon og legger

grunnlaget for fremtidig forskning som kan videre utbedre disse metodene og utvide deres

anvendbarhet.
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1 Introduction

This thesis is fundamentally about co-evolution, the process in which two or more entities un-

dergo evolutionary change as a result of reciprocal pressure between them, and how the search

for clues of co-evolution on a molecular level has advanced the field of protein biology, from

a bioinformatic perspective. The three papers and additional work constituting this thesis

combine co-evolution and evolutionary theory into an informatics framework to investigate two

critical types of questions in molecular biology: first, how to detect and use protein presence-

absence to probe biological pathway evolution and organism-specific pathway preferences, and

second, how to predict protein structure and protein-protein interactions for proteins of varying

disorder, size, and complexity such that accurate, de novo structural predictions can be made.

The first work, Paper 1, presents a bioinformatic tool that gives a birds-eye-view of the current

status in protein evolutionary and co-evolutionary patterns across the tree of life, in the form

of a phylogenetic overview of protein presence-absence patterns in selected taxonomic groups

of organisms. Paper 2 then utilises this tool to distinguish between bacterial groups based

on their selective preference for recycling pathways of essential compounds, and thereby sheds

light on the question of the extent to which co-evolution and evolution overall play a role in

influencing this preference, particularly for bacterial groups associated with mammalian hosts.

Paper 3 switches gears and dives deep into interprotein co-evolution by examining the ability

of the state-of-art in protein structure prediction to use co-evolutionary signals in a neural net-

work setup to predict protein-protein interaction sites, focusing particularly on its capabilities

in tackling flexible, large, protein complexes. Additional, unpublished research concentrated

on a pipeline designed for detecting inter-protein co-evolution, aiming to pinpoint interaction

regions among eukaryotic proteins and explore potential signatures of co-evolutionary signals

suggestive of interaction.

This introduction derives protein co-evolution from its molecular basis in evolution and trans-

lates these concepts into sequence-based information. Then, it sets the stage for using this

information within phylogenetic pathway analysis and protein structure and interaction pre-

diction. It presents the biological test cases, the NAD salvage pathway and mTOR signaling

pathways, and concludes with the main objectives of this thesis.

1.1 The evolutionary journey: from Darwin’s theory to modern

molecular evolution

Co-evolution is derived from evolution; therefore, any discussion of these concepts must begin

with a discussion of evolutionary theory, which is best understood in the context of its historical

timeline.

Although widely accepted in the 21st century, the concept of evolution as we know it has itself
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evolved through time, surviving contention and undergoing numerous updates since Charles

Darwin first presented the idea in his groundbreaking Origin of Species [Darwin, 1859] in 1859.

Much of Darwin’s original ideas still hold: that all living organisms stem from a common ances-

tor, that there exists natural variation within a population of organisms, and that differences

between distinct groups of organisms or species observed today arise from inherited variation

across generations of ancestral organisms. These ideas are collectively referred to as descent by

modification, and are glued together by Darwin’s theory of natural selection, whereby variation

in the form of phenotypic traits is, over time, selected for and passed on when it confers a sur-

vival or reproductive advantage to an individual over others in the same population. Darwin’s

theory was constructed on the macroorganismal level, focusing on observable traits, as opposed

to the molecular level, on which most of evolutionary work is done today. It was not until the

independent work of Gregor Mendel (1865), Hugo de Vries (1900), and Correns and Tschermak

(1900) [Allen, 2003] that Darwin’s theory of evolution found its basis at the molecular level, in

an inheritable unit known as a gene.

The discovery of genes kicked off a half-century of groundbreaking genetics research, where a

string of monumental discoveries were made that pushed forward understanding of the mecha-

nisms of evolution. Genetic variation in the form of mutations was characterised by de Vries,

thereby providing a plausible means for genes to change, and the discovery of chromosomes by

Flemming, van Beneden, and Morgan [Hamoir, 1992; Paweletz, 2001; Benson, 2001] provided the

actual inheritable unit carrying the genes. The information contained in genes was decoded as

deoxyribonucleic acid (DNA), chains of adenine, thymine, cytosine, and guanine linked together

by a sugar-phosphate backbone, and the molecular language of genetic information was identi-

fied. In 1953, the work of Watson, Crick, Wilkins, and Franklin culminated into the A-T, C-G

base-pairing paradigm and the structure of DNA [WATSON and CRICK, 1953; FRANKLIN

and GOSLING, 1953]. Shortly thereafter, the universal genetic code, a triplet-codon mapping

from DNA to amino acid, was deduced [Crick, 1968]. The brief summary of these achievements

presented here potentially makes them sound commonplace, which would be incorrect - they

were revolutionary. Together, these achievements effectively launched the field of molecular

biology, and paved the way for the formation of the modern theory of molecular evolution.

The modern theory of molecular evolution is that evolution arises from propagation of vari-

ation in genes in the form of DNA mutations, which occur by random chance and also due

to environmental factors. These mutations can be single point mutations or on the scale of

entire gene duplications, which are common in more complex organisms such as the eukaryotes.

Contrary to Darwin’s theory of natural selection, however, the majority of DNA mutations that

are inherited are thought to be neutral, in the sense that they do not represent a change in

gene products and therefore do not impact their function, and would not be positively or neg-

atively selected for. Neutral mutations are possible due to the degeneracy of the genetic code,

where multiple triplet codons encode the same amino acid, as there is allowance usually in the

third nucleotide of a codon for variation without changing the amino acid it encodes for. Such

2



synonymous mutations are a large source of variation within a population, and their frequency

is compared to non-synonymous mutations to discern the effects of selection. The generally

accepted idea today is that natural selection as Darwin posited has less of a role in bringing

about evolution as was originally assumed, and evolution is recognised as a result of a multitude

of factors, some of which are: genetic drift, gene flow, non-random mating, and mutation-driven.

The idea that the majority of inherited variation is neutral was posited by Kimura (1968-1977)

and King and Jukes (1969) as the neutral theory of molecular evolution [Kimura, 1968; King

and Jukes, 1969]. They compared amino acid exchange rates to nucleotide exchange rates in

highly conserved proteins and found the former to be extremely low compared to the latter.

From a biological standpoint, this means that functional conservation is inbuilt into the sys-

tem, amidst an environment of random variation that becomes fixated throughout generations,

in a process termed genetic drift. Some genetic variation confers a slight advantage, others a

slight disadvantage, but the majority brings about no change to the evolutionary status quo.

Further comparative studies of the evolution of proteins and protein domains corroborate these

findings, and indicate that higher variation accumulates in non-functional regions of proteins,

whereas functional regions tend to be conserved. The neutral theory of molecular evolution

has since been revised to a nearly-neutral theory, upon discovery of non-neutral effects arising

from synonymous mutations [Shen et al., 2022], effects that impact gene expression, mRNA

stability [Zhou et al., 2016], and numerous other downstream processes [Buhr et al., 2016]. The

idea of molecular evolution is therefore still in flux, undergoing revisions based on new data.

These findings, combined with current progress in sequencing and data availability of protein

sequences, present a rich platform from which to study molecular evolution.

Focusing on protein evolution as opposed to nucleotide-level evolution is a more direct way to

study the effects of evolution, as seen from a functional standpoint, since proteins carry out

function in the biological context. This thesis therefore focuses on molecular evolution and

co-evolution at the protein level.

1.2 Unraveling co-evolution: insights into reciprocal evolution-

ary pressures and molecular interactions

Co-evolutionary pressures arise from sustained interactions that select for certain traits within

an ecological or molecular niche. Wherever evolution occurs, co-evolution most certainly occurs

alongside it, since no species on this planet exists solely in a vacuum, and the scarcity of re-

sources brings about intense interactions that, over time, select for reciprocal changes that drive

co-evolution. This has been observed between many organisms, and a classic example is the co-

evolution of pollinating machinery between the Malagasy orchid plant, Angraecum sesquipedale,

and its pollinating hawkmoth, whereby the length of the orchid’s nectar tube and the length

of the moth tongue purportedly participated in a mutual elongation ‘arms race’ [Darwin, 1862]

such that pollination and nectar retrieval could be optimised [Johnson and Anderson, 2010].
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Co-evolution not only occurs between organisms but also inside individual organisms, namely

between the cellular components that carry out their biological function. After all, like evolu-

tion, the basis of co-evolution is found at the genetic level, and the effects of it are compounded

upwards, such that co-evolutionary changes ultimately manifest in the phenotype of an organ-

ism.

The concept of co-evolution, coined by Ehrlich and Raven in 1964 [Ehrlich and Raven, 1964], is

actually as old as the concept of evolution [Darwin, 1862] and has similar roots in macrolevel ob-

servations, in the form of phenotypic traits that have evolved due to reciprocal pressure between

interacting species. Abundant examples of co-evolving traits are found in nature, such as host-

parasite co-evolution between plants and fungi that drives up plant resistance and pathogen

virulence [Thrall and Burdon, 2003] and the symbiotic co-evolution of pollinating interfaces

between plants and their pollinators [Darwin, 1862; Pauw et al., 2009], mentioned earlier. Co-

evolution occurs not only between pairs, but also between multiple interacting entities, a concept

known as diffuse co-evolution [Pazos and Valencia, 2008; Carmona et al., 2015], that tends to

take place within populations. As is the case with evolution, the central idea of co-evolution

has a molecular basis, and can be traced to the level of nucleotide mutations [Lynch, 2023],

with the main difference being that co-evolutionary changes are brought about by reciprocal

selective forces imposed by interaction between two evolving bodies, as opposed to independent

selection from potentially shared pressures that can come from external, environmental sources.

The bulk of studies on co-evolution focuses internally, on correlated amino acid changes and

protein co-evolution between the proteins within a certain species, but relies on comparison to

homologous proteins from different species to extract co-evolutionary patterns. Such patterns

are identified at the amino acid residue level as changes in one or multiple residues that bring

about a change in residues at another site, which can be within the same protein (intra-protein

covariation), or between proteins (inter-protein covariation). The more that residue pairs are

seen to covary, the higher the likelihood that they are functionally relevant to each other, often

at an interaction interface (inter-protein) or to maintain the correct fold of a protein (intra-

protein).

The search for evidence of protein co-evolution is not straightforward, since already in the sim-

plest, pairwise case, it requires deducing two dependent evolutionary trajectories from proteins

suspected to interact. This represents several layers of stacked assumptions, not all of which

are easily verifiable. For instance, the base assumption of protein-protein interaction may be

demonstrated in one species through experimental means, and yet unknown in related species,

so searching for co-evolutionary signals from sequence comparisons between the purportedly in-

teracting protein families often runs into confounding information. For example, in a large-scale

case study of potential coevolution in yeast proteins, correlated evolution was found but not due

to co-evolution and instead was attributed to shared function within a certain pathway without

direct interaction [Hakes et al., 2007]. Additionally, proteins within an organism often do not

evolve at the same rates [Zhang and Yang, 2015], therefore co-evolution between two proteins
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is not necessarily symmetric. Due to these difficulties, true co-evolution is hard to identify,

and some experts argue that co-evolution is overrepresented, or not as well demonstrated with

empirical evidence as evolution overall [Carmona et al., 2015].

From a practical standpoint, however, whether co-evolution is really behind observed correlated

evolution is often not the point; rather, it is the the utility of co-evolution as a conceptual frame-

work to study protein-protein interaction and protein function overall that has revolutionised

protein research. This utility was demonstrated early on [Pellegrini et al., 1999] and has been

confirmed independently on multiple counts thereafter [Süel et al., 2003; Lovell and Robertson,

2010]. One of the earliest studies identified co-evolution as a correlated presence-absence pat-

tern of proteins across related species and used this correlation to successfully assign function

to previously unknown proteins [Pellegrini et al., 1999]. This established that co-evolutionary

patterns on the whole-protein level can be detected using phylogenetic techniques. Focusing

on correlated amino acid changes in protein domains, another study found such covariation to

be indicative of structural proximity and therefore useful to identify binding sites or potential

binding partners within a protein complex [Yeang and Haussler, 2007]. Current state-of-the-art

protein structure predictors use co-evolutionary information to narrow the search space of po-

tential structures constructed from biophysical neural network models [Roney and Ovchinnikov,

2022]. Altogether, the use of co-evolution as a search for covariation between protein sequences

has proven critical in supporting protein evolutionary and functional studies.

1.3 Computational advances in detecting protein co-evolution:

from mirrortree to direct coupling analysis

The search for evidence of protein co-evolution is done mostly computationally, as a mining of

evolutionary sequence information. This is partly due to the fact that the time scale on which

co-evolution takes place is not easily reproduceable in a lab setting, even for rapidly repro-

ducing organisms, limiting experimental studies of co-evolution. Furthermore, the volume of

sequence data and the scale on which co-evolution information can be extracted requires compu-

tational approaches, which effectively guide experimentation and therefore complement wet-lab

co-evolutionary studies. Computational co-evolutionary methods can be divided between phy-

logenetic methods, global statistical models of sequence alignments, and neural-network based

learning of sequence covariation, all of which rely on large databases of protein sequence data

to identify co-evolutionary patterns. The timeline of development of these methods thus fol-

lows closely the development of high throughput sequencing methods in the last three decades.

Generally, the more sequences there are for a taxonomic group, the better the sequence cover-

age of that group in terms of how well the evolutionary picture of the group can be reconstructed.

The first generation of co-evolutionary methods, called mirrortree methods, were developed

following a surge of sequence availability in the early 2000s. Mirrortree methods stemmed from

observations that proteins suspected to co-evolve had similar evolutionary histories, as seen
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in the branching pattern of their phylogenetic trees [Pazos and Valencia, 2001; Ramani and

Marcotte, 2003]. In other words, the evolutionary distances between the proteins was similar

enough that the proteins are suspected to have evolved together. This was attributed to the

fact that interacting proteins are bound by similar evolutionary constraints in terms of the

pressure to maintain functional interaction, and participation in the same biological pathways

thus binds their evolutionary histories together. Through this, the rate of change in interacting

partners is influenced from two sides, in the sense that changes to one partner select for and

bring about changes to the other. Such methods are essentially a comparison of correlation

between phylogenetic distances. Mirrortree methods have been used to successfully identify

novel protein-protein interactions [Juan et al., 2008; Zhou and Jakobsson, 2013], and also at the

molecular level, to identify interaction sites [Dou et al., 2006]. However, a critical limitation of

this method is that the assumption of co-evolution is not always correct. Using similarity of evo-

lutionary trajectories as a proxy for existence of co-evolution is incomplete, as it doesn’t directly

test for co-evolution at the molecular level, nor does it account for the influence of background

evolution of the organism harboring the protein, which tends to bias phylogenetic branching.

The case mentioned earlier where independent evolution occurs within a similar environment

certainly applies here. Mirrotree methods essentially detect the balance between conservation

of sequences and (potential) co-evolution of sequences, and have been found to perform best

within a slightly wider span of evolutionary time scale [Zhou and Jakobsson, 2013], limiting its

applicability for proteins on a narrower evolutionary time span, that have diverged less from

their ancestral interacting forms.

The second approach to identify protein co-evolution, developed in the 2010s, involves search-

ing multiple sequence aligments (MSAs) for covariation patterns, and fitting an approximate

statistical model that accounts for the patterns of covariation observed. Columns in the mul-

tiple sequence alignment represent positions within the protein, and covariation is detected

between two columns as corresponding mutation events, occurring in the homologous proteins

of related species (see Fig. 1). This means that if a significant number of amino acid substi-

tutions occurred at some position, and a matching pattern of substitutions is found at another

position in the same species, co-evolution could have been responsible. The two terms, covari-

ation and co-evolution, are not interchangeable - and are used here to refer to the evidence of

correlated mutations in the MSA and the overall evolutionary mechanism behind this, respec-

tively. Sequence covariation-based approaches attempt to directly extract co-evolving signals

from a sequence-based evolutionary overview of a protein, and were developed first in the

single protein case, to study protein folding, and then extended to the interprotein case, to

study protein-protein interactions (PPIs). In the first case, covariation serves as an indicator

of residues in proximity in the protein, such that these residues maintain the structure of the

protein, whereas in the second case, covariation indicates residues important for PPI. The type

of protein co-evolution detectable through covariation is between regions that have some vari-

ability and are not highly conserved. Many functional regions within and between proteins are

highly conserved, and therefore covariation-based co-evolutionary methods are known to show
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some bias to background conservation levels, and report inconsistent levels of covariation [Fodor

and Aldrich, 2004].
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Figure 1: Illustration of covariation in MSA: How co-evolutionary methods work: reciprocal muta-

tions, or covariation, detected between positions a and b are given a score according to a global statistical

model that calculates coupling scores across all pairwise combinations of residues in this inter-protein

case. MSAs corresponding to the proteins are labeled with the target sequence in a colored box, with

the color matching the structure. Structures were rendered via PyMOL Schrödinger, LLC [2015].

The earliest sequence-based covariation methodology borrowed the concept of mutual infor-

mation (MI) from information theory to map covariation within an MSA, by comparing dis-

tributions of amino acids in two MSA positions to detect if one position’s distribution was

dependent on the other [Dunn et al., 2008; Schug et al., 2009; de Juan et al., 2013]. This was

initially done irrespective of the types of amino acids in the distributions, and therefore did not

incorporate information on biologically relevant amino acid substitutions [Dunn et al., 2008].

Covariation detected by MI was shown to generate many false positives, as it was easily im-

pacted by random variations or noise, phylogenetic background biasing residue distribution, and

low sequence availability [Martin et al., 2005; Weigt et al., 2009]. One important shortcoming

that MI methods brought to attention was that covariation could arise between residues that

were not directly interacting (e.g. allosteric regulation), but indirectly covarying due to sharing

interactions with a third residue, or even to multiple other residues. MI methods detect covari-

ation on a pairwise level, and were lacking a global overview of covariation patterns across the

entire protein. The next generation of co-evolutionary methods focused on solving this issue,

and did so first with global inference based on the message-passing algorithm from statistical

physics [Weigt et al., 2009], and this methodology was eventually named direct coupling analysis.

Direct coupling analysis (DCA) expands on MI methods by introducing a residue de-coupling

step based on the generalised Potts model, which essentially assigns a probability to each se-

quence in an MSA based on detected ‘spins’ of 20 possible orientations (20 standard amino
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acids), calculated over all pairwise combinations of positions in the MSA. The parameters of

this model make a statement about first the tendency of an amino acid to be found at a certain

position in the MSA, and then gives a numeric value associated with the tendency of a posi-

tion to be dependent on another position, for every other position possible in the MSA. The

model is therefore fully connected, and each pair is assigned a coupling score, which represents

the strength of covariation between those two positions, as seen relative to the entire scope of

covariation present in the MSA. One key bottleneck in the use of DCA was that using the gen-

eralised Potts model requires the calculation of a normalisation constant (to ensure all sequence

probabilities summed to 1), which, for large MSAs, becomes computationally intractable (see

Section 2). The first formulation of DCA [Weigt et al., 2009] approximated this normalisation

constant using the message-passing algorithm, and further development of DCA focused on

optimising this approximation process to make DCA applicable to larger proteins and deeper

MSAs. This led to many flavours of DCA: mpDCA [Weigt et al., 2009], mfDCA [Morcos et al.,

2011], gaussDCA [Baldassi et al., 2014], and plmDCA [Ekeberg et al., 2013]. What is notable

about DCA as a co-evolutionary method is that, compared to previous methods, it performed

consistently well in benchmark studies on bacterial proteins or protein complexes, and was able

to accurately identify residue-residue interactions that were important to maintain protein fold-

ing or PPI [Uguzzoni et al., 2017]. DCA came to dominate the field, and is still one of the

main co-evolutionary methodologies, although its current applications have shifted away from

protein structure prediction and protein-protein interactions.

1.4 Advancements in protein structure prediction: the rise of

neural network methods

The development of co-evolutionary methods has been a key component of a larger scientific

effort to predict protein structure and protein-protein interaction at the residue-level, and while

mirrotree, MI, and DCA methods contributed a significant amount to this effort, the recent

application of deep learning methods, in particular of neural network (NN) architectures, out-

performed all previous methods and completely reset the field. Successful NN-based methods

have taken advantage of the growth in protein sequence data and the improvement of compu-

tational hardware and resources to train the predictors to not only learn co-evolutionary infor-

mation but also biochemical constraints and other features important in the protein structural

and interaction prediction problem. NN-based methods are therefore much more effective at

extracting information from an MSA, compared to previous co-evolutionary methods. In fact,

NN-methods constitute a category of their own, and have developed beyond co-evolutionary

prediction. One NN-method relevant to this thesis is Google Deepmind’s AlphaFold2 [Jumper

et al., 2021], and it will be explored more in depth in Section 2 and Paper 3.

1.5 Test case 1: NAD pathway from protein perspective

Nicotinamide adenine dinucleotide (NAD) and its phosphorylated version NADP are essential

coenzymes for metabolism and many other bioenergetic processes in all living organisms. NAD
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serves a catabolic function, mainly as a coenzyme in redox reactions, cycling between oxidised

NAD+ and reduced NADH forms to ultimately synthesise and transfer energy in the form of

ATP to fuel other pathways [Chiarugi et al., 2012]. NADP also shuttles electrons but mainly

serves an anabolic function, also to maintain cellular redox homeostasis.

From its redox role, NAD is involved in glycolysis, fatty acid oxidation, and the citric acid cycle

[Ziegler and Niere, 2004]. NAD also plays a role in intracellular signal transduction pathways,

influencing DNA repair and gene expression, and when this is the case it is consumed and con-

verted to nicotinamide (Nam). To fuel the multitudes of NAD-consuming reactions, cells need

to maintain sufficient pools of NAD, and therefore intracellular NAD concentration is tightly

regulated [Ruggieri et al., 2015]. Replenishing of NAD levels is accomplished through NAD de

novo synthesis and NAD salvage from Nam. Cellular strategies to maintain NAD levels vary

throughout the taxonomic kingdoms and also cell and tissue types [Ding et al., 2021; Amjad

et al., 2021], but generally consist of a mix of biosynthetic and salvage pathways, such that

some level of redundancy is preserved.

Two biosynthesis pathways have been identified for NAD. The Preiss-Handler pathway starts

from nicotinic acid (NA), obtained through dietary means from niacin, which is phosphori-

bosylated to nicotinic acid mononucleotide (NAMN) by nicotinate phosphoribosyltransferase

(NAPRT), followed by NAMN adenylation to NAAD by NAMN transferase (NMNAT) and

finally NAAD amidation NAD+ by NAD synthase [Preiss and Handler, 1958; Ruggieri et al.,

2015]. The Preiss-Handler pathway is by far the most studied NAD biosynthetic pathway, and

is present in both prokaryotes and eukaryotes [Bockwoldt et al., 2019]. The second biosynthetic

pathway, the de novo synthesis pathway, starts from either of the amino acids: aspartate (plants

and bacteria), tryptophan (mammals, fungi, other bacteria), and converges at quinolinic acid

(QA) to undergo a three-step conversion to NAD, which represents the NAMN-NAAD-NAD

steps of the Preiss-Handler pathway.

In addition to these pathways, NAD salvage from Nam is an important source of NAD recy-

cling back into the system, and constitues most of the newly synthesized NAD+ in human cells

[Chiarugi et al., 2012]. Two salvage pathways have been identified: a two-step pathway involv-

ing the phosphoribosylation of Nam into Nam adenine dinucleotide (NMN) by nicotinamide

phosphoribosyltransferase (NAMPT), and the adenylylation of NMN to NAD by NMNAT, and

a four-step pathway that starts with conversion of Nam to NA by nicotinamidase (PncA), fol-

lowed by the three reactions of the Preiss-Handler pathway. The two-step salvage pathway is

found to dominate in vertebrates, and is characterised by a high affinity of NAMPT towards

Nam, such that nearly all of the Nam present is recycled in to NAD. This makes it more en-

ergetically efficient than the four-step pathway. Previous work on the evolutionary trajectories

of these two pathways [Gazzaniga et al., 2009; Gossmann et al., 2012; Bockwoldt et al., 2019]

showed a mixed picture, with preference for the four-step pathway in many bacteria, but pres-

ence of the two-step pathway in other prokaryotes and sometimes coexistence of both pathways

9



in prokaryotes and eukaryotes.

Disregulation of NAD metabolic and signaling pathways is implicated in tumor formation and

cancer phenotypes of various tissues, as well as numerous age-related disorders, and a significant

amount of biomedical research focuses on targeting enzymes that have regulatory roles on

intracellular NAD levels. Due to the importance of NAD salvage from Nam in mammals as a

way to maintain constant NAD supply, the salvage pathway is a prime target for such therapies.

Metabolic modeling efforts, combined with experimental evidence, have identified key steps

of the two-step pathway and the biosynthetic pathway as regulatory targets [Ruggieri et al.,

2015]. Gaining an evolutionary perspective on the various strategies employed by organisms

to maintain NAD homeostasis is crucial in further advancing the NAD pathway as a cancer

treatment target.

1.6 Test case 2: mTOR signaling from a protein perspective

The eukaryotic mechanistic target of rapamycin (mTOR) signaling pathway serves as a central

regulatory hub of many anabolic cellular processes such as cell growth and proliferation, and

catabolic processes such as autophagy and apoptosis. The mTOR pathway translates both

internal and external factors in the form of growth factors, amino acids, energy status, and

oxygen levels, among other factors, to control gene transcription, protein and lipid synthesis,

mitochondrial metabolism and biogenesis, and many other processes related to cell growth [La-

plante and Sabatini, 2009; Zou et al., 2020]. Naturally, then, mTOR pathway deregulation

and general dysfunction has been implicated in tumor growth and cancer, and much of current

research focuses on mapping out the entire mTOR pathway and identifying the functions of

subpathways as targets for cancer-fighting therapeutic purposes [Saxton and Sabatini, 2017].

The mTOR signaling pathway is large and operates in a multi-compartmental arena, consist-

ing of protein-protein interactions of 241 unique proteins, and protein interactions with genes,

RNA, and numerous other molecules across intracellular and extracellular zones [Caron et al.,

2010]. The entirety of mTOR pathway activity is organised around two protein complexes,

mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). These complexes are both

named after their central component, the mTOR protein, a serine/threonine kinase from the

PI3K-related kinase family, which forms the catalytic subunit of these two complexes. mTORC1

and mTORC2 differ in their protein composition of regulatory partners and general function -

mTORC1 promotes cell growth through lipid and nucleotide synthesis, protein synthesis, and

control of autophagy, and mTORC2 functions as an insulin-dependent regulator of cell survival

and proliferation [Saxton and Sabatini, 2017]. The functions of mTORC1 have, compared to

mTORC2, been more comprehensively determined. However, a full characterisation of the en-

tire pathway, with computational modeling and experimental validation, is yet to be completed.

This thesis focuses on selected protein components of three subpathways in mTOR signaling
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involving mTORC1 function and regulation, from the perspective of interaction site and struc-

tural modeling. The first process involves protein synthesis via mTORC1 phosphorylation of

the eukaryotic initiation factor 4E (eIF4E)-binding proteins (4EBP1, 4EBP2). Phosphorylation

of the 4EBPs changes their mode of binding to eIF4E, allowing for mRNA translation to occur

[Böhm et al., 2021]. The proteins examined here are constituents of the 4EBP:eIF4E complex.

The second process involves the tuberous sclerosis (TSC) complex, an important negative reg-

ulator of mTORC1 and therefore a control switch on all downstream cell growth-promoting

processes [Huang and Manning, 2008]. TSC complex-mediated regulation of mTORC1 occurs

at the lysosome [Prentzell et al., 2021; Rehbein et al., 2021], through the binding of a compo-

nent protein of the TSC complex, TSC2, with a tethering protein, the Ras GTPase-activating

protein-binding protein 1 (G3BP1). From this subpathway, we therefore focus on G3BP1:TSC2

binding. The final protein complex examined involves a subcomponent of mTORC1, Raptor,

and its regulatory substrates 4EBP1 and S6 kinase 1 (S6K), that are responsible for nutrient

sensing and also mTORC1 inhibition [Kim et al., 2002]. These protein complexes are examined

for their regulatory relevance in mTOR signaling and for their potential co-evolutionary history,

as well as for the challenging protein characteristics when it comes to structural modeling.
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1.7 Thesis objectives

Protein evolution and co-evolution are two key theories that form the basis for and continue

to shape research into protein function at the molecular, cellular, and whole-organismal levels.

The primary objective of this thesis is to build upon existing bioinformatic methodology for

identifying protein co-evolutionary patterns, both on the taxonomic, species-level scale, and also

at the molecular level, in PPI. We thus first develop a novel tool to phylogenetically map protein

presence-absence in the context of studying metabolic and signaling pathways: a map that can

be used as a large-scale overview of evolutionary and potential co-evolutionary patterns. Then,

we develop a pipeline to incorporate DCA and detect co-evolution between dimerising proteins,

with the aim to pinpoint potential interacting regions in the PPI context. We also construct a

novel visualisation scheme for co-evolutionary results. Finally, we benchmark AlphaFold2, the

current state-of-the-art in protein structure prediction, which has been trained on co-evolution

information, through testing its ability to handle prediction of PPI interfaces for the difficult

use case of a large and dynamic protein complex.

More specifically, the aims of this thesis are, as outlined by research question and the corre-

sponding objective(s) per paper:

How can co-evolution and evolution of proteins be mined out of the current landscape of protein

sequence data in such a way that association patterns can be compared across many organisms?

Objective 1 (Paper 1): Develop and present a tool to extract protein presence-absence infor-

mation from sequence databases to span the entirety of the taxonomic tree and output results

that enable users to identify large-scale patterns for groups of proteins, for the purpose of study-

ing taxa-specific biological pathway preferences arising from evolution or co-evolution. Test tool

on a specific biological use case.

Objective 2 (Paper 2): Apply the tool from Paper 1 to another biological test case, to explore

if there are temperature-dependent NAD recycling pathway preferences across extremophilic

bacterial clades, or habitat-dependent preferences in bacterial clades associated with eukaryotic

hosts.

For detecting protein sequence co-evolution, how viable is DCA as a means of identifying inter-

protein co-evolution for the purpose of finding PPI at the residue-level?

Objective 3 (unpublished results): Develop a tool that wraps DCA into a pipeline for

dimeric co-evolutionary detection, and test if detected co-evolution is a reliable indicator of

interaction in protein pairs from the mTOR pathway. Create a set of visualizations to represent

co-evolutionary scores focusing on comparison of score amplitudes and residue pair connectivity.

Given that protein co-evolution information has been incorporated into the training of AlphaFold,
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can the algorithm reliably predict protein-protein interaction for non-standard test cases?

Objective 4 (Paper 3): Develop strategies to use AlphaFold Multimer to predict protein-

protein interaction interfaces on disordered and dynamic protein complexes from the mTOR

signaling pathway, to test if the prediction algorithm can identify interactions at the residue-

level.
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2 Materials and methods

The methodology for this thesis work is divided into three categories: large-scale extraction of

protein presence-absence information, protein sequence co-evolutionary detection, and protein

structure and PPI prediction. These methods are computational, and drew data from publicly-

available databases from the National Center for Biotechnology Information (NCBI) [Dat, 2016]

and its constituent sequence database hubs. These methods were also inspired from collabora-

tions with biological laboratories in Bergen (Ziegler lab) and Innsbruck (Thedieck lab). Section

2.1 discusses these partnerships, and the origin and use of data in this thesis work overall.

Sections 2.2 - 2.4 give technical outlines of the three methodological categories: phylogenetic

presence-absence analysis, co-evolutionary pipeline with direct coupling analysis (DCA), and

structural prediction with AlphaFold [Jumper et al., 2021]. Bioinformatic work, especially that

which involves large-scale sequence queries and neural network constructions, is reliant on com-

puting systems to support analysis. Section 2.5 thus presents the computational setup that

made the analysis in this work possible.

2.1 Data

Protein sequence data and structural data were extracted from online databases hosted by the

NCBI, with emphasis on ensuring correctness and quality of the data by using human-verified

annotated sequences whenever possible. Target protein sequence data was taken from the Swis-

sProt UniProtKB database [Apweiler et al., 2004] as verified protein sequences, and large-scale

queries of up to 5000 related sequences were submitted against the NCBI non-redundant (nr)

database. These sequences span the entire taxonomic tree of life. To verify predicted contacts

and/or structure, reference protein structure and sequence data were taken from the Protein

Data Bank [Berman et al., 2000]. Through these online sources, the majority of data used in

this project is publicly available and made accessible with the versions of databases used in

queries specified in the respective manuscripts.

Collaborations with Mathias Ziegler’s lab at University of Bergen, and Kathrin Thedieck’s lab

at the University of Innsbruck provided data in the form of experimentally-driven inspiration

for this project, particularly in guiding the choice of biological pathway and protein targets

to explore with co-evolutionary analysis and for phylogenetic analysis and modeling with Al-

phaFold. The Ziegler lab focuses on the NAD pathway and cellular bioenergetics, and therefore

influenced the use case of NAMPT and PncA in Paper 2, whereas the Thedieck lab focuses

on the mTOR pathway and cellular metabolism, and thus provided support and ideas for the

modeling of the 4EBP complex and the TSC complex in Paper 3, and the Raptor complex in

our unpublished results.
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2.2 Phylogenetic presence-absence analysis

The methodology for the large-scale extraction of protein presence-absence information is com-

prehensively described in Paper 1 as a software tool, VisProPhyl, therefore this section only

presents the workflow diagram for the pipeline (Figure 2), followed by a brief overview of the

methods, and the reader is referred to Paper 1 for more detailed descriptions of each step.

The VisProPhyl tool is available on GitHub at https://github.com/MolecularBioinformatics/

VisProPhyl. The main workflow is written into the phylogenetics.py script, which is as follows:

Target protein sequences of interest (usually human sequences) are taken from the function-

ally verified UniProt Swiss-Prot database (release 2022.4), and submitted as queries via Blastp

[Altschul et al., 1990; Camacho et al., 2009] to the NCBI nonredundant (nr) protein database

(release 2022.2.21) [Dat, 2016]. Blastp parameters are kept at defaults (BLOSUM62 matrix,

word-size 6, gap-open cost 11, extension cost 1, and e-value threshold 0.001) with the exception

of an increase in maximum number of hits returned to 5000. Sequence sets consisting of the

target protein with its blasted hits are filtered for false positives based on implementing a mini-

mum length cutoff per protein and an e-value cutoff (1e-30) based on cross-hits. These sequence

sets are taken to be representative of a protein’s pattern of spread over the taxonomic groups.

Using ETE Toolkit [Huerta-Cepas et al., 2016] and NCBI’s taxonomic tree [Schoch et al., 2020],

the blast results are combined and mapped to a phylogenetic tree, and also to a heatmap for

a zoomed-in view on presence / absence patterns for model organisms. Scripts for the analysis

are written in Python 3.5.

2.3 Protein sequence co-evolutionary workflow

We developed a pipeline to perform protein sequence co-evolutionary detection for this thesis

work, tying together methodology for sequence querying, multiple sequence alignment, and di-

rect coupling analysis, with the necessary input and output (IO) processing steps in between.

This pipeline detects dimeric, 2-body inter-protein coevolution, as well as any intra-protein

coevolution individually in either of the partners. Code for this pipeline can be found at:

https://github.com/MolecularBioinformatics/euk_dim_dca.git. The procedural steps

for this pipeline (corresponding to the script run workflow.py in the GitHub repository) are

given as a workflow diagram in Fig. 3, together with columns indicating file output formats

and technical descriptions of each step.

As the co-evolutionary methodology is not factoring into Papers 1-3, it is described in detail

here. The co-evolutionary workflow consists of 10 steps and is divided into 5 intermediate stages

(grouped by color in Fig. 3) : (1 - gray) collection of target protein reference sequences, (2 -

brown) homolog search through phmmer [Finn et al., 2011], (3 - red) sequence extraction and

quality check, (4 - blue) alignment creation with Muscle [Edgar, 2004] and post-processing, and

(5 - violet) computation of mfDCA coupling scores with pydca [Zerihun et al., 2020]. Following

the pipeline is a post-processing and visualisation scheme.
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Figure 2: Workflow Diagram for Phylogenetic Presence-Absence Analysis: All steps

correspond to the phylogenetics.py script in the GitHub repository: https://github.com/

MolecularBioinformatics/VisProPhyl. The left-most column shows the main procedure of sequence

file querying, sequence hit filtering, and result combination, followed by heatmap and tree visualisations.

Arrows to the right show the file outputs per step, and their location in the folder scheme. Refer to

Paper 1 for an in-depth methodological explanation of the workflow.

2.3.1 Stages 1 - 3

Accurate detection of sequence coevolution depends first on finding potentially homologous se-

quences related to target proteins. The search for homologous sequences was carried out by
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Figure 3: Workflow Diagram for Co-evolutionary Analysis: All steps correspond to the

run workflow.py script in the GitHub repository: https://github.com/MolecularBioinformatics/

euk_dim_dca.git. The left-most column shows steps from preliminary input file preperation through

the start to the end, passing through five colored stages for a total of 10 steps in total. The general flow

follows target sequence identification, sequence querying to identify homologs, extraction of reference

sequences for the homologs, filtering of homolog sets based on common organisms across the two sets,

multiple sequence alignment of homologs to the target, and co-evolutionary analysis. The middle column

details output file formats, and the right-most column gives a concise technical description of each step.

submitting target protein sequences as queries with the phmmer [Finn et al., 2011] database

search tool, which performs database search with Hidden-Markov model profiles, and queried

17

https://github.com/MolecularBioinformatics/euk_dim_dca.git
https://github.com/MolecularBioinformatics/euk_dim_dca.git


against the UniProtKB/SwissProt database (release v. 2019 11) [Apweiler et al., 2004]. The

parameters used in the phmmer runs were left at default (i.e. gap open probability 0.02, gap

extend probability 0.4, substitution matrix BLOSUM62), the inclusion threshold (E-value ≤
0.001), and the maximum number of iterations set at 5. To obtain a preliminary set of putative

homologs, the first 5000 hits were taken for each of the target protein queries. A basic quality

check on E-value ranges and bit scores was performed on these hits, and sequences scoring over

the E-value threshold were discarded. The full sequence bit score and bias correction values

were compared per sequence to make sure high-scoring non-homologs were not retained. Using

the accession IDs of these two sets of top 5000 hits, the corresponding full sequences were ex-

tracted from the UniProt database using Hmmer’s easel miniapp toolkit.

An important step after extracting and quality checking homologous sequences is to determine

if the homologous sequences from either protein partner are themselves interacting, such that

each line of the multiple sequence alignment created from the queried set contains a pair of

interacting proteins. Ensuring interaction is currently an open problem, as the verification

of interaction lags behind sequence discovery, and is especially tough for eukaryotic sequences

that have no operon-like genomic location to use as proxy for interaction. At the very least,

paired sequences should originate from the same organism. In the pipeline, the sets of 5000 top-

scoring sequences are thus cross-examined for common organisms. One representative sequence

was retained per organism (per protein), which was chosen to be the longest sequence, to

avoid selecting subsequences. Then, the effective number of sequences (Neff) is calculated, and

average sequence identity is checked. At this point, two equally sized sets of sequences have been

curated, with homologs to each target sequence that originate from the same set of organisms.

These two sequence sets are aligned and then paired by organism in the next stage.

2.3.2 Stages 4 - 5

Muscle (v3.8.21) was used to build an MSA per protein ‘family’, consisting of the target pro-

tein, aligned with its potential homologs. Resultant alignments were then trimmed using the

target protein as a reference, to cut down on the number of gaps in the alignment (pydca

trim by refseq). At this stage, both alignments contain paired sequences of the corrected length,

and are submitted to pydca for calculation of co-evolutionary values.

Of the various direct coupling analysis (DCA) frameworks available today, mfDCA is preferred

for its ability to handle computationally-intensive, high-throughput tasks, with minimum sacri-

fices in terms of predictive accuracy. The implementation of mfDCA from pydca Zerihun et al.

[2020], a Python-based DCA suite, is used here to calculate residue-residue co-evolutionary

scores. Co-evolutionary scores generated through this pipeline are further analysed by taking

slices of the top 100 - top 500 highest scoring residue pairs, and visualised on the structure (if a

structure is available) or as parallel plots or hairball plots, which are demonstrated in Section

3.
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2.3.3 Post-processing: Visualisation of co-evolutionary scores and MSA anal-

ysis

This co-evolutionary pipeline returns DCA scores for every pairwise combination of residues,

therefore only the top scoring residue pairs are taken for further analysis and visualisation.

By convention, the top 100 to top 500 scoring residues are analysed. DCA score ranges are

not intercomparable between separate co-evolutionary analyses, meaning that the strengths of

co-evolutionary signal between a pair of residues is relative only to other residue pairs within

the same protein(s) of the co-evolutionary analysis. Furthermore, mfDCA as implemented in

[Zerihun et al., 2020] does not normalise scores, therefore score ranges can vary from -1 to +3

in our analyses. It is not the absolute value but the relative value of the score that is taken for

further interpretation.

Then, to complement DCA scores, we compute conservation scores per column of the MSA.

High conservation typically inhibits substantial co-evolution, whereas high variability fosters

it. Hence, conservation scores act as a validation measure for the DCA methodology when

applied to individual residue pairs. ConSurf [Ashkenazy et al., 2016], a bioinformatic tool

that infers functional domains from nucleic acid or amino acid sequences, is used to compute

the conservation scores. ConSurf ties together sequence homology search via BLAST or CS-

BLAST2 [Altschul et al., 1990], multiple sequence alignment with MAFFT [Katoh et al., 2002],

and phylogenetic tree building via Rate4Site4 [Mayrose et al., 2004] to compute the evolution-

ary rates and conservation scores used in its functional domain inference. ConSurf outputs

the original query sequence, with each residue ranked 1-9 from low to high conservation, and

also labeled with predicted solvent accessibility (exposed/buried) and also its inferred pur-

pose (functional/structural). The ConSurf web server https://consurf.tau.ac.il/consurf_

index.php was used in this analysis.

As a summary of results, DCA score amplitude, residue pairing, and conservation, are visu-

alised using a novel series of plots (see Fig. 4). Hairball network visualisations (leftmost panel,

Fig. 4) show linkage patterns of interprotein residue pairs scoring within a defined range of

co-evolutionary values (e.g. top 100, 300). In a hairball plot, nodes represent amino acids,

numbered according to their sequence positions, and coloured based on the protein of origin,

and edges represent connections, or the links between amino acids that may have undergone

co-evolution. Node sizes reflect the degree, or the number of outgoing connections made by

that amino acid to residues from the other protein. The plots are created as bipartite graphs

from the R package igraph [Csárdi and Nepusz, 2006], with visualisation layout ’fruchterman

reingold’. Score histograms are created with MatPlotlib [Hunter, 2007] to show the distribution

of DCA scores, and also to indicate ConSurf conservation scores together with parallel plots

(rightmost panel, Fig. 4) from Plotly [Inc., 2015], which show highly co-evolving residues be-

tween two proteins, where the indices for each protein’s residues are displayed on either vertical

axis, and lines are drawn where co-evolution is detected, with the coloring of line indicating the

magnitude of the score.
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The final post-processing step is to extract information from the input MSAs, to better under-

stand sequence depth and taxonomic composition of our input. Calculations of the effective

number of sequences (equivalent to the number of sequence clusters at 62% sequence similarity)

are compared to the total number of sequences. Then, metadata is extracted from UniProt with

information on the species of origin of each sequence, to search for potential taxonomic bias in

the MSA.

  

distribution of top 
X coupling scores

connectivity of 
highest scoring 
residue pairs

Side-by-side position-
based representation of 
all or portion of scoresdistribution of 

conservation scores

Figure 4: Visualisation Plots of Co-evolutionary Scores: Hairball network visualizations are uti-

lized to depict linkage patterns among interprotein residue pairs that score within a specified range of

co-evolutionary values. Nodes are amino acids, node sizes represent the degree of each node, and nodes

are colored based on the protein they originate from. These visualizations are generated as bipartite

graphs. Histograms illustrate the distribution of DCA scores and conservation. Additionally, parallel

plots highlight highly co-evolving residues between two proteins, with each protein’s residue indices dis-

played on separate vertical axes. Lines indicate detected co-evolution, with line color indicating the

magnitude of the score.
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2.4 Protein structure and PPI prediction

Prediction of protein structure and PPI interfaces was done with Google DeepMind’s AlphaFold2

(AF2) [Jumper et al., 2021] to predict single protein structures, and AlphaFold Multimer

(AF2M) [Evans et al., 2022], to predict structures of protein complexes (and PPI). This work

used AF2 and AF2M version 2.3.1. The AF2 algorithm predicts the structure of a protein

based on its amino acid sequence, in the context of evolutionarily related sequences in the

MSA. AF2 thus leverages evolutionary and co-evolutionary information from an MSA within

an EvoFormer neural network module with learned biophysical constraints in a structural neural

network module, and achieves accurate structural predictions through iterative refinement of

the entire structure generation process. More specifically, AF2 generates three representations

of a predicted structure, a pair representation involving template-based homology modeling on

the input sequence, anMSA representation through the EvoFormer step that extracts correlated

mutations and conservation information to construct an MSA-based structural representation,

and finally a structural representation that ties together the pair and MSA representations to

generate a 3D structure. AF2M is an extension of AF2 for predicting structures of multi-protein

complexes.

We evaluated AF2 and AF2M predicted structures by comparing them to reference PDB struc-

tures for target proteins or protein complexes, whenever such references existed. Comparison of

structures consisted of structural alignment via PyMOL [Schrödinger, LLC, 2015] to evaluate

similarities between the global folds of references and specific regions of contact. The metric

used here is RMSD. Evaluation of structure predictions and structural regions was also done

with AF2’s own confidence metric, pLDDT.

For our use of AF2 and AF2M in this thesis work, we did not develop a wrapper software as we

did in the previous two cases. Code for the post-processing will be made available on GitHub.

Paper 3 gives a more extensive description of the methodology for this analysis.

2.5 Computing platforms and HPC job submissions

Computations for this work were carried out over two computing platforms, a local PC and the

Saga high-performance supercomputer (HPC) provided by the Norwegian research infrastruc-

ture services (NRIS). To give an idea of the computational resources necessary for this project,

the specifications of each computer are first given, and then the setup and resource usage for a

typical analysis run is described.

The local PC was an HP Probook, running Ubuntu 22.04.4 LTS on 8 Intel Core i5-8265U 1.60

GHz CPU cores and 8.0 GB memory. The Saga supercomputer runs Rocky Linux 9.1 (Blue

Onyx) and supports normal (non-GPU) computational runs per node on 40 Intel Xeon-Gold

6138 2.0 GHz / 6230R 2.1 GHz CPU cores with 192GB memory per core. Saga also supports

accel (GPU) computations with 2 Intel Xeon-Gold 6126 2.6 GHz CPU cores with 384GB mem-
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ory per core and 8 NVIDIA P100 GPU cores with 16 GB per core.

The majority of computational work was run on Saga CPUs (as normal jobs), and whenever

possible, in batch as parallel runs. GPU usage (accel job) was limited to the model-construction

step inbuilt into AlphaFold. Due to the procedural nature of much of these analysis methods,

most of it was run in a serial manner. Parallelisation of portions of each workflow was achieved

through multithreading of sequence querying steps. The following job submissions represent

a reasonable upper bound of resource requests tailored to the analysis, such that jobs are not

cancelled due to time or memory errors. Many jobs finished well within the bounds of the

resources allocated.

An average run of the co-evolutionary workflow, for a protein or protein complex of between

200-1400 amino acids requires 5-10 hours on one node with 4 CPU cores and maximum 25GB

of memory, with the sequence query, alignment, and DCA steps taking up around 80% of com-

putational resources.

For the phylogenetic presence-absence analysis, only the sequence query step was run on Saga,

as it represented the bulk of the computations for this method. A standard sequence query for

a single protein in this analysis runs on one node, 16 CPU cores, for maximum 3 hours and

100MB/core. The remaining tree and heatmap construction steps run locally on one core and

for no more than a few minutes.

The protein structure prediction workflow consisted of AlphaFold followed by structural visual-

isation. Visualisation is done on the local PC, whereas AlphaFold requires intensive computing

and ran on Saga, and jobs were divided into single protein (monomer) or multiprotein (mul-

timer) jobs, and further divided based on size (more memory or time). A regular monomeric

run is suitable for single proteins up to 700 amino acids, and runs on 1 node, 2 CPU, 1GPU,

and 20GB/core, for 8-10 hours. Multimeric runs ranged from: small jobs for total amino acid

counts under 500 aa (5 days on 1 node, 4 CPU, 1GPU, 20GB/core) to regular jobs under 1000

aa (10 days on 1 node, 4 CPU, 1GPU, 30GB/core). The largest multimeric jobs for protein

complexes of 1000 aa or more required a total of 120GB (14 days on 1 node, 8 CPU, 1GPU,

15GB/core).
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4 Discussion

The overall goal of this thesis was to build upon current bioinformatics methodologies for detect-

ing protein evolutionary and co-evolutionary patterns, spanning across the higher taxonomic

levels down to species-level analysis, and extending to molecular-level analysis of PPI. From a

bioinformatic perspective, building upon previous work involves the development of novel soft-

ware to streamline workflows by integrating multiple tools and analyses into a cohesive frame-

work. This is primarily done to increase accessibility of the analysis to users within and outside

the immediate research field, and in our case, particularly to molecular biologists. Furthermore,

from a broader biological perspective, such tools require rigorous testing and evaluation beyond

their intended use cases to potential corner cases that may warrant further exploration.

In line with these perspectives, this thesis comprises three studies and additional work that

integrate co-evolutionary and evolutionary theories within a computational framework. Alto-

gether, they address two major goals in molecular biology: first, the detection and utilization

of enzyme presence-absence patterns to infer biological pathway diversity and organism-specific

pathway preferences to reconstruct pathway evolution, or to study functional coevolution of

proteins; and second, the prediction of PPI and protein structure across proteins of varying lev-

els of disorder, size, and complexity. The protein targets selected within this framework emerge

from biological pathways that have already been extensively studied, laying the groundwork for

various unanswered, open questions regarding their specific interactions and functions. Expert

knowledge from partnerships with the Thedieck and Ziegler labs established the relevance and

steered the focus of these questions, which, together with the computational results from our

framework, form the setup for further experimental validation.

In this discussion, we present the precise formulation of the framework that binds together

the entirety of this thesis. We then reassess the NAD and mTOR cases using this framework,

concentrating on patterns identified at different stages and the resulting insights crucial for

subsequent analysis. Following this, we discuss the considerations surrounding protein sequence

analysis particular to eukaryotic genetics, then explore result interpretability and how this

shapes further validation.

4.1 Adopting a dual-axis framework: extracting co-evolutionary

and evolutionary patterns from protein sequence data

The strategies formulated in this thesis constitute components of a larger framework to mine

protein evolutionary and co-evolutionary information from sequence data. This framework op-

erates along two axes, combining methodology that differentiates between: explicit or implicit

calculations of evolution or co-evolution (axis 1), either on a residue or whole-protein level

(axis 2). The idea behind this is that while individual framework components may offer partial

insights, their combination more thoroughly probes the question of protein co-evolution and
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evolution as a whole. VisProPhyl (Papers 1 and 2) represents an explicit, protein-level method-

ology. VisProPhyl extracts protein presence-absence data from current databases, offering a

comprehensive overview of evolutionary forces affecting the protein across many organisms.

Similarly, our co-evolutionary pipeline (DCA, unpublished results) is an explicit, residue-level

methodology, in that it identifies correlated mutations and overall evolutionary change between

residues of protein pairs. Finally, our strategies for use of AlphaFold2 (Paper 3), represent

implicit, residue-level analyses, as their use does not involve a direct calculation of co-evolution.

Instead, AF2 has integrated co-evolutionary information in its training process, and continues

to calculate correlated mutations to predict residue-level interactions and to refine the overall

structural prediction.

Organised in this way, this framework tackles progressively narrower biological inquiries related

to proteins of interest, where findings from individual inquiries are interconnected and mutually

inform one other. This framework begins by determining if one or more proteins have under-

gone evolutionary change and in which species this change is apparent. A taxonomic map of

joint appearance or disappearance of proteins is created at this stage. Then, it assesses whether

a protein shows evidence of co-evolving with another, identifying the amino acids where this

occurs. Finally, it investigates whether evidence of these relationships can inform structural

predictions and the interpretation of such predictions. Not all steps in this framework have to

be run, as results from each step can be enough to guide further experimentation, depending

on the original inquiry.

We briefly revisit the test cases of the NAD and mTOR proteins to illustrate how the informa-

tion flow feeds into different stages of this framework, and exemplify its intended use.

Paper 2 focused on PncA and Nampt in response to a broad inquiry into the level of evolution

of the pathways involving these two enzymes, given that they act as precursor enzymes to two

widely-recognised NAD salvage pathways. The mutually exclusive distribution pattern of PncA

and Nampt across the tree of life could suggest an early divergence of these pathways, but this

would need to be further verified in a genomic context. At this stage, evolutionary divergence

cannot be concluded. This observation prompted a more focused investigation into potential

additional characteristics matching the mutually exclusive pattern, exploring extremophilic or

host-associated adaptations in bacteria and archaea. As PncA and Nampt are not suspected

to interact, the analysis was confined to VisProPhyl, and was not carried further through the

co-evolutionary pipeline or with AF2. Similarly, in the analysis of the taxonomic spread of

the PRT family using VisProPhyl in Paper 1, while there were clear preferences for NAD en-

zymes within bacterial clades, indicating potential enzyme promiscuity, the emphasis was not

on potential co-evolution of inter-enzymatic interactions when considering the broader context

of the remaining PRTs. In these cases and also from two previous studies [Bockwoldt et al.,

2019; Prentzell et al., 2021], VisProPhyl’s phylogenetic overview provided enough information

to direct the initial question towards more specific groups of organisms or selection criteria, or
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to motivate other experimental and computational work.

The mTOR proteins, on the other hand, provided an intriguing case to traverse the entire

framework. Previous VisProPhyl analyses on mTORC1 proteins: G3BP1 and TSC2 [Prentzell

et al., 2021], combined with repeat analyses with an updated database in a manuscript under

preparation Heberle et al. from 2022 (data not included in thesis), identified G3BP1 and TSC2

as having a similar evolutionary timeframe. Experimental evidence had also made a case for

the binding between the two proteins [Prentzell et al., 2021; Rehbein et al., 2021], although the

exact site was not yet identified. These clues motivated a search for residue-level co-evolution

between G3BP1 and TSC2, with the goal to narrow down the potential binding site regions to

the domain or residue level, and the analysis moved onwards in the framework to co-evolutionary

detection and structural prediction. One major question at this stage concerned how a binding

site that co-evolves appears in terms of DCA scores arising from eukaryotic sequences, as DCA

was developed for and benchmarked for prokaryotic sequences. Co-evolutionary analysis in our

unpublished DCA work with Raptor and its substrates served to test for a co-evolutionary

signature from regions known to bind, and highly suspected to co-evolve. No clear signature

was identified through this test case, in terms of relative range of scores within which potential

binding could be confidently detected, or a clustering pattern of co-evolutionary score ranges

that could point out regions of interest. Co-evolutionary analysis of G3BP1:TSC2, the main

targets, found a pattern between TSC2 C-ter regions, with two segments of G3BP1 (see 3.2,

unpublished results), that are falling within the RRM and NTF2 domains. The need for struc-

tural comparison became apparent at this stage, and Paper 3 generated a series of AF2 and

AF2M-predicted structures to compare. These structures brought forth the issue of the impact

of disorder and conformational diversity on AF2M predictions. G3BP1 was predicted in the

general vicinity of the TSC2 C-ter region, but not strongly interacting through either of its

structured domains. Addition of binding partners confounded the predicted binding sites such

that overall interpretability in line with previously calculated co-evolutionary scores was limited.

The application of this framework to the NAD and mTOR test cases in this thesis opened av-

enues to further refinements in the design and use of the individual components and the overall

framework.

At the input stage, all three components are heavily MSA reliant, but vary in how stringently

they allow for sequence inclusion, and therefore sample the available sequence space quite dif-

ferently. VisProPhyl aims to sample as widely as possible the current scope of NCBI protein

databases, and therefore its query step employs intentionally generous inclusion thresholds.

Where it draws the line is strictly once cross-hits occur, or the same sequence hit being re-

turned in separate queries of different proteins, which tends to only happen for proteins of high

sequence similarity. The co-evolutionary workflow, on the other hand, requires a more stringent

control on sequences included in the input MSA, to as closely meet the criteria of homologous,

interacting sequences as possible. However, the organism space sampled cannot be too narrow,
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to allow for the occurrence of some level of sequence divergence. There is no consensus on the

level of divergence necessary here, as this depends on the evolutionary trajectory of the target

protein(s). Then, AF2 performs its own queries in several databases, creating multiple MSAs,

but, similar to VisProPhyl, is aiming for inclusion and as much data as possible. Notably, AF2

can take an MSA as input, although this option was not used in the predictions of Paper 3. The

information gained at each MSA construction step in this framework may be partly redundant,

but there are portions that are unique to the query process or database that could provide

feedback to other stages. A basic test of this would be to shuffle around the MSAs, such that,

for example, VisProPhyl is run on the AF2 MSAs, co-evolutionary analysis is performed on the

VisProPhyl MSA, and AF2 is run on a more limited MSA built in the co-evolutionary analysis

step, for example. Then, comparison of the results would highlight, at least for the first two

stages of the framework (AF2 results being a bit more opaque to input-based interpretation),

what sequence overlap or sequence difference in the MSAs has highlighted in terms of protein

distribution or co-evolutionary signal. In an ideal scenario, corrections could even be made at

this stage, where certain organisms identified through the VisProPhyl query could be included

in the co-evolutionary analysis MSA, for a more even sampling of the taxonomic tree, without

getting too far from the clade containing the original target protein. Building in a module to

collect, shuffle, and plug in the various MSAs within this framework would maximise the gain

and leverage the utility of information from the various query strategies in this framework.

At the output stage, the framework would benefit from an additional software component re-

sponsible for the synthesis and visualisation of all three sets of results. Protein-level results

(VisProPhyl) would be confined to one visualisation, and the residue-level results would be

joined in another. On the front-end, this would be a user interface presenting side-by-side com-

parison of VisProPhyl tree and heatmap output with a second, joint window of AF2 predictions

and co-evolutionary signal, perhaps in a parallel plot but with the option to highlight segments

on the structure and compare predicted residue proximity with co-evolutionary signal. A joint

visualisation of input MSA taxonomic characteristics would also be available from this com-

ponent, complete with a clustering step to determine the effective number of sequences (see

Fig. 11 for a potential representation of MSA visualisation). On the back-end, much of the

code necessary for this component has been written, but individually for analysing results on

separate occasions. The remaining work in this direction would involve constructing a workflow

to manage file format compatibility and connect visualisation tools to output files. Essentially,

the skeleton is there, and would be the ideal way to wrap up this framework, to push it one

step further in accessibility, ease of use, and relevance to the target groups.

4.2 Navigating opportunities and challenges in analysing eu-

karyotic protein sequence data

With the exception of parts of the VisProPhyl analyses (in Paper 2 and a portion of Paper 1),

the majority of this thesis focused on analysis of eukaryotic protein sequence data, and therefore
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Figure 11: MSA visualisation and evaluation component: Proposed addition to the dual-axis

framework, created over each input MSA. MSA sequences are clustered based on a consistent sequence

similarity threshold, to allow for comparison of MSA depth. Sequences are visualised in a circular tree,

and highlighted based on taxonomic group of interest.

repeatedly touched upon the unique opportunities and significant challenges that are resulting

from the complexities of the eukaryotic genomic system.

At the most fundamental level, from the standpoint of sequence availability, this thesis work

was possible due to a substantial increase of eukaryotic sequences in recent years, largely due to

advancements in sequencing technologies, bioinformatics tools, and concurrent efforts to catalog

proteomes of eukaryotic organisms. The current counts of eukaryotic sequences in UniProt, as

of the March 2024 release on the EXPASY server [Gasteiger et al., 2003], sets the proportion to

around 40%, compared to around 30% from a decade ago [Apweiler et al., 2004]. This puts the

total eukaryotic sequence count at around 230,000. Looking at UniProt statistics as a reflec-

tion of overall eukaryotic sequence availability is akin to viewing the tip of the iceberg, in that

growth in this gold standard, manually annotated set of protein sequences necessarily comes

from an even more substantial growth in other databases that feed into it. For the methodology

of this thesis framework to be effective, particularly for the training of the neural networks in

AF2 structural prediction, it is essential to have a large number of sequences that encompass

not only the major groups of eukaryotic organisms but also their lesser known relatives. One

major opportunity of utilising eukaryotic protein sequence data, that this thesis revealed, is that

the current sequence availability is of a workable scale for conducting sequence-heavy analyses

like deep learning or co-evolutionary methods, and has a coverage that allows for evolutionary

pattern extraction of tools like VisProPhyl to work effectively. Therefore with each year, a

rerun of the framework on the same target proteins will very likely increase the accuracy of the
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results, assuming consistent growth in sampling.

Another advantage of analysing eukaryotic protein sequence data, highlighted by this thesis

work, is a result of sequence availability, but from a functional annotation and comparative

genomics motive. Focusing on eukaryotic protein sequences enables the identification and an-

notation of functional domains, motifs, and active sites that are more comparable for human

biological and medical purposes, which is arguably the ultimate goal of much of the global vol-

ume of bioinformatic work. This is not at all the only application of the framework developed in

this thesis, but definitely the inspiration for its development, and its intended use. The ability

to perform deep, comparative analysis of protein sequences across different eukaryotic species

provides insights into evolutionary relationships and the conservation of functional elements in

relation to humans that before was not yet possible.

On the other hand, a recurrent challenge for this thesis work, arising from analysing eukary-

otic protein data, concerns the complexity of eukaryotic genomes and the existence of paralogs.

Eukaryotes have genomes which tend to be large, containing many repetitive sequences and

introns. Eukaryotic genes often undergo duplication events, leading to multiple paralogs, or

proteins resulting from duplicated genes that therefore share a common genetic origin. This

complicates the accurate annotation and alignment of the resultant protein sequences, and

adds a layer of complexity as each paralog has distinct functions and regulatory mechanisms

associated with it. Section 3.2 makes this most obvious, as the co-evolutionary results from

4EBP1:Raptor and S6K:Raptor were expected to both pinpoint the TOS motif in the Raptor

substrate proteins, but only did so for S6K:Raptor. The MSA depth of both analyses were

similar, as was the taxonomic coverage, meaning that in terms of the general specifications of

the sequence input set, 4EBP1:Raptor and S6K:Raptor were comparable. However, further

clustering and background research into the TOR signaling role of the 4EBP paralogs vs. S6K

paralogs, brought forth the theory that functionally, S6K paralogs were more homogeneous

[Schalm and Blenis, 2002], whereas it was uncertain whether one of the 4EBPs, 4EBP3 still

retained the same Raptor-binding function as 4EBP1, given that it lacks a N-ter RAIP motif

that is necessary for the interaction [Tsukumo et al., 2016; Lee et al., 2008]. Inclusion of the

paralogous sequence data in co-evolutionary analysis of S6K:Raptor then helped the analysis in

that functional information was actually included. It is likely that inclusion of 4EBP paralog

data confounded the co-evolutionary signal and hampered identification of the TOS binding re-

gion. It could also be that, since S6K has more paralogs, inclusion of their sequences presented

a stronger co-evolutionary signal. Or, simply that the 4EBPs co-evolved less with Raptor. At

this stage, one cannot know for sure, as this analysis would need to be scaled up to include more

proteins for which enough paralog information exists. Less obvious, but still just as prominent

of an issue, is that VisProPhyl presents an overview of a protein distribution that most likely

also includes multiple paralogs, due to their sequence similarity to the target protein. One could

attempt to set stricter inclusion/exclusion parameters at the query step, but this comes at the

cost of meaningfully sampling a wider taxonomic group. In this way, a presence-absence pattern
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for a certain clade is normally not completely focused on the target protein, so the nuance of

loss and gain of function across species for the group of target protein and its paralogs is not

detectable. AF2 and AF2M are affected by the same need to construct a homologous (interact-

ing) MSA, therefore the impact of paralogs is in effect for these predictors as well, although it

is unclear exactly how. Take the case of 4EBP1 and 4EBP2, presented in Paper 3, for example.

Perhaps if there is a bias in the PDB for a certain paralog (many studies focus on 4EBP1),

which often occurs due simply to collective scientific bias, then AF2 is trained to represent this

bias in its predictions, and no amount of padding the MSA with the actual target paralog will

overcome this. Exclusion of templates in the model-building process of AF2 and AF2M is the

best one can do to achieve a blank slate, but that does not override the training the algorithms

were built on. 4EBP2 was experimentally shown to adopt various conformations, but AF2 and

AF2M predictions seemed to cover this pattern. What this means from a usage perspective

of the thesis framework is that unless paralog knowledge exists, the usability of the results is

unclear. It is then necessary to supplement the results with an analysis on paralogs to the

target protein, particularly to search for presence-absence at the functional domain level, which

can involve returning to the input MSA and filtering through to discard unwanted paralog data.

Another challenging characteristic of protein sequences, though not unique to eukaryotes but

significant due to its ubiquity when compared to prokaryotes [Macek et al., 2019], is the presence

of post-translational modifications (PTMs) and its implications for analyses in this framework.

Eukaryotic proteins frequently undergo PTMs, with phosphorylation being particularly relevant

to the mTOR-associated proteins examined in this thesis. These modifications can significantly

alter protein function and interactions, and a protein can contain multiple PTMs, many of

which are dynamic and reversible. PTM data, however, is not yet integrated into the standard

representation of a protein sequence, and also not easily incorporated into any of the method-

ologies presented in this thesis. If the previously mentioned paralog information were to be

made more explicit and tunable within the framework, by the same logic, so should PTM in-

formation. Particular focus would be placed on evolution or co-evolution between modification

sites and their flanking regions, for example, both of which have been shown to be under se-

lective pressures [Bradley, 2022]. In this thesis, Paper 3 presented a phosphomimetic scheme

to represent phosphorylated 4EBP, to test for change in structural prediction, but resulted in

inconsistent results. This was most likely because the mimetic version of the sequence was sim-

ilar enough to the original such that query results did not sample a set of sequences that could

result in a structurally similar set to the phosphorylated state. As PTM databases continue to

grow [Hornbeck et al., 2015], strengthening the framework to better integrate PTM information

would be beneficial.

One final, practical consideration is that the size of eukaryotic protein complexes poses sig-

nificant computational challenges, not just for this thesis but for any future work that rides

the growing wave of eukaryotic sequence data availability. Although this is by far not a fixed

pattern, the average size of protein complexes tends to be larger in eukaryotes compared to
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prokaryotes. This difference arises due to the greater complexity of eukaryotic cells, which often

require more intricate regulatory mechanisms and exhibit greater functional diversity. Eukary-

otic protein complexes often consist of numerous subunits; a classic example of this being the

eukaryotic ribosome, with 80 proteins and 4 rRNA molecules (compared to the prokaryotic 55

proteins and 3 rRNA molecules), which reflects a more complex translational procedure. The

mTORC1 complex is a 5-protein complex of 289KDa [Saxton and Sabatini, 2017], at a count

of around 5000aa, which does not include all the regulatory partners. This is a scale that is

problematic for sequence-based analyses that require querying, alignment, and deep learning

in one overall computation - the resources simply are not available (at least to the Norwegian

scientific community) at this stage. To add to this, bioinformatic sequence-based tools that

were developed with the the smaller prokaryotic system in mind, such as the co-evolutionary

methodology, placed less focus on optimisation and parallelisation. In this thesis, as long as

the total residue count stayed under a comfortable 2000aa, computation was not an issue. The

TSC2 and G3BP1 dimer surpassed this. AF2M structural modeling of the dimer and overall

complex (see Paper 3), reached the time and memory limit, and actually for AF2M never fully

completed through all the recycling rounds and AMBER relaxation. For structural modeling,

adopting a more piecewise approach, either truncating the complex to regions of interest (what

was done in Paper 3 with the TSC complex), or modeling full proteins but only portions of the

complex, and docking the predictions, could be viable workarounds. For DCA, pre-processing

of sequences to reduce the overall MSA size (e.g. clustering), or experimenting with more ef-

ficient numerical solvers of the inference step, or rewriting of the code for GPUs could boost

efficiency. It would be worth embedding such optimisation tactics into the framework proposed

in this thesis, but ultimately, the push for optimisation has to come from the developers of the

external software used in the framework.

4.3 Understanding the interpretability of results in a broader

context

Issues of interpretability frequently arose when assessing the various results of this framework,

particularly when taking into consideration the incomplete context in which the results are de-

rived.

The protein sequence space available to bioinformatics work is, however large, still incomplete.

Biases exist in the databases due to general scientific focus, funding, and inherent biological fac-

tors. A significant proportion of sequence data comes from a few well-studied model organisms.

This results in an overrepresentation of these organisms and underrepresentation of many other

eukaryotic species, especially those from understudied habitats or with no direct economic or

medical importance, creating gaps in the database. There is a temporal bias as well, as recently

sequenced organisms are more likely to benefit from advanced sequencing technologies, result-

ing in better quality data compared to older sequences obtained using outdated methods. This

means that a presence-absence distribution of proteins in a taxonomic clade, as extracted by
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VisProPhyl, can be a reflection of the true distribution pattern, but is seen through a lens of all

the biases layered on top. In reconstructing the evolutionary trajectory of an enzyme, we cannot

know for sure that an organism has lost it, but it becomes more likely if relatives all do not have

it. Even the assignment of presence of an enzyme to an organism depends on the significance

level of the query parameters, as it is not practically feasible to go through every organism and

check for annotation correctness. The takeaway here is that when concluding co-evolutionary or

evolutionary results from VisProPhyl’s overview, one should be cautious and at the very least

aware of the general extent to which target proteins have been studied, if there are many verified

sequences, what is known about paralogs, and how this may impact the evaluation of the output.

Then, regarding co-evolutionary results, a frequent roadblock to interpretability arose from com-

mon practices surrounding the co-evolutionary coupling scores. As mentioned before, scores are

not inter-comparable across co-evolutionary analyses of different proteins or protein complexes.

One study identified a score threshold of 0.6 as a meaningful bar for bacterial ribosomal pro-

teins above which co-variation and potential co-evolution reliably indicated residue proximity

Ovchinnikov et al. [2014]. This does not necessarily apply across different bacterial complexes

Si et al. [2022], and currently, no such level has been established for the eukaryotic case. Then,

typically, a subset of top-scoring residue pairs is selected, and their positions are analyzed

to infer structural contacts. This approach has helped in predicting the tertiary structure of

proteins, particularly for proteins with unknown structures or those that are difficult to crys-

tallize. This information is then used to feed into methods like molecular dynamics simulations

or machine learning models. However, there is in fact a whole spectrum of scores generated

through these methods, much of which is typically ignored. Are low-scoring residue pairs nec-

essarily highly conserved? What about mid-range scores of residue pairs? Our attempts to

map conservation to co-evolutionary scores in the parallel plots of Section 3.2 show that it

is not always the case that highly variable regions are co-evolving, which makes sense from

an independent evolutionary standpoint, but that sometimes, highly co-evolving residue pairs

are not highly variable. Using co-evolutionary methods to accurately identify non-co-evolving

regions would be an excellent use of this method, but a lot more work is needed in this direction.

Perhaps the biggest question of interpretability was raised by the results of Paper 3. The

interpretability of AF2 and AF2M predictions varies across different regions of the protein

structure, fluctuating between high-confidence and low-confidence regions. Regions with high

pLDDT scores (typically above 70-80) are considered high-confidence regions, often aligning

closely with experimentally determined structures that are stable and structured. Regions

with low pLDDT scores (below 50-60), are considered low-confidence regions, corresponding to

disordered or flexible parts of the protein, such as loops, termini, or intrinsically disordered

regions (IDRs), and in our case represented a significant proportion of the known functional

sites of each protein and protein complex we modeled. Low confidence regions indeed often

aligned with known IDR regions, but experimental evidence pointed towards, at least for the

4EBP:EIF4E case, transient adoption of structure upon binding. Attempts to tease out a
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structural prediction in these regions, to get any idea of how a structure may be, were largely

unsuccessful. Additionally, structural variation was observed in the various models produced by

AF2 and AF2M, but the documentation of AF2 and AF2M clearly warns against interpreting

low confidence regions, and also against drawing any sort of structural consensus from the model

variation Jumper et al. [2021]. This calls into question the usability of AF2 for these cases, but

also whether its training dataset, the PDB itself, is an comprehensive enough reference to

train a robust predictor of protein and protein complex structure. The PDB’s static picture of

protein structure influences the tendencies of AF2, therefore making it unsuitable for modeling

much of the dynamics that are necessary for PPI. AF2 becomes, in essence, a predictor of

whether a protein can crystallise, as the majority of structures on the PDB (around 74.5%, see

https://www.rcsb.org/stats/summary) are resolved with X-ray crystallography. Tendencies

for AF2M to predict symmetry Zhu et al. [2023], and its limitations to fewer chains [Bryant

et al., 2022] also constrict predictive possibility further. Increases in the number of nuclear

magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (cryo-EM) structures

could present a more variable set for re-training of the neural networks modules in AF2. It

could be that AF2 can capture some of the dynamics, and stores this in the variation of its

output, but without a proper reference, one cannot investigate this further. As this thesis

was being written, however, AlphaFold3 [Abramson et al., 2024] was released, promising to

model biomolecular interactions, so perhaps the future is here, and interpretability will get a

much-needed boost in the dynamics direction.

5 Conclusion and outlook

This thesis developed a comprehensive framework for analysing protein evolutionary and co-

evolutionary patterns. This computational framework was built over three studies and addi-

tional work that addressed two major goals: inferring pathway diversity and organism-specific

preferences through enzyme presence-absence patterns, and predicting PPIs and protein struc-

tures across proteins of varying disorder, size, and complexity. The framework allows for explicit

or implicit calculations of evolution or co-evolution, at both residue and whole-protein levels, to

leverage the information gained from their combination. VisProPhyl provided explicit, protein-

level analyses, while the co-evolutionary pipeline (DCA) and AlphaFold2 (AF2) offered residue-

level analyses. Applying this framework to NAD and mTOR proteins demonstrated its utility

and highlighted challenges related to protein disorder and conformational diversity, and, from

a more general perspective, demonstrated that while eukaryotic sequence data offers significant

research opportunities, challenges remain in handling genomic complexity and improving result

interpretability. Future improvements will enhance the framework by refining input and output

stages and incorporating state-of-the-art structural predictors like AlphaFold3. The joint re-

liance on MSA input underscored the importance of sequence selection criteria, and allowing for

the shuffling of MSAs across the different analyses methods can maximise the utility of informa-

tion from different query strategies. Integrating post-query information on existence of paralogs

and PTM sites will allow the user to have a better overview of the input to the framework, and
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tune the input according to the desired MSA representation of the targets. Enhancements in

visualization and result integration will make these methodologies more accessible, contributing

to a deeper understanding of protein interactions and functions. Optimising the framework by

reorganizing it into querying, processing, and analysis modules will streamline the computa-

tional workflow, making the analysis more efficient.
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Abstract: Bacteria use two alternative pathways to synthesize nicotinamide adenine dinucleotide
(NAD) from nicotinamide (Nam). A short, two-step route proceeds through nicotinamide mononu-
cleotide (NMN) formation, whereas the other pathway, a four-step route, includes the deamidation
of Nam and the reamidation of nicotinic acid adenine dinucleotide (NAAD) to NAD. In addition
to having twice as many enzymatic steps, the four-step route appears energetically unfavourable,
because the amidation of NAAD includes the cleavage of ATP to AMP. Therefore, it is surprising that
this pathway is prevalent not only in bacteria but also in yeast and plants. Here, we demonstrate
that the considerably higher chemical stability of the deamidated intermediates, compared with their
amidated counterparts, might compensate for the additional energy expenditure, at least at elevated
temperatures. Moreover, comprehensive bioinformatics analyses of the available >6000 bacterial
genomes indicate that an early selection of one or the other pathway occurred. The mathemati-
cal modelling of the NAD pathway dynamics supports this hypothesis, as there appear to be no
advantages in having both pathways.

Keywords: NAD biosynthesis; metabolic modelling; kinetic models; phylogenetic analysis

1. Introduction

NAD is an essential cofactor in all organisms. It serves as an electron acceptor for a
multitude of redox reactions and is involved in a large number of signalling reactions. In
contrast to the reversible interconversion in redox reactions, signalling reactions consume
NAD and release nicotinamide (Nam). This needs to be compensated by a constant
synthesis of NAD. Two different pathways exist to synthesize NAD from Nam [1,2]. The
more common pathway in yeast, plants and bacteria starts with the deamidation of Nam
by the bacterial nicotinamidase (PncA) producing nicotinic acid (NA). The Preiss–Handler
pathway is employed to convert NA into NAD in a three-step process starting with NA
phosphoribosyltransferase (PncB), converting NA into its mononucleotide, NAMN [3].
NAMN is then converted into the dinucleotide NAAD by NA/Nam mononucleotide
adenylyltransferase (NadD), which is present in all organisms [4]. The last step is the
amidation of NAAD to NAD, catalysed by NAD synthase (NadE). The alternative pathway
dominant in higher vertebrates but also present in bacteria [1] converts Nam directly
into its mononucleotide, NMN, through nicotinamide phosphoribosyltransferase (Nampt),
followed by adenylation through NadD. In addition to synthesis from Nam, NAD can be
de novo synthesized from aspartate or tryptophan. An overview of the NAD biosynthesis
pathways is shown in Figure 1.
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Figure 1. Schematic representation of reactions involved in the biosynthesis of NAD in different
organisms. Metabolite names are written in bold blue letters, while the enzyme names are denoted in
green colour. The abbreviation NCE (NAD-consuming enzymes) represents all enzymes catalysing
signalling reactions consuming NAD. The bold black lines represent enzyme-catalysed reactions,
whereas the dotted red lines denote non-enzymatic hydrolysis, mainly occurring at high temperatures.
Bold yellow lines are used to denote reactions that require ATP. Whether the bacterial 5′-nucleotidase
SurE accepts NMN/NAMN as substrate is unknown; a homologue to the mammalian NT5 could not
be identified in bacteria. NAD, Nam adenine dinucleotide; NMN, Nam mononucleotide; NR, Nam
riboside; NA, nicotinic acid; NAR, NA riboside; NAMN, NA mononucleotide; NAAD, NA adenine
dinucleotide; NadD, NA/NMN adenylyltransferase; Nampt, Nam phosphoribosyltransferase; NadR,
NA/Nam riboside kinase; SurE, 5′-nucleotidase; PNP, purine nucleoside phosphorylase; PncA,
nicotinamidase; PncB, NA phosphoribosyltransferase; NadE, NAD synthase.

The four-step process that uses PncA requires reamidation to convert NAAD into
NAD. This reaction requires ATP releasing AMP [5]; therefore, it is energetically expensive.
Thus, the four-step NAD biosynthesis via PncA and NadE requires more ATP than the
two-step process that uses Nampt. It is, therefore, surprising that this pathway is dominant
in bacteria, yeast and plants. To better understand the evolutionary process that led to
preferential selection in bacteria, we performed a detailed phylogenetic analysis of the two
pathways focusing on the presence or absence of PncA and Nampt [1,2]. A detailed analysis
of this distribution revealed that the selection of the pathways might have occurred based
on habitat preferences with a predominant presence of PncA in extremophile and especially
in thermophile organisms. We, therefore, measured the thermostability of different pathway
intermediates and constructed a temperature-dependent mathematical model including
the two alternative pathways of NAD biosynthesis. Model simulations suggest that despite
the high thermolysis rates of Nam intermediates, NAD biosynthesis via PncA has no clear
advantages over the Nampt pathway at high temperatures. The simulations furthermore
indicated that the optimization of NAD biosynthesis indicates that there are no advantages
in having both the PncA and the Nampt pathway.
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2. Results
2.1. Early Evolutionary Selection of the PncA or the Nampt Pathway in Bacteria

To better understand the prevalence of PncA over Nampt in bacteria, we performed
a detailed phylogenetic analysis of the distribution of these enzymes in eukaryotes, bac-
teria and archaea in more than 8000 organisms (Figure 2A). A previous study of about
200 bacterial genomes described a scattered distribution [2]. In contrast, our phylogenetic
analysis of more than 6000 bacteria and archaea detected a mutually exclusive presence of
PncA and Nampt, with a clear separation between taxa containing either of the enzymes
(Figure 2). This indicates that common ancestors likely harboured both enzymes, with
pathway selection having occurred in early evolution.

Figure 2. Phylogenetic distribution of PncA and Nampt among the three domains, with expansion
into archaea and the bacterial taxa of clostridia. Panel (A) shows the total number of organisms
(n) represented in the phylogenetic analysis, per domain, as well as their proportions as coloured
in the following scheme (PncA, red; Nampt, blue; both PncA and Nampt, violet). The numeric
proportion is written beside each segment of the pie chart. The pie chart sizes in each panel are scaled
proportionally to the logarithm of the number of organisms represented in each group. In panel (B),
the enzyme distribution in the largest bacterial clades is shown. Host-association patterns in the
proteobacterial group are also shown as an additional pie chart to the right of the total proteobacterial
pie chart. Panel (C) expands on the domain of archea, particularly to two clades within the phylum
euryarchaeota that have presence of only PncA (Thermococcus) or Nampt (Methanobacteriaceae).
Panel (D) expands on the bacterial class of clostridia, which is a member of the phylum firmicutes.
Clostridia is one of several bacterial classes that exhibit a clear preference for PncA in extremophiles,
based on our phylogenetic analyses. Branch lengths of the trees are arbitrary.
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In archaea, members of genus Thermococcus exclusively harbour PncA, whereas
species within the Methanomada group exclusively encode Nampt. We also detected a
predominant presence of PncA in thermophilic bacteria. In Clostridia (Figure 2D), for
example, the two taxonomic groups show a clear separation between extremophile and
non-extremophile organisms. Many of the non-extremophile organisms are pathogenic
and/or are known to have vertebrates as hosts. A clear preference is difficult to identify as
the habitat information is incomplete, and some organisms can be pathogenic but also live
in other habitats such as soil.

Nevertheless, to obtain further insights into a potential role of host association in
pathway selection, we used the available habitat information of proteobacteria from the
Integrated Microbial Genomes (IMG) database [6,7] and matched organisms found in
our phylogenetic analysis with those annotated as being associated with a mammalian
host. Annotations for 3154 proteobacterial entries from the IMG were retrieved. Figure 2B
shows the host-association patterns of Nampt and PncA within this proteobacterial group.
The distribution appears to be similar as in bacteria overall, suggesting that there are no
preferences for Nampt in mammalian-host-associated proteobacteria. Thus, host association
does not appear to be a dominant selection criterium.

2.2. Higher Glycohydrolysis of Nam Pathway Intermediates at High Temperatures

NAD has been shown to undergo rapid glycohydrolysis at high pH values with Nam
and ADP-ribose as products [8,9]. The predominance of PncA in thermophilic organisms
may, therefore, be related to the higher chemical stability of acidic NAD biosynthetic
intermediates. Therefore, we decided to further analyse the temperature-dependent char-
acteristics of the NAD biosynthesis pathway. As data about the temperature-dependent
stability of other intermediates of the NAD biosynthetic pathways were not available, we
measured the rate of non-enzymatic hydrolysis of the relevant NAD biosynthesis inter-
mediates at different temperatures in vitro (cf. Table 1). These measurements showed
that Nam metabolites such as NMN and NR exhibited higher hydrolysis rates than NAD,
especially at high temperatures, whereas the hydrolysis rates of NA intermediates were
much lower with no detectable hydrolysis of NAAD (Figure 3) even at 363.15 K (90 ◦C).
These observations suggest a potential advantage of the PncA/Preiss–Handler pathway
over the shorter two-step pathway at a higher temperature.

Table 1. Measured hydrolysis rates (%/min) at different temperatures (◦C) and calculated pre-
exponential factor A and activation energy Ea based on the fitting of the data using the Arrhenius
equation (Equation (1)).

Compound Temperature (◦C) Hydrolysis Rate
(%/min)

Prefactor
A

Activation Energy
Ea (KJ/mol)

NR 50 0.68 ± 0.04 27083.62 72.41
75 2.06 ± 0.10
90 6.26 ± 0.07

NMN 50 0.07 ± 0.02 340657.92 82.40
75 0.62 ± 0.03
90 2.76 ± 0.13

NAD 50 0.00 ± 0.01 1.37 × 1011 123.16
75 0.45 ± 0.01
90 1.60 ± 0.05

NAR 50 0.01 ± 0.01 1.25 × 1013 138.60
75 0.12 ± 0.02
90 0.86 ± 0.02

NAMN 50 0.00 ± 0.01 2.12 × 1013 142.49
75 0.05 ± 0.03
90 0.40 ± 0.01
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Figure 3. Temperature dependency of non-enzymatic hydrolysis of metabolic intermediates of NAD
biosynthesis. Temperature on x-axis is reported in Kelvin (K). Hydrolysis rates are given per second
(1/s). While the solid dots represent measured hydrolysis rates, the solid lines denote the temperature-
dependent hydrolysis rates calculated using a fitted Arrhenius equation (cf. Table 1). NAAD shows
the lowest hydrolysis rates, while NR exhibits the highest glycohydrolysis rate at 363.15 K.

2.3. PncA Pathway Is More Energy Demanding Even at High Temperatures

To analyse the potential effects of the non-enzymatic hydrolysis at high temperatures
of nicotinamide intermediate on the efficiency of NAD biosynthesis, we developed a math-
ematical model of NAD biosynthesis using temperature-dependent rate laws. For the
purpose, we integrated relevant enzymatic reactions and rate laws from our previously
published NAD model (BioModels: MODEL1905220001; [1]). Additionally, to make the
model temperature dependent, the reaction rates were scaled using the Arrhenius equation
(cf. Equation (1)). As no measured activation energies were available for the enzymatic
reactions, we set the activation energies such that the reactions were thermodynamically
feasible at physiological conditions and had a Q10 within the range of 2–3, as previously
conducted [10,11]. Further, we added non-enzymatic hydrolysis reactions using rates and
activation energies determined by fitting the experimentally measured data (see Table 1) to
the Arrhenius equation. The resulting model is based on a set of ordinary differential equa-
tions (ODEs) that can simulate temperature-dependent steady-state changes in the pathway
intermediates of NAD biosynthesis via PncA and Nampt (for details see Supplementary
Equations (S1)–(S8)).

To estimate the energy efficiency of the two alternative biosynthetic routes, we cal-
culated the ratio between ATP consumption and NAD production. ATP consumption is
defined as the total flux of ATP-consuming reactions (JATP) and is caused by the following
reactions catalysed by: Nampt, PncB, NadE, NadD and NadR. The amidation of NAAD
uses one ATP molecule to produce NAD and one AMP. As two phosphorylation steps
are required to convert AMP back to ATP, we represent the energy demand of the NadE
catalysed reaction by multiplying its flux by 2. The total flux of ATP-consuming reactions
is thus:

JATP = JNAMPT + JPNCB + 2 · JNADE + JNADD + JNADR. (1)
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The synthesis of the mononucleotides through Nampt or PncB is non-stoichiometrically
coupled to the hydrolysis of ATP owing to the autophosphorylation of a histidine residue,
thereby increasing substrate affinity. For NAMPT, it has been estimated that about one ATP
is consumed per catalytic cycle at an ATP concentration of 2–2.5 mM [12]. Given the highly
similar reaction and enzyme structures, this ATP requirement can be assumed to be the
same for both enzymes; therefore, it has most likely no or little influence on the efficiency
of either pathway.

NAD production is attributed to the flux generated by NadE (JNADE) in the PncA
pathway and NadD (JNADD) in the Nampt pathway converting NAAD and NMN to
NAD, respectively:

JNAD = JNADE + JNADD (2)

To investigate the efficiency of the two biosynthetic routes of NAD production, we as-
sumed that the bacterial NAD biosynthetic pathway adjusts the concentration of metabolic
enzymes to minimize the energy demand defined by the ratio of the total flux of ATP-
consuming reactions (JATP) to the NAD production flux (JNAD) given a range of free-NAD
concentration. The optimization problem can, therefore, be represented as:

min
E∈[1−10,100]

JATP
JNAD

subject to : 0.1 < CNAD < 0.3

B = {x ∨ 0.01 ≤ x ≤ 100}
∑
i

E ≤ 1000; i = 1, . . . , n

(3)

This represents the value of the argument E (E = A∪ B, where A = {EPNCA, ENAMPT}
and B = {EPNCB, ENADD, ENADR, EPNP, ENADE, ENCE, ESURE}) in the interval [1−10, 100]
nM that minimizes objective function JATP/JNAD, with the added constraints that the steady-
state concentration of NAD is between 0.1 and 0.3 mM; the sum of concentrations of n
metabolic enzymes is less than 1000 nM; and the subset B is the set of all elements x,
such that x is in the interval [0.01, 100] nM. The first inequality constraint ensures the
experimentally measured free-NAD concentrations in bacteria, whereas the latter two
constrain the lower and upper limits on the chosen concentrations of metabolic enzymes.
Optimization was performed using the Evolutionary Programming algorithm of COPASI
4.29 [13], with the number of generations and population size being set to 200 and 20,
respectively. The selection of these optimization parameters was based on the convergence
of the desired output within the tolerance range of 1 × 10−6.

For the given optimisation problem, we found that multiple combinations of enzyme
abundances could yield the desired steady-state concentration of NAD while achieving the
lowest possible JATP/JNAD ratio. Therefore, we repeated the optimization 1000 times and
analysed the distribution of enzyme abundances. The optimisation results show that the
optimum was found when the amount of either PncA or Nampt was very small in compar-
ison to the other enzymes (cf. Figure 4A). This observation indicates that under optimal
conditions, only one of the two pathways is active. Consequently, it appears reasonable that
bacteria typically only have either PncA or Nampt but rarely both. We used this behaviour
to classify the results of the modelling into subsets with different enzyme abundances,
where Nampt << PncA reflects model solutions optimised for the PncA pathway and vice
versa. This enabled us to analyse the distribution of the overall enzyme abundances that
facilitate NAD biosynthesis via the PncA and Nampt pathways (Figure 4B,C). Based on
the simulation results, both JATP and JNAD increased with the increase in temperature
(Figure 4D,E). The ratio of ATP consumption to NAD production of the PncA pathway
was always higher than that of the Nampt pathway (see Figure 4F). We used metabolic
control analysis [14,15] to investigate the control exerted by metabolic enzymes on the
steady-state concentrations of pathway intermediates at different temperatures. PncA had
a high positive control coefficient on NAD concentration and a strong negative control
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coefficient on Nam concentrations at all temperatures, whereas Nampt had a positive
concentration control coefficient for both Nam and NAD. See Supplementary Figures S1
and S2 for details. The steady-state concentrations of the metabolic intermediates of NAD
biosynthesis via the PncA and Nampt pathways are shown in Supplementary Figure S3.
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Figure 4. Optimization results of minimizing the energy demands of bacterial NAD biosynthetic
pathways. (A) A scatter plot showing the optimized abundance of Nampt versus PncA when
minimizing the ratio of ATP consumption to NAD production required to maintain the required NAD
steady-state concentration (0.1 mM < CNAD < 0.3 mM ). Each dot represents an optimisation result.
The marginal plots show kernel density estimate plots that show the enzyme abundance distributions
in the optimisation results. (B) Abundance of metabolic enzymes at different temperatures in the
PncA pathway. (C) Optimized abundance of metabolic enzymes in Nampt pathway. (D) The
ATP consumption flux, JATP, in the PncA pathway (dashed red curve) compared with the Nampt
pathway (blue curve) at different temperatures. (E) The NAD production flux, JNAD, in the PncA
pathway compared with that in the Nampt pathway at different temperatures. (F) The ratio of ATP
consumption to NAD production at different temperatures in PncA and Nampt pathways.

2.4. Optimal Pathway Performance Achieved with Mutually Exclusive Presence of PncA
and Nampt

As we do not know what the bacterial NAD biosynthesis is optimized for in na-
ture, we analysed two alternative objectives: (1) minimization of ATP consumption and
(2) maximization of NAD concentration. For both scenarios, we optimized the abundance
of the metabolic enzymes of NAD biosynthesis for the desired objective. Optimization
was performed as described earlier. To minimize ATP consumption, we formulated the
optimization problem as follows:

min
E∈[1−10,100]

JATP

subject to : 0.1 < CNAD < 0.3

B = {x ∨ 0.01 ≤ x ≤ 100}
∑
i

E ≤ 1000; i = 1, . . . , n

(4)

This represents the value of the argument E (E = A∪ B, where A = {EPNCA, ENAMPT}
and B = {EPNCB, ENADD, ENADR, EPNP, ENADE, ENCE, ESURE}) in the interval [1−10, 100]
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nM that minimizes objective function JATP, with the added constraints that the steady-state
concentration of NAD is between 0.1 and 0.3 mM,; the subset B is the set of all elements x,
such that x is in the interval [0.01, 100] nM; and the sum of concentrations of n metabolic
enzymes is less than 1000 nM. As with the previous optimization, we found that several
different combinations of enzyme abundances could yield the same optimal output, and
most solutions had low abundance of either the PncA or Nampt enzyme. In the PncA
pathway (Nampt << PncA), NadE is the enzyme that directly affects NAD production.
Thus, a higher concentration of NadE with the increase in temperature was observed,
compensating the rapid hydrolysis of NAD at high temperatures. Additionally, increased
abundance of PncB appeared to be important to efficiently replenish NAD. It should be
noted that the substrate of PncB is NA, which, in turn, is the product of the non-enzymatic
hydrolysis reactions. Thus, increasing the abundance of PncB helped to channel the flux
towards the production of NAD (Figure 5B). In addition, a high abundance of NadD
appeared to be advantageous. The latter was also observed for the Nampt pathway. A
further analysis of the pathway fluxes showed that despite the optimal distribution of
metabolic enzymes in the PncA pathway, the NAD metabolism did still require more ATP
than the Nampt pathway even at high temperatures (cf. Figure 5D–F). The model-simulated
steady-state concentrations of the metabolic intermediates of NAD biosynthesis via the
PncA and Nampt pathways are shown in Supplementary Figure S3.
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Figure 5. Optimization results of minimizing the total flux of ATP-consuming reactions of bacterial
NAD biosynthetic pathways. (A) A scatter plot showing the abundances of Nampt versus PncA when
minimizing the ATP consumption required to maintain the required NAD steady-state concentration
(0.1 mM < CNAD < 0.3 mM ). Each dot represents an optimisation result. The marginal plots show ker-
nel density estimate plots that show the enzyme abundance distributions in the optimisation results.
(B) Optimized abundance of enzymes at different temperatures in PncA pathway. (C) Optimized
abundance of enzymes from Nampt pathway. (D) The ATP consumption flux, JATP, in PncA (dashed
red curve) and Nampt (blue curve) pathways at different temperatures. (E) Computed NAD produc-
tion flux, JNAD, in PncA and Nampt pathways at different temperatures. (F) Calculated ratio of ATP
consumption flux to NAD production flux at different temperatures in PncA and Nampt pathways.
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We then maximized the NAD concentration in our models, using the following
objective function:

max
E∈[1−10,100]

CNAD

subject to : B = {x ∨ 0.01 ≤ x ≤ 100}
∑
i

E ≤ 1000; i = 1, . . . , n

(5)

where the argument E (E = A∪ B, where A = {EPNCA, ENAMPT} and B = {EPNCB, ENADD,
ENADR, EPNP, ENADE, ENCE, ESURE}) in the interval [1−10, 100] nM maximizes the NAD
concentration (CNAD), with the added constraints that the sum of concentrations of n
metabolic enzymes is less than 1000 nM and the subset B is the set of all elements x, such
that x is in the interval [0.01, 100] nM. We again predominantly found solutions with low
abundance of either PncA or Nampt. The PncA pathway exhibited an optimal enzyme com-
bination with a high abundance of NadE (cf. Figure 6A). This can be understood intuitively,
as the system tries to compensate for the loss of NAD through high glycohydrolysis, espe-
cially at high temperatures. The ATP consumption flux in the PncA pathway was higher
than that in the Nampt pathway at different temperatures, while the NAD production flux
in both pathways was similar (Figure 6C,D). Consequently, the PncA pathway was found
to consume more ATP per NAD produced at all temperatures (Figure 6E).
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Figure 6. Optimization results of maximizing the NAD concentration of bacterial NAD biosynthetic
pathways. (A) A scatter plot showing the abundances of Nampt versus PncA when maximizing the
NAD production ratio. Each dot represents an optimisation result. The marginal plots show kernel
density estimate plots that show the enzyme abundance distributions in the optimisation results.
(B) Optimized abundance of enzymes at different temperatures in PncA pathway. (C) Optimized
abundance of enzymes from Nampt pathway. (D) The ATP consumption flux, JATP, in PncA (dashed
red curve) and Nampt (blue curve) pathway at different temperature (E) The NAD production flux,
JNAD, in PncA and Nampt pathways at different temperatures. (F) The ratio of ATP consumption
flux to NAD production flux at different temperatures in PncA and Nampt pathways.

3. Discussion

The enigmatic, scattered distribution of different NAD pathways in bacteria has been a
matter of several previous investigations. With more than 6000 bacterial genomes available
to date, we are now able to obtain a more detailed insight into the pathway distribution
and its potential evolution. Our comprehensive phylogenetic analysis suggests an early
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evolutionary selection of either the PncA or the Nampt pathway with the respective
common ancestors having both enzymes. As the PncA pathway is energetically less
efficient, it is surprising that we found it in more than 50% of the analysed bacteria. We,
therefore, looked at a potential role of bacterial habitats in selection preferences. This
is, however, difficult, as (1) habitat information is limited and (2) habitats can change,
especially over the long evolutionary timeframe we investigated. We did, however, see
a predominance of the PncA pathway in extremophile organisms, indicating a potential
advantage under these conditions. The measurement of the chemical stability of NAD
pathway intermediates at high temperatures supported this hypothesis, as the nicotinic
acid intermediates of the PncA pathway were much more stable than the nicotinamide
intermediates of the Nampt pathway.

Mathematical modelling approaches allowed us to analyse hypothetical scenarios
such as the dynamics of the two alternative pathways at different temperatures. We,
therefore, used our ODE-based kinetic model of NAD biosynthesis to simulate temperature-
dependent changes in enzyme-catalysed reaction rates. We, unfortunately, do not know
what organisms are optimized for in nature; we, therefore, analysed three different objec-
tives, i.e., (1) minimizing the ratio of ATP consumption to NAD production, (2) minimizing
overall ATP consumption and (3) maximizing free-NAD concentrations. Interestingly, we
found that independently of the objective function, optimization did predominantly result
in models having either the PncA pathway or the Nampt pathway but rarely both. This
indicates that there are no advantages in having both pathways, supporting both the early
evolutionary selection and the disappearance of early ancestors that had both pathways.
However, despite the higher glycohydrolysis rate of Nampt pathway intermediates, our
modelling approach was not able to find any energetical advantage of the PncA pathway,
as the ATP consumption was higher than that of the Nampt pathway at all temperatures.
There are, of course, many parameters that we did not consider in our modelling approach,
such as the thermostability of the enzymes, the achievable temperature optima and the
exact activation energy for the different enzymatic reactions. Analysing the contribution
of these parameters is difficult as very limited experimental data are available, leading to
an unconstrained model that enables all possible scenarios (not shown). It is, furthermore,
important to note that we forced the model to maintain a certain NAD concentration, while
it has been shown that the high hydrolysis rates of NAD at high temperatures can impose a
problem for thermophiles and hyperthermophiles [16]. Given the high stability of NAAD,
it appears that a likely strategy could be to rather produce NAD on demand and thus
regulate NAD production through the regulation of NadE. Unfortunately, there are very
limited expression data available for thermophilic organisms at different temperatures
that could support this hypothesis. We did not consider potential contributions by the
de novo synthesis from aspartate either, which could compensate for the high hydrolysis
of pathway intermediates. Thus, further investigations are required to better understand
how extremophile organisms maintain NAD synthesis despite the high non-enzymatic
hydrolysis of NAD and its intermediates.

4. Materials and Methods
4.1. Phylogenetic Analysis of Enzyme Distributions

We constructed a comprehensive overview of the taxonomic distributions of our target
enzymes by performing query searches of our enzymes against the National Center for
Biotechnology Information (NCBI) non-redundant protein database (nr) and subsequently
combining and remapping them to the general taxonomic tree as constructed in NCBI.
More specifically, we used functionally verified protein sequences of PncA and Nampt
from several model organisms (see Supplementary Table S1), using their protein sequences
as queries via Blastp [17]. The total number of hits returned per query was limited to
5000 sequences, and the alignment parameters followed the defaults: BLOSUM62 substi-
tution matrix; word size, 6; gap open penalty, 11; and gap extension, 1, which was used
to ensure stringent sequence selection and to avoid the inclusion of functional related
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but non-homologous sequences. We additionally filtered each set of resultant sequences
based on cut-offs for protein length and e-value to optimize for sequence coverage and hit
significance. The protein length cut-off was determined by a consensus of the hit length as
taken from a histogram of all hit lengths, and the e-value cut-off was chosen as the lowest
e-value at which there were sequence cross hits between our various resultant sequence
sets. The cut-off values per enzyme are given in the Supplementary Table S1. The aim
of sequence filtering through these cut-offs was to eliminate false positive hits across our
query protein set. Taxonomic information per sequence was taken directly from the Blast
results (XML2 format, taxid field). This methodology has been used previously [1].

4.2. Thermostability of NAD and Related Metabolites Determined by 1H-NMR

The compounds were dissolved in NMR buffer (25 mM sodium phosphate, pH 5.8,
and 5% (v/v) D2O) and diluted to a final concentration of 500 µM. The samples were
incubated at the indicated temperature for 10 min and chilled on ice for 5 min before
measurement. NMR data were collected on a Bruker Ascend 850 MHz instrument fitted
with a cryogenically cooled triple-resonance 5 mm TCI probe with pulsed-field gradients
along the z-axis at 23 ◦C. The samples were measured by 1H-NMR using the pulse sequence
zgesgppe, allowing water suppression to be achieved using excitation sculpting with
pulsed-field gradients and perfect echo. The spectra were acquired with 64 scans and a
recovery delay of 3.9 s. The spectra were assigned using standard correlation methods.
Resonances of interest were integrated using the program Dynamics Center 2.5 (Bruker;
Bremen Germany) and compared to baseline spectra.

4.3. Rate of Temperature-Dependent Non-Enzymatic Hydrolysis

Based on experimentally measured non-enzymatic hydrolysis rates (see Table 1), pre-
exponential factor A and activation energy Ea were inferred by fitting the data to the
Arrhenius relation [18]:

k = Ae
Ea
RT . (6)

Using the values for A and Ea, rate constant k could be calculated in dependence of
absolute temperature T [10].

4.4. Mathematical Modelling of NAD Metabolism in Bacteria

For the simulation of NAD pathway dynamics, we consider a dynamic system C of n
variables, which is defined as:

dC
dt

= f (C, k), (7)

where reaction rates are denoted by parameter k. The temperature dependence of the rate
laws is modelled using the Arrhenius equation (Equation (6)) as described earlier [10].
The complete list of ordinary differential equations that constitute the dynamic system of
model variables are given in Supplementary Materials (cf. Equations (S1)–(S8)). The model
described here uses a subset of reactions (see Figure 1), and the corresponding kinetic
constants are taken from enzyme database BRENDA [19] and additionally evaluated
by checking the original literature for comparable measurement conditions. Parameter
values were used as in our previously published model of NAD metabolism (BioModels:
MODEL1905220001; [1]). For details, see supplementary text. The initial concentration
of free NAD was set to 0.3 mM, corresponding to experimentally measured free-NAD
concentrations. The initial concentration of all other pathway intermediates was set to 0,
unless stated otherwise. The model did converge on the same steady state as long as the
sum of the concentration of all Nam-containing intermediates remained 0.3 mM. Influx
and growth were neglected in the simulations to reduce the complexity and number of
parameters. All parameters were assumed to hold for base temperature T0 = 37.5 ◦C.
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4.5. Software and Data

The temperature-dependent model of NAD metabolism was submitted to the BioMod-
els database (model MODEL2103290001). The ETE3 toolkit v3.1.2 [20] was used to visualize
the phylogenetic trees. The python scripts used to perform the phylogenetic analysis
are available on GitHub: https://github.com/MolecularBioinformatics/Phylogenetic-
analysis (accessed on 25 March 2019). The steady-state calculation of fluxes and concen-
trations was performed using COPASI 4.29 [11]. The Python scripts used to calculate the
modelling results of this paper can be downloaded from GitHub: https://github.com/
MolecularBioinformatics/thermophilesNAD (accessed on 12 May 2022).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12070569/s1, Figure S1: Concentration control coeffi-
cients of NAD biosynthesis with exclusive presence of PncA enzyme. Each subplot shows the
concentration control coefficient on the metabolic intermediates of PncA pathway due to the per-
turbation in the enzyme concentration corresponding to an enzyme catalyzed reaction (y-axis) at
different temperatures (x-axis). Refer the computational model submitted at the BioModels database
as MODEL2103290001 for details about the reactions; Figure S2: Concentration control coefficients
of NAD biosynthesis via exclusive presence of Nampt enzyme. Each subplot shows the concentra-
tion control coefficient on the metabolic intermediates of Nampt pathway due to the perturbation
in the enzyme concentration corresponding to an enzyme catalyzed reaction (y-axis) at different
temperatures (x-axis). Refer the computational model submitted at the BioModels database as
MODEL2103290001 for details about the reactions; Figure S3: Simulated steady-state concentrations
of metabolic intermediates of NAD biosynthesis via PNCA and NAMPT pathway at different tem-
peratures using the mathematical model of NAD biosynthesis. Model-simulated concentrations
of pathway intermediates while A) minimization of the ratio of ATP consumption (JATP) to NAD
production flux (JNAD), B) minimization of the ATP consumption flux (JATP), and C) maximization of
the free NAD concentration (CNAD). Error bars show the different simulated concentrations due to
different combinations of enzyme concentrations found as a solution to the optimization problem
at a given temperatures; Table S1: Seed sequences for phylogenetic analysis: enzyme identity and
cutoffs for minimum length and maximum E-value; Table S2: An overview of rate laws used by the
metabolic enzymes of NAD pathway. Ref. [21] is cited in the Supplementary Materials file.
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